-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_summary.py
156 lines (132 loc) · 4.75 KB
/
generate_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import sys
import fire
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, CodeLlamaTokenizer
from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter
import json
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
input_file: str = "",
output_dir: str = "",
base_model: str = "",
load_8bit: bool = False,
prompt_template: str = "codellama", # The prompt template to use, will default to alpaca.
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='codellama/CodeLlama-34b-Instruct-hf'"
assert (
input_file
), "Please specify a --input_file, e.g. --input_file='dataset/test_set.json'"
assert (
output_dir
), "Please specify a --output_dir"
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
prompter = Prompter(prompt_template)
tokenizer = CodeLlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
cache_dir='/data/local/linxi/models',
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=3,
max_new_tokens=512,
stream_output=False,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs['attention_mask'].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
do_sample=True,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
pad_token_id=tokenizer.pad_token_id,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
with open(input_file, 'r') as f:
source_functions = json.load(f)
with open(os.path.join(output_dir, 'function_summary.json'), 'w') as f:
json.dump([], f, indent=4)
for function_name in source_functions.keys():
instruction = "Summarize the function provided below in a concise and clear manner in 512 words. Highlight the key inputs, outputs, main steps and the main purpose of the function. Avoid unnecessary details and focus on delivering a high-level overview."
res = evaluate(instruction, source_functions[function_name])
print('-' * 20, 'Function Summary:', function_name, '-' * 20,)
print(res)
new_data = {}
new_data['instruction'] = instruction
new_data['input'] = source_functions[function_name]
new_data['output'] = res
with open(os.path.join(output_dir, 'function_summary.json'), 'r+') as f:
data_for_update = json.load(f)
data_for_update.append(new_data)
f.seek(0)
f.truncate()
json.dump(data_for_update, f, indent=4)
if __name__ == "__main__":
fire.Fire(main)