diff --git a/Dockerfile.cpu b/Dockerfile.cpu index 975093f..7f537db 100644 --- a/Dockerfile.cpu +++ b/Dockerfile.cpu @@ -36,12 +36,15 @@ ENV CARVEKIT_PORT '5000' ENV CARVEKIT_HOST '0.0.0.0' ENV CARVEKIT_SEGMENTATION_NETWORK 'tracer_b7' ENV CARVEKIT_PREPROCESSING_METHOD 'none' -ENV CARVEKIT_POSTPROCESSING_METHOD 'fba' +ENV CARVEKIT_POSTPROCESSING_METHOD 'cascade_fba' ENV CARVEKIT_DEVICE 'cpu' +ENV CARVEKIT_BATCH_SIZE_PRE=5 ENV CARVEKIT_BATCH_SIZE_SEG '5' ENV CARVEKIT_BATCH_SIZE_MATTING '1' +ENV CARVEKIT_BATCH_SIZE_REFINE '1' ENV CARVEKIT_SEG_MASK_SIZE '640' ENV CARVEKIT_MATTING_MASK_SIZE '2048' +ENV CARVEKIT_REFINE_MASK_SIZE '900' ENV CARVEKIT_AUTH_ENABLE '1' ENV CARVEKIT_FP16 '0' ENV CARVEKIT_TRIMAP_PROB_THRESHOLD=231 diff --git a/Dockerfile.cuda b/Dockerfile.cuda index b5d31df..1155b0c 100644 --- a/Dockerfile.cuda +++ b/Dockerfile.cuda @@ -36,12 +36,15 @@ ENV CARVEKIT_PORT '5000' ENV CARVEKIT_HOST '0.0.0.0' ENV CARVEKIT_SEGMENTATION_NETWORK 'tracer_b7' ENV CARVEKIT_PREPROCESSING_METHOD 'none' -ENV CARVEKIT_POSTPROCESSING_METHOD 'fba' +ENV CARVEKIT_POSTPROCESSING_METHOD 'cascade_fba' ENV CARVEKIT_DEVICE 'cuda' +ENV CARVEKIT_BATCH_SIZE_PRE=5 ENV CARVEKIT_BATCH_SIZE_SEG '5' ENV CARVEKIT_BATCH_SIZE_MATTING '1' +ENV CARVEKIT_BATCH_SIZE_REFINE '1' ENV CARVEKIT_SEG_MASK_SIZE '640' ENV CARVEKIT_MATTING_MASK_SIZE '2048' +ENV CARVEKIT_REFINE_MASK_SIZE '900' ENV CARVEKIT_AUTH_ENABLE '1' ENV CARVEKIT_FP16 '0' ENV CARVEKIT_TRIMAP_PROB_THRESHOLD=231 diff --git a/README.md b/README.md index 8f44cc7..1420fe6 100644 --- a/README.md +++ b/README.md @@ -26,13 +26,16 @@ Automated high-quality background removal framework for an image using neural ne ## πŸŽ† Features: - High Quality +- Works offline - Batch Processing - NVIDIA CUDA and CPU processing - FP16 inference: Fast inference with low memory usage - Easy inference - 100% remove.bg compatible FastAPI HTTP API - Removes background from hairs +- Automatic best method selection for user's image - Easy integration with your code +- Models hosted on [HuggingFace](https://huggingface.co/Carve) ## β›± Try yourself on [Google Colab](https://colab.research.google.com/github/OPHoperHPO/image-background-remove-tool/blob/master/docs/other/carvekit_try.ipynb) ## ⛓️ How does it work? @@ -42,32 +45,43 @@ It can be briefly described as 3. Using machine learning technology, the background of the image is removed 4. Image post-processing to improve the quality of the processed image ## πŸŽ“ Implemented Neural Networks: -| Networks | Target | Accuracy | -|:-----------------------:|:-------------------------------------------:|:--------------------------------:| -| **Tracer-B7** (default) | **General** (objects, animals, etc) | **90%** (mean F1-Score, DUTS-TE) | -| U^2-net | **Hairs** (hairs, people, animals, objects) | 80.4% (mean F1-Score, DUTS-TE) | -| BASNet | **General** (people, objects) | 80.3% (mean F1-Score, DUTS-TE) | -| DeepLabV3 | People, Animals, Cars, etc | 67.4% (mean IoU, COCO val2017) | - +| Networks | Target | Accuracy | +|:-----------------------:|:-------------------------------------------:|:--------------------------------------:| +| **Tracer-B7** (default) | **General** (objects, animals, etc) | **91.5%** (mean F1-Score, DUTS-TE, LR) | +| **ISNet** | **Hairs** (hairs, people, animals) | **96%** (mean F1-Score, DUTS-TE, LR) | +| U^2-net | **Hairs** (hairs, people, animals, objects) | 80.4% (mean F1-Score, DUTS-TE, LR) | +| BASNet | **General** (people, objects) | 80.3% (mean F1-Score, DUTS-TE, LR) | +| DeepLabV3 | People, Animals, Cars, etc | 67.4% (mean IoU, COCO val2017, LR) | + +> HR - High resolution images. +> LR - Low resolution images. ### Recommended parameters for different models | Networks | Segmentation mask size | Trimap parameters (dilation, erosion) | |:-----------:|:-----------------------:|:-------------------------------------:| | `tracer_b7` | 640 | (30, 5) | +| `isnet` | 1024 | (30, 5) | | `u2net` | 320 | (30, 5) | | `basnet` | 320 | (30, 5) | | `deeplabv3` | 1024 | (40, 20) | > ### Notes: > 1. The final quality may depend on the resolution of your image, the type of scene or object. -> 2. Use **U2-Net for hairs** and **Tracer-B7 for general images** and correct parameters. \ +> 2. Use **ISNet for hairs** or **U2-Net for hairs** and **Tracer-B7 for general images** and correct parameters. \ > It is very important for final quality! Example images was taken by using U2-Net and FBA post-processing. ## πŸ–ΌοΈ Image pre-processing and post-processing methods: ### πŸ” Preprocessing methods: * `none` - No preprocessing methods used. -> They will be added in the future. +* [`autoscene`](https://huggingface.co/Carve/scene_classifier/) - Automatically detects the scene type using classifier and applies the appropriate model. (default) +* `auto` - Performs in-depth image analysis and more accurately determines the best background removal method. Uses object classifier and scene classifier together. +> ### Notes: +> 1. `AutoScene` and `auto` may override the model and parameters specified by the user without logging. +> So, if you want to use a specific model, make all constant etc., you should disable auto preprocessing methods first! +> 2. At the moment for `auto` method universal models are selected for some specific domains, since the added models are currently not enough for so many types of scenes. +> In the future, when some variety of models is added, auto-selection will be rewritten for the better. ### βœ‚ Post-processing methods: * `none` - No post-processing methods used. -* `fba` (default) - This algorithm improves the borders of the image when removing the background from images with hair, etc. using FBA Matting neural network. This method gives the best result in combination with u2net without any preprocessing methods. +* `fba` - This algorithm improves the borders of the image when removing the background from images with hair, etc. using FBA Matting neural network. +* `cascade_fba` (default) - This algorithm refines the segmentation mask using CascadePSP neural network and then applies the FBA algorithm. ## 🏷 Setup for CPU processing: 1. `pip install carvekit --extra-index-url https://download.pytorch.org/whl/cpu` @@ -84,12 +98,15 @@ import torch from carvekit.api.high import HiInterface # Check doc strings for more information -interface = HiInterface(object_type="hairs-like", # Can be "object" or "hairs-like". +interface = HiInterface(object_type="auto", # Can be "object" or "hairs-like" or "auto" batch_size_seg=5, + batch_size_pre=5, batch_size_matting=1, + batch_size_refine=1, device='cuda' if torch.cuda.is_available() else 'cpu', seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net matting_mask_size=2048, + refine_mask_size=900, trimap_prob_threshold=231, trimap_dilation=30, trimap_erosion_iters=5, @@ -100,33 +117,65 @@ cat_wo_bg.save('2.png') ``` - +### Analogue of `auto` preprocessing method from cli +``` python +from carvekit.api.autointerface import AutoInterface +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 + +scene_classifier = SceneClassifier(device="cpu", batch_size=1) +object_classifier = SimplifiedYoloV4(device="cpu", batch_size=1) + +interface = AutoInterface(scene_classifier=scene_classifier, + object_classifier=object_classifier, + segmentation_batch_size=1, + postprocessing_batch_size=1, + postprocessing_image_size=2048, + refining_batch_size=1, + refining_image_size=900, + segmentation_device="cpu", + fp16=False, + postprocessing_device="cpu") +images_without_background = interface(['./tests/data/cat.jpg']) +cat_wo_bg = images_without_background[0] +cat_wo_bg.save('2.png') +``` ### If you want control everything ``` python import PIL.Image from carvekit.api.interface import Interface from carvekit.ml.wrap.fba_matting import FBAMatting +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.cascadepsp import CascadePSP from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 -from carvekit.pipelines.postprocessing import MattingMethod -from carvekit.pipelines.preprocessing import PreprocessingStub +from carvekit.pipelines.postprocessing import CasMattingMethod +from carvekit.pipelines.preprocessing import AutoScene from carvekit.trimap.generator import TrimapGenerator # Check doc strings for more information seg_net = TracerUniversalB7(device='cpu', - batch_size=1) - + batch_size=1, fp16=False) +cascade_psp = CascadePSP(device='cpu', + batch_size=1, + input_tensor_size=900, + fp16=False, + processing_accelerate_image_size=2048, + global_step_only=False) fba = FBAMatting(device='cpu', input_tensor_size=2048, - batch_size=1) + batch_size=1, fp16=False) -trimap = TrimapGenerator() +trimap = TrimapGenerator(prob_threshold=231, kernel_size=30, erosion_iters=5) -preprocessing = PreprocessingStub() +scene_classifier = SceneClassifier(device='cpu', batch_size=5) +preprocessing = AutoScene(scene_classifier=scene_classifier) -postprocessing = MattingMethod(matting_module=fba, - trimap_generator=trimap, - device='cpu') +postprocessing = CasMattingMethod( + refining_module=cascade_psp, + matting_module=fba, + trimap_generator=trimap, + device='cpu') interface = Interface(pre_pipe=preprocessing, post_pipe=postprocessing, @@ -134,8 +183,7 @@ interface = Interface(pre_pipe=preprocessing, image = PIL.Image.open('tests/data/cat.jpg') cat_wo_bg = interface([image])[0] -cat_wo_bg.save('2.png') - +cat_wo_bg.save('2.png') ``` @@ -151,24 +199,35 @@ Usage: carvekit [OPTIONS] Options: -i ./2.jpg Path to input file or dir [required] -o ./2.png Path to output file or dir - --pre none Preprocessing method - --post fba Postprocessing method. + --pre autoscene Preprocessing method + --post cascade_fba Postprocessing method. --net tracer_b7 Segmentation Network. Check README for more info. + --recursive Enables recursive search for images in a folder --batch_size 10 Batch Size for list of images to be loaded to RAM - + + --batch_size_pre 5 Batch size for list of images to be + processed by preprocessing method network + --batch_size_seg 5 Batch size for list of images to be processed by segmentation network --batch_size_mat 1 Batch size for list of images to be processed by matting network + --batch_size_refine 1 Batch size for list of images to be + processed by refining network + --seg_mask_size 640 The size of the input image for the - segmentation neural network. Use 640 for Tracer B7 and 320 for U2Net + segmentation neural network. Use 640 for Tracer B7 and 1024 for ISNet --matting_mask_size 2048 The size of the input image for the matting neural network. + + --refine_mask_size 900 The size of the input image for the refining + neural network. + --trimap_dilation 30 The size of the offset radius from the object mask in pixels when forming an unknown area diff --git a/carvekit/__init__.py b/carvekit/__init__.py index b58821b..03a3882 100644 --- a/carvekit/__init__.py +++ b/carvekit/__init__.py @@ -1 +1 @@ -version = "4.1.0" +version = "4.5.0" diff --git a/carvekit/__main__.py b/carvekit/__main__.py index acf901d..c40bc61 100644 --- a/carvekit/__main__.py +++ b/carvekit/__main__.py @@ -16,8 +16,8 @@ ) @click.option("-i", required=True, type=str, help="Path to input file or dir") @click.option("-o", default="none", type=str, help="Path to output file or dir") -@click.option("--pre", default="none", type=str, help="Preprocessing method") -@click.option("--post", default="fba", type=str, help="Postprocessing method.") +@click.option("--pre", default="autoscene", type=str, help="Preprocessing method") +@click.option("--post", default="cascade_fba", type=str, help="Postprocessing method.") @click.option("--net", default="tracer_b7", type=str, help="Segmentation Network") @click.option( "--recursive", @@ -31,6 +31,12 @@ type=int, help="Batch Size for list of images to be loaded to RAM", ) +@click.option( + "--batch_size_pre", + default=5, + type=int, + help="Batch size for list of images to be processed by preprocessing method network", +) @click.option( "--batch_size_seg", default=5, @@ -43,6 +49,12 @@ type=int, help="Batch size for list of images to be processed by matting " "network", ) +@click.option( + "--batch_size_refine", + default=1, + type=int, + help="Batch size for list of images to be processed by refining network", +) @click.option( "--seg_mask_size", default=640, @@ -55,6 +67,12 @@ type=int, help="The size of the input image for the matting neural network.", ) +@click.option( + "--refine_mask_size", + default=900, + type=int, + help="The size of the input image for the refining neural network.", +) @click.option( "--trimap_dilation", default=30, @@ -89,10 +107,13 @@ def removebg( net: str, recursive: bool, batch_size: int, + batch_size_pre: int, batch_size_seg: int, batch_size_mat: int, + batch_size_refine: int, seg_mask_size: int, matting_mask_size: int, + refine_mask_size: int, device: str, fp16: bool, trimap_dilation: int, @@ -121,12 +142,15 @@ def removebg( device=device, batch_size_seg=batch_size_seg, batch_size_matting=batch_size_mat, + batch_size_refine=batch_size_refine, seg_mask_size=seg_mask_size, matting_mask_size=matting_mask_size, + refine_mask_size=refine_mask_size, fp16=fp16, trimap_dilation=trimap_dilation, trimap_erosion=trimap_erosion, trimap_prob_threshold=trimap_prob_threshold, + batch_size_pre=batch_size_pre, ) interface = init_interface(interface_config) diff --git a/carvekit/api/autointerface.py b/carvekit/api/autointerface.py new file mode 100644 index 0000000..e6993f8 --- /dev/null +++ b/carvekit/api/autointerface.py @@ -0,0 +1,308 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +from collections import Counter +from pathlib import Path + +from PIL import Image +from typing import Union, List, Dict + +from carvekit.api.interface import Interface +from carvekit.ml.wrap.basnet import BASNET +from carvekit.ml.wrap.cascadepsp import CascadePSP +from carvekit.ml.wrap.deeplab_v3 import DeepLabV3 +from carvekit.ml.wrap.isnet import ISNet +from carvekit.ml.wrap.fba_matting import FBAMatting +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 +from carvekit.ml.wrap.u2net import U2NET +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 +from carvekit.pipelines.postprocessing import CasMattingMethod, MattingMethod +from carvekit.trimap.generator import TrimapGenerator +from carvekit.utils.image_utils import load_image + +from carvekit.utils.pool_utils import thread_pool_processing + +__all__ = ["AutoInterface"] + + +class AutoInterface(Interface): + def __init__( + self, + scene_classifier: SceneClassifier, + object_classifier: SimplifiedYoloV4, + segmentation_batch_size: int = 3, + refining_batch_size: int = 1, + refining_image_size: int = 900, + postprocessing_batch_size: int = 1, + postprocessing_image_size: int = 2048, + segmentation_device: str = "cpu", + postprocessing_device: str = "cpu", + fp16=False, + ): + """ + Args: + scene_classifier: SceneClassifier instance + object_classifier: YoloV4_COCO instance + """ + self.scene_classifier = scene_classifier + self.object_classifier = object_classifier + self.segmentation_batch_size = segmentation_batch_size + self.refining_batch_size = refining_batch_size + self.refining_image_size = refining_image_size + self.postprocessing_batch_size = postprocessing_batch_size + self.postprocessing_image_size = postprocessing_image_size + self.segmentation_device = segmentation_device + self.postprocessing_device = postprocessing_device + self.fp16 = fp16 + super().__init__( + seg_pipe=None, post_pipe=None, pre_pipe=None + ) # just for compatibility with Interface class + + @staticmethod + def select_params_for_net(net: Union[TracerUniversalB7, U2NET, DeepLabV3]): + """ + Selects the parameters for the network depending on the scene + + Args: + net: network + """ + if net == TracerUniversalB7: + return { + "trimap_generator": { + "prob_threshold": 231, + "kernel_size": 30, + "erosion_iters": 5, + }, + "matting_module": {"disable_noise_filter": False}, + "refining": {"enabled": True, "mask_binary_threshold": 128}, + } + elif net == U2NET: + return { + "trimap_generator": { + "prob_threshold": 231, + "kernel_size": 30, + "erosion_iters": 5, + }, + "matting_module": {"disable_noise_filter": False}, + "refining": {"enabled": True, "mask_binary_threshold": 128}, + } + elif net == ISNet: + return { + "trimap_generator": { + "prob_threshold": 231, + "kernel_size": 30, + "erosion_iters": 5, + }, + "matting_module": {"disable_noise_filter": True}, + "refining": {"enabled": False, "mask_binary_threshold": 128}, + } + elif net == DeepLabV3: + return { + "trimap_generator": { + "prob_threshold": 231, + "kernel_size": 40, + "erosion_iters": 20, + }, + "matting_module": {"disable_noise_filter": False}, + "refining": {"enabled": True, "mask_binary_threshold": 128}, + } + elif net == BASNET: + return { + "trimap_generator": { + "prob_threshold": 231, + "kernel_size": 30, + "erosion_iters": 5, + }, + "matting_module": {"disable_noise_filter": False}, + "refining": {"enabled": True, "mask_binary_threshold": 128}, + } + else: + raise ValueError("Unknown network type") + + def select_net(self, scene: str, images_info: List[dict]): + # TODO: Update this function, when new networks will be added + if scene == "hard": + for image_info in images_info: + objects = image_info["objects"] + if len(objects) == 0: + image_info[ + "net" + ] = TracerUniversalB7 # It seems that the image is empty, but we will try to process it + continue + obj_counter: Dict = dict(Counter([obj for obj in objects])) + # fill empty classes + for _tag in self.object_classifier.db: + if _tag not in obj_counter: + obj_counter[_tag] = 0 + + non_empty_classes = [obj for obj in obj_counter if obj_counter[obj] > 0] + + if obj_counter["human"] > 0 and len(non_empty_classes) == 1: + # Human only case. Hard Scene? It may be a photo of a person in far/middle distance. + image_info["net"] = TracerUniversalB7 + elif obj_counter["human"] > 0 and len(non_empty_classes) > 1: + # Okay, we have a human without extra hairs and something else. Hard border + image_info["net"] = TracerUniversalB7 + elif obj_counter["cars"] > 0: + # Cars case + image_info["net"] = TracerUniversalB7 + elif obj_counter["animals"] > 0: + # Animals case + image_info["net"] = ISNet # animals should be always in soft scenes + else: + # We have no idea what is in the image, so we will try to process it with universal model + image_info["net"] = TracerUniversalB7 + + elif scene == "soft": + for image_info in images_info: + objects = image_info["objects"] + if len(objects) == 0: + image_info[ + "net" + ] = TracerUniversalB7 # It seems that the image is empty, but we will try to process it + continue + obj_counter: Dict = dict(Counter([obj for obj in objects])) + # fill empty classes + for _tag in self.object_classifier.db: + if _tag not in obj_counter: + obj_counter[_tag] = 0 + + non_empty_classes = [obj for obj in obj_counter if obj_counter[obj] > 0] + + if obj_counter["human"] > 0 and len(non_empty_classes) == 1: + # Human only case. It may be a portrait + image_info["net"] = ISNet + elif obj_counter["human"] > 0 and len(non_empty_classes) > 1: + # Okay, we have a human with hairs and something else + image_info["net"] = ISNet + elif obj_counter["cars"] > 0: + # Cars case. + image_info["net"] = TracerUniversalB7 + elif obj_counter["animals"] > 0: + # Animals case + image_info["net"] = ISNet # animals should be always in soft scenes + else: + # We have no idea what is in the image, so we will try to process it with universal model + image_info["net"] = TracerUniversalB7 + elif scene == "digital": + for image_info in images_info: # TODO: not implemented yet + image_info[ + "net" + ] = TracerUniversalB7 # It seems that the image is empty, but we will try to process it + + def __call__(self, images: List[Union[str, Path, Image.Image]]): + """ + Automatically detects the scene and selects the appropriate network for segmentation + + Args: + interface: Interface instance + images: list of images + + Returns: + list of masks + """ + loaded_images = thread_pool_processing(load_image, images) + + scene_analysis = self.scene_classifier(loaded_images) + images_objects = self.object_classifier(loaded_images) + + images_per_scene = {} + for i, image in enumerate(loaded_images): + scene_name = scene_analysis[i][0][0] + if scene_name not in images_per_scene: + images_per_scene[scene_name] = [] + images_per_scene[scene_name].append( + {"image": image, "objects": images_objects[i]} + ) + + for scene_name, images_info in list(images_per_scene.items()): + self.select_net(scene_name, images_info) + + # groups images by net + for scene_name, images_info in list(images_per_scene.items()): + groups = {} + for image_info in images_info: + net = image_info["net"] + if net not in groups: + groups[net] = [] + groups[net].append(image_info) + for net, gimages_info in list(groups.items()): + sc_images = [image_info["image"] for image_info in gimages_info] + masks = net( + device=self.segmentation_device, + batch_size=self.segmentation_batch_size, + fp16=self.fp16, + )(sc_images) + + for i, image_info in enumerate(gimages_info): + image_info["mask"] = masks[i] + + cascadepsp = CascadePSP( + device=self.postprocessing_device, + fp16=self.fp16, + input_tensor_size=self.refining_image_size, + batch_size=self.refining_batch_size, + ) + + fba = FBAMatting( + device=self.postprocessing_device, + batch_size=self.postprocessing_batch_size, + input_tensor_size=self.postprocessing_image_size, + fp16=self.fp16, + ) + # groups images by net + for scene_name, images_info in list(images_per_scene.items()): + groups = {} + for image_info in images_info: + net = image_info["net"] + if net not in groups: + groups[net] = [] + groups[net].append(image_info) + for net, gimages_info in list(groups.items()): + + # Configure custom pipeline for image group + config_params = self.select_params_for_net(net) + trimap_generator = TrimapGenerator(**config_params["trimap_generator"]) + fba.disable_noise_filter = config_params["matting_module"][ + "disable_noise_filter" + ] + if config_params["refining"]["enabled"]: + cascadepsp.mask_binary_threshold = config_params["refining"][ + "mask_binary_threshold" + ] + matting_method = CasMattingMethod( + refining_module=cascadepsp, + matting_module=fba, + trimap_generator=trimap_generator, + device=self.postprocessing_device, + ) + else: + matting_method = MattingMethod( + matting_module=fba, + trimap_generator=trimap_generator, + device=self.postprocessing_device, + ) + + sc_images = [image_info["image"] for image_info in gimages_info] + masks = [image_info["mask"] for image_info in gimages_info] + result = matting_method(sc_images, masks) + + for i, image_info in enumerate(gimages_info): + image_info["result"] = result[i] + + # Reconstructing the original order of image + result = [] + for image in loaded_images: + for scene_name, images_info in list(images_per_scene.items()): + for image_info in images_info: + if image_info["image"] == image: + result.append(image_info["result"]) + break + if len(result) != len(images): + raise RuntimeError( + "Something went wrong with restoring original order. Please report this bug." + ) + return result diff --git a/carvekit/api/high.py b/carvekit/api/high.py index 46fb9d3..5834429 100644 --- a/carvekit/api/high.py +++ b/carvekit/api/high.py @@ -8,20 +8,26 @@ from carvekit.api.interface import Interface from carvekit.ml.wrap.fba_matting import FBAMatting from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 -from carvekit.ml.wrap.u2net import U2NET -from carvekit.pipelines.postprocessing import MattingMethod +from carvekit.ml.wrap.cascadepsp import CascadePSP +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.pipelines.preprocessing import AutoScene +from carvekit.ml.wrap.isnet import ISNet +from carvekit.pipelines.postprocessing import CasMattingMethod from carvekit.trimap.generator import TrimapGenerator class HiInterface(Interface): def __init__( self, - object_type: str = "object", + object_type: str = "auto", + batch_size_pre=5, batch_size_seg=2, batch_size_matting=1, + batch_size_refine=1, device="cpu", seg_mask_size=640, matting_mask_size=2048, + refine_mask_size=900, trimap_prob_threshold=231, trimap_dilation=30, trimap_erosion_iters=5, @@ -31,9 +37,10 @@ def __init__( Initializes High Level interface. Args: - object_type: Interest object type. Can be "object" or "hairs-like". + object_type: Interest object type. Can be "object" or "hairs-like" or "auto". matting_mask_size: The size of the input image for the matting neural network. seg_mask_size: The size of the input image for the segmentation neural network. + batch_size_pre: Number of images processed per one preprocessing method call. batch_size_seg: Number of images processed per one segmentation neural network call. batch_size_matting: Number of images processed per one matting neural network call. device: Processing device @@ -41,6 +48,8 @@ def __init__( trimap_prob_threshold: Probability threshold at which the prob_filter and prob_as_unknown_area operations will be applied trimap_dilation: The size of the offset radius from the object mask in pixels when forming an unknown area trimap_erosion_iters: The number of iterations of erosion that the object's mask will be subjected to before forming an unknown area + refine_mask_size: The size of the input image for the refinement neural network. + batch_size_refine: Number of images processed per one refinement neural network call. Notes: 1. Changing seg_mask_size may cause an out-of-memory error if the value is too large, and it may also @@ -52,48 +61,71 @@ def __init__( 2. Changing trimap_prob_threshold, trimap_kernel_size, trimap_erosion_iters may improve object edge refining quality, """ + preprocess_pipeline = None + if object_type == "object": - self.u2net = TracerUniversalB7( + self._segnet = TracerUniversalB7( device=device, batch_size=batch_size_seg, input_image_size=seg_mask_size, fp16=fp16, ) elif object_type == "hairs-like": - self.u2net = U2NET( + self._segnet = ISNet( + device=device, + batch_size=batch_size_seg, + input_image_size=seg_mask_size, + fp16=fp16, + ) + elif object_type == "auto": + # Using Tracer by default, + # but it will dynamically switch to other if needed + self._segnet = TracerUniversalB7( device=device, batch_size=batch_size_seg, input_image_size=seg_mask_size, fp16=fp16, ) + self._scene_classifier = SceneClassifier( + device=device, fp16=fp16, batch_size=batch_size_pre + ) + preprocess_pipeline = AutoScene(scene_classifier=self._scene_classifier) + else: warnings.warn( f"Unknown object type: {object_type}. Using default object type: object" ) - self.u2net = TracerUniversalB7( + self._segnet = TracerUniversalB7( device=device, batch_size=batch_size_seg, input_image_size=seg_mask_size, fp16=fp16, ) - self.fba = FBAMatting( + self._cascade_psp = CascadePSP( + device=device, + batch_size=batch_size_refine, + input_tensor_size=refine_mask_size, + fp16=fp16, + ) + self._fba = FBAMatting( batch_size=batch_size_matting, device=device, input_tensor_size=matting_mask_size, fp16=fp16, ) - self.trimap_generator = TrimapGenerator( + self._trimap_generator = TrimapGenerator( prob_threshold=trimap_prob_threshold, kernel_size=trimap_dilation, erosion_iters=trimap_erosion_iters, ) super(HiInterface, self).__init__( - pre_pipe=None, - seg_pipe=self.u2net, - post_pipe=MattingMethod( - matting_module=self.fba, - trimap_generator=self.trimap_generator, + pre_pipe=preprocess_pipeline, + seg_pipe=self._segnet, + post_pipe=CasMattingMethod( + refining_module=self._cascade_psp, + matting_module=self._fba, + trimap_generator=self._trimap_generator, device=device, ), device=device, diff --git a/carvekit/api/interface.py b/carvekit/api/interface.py index 364d247..8ff5c30 100644 --- a/carvekit/api/interface.py +++ b/carvekit/api/interface.py @@ -11,9 +11,10 @@ from carvekit.ml.wrap.basnet import BASNET from carvekit.ml.wrap.deeplab_v3 import DeepLabV3 from carvekit.ml.wrap.u2net import U2NET +from carvekit.ml.wrap.isnet import ISNet from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 -from carvekit.pipelines.preprocessing import PreprocessingStub -from carvekit.pipelines.postprocessing import MattingMethod +from carvekit.pipelines.preprocessing import PreprocessingStub, AutoScene +from carvekit.pipelines.postprocessing import MattingMethod, CasMattingMethod from carvekit.utils.image_utils import load_image from carvekit.utils.mask_utils import apply_mask from carvekit.utils.pool_utils import thread_pool_processing @@ -22,9 +23,9 @@ class Interface: def __init__( self, - seg_pipe: Union[U2NET, BASNET, DeepLabV3, TracerUniversalB7], - pre_pipe: Optional[Union[PreprocessingStub]] = None, - post_pipe: Optional[Union[MattingMethod]] = None, + seg_pipe: Optional[Union[U2NET, BASNET, DeepLabV3, TracerUniversalB7, ISNet]], + pre_pipe: Optional[Union[PreprocessingStub, AutoScene]] = None, + post_pipe: Optional[Union[MattingMethod, CasMattingMethod]] = None, device="cpu", ): """ @@ -53,6 +54,11 @@ def __call__( Returns: List of images without background as PIL.Image.Image instances """ + if self.segmentation_pipeline is None: + raise ValueError( + "Segmentation pipeline is not initialized." + "Override the class or pass the pipeline to the constructor." + ) images = thread_pool_processing(load_image, images) if self.preprocessing_pipeline is not None: masks: List[Image.Image] = self.preprocessing_pipeline( @@ -68,9 +74,7 @@ def __call__( else: images = list( map( - lambda x: apply_mask( - image=images[x], mask=masks[x], device=self.device - ), + lambda x: apply_mask(image=images[x], mask=masks[x]), range(len(images)), ) ) diff --git a/carvekit/ml/arch/cascadepsp/__init__.py b/carvekit/ml/arch/cascadepsp/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/carvekit/ml/arch/cascadepsp/extractors.py b/carvekit/ml/arch/cascadepsp/extractors.py new file mode 100644 index 0000000..7967796 --- /dev/null +++ b/carvekit/ml/arch/cascadepsp/extractors.py @@ -0,0 +1,127 @@ +""" +Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +Source url: https://github.com/hkchengrex/CascadePSP +License: MIT License +""" +import math + +import torch.nn as nn + + +def conv3x3(in_planes, out_planes, stride=1, dilation=1): + return nn.Conv2d( + in_planes, + out_planes, + kernel_size=3, + stride=stride, + padding=dilation, + dilation=dilation, + bias=False, + ) + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d( + planes, + planes, + kernel_size=3, + stride=stride, + dilation=dilation, + padding=dilation, + bias=False, + ) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + def __init__(self, block, layers=(3, 4, 23, 3)): + self.inplanes = 64 + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(6, 64, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1, dilation=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias=False, + ), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [block(self.inplanes, planes, stride, downsample)] + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, dilation=dilation)) + + return nn.Sequential(*layers) + + def forward(self, x): + x_1 = self.conv1(x) # /2 + x = self.bn1(x_1) + x = self.relu(x) + x = self.maxpool(x) # /2 + + x_2 = self.layer1(x) + x = self.layer2(x_2) # /2 + x = self.layer3(x) + x = self.layer4(x) + + return x, x_1, x_2 + + +def resnet50(): + model = ResNet(Bottleneck, [3, 4, 6, 3]) + return model diff --git a/carvekit/ml/arch/cascadepsp/pspnet.py b/carvekit/ml/arch/cascadepsp/pspnet.py new file mode 100644 index 0000000..350719e --- /dev/null +++ b/carvekit/ml/arch/cascadepsp/pspnet.py @@ -0,0 +1,194 @@ +""" +Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +Source url: https://github.com/hkchengrex/CascadePSP +License: MIT License +""" + +import torch +from torch import nn +from torch.nn import functional as F +from carvekit.ml.arch.cascadepsp.extractors import resnet50 + + +class PSPModule(nn.Module): + def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): + super().__init__() + self.stages = [] + self.stages = nn.ModuleList( + [self._make_stage(features, size) for size in sizes] + ) + self.bottleneck = nn.Conv2d( + features * (len(sizes) + 1), out_features, kernel_size=1 + ) + self.relu = nn.ReLU(inplace=True) + + def _make_stage(self, features, size): + prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) + conv = nn.Conv2d(features, features, kernel_size=1, bias=False) + return nn.Sequential(prior, conv) + + def forward(self, feats): + h, w = feats.size(2), feats.size(3) + set_priors = [ + F.interpolate( + input=stage(feats), size=(h, w), mode="bilinear", align_corners=False + ) + for stage in self.stages + ] + priors = set_priors + [feats] + bottle = self.bottleneck(torch.cat(priors, 1)) + return self.relu(bottle) + + +class PSPUpsample(nn.Module): + def __init__(self, x_channels, in_channels, out_channels): + super().__init__() + self.conv = nn.Sequential( + nn.BatchNorm2d(in_channels), + nn.ReLU(inplace=True), + nn.Conv2d(in_channels, out_channels, 3, padding=1), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 3, padding=1), + ) + + self.conv2 = nn.Sequential( + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 3, padding=1), + nn.BatchNorm2d(out_channels), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, 3, padding=1), + ) + + self.shortcut = nn.Conv2d(x_channels, out_channels, kernel_size=1) + + def forward(self, x, up): + x = F.interpolate(input=x, scale_factor=2, mode="bilinear", align_corners=False) + + p = self.conv(torch.cat([x, up], 1).type(x.type())) + sc = self.shortcut(x) + + p = p + sc + + p2 = self.conv2(p) + + return p + p2 + + +class RefinementModule(nn.Module): + def __init__(self): + super().__init__() + + self.feats = resnet50() + self.psp = PSPModule(2048, 1024, (1, 2, 3, 6)) + + self.up_1 = PSPUpsample(1024, 1024 + 256, 512) + self.up_2 = PSPUpsample(512, 512 + 64, 256) + self.up_3 = PSPUpsample(256, 256 + 3, 32) + + self.final_28 = nn.Sequential( + nn.Conv2d(1024, 32, kernel_size=1), + nn.ReLU(inplace=True), + nn.Conv2d(32, 1, kernel_size=1), + ) + + self.final_56 = nn.Sequential( + nn.Conv2d(512, 32, kernel_size=1), + nn.ReLU(inplace=True), + nn.Conv2d(32, 1, kernel_size=1), + ) + + self.final_11 = nn.Conv2d(32 + 3, 32, kernel_size=1) + self.final_21 = nn.Conv2d(32, 1, kernel_size=1) + + def forward(self, x, seg, inter_s8=None, inter_s4=None): + + images = {} + + """ + First iteration, s8 output + """ + if inter_s8 is None: + p = torch.cat((x, seg, seg, seg), 1) + + f, f_1, f_2 = self.feats(p) + p = self.psp(f) + + inter_s8 = self.final_28(p) + r_inter_s8 = F.interpolate( + inter_s8, scale_factor=8, mode="bilinear", align_corners=False + ) + r_inter_tanh_s8 = torch.tanh(r_inter_s8) + + images["pred_28"] = torch.sigmoid(r_inter_s8) + images["out_28"] = r_inter_s8 + else: + r_inter_tanh_s8 = inter_s8 + + """ + Second iteration, s8 output + """ + if inter_s4 is None: + p = torch.cat((x, seg, r_inter_tanh_s8, r_inter_tanh_s8), 1) + + f, f_1, f_2 = self.feats(p) + p = self.psp(f) + inter_s8_2 = self.final_28(p) + r_inter_s8_2 = F.interpolate( + inter_s8_2, scale_factor=8, mode="bilinear", align_corners=False + ) + r_inter_tanh_s8_2 = torch.tanh(r_inter_s8_2) + + p = self.up_1(p, f_2) + + inter_s4 = self.final_56(p) + r_inter_s4 = F.interpolate( + inter_s4, scale_factor=4, mode="bilinear", align_corners=False + ) + r_inter_tanh_s4 = torch.tanh(r_inter_s4) + + images["pred_28_2"] = torch.sigmoid(r_inter_s8_2) + images["out_28_2"] = r_inter_s8_2 + images["pred_56"] = torch.sigmoid(r_inter_s4) + images["out_56"] = r_inter_s4 + else: + r_inter_tanh_s8_2 = inter_s8 + r_inter_tanh_s4 = inter_s4 + + """ + Third iteration, s1 output + """ + p = torch.cat((x, seg, r_inter_tanh_s8_2, r_inter_tanh_s4), 1) + + f, f_1, f_2 = self.feats(p) + p = self.psp(f) + inter_s8_3 = self.final_28(p) + r_inter_s8_3 = F.interpolate( + inter_s8_3, scale_factor=8, mode="bilinear", align_corners=False + ) + + p = self.up_1(p, f_2) + inter_s4_2 = self.final_56(p) + r_inter_s4_2 = F.interpolate( + inter_s4_2, scale_factor=4, mode="bilinear", align_corners=False + ) + p = self.up_2(p, f_1) + p = self.up_3(p, x) + + """ + Final output + """ + p = F.relu(self.final_11(torch.cat([p, x], 1)), inplace=True) + p = self.final_21(p) + + pred_224 = torch.sigmoid(p) + + images["pred_224"] = pred_224 + images["out_224"] = p + images["pred_28_3"] = torch.sigmoid(r_inter_s8_3) + images["pred_56_2"] = torch.sigmoid(r_inter_s4_2) + images["out_28_3"] = r_inter_s8_3 + images["out_56_2"] = r_inter_s4_2 + + return images diff --git a/carvekit/ml/arch/cascadepsp/utils.py b/carvekit/ml/arch/cascadepsp/utils.py new file mode 100644 index 0000000..f63a524 --- /dev/null +++ b/carvekit/ml/arch/cascadepsp/utils.py @@ -0,0 +1,166 @@ +import torch +import torch.nn.functional as F + + +def resize_max_side(im, size, method): + h, w = im.shape[-2:] + max_side = max(h, w) + ratio = size / max_side + if method in ["bilinear", "bicubic"]: + return F.interpolate(im, scale_factor=ratio, mode=method, align_corners=False) + else: + return F.interpolate(im, scale_factor=ratio, mode=method) + + +def process_high_res_im(model, im, seg, L=900): + stride = L // 2 + + _, _, h, w = seg.shape + if max(h, w) > L: + im_small = resize_max_side(im, L, "area") + seg_small = resize_max_side(seg, L, "area") + elif max(h, w) < L: + im_small = resize_max_side(im, L, "bicubic") + seg_small = resize_max_side(seg, L, "bilinear") + else: + im_small = im + seg_small = seg + + images = model.safe_forward(im_small, seg_small) + + pred_224 = images["pred_224"] + pred_56 = images["pred_56_2"] + + for new_size in [max(h, w)]: + im_small = resize_max_side(im, new_size, "area") + seg_small = resize_max_side(seg, new_size, "area") + _, _, h, w = seg_small.shape + + combined_224 = torch.zeros_like(seg_small) + combined_weight = torch.zeros_like(seg_small) + + r_pred_224 = ( + F.interpolate(pred_224, size=(h, w), mode="bilinear", align_corners=False) + > 0.5 + ).float() * 2 - 1 + r_pred_56 = ( + F.interpolate(pred_56, size=(h, w), mode="bilinear", align_corners=False) + * 2 + - 1 + ) + + padding = 16 + step_size = stride - padding * 2 + step_len = L + + used_start_idx = {} + for x_idx in range((w) // step_size + 1): + for y_idx in range((h) // step_size + 1): + + start_x = x_idx * step_size + start_y = y_idx * step_size + end_x = start_x + step_len + end_y = start_y + step_len + + # Shift when required + if end_y > h: + end_y = h + start_y = h - step_len + if end_x > w: + end_x = w + start_x = w - step_len + + # Bound x/y range + start_x = max(0, start_x) + start_y = max(0, start_y) + end_x = min(w, end_x) + end_y = min(h, end_y) + + # The same crop might appear twice due to bounding/shifting + start_idx = start_y * w + start_x + if start_idx in used_start_idx: + continue + else: + used_start_idx[start_idx] = True + + # Take crop + im_part = im_small[:, :, start_y:end_y, start_x:end_x] + seg_224_part = r_pred_224[:, :, start_y:end_y, start_x:end_x] + seg_56_part = r_pred_56[:, :, start_y:end_y, start_x:end_x] + + # Skip when it is not an interesting crop anyway + seg_part_norm = (seg_224_part > 0).float() + high_thres = 0.9 + low_thres = 0.1 + if (seg_part_norm.mean() > high_thres) or ( + seg_part_norm.mean() < low_thres + ): + continue + grid_images = model.safe_forward(im_part, seg_224_part, seg_56_part) + grid_pred_224 = grid_images["pred_224"] + + # Padding + pred_sx = pred_sy = 0 + pred_ex = step_len + pred_ey = step_len + + if start_x != 0: + start_x += padding + pred_sx += padding + if start_y != 0: + start_y += padding + pred_sy += padding + if end_x != w: + end_x -= padding + pred_ex -= padding + if end_y != h: + end_y -= padding + pred_ey -= padding + + combined_224[:, :, start_y:end_y, start_x:end_x] += grid_pred_224[ + :, :, pred_sy:pred_ey, pred_sx:pred_ex + ] + + del grid_pred_224 + + # Used for averaging + combined_weight[:, :, start_y:end_y, start_x:end_x] += 1 + + # Final full resolution output + seg_norm = r_pred_224 / 2 + 0.5 + pred_224 = combined_224 / combined_weight + pred_224 = torch.where(combined_weight == 0, seg_norm, pred_224) + + _, _, h, w = seg.shape + images = {} + images["pred_224"] = F.interpolate( + pred_224, size=(h, w), mode="bilinear", align_corners=True + ) + + return images["pred_224"] + + +def process_im_single_pass(model, im, seg, L=900): + """ + A single pass version, aka global step only. + """ + + _, _, h, w = im.shape + if max(h, w) < L: + im = resize_max_side(im, L, "bicubic") + seg = resize_max_side(seg, L, "bilinear") + + if max(h, w) > L: + im = resize_max_side(im, L, "area") + seg = resize_max_side(seg, L, "area") + + images = model.safe_forward(im, seg) + + if max(h, w) < L: + images["pred_224"] = F.interpolate(images["pred_224"], size=(h, w), mode="area") + elif max(h, w) > L: + images["pred_224"] = F.interpolate( + images["pred_224"], size=(h, w), mode="bilinear", align_corners=True + ) + + return images["pred_224"] diff --git a/carvekit/ml/arch/isnet/__init__.py b/carvekit/ml/arch/isnet/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/carvekit/ml/arch/isnet/isnet.py b/carvekit/ml/arch/isnet/isnet.py new file mode 100644 index 0000000..c168518 --- /dev/null +++ b/carvekit/ml/arch/isnet/isnet.py @@ -0,0 +1,458 @@ +""" +Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +Source url: https://github.com/xuebinqin/DIS +License: Apache License 2.0 +""" +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class REBNCONV(nn.Module): + def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1): + super(REBNCONV, self).__init__() + + self.conv_s1 = nn.Conv2d( + in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride + ) + self.bn_s1 = nn.BatchNorm2d(out_ch) + self.relu_s1 = nn.ReLU(inplace=True) + + def forward(self, x): + hx = x + xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) + + return xout + + +## upsample tensor 'src' to have the same spatial size with tensor 'tar' +def _upsample_like(src, tar): + src = F.upsample(src, size=tar.shape[2:], mode="bilinear") + + return src + + +class RSU7(nn.Module): + def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512): + super(RSU7, self).__init__() + + self.in_ch = in_ch + self.mid_ch = mid_ch + self.out_ch = out_ch + + self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) ## 1 -> 1/2 + + self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) + self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) + + self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) + + self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) + + def forward(self, x): + b, c, h, w = x.shape + + hx = x + hxin = self.rebnconvin(hx) + + hx1 = self.rebnconv1(hxin) + hx = self.pool1(hx1) + + hx2 = self.rebnconv2(hx) + hx = self.pool2(hx2) + + hx3 = self.rebnconv3(hx) + hx = self.pool3(hx3) + + hx4 = self.rebnconv4(hx) + hx = self.pool4(hx4) + + hx5 = self.rebnconv5(hx) + hx = self.pool5(hx5) + + hx6 = self.rebnconv6(hx) + + hx7 = self.rebnconv7(hx6) + + hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) + hx6dup = _upsample_like(hx6d, hx5) + + hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) + hx5dup = _upsample_like(hx5d, hx4) + + hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) + hx4dup = _upsample_like(hx4d, hx3) + + hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) + hx3dup = _upsample_like(hx3d, hx2) + + hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) + hx2dup = _upsample_like(hx2d, hx1) + + hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) + + return hx1d + hxin + + +class RSU6(nn.Module): + def __init__(self, in_ch=3, mid_ch=12, out_ch=3): + super(RSU6, self).__init__() + + self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) + + self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) + self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) + + self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) + + self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) + + def forward(self, x): + hx = x + + hxin = self.rebnconvin(hx) + + hx1 = self.rebnconv1(hxin) + hx = self.pool1(hx1) + + hx2 = self.rebnconv2(hx) + hx = self.pool2(hx2) + + hx3 = self.rebnconv3(hx) + hx = self.pool3(hx3) + + hx4 = self.rebnconv4(hx) + hx = self.pool4(hx4) + + hx5 = self.rebnconv5(hx) + + hx6 = self.rebnconv6(hx5) + + hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) + hx5dup = _upsample_like(hx5d, hx4) + + hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) + hx4dup = _upsample_like(hx4d, hx3) + + hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) + hx3dup = _upsample_like(hx3d, hx2) + + hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) + hx2dup = _upsample_like(hx2d, hx1) + + hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) + + return hx1d + hxin + + +class RSU5(nn.Module): + def __init__(self, in_ch=3, mid_ch=12, out_ch=3): + super(RSU5, self).__init__() + + self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) + + self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) + self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) + + self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) + + self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) + + def forward(self, x): + hx = x + + hxin = self.rebnconvin(hx) + + hx1 = self.rebnconv1(hxin) + hx = self.pool1(hx1) + + hx2 = self.rebnconv2(hx) + hx = self.pool2(hx2) + + hx3 = self.rebnconv3(hx) + hx = self.pool3(hx3) + + hx4 = self.rebnconv4(hx) + + hx5 = self.rebnconv5(hx4) + + hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) + hx4dup = _upsample_like(hx4d, hx3) + + hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) + hx3dup = _upsample_like(hx3d, hx2) + + hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) + hx2dup = _upsample_like(hx2d, hx1) + + hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) + + return hx1d + hxin + + +class RSU4(nn.Module): + def __init__(self, in_ch=3, mid_ch=12, out_ch=3): + super(RSU4, self).__init__() + + self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) + + self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) + self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) + self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) + + self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) + + self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) + self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) + + def forward(self, x): + hx = x + + hxin = self.rebnconvin(hx) + + hx1 = self.rebnconv1(hxin) + hx = self.pool1(hx1) + + hx2 = self.rebnconv2(hx) + hx = self.pool2(hx2) + + hx3 = self.rebnconv3(hx) + + hx4 = self.rebnconv4(hx3) + + hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) + hx3dup = _upsample_like(hx3d, hx2) + + hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) + hx2dup = _upsample_like(hx2d, hx1) + + hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) + + return hx1d + hxin + + +class RSU4F(nn.Module): + def __init__(self, in_ch=3, mid_ch=12, out_ch=3): + super(RSU4F, self).__init__() + + self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) + + self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) + self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) + self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) + + self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) + + self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) + self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) + self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) + + def forward(self, x): + hx = x + + hxin = self.rebnconvin(hx) + + hx1 = self.rebnconv1(hxin) + hx2 = self.rebnconv2(hx1) + hx3 = self.rebnconv3(hx2) + + hx4 = self.rebnconv4(hx3) + + hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) + hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) + hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) + + return hx1d + hxin + + +class myrebnconv(nn.Module): + def __init__( + self, + in_ch=3, + out_ch=1, + kernel_size=3, + stride=1, + padding=1, + dilation=1, + groups=1, + ): + super(myrebnconv, self).__init__() + + self.conv = nn.Conv2d( + in_ch, + out_ch, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + ) + self.bn = nn.BatchNorm2d(out_ch) + self.rl = nn.ReLU(inplace=True) + + def forward(self, x): + return self.rl(self.bn(self.conv(x))) + + +class ISNetDIS(nn.Module): + def __init__(self, in_ch=3, out_ch=1): + super(ISNetDIS, self).__init__() + + self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1) + self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage1 = RSU7(64, 32, 64) + self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage2 = RSU6(64, 32, 128) + self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage3 = RSU5(128, 64, 256) + self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage4 = RSU4(256, 128, 512) + self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage5 = RSU4F(512, 256, 512) + self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) + + self.stage6 = RSU4F(512, 256, 512) + + # decoder + self.stage5d = RSU4F(1024, 256, 512) + self.stage4d = RSU4(1024, 128, 256) + self.stage3d = RSU5(512, 64, 128) + self.stage2d = RSU6(256, 32, 64) + self.stage1d = RSU7(128, 16, 64) + + self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) + self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) + self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) + self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) + self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) + self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) + + def forward(self, x): + hx = x + + hxin = self.conv_in(hx) + # hx = self.pool_in(hxin) + + # stage 1 + hx1 = self.stage1(hxin) + hx = self.pool12(hx1) + + # stage 2 + hx2 = self.stage2(hx) + hx = self.pool23(hx2) + + # stage 3 + hx3 = self.stage3(hx) + hx = self.pool34(hx3) + + # stage 4 + hx4 = self.stage4(hx) + hx = self.pool45(hx4) + + # stage 5 + hx5 = self.stage5(hx) + hx = self.pool56(hx5) + + # stage 6 + hx6 = self.stage6(hx) + hx6up = _upsample_like(hx6, hx5) + + # -------------------- decoder -------------------- + hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) + hx5dup = _upsample_like(hx5d, hx4) + + hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) + hx4dup = _upsample_like(hx4d, hx3) + + hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) + hx3dup = _upsample_like(hx3d, hx2) + + hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) + hx2dup = _upsample_like(hx2d, hx1) + + hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) + + # side output + d1 = self.side1(hx1d) + d1 = _upsample_like(d1, x) + + d2 = self.side2(hx2d) + d2 = _upsample_like(d2, x) + + d3 = self.side3(hx3d) + d3 = _upsample_like(d3, x) + + d4 = self.side4(hx4d) + d4 = _upsample_like(d4, x) + + d5 = self.side5(hx5d) + d5 = _upsample_like(d5, x) + + d6 = self.side6(hx6) + d6 = _upsample_like(d6, x) + + # d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1)) + + return [ + F.sigmoid(d1), + F.sigmoid(d2), + F.sigmoid(d3), + F.sigmoid(d4), + F.sigmoid(d5), + F.sigmoid(d6), + ], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6] diff --git a/carvekit/ml/arch/yolov4/__init__.py b/carvekit/ml/arch/yolov4/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/carvekit/ml/arch/yolov4/models.py b/carvekit/ml/arch/yolov4/models.py new file mode 100644 index 0000000..af094f2 --- /dev/null +++ b/carvekit/ml/arch/yolov4/models.py @@ -0,0 +1,557 @@ +""" +Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +Source url: https://github.com/Tianxiaomo/pytorch-YOLOv4 +License: Apache License 2.0 +""" +import torch +from torch import nn +import torch.nn.functional as F +from carvekit.ml.arch.yolov4.yolo_layer import YoloLayer + + +def get_region_boxes(boxes_and_confs): + # print('Getting boxes from boxes and confs ...') + + boxes_list = [] + confs_list = [] + + for item in boxes_and_confs: + boxes_list.append(item[0]) + confs_list.append(item[1]) + + # boxes: [batch, num1 + num2 + num3, 1, 4] + # confs: [batch, num1 + num2 + num3, num_classes] + boxes = torch.cat(boxes_list, dim=1) + confs = torch.cat(confs_list, dim=1) + + return [boxes, confs] + + +class Mish(torch.nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + x = x * (torch.tanh(torch.nn.functional.softplus(x))) + return x + + +class Upsample(nn.Module): + def __init__(self): + super(Upsample, self).__init__() + + def forward(self, x, target_size, inference=False): + assert x.data.dim() == 4 + # _, _, tH, tW = target_size + + if inference: + + # B = x.data.size(0) + # C = x.data.size(1) + # H = x.data.size(2) + # W = x.data.size(3) + + return ( + x.view(x.size(0), x.size(1), x.size(2), 1, x.size(3), 1) + .expand( + x.size(0), + x.size(1), + x.size(2), + target_size[2] // x.size(2), + x.size(3), + target_size[3] // x.size(3), + ) + .contiguous() + .view(x.size(0), x.size(1), target_size[2], target_size[3]) + ) + else: + return F.interpolate( + x, size=(target_size[2], target_size[3]), mode="nearest" + ) + + +class Conv_Bn_Activation(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride, + activation, + bn=True, + bias=False, + ): + super().__init__() + pad = (kernel_size - 1) // 2 + + self.conv = nn.ModuleList() + if bias: + self.conv.append( + nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad) + ) + else: + self.conv.append( + nn.Conv2d( + in_channels, out_channels, kernel_size, stride, pad, bias=False + ) + ) + if bn: + self.conv.append(nn.BatchNorm2d(out_channels)) + if activation == "mish": + self.conv.append(Mish()) + elif activation == "relu": + self.conv.append(nn.ReLU(inplace=True)) + elif activation == "leaky": + self.conv.append(nn.LeakyReLU(0.1, inplace=True)) + elif activation == "linear": + pass + else: + raise Exception("activation error") + + def forward(self, x): + for l in self.conv: + x = l(x) + return x + + +class ResBlock(nn.Module): + """ + Sequential residual blocks each of which consists of \ + two convolution layers. + Args: + ch (int): number of input and output channels. + nblocks (int): number of residual blocks. + shortcut (bool): if True, residual tensor addition is enabled. + """ + + def __init__(self, ch, nblocks=1, shortcut=True): + super().__init__() + self.shortcut = shortcut + self.module_list = nn.ModuleList() + for i in range(nblocks): + resblock_one = nn.ModuleList() + resblock_one.append(Conv_Bn_Activation(ch, ch, 1, 1, "mish")) + resblock_one.append(Conv_Bn_Activation(ch, ch, 3, 1, "mish")) + self.module_list.append(resblock_one) + + def forward(self, x): + for module in self.module_list: + h = x + for res in module: + h = res(h) + x = x + h if self.shortcut else h + return x + + +class DownSample1(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = Conv_Bn_Activation(3, 32, 3, 1, "mish") + + self.conv2 = Conv_Bn_Activation(32, 64, 3, 2, "mish") + self.conv3 = Conv_Bn_Activation(64, 64, 1, 1, "mish") + # [route] + # layers = -2 + self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, "mish") + + self.conv5 = Conv_Bn_Activation(64, 32, 1, 1, "mish") + self.conv6 = Conv_Bn_Activation(32, 64, 3, 1, "mish") + # [shortcut] + # from=-3 + # activation = linear + + self.conv7 = Conv_Bn_Activation(64, 64, 1, 1, "mish") + # [route] + # layers = -1, -7 + self.conv8 = Conv_Bn_Activation(128, 64, 1, 1, "mish") + + def forward(self, input): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x2) + # route -2 + x4 = self.conv4(x2) + x5 = self.conv5(x4) + x6 = self.conv6(x5) + # shortcut -3 + x6 = x6 + x4 + + x7 = self.conv7(x6) + # [route] + # layers = -1, -7 + x7 = torch.cat([x7, x3], dim=1) + x8 = self.conv8(x7) + return x8 + + +class DownSample2(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = Conv_Bn_Activation(64, 128, 3, 2, "mish") + self.conv2 = Conv_Bn_Activation(128, 64, 1, 1, "mish") + # r -2 + self.conv3 = Conv_Bn_Activation(128, 64, 1, 1, "mish") + + self.resblock = ResBlock(ch=64, nblocks=2) + + # s -3 + self.conv4 = Conv_Bn_Activation(64, 64, 1, 1, "mish") + # r -1 -10 + self.conv5 = Conv_Bn_Activation(128, 128, 1, 1, "mish") + + def forward(self, input): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x1) + + r = self.resblock(x3) + x4 = self.conv4(r) + + x4 = torch.cat([x4, x2], dim=1) + x5 = self.conv5(x4) + return x5 + + +class DownSample3(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = Conv_Bn_Activation(128, 256, 3, 2, "mish") + self.conv2 = Conv_Bn_Activation(256, 128, 1, 1, "mish") + self.conv3 = Conv_Bn_Activation(256, 128, 1, 1, "mish") + + self.resblock = ResBlock(ch=128, nblocks=8) + self.conv4 = Conv_Bn_Activation(128, 128, 1, 1, "mish") + self.conv5 = Conv_Bn_Activation(256, 256, 1, 1, "mish") + + def forward(self, input): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x1) + + r = self.resblock(x3) + x4 = self.conv4(r) + + x4 = torch.cat([x4, x2], dim=1) + x5 = self.conv5(x4) + return x5 + + +class DownSample4(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = Conv_Bn_Activation(256, 512, 3, 2, "mish") + self.conv2 = Conv_Bn_Activation(512, 256, 1, 1, "mish") + self.conv3 = Conv_Bn_Activation(512, 256, 1, 1, "mish") + + self.resblock = ResBlock(ch=256, nblocks=8) + self.conv4 = Conv_Bn_Activation(256, 256, 1, 1, "mish") + self.conv5 = Conv_Bn_Activation(512, 512, 1, 1, "mish") + + def forward(self, input): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x1) + + r = self.resblock(x3) + x4 = self.conv4(r) + + x4 = torch.cat([x4, x2], dim=1) + x5 = self.conv5(x4) + return x5 + + +class DownSample5(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = Conv_Bn_Activation(512, 1024, 3, 2, "mish") + self.conv2 = Conv_Bn_Activation(1024, 512, 1, 1, "mish") + self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, "mish") + + self.resblock = ResBlock(ch=512, nblocks=4) + self.conv4 = Conv_Bn_Activation(512, 512, 1, 1, "mish") + self.conv5 = Conv_Bn_Activation(1024, 1024, 1, 1, "mish") + + def forward(self, input): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x1) + + r = self.resblock(x3) + x4 = self.conv4(r) + + x4 = torch.cat([x4, x2], dim=1) + x5 = self.conv5(x4) + return x5 + + +class Neck(nn.Module): + def __init__(self, inference=False): + super().__init__() + self.inference = inference + + self.conv1 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + self.conv2 = Conv_Bn_Activation(512, 1024, 3, 1, "leaky") + self.conv3 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + # SPP + self.maxpool1 = nn.MaxPool2d(kernel_size=5, stride=1, padding=5 // 2) + self.maxpool2 = nn.MaxPool2d(kernel_size=9, stride=1, padding=9 // 2) + self.maxpool3 = nn.MaxPool2d(kernel_size=13, stride=1, padding=13 // 2) + + # R -1 -3 -5 -6 + # SPP + self.conv4 = Conv_Bn_Activation(2048, 512, 1, 1, "leaky") + self.conv5 = Conv_Bn_Activation(512, 1024, 3, 1, "leaky") + self.conv6 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + self.conv7 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + # UP + self.upsample1 = Upsample() + # R 85 + self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + # R -1 -3 + self.conv9 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv10 = Conv_Bn_Activation(256, 512, 3, 1, "leaky") + self.conv11 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv12 = Conv_Bn_Activation(256, 512, 3, 1, "leaky") + self.conv13 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv14 = Conv_Bn_Activation(256, 128, 1, 1, "leaky") + # UP + self.upsample2 = Upsample() + # R 54 + self.conv15 = Conv_Bn_Activation(256, 128, 1, 1, "leaky") + # R -1 -3 + self.conv16 = Conv_Bn_Activation(256, 128, 1, 1, "leaky") + self.conv17 = Conv_Bn_Activation(128, 256, 3, 1, "leaky") + self.conv18 = Conv_Bn_Activation(256, 128, 1, 1, "leaky") + self.conv19 = Conv_Bn_Activation(128, 256, 3, 1, "leaky") + self.conv20 = Conv_Bn_Activation(256, 128, 1, 1, "leaky") + + def forward(self, input, downsample4, downsample3, inference=False): + x1 = self.conv1(input) + x2 = self.conv2(x1) + x3 = self.conv3(x2) + # SPP + m1 = self.maxpool1(x3) + m2 = self.maxpool2(x3) + m3 = self.maxpool3(x3) + spp = torch.cat([m3, m2, m1, x3], dim=1) + # SPP end + x4 = self.conv4(spp) + x5 = self.conv5(x4) + x6 = self.conv6(x5) + x7 = self.conv7(x6) + # UP + up = self.upsample1(x7, downsample4.size(), self.inference) + # R 85 + x8 = self.conv8(downsample4) + # R -1 -3 + x8 = torch.cat([x8, up], dim=1) + + x9 = self.conv9(x8) + x10 = self.conv10(x9) + x11 = self.conv11(x10) + x12 = self.conv12(x11) + x13 = self.conv13(x12) + x14 = self.conv14(x13) + + # UP + up = self.upsample2(x14, downsample3.size(), self.inference) + # R 54 + x15 = self.conv15(downsample3) + # R -1 -3 + x15 = torch.cat([x15, up], dim=1) + + x16 = self.conv16(x15) + x17 = self.conv17(x16) + x18 = self.conv18(x17) + x19 = self.conv19(x18) + x20 = self.conv20(x19) + return x20, x13, x6 + + +class Yolov4Head(nn.Module): + def __init__(self, output_ch, n_classes, inference=False): + super().__init__() + self.inference = inference + + self.conv1 = Conv_Bn_Activation(128, 256, 3, 1, "leaky") + self.conv2 = Conv_Bn_Activation( + 256, output_ch, 1, 1, "linear", bn=False, bias=True + ) + + self.yolo1 = YoloLayer( + anchor_mask=[0, 1, 2], + num_classes=n_classes, + anchors=[ + 12, + 16, + 19, + 36, + 40, + 28, + 36, + 75, + 76, + 55, + 72, + 146, + 142, + 110, + 192, + 243, + 459, + 401, + ], + num_anchors=9, + stride=8, + ) + + # R -4 + self.conv3 = Conv_Bn_Activation(128, 256, 3, 2, "leaky") + + # R -1 -16 + self.conv4 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv5 = Conv_Bn_Activation(256, 512, 3, 1, "leaky") + self.conv6 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv7 = Conv_Bn_Activation(256, 512, 3, 1, "leaky") + self.conv8 = Conv_Bn_Activation(512, 256, 1, 1, "leaky") + self.conv9 = Conv_Bn_Activation(256, 512, 3, 1, "leaky") + self.conv10 = Conv_Bn_Activation( + 512, output_ch, 1, 1, "linear", bn=False, bias=True + ) + + self.yolo2 = YoloLayer( + anchor_mask=[3, 4, 5], + num_classes=n_classes, + anchors=[ + 12, + 16, + 19, + 36, + 40, + 28, + 36, + 75, + 76, + 55, + 72, + 146, + 142, + 110, + 192, + 243, + 459, + 401, + ], + num_anchors=9, + stride=16, + ) + + # R -4 + self.conv11 = Conv_Bn_Activation(256, 512, 3, 2, "leaky") + + # R -1 -37 + self.conv12 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + self.conv13 = Conv_Bn_Activation(512, 1024, 3, 1, "leaky") + self.conv14 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + self.conv15 = Conv_Bn_Activation(512, 1024, 3, 1, "leaky") + self.conv16 = Conv_Bn_Activation(1024, 512, 1, 1, "leaky") + self.conv17 = Conv_Bn_Activation(512, 1024, 3, 1, "leaky") + self.conv18 = Conv_Bn_Activation( + 1024, output_ch, 1, 1, "linear", bn=False, bias=True + ) + + self.yolo3 = YoloLayer( + anchor_mask=[6, 7, 8], + num_classes=n_classes, + anchors=[ + 12, + 16, + 19, + 36, + 40, + 28, + 36, + 75, + 76, + 55, + 72, + 146, + 142, + 110, + 192, + 243, + 459, + 401, + ], + num_anchors=9, + stride=32, + ) + + def forward(self, input1, input2, input3): + x1 = self.conv1(input1) + x2 = self.conv2(x1) + + x3 = self.conv3(input1) + # R -1 -16 + x3 = torch.cat([x3, input2], dim=1) + x4 = self.conv4(x3) + x5 = self.conv5(x4) + x6 = self.conv6(x5) + x7 = self.conv7(x6) + x8 = self.conv8(x7) + x9 = self.conv9(x8) + x10 = self.conv10(x9) + + # R -4 + x11 = self.conv11(x8) + # R -1 -37 + x11 = torch.cat([x11, input3], dim=1) + + x12 = self.conv12(x11) + x13 = self.conv13(x12) + x14 = self.conv14(x13) + x15 = self.conv15(x14) + x16 = self.conv16(x15) + x17 = self.conv17(x16) + x18 = self.conv18(x17) + + if self.inference: + y1 = self.yolo1(x2) + y2 = self.yolo2(x10) + y3 = self.yolo3(x18) + + return get_region_boxes([y1, y2, y3]) + + else: + return [x2, x10, x18] + + +class Yolov4(nn.Module): + def __init__(self, n_classes=80, inference=False): + super().__init__() + + output_ch = (4 + 1 + n_classes) * 3 + + # backbone + self.down1 = DownSample1() + self.down2 = DownSample2() + self.down3 = DownSample3() + self.down4 = DownSample4() + self.down5 = DownSample5() + # neck + self.neek = Neck(inference) + + # head + self.head = Yolov4Head(output_ch, n_classes, inference) + + def forward(self, input): + d1 = self.down1(input) + d2 = self.down2(d1) + d3 = self.down3(d2) + d4 = self.down4(d3) + d5 = self.down5(d4) + + x20, x13, x6 = self.neek(d5, d4, d3) + + output = self.head(x20, x13, x6) + return output diff --git a/carvekit/ml/arch/yolov4/utils.py b/carvekit/ml/arch/yolov4/utils.py new file mode 100644 index 0000000..53cc9e9 --- /dev/null +++ b/carvekit/ml/arch/yolov4/utils.py @@ -0,0 +1,105 @@ +import numpy as np + + +def nms_cpu(boxes, confs, nms_thresh=0.5, min_mode=False): + # print(boxes.shape) + x1 = boxes[:, 0] + y1 = boxes[:, 1] + x2 = boxes[:, 2] + y2 = boxes[:, 3] + + areas = (x2 - x1) * (y2 - y1) + order = confs.argsort()[::-1] + + keep = [] + while order.size > 0: + idx_self = order[0] + idx_other = order[1:] + + keep.append(idx_self) + + xx1 = np.maximum(x1[idx_self], x1[idx_other]) + yy1 = np.maximum(y1[idx_self], y1[idx_other]) + xx2 = np.minimum(x2[idx_self], x2[idx_other]) + yy2 = np.minimum(y2[idx_self], y2[idx_other]) + + w = np.maximum(0.0, xx2 - xx1) + h = np.maximum(0.0, yy2 - yy1) + inter = w * h + + if min_mode: + over = inter / np.minimum(areas[order[0]], areas[order[1:]]) + else: + over = inter / (areas[order[0]] + areas[order[1:]] - inter) + + inds = np.where(over <= nms_thresh)[0] + order = order[inds + 1] + + return np.array(keep) + + +def post_processing(conf_thresh, nms_thresh, output): + # anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401] + # num_anchors = 9 + # anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] + # strides = [8, 16, 32] + # anchor_step = len(anchors) // num_anchors + + # [batch, num, 1, 4] + box_array = output[0] + # [batch, num, num_classes] + confs = output[1] + + if type(box_array).__name__ != "ndarray": + box_array = box_array.cpu().detach().numpy() + confs = confs.cpu().detach().numpy() + + num_classes = confs.shape[2] + + # [batch, num, 4] + box_array = box_array[:, :, 0] + + # [batch, num, num_classes] --> [batch, num] + max_conf = np.max(confs, axis=2) + max_id = np.argmax(confs, axis=2) + + bboxes_batch = [] + for i in range(box_array.shape[0]): + + argwhere = max_conf[i] > conf_thresh + l_box_array = box_array[i, argwhere, :] + l_max_conf = max_conf[i, argwhere] + l_max_id = max_id[i, argwhere] + + bboxes = [] + # nms for each class + for j in range(num_classes): + + cls_argwhere = l_max_id == j + ll_box_array = l_box_array[cls_argwhere, :] + ll_max_conf = l_max_conf[cls_argwhere] + ll_max_id = l_max_id[cls_argwhere] + + keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh) + + if keep.size > 0: + ll_box_array = ll_box_array[keep, :] + ll_max_conf = ll_max_conf[keep] + ll_max_id = ll_max_id[keep] + + for k in range(ll_box_array.shape[0]): + bboxes.append( + [ + ll_box_array[k, 0], + ll_box_array[k, 1], + ll_box_array[k, 2], + ll_box_array[k, 3], + ll_max_conf[k], + ll_max_conf[k], + ll_max_id[k], + ] + ) + + bboxes_batch.append(bboxes) + + return bboxes_batch diff --git a/carvekit/ml/arch/yolov4/yolo_layer.py b/carvekit/ml/arch/yolov4/yolo_layer.py new file mode 100644 index 0000000..637f659 --- /dev/null +++ b/carvekit/ml/arch/yolov4/yolo_layer.py @@ -0,0 +1,416 @@ +""" +Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +Source url: https://github.com/Tianxiaomo/pytorch-YOLOv4 +License: Apache License 2.0 +""" +import numpy as np +import torch +import torch.nn as nn + + +def yolo_forward( + output, + conf_thresh, + num_classes, + anchors, + num_anchors, + scale_x_y, + only_objectness=1, + validation=False, +): + # Output would be invalid if it does not satisfy this assert + # assert (output.size(1) == (5 + num_classes) * num_anchors) + + # print(output.size()) + + # Slice the second dimension (channel) of output into: + # [ 2, 2, 1, num_classes, 2, 2, 1, num_classes, 2, 2, 1, num_classes ] + # And then into + # bxy = [ 6 ] bwh = [ 6 ] det_conf = [ 3 ] cls_conf = [ num_classes * 3 ] + batch = output.size(0) + H = output.size(2) + W = output.size(3) + + bxy_list = [] + bwh_list = [] + det_confs_list = [] + cls_confs_list = [] + + for i in range(num_anchors): + begin = i * (5 + num_classes) + end = (i + 1) * (5 + num_classes) + + bxy_list.append(output[:, begin : begin + 2]) + bwh_list.append(output[:, begin + 2 : begin + 4]) + det_confs_list.append(output[:, begin + 4 : begin + 5]) + cls_confs_list.append(output[:, begin + 5 : end]) + + # Shape: [batch, num_anchors * 2, H, W] + bxy = torch.cat(bxy_list, dim=1) + # Shape: [batch, num_anchors * 2, H, W] + bwh = torch.cat(bwh_list, dim=1) + + # Shape: [batch, num_anchors, H, W] + det_confs = torch.cat(det_confs_list, dim=1) + # Shape: [batch, num_anchors * H * W] + det_confs = det_confs.view(batch, num_anchors * H * W) + + # Shape: [batch, num_anchors * num_classes, H, W] + cls_confs = torch.cat(cls_confs_list, dim=1) + # Shape: [batch, num_anchors, num_classes, H * W] + cls_confs = cls_confs.view(batch, num_anchors, num_classes, H * W) + # Shape: [batch, num_anchors, num_classes, H * W] --> [batch, num_anchors * H * W, num_classes] + cls_confs = cls_confs.permute(0, 1, 3, 2).reshape( + batch, num_anchors * H * W, num_classes + ) + + # Apply sigmoid(), exp() and softmax() to slices + # + bxy = torch.sigmoid(bxy) * scale_x_y - 0.5 * (scale_x_y - 1) + bwh = torch.exp(bwh) + det_confs = torch.sigmoid(det_confs) + cls_confs = torch.sigmoid(cls_confs) + + # Prepare C-x, C-y, P-w, P-h (None of them are torch related) + grid_x = np.expand_dims( + np.expand_dims( + np.expand_dims(np.linspace(0, W - 1, W), axis=0).repeat(H, 0), axis=0 + ), + axis=0, + ) + grid_y = np.expand_dims( + np.expand_dims( + np.expand_dims(np.linspace(0, H - 1, H), axis=1).repeat(W, 1), axis=0 + ), + axis=0, + ) + # grid_x = torch.linspace(0, W - 1, W).reshape(1, 1, 1, W).repeat(1, 1, H, 1) + # grid_y = torch.linspace(0, H - 1, H).reshape(1, 1, H, 1).repeat(1, 1, 1, W) + + anchor_w = [] + anchor_h = [] + for i in range(num_anchors): + anchor_w.append(anchors[i * 2]) + anchor_h.append(anchors[i * 2 + 1]) + + device = None + cuda_check = output.is_cuda + if cuda_check: + device = output.get_device() + + bx_list = [] + by_list = [] + bw_list = [] + bh_list = [] + + # Apply C-x, C-y, P-w, P-h + for i in range(num_anchors): + ii = i * 2 + # Shape: [batch, 1, H, W] + bx = bxy[:, ii : ii + 1] + torch.tensor( + grid_x, device=device, dtype=torch.float32 + ) # grid_x.to(device=device, dtype=torch.float32) + # Shape: [batch, 1, H, W] + by = bxy[:, ii + 1 : ii + 2] + torch.tensor( + grid_y, device=device, dtype=torch.float32 + ) # grid_y.to(device=device, dtype=torch.float32) + # Shape: [batch, 1, H, W] + bw = bwh[:, ii : ii + 1] * anchor_w[i] + # Shape: [batch, 1, H, W] + bh = bwh[:, ii + 1 : ii + 2] * anchor_h[i] + + bx_list.append(bx) + by_list.append(by) + bw_list.append(bw) + bh_list.append(bh) + + ######################################## + # Figure out bboxes from slices # + ######################################## + + # Shape: [batch, num_anchors, H, W] + bx = torch.cat(bx_list, dim=1) + # Shape: [batch, num_anchors, H, W] + by = torch.cat(by_list, dim=1) + # Shape: [batch, num_anchors, H, W] + bw = torch.cat(bw_list, dim=1) + # Shape: [batch, num_anchors, H, W] + bh = torch.cat(bh_list, dim=1) + + # Shape: [batch, 2 * num_anchors, H, W] + bx_bw = torch.cat((bx, bw), dim=1) + # Shape: [batch, 2 * num_anchors, H, W] + by_bh = torch.cat((by, bh), dim=1) + + # normalize coordinates to [0, 1] + bx_bw /= W + by_bh /= H + + # Shape: [batch, num_anchors * H * W, 1] + bx = bx_bw[:, :num_anchors].view(batch, num_anchors * H * W, 1) + by = by_bh[:, :num_anchors].view(batch, num_anchors * H * W, 1) + bw = bx_bw[:, num_anchors:].view(batch, num_anchors * H * W, 1) + bh = by_bh[:, num_anchors:].view(batch, num_anchors * H * W, 1) + + bx1 = bx - bw * 0.5 + by1 = by - bh * 0.5 + bx2 = bx1 + bw + by2 = by1 + bh + + # Shape: [batch, num_anchors * h * w, 4] -> [batch, num_anchors * h * w, 1, 4] + boxes = torch.cat((bx1, by1, bx2, by2), dim=2).view( + batch, num_anchors * H * W, 1, 4 + ) + # boxes = boxes.repeat(1, 1, num_classes, 1) + + # boxes: [batch, num_anchors * H * W, 1, 4] + # cls_confs: [batch, num_anchors * H * W, num_classes] + # det_confs: [batch, num_anchors * H * W] + + det_confs = det_confs.view(batch, num_anchors * H * W, 1) + confs = cls_confs * det_confs + + # boxes: [batch, num_anchors * H * W, 1, 4] + # confs: [batch, num_anchors * H * W, num_classes] + + return boxes, confs + + +def yolo_forward_dynamic( + output, + conf_thresh, + num_classes, + anchors, + num_anchors, + scale_x_y, + only_objectness=1, + validation=False, +): + # Output would be invalid if it does not satisfy this assert + # assert (output.size(1) == (5 + num_classes) * num_anchors) + + # print(output.size()) + + # Slice the second dimension (channel) of output into: + # [ 2, 2, 1, num_classes, 2, 2, 1, num_classes, 2, 2, 1, num_classes ] + # And then into + # bxy = [ 6 ] bwh = [ 6 ] det_conf = [ 3 ] cls_conf = [ num_classes * 3 ] + # batch = output.size(0) + # H = output.size(2) + # W = output.size(3) + + bxy_list = [] + bwh_list = [] + det_confs_list = [] + cls_confs_list = [] + + for i in range(num_anchors): + begin = i * (5 + num_classes) + end = (i + 1) * (5 + num_classes) + + bxy_list.append(output[:, begin : begin + 2]) + bwh_list.append(output[:, begin + 2 : begin + 4]) + det_confs_list.append(output[:, begin + 4 : begin + 5]) + cls_confs_list.append(output[:, begin + 5 : end]) + + # Shape: [batch, num_anchors * 2, H, W] + bxy = torch.cat(bxy_list, dim=1) + # Shape: [batch, num_anchors * 2, H, W] + bwh = torch.cat(bwh_list, dim=1) + + # Shape: [batch, num_anchors, H, W] + det_confs = torch.cat(det_confs_list, dim=1) + # Shape: [batch, num_anchors * H * W] + det_confs = det_confs.view( + output.size(0), num_anchors * output.size(2) * output.size(3) + ) + + # Shape: [batch, num_anchors * num_classes, H, W] + cls_confs = torch.cat(cls_confs_list, dim=1) + # Shape: [batch, num_anchors, num_classes, H * W] + cls_confs = cls_confs.view( + output.size(0), num_anchors, num_classes, output.size(2) * output.size(3) + ) + # Shape: [batch, num_anchors, num_classes, H * W] --> [batch, num_anchors * H * W, num_classes] + cls_confs = cls_confs.permute(0, 1, 3, 2).reshape( + output.size(0), num_anchors * output.size(2) * output.size(3), num_classes + ) + + # Apply sigmoid(), exp() and softmax() to slices + # + bxy = torch.sigmoid(bxy) * scale_x_y - 0.5 * (scale_x_y - 1) + bwh = torch.exp(bwh) + det_confs = torch.sigmoid(det_confs) + cls_confs = torch.sigmoid(cls_confs) + + # Prepare C-x, C-y, P-w, P-h (None of them are torch related) + grid_x = np.expand_dims( + np.expand_dims( + np.expand_dims( + np.linspace(0, output.size(3) - 1, output.size(3)), axis=0 + ).repeat(output.size(2), 0), + axis=0, + ), + axis=0, + ) + grid_y = np.expand_dims( + np.expand_dims( + np.expand_dims( + np.linspace(0, output.size(2) - 1, output.size(2)), axis=1 + ).repeat(output.size(3), 1), + axis=0, + ), + axis=0, + ) + # grid_x = torch.linspace(0, W - 1, W).reshape(1, 1, 1, W).repeat(1, 1, H, 1) + # grid_y = torch.linspace(0, H - 1, H).reshape(1, 1, H, 1).repeat(1, 1, 1, W) + + anchor_w = [] + anchor_h = [] + for i in range(num_anchors): + anchor_w.append(anchors[i * 2]) + anchor_h.append(anchors[i * 2 + 1]) + + device = None + cuda_check = output.is_cuda + if cuda_check: + device = output.get_device() + + bx_list = [] + by_list = [] + bw_list = [] + bh_list = [] + + # Apply C-x, C-y, P-w, P-h + for i in range(num_anchors): + ii = i * 2 + # Shape: [batch, 1, H, W] + bx = bxy[:, ii : ii + 1] + torch.tensor( + grid_x, device=device, dtype=torch.float32 + ) # grid_x.to(device=device, dtype=torch.float32) + # Shape: [batch, 1, H, W] + by = bxy[:, ii + 1 : ii + 2] + torch.tensor( + grid_y, device=device, dtype=torch.float32 + ) # grid_y.to(device=device, dtype=torch.float32) + # Shape: [batch, 1, H, W] + bw = bwh[:, ii : ii + 1] * anchor_w[i] + # Shape: [batch, 1, H, W] + bh = bwh[:, ii + 1 : ii + 2] * anchor_h[i] + + bx_list.append(bx) + by_list.append(by) + bw_list.append(bw) + bh_list.append(bh) + + ######################################## + # Figure out bboxes from slices # + ######################################## + + # Shape: [batch, num_anchors, H, W] + bx = torch.cat(bx_list, dim=1) + # Shape: [batch, num_anchors, H, W] + by = torch.cat(by_list, dim=1) + # Shape: [batch, num_anchors, H, W] + bw = torch.cat(bw_list, dim=1) + # Shape: [batch, num_anchors, H, W] + bh = torch.cat(bh_list, dim=1) + + # Shape: [batch, 2 * num_anchors, H, W] + bx_bw = torch.cat((bx, bw), dim=1) + # Shape: [batch, 2 * num_anchors, H, W] + by_bh = torch.cat((by, bh), dim=1) + + # normalize coordinates to [0, 1] + bx_bw /= output.size(3) + by_bh /= output.size(2) + + # Shape: [batch, num_anchors * H * W, 1] + bx = bx_bw[:, :num_anchors].view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1 + ) + by = by_bh[:, :num_anchors].view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1 + ) + bw = bx_bw[:, num_anchors:].view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1 + ) + bh = by_bh[:, num_anchors:].view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1 + ) + + bx1 = bx - bw * 0.5 + by1 = by - bh * 0.5 + bx2 = bx1 + bw + by2 = by1 + bh + + # Shape: [batch, num_anchors * h * w, 4] -> [batch, num_anchors * h * w, 1, 4] + boxes = torch.cat((bx1, by1, bx2, by2), dim=2).view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1, 4 + ) + # boxes = boxes.repeat(1, 1, num_classes, 1) + + # boxes: [batch, num_anchors * H * W, 1, 4] + # cls_confs: [batch, num_anchors * H * W, num_classes] + # det_confs: [batch, num_anchors * H * W] + + det_confs = det_confs.view( + output.size(0), num_anchors * output.size(2) * output.size(3), 1 + ) + confs = cls_confs * det_confs + + # boxes: [batch, num_anchors * H * W, 1, 4] + # confs: [batch, num_anchors * H * W, num_classes] + + return boxes, confs + + +class YoloLayer(nn.Module): + """Yolo layer + model_out: while inference,is post-processing inside or outside the model + true:outside + """ + + def __init__( + self, + anchor_mask=[], + num_classes=0, + anchors=[], + num_anchors=1, + stride=32, + model_out=False, + ): + super(YoloLayer, self).__init__() + self.anchor_mask = anchor_mask + self.num_classes = num_classes + self.anchors = anchors + self.num_anchors = num_anchors + self.anchor_step = len(anchors) // num_anchors + self.coord_scale = 1 + self.noobject_scale = 1 + self.object_scale = 5 + self.class_scale = 1 + self.thresh = 0.6 + self.stride = stride + self.seen = 0 + self.scale_x_y = 1 + + self.model_out = model_out + + def forward(self, output, target=None): + if self.training: + return output + masked_anchors = [] + for m in self.anchor_mask: + masked_anchors += self.anchors[ + m * self.anchor_step : (m + 1) * self.anchor_step + ] + masked_anchors = [anchor / self.stride for anchor in masked_anchors] + + return yolo_forward_dynamic( + output, + self.thresh, + self.num_classes, + masked_anchors, + len(self.anchor_mask), + scale_x_y=self.scale_x_y, + ) diff --git a/carvekit/ml/files/models_loc.py b/carvekit/ml/files/models_loc.py index 45f9a56..a2e6ad8 100644 --- a/carvekit/ml/files/models_loc.py +++ b/carvekit/ml/files/models_loc.py @@ -17,6 +17,15 @@ def u2net_full_pretrained() -> pathlib.Path: return downloader("u2net.pth") +def isnet_full_pretrained() -> pathlib.Path: + """Returns isnet pretrained model location + + Returns: + pathlib.Path to model location + """ + return downloader("isnet.pth") + + def basnet_pretrained() -> pathlib.Path: """Returns basnet pretrained model location @@ -53,13 +62,49 @@ def tracer_b7_pretrained() -> pathlib.Path: return downloader("tracer_b7.pth") -def tracer_hair_pretrained() -> pathlib.Path: - """Returns TRACER with EfficientNet v1 b7 encoder model for hair segmentation location +def scene_classifier_pretrained() -> pathlib.Path: + """Returns scene classifier pretrained model location + This model is used to classify scenes into 3 categories: hard, soft, digital + + hard - scenes with hard edges, such as objects, buildings, etc. + soft - scenes with soft edges, such as portraits, hairs, animal, etc. + digital - digital scenes, such as screenshots, graphics, etc. + + more info: https://huggingface.co/Carve/scene_classifier + + Returns: + pathlib.Path to model location + """ + return downloader("scene_classifier.pth") + + +def yolov4_coco_pretrained() -> pathlib.Path: + """Returns yolov4 classifier pretrained model location + This model is used to classify objects in images. + + Training dataset: COCO 2017 + Training classes: 80 + + It's a modified version of the original model from https://github.com/Tianxiaomo/pytorch-YOLOv4 (pytorch) + We have only added coco classnames to the model. + + Returns: + pathlib.Path to model location + """ + return downloader("yolov4_coco_with_classes.pth") + + +def cascadepsp_pretrained() -> pathlib.Path: + """Returns cascade psp pretrained model location + This model is used to refine segmentation masks. + + Training dataset: MSRA-10K, DUT-OMRON, ECSSD and FSS-1000 + more info: https://huggingface.co/Carve/cascadepsp Returns: pathlib.Path to model location """ - return downloader("tracer_hair.pth") + return downloader("cascadepsp.pth") def download_all(): @@ -68,3 +113,6 @@ def download_all(): deeplab_pretrained() basnet_pretrained() tracer_b7_pretrained() + scene_classifier_pretrained() + yolov4_coco_pretrained() + cascadepsp_pretrained() diff --git a/carvekit/ml/wrap/basnet.py b/carvekit/ml/wrap/basnet.py index 9912e81..1e9323b 100644 --- a/carvekit/ml/wrap/basnet.py +++ b/carvekit/ml/wrap/basnet.py @@ -120,11 +120,11 @@ def __call__( """ collect_masks = [] for image_batch in batch_generator(images, self.batch_size): - images = thread_pool_processing( + converted_images = thread_pool_processing( lambda x: convert_image(load_image(x)), image_batch ) batches = torch.vstack( - thread_pool_processing(self.data_preprocessing, images) + thread_pool_processing(self.data_preprocessing, converted_images) ) with torch.no_grad(): batches = batches.to(self.device) @@ -134,8 +134,8 @@ def __call__( masks_cpu = masks.cpu() del d2, d3, d4, d5, d6, d7, d8, batches, masks masks = thread_pool_processing( - lambda x: self.data_postprocessing(masks_cpu[x], images[x]), - range(len(images)), + lambda x: self.data_postprocessing(masks_cpu[x], converted_images[x]), + range(len(converted_images)), ) collect_masks += masks return collect_masks diff --git a/carvekit/ml/wrap/cascadepsp.py b/carvekit/ml/wrap/cascadepsp.py new file mode 100644 index 0000000..f5f8bf9 --- /dev/null +++ b/carvekit/ml/wrap/cascadepsp.py @@ -0,0 +1,310 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +import pathlib +import warnings + +import PIL +import numpy as np +import torch +from PIL import Image +from torchvision import transforms +from typing import Union, List + +from carvekit.ml.arch.cascadepsp.pspnet import RefinementModule +from carvekit.ml.arch.cascadepsp.utils import ( + process_im_single_pass, + process_high_res_im, +) +from carvekit.ml.files.models_loc import cascadepsp_pretrained +from carvekit.utils.image_utils import convert_image, load_image +from carvekit.utils.models_utils import get_precision_autocast, cast_network +from carvekit.utils.pool_utils import batch_generator, thread_pool_processing + +__all__ = ["CascadePSP"] + + +class CascadePSP(RefinementModule): + """ + CascadePSP to refine the mask from segmentation network + """ + + def __init__( + self, + device="cpu", + input_tensor_size: int = 900, + batch_size: int = 1, + load_pretrained: bool = True, + fp16: bool = False, + mask_binary_threshold=127, + global_step_only=False, + processing_accelerate_image_size=2048, + ): + """ + Initialize the CascadePSP model + + Args: + device: processing device + input_tensor_size: input image size + batch_size: the number of images that the neural network processes in one run + load_pretrained: loading pretrained model + fp16: use half precision + global_step_only: if True, only global step will be used for prediction. See paper for details. + mask_binary_threshold: threshold for binary mask, default 70, set to 0 for no threshold + processing_accelerate_image_size: thumbnail size for image processing acceleration. Set to 0 to disable + + """ + super().__init__() + self.fp16 = fp16 + self.device = device + self.batch_size = batch_size + self.mask_binary_threshold = mask_binary_threshold + self.global_step_only = global_step_only + self.processing_accelerate_image_size = processing_accelerate_image_size + self.input_tensor_size = input_tensor_size + + self.to(device) + if batch_size > 1: + warnings.warn( + "Batch size > 1 is experimental feature for CascadePSP." + " Please, don't use it if you have GPU with small memory!" + ) + if load_pretrained: + self.load_state_dict( + torch.load(cascadepsp_pretrained(), map_location=self.device) + ) + self.eval() + + self._image_transform = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize( + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] + ), + ] + ) + + self._seg_transform = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize(mean=[0.5], std=[0.5]), + ] + ) + + def data_preprocessing(self, data: Union[PIL.Image.Image]) -> torch.FloatTensor: + """ + Transform input image to suitable data format for neural network + + Args: + data: input image + + Returns: + input for neural network + + """ + preprocessed_data = data.copy() + if self.batch_size == 1 and self.processing_accelerate_image_size > 0: + # Okay, we have only one image, so + # we can use image processing acceleration for accelerate high resolution image processing + preprocessed_data.thumbnail( + ( + self.processing_accelerate_image_size, + self.processing_accelerate_image_size, + ) + ) + elif self.batch_size == 1: + pass # No need to do anything + elif self.batch_size > 1 and self.global_step_only is True: + # If we have more than one image and we use only global step, + # there aren't any reason to use image processing acceleration, + # because we will use only global step for prediction and anyway it will be resized to input_tensor_size + preprocessed_data = preprocessed_data.resize( + (self.input_tensor_size, self.input_tensor_size) + ) + elif ( + self.batch_size > 1 + and self.global_step_only is False + and self.processing_accelerate_image_size > 0 + ): + # If we have more than one image and we use local step, + # we can use image processing acceleration for accelerate high resolution image processing + # but we need to resize image to processing_accelerate_image_size to stack it with other images + preprocessed_data = preprocessed_data.resize( + ( + self.processing_accelerate_image_size, + self.processing_accelerate_image_size, + ) + ) + elif ( + self.batch_size > 1 + and self.global_step_only is False + and not (self.processing_accelerate_image_size > 0) + ): + raise ValueError( + "If you use local step with batch_size > 2, " + "you need to set processing_accelerate_image_size > 0," + "since we cannot stack images with different sizes to one batch" + ) + else: # some extra cases + preprocessed_data = preprocessed_data.resize( + ( + self.processing_accelerate_image_size, + self.processing_accelerate_image_size, + ) + ) + + if data.mode == "RGB": + preprocessed_data = self._image_transform( + np.array(preprocessed_data) + ).unsqueeze(0) + elif data.mode == "L": + preprocessed_data = np.array(preprocessed_data) + if 0 < self.mask_binary_threshold <= 255: + preprocessed_data = ( + preprocessed_data > self.mask_binary_threshold + ).astype(np.uint8) * 255 + elif self.mask_binary_threshold > 255 or self.mask_binary_threshold < 0: + warnings.warn( + "mask_binary_threshold should be in range [0, 255], " + "but got {}. Disabling mask_binary_threshold!".format( + self.mask_binary_threshold + ) + ) + + preprocessed_data = self._seg_transform(preprocessed_data).unsqueeze( + 0 + ) # [H,W,1] + + return preprocessed_data + + @staticmethod + def data_postprocessing( + data: torch.tensor, mask: PIL.Image.Image + ) -> PIL.Image.Image: + """ + Transforms output data from neural network to suitable data + format for using with other components of this framework. + + Args: + data: output data from neural network + mask: input mask + + Returns: + Segmentation mask as PIL Image instance + + """ + refined_mask = (data[0, :, :].cpu().numpy() * 255).astype("uint8") + return Image.fromarray(refined_mask).convert("L").resize(mask.size) + + def safe_forward(self, im, seg, inter_s8=None, inter_s4=None): + """ + Slightly pads the input image such that its length is a multiple of 8 + """ + b, _, ph, pw = seg.shape + if (ph % 8 != 0) or (pw % 8 != 0): + newH = (ph // 8 + 1) * 8 + newW = (pw // 8 + 1) * 8 + p_im = torch.zeros(b, 3, newH, newW, device=im.device) + p_seg = torch.zeros(b, 1, newH, newW, device=im.device) - 1 + + p_im[:, :, 0:ph, 0:pw] = im + p_seg[:, :, 0:ph, 0:pw] = seg + im = p_im + seg = p_seg + + if inter_s8 is not None: + p_inter_s8 = torch.zeros(b, 1, newH, newW, device=im.device) - 1 + p_inter_s8[:, :, 0:ph, 0:pw] = inter_s8 + inter_s8 = p_inter_s8 + if inter_s4 is not None: + p_inter_s4 = torch.zeros(b, 1, newH, newW, device=im.device) - 1 + p_inter_s4[:, :, 0:ph, 0:pw] = inter_s4 + inter_s4 = p_inter_s4 + + images = super().__call__(im, seg, inter_s8, inter_s4) + return_im = {} + + for key in ["pred_224", "pred_28_3", "pred_56_2"]: + return_im[key] = images[key][:, :, 0:ph, 0:pw] + del images + + return return_im + + def __call__( + self, + images: List[Union[str, pathlib.Path, PIL.Image.Image]], + masks: List[Union[str, pathlib.Path, PIL.Image.Image]], + ) -> List[PIL.Image.Image]: + """ + Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances + + Args: + images: input images + masks: Segmentation masks to refine + + Returns: + segmentation masks as for input images, as PIL.Image.Image instances + + """ + + if len(images) != len(masks): + raise ValueError( + "Len of specified arrays of images and trimaps should be equal!" + ) + + collect_masks = [] + autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16) + with autocast: + cast_network(self, dtype) + for idx_batch in batch_generator(range(len(images)), self.batch_size): + inpt_images = thread_pool_processing( + lambda x: convert_image(load_image(images[x])), idx_batch + ) + + inpt_masks = thread_pool_processing( + lambda x: convert_image(load_image(masks[x]), mode="L"), idx_batch + ) + + inpt_img_batches = thread_pool_processing( + self.data_preprocessing, inpt_images + ) + inpt_masks_batches = thread_pool_processing( + self.data_preprocessing, inpt_masks + ) + if self.batch_size > 1: # We need to stack images, if batch_size > 1 + inpt_img_batches = torch.vstack(inpt_img_batches) + inpt_masks_batches = torch.vstack(inpt_masks_batches) + else: + inpt_img_batches = inpt_img_batches[ + 0 + ] # Get only one image from list + inpt_masks_batches = inpt_masks_batches[0] + + with torch.no_grad(): + inpt_img_batches = inpt_img_batches.to(self.device) + inpt_masks_batches = inpt_masks_batches.to(self.device) + if self.global_step_only: + refined_batches = process_im_single_pass( + self, + inpt_img_batches, + inpt_masks_batches, + self.input_tensor_size, + ) + + else: + refined_batches = process_high_res_im( + self, + inpt_img_batches, + inpt_masks_batches, + self.input_tensor_size, + ) + + refined_masks = refined_batches.cpu() + del (inpt_img_batches, inpt_masks_batches, refined_batches) + collect_masks += thread_pool_processing( + lambda x: self.data_postprocessing(refined_masks[x], inpt_masks[x]), + range(len(inpt_masks)), + ) + return collect_masks diff --git a/carvekit/ml/wrap/deeplab_v3.py b/carvekit/ml/wrap/deeplab_v3.py index 4b19542..6dfa6c5 100644 --- a/carvekit/ml/wrap/deeplab_v3.py +++ b/carvekit/ml/wrap/deeplab_v3.py @@ -129,10 +129,12 @@ def __call__( with autocast: cast_network(self.network, dtype) for image_batch in batch_generator(images, self.batch_size): - images = thread_pool_processing( + converted_images = thread_pool_processing( lambda x: convert_image(load_image(x)), image_batch ) - batches = thread_pool_processing(self.data_preprocessing, images) + batches = thread_pool_processing( + self.data_preprocessing, converted_images + ) with torch.no_grad(): masks = [ self.network(i.to(self.device).unsqueeze(0))["out"][0] @@ -143,8 +145,8 @@ def __call__( ] del batches masks = thread_pool_processing( - lambda x: self.data_postprocessing(masks[x], images[x]), - range(len(images)), + lambda x: self.data_postprocessing(masks[x], converted_images[x]), + range(len(converted_images)), ) collect_masks += masks return collect_masks diff --git a/carvekit/ml/wrap/fba_matting.py b/carvekit/ml/wrap/fba_matting.py index c285df0..186ffa1 100644 --- a/carvekit/ml/wrap/fba_matting.py +++ b/carvekit/ml/wrap/fba_matting.py @@ -33,11 +33,12 @@ class FBAMatting(FBA): def __init__( self, device="cpu", - input_tensor_size: Union[List[int], int] = 2048, + input_tensor_size: Union[List[int], int] = 2048, # 1500, batch_size: int = 2, encoder="resnet50_GN_WS", load_pretrained: bool = True, fp16: bool = False, + disable_noise_filter=False, ): """ Initialize the FBAMatting model @@ -49,12 +50,14 @@ def __init__( encoder: neural network encoder head load_pretrained: loading pretrained model fp16: use half precision + disable_noise_filter: disables noise filter """ super(FBAMatting, self).__init__(encoder=encoder) self.fp16 = fp16 self.device = device self.batch_size = batch_size + self.disable_noise_filter = disable_noise_filter if isinstance(input_tensor_size, list): self.input_image_size = input_tensor_size[:2] else: @@ -112,9 +115,8 @@ def data_preprocessing( .float(), ) - @staticmethod def data_postprocessing( - data: torch.tensor, trimap: PIL.Image.Image + self, data: torch.tensor, trimap: PIL.Image.Image ) -> PIL.Image.Image: """ Transforms output data from neural network to suitable data @@ -137,7 +139,8 @@ def data_postprocessing( trimap_arr = np.array(trimap.copy()) pred[trimap_arr[:, :] == 0] = 0 # pred[trimap_arr[:, :] == 255] = 1 - pred[pred < 0.3] = 0 + if not self.disable_noise_filter: + pred[pred < 0.3] = 0 return Image.fromarray(pred * 255).convert("L") def __call__( diff --git a/carvekit/ml/wrap/isnet.py b/carvekit/ml/wrap/isnet.py new file mode 100644 index 0000000..fbfe56b --- /dev/null +++ b/carvekit/ml/wrap/isnet.py @@ -0,0 +1,143 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +import pathlib + +import PIL.Image +import numpy as np +import torch +from PIL import Image +from typing import List, Union +from torchvision.transforms.functional import normalize + +from carvekit.ml.arch.isnet.isnet import ISNetDIS +from carvekit.ml.files.models_loc import isnet_full_pretrained +from carvekit.utils.image_utils import load_image, convert_image +from carvekit.utils.models_utils import get_precision_autocast, cast_network +from carvekit.utils.pool_utils import thread_pool_processing, batch_generator + +__all__ = ["ISNet"] + + +class ISNet(ISNetDIS): + """ISNet model interface""" + + def __init__( + self, + device="cpu", + input_image_size: Union[List[int], int] = 1024, + batch_size: int = 1, + load_pretrained: bool = True, + fp16: bool = False, + ): + """ + Initialize the ISNet model + + Args: + device: processing device + input_image_size: input image size + batch_size: the number of images that the neural network processes in one run + load_pretrained: loading pretrained model + fp16: use fp16 precision + + """ + super(ISNet, self).__init__() + self.device = device + self.batch_size = batch_size + self.fp16 = fp16 + if isinstance(input_image_size, list): + self.input_image_size = input_image_size[:2] + else: + self.input_image_size = (input_image_size, input_image_size) + self.to(device) + if load_pretrained: + self.load_state_dict( + torch.load(isnet_full_pretrained(), map_location=self.device) + ) + + self.eval() + + def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor: + """ + Transform input image to suitable data format for neural network + + Args: + data: input image + + Returns: + input for neural network + + """ + resized = data.resize(self.input_image_size, resample=3) + # noinspection PyTypeChecker + resized_arr = torch.from_numpy(np.array(resized, dtype=float)).permute(2, 0, 1) + resized_arr = resized_arr.unsqueeze(0) + resized_arr = resized_arr / 255.0 + resized_arr = normalize(resized_arr, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) + return resized_arr.type(torch.FloatTensor) + + @staticmethod + def data_postprocessing( + data: torch.tensor, original_image: PIL.Image.Image + ) -> PIL.Image.Image: + """ + Transforms output data from neural network to suitable data + format for using with other components of this framework. + + Args: + data: output data from neural network + original_image: input image which was used for predicted data + + Returns: + Segmentation mask as PIL Image instance + + """ + data = data.squeeze(0) + ma = torch.max(data) + mi = torch.min(data) + data = (data - mi) / (ma - mi) + mask = Image.fromarray( + (data * 255).cpu().data.numpy().astype(np.uint8) + ).convert("L") + mask = mask.resize(original_image.size, resample=3) + return mask + + def __call__( + self, images: List[Union[str, pathlib.Path, PIL.Image.Image]] + ) -> List[PIL.Image.Image]: + """ + Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances + + Args: + images: input images + + Returns: + segmentation masks as for input images, as PIL.Image.Image instances + + """ + collect_masks = [] + autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16) + with autocast: + cast_network(self, dtype) + for image_batch in batch_generator(images, self.batch_size): + converted_images = thread_pool_processing( + lambda x: convert_image(load_image(x)), image_batch + ) + batches = torch.vstack( + thread_pool_processing(self.data_preprocessing, converted_images) + ) + with torch.no_grad(): + batches = batches.to(self.device) + masks = super(ISNetDIS, self).__call__(batches)[0][0] + masks_cpu = masks.cpu() + del batches, masks + masks = thread_pool_processing( + lambda x: self.data_postprocessing( + masks_cpu[x], converted_images[x] + ), + range(len(converted_images)), + ) + collect_masks += masks + return collect_masks diff --git a/carvekit/ml/wrap/scene_classifier.py b/carvekit/ml/wrap/scene_classifier.py new file mode 100644 index 0000000..413a35f --- /dev/null +++ b/carvekit/ml/wrap/scene_classifier.py @@ -0,0 +1,150 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +import pathlib + +import PIL.Image +import torch +import torch.nn.functional as F +import torchvision.transforms as transforms +from typing import List, Union, Tuple +from torch.autograd import Variable + +from carvekit.ml.files.models_loc import scene_classifier_pretrained +from carvekit.utils.image_utils import load_image, convert_image +from carvekit.utils.models_utils import get_precision_autocast, cast_network +from carvekit.utils.pool_utils import thread_pool_processing, batch_generator + +__all__ = ["SceneClassifier"] + + +class SceneClassifier: + """ + SceneClassifier model interface + + Description: + Performs a primary analysis of the image in order to select the necessary method for removing the background. + The choice is made by classifying the scene type. + + The output can be the following types: + - hard + - soft + - digital + + """ + + def __init__( + self, + topk: int = 1, + device="cpu", + batch_size: int = 4, + fp16: bool = False, + model_path: Union[str, pathlib.Path] = None, + ): + """ + Initialize the Scene Classifier. + + Args: + topk: number of top classes to return + device: processing device + batch_size: the number of images that the neural network processes in one run + fp16: use fp16 precision + + """ + if model_path is None: + model_path = scene_classifier_pretrained() + self.topk = topk + self.fp16 = fp16 + self.device = device + self.batch_size = batch_size + + self.transform = transforms.Compose( + [ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize( + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] + ), + ] + ) + state_dict = torch.load(model_path, map_location=device) + self.model = state_dict["model"] + self.class_to_idx = state_dict["class_to_idx"] + self.idx_to_class = {v: k for k, v in self.class_to_idx.items()} + self.model.to(device) + self.model.eval() + + def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor: + """ + Transform input image to suitable data format for neural network + + Args: + data: input image + + Returns: + input for neural network + + """ + + return torch.unsqueeze(self.transform(data), 0).type(torch.FloatTensor) + + def data_postprocessing(self, data: torch.tensor) -> Tuple[List[str], List[float]]: + """ + Transforms output data from neural network to suitable data + format for using with other components of this framework. + + Args: + data: output data from neural network + + Returns: + Top-k class of scene type, probability of these classes + + """ + ps = F.softmax(data.float(), dim=0) + topk = ps.cpu().topk(self.topk) + + probs, classes = (e.data.numpy().squeeze().tolist() for e in topk) + if isinstance(classes, int): + classes = [classes] + probs = [probs] + return list(map(lambda x: self.idx_to_class[x], classes)), probs + + def __call__( + self, images: List[Union[str, pathlib.Path, PIL.Image.Image]] + ) -> Tuple[List[str], List[float]]: + """ + Passes input images though neural network and returns class predictions. + + Args: + images: input images + + Returns: + Top-k class of scene type, probability of these classes for every passed image + + """ + collect_masks = [] + autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16) + with autocast: + cast_network(self.model, dtype) + for image_batch in batch_generator(images, self.batch_size): + converted_images = thread_pool_processing( + lambda x: convert_image(load_image(x)), image_batch + ) + batches = torch.vstack( + thread_pool_processing(self.data_preprocessing, converted_images) + ) + with torch.no_grad(): + batches = Variable(batches).to(self.device) + masks = self.model.forward(batches) + masks_cpu = masks.cpu() + del batches, masks + masks = thread_pool_processing( + lambda x: self.data_postprocessing(masks_cpu[x]), + range(len(converted_images)), + ) + collect_masks += masks + + return collect_masks diff --git a/carvekit/ml/wrap/tracer_b7.py b/carvekit/ml/wrap/tracer_b7.py index 20a8e45..587006d 100644 --- a/carvekit/ml/wrap/tracer_b7.py +++ b/carvekit/ml/wrap/tracer_b7.py @@ -4,19 +4,19 @@ License: Apache License 2.0 """ import pathlib -import warnings from typing import List, Union + import PIL.Image import numpy as np import torch import torchvision.transforms as transforms from PIL import Image -from carvekit.ml.arch.tracerb7.tracer import TracerDecoder from carvekit.ml.arch.tracerb7.efficientnet import EfficientEncoderB7 -from carvekit.ml.files.models_loc import tracer_b7_pretrained, tracer_hair_pretrained -from carvekit.utils.models_utils import get_precision_autocast, cast_network +from carvekit.ml.arch.tracerb7.tracer import TracerDecoder +from carvekit.ml.files.models_loc import tracer_b7_pretrained from carvekit.utils.image_utils import load_image, convert_image +from carvekit.utils.models_utils import get_precision_autocast, cast_network from carvekit.utils.pool_utils import thread_pool_processing, batch_generator __all__ = ["TracerUniversalB7"] @@ -35,7 +35,7 @@ def __init__( model_path: Union[str, pathlib.Path] = None, ): """ - Initialize the U2NET model + Initialize the TRACER model Args: layers_cfg: neural network layers configuration @@ -133,11 +133,11 @@ def __call__( with autocast: cast_network(self, dtype) for image_batch in batch_generator(images, self.batch_size): - images = thread_pool_processing( + converted_images = thread_pool_processing( lambda x: convert_image(load_image(x)), image_batch ) batches = torch.vstack( - thread_pool_processing(self.data_preprocessing, images) + thread_pool_processing(self.data_preprocessing, converted_images) ) with torch.no_grad(): batches = batches.to(self.device) @@ -145,34 +145,11 @@ def __call__( masks_cpu = masks.cpu() del batches, masks masks = thread_pool_processing( - lambda x: self.data_postprocessing(masks_cpu[x], images[x]), - range(len(images)), + lambda x: self.data_postprocessing( + masks_cpu[x], converted_images[x] + ), + range(len(converted_images)), ) collect_masks += masks return collect_masks - - -class TracerHair(TracerUniversalB7): - """TRACER HAIR model interface""" - - def __init__( - self, - device="cpu", - input_image_size: Union[List[int], int] = 640, - batch_size: int = 4, - load_pretrained: bool = True, - fp16: bool = False, - model_path: Union[str, pathlib.Path] = None, - ): - if model_path is None: - model_path = tracer_hair_pretrained() - warnings.warn("TracerHair has not public model yet. Don't use it!", UserWarning) - super(TracerHair, self).__init__( - device=device, - input_image_size=input_image_size, - batch_size=batch_size, - load_pretrained=load_pretrained, - fp16=fp16, - model_path=model_path, - ) diff --git a/carvekit/ml/wrap/u2net.py b/carvekit/ml/wrap/u2net.py index 7d126df..d78d569 100644 --- a/carvekit/ml/wrap/u2net.py +++ b/carvekit/ml/wrap/u2net.py @@ -4,6 +4,8 @@ License: Apache License 2.0 """ import pathlib +import warnings + from typing import List, Union import PIL.Image import numpy as np @@ -43,6 +45,8 @@ def __init__( """ super(U2NET, self).__init__(cfg_type=layers_cfg, out_ch=1) + if fp16: + warnings.warn("FP16 is not supported at this moment for U2NET model") self.device = device self.batch_size = batch_size if isinstance(input_image_size, list): @@ -54,6 +58,7 @@ def __init__( self.load_state_dict( torch.load(u2net_full_pretrained(), map_location=self.device) ) + self.eval() def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor: @@ -121,11 +126,11 @@ def __call__( """ collect_masks = [] for image_batch in batch_generator(images, self.batch_size): - images = thread_pool_processing( + converted_images = thread_pool_processing( lambda x: convert_image(load_image(x)), image_batch ) batches = torch.vstack( - thread_pool_processing(self.data_preprocessing, images) + thread_pool_processing(self.data_preprocessing, converted_images) ) with torch.no_grad(): batches = batches.to(self.device) @@ -133,8 +138,8 @@ def __call__( masks_cpu = masks.cpu() del d2, d3, d4, d5, d6, d7, batches, masks masks = thread_pool_processing( - lambda x: self.data_postprocessing(masks_cpu[x], images[x]), - range(len(images)), + lambda x: self.data_postprocessing(masks_cpu[x], converted_images[x]), + range(len(converted_images)), ) collect_masks += masks return collect_masks diff --git a/carvekit/ml/wrap/yolov4.py b/carvekit/ml/wrap/yolov4.py new file mode 100644 index 0000000..cf59233 --- /dev/null +++ b/carvekit/ml/wrap/yolov4.py @@ -0,0 +1,296 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" + +import pathlib + +import PIL.Image +import PIL.Image +import numpy as np +import pydantic +import torch +from torch.autograd import Variable +from typing import List, Union + +from carvekit.ml.arch.yolov4.models import Yolov4 +from carvekit.ml.arch.yolov4.utils import post_processing +from carvekit.ml.files.models_loc import yolov4_coco_pretrained +from carvekit.utils.image_utils import load_image, convert_image +from carvekit.utils.models_utils import get_precision_autocast, cast_network +from carvekit.utils.pool_utils import thread_pool_processing, batch_generator + +__all__ = ["YoloV4_COCO", "SimplifiedYoloV4"] + + +class Object(pydantic.BaseModel): + """Object class""" + + class_name: str + confidence: float + x1: int + y1: int + x2: int + y2: int + + +class YoloV4_COCO(Yolov4): + """YoloV4 COCO model wrapper""" + + def __init__( + self, + n_classes: int = 80, + device="cpu", + classes: List[str] = None, + input_image_size: Union[List[int], int] = 608, + batch_size: int = 4, + load_pretrained: bool = True, + fp16: bool = False, + model_path: Union[str, pathlib.Path] = None, + ): + """ + Initialize the YoloV4 COCO. + + Args: + n_classes: number of classes + device: processing device + input_image_size: input image size + batch_size: the number of images that the neural network processes in one run + fp16: use fp16 precision + model_path: path to model weights + load_pretrained: load pretrained weights + """ + if model_path is None: + model_path = yolov4_coco_pretrained() + self.fp16 = fp16 + self.device = device + self.batch_size = batch_size + if isinstance(input_image_size, list): + self.input_image_size = input_image_size[:2] + else: + self.input_image_size = (input_image_size, input_image_size) + + if load_pretrained: + state_dict = torch.load(model_path, map_location="cpu") + self.classes = state_dict["classes"] + super().__init__(n_classes=len(state_dict["classes"]), inference=True) + self.load_state_dict(state_dict["state"]) + else: + self.classes = classes + super().__init__(n_classes=n_classes, inference=True) + + self.to(device) + self.eval() + + def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor: + """ + Transform input image to suitable data format for neural network + + Args: + data: input image + + Returns: + input for neural network + + """ + image = data.resize(self.input_image_size) + # noinspection PyTypeChecker + image = np.array(image).astype(np.float32) + image = image.transpose((2, 0, 1)) + image = image / 255.0 + image = torch.from_numpy(image).float() + return torch.unsqueeze(image, 0).type(torch.FloatTensor) + + def data_postprocessing( + self, data: List[torch.FloatTensor], images: List[PIL.Image.Image] + ) -> List[Object]: + """ + Transforms output data from neural network to suitable data + format for using with other components of this framework. + + Args: + data: output data from neural network + images: input images + + + Returns: + list of objects for each image + + """ + output = post_processing(0.4, 0.6, data) + images_objects = [] + for image_idx, image_objects in enumerate(output): + image_size = images[image_idx].size + objects = [] + for obj in image_objects: + objects.append( + Object( + class_name=self.classes[obj[6]], + confidence=obj[5], + x1=int(obj[0] * image_size[0]), + y1=int(obj[1] * image_size[1]), + x2=int(obj[2] * image_size[0]), + y2=int(obj[3] * image_size[1]), + ) + ) + images_objects.append(objects) + + return images_objects + + def __call__( + self, images: List[Union[str, pathlib.Path, PIL.Image.Image]] + ) -> List[List[Object]]: + """ + Passes input images though neural network + + Args: + images: input images + + Returns: + list of objects for each image + + """ + collect_masks = [] + autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16) + with autocast: + cast_network(self, dtype) + for image_batch in batch_generator(images, self.batch_size): + converted_images = thread_pool_processing( + lambda x: convert_image(load_image(x)), image_batch + ) + batches = torch.vstack( + thread_pool_processing(self.data_preprocessing, converted_images) + ) + with torch.no_grad(): + batches = Variable(batches).to(self.device) + out = super().__call__(batches) + out_cpu = [out_i.cpu() for out_i in out] + del batches, out + out = self.data_postprocessing(out_cpu, converted_images) + collect_masks += out + + return collect_masks + + +class SimplifiedYoloV4(YoloV4_COCO): + """ + The YoloV4 COCO classifier, but classifies only 7 supercategories. + + human - Scenes of people, such as portrait photographs + animals - Scenes with animals + objects - Scenes with normal objects + cars - Scenes with cars + other - Other scenes + """ + + db = { + "human": ["person"], + "animals": [ + "bird", + "cat", + "dog", + "horse", + "sheep", + "cow", + "elephant", + "bear", + "zebra", + "giraffe", + ], + "cars": [ + "car", + "motorbike", + "bus", + "truck", + ], + "objects": [ + "bicycle", + "traffic light", + "fire hydrant", + "stop sign", + "parking meter", + "bench", + "backpack", + "umbrella", + "handbag", + "tie", + "suitcase", + "frisbee", + "skis", + "snowboard", + "sports ball", + "kite", + "baseball bat", + "baseball glove", + "skateboard", + "surfboard", + "tennis racket", + "bottle", + "wine glass", + "cup", + "fork", + "knife", + "spoon", + "bowl", + "banana", + "apple", + "sandwich", + "orange", + "broccoli", + "carrot", + "hot dog", + "pizza", + "donut", + "cake", + "chair", + "sofa", + "pottedplant", + "bed", + "diningtable", + "toilet", + "tvmonitor", + "laptop", + "mouse", + "remote", + "keyboard", + "cell phone", + "microwave", + "oven", + "toaster", + "sink", + "refrigerator", + "book", + "clock", + "vase", + "scissors", + "teddy bear", + "hair drier", + "toothbrush", + ], + "other": ["aeroplane", "train", "boat"], + } + + def data_postprocessing( + self, data: List[torch.FloatTensor], images: List[PIL.Image.Image] + ) -> List[List[str]]: + """ + Transforms output data from neural network to suitable data + format for using with other components of this framework. + + Args: + data: output data from neural network + images: input images + """ + objects = super().data_postprocessing(data, images) + new_output = [] + + for image_objects in objects: + new_objects = [] + for obj in image_objects: + for key, values in list(self.db.items()): + if obj.class_name in values: + new_objects.append(key) # We don't need bbox at this moment + new_output.append(new_objects) + + return new_output diff --git a/carvekit/pipelines/postprocessing/__init__.py b/carvekit/pipelines/postprocessing/__init__.py new file mode 100644 index 0000000..1de606e --- /dev/null +++ b/carvekit/pipelines/postprocessing/__init__.py @@ -0,0 +1,2 @@ +from carvekit.pipelines.postprocessing.matting import MattingMethod +from carvekit.pipelines.postprocessing.casmatting import CasMattingMethod diff --git a/carvekit/pipelines/postprocessing/casmatting.py b/carvekit/pipelines/postprocessing/casmatting.py new file mode 100644 index 0000000..626343f --- /dev/null +++ b/carvekit/pipelines/postprocessing/casmatting.py @@ -0,0 +1,81 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +from carvekit.ml.wrap.fba_matting import FBAMatting +from carvekit.ml.wrap.cascadepsp import CascadePSP +from typing import Union, List +from PIL import Image +from pathlib import Path +from carvekit.trimap.cv_gen import CV2TrimapGenerator +from carvekit.trimap.generator import TrimapGenerator +from carvekit.utils.mask_utils import apply_mask +from carvekit.utils.pool_utils import thread_pool_processing +from carvekit.utils.image_utils import load_image, convert_image + +__all__ = ["CasMattingMethod"] + + +class CasMattingMethod: + """ + Improve segmentation quality by refining segmentation with the CascadePSP model + and post-processing the segmentation with the FBAMatting model + """ + + def __init__( + self, + refining_module: Union[CascadePSP], + matting_module: Union[FBAMatting], + trimap_generator: Union[TrimapGenerator, CV2TrimapGenerator], + device="cpu", + ): + """ + Initializes CasMattingMethod class. + + Args: + refining_module: Initialized refining network + matting_module: Initialized matting neural network class + trimap_generator: Initialized trimap generator class + device: Processing device used for applying mask to image + """ + self.device = device + self.refining_module = refining_module + self.matting_module = matting_module + self.trimap_generator = trimap_generator + + def __call__( + self, + images: List[Union[str, Path, Image.Image]], + masks: List[Union[str, Path, Image.Image]], + ): + """ + Passes data through apply_mask function + + Args: + images: list of images + masks: list pf masks + + Returns: + list of images + """ + if len(images) != len(masks): + raise ValueError("Images and Masks lists should have same length!") + images = thread_pool_processing(lambda x: convert_image(load_image(x)), images) + masks = thread_pool_processing( + lambda x: convert_image(load_image(x), mode="L"), masks + ) + refined_masks = self.refining_module(images, masks) + trimaps = thread_pool_processing( + lambda x: self.trimap_generator( + original_image=images[x], mask=refined_masks[x] + ), + range(len(images)), + ) + alpha = self.matting_module(images=images, trimaps=trimaps) + return list( + map( + lambda x: apply_mask(image=images[x], mask=alpha[x]), + range(len(images)), + ) + ) diff --git a/carvekit/pipelines/postprocessing.py b/carvekit/pipelines/postprocessing/matting.py similarity index 95% rename from carvekit/pipelines/postprocessing.py rename to carvekit/pipelines/postprocessing/matting.py index fc22451..49691f1 100644 --- a/carvekit/pipelines/postprocessing.py +++ b/carvekit/pipelines/postprocessing/matting.py @@ -68,9 +68,7 @@ def __call__( alpha = self.matting_module(images=images, trimaps=trimaps) return list( map( - lambda x: apply_mask( - image=images[x], mask=alpha[x], device=self.device - ), + lambda x: apply_mask(image=images[x], mask=alpha[x]), range(len(images)), ) ) diff --git a/carvekit/pipelines/preprocessing/__init__.py b/carvekit/pipelines/preprocessing/__init__.py new file mode 100644 index 0000000..5355429 --- /dev/null +++ b/carvekit/pipelines/preprocessing/__init__.py @@ -0,0 +1,2 @@ +from carvekit.pipelines.preprocessing.stub import PreprocessingStub +from carvekit.pipelines.preprocessing.autoscene import AutoScene diff --git a/carvekit/pipelines/preprocessing/autoscene.py b/carvekit/pipelines/preprocessing/autoscene.py new file mode 100644 index 0000000..a270543 --- /dev/null +++ b/carvekit/pipelines/preprocessing/autoscene.py @@ -0,0 +1,85 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +from pathlib import Path + +from PIL import Image +from typing import Union, List + +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 +from carvekit.ml.wrap.isnet import ISNet + +__all__ = ["AutoScene"] + + +class AutoScene: + """AutoScene preprocessing method""" + + def __init__(self, scene_classifier: SceneClassifier): + """ + Args: + scene_classifier: SceneClassifier instance + """ + self.scene_classifier = scene_classifier + + @staticmethod + def select_net(scene: str): + """ + Selects the network to be used for segmentation based on the detected scene + + Args: + scene: scene name + """ + if scene == "hard": + return TracerUniversalB7 + elif scene == "soft": + return ISNet + elif scene == "digital": + return TracerUniversalB7 # TODO: not implemented yet + + def __call__(self, interface, images: List[Union[str, Path, Image.Image]]): + """ + Automatically detects the scene and selects the appropriate network for segmentation + + Args: + interface: Interface instance + images: list of images + + Returns: + list of masks + """ + scene_analysis = self.scene_classifier(images) + images_per_scene = {} + for i, image in enumerate(images): + scene_name = scene_analysis[i][0][0] + if scene_name not in images_per_scene: + images_per_scene[scene_name] = [] + images_per_scene[scene_name].append(image) + + masks_per_scene = {} + for scene_name, igs in list(images_per_scene.items()): + net = self.select_net(scene_name) + if isinstance(interface.segmentation_pipeline, net): + masks_per_scene[scene_name] = interface.segmentation_pipeline(igs) + else: + old_device = interface.segmentation_pipeline.device + interface.segmentation_pipeline.to( + "cpu" + ) # unload model from gpu, to avoid OOM + net_instance = net(device=old_device) + masks_per_scene[scene_name] = net_instance(igs) + del net_instance + interface.segmentation_pipeline.to(old_device) # load model back to gpu + + # restore one list of masks with the same order as images + masks = [] + for i, image in enumerate(images): + scene_name = scene_analysis[i][0][0] + masks.append( + masks_per_scene[scene_name][images_per_scene[scene_name].index(image)] + ) + + return masks diff --git a/carvekit/pipelines/preprocessing.py b/carvekit/pipelines/preprocessing/stub.py similarity index 100% rename from carvekit/pipelines/preprocessing.py rename to carvekit/pipelines/preprocessing/stub.py diff --git a/carvekit/trimap/add_ops.py b/carvekit/trimap/add_ops.py index dfb37ca..cd14586 100644 --- a/carvekit/trimap/add_ops.py +++ b/carvekit/trimap/add_ops.py @@ -54,7 +54,7 @@ def prob_as_unknown_area( mask_array = np.array(mask) # noinspection PyTypeChecker trimap_array = np.array(trimap) - trimap_array[np.logical_and(mask_array <= prob_threshold, mask_array > 0)] = 127 + trimap_array[np.logical_and(mask_array <= prob_threshold, mask_array > 0)] = 128 return Image.fromarray(trimap_array).convert("L") @@ -77,14 +77,14 @@ def post_erosion(trimap: Image.Image, erosion_iters=1) -> Image.Image: trimap_array = np.array(trimap) if erosion_iters > 0: without_unknown_area = trimap_array.copy() - without_unknown_area[without_unknown_area == 127] = 0 + without_unknown_area[without_unknown_area == 128] = 0 erosion_kernel = np.ones((3, 3), np.uint8) erode = cv2.erode( without_unknown_area, erosion_kernel, iterations=erosion_iters ) erode = np.where(erode == 0, 0, without_unknown_area) - trimap_array[np.logical_and(erode == 0, without_unknown_area > 0)] = 127 + trimap_array[np.logical_and(erode == 0, without_unknown_area > 0)] = 128 erode = trimap_array.copy() else: erode = trimap_array.copy() diff --git a/carvekit/trimap/cv_gen.py b/carvekit/trimap/cv_gen.py index fc2c229..aec2cb4 100644 --- a/carvekit/trimap/cv_gen.py +++ b/carvekit/trimap/cv_gen.py @@ -54,10 +54,10 @@ def __call__( dilation = cv2.dilate(erode, kernel, iterations=1) - dilation = np.where(dilation == 255, 127, dilation) # WHITE to GRAY - trimap = np.where(erode > 127, 200, dilation) # mark the tumor inside GRAY + dilation = np.where(dilation == 255, 128, dilation) # WHITE to GRAY + trimap = np.where(erode > 128, 200, dilation) # mark the tumor inside GRAY - trimap = np.where(trimap < 127, 0, trimap) # Embelishment + trimap = np.where(trimap < 128, 0, trimap) # Embelishment trimap = np.where(trimap > 200, 0, trimap) # Embelishment trimap = np.where(trimap == 200, 255, trimap) # GRAY to WHITE diff --git a/carvekit/utils/download_models.py b/carvekit/utils/download_models.py index b1b52ad..956268b 100644 --- a/carvekit/utils/download_models.py +++ b/carvekit/utils/download_models.py @@ -45,10 +45,25 @@ "revision": "d8a8fd9e7b3fa0d2f1506fe7242966b34381e9c5", "filename": "tracer_b7.pth", }, - "tracer_hair.pth": { - "repository": "Carve/tracer_b7", - "revision": "d8a8fd9e7b3fa0d2f1506fe7242966b34381e9c5", - "filename": "tracer_b7.pth", # TODO don't forget change this link!! + "scene_classifier.pth": { + "repository": "Carve/scene_classifier", + "revision": "71c8e4c771dd5a20ff0c5c9e3c8f1c9cf8082740", + "filename": "scene_classifier.pth", + }, + "yolov4_coco_with_classes.pth": { + "repository": "Carve/yolov4_coco", + "revision": "e3fc9cd22f86e456d2749d1ae148400f2f950fb3", + "filename": "yolov4_coco_with_classes.pth", + }, + "cascadepsp.pth": { + "repository": "Carve/cascadepsp", + "revision": "3ca1e5e432344b1277bc88d1c6d4265c46cff62f", + "filename": "cascadepsp.pth", + }, + "isnet.pth": { + "repository": "Carve/isnet", + "revision": "91475fcb280243259a551653597c4702eabe9ff1", + "filename": "isnet.pth", }, } @@ -63,8 +78,14 @@ "bea1533fda5ee70a909b934a9bd495b432cef89d629f00a07858a517742476fa8b346de24f7", "tracer_b7.pth": "c439c5c12d4d43d5f9be9ec61e68b2e54658a541bccac2577ef5a54fb252b6e8415d41f7e" "c2487033d0c02b4dd08367958e4e62091318111c519f93e2632be7b", - "tracer_hair.pth": "5c2fb9973fc42fa6208920ffa9ac233cc2ea9f770b24b4a96969d3449aed7ac89e6d37e" - "e486a13e63be5499f2df6ccef1109e9e8797d1326207ac89b2f39a7cf", + "scene_classifier.pth": "6d8692510abde453b406a1fea557afdea62fd2a2a2677283a3ecc2" + "341a4895ee99ed65cedcb79b80775db14c3ffcfc0aad2caec1d85140678852039d2d4e76b4", + "yolov4_coco_with_classes.pth": "44b6ec2dd35dc3802bf8c512002f76e00e97bfbc86bc7af6de2fafce229a41b4ca" + "12c6f3d7589278c71cd4ddd62df80389b148c19b84fa03216905407a107fff", + "cascadepsp.pth": "3f895f5126d80d6f73186f045557ea7c8eab4dfa3d69a995815bb2c03d564573f36c474f0" + "4d7bf0022a27829f583a1a793b036adf801cb423e41a4831b830122", + "isnet.pth": "e996b95c78aefe4573950ce1ed2eec20fa3c869381e9b5233c361a8e1dff09f" + "844f6c054c9cfa55377ae16a4cf55e727926599df0b1b8af65de478eccfac4708", } diff --git a/carvekit/utils/image_utils.py b/carvekit/utils/image_utils.py index 8b939f5..dc7eb99 100644 --- a/carvekit/utils/image_utils.py +++ b/carvekit/utils/image_utils.py @@ -92,7 +92,11 @@ def is_image_valid(image: Union[pathlib.Path, PIL.Image.Image]) -> bool: elif isinstance(image, PIL.Image.Image): if not (image.size[0] > 32 and image.size[1] > 32): raise ValueError("Image should be bigger then (32x32) pixels.") - elif image.mode not in ["RGB", "RGBA", "L"]: + elif image.mode not in [ + "RGB", + "RGBA", + "L", + ]: raise ValueError("Wrong image color mode.") else: raise ValueError("Unknown input file type") diff --git a/carvekit/utils/mask_utils.py b/carvekit/utils/mask_utils.py index 4402036..087c939 100644 --- a/carvekit/utils/mask_utils.py +++ b/carvekit/utils/mask_utils.py @@ -4,55 +4,11 @@ License: Apache License 2.0 """ import PIL.Image -import torch -from carvekit.utils.image_utils import to_tensor - - -def composite( - foreground: PIL.Image.Image, - background: PIL.Image.Image, - alpha: PIL.Image.Image, - device="cpu", -): - """ - Composites foreground with background by following - https://pymatting.github.io/intro.html#alpha-matting math formula. - - Args: - device: Processing device - foreground: Image that will be pasted to background image with following alpha mask. - background: Background image - alpha: Alpha Image - - Returns: - Composited image as PIL.Image instance. - """ - - foreground = foreground.convert("RGBA") - background = background.convert("RGBA") - alpha_rgba = alpha.convert("RGBA") - alpha_l = alpha.convert("L") - - fg = to_tensor(foreground).to(device) - alpha_rgba = to_tensor(alpha_rgba).to(device) - alpha_l = to_tensor(alpha_l).to(device) - bg = to_tensor(background).to(device) - - alpha_l = alpha_l / 255 - alpha_rgba = alpha_rgba / 255 - - bg = torch.where(torch.logical_not(alpha_rgba >= 1), bg, fg) - bg[:, :, 0] = alpha_l[:, :] * fg[:, :, 0] + (1 - alpha_l[:, :]) * bg[:, :, 0] - bg[:, :, 1] = alpha_l[:, :] * fg[:, :, 1] + (1 - alpha_l[:, :]) * bg[:, :, 1] - bg[:, :, 2] = alpha_l[:, :] * fg[:, :, 2] + (1 - alpha_l[:, :]) * bg[:, :, 2] - bg[:, :, 3] = alpha_l[:, :] * 255 - - del alpha_l, alpha_rgba, fg - return PIL.Image.fromarray(bg.cpu().numpy()).convert("RGBA") def apply_mask( - image: PIL.Image.Image, mask: PIL.Image.Image, device="cpu" + image: PIL.Image.Image, + mask: PIL.Image.Image, ) -> PIL.Image.Image: """ Applies mask to foreground. @@ -66,7 +22,9 @@ def apply_mask( Image without background, where mask was black. """ background = PIL.Image.new("RGBA", image.size, color=(130, 130, 130, 0)) - return composite(image, background, mask, device=device).convert("RGBA") + return PIL.Image.composite( + image.convert("RGBA"), background.convert("RGBA"), mask.convert("L") + ).convert("RGBA") def extract_alpha_channel(image: PIL.Image.Image) -> PIL.Image.Image: diff --git a/carvekit/utils/models_utils.py b/carvekit/utils/models_utils.py index da0141d..7442e31 100644 --- a/carvekit/utils/models_utils.py +++ b/carvekit/utils/models_utils.py @@ -47,7 +47,7 @@ def get_precision_autocast( cache_enabled = None if device == "cpu" and fp16: - warnings.warn('FP16 is not supported on CPU. Using FP32 instead.') + warnings.warn("FP16 is not supported on CPU. Using FP32 instead.") dtype = torch.float32 # TODO: Implement BFP16 on CPU. There are unexpected slowdowns on cpu on a clean environment. @@ -59,7 +59,6 @@ def get_precision_autocast( # torch.bfloat16 # ) # Using bfloat16 for CPU, since autocast is not supported for float16 - if "cuda" in device and fp16: dtype = torch.float16 cache_enabled = True diff --git a/carvekit/web/schemas/config.py b/carvekit/web/schemas/config.py index 5d47ffc..6eabedb 100644 --- a/carvekit/web/schemas/config.py +++ b/carvekit/web/schemas/config.py @@ -21,23 +21,29 @@ class MLConfig(BaseModel): """Config for ml part of framework""" segmentation_network: Literal[ - "u2net", "deeplabv3", "basnet", "tracer_b7" + "u2net", "deeplabv3", "basnet", "tracer_b7", "isnet" ] = "tracer_b7" """Segmentation Network""" - preprocessing_method: Literal["none", "stub"] = "none" + preprocessing_method: Literal["none", "stub", "autoscene", "auto"] = "autoscene" """Pre-processing Method""" - postprocessing_method: Literal["fba", "none"] = "fba" + postprocessing_method: Literal["fba", "cascade_fba", "none"] = "cascade_fba" """Post-Processing Network""" device: str = "cpu" """Processing device""" + batch_size_pre: int = 5 + """Batch size for preprocessing method""" batch_size_seg: int = 5 """Batch size for segmentation network""" batch_size_matting: int = 1 """Batch size for matting network""" + batch_size_refine: int = 1 + """Batch size for refine network""" seg_mask_size: int = 640 """The size of the input image for the segmentation neural network.""" matting_mask_size: int = 2048 """The size of the input image for the matting neural network.""" + refine_mask_size: int = 900 + """The size of the input image for the refine neural network.""" fp16: bool = False """Use half precision for inference""" trimap_dilation: int = 30 diff --git a/carvekit/web/utils/init_utils.py b/carvekit/web/utils/init_utils.py index f687182..0e14edb 100644 --- a/carvekit/web/utils/init_utils.py +++ b/carvekit/web/utils/init_utils.py @@ -1,18 +1,27 @@ +import warnings from os import getenv from typing import Union from loguru import logger +from carvekit.ml.wrap.cascadepsp import CascadePSP +from carvekit.ml.wrap.isnet import ISNet +from carvekit.ml.wrap.scene_classifier import SceneClassifier from carvekit.web.schemas.config import WebAPIConfig, MLConfig, AuthConfig + from carvekit.api.interface import Interface +from carvekit.api.autointerface import AutoInterface + from carvekit.ml.wrap.fba_matting import FBAMatting from carvekit.ml.wrap.u2net import U2NET from carvekit.ml.wrap.deeplab_v3 import DeepLabV3 from carvekit.ml.wrap.basnet import BASNET from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 -from carvekit.pipelines.postprocessing import MattingMethod -from carvekit.pipelines.preprocessing import PreprocessingStub + +from carvekit.pipelines.postprocessing import MattingMethod, CasMattingMethod +from carvekit.pipelines.preprocessing import PreprocessingStub, AutoScene from carvekit.trimap.generator import TrimapGenerator @@ -36,6 +45,9 @@ def init_config() -> WebAPIConfig: default_config.ml.postprocessing_method, ), device=getenv("CARVEKIT_DEVICE", default_config.ml.device), + batch_size_pre=int( + getenv("CARVEKIT_BATCH_SIZE_PRE", default_config.ml.batch_size_pre) + ), batch_size_seg=int( getenv("CARVEKIT_BATCH_SIZE_SEG", default_config.ml.batch_size_seg) ), @@ -45,6 +57,12 @@ def init_config() -> WebAPIConfig: default_config.ml.batch_size_matting, ) ), + batch_size_refine=int( + getenv( + "CARVEKIT_BATCH_SIZE_REFINE", + default_config.ml.batch_size_refine, + ) + ), seg_mask_size=int( getenv("CARVEKIT_SEG_MASK_SIZE", default_config.ml.seg_mask_size) ), @@ -54,6 +72,12 @@ def init_config() -> WebAPIConfig: default_config.ml.matting_mask_size, ) ), + refine_mask_size=int( + getenv( + "CARVEKIT_REFINE_MASK_SIZE", + default_config.ml.refine_mask_size, + ) + ), fp16=bool(int(getenv("CARVEKIT_FP16", default_config.ml.fp16))), trimap_prob_threshold=int( getenv( @@ -92,74 +116,138 @@ def init_config() -> WebAPIConfig: def init_interface(config: Union[WebAPIConfig, MLConfig]) -> Interface: if isinstance(config, WebAPIConfig): config = config.ml - if config.segmentation_network == "u2net": - seg_net = U2NET( - device=config.device, - batch_size=config.batch_size_seg, - input_image_size=config.seg_mask_size, - fp16=config.fp16, - ) - elif config.segmentation_network == "deeplabv3": - seg_net = DeepLabV3( - device=config.device, - batch_size=config.batch_size_seg, - input_image_size=config.seg_mask_size, - fp16=config.fp16, + if config.preprocessing_method == "auto": + warnings.warn( + "Preprocessing_method is set to `auto`." + "We will use automatic methods to determine the best methods for your images! " + "Please note that this is not always the best option and all other options will be ignored!" ) - elif config.segmentation_network == "basnet": - seg_net = BASNET( - device=config.device, - batch_size=config.batch_size_seg, - input_image_size=config.seg_mask_size, - fp16=config.fp16, + scene_classifier = SceneClassifier( + device=config.device, batch_size=config.batch_size_pre, fp16=config.fp16 ) - elif config.segmentation_network == "tracer_b7": - seg_net = TracerUniversalB7( - device=config.device, - batch_size=config.batch_size_seg, - input_image_size=config.seg_mask_size, - fp16=config.fp16, + object_classifier = SimplifiedYoloV4( + device=config.device, batch_size=config.batch_size_pre, fp16=config.fp16 ) - else: - seg_net = TracerUniversalB7( - device=config.device, - batch_size=config.batch_size_seg, - input_image_size=config.seg_mask_size, + return AutoInterface( + scene_classifier=scene_classifier, + object_classifier=object_classifier, + segmentation_batch_size=config.batch_size_seg, + postprocessing_batch_size=config.batch_size_matting, + postprocessing_image_size=config.matting_mask_size, + segmentation_device=config.device, + postprocessing_device=config.device, fp16=config.fp16, ) - if config.preprocessing_method == "stub": - preprocessing = PreprocessingStub() - elif config.preprocessing_method == "none": - preprocessing = None else: - preprocessing = None + if config.segmentation_network == "u2net": + seg_net = U2NET( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) + elif config.segmentation_network == "isnet": + seg_net = ISNet( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) + elif config.segmentation_network == "deeplabv3": + seg_net = DeepLabV3( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) + elif config.segmentation_network == "basnet": + seg_net = BASNET( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) + elif config.segmentation_network == "tracer_b7": + seg_net = TracerUniversalB7( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) + else: + seg_net = TracerUniversalB7( + device=config.device, + batch_size=config.batch_size_seg, + input_image_size=config.seg_mask_size, + fp16=config.fp16, + ) - if config.postprocessing_method == "fba": - fba = FBAMatting( - device=config.device, - batch_size=config.batch_size_matting, - input_tensor_size=config.matting_mask_size, - fp16=config.fp16, - ) - trimap_generator = TrimapGenerator( - prob_threshold=config.trimap_prob_threshold, - kernel_size=config.trimap_dilation, - erosion_iters=config.trimap_erosion, - ) - postprocessing = MattingMethod( - device=config.device, matting_module=fba, trimap_generator=trimap_generator - ) + if config.preprocessing_method == "stub": + preprocessing = PreprocessingStub() + elif config.preprocessing_method == "none": + preprocessing = None + elif config.preprocessing_method == "autoscene": + preprocessing = AutoScene( + scene_classifier=SceneClassifier( + device=config.device, + batch_size=config.batch_size_pre, + fp16=config.fp16, + ) + ) + else: + preprocessing = None - elif config.postprocessing_method == "none": - postprocessing = None - else: - postprocessing = None + if config.postprocessing_method == "fba": + fba = FBAMatting( + device=config.device, + batch_size=config.batch_size_matting, + input_tensor_size=config.matting_mask_size, + fp16=config.fp16, + ) + trimap_generator = TrimapGenerator( + prob_threshold=config.trimap_prob_threshold, + kernel_size=config.trimap_dilation, + erosion_iters=config.trimap_erosion, + ) + postprocessing = MattingMethod( + device=config.device, + matting_module=fba, + trimap_generator=trimap_generator, + ) + elif config.postprocessing_method == "cascade_fba": + cascadepsp = CascadePSP( + device=config.device, + batch_size=config.batch_size_refine, + input_tensor_size=config.refine_mask_size, + fp16=config.fp16, + ) + fba = FBAMatting( + device=config.device, + batch_size=config.batch_size_matting, + input_tensor_size=config.matting_mask_size, + fp16=config.fp16, + ) + trimap_generator = TrimapGenerator( + prob_threshold=config.trimap_prob_threshold, + kernel_size=config.trimap_dilation, + erosion_iters=config.trimap_erosion, + ) + postprocessing = CasMattingMethod( + device=config.device, + matting_module=fba, + trimap_generator=trimap_generator, + refining_module=cascadepsp, + ) + elif config.postprocessing_method == "none": + postprocessing = None + else: + postprocessing = None - interface = Interface( - pre_pipe=preprocessing, - post_pipe=postprocessing, - seg_pipe=seg_net, - device=config.device, - ) + interface = Interface( + pre_pipe=preprocessing, + post_pipe=postprocessing, + seg_pipe=seg_net, + device=config.device, + ) return interface diff --git a/conftest.py b/conftest.py index f328d35..bb21226 100644 --- a/conftest.py +++ b/conftest.py @@ -3,6 +3,7 @@ Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. License: Apache License 2.0 """ +import os from pathlib import Path import pytest @@ -12,6 +13,8 @@ from carvekit.api.high import HiInterface from carvekit.api.interface import Interface +from carvekit.ml.wrap.cascadepsp import CascadePSP +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 from carvekit.trimap.cv_gen import CV2TrimapGenerator from carvekit.trimap.generator import TrimapGenerator from carvekit.utils.image_utils import convert_image, load_image @@ -23,13 +26,16 @@ from carvekit.ml.wrap.fba_matting import FBAMatting from carvekit.ml.wrap.deeplab_v3 import DeepLabV3 from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 +from carvekit.ml.wrap.scene_classifier import SceneClassifier + +device = "cpu" if not torch.cuda.is_available() else "cuda" @pytest.fixture() def u2net_model() -> Callable[[bool], U2NET]: return lambda fb16: U2NET( layers_cfg="full", - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, input_image_size=320, batch_size=10, load_pretrained=True, @@ -37,10 +43,19 @@ def u2net_model() -> Callable[[bool], U2NET]: ) +@pytest.fixture() +def scene_classifier_model() -> Callable[[bool], SceneClassifier]: + return lambda fb16: SceneClassifier( + device=device, + batch_size=5, + fp16=fb16, + ) + + @pytest.fixture() def tracer_model() -> Callable[[bool], TracerUniversalB7]: return lambda fb16: TracerUniversalB7( - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, input_image_size=320, batch_size=10, load_pretrained=True, @@ -77,7 +92,7 @@ def high_interface_instance() -> Callable[[], HiInterface]: return lambda: HiInterface( batch_size_seg=5, batch_size_matting=1, - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, seg_mask_size=320, matting_mask_size=2048, ) @@ -91,14 +106,14 @@ def interface_instance( u2net_model(False), pre_pipe=preprocessing_stub_instance(), post_pipe=matting_method_instance(), - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, ) @pytest.fixture() def fba_model() -> Callable[[bool], FBAMatting]: return lambda fp16: FBAMatting( - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, input_tensor_size=1024, batch_size=2, load_pretrained=True, @@ -109,7 +124,7 @@ def fba_model() -> Callable[[bool], FBAMatting]: @pytest.fixture() def deeplabv3_model() -> Callable[[bool], DeepLabV3]: return lambda fp16: DeepLabV3( - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, batch_size=10, load_pretrained=True, fp16=fp16, @@ -119,7 +134,7 @@ def deeplabv3_model() -> Callable[[bool], DeepLabV3]: @pytest.fixture() def basnet_model() -> Callable[[bool], BASNET]: return lambda fp16: BASNET( - device="cuda" if torch.cuda.is_available() else "cpu", + device=device, input_image_size=320, batch_size=10, load_pretrained=True, @@ -180,3 +195,25 @@ def available_models( pre_pipes = [None, preprocessing_stub_instance] post_pipes = [None, matting_method_instance] return models, pre_pipes, post_pipes + + +@pytest.fixture() +def cascadepsp() -> Callable[[bool, str, int], CascadePSP]: + def cascadepsp_getter(fp16=False, device_=device, batch_size=1): + return CascadePSP( + device=device_, + fp16=fp16, + input_tensor_size=1024, + batch_size=batch_size, + ) + + return cascadepsp_getter + + +@pytest.fixture() +def yoloV4() -> Callable[[bool], SimplifiedYoloV4]: + return lambda fp16: SimplifiedYoloV4( + device=device, + fp16=fp16, + batch_size=5, + ) diff --git a/docker-compose.cpu.yml b/docker-compose.cpu.yml index 1fe3f5a..2b12659 100644 --- a/docker-compose.cpu.yml +++ b/docker-compose.cpu.yml @@ -6,14 +6,17 @@ services: environment: - CARVEKIT_PORT=5000 - CARVEKIT_HOST=0.0.0.0 - - CARVEKIT_SEGMENTATION_NETWORK=tracer_b7 # can be u2net, tracer_b7, basnet, deeplabv3 - - CARVEKIT_PREPROCESSING_METHOD=none # can be none, stub - - CARVEKIT_POSTPROCESSING_METHOD=fba # can be none, fba + - CARVEKIT_SEGMENTATION_NETWORK=tracer_b7 # can be u2net, tracer_b7, basnet, deeplabv3, isnet + - CARVEKIT_PREPROCESSING_METHOD=none # can be none, stub, autoscene, auto + - CARVEKIT_POSTPROCESSING_METHOD=cascade_fba # can be none, fba, cascade_fba - CARVEKIT_DEVICE=cpu # can be cuda (req. cuda docker image), cpu + - CARVEKIT_BATCH_SIZE_PRE=5 # Number of images processed per one preprocessing method call. NOT USED IF WEB API IS USED - CARVEKIT_BATCH_SIZE_SEG=5 # Number of images processed per one segmentation nn call. NOT USED IF WEB API IS USED - CARVEKIT_BATCH_SIZE_MATTING=1 # Number of images processed per one matting nn call. NOT USED IF WEB API IS USED + - CARVEKIT_BATCH_SIZE_REFINE=1 # Number of images processed per one refine nn call. NOT USED IF WEB API IS USED - CARVEKIT_SEG_MASK_SIZE=640 # The size of the input image for the segmentation neural network. - CARVEKIT_MATTING_MASK_SIZE=2048 # The size of the input image for the matting neural network. + - CARVEKIT_REFINE_MASK_SIZE=900 # The size of the input image for the refine neural network. - CARVEKIT_FP16=0 # Enables FP16 mode (Only CUDA at the moment) - CARVEKIT_TRIMAP_PROB_THRESHOLD=231 # Probability threshold at which the prob_filter and prob_as_unknown_area operations will be applied - CARVEKIT_TRIMAP_DILATION=30 # The size of the offset radius from the object mask in pixels when forming an unknown area diff --git a/docker-compose.cuda.yml b/docker-compose.cuda.yml index 8308594..7b55655 100644 --- a/docker-compose.cuda.yml +++ b/docker-compose.cuda.yml @@ -6,14 +6,17 @@ services: environment: - CARVEKIT_PORT=5000 - CARVEKIT_HOST=0.0.0.0 - - CARVEKIT_SEGMENTATION_NETWORK=tracer_b7 # can be u2net, tracer_b7, basnet, deeplabv3 - - CARVEKIT_PREPROCESSING_METHOD=none # can be none, stub - - CARVEKIT_POSTPROCESSING_METHOD=fba # can be none, fba + - CARVEKIT_SEGMENTATION_NETWORK=tracer_b7 # can be u2net, tracer_b7, basnet, deeplabv3, isnet + - CARVEKIT_PREPROCESSING_METHOD=none # can be none, stub, autoscene, auto + - CARVEKIT_POSTPROCESSING_METHOD=cascade_fba # can be none, fba, cascade_fba - CARVEKIT_DEVICE=cuda # can be cuda (req. cuda docker image), cpu + - CARVEKIT_BATCH_SIZE_PRE=5 # Number of images processed per one preprocessing method call. NOT USED IF WEB API IS USED - CARVEKIT_BATCH_SIZE_SEG=5 # Number of images processed per one segmentation nn call. NOT USED IF WEB API IS USED - CARVEKIT_BATCH_SIZE_MATTING=1 # Number of images processed per one matting nn call. NOT USED IF WEB API IS USED + - CARVEKIT_BATCH_SIZE_REFINE=1 # Number of images processed per one refine nn call. NOT USED IF WEB API IS USED - CARVEKIT_SEG_MASK_SIZE=640 # The size of the input image for the segmentation neural network. - CARVEKIT_MATTING_MASK_SIZE=2048 # The size of the input image for the matting neural network. + - CARVEKIT_REFINE_MASK_SIZE=900 # The size of the input image for the refine neural network. - CARVEKIT_FP16=0 # Enables FP16 mode (Only CUDA at the moment) - CARVEKIT_TRIMAP_PROB_THRESHOLD=231 # Probability threshold at which the prob_filter and prob_as_unknown_area operations will be applied - CARVEKIT_TRIMAP_DILATION=30 # The size of the offset radius from the object mask in pixels when forming an unknown area diff --git a/docs/CREDITS.md b/docs/CREDITS.md index c544c65..6ef99e3 100644 --- a/docs/CREDITS.md +++ b/docs/CREDITS.md @@ -13,14 +13,17 @@ All images are copyrighted by their authors. ## References: 1. https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/ -2. https://github.com/NathanUA/U-2-Net -3. https://github.com/NathanUA/BASNet -4. https://github.com/MarcoForte/FBA_Matting -5. https://arxiv.org/abs/1706.05587 -6. https://arxiv.org/pdf/2005.09007.pdf -7. http://openaccess.thecvf.com/content_CVPR_2019/html/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.html -8. https://arxiv.org/abs/2003.07711 -9. https://arxiv.org/abs/1506.01497 -10. https://arxiv.org/abs/1703.06870 -11. https://github.com/Karel911/TRACER -12. https://arxiv.org/abs/2112.07380 +2. https://github.com/xuebinqin/DIS +3. https://github.com/NathanUA/U-2-Net +4. https://github.com/NathanUA/BASNet +5. https://github.com/MarcoForte/FBA_Matting +6. https://arxiv.org/abs/1706.05587 +7. https://arxiv.org/pdf/2005.09007.pdf +8. http://openaccess.thecvf.com/content_CVPR_2019/html/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.html +9. https://arxiv.org/abs/2003.07711 +10. https://arxiv.org/abs/1506.01497 +11. https://arxiv.org/abs/1703.06870 +12. https://github.com/Karel911/TRACER +13. https://arxiv.org/abs/2112.07380 +14. https://github.com/hkchengrex/CascadePSP + diff --git a/docs/imgs/input/1_bg_removed.png b/docs/imgs/input/1_bg_removed.png index a1e44f6..c0443fd 100644 Binary files a/docs/imgs/input/1_bg_removed.png and b/docs/imgs/input/1_bg_removed.png differ diff --git a/docs/imgs/input/2_bg_removed.png b/docs/imgs/input/2_bg_removed.png index a30c041..86e7097 100644 Binary files a/docs/imgs/input/2_bg_removed.png and b/docs/imgs/input/2_bg_removed.png differ diff --git a/docs/imgs/input/3_bg_removed.png b/docs/imgs/input/3_bg_removed.png index 298e17f..5157287 100644 Binary files a/docs/imgs/input/3_bg_removed.png and b/docs/imgs/input/3_bg_removed.png differ diff --git a/docs/imgs/input/4_bg_removed.png b/docs/imgs/input/4_bg_removed.png index 32b6a1c..89097c1 100644 Binary files a/docs/imgs/input/4_bg_removed.png and b/docs/imgs/input/4_bg_removed.png differ diff --git a/docs/other/carvekit_try.ipynb b/docs/other/carvekit_try.ipynb index 484ee9c..4c64570 100644 --- a/docs/other/carvekit_try.ipynb +++ b/docs/other/carvekit_try.ipynb @@ -1,204 +1,180 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "name": "carvekit-try.ipynb", - "provenance": [], - "collapsed_sections": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "accelerator": "GPU", - "gpuClass": "standard" + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "carvekit-try.ipynb", + "provenance": [], + "collapsed_sections": [] }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "![logo.png]()" - ], - "metadata": { - "id": "-BV5wSJzQ-ev", - "pycharm": { - "name": "#%% md\n" - } - } - }, - { - "cell_type": "markdown", - "source": [ - "### Automated high-quality background removal framework for an image using neural networks\n", - "\n", - "\n", - "\n", - "- 🏒 [Project at GitHub](https://github.com/OPHoperHPO/image-background-remove-tool) 🏒\n", - "- πŸ”— [Author at GitHub](https://github.com/OPHoperHPO) πŸ”—\n", - "\n", - "> Please rate our repository with ⭐ if you like our work! Thanks! πŸ˜€" - ], - "metadata": { - "id": "Yq1sa5BbRV4c", - "pycharm": { - "name": "#%% md\n" - } - } - }, - { - "cell_type": "markdown", - "source": [ - "This notebook supports **Google Colab GPU runtime**. \n", - "\n", - "> **Enabling and testing the GPU** \\\n", - "> Navigate to `Edit β†’ Notebook Settings`. \\\n", - "> Select `GPU` from the `Hardware Accelerator` drop-down." - ], - "metadata": { - "id": "lrGOILABYqXx", - "pycharm": { - "name": "#%% md\n" - } - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sqwsUfoI3SnG", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Install CarveKit" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "7C4rC_HQi1gq", - "pycharm": { - "name": "#%%\n" - } - }, - "source": [ - "#@title Install colab-ready python package (Click the arrow on the left)\n", - "%cd /content\n", - "!pip install carvekit_colab\n" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "#@title Download all models\n", - "from carvekit.ml.files.models_loc import download_all\n", - "\n", - "download_all();" - ], - "metadata": { - "cellView": "form", - "id": "EPjtRXRpQ2k7", - "pycharm": { - "name": "#%%\n" - } - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pF-4SVcB3gjK", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Remove background using CarveKit" - ] + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU", + "gpuClass": "standard" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "![logo.png]()" + ], + "metadata": { + "id": "-BV5wSJzQ-ev" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Automated high-quality background removal framework for an image using neural networks\n", + "\n", + "\n", + "\n", + "- 🏒 [Project at GitHub](https://github.com/OPHoperHPO/image-background-remove-tool) 🏒\n", + "- πŸ”— [Author at GitHub](https://github.com/OPHoperHPO) πŸ”—\n", + "\n", + "> Please rate our repository with ⭐ if you like our work! Thanks! πŸ˜€" + ], + "metadata": { + "id": "Yq1sa5BbRV4c" + } + }, + { + "cell_type": "markdown", + "source": [ + "This notebook supports **Google Colab GPU runtime**. \n", + "\n", + "> **Enabling and testing the GPU** \\\n", + "> Navigate to `Edit β†’ Notebook Settings`. \\\n", + "> Select `GPU` from the `Hardware Accelerator` drop-down." + ], + "metadata": { + "id": "lrGOILABYqXx" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sqwsUfoI3SnG" + }, + "source": [ + "# Install CarveKit" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7C4rC_HQi1gq" + }, + "source": [ + "#@title Install colab-ready python package (Click the arrow on the left)\n", + "%cd /content\n", + "!pip install carvekit_colab\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#@title Download all models\n", + "from carvekit.ml.files.models_loc import download_all\n", + "\n", + "download_all();" + ], + "metadata": { + "cellView": "form", + "id": "EPjtRXRpQ2k7" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pF-4SVcB3gjK" + }, + "source": [ + "# Remove background using CarveKit" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "rgm6pR6U22a9", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 529 }, + "cellView": "form", + "outputId": "a908d208-0520-42ec-dbe0-c06e6c4ee260" + }, + "source": [ + "#@title Upload images from your computer\n", + "#@markdown Description of parameters\n", + "#@markdown - `SHOW_FULLSIZE` - Shows image in full size (may take a long time to load)\n", + "#@markdown - `PREPROCESSING_METHOD` - Preprocessing method. `AutoScene` will automatically select needed model depends on your image. If you don't want, disable it.\n", + "#@markdown - `SEGMENTATION_NETWORK` - Segmentation network. Use `isnet` for hairs-like objects and `tracer_b7` for objects\n", + "#@markdown - `POSTPROCESSING_METHOD` - Postprocessing method\n", + "#@markdown - `SEGMENTATION_MASK_SIZE` - Segmentation mask size. Use 640 for Tracer B7 and 1024 for ISNet\n", + "#@markdown - `TRIMAP_DILATION` - The size of the offset radius from the object mask in pixels when forming an unknown area\n", + "#@markdown - `TRIMAP_EROSION` - The number of iterations of erosion that the object's mask will be subjected to before forming an unknown area\n", + "#@markdown > Look README.md and code for more details on networks and methods\n", + "\n", + "\n", + "import torch\n", + "from IPython import display\n", + "from google.colab import files\n", + "from carvekit.web.schemas.config import MLConfig\n", + "from carvekit.web.utils.init_utils import init_interface\n", + "\n", + "SHOW_FULLSIZE = False #@param {type:\"boolean\"}\n", + "PREPROCESSING_METHOD = \"autoscene\" #@param [\"autoscene\", \"auto\", \"none\"]\n", + "SEGMENTATION_NETWORK = \"tracer_b7\" #@param [\"u2net\", \"deeplabv3\", \"basnet\", \"tracer_b7\", \"isnet\"]\n", + "POSTPROCESSING_METHOD = \"cascade_fba\" #@param [\"fba\", \"cascade_fba\", \"none\"]\n", + "SEGMENTATION_MASK_SIZE = 640 #@param [\"640\", \"320\"] {type:\"raw\", allow-input: true}\n", + "TRIMAP_DILATION = 30 #@param {type:\"integer\"}\n", + "TRIMAP_EROSION = 5 #@param {type:\"integer\"}\n", + "DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'\n", + "\n", + "\n", + "config = MLConfig(segmentation_network=SEGMENTATION_NETWORK,\n", + " preprocessing_method=PREPROCESSING_METHOD,\n", + " postprocessing_method=POSTPROCESSING_METHOD,\n", + " seg_mask_size=SEGMENTATION_MASK_SIZE,\n", + " trimap_dilation=TRIMAP_DILATION,\n", + " trimap_erosion=TRIMAP_EROSION,\n", + " device=DEVICE)\n", + "\n", + "\n", + "interface = init_interface(config)\n", + "\n", + "\n", + "\n", + "\n", + "uploaded = files.upload().keys()\n", + "display.clear_output()\n", + "images = interface(uploaded)\n", + "for im in enumerate(images):\n", + " if not SHOW_FULLSIZE:\n", + " im[1].thumbnail((768, 768), resample=3)\n", + " display.display(im[1])\n", + "\n" + ], + "execution_count": 5, + "outputs": [ { - "cell_type": "code", - "metadata": { - "id": "rgm6pR6U22a9", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 529 - }, - "cellView": "form", - "outputId": "a908d208-0520-42ec-dbe0-c06e6c4ee260", - "pycharm": { - "name": "#%%\n" - } - }, - "source": [ - "#@title Upload images from your computer\n", - "#@markdown Description of parameters\n", - "#@markdown - `SHOW_FULLSIZE` - Shows image in full size (may take a long time to load)\n", - "#@markdown - `PREPROCESSING_METHOD` - Preprocessing method\n", - "#@markdown - `SEGMENTATION_NETWORK` - Segmentation network. Use `u2net` for hairs-like objects and `tracer_b7` for objects\n", - "#@markdown - `POSTPROCESSING_METHOD` - Postprocessing method\n", - "#@markdown - `SEGMENTATION_MASK_SIZE` - Segmentation mask size. Use 640 for Tracer B7 and 320 for U2Net\n", - "#@markdown - `TRIMAP_DILATION` - The size of the offset radius from the object mask in pixels when forming an unknown area\n", - "#@markdown - `TRIMAP_EROSION` - The number of iterations of erosion that the object's mask will be subjected to before forming an unknown area\n", - "#@markdown > Look README.md and code for more details on networks and methods\n", - "\n", - "\n", - "import torch\n", - "from IPython import display\n", - "from google.colab import files\n", - "from carvekit.web.schemas.config import MLConfig\n", - "from carvekit.web.utils.init_utils import init_interface\n", - "\n", - "SHOW_FULLSIZE = False #@param {type:\"boolean\"}\n", - "PREPROCESSING_METHOD = \"none\" #@param [\"stub\", \"none\"]\n", - "SEGMENTATION_NETWORK = \"tracer_b7\" #@param [\"u2net\", \"deeplabv3\", \"basnet\", \"tracer_b7\"]\n", - "POSTPROCESSING_METHOD = \"fba\" #@param [\"fba\", \"none\"] \n", - "SEGMENTATION_MASK_SIZE = 640 #@param [\"640\", \"320\"] {type:\"raw\", allow-input: true}\n", - "TRIMAP_DILATION = 30 #@param {type:\"integer\"}\n", - "TRIMAP_EROSION = 5 #@param {type:\"integer\"}\n", - "DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'\n", - "\n", - "\n", - "config = MLConfig(segmentation_network=SEGMENTATION_NETWORK,\n", - " preprocessing_method=PREPROCESSING_METHOD,\n", - " postprocessing_method=POSTPROCESSING_METHOD,\n", - " seg_mask_size=SEGMENTATION_MASK_SIZE,\n", - " trimap_dilation=TRIMAP_DILATION,\n", - " trimap_erosion=TRIMAP_EROSION,\n", - " device=DEVICE)\n", - "\n", - "\n", - "interface = init_interface(config)\n", - "\n", - "\n", - "\n", - "\n", - "uploaded = files.upload().keys()\n", - "display.clear_output()\n", - "images = interface(uploaded)\n", - "for im in enumerate(images):\n", - " if not SHOW_FULLSIZE:\n", - " im[1].thumbnail((768, 768), resample=3)\n", - " display.display(im[1])\n", - "\n" + "output_type": "display_data", + "data": { + "text/plain": [ + "" ], - "execution_count": 5, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAIACAYAAAA19gs6AAEAAElEQVR4nOz9eZjv2V3Yd77Pd99+++9Xe91bd+vue293q7slIQmBBGZzbCdecDPGBgQINyBbYDDYCSRzrXGSmUnizGBsHJPBMTAwCbKHiVdmMME2i3apF/V2t9rX37589+XkjxLEfjIzsaUWRbfP65/7VNXz9HPOqd/pOp+zfD6gKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIry1iEuugGKoiiK8kb79V//deOle9vvMQrj9Q996DvOLro9iqIov59oF90ARVEURXmj3d3evlmUkw9nev9b/h+/8subar9LURTlf2FcdAMURVEU5Y2WFJMnHX3+TKvm32R+70/8v/7J3/wXWez8xrd883f/TxfdNkVRlIumtkQURVGUtxjBX/3PfvRvh/39D4gy06oyNZc3m+mjt28cV+bS3xqcrPz0d33XH59cdCsVRVEuigoAFEVRlLeUn/u5n1t66TO/8T/uvvLiu6sypdFokKZzbj2+xNve9VSie2v/aFZ0/stv+ff/zCcvuq2KoigXQb0BUBRFUd5SHuw92Do9OrrZbDYlGqDndJeW+eTHXudf/tNfd4ge/smue/aLf/tn/sa7LrqtiqIoF0EFAIqiKMpbShlmW1kU+45vi95Sj/liQa3lYfktXnl1xD/7Rx/HKgfXNtbS/+znf/6f1C+6vYqiKL/XVACgKIqivKXE8aKazeZ6npesrK5y+fIV4jBha2uN9Y1L7O7OeemzDwmM+dc12w//0kW3V1EU5feaCgAURVGUtxQ38KP5Iip++2OfYu9wl3avSc2vc3w8oNGus3llncEgZnxwjKtPPvQP/ukvvOei26woivJ7SQUAiqIoyltKu7dkPv2u95xtbF7l05/a5tOf3ibLDDyvxSc+8QK249Bottl+cMLZg9datjj6q7/0q7/auOh2K4qi/F5RdQAURVGUtxTbsO+2l7uLxx77QxzsnvHaK3f5/Kv3uHX7Gtp9nXt3j3BthyzLCecDhLf9B9qb7f8YxI+CvOjmK4qifNmpEwBFURTlLeX9H/rQg6PD/sm9u/eptzTe9weeZnPrMkI3yQvJyemUh7t9JpOC1+6dcveFB6KYHHzol37pp/74RbddURTl94IKABRFUZS3lMc1LROYDwfHEwZnfQwr4cojLZotn8ubl0kzyb3tYwzTo6wk80nF7LTv+V7xfc8++0v6RbdfURTly00FAIqiKMpbi5Rowvr03buH1T/+B7/OL/+9X2PYn2FbFU89c5ONjTXyRHJ43MfzG0znIaPxHPL4Hc9+a/T2i26+8nvv1q1ng3/9O8/qzz77Q+7vfvXssyowVN5S1BsARVEU5S2n2Wy81O4szzStah7vD/hE+Rpf/f5bPP62q+wdddh+uM9gOCVwl7Esg9F4jne43V65VvvgnTu//tmPfORri4vug/LG+57v+fNXWp51dXU9WDMtHovm+aC3UnumKIrNLL19Lw6LiUCbhPPiyeksPfqub//Q33cC+XJZ1itgetHtV5Q3igoAFEVRlLecoFkfN5rBXNBoanpJVWn81r98DaFLvvJ9T/DyS3u8/vpdGjWPS2tdHKdOGqdU+fDZW2/b+fSdO/JnPvIRUV10P5Q3hPZXfvwHP9hueM84pnxHvWZsuoG2JEDEdZcwHuG7Buur9fdr+MhCMBwsOOkzcafi6+Zh+tuaXPzzO3fu/L2PfOQjKjBU3hJUAKAoiqK85ZRlWZ6cnjiTwR5+zefGozeI51N27x9z+/FH+JY//bX8nZ8Oubt9yBNve4QKSbPZJJ3OWqZv/8XNzZ/5/wC7F90P5Yv1rP7+93u1p2+b6zeuNH7Yd7VvT6KpGU8zTvcSzs5GzBYhaVKRpSVe4BAEHr7v0+zV6Cw3WF5tNC1bNLPd9PYile3+fv9jqM+E8hahAgBFURTlLafdDsaNZmcez6e9fn/Apz75adqdGvWazf72CYGn803f+B5+67efZ2fngNuPrZCnMZrm0mrnjxad4t2oxd6b0oc//H1Pry81v6/TMd5Wc4xr08Gwe/flU/pnE6IkJ0kKBqMZaZ5SlhJdCNyFhxBzDN3AsAw0Q+PRm9cRQBpLTdfct49m8x/44Hd88H/4mZ/7mU9edB8V5UulAgBFURTlLSeHFctxvaDVpdapI0tJu9nl+PgeYZSgSQeZJdx+9Bpn/T7HJ3NcR6fXs0iiFL/hvB34Hy66H8q/nR/7y9//h69dafxko2FfmY9CPvkbryIrl6PTMXGSogmTLJckaUqcphRFQbfTIysqxuMBpmFSVAW+57NYRNy4fh3XdfB8cVnTat+VFWL5T//p7//wL/7i3xpfdF8V5UuhAgBFURTlLcfx7LU/9q3f6JtawWI+4t6rD0jmAtPQOD4OKToFszBG6Aa67vPqq8fMJhMeu15y2TJoNLOn/i//3S83f+i7/vjkovui/G/74Ac/eHO9F3zHlcved0/O+kv3X4jY2z9BYjJdnHBy2seyHJIoQlLh+3UsBEHdIspiZrMZRVHS7rSZTmdkeY6IIk5Ojlla6mLqUq+5tdZxP/4aoRWPA79x0X1WlC+FCgAURVGUt5w0De1X7u/Y80mf5aUaV652mAwTFqHOfBpy/cYSR2cjeu0azWbA4cEOwz70W1OaI4etW/LJtebiL/3nP/mTf+3HPvzh4UX3R/n/7t3vftb96nct/5GtLe9/71ry1vBoqH3qUzvMFjG2bVOJgoOjE2pendlihmVZBPUaxydHUMHiJEJoAr/m41gW27u7WJZFvVYjSRP29vfJ8gxTu4zEwHXFymKcXkEFAMqbnAoAFEVRlLecxTA5/ORvPR+P+0eWrkvazQaPPnqNbrvJ4UHGqy/v0mq22X14wFNvv8mVa6s8fH2b4dCjfuShldGyqxff7BbFTwMqAPh96IPPfrD9yOOdvxJ45TdXyWzt+DjnY7/9EpN5ieN5GFJw//59akENhEa71WEynfLwwUNM0yLNMiQalm0zGI6p8hLT1PA8j0pKkiSlyFIMQ0fXdC5fWWd5ZUU/68+/8YMf/OBv/8zP/MwDQF70OCjKF0MFAIqiKMpbji31U0v3wzLTGqZrEyeSl158naeefpLl1S6H+wc0A4EsdQ72R3S7yxztnlGUGqbtMO4PaQS9nu/LTWDnovuj/Ov+8l/883/g2qXgTqtmvO+1l3YZj1Me7h3x2v1dtrYewfcCJpMJZSGYzmbAjDiOEAKWe6tUEuZhSFFVDEcDNMBzPQLfw7QMirwkSwsQMJ8vSOIUL9DZ3Fony7LHo7F4m5TygRDioodCUb4oqhKwoiiK8paTaeJ6nBVBUiQcHB1yejYiSSV7e7volsSwTMbzGVkhsW2Pfn+KZjs83DlA1w2SKKFZk826W/ylv/bX/tN3X3R/lHPf+q3Pdf/Kj33oP3niVvujhpa/73OffpndvRFnw4j72wesrV8mLwt29rbZP9gjSSKSJMYwdB555Cbra1s0m01q9QDHtknjEMcysQyDwHcpyoIwjAjDiDgOEehYlofn+QR+m8Usoln3b4L2we/9ru99/KLHQ1G+WCoAUBRFUd5y0ip+7PbbH3X/8J/4I3zzN/8Jbt++SZKnnPUnZHGF63ns7RwRLkKG4z4bW0ucnfWZzWIe3DskWoTouhDLveYzg+PJ0z/4vT+4ddF9+nfdt3/7t3eeulX7iccfW/srw5Nx+2O/8Tr3H4wJU9g5OKLV7lJvNqiERtBocOXaVVbW1rh2/QY3HnmUNM0pK0mS5YxGY0bDIVVRIiSYpklZVRRFQVmW5HmGZZsIAdPZiP7ghJ2dPWaTBe2mb2XpfDVKFl//Pd/zPVcuelwU5YuhAgBFURTlLeUXfuGnWkvL1td2O7bZqnsEdZu3v/Nxvu7r38v1R65hOTquZ2IYBlIaRGFOvW5x5eomVSnZ2T4mSQRxmlBrmiuNhvcVSVHcuHPnjvqbeUG+8d3f2L651fxPLq25f+rh3R3tM5+6zyKuCGN4uHPAbLHAtC0836EsC0CQphllWXJycsbHP/EphuMhw/GA7e2HDAZ9TEPHcRwsy8Y0LaSUaJpGWZZomkZVVRR5QVVBFGekaclsmnJ4cEj/5EQr03y9SIubFz02ivLFUG8AFEVRlLeUMA+/LvC1dz2/dxrnYerOJ1PyLAWtpNttkqQJtYbP+uVLvP7KfcxQA83kxmOXGZ6OqYTg3oNjllcDuqu25jjaI5qhvWN4fOb/yId+5OP/1U/9VycX3cd/lzz3Hd/9vhs32j+0uep+0+svP9D2d0NMu8bwrM9J/4zZLAJNYhgmx0cnVEXJbDalLDJmswWaYeD4LqPJkCrP0XUN27IpZYGsBJqmYxg6cRKhifOFv2EYaLqJkEAFmmaQZjHNpscUgWEGO8I0fyVMwt+66PFRlC+GCgAURVGUt4wPf/jDdrKIN+2GU7N1oWHomBbYtkccJ4xHEbLQiKKEpdUu917T0DCIkpTeSpd3fuXbeOEzL6MJi4OdEavrm2yse4+fHC+Kxay8EWexAH75ovv574K3P/ec+X7X+JOPbNX/w17XfvL1lw945ZUjbLfBzoMdtnd2iMKQbm+ZdqvJ4OyMoihJkozFfIaUEj/wKIqCxXSCbVkYpoUmBEV+/sDXMBxqtTpQkiQhRVEAUJQ5RZJjWiZCaAhNsrqywtJKD8RY7hye/MNf/KVf/GcXO0KK8sVTAYCiKIrylqFpmptHpRwm4/Djv/Fbues49vrmJs9/5gUsS3DlynV0zWAxjbjxiIduVISLmMU0Y3A2oV2v0VtqUa8HdFZWODkZ0PBrdVmkTwtNNJMsn9y5c+cffuQjHykuuq9vZc9963Ndh/x7bj/a+2DN5fq914/45KcfIjHYubfNgwe72K7NM29/O6trS+xs73PW77O6uka7rVOWq0RRSP/sFImkHjTO83VWUFb5+e5/WVIUBUUeI5FUVUWe5xiGieW41GstpCxJkgRD0xmP5/T7E9IsR9cs9ftX3tRUAKAoiqK8ZfzET/zE5G/9xP/h4Oh4lue5MM9O9siykrc/8062H94jSTPiKGU2mzM4HfL0M7d5+cUdZtM5pZQcjPtsbq5wcnrKY29bwam5LC1vEcev18ajaNWrBe/cee21jR/6oR86DcOwsG1b+8mf/MkMlQ/+DfPss88GX/GVq3/DENXXj08HnZ1Rxv3dY+4+3KURNAjDlM3NTS5vXUZScnx8zHw+Z2P9ElmWEIYhmtDIsoxWp0er1cateWgaDPsDjo8OkXn1u3f9s7xECA0pwTQtNE1DliWjyRBD13AtD123CII67V6dOEoKbUeL7ty5o33kIx+pLnq8FOWLoR40KYqiKG8lopDFuu1onXqjWdvY3KKsJJUGz7z7PVx99CobV9dwPQ8hNFY3elx/5DJJlNFp1xlPppSVQVVKXnt+G8OUOIHJ0toStuV0HMd6XDO8PxaGoTUejytHiEt37txRyeDfIH/0/R9ovv325g9trrt/kjLt3Ls/4mgw5+HuCbPZgrP+GZ1el8tXtyirAllqdFqrPP74bRzXZjIZ0T89ZjwckMQJSMl8PmN/b5e7r7/GaDRCAAKQEoQQOI6LadrYlg1CUJZQlhWGEJiGDkJimgKBxmw2w3dsc7Xb+47P7e/7Fz1eivLFUicAiqIoylvGBz7wAbsouFVIUW5dedSaj6fMxkccH+7hOTb1tsfqepuToxM03aHW8PACneWVS9iOw0ltxIP7uzzz1A3iaMFiPGbk7LKx2aZ/ONQsQ6+VjvVsuIiNbrf7M16SHKpd4DfGs89+V++db+v+ny+vut96dDDRn39hl2kSczKYEIYRmtRYW7/M8sYqZV4yGY1ZzGecnZ1h2SbNZodms0er2aOqKvwgwDQ1Tk4OmY/GOI6PYehI3SQTOoZRgZCkaYaUFVKWgMC2PQTiC2lBKzQhWYQz5vMZeayBb5BX+e4/+Dv/9/lFj5mifLHUCYCiKIrylvGzP/uziS7Eb1WljMo8r9AqwrhgMYt47dVXiaMMw9JpdZo4js10HLG21sUPfBzf4D1f8wyaodM/m9LqtNjfOSWOZly9ukyRpcgq01eWG4/blvXVWZat9A1D/R19A9y6dcv6hq/d/K9vPtb6rvFo5rz+2jHTRYFu2UwnE9Ik5fLVaxSy5NOf/BjPf/pT7D68z3w+Y3VtjdWVdYLAZ2m5Q2+lR3elh2bqJGmG5/l4vkOSLpgvRqRZhOt6+H4dy3QwTRPDOH/sq2mCqirJi4SiyJFVQVWV1GotWq02sjLY2T7h6PjwAercR3kTUycAiqIoyltKTvlCmRHv7dxtvuOdX0HQ8EimKVESEkYJuqHTWaqjC40KSRiVeIFJGJf4fs71R7bYu3+MHzg06hqjQcTVR116Sy1GozH1ZqfWiv2N4+PRNxkYvw188qL7/Gb2R//oB5p/+Os3/2qvZXzb/s4J43HBSX+Bblrcfe11Tg9P6bQ7HB/ukaYplmnieR7NtS5Bs4HvB+gIoGA4HJKmCWkWM53OSKMYSUVZ5pRlhZQSKSVlWWHbLpblYOgmZVGSFylFmZHnBZIK07DQDR2Q5HlGkkSYlqSm+9KxvGsf+v4PBT/1Uz+1uOjxU5QvhgoAFEVRlLcUQ1pas92qbV6/ZMziCY/dusK9Vw6pt7o4gWAyDc8rvxYS23EZTEc0mi6GbRDNU9K4Yn1zjZ2dPW7eukSeFzhuQa1hc//egqVJLEzN2NLQ/rhZCR0VAHzRvvc7v/PGO9+19V+vrzh/5FMfv0e/nzOdh7z6+j3iMGbYHwKS4aCPEBq1WpOl5RUuX93EsHXCKCWLEzTdpMoLFosZo+EQTUgMXcfwHSoJmtCRwGQ8pChzyiIhLjKEriOEjqGbCE2i6waaZmA7JpowEAjiJEXXNCxbZ32zzWKeC6Rm9XqhygSkvGmpo0tFURTlLUVYVEWZzx3Pm1x/5DKbV1pce3SZRtfCdnWEFGRJhUCnKkvW15e4+9o2raaL55kc7g9otup4QZO8rLBMA0OHRssnilNODyfIvGi1Gt4zaHLjueeeMy+6z29G/+GP/NAffMc7L/39Rl3+kRdf2OX5Fw54+eVtXnjxNU6Oz0iTHNf1aTTamKaN5/gs9ZZpd7qEcUY4T2g3fNqNgE6rRq3u8vjjt1hb28T3GwR+HcepUQvaeJ6PZVt4vo/jOGiaBkKiawLHdkAI0iShLHM0oRFHKdPpmEoWGLqkLFMWi4jJbMHp6Rl5ngBbFz2EivJFUycAiqIoypvWnTt3NIB/9SFulglfE0ZydjRMDne2ux/4nv9A3H5qnTwpOT4ckqUVVSmYhjMqzq+PpEnJ/deP2NraQLc0mr0GzsmQJMnQ9PNqsaZlYlsWo/EUy9OF65lBPM7f3z+Z3QJeuLBBeJO5detZ60//767+exur9l+v+calV1464nOf2WY2T0nTjCxOkGVFkiSYukmel0gJhcyZzcfopo5u2NiWwenBHgKDsqyIkxTTNGg0GownI0bDU0zToJQVlQRd08nzgqqSgI6mQV4UmKbENEzKUqeqKjTTwLVshPAo85woiuh22gS+j6EL1jdWOD2ddl555RW1hlLetNSHV1EURXnT8n2W9JAMGAHcuXPHiSbzcValWpZF/oNXH4p//Mv/nD/5p/4gmihY3ajTHyScnp7SbHgADAYL5tOCMDzFMjwarRpFmTObz1haXsKyLGQFfs2h3qgzOO2TLDJAoOv6o45j/slnn3321Y9+9KPZBQ7Fm8L3f//3tzqe8SMbq963+G516d6rfT77mQc83N6j3V5iMp7SH/QRmsA0TGpBcP5Y1zbodltkScZoNEFWJYauE0YL4iQhySLKssJ1PIKaz9UbN3jt8zFpHKFpAss8v9oTBA00oZPnOVmWUpY5iPN7/gCO42AaBlEc4vs+cVEiNI0kzbBdizTLMR0L29D7v/jRj0YXO5qK8sVTV4AURVGUN63JJN4qwPmdrz/ykY8kpV6URZrq08nIWur1ePGzr/PLv/RrTCYhlmuxeaXD6kYb3RB0uwEbW13aSzWuXt/g5Zfv49gehwdnLK12uHf/gDgsKKuMZtvFcTWEqEiiEikFq5tN79Jm99t90/+h7/zO5574nXY899xz5p07d9Qm27/iz/zxP7N6fc37L971jrUfyqPw+id/e4dXXznm5VfuslgsODjYYzA8pdFosrGxxY1HbrG1dYXllSWarRaj8ZjB6IRmq87G+iaaxhfSc47RhcWljS0a9RqHBzuMRwMuX7lKs9OjRJBnBWVREscRaZpSlRLH8bBtH01oGLqBEBpVVVIUGUWR/u6/mibY2Nyk3akT+D6TcSijJHkJUOlflTct9T8nRVEU5U0rSjMvEab+r37Ptt2rMq9qspD5fLHg8pUr9PtT/vmvPs+7vuptXL6xxCM31zjY7iPQCOoWT7/zEWxTIy9CXn5hF8u2eP/XPsn+wwO2Hwy5cnPB6lqX9Y0Oo7MJQgiSMCFLdC5f7lx2LOPP9geh8+yzz95vubV3FkVxf297713PPffcb/z0T//04KLG5/eL7/nA9zz15K2lH796I/gPRqdj61O//Tr7+1OOzg4YDAYYhonj2iwvr6DrJu1Wm6XlDroQFGVJkkZcvXEFz/OIZiH3Xr/PeDzGdjwsy8EybcoyJ4xC4mhBmWXkErq9JdbW1hESZrMZSZqSpiFISRRVCKGRpBGGYSCkpMxLKlGhCUGepYgvlA3rD/pcfeQKfmCxfW8vr8p8fNFjqihfChUAKIqiKG9aUtebNcP41wIAS7PKVCSuoZvS0HVMx+LWk49wejRicBpSyUOuPrpGJeDuq0cIXQNRoVFw8+YVDnb7zGcV81nE1uV1oigDAaZtIDSBppskSUhRGsRTj6kZYWv6ZQPe3rT9P1cV5XVK/qGoqq8pqtx+7rnn/v5P//RP5xc1Rhfp277tL/rr7fwbe0vGh7auBF87GcT6P/wfP8NLL99lMplg2x5ogqzMMCuNyXSI59SY6pKH269gmTZra5v0ltpURcF4MGH7wQ5xFKFpOhUVmqaRlynhNKJRb2HbAZ7rMBwNmQwG2I5NVZbYjk+93ubs7JgwmiKrCttyMHRBVRVomk5ZVlimTlUCZUWr3iQvcsqyJElzFlHE5uWlbL5I1PUf5U1NBQCKoijKm873fd/3LQ3/m+GwW/M7lmV2gZ3f+VmSxjeSJEMTulgsQvI8ZzJakGUFURSxpDc42Bng+z7tpQDTcvjsx19hdaXHqy8/pN1cYjTYJ5xUlHlFOC+YjkOESIiihCBwOD6YEQQBs3FCkpbUao6xttb8uv7Z5PpwNN/Jy+QPSyF7uq6/19L1HSH4uJQXN14X5dpG8WfXNrzvvXql/djZ4Yzf+J/u8qlPv8IinuO7AaUsCdOQIKhhGg71Wh1D0xDApY1L+L7LdDrjhc/tkiQx9XqLXm8V36uxWMzIsoiiqLCtgFrdwDJNtMBC1wyWTZckWZClCXmek6QTsjTHNEyoJCCRVEg43+eX8guFwKrz4EJKkBWOaaI7DtPZgjSrCHynEJpxcrEjqyhfGhUAKIqiKG86dqVd+Shnoz9QeyaIsqT7r/4sCMzHB/0kNDSj9viTt3nfN7wHzZDs3B9wcjyg2WmwmCVYVkSRF2R5iKzOC0Stri/x8d98lZPDQw7aFvVaF8ezSeMS13YxTYswTCiKCl03kUhkJUCTtJd8T2jVI7Kq6qOz7EqSR1GlyV5K/nV//ju+rZnLSuiOOLX8pVfTNNXfykWk3v/+9xtf8xXv+J5HbtR+eHnD2zw7nPGr/+QFXvr8Q0azAe1WG9fySNKc69duoiHpnx5TVTn1oE0Wz4ljnaPDFKHpCFmhC0EUzugjCGpNdNPCNU0M3QApGYzOSNOERqOOrpnomsFsOkPXdUzTwtI0sjSlkjkSMHQTTdPJsxwNqER1HgkgcFyHNE2J0xRdA01KBv0p81mIrRmWFDQudoQV5UujAgBFURTlTUegNwAcyzCEsP+1n5mGeDRLQn0+HZtlFRHFKV5gs3W1B5VgPk2QZcHewZh2u0EcJZSFRpIW5LnO8mqPcJGyfzjgySdWMUwDx3YoywRNlJiWA4ZGpYHQDGxLw7Z1sjyn1Qv0zlKw/vKnq2xvdzKzTK1ajCYii+artudMAt0fl5OjpzXJ+EMf+sBv/9RP/exbcif5m973jqdXVvz/KAi0zbP9iF/71Zf45GdeJE5z1lYuYZkOZVGwstolyzPOTs/odlcxTYN+/5hur0fgeURRRBbHxHGIJgS60PFsG9/1sb2ArMwY9I+hqLh69TEm0xHHRwe4tkNV5lRFiiZsCqmDqJAIPK9GlhdoAqQsgfMCYFUlMTSNsiyhqjB0E8/1iJMFjm1h6zq9dg1KTFHKpYseY0X5UqgAQFEURXnTEZqo3brV13RTM6ryf/lb9oEPfKA5GYVzUzeX8iypxuOI8XDCYKCzutwBwLJNLMNmMc/J0hLXDajXJIHvcu/1PZZXOjz19pu8/touhqXjBi66YSJlyfJqi8WiopQljYZLkWs0Oh7Ntkeelwg9Y6nXwA0cq9lodfIsytJ4cX0yPwt83z4WWesUSYJphJ6sX/pL3/ftr5qa+ZrR2zy+fft2+Ylf+ZUNaZRukjIpbHv4Znw78GM//Oe+aWOz8Z+ubQaXXvn8Ls9/Yo9XX39IVpasr1/CMFyqsiSM5hwc7BLFC27ffIpOu0uap9y6dRuB5OjwkFEyYjoZUskK36/jBTVmizmjyZRmp8vNx5/gkceuc3J4zGy+IPDrbF1+hCRLmU5PmY/PELpOEDQIggZ5XpBnOa7jksQhRXE+vLquI4T8wteSLEsxdJMsjcnSFMvMaLd8bt7c5LOfubs9D5N7FzvKivKlUQGAoiiK8qYjtMrq9W5bhm0g0vR30zGKrPrK+SJv+7W6WF5b1zVhoEmN1fUu03FErdFAaAUlUJYCL7AZDMYIoSGEgSxskiTn8tUesAVCghAsFgkIDc0UmJZgfX2VTs+hqio6Sx7D/gLbMTFNqErB2uUOlmWJg+0T24iy5Ul40k7n48uiyPdBhIZtzWSeLKUz85pum+8zZmfj33z4wqKSwi1SaWSFkCLVTn7gAx941bDtXb0o0v/y7/yd+Rs9jr/07LP6y7duiY985CPFG/Hf+/Ef+Qtf/453rv3tRtu4PB2nfPZTe3z6ky/iBQGrq5eQleToeJeizNA1g6BW5+mn30G9ViPLEqI45d69l+mfnaIJjVqtzY1HnqRWb1CWOcPBkKLSQGQkYcjnPvVJVtZXuXTlGt21VaJ5zOuvvEaz3Wb18iqf/URIEs0JoylpEmLbHkVRYhg64vziP8iKNE2wLBspK4QQVFVJnOcYho7j+jQbywTNBpN5iJRakWXZwRsxXopyUVQAoCiKorzpWJrWevJK80nXdIxQT3j22WfdWq22ZOf5e2RR3JJCw7YCdK1i98Ehvh8Q1B0WUUZZSmp1F02fU8mcesMnXCTEcUFVQbiomM1yOst1pJRYuuD0eMZoFOIFFkHDZTLOsByBZTvMpuf31C3n/C56XhRYjsbSRgPP99l7YOtFmeoindtkiZPkSSKybJqn2bomWFieMzZNqxS6sZAlMi81wjTTHdst8fO3y0g7Mm0z/v4/+2c+8bf+21/41J07d7R/tfLx7/jBH/xAU8S2W5J4cZzqNSsYFJ5X/PW//tfnQoj/1RPkO3fuGB8/OPhaMzn+JDD9Un4fzz33lxtpOl69eq35V1fX/Mv3Xjvis5885PMv3GVl4xL1VodXXn6e/tkJvd4yT9x+iqKUrK+ucnJyxMnJEZPJlNFogGVZ9Lpr2JYDQicvJKenQ+q1Jssr68wXY8oS4mjBeNzn1Zf7HO4dsLJ+mZX1dR67fZN79+7ieg43bz3D6y8/T57HQHWeAhSNSp7n/JdSggBZSdI0QQiJpplUFWiahmEY6JpGSYHp2EzmCfsHpw+3GlvDL2W8FOWiiYtugKIoiqL827hz545RTUd/YZHk8iu/8smr29uHuy9+9jVRalVQ89yv3riy+v7ZLOZkZ0S3UyfJS5pdj0Y3IMtK8qykqiTjfvSF+/sus2lEWRQYloUb2EhNEPgmtquhVQIqQdAwcBzByWnEfJaxtOTT7XqcHs9xHBfHK3Ecj/EgwnIkvaUWWVJQZhWnBxPOdk9YjEZMZiMZJWFeyTh1HWvhOE5clEUmhChNy2ER5TLOiqrVahHH0anjOTMJM92292zHuafrpo5mzoVWRUUlD6oyXxeVuCQqva5r8qoQRi+oNW7meb4TLsKRaYuPW7b58crVDtvtS3PYYTZre3I2uymr/NpP/Hc/93Nfyu/j277h2/yNJ7rf/9itpT9640b7q84OB/z3P//P2d4bsry2RlmVvHL3ZQ7399nauMzXfMMfoN5qMDgdkcxShmcD4niBlBqOYwMlYRiT5QW+X6PeatFsN4iinFrdp9UNyLOc3QcP2NnepeYH+G6TNEvIZEG92UAISaPRBHQOd/c5O9klL0LO83ueP/iuvrDbL6sKXZzXRZVINKEjhIZlGdi2SxwndJaW+dpvfC+PP3WNf/ZPP/3TP/vf/9L3fqmfY0W5SOoEQFEURXnTuHPn/ca8f/z+wHEv6zAoynJzMV88U8ZJb7YYG6lrt1c3urieh2EtEIaJberUGg7D/hzb9hDCYDyYkUQZVWGSJguE0EnSnJV2HdPWGI1jqrykXtkURclsmuNNdWzLYjhMqcoSw8jQNIM0Bt/XyXPIs5zRNOTG0iquX8N2UzRh4NZ9gpbHfLTM6HQi5qOJdXywa+mYbjhfFHEyLxqNdiFsq0qTuGjWm0YWF0mZlLV5NEorUSWu619JNP09CLHQTaNfykKAHgR244Zlu81SVujYnbUrPavZaQavvbx3u9tezhfR4g+N+5MHruvunwwf7OuGYRbZWc2yjbj0/B//Un4f/+Ff+AtX2x3/Rx99rPtHV9a91YO9Ac9/7pDJXPL42x5jNi14/sXPcnJ8wrWtR3nf+74Kw9TY295jOpoxG42pBQ3WNzbJioIkjdC0Cq9ew7Itmu0G9WaNRtsjaNQoy4w4LigLeOLpr+dzn7zHyy/dJS0r6u0Ohu2xmM0YnB0wH09Y3dhkqbdKlWeMJ6dkWUiZ5wiq8x3QSmIZJlVVnZ8GSKhkieOYIGA+n2FaNo4VoEmDe6/slfNpfPeN+TQrysVRAYCiKIryppEOHm+UWbopzXKpqIqpaRp+FEePyqpq2sIU2SKDUqDpkkKWOIFJuEg4PlgwnsQYRoKpS8qiIs8hTUNcxwWtwnZchIDJaEqRauhCMB+fp4wsy4osEximpF63CRcxnmfhuA6zSUSjbbNYFIxGM65cX8Kv2SAkRSVxPJtWvUGtU0NIwfhsQjKOeP3lNuPhxCiyxDDmk6qqhJT4VbPtiaqqisWibxV5VhmaKDTD1rJUVJahk5VJXIbRQheGYdl+0wyCRnd1xSjKkjTJqTeajIcJ7W5bW1lr29v3znq1Wr1XFNW7KymzJIpkkWRJEi0+zjz6Ux/6wAd++ad+9ovLRuQFxlc98baVb+90bX/7/ikf+817nA6mLG+sU+QJr7z8PHla8syT7+Hq1iUe7uzwysufx3d82u0O08mY8XhCnKasbKxx+9ZjLK82MEyBruvnBb90C900sGyJJkw8z6DINQ4Ohnz11z+N1/B58bP3SKuK1dUulqORhTOKPOHeKy9jmDZFlmFZDrqukesxeZagy4pKSoQQCCHQNA0p5XkWICRFXqHrAkMXGLZJreVjm2IuJb/1xn6qFeX3ngoAFEVRlDcHiUi+N353WZZ1IZwAKdbKqvSyNPVs2xE6BrZuEiUFQpM4ls3gZMjyWpc4zmnUHIq8RBMazY7PaBzjBzVm0zlVKZBUHJ0kiEoQBD7tpRpZVJAVGVe2eucFogywTYss9ajVDKqqwrRtoqxgEcU4jk+apZTSYxHGhFFCU7OoquILj0w1Ous9qm6GdAw0AYd7Iw72zjRNk2iloQsExyeHmmEHtuVr0rFsWVVCaEIITUiKWKvXmo1lXbd003aE7tr4DR9NFwxHUzAlZ2cLrj22hOHprF9tMT4LWWp6jEahJSuNPCtsUYj3e577rsVi8b7nvv1P/TWzbm7/zb/58//Gd9v/i7/6419//Xr7LwU1wz84GPPxjz/g4HBGVUESjrl/9yG6brN1eQ3btnn55Rd5/cFr1GtNbNujLAuarTa+18B2DTRhsLM74OikT6/bQTcEi0VEEpUkSY6mw/H+IbPxlEdvXaG9ssa9+3vcemKTqqg4PBijG4LVS10Od3dJsowsS5CyQFaSLE/RNA2h6RimCVVFnudUlUTXdaSUaJrG71wR0oSGaViYlk93tU1vtU48TmPbdGpfxk+5ovyeUAGAoiiK8vveX/6BH7iU/9nFVydR8o4szw3qwSVdCDMrq26WSdvyAyxXUgK+67JYxDQbNWazEE0X1BsWrmNg2hZIncU8pFZzsGydorDIC8iyCsOwSNMIqVUYlsD3HLLMpMhysrSi35/TbNUoZEqWushSY2d3yP2Hp1iGjWWa9JbrTMdneIGNaWoUeQoVhLPze+2r68skRYntGyytNOlttNi6sczwdM72wwGeb9LeuKmZtkkYFiKaJ1iWSThLGJ716XWWjFqrSb3tkcYVo1HIaBZjWyYISV5Cc9kiTmOKWYFpamR5wXwesZjHJGmG5Xl4XsuxLcuZ78b//qS/uNop3OPv/c7v/NG//Xf/7v/PFJc/+t0/WjsaHwXv/qob33nlavfP1mrGlU/85mscHi4YDBPOBhM802W+mNBZ6fLUVzyBrdt84rc+zvb+fWp+jW6ri9D4QtXd8x33OBKU5RivZlNIwcH9bdI8JWi1qNda+H6DvCx57HabnbvbvP7KPsuTBFlsEgQujXaN0WjB/t4xjz95jVtve5JXPvcaaRKSZwlSlucnOVUJEqQU6JqGaZoA6LqgLMvzkwD9PAuQZZqYpoXnB4RhSjRPOTocDAZx/Prv0cdeUb5sVACgKIqi/L724z/8/ZtJGH1DGsXfUuRlj6qykyRta7pRk5XWzPPz6yLrW10QFa5rkmY5umaQFza2o6ObOqYhycsCw9bQYwO9yhGiYGmpwWyeMJ+ngEa7U6fedLFtnfHZgjQuabRrjEcLqqpE16HVbLL/cECr5XN6coomPIRIiOOE+bTDtUd66FqG360RLkLQTMJ5RLvV5OxsSBKlyEqyvztAInEsk4ODCWubLdYv1dEMnek8w49SZiObIs9pdl3WL7dAF6S5RDcMTndPSAvJ6uUm4SwGaTA8WdDqeaRpSRym6GZFUcDhwZgiL5GywrQs4jRDMwxWNtb88WDxFVVVycWwb33Hs9/8dz3HuydsTRPIpLd+5d5kMvGS8fiRWTX8I29/77U/eOvpy0+ZIjd/89df5nOfeojtu6CZVHmF3fDYurnFyqU6s2nK5196jZdfe5V6rYNjOpiWhl+vnz+61g16q8ucHg/Z235AEi+QssQ0HBzPxW1MqdWndJd61FsN6o06b/vK25wcNTnZP+Lll15l5VKPOIloNOtEccZgPMV0bbprS4SLEclkikRiWTZJGiOrCkPXkJqOruvoX6gkXJUSKM8zvwJCQBgusJyAbqeFlEIOx7PffO97337wz/7ZP7rgWaEoXxoVACiKoii/79y5c0fL89lqOY1upGH6jiyKb5e53NKF6KVprqdZbjqBY5eV1DqdBmfHY0pZomkSx9NoYFEVBhUFvdWA2Swiyys0dBBgugYVEk1AWZYUhcQPPKIwwbQdJpOUKKyY9EMs28SrF19IDamjaxV5WhFGCQd7p4yHCxpNjXqzheU6tDoeQeAwny/IkhmtJY+SlCLX2H94guc5eJ7FZBpyehKxtt7mNJ0SxiX0QwpZ4tc8ZmGIqRvESY4QIHWBMExm05T5JObuKw9Ikoz3vO9xOl2bIss5OxjTPxvgeg7tdpOgdn5KEc4T0qRgOhnj+T5pmuFJj7Iq6bQb1NoeVV6KSjS/aTQ8fTyW0bCSVWba1nByNvlEVVW6Yftf8Y6vvHzryWcubZpGxqd+6wGf+8weUjdY2egyHsZsbq6Tyxy3bvLg7j6vPL+NYxs8/dS7mC1Clpe6rK8vEy1CZos5cZQyHs/QhM71R24idI0srTB00EwNy7ap8oL+wQn9w1O6K0vohmDr2gqPPbrF4eGIo6MB125c4vOf3aUoBK5jMR5NkZVgZX2dskhYzIfngY9pkGXZ7+b6B0FZFuc1AZBUZYWUFYZhgDg/pfCDGpcurREtEnlyPP7Y/+3n/9cpWBXlzUYFAIqiKMrvOy6sWWa9OconV9IoeTyP0g2hW+2ykEGWFnqRV8J2DGE7Os22T5YU+IFFRU4lzne54zghDhOyuEJUBlmSUpQFpuaQJhlRXOD7LmleYFg6liNotpsIXWM8ipiOQ2azBUurPUzLJM0meJ5LnkiODgac9adUuYaUOrVmnVqjDmiAYDaNSZKK+Tzh+CzCD0zKtGRlxWc6CimynHrdYzKICecpBwcTikIwGs7Z39UJGhbNTsBsOsHQTExTQwjBZDwnywQPXntIEoasrq3R8F1kUXJ6OOTkcMRiMSMMM9rtNkmck4wSsqxgPp8yHvSZjEY4nsV4dF78LItzmu06pm1i2YHWbhmbs8loczGf4AutmI/n7/YDi2fefaX2nq++aUz6Y+7fPeVwd0KalWxeWWP74TF5Kjg9OuDK9auE05zD7T4N30QzDFY3VrnZqRPUPF5/5S7RYsrSaovVS3XSWHK4e8ZoPMG0LYqyYDIaUOYZhmWy3F0mqDVIkoLZZAFI7n7+Lu1eh9tP3cIyYXd7QLvdwHVtxv0p3W6H4937hLMJtu0jq5w4nqFpYFk2lBLE+TpeyuL8LYdhnBeD+8J1oaqSaLpFs93CcXV8z6PmNyYXNysU5Y2jAgBFURTl9x276Rg1u/zDk0PRlqV8KitKzxDCN2zPsCshDMcmqDnkeY7jufi1BMuW6IZJUVSATlGW5Dncf+2MvCipCkmjE7AYLahK2H5wyCOPXkY3NGzXIMty8iQhaFpYlkZZlcxmM2pNj+lYx/dtOi2f08MJnhtQqwf4NZtrj64wnaZUZYZpm5QSBoOCNMnprrR5uH1EGHqs9BxqNRvLMoiinJ3tIe2Oz2ySc3oyotFqAFCVFadHfaaTGbZjk2cJQWBzcjRkPkup1wOSZEqj1UQ3dXa3j1nNW0TzFNu2yTOHokrpD4YUWUm9UcdxHZhAXmQUeUaWGRR5gR+0GA9nGIZFrR6QpSmlFDhBnUroLC23jMd6V1obl9s8+sQ689mIB/dP2X8wZTpNaDSbnByNCRcVJyd7RIsZ7ekSUZojKRnPJpSlRBoGRbXK8eEhly6tkCY9NE1gOoKV9QbLmz2qXDAdLwijiLJYpUxzsqxiNJqwt7+LbuhsbF3CtGr4QY37r7/C2a+e8ZVf8x7WLi3zL37t06yuNFle6TCb5bi+wWIskWVJlmbomk6Wp5imjeU4lHlGVRXouomsSoqiwrJMpBTkRUZVQVBvYFoGS8sNZuP4qNTK7QudGIryBlEBgKIoivL7xn/0Ax9c1irrfafbB0H71vo3Wq7XW8yilm7YXiGlE/i20C0DhMTzLYTQzheYUiPPJFUpSJISy3SZjCeU1Xmqx/kswXZNEBqWpRGFFZ4XMJuGLK20EUKSLGA8nFKPbKpKZzaKMS2HjUsdDEPH8w1GZwsWs4LeesGVqx3qDYckTrFMDU0zKauC7rLLaJgRNGw0I2dtvQOyotlyOdgbs4hyZvMUBLS6PsfHfeqNGo1mQJZkzKYL8nlGNkmxbYuyrIgWJmdnJ+R5xnzqIoA0z6hpGQILpEFQ85jNTimrClnBbLKgXqtTVCV5VWEYNoblMF+M8PWAoiiIogmaYaAbJhIoqoosL/Bch6BmceV6l2fecwmvZrG/02f77ilnJ3PiSLK/f0ZZZszDGMfxSPKIUgPL8SmrhFdfeYG8KDFNiziJefnzn4NKsra6iWXWMUzByuYSk3GO4zqYtsTxPfxak7IqSNMM3XLZkIIqT6mKgsUiwrA8DEOj0X4PpycDPv3Ju3ylb/E13/BO/vH/81+wFlW0Oz02Nlc52tnHMi0k5fliXwNZFeT5+R1/zdChqpBUCCHJsgSh6WhCQyLI8xLT1DGMivk8GWaxiC96jijKG0EFAIqiKMqFevbZZ/VHN5Zu9Qrt7q6Rlto8eVJU2jvn42S91vBXTg5ORbvTdAzHFJblIEtJkkdYpo4sUuLZnJO9M8q8hURyfHR+VSdNCyzbIq9KOt06hmkhS4lre2zfe0heSirpIGVJmUqKPGU4HlOUNdrtBp2lOlXpnb8rsAWyAr/u014CNzBYWqkRxwVJUtFd9ljMY2zbZG21AdWMk6MprXaNs8MjWp0aZ6cl9+8d4TjnC3jL1Rn2I5rNNnGcYlsCwzDRtDqu7XF8dMh4PKKsSjRhkiYRmtAoypzVtTUWi5AqK4mjmCJLabV8JhOXspDohoWh68ymI/TIxDAtsiTDNG0kBkKY6IaObtpomkme5USLhPk8xPddltc9bj2xhm7CaDjhwd0F+9tjPvvp1zB1D8s0mE7G9McDWp0Ws8WUw4MDnnnHu0GveP7TnyIKFxiGRSkzzk6O8D2PTqtHs97CdX3a3SZLK23yssCt6chKZzQcMzgbkmWCCgt0A9cysR0d0xSkcUo8nrG2sYZTr7Fi2vj1FjvbE9q9Hl/7772XFz+7zUvPv8K73/0knZUO4WhOUGsxmfYRQqLrGoIKWUkANCHQNKikQJbnlYA1TUcIQZEl5FmGpmtkWdZPRkb/YmeLorwxVACgKIqiXIgf+8EPPVUJa5YXhcyT/Om9PH9vOc+6aZ4sp/MscH1n7dZX3KiNRiGmadJecYjmJRoa6TwjikqieEYcx8znC0zHxfNdNM3EtEySJCOOI+pNh2arznA4p1hkHM77+L5HUVUsrzbQdYnv2eztnGHbDmlW4voGRVHSarcoq4yilNi6pN21WFtvsLs7IEnz89OERUZv2edSt02j7n5h9z1hPo2Jw4Kd+0dIuY5u2kRJzHg0oZIFT7/9NrphUFUpjqdh2xZpVlBkMXmWIsuM/tkJjUaXUqbUghphGFKv1VlabqMLQVVVpGkKlBQF2JaBrLlICaPBiCIP6fZ6TKYTDMPAti2ajS6GYWLJCtcL0HUDz3eJ4wRdF7Q7ATefWCZoarz84iFlKhkPIuK4oN8f4bo5rWaTNI8Zjvq0u1329u+zurJGu9Hm7uuvEM6meLZLKSVVmWObGlVZUlYlo+EpaRrz4H6FYRpIKag3WzSbPYKaS6sV0Ggtc3w0ZDSckuY6SVTh+i61wKcq4eG9PRqtBs12i1rNRk9Ntu/3Wb/c4j1fe5vf/NWM3YNDlldXeXH/CM9xaTZ6LGZDZFUCnBcAA3RNpygqBJKqqjAMgW17JGlKrd6gs9SiKAqEFCe0h+mFThpFeYOoAEBRFEW5EGUpn6SMrwL7ZZY9WhXlk1mU+WWRt0zbXh2MF35WZHgNhyTMMSwD04ZolpJnkvksZzoeM+qPkFSEUcjmVhfbBU1YDPoT/JrJ6lqH0ThE6ALXCVhEKbee2OT+g0N8z2I2S8mjhCvXVoiSggf3DxkNE2azOWGU49ccHNek3rCwbAOQDAcxCEG9ZrOYz2l3V9F1iabDaBwyHkekecH+/gmSCsOySdISKkn/+ITLVzbxPIeyKml1XTQ0jvanxFFOOF/guz4Cge94tBpNhNApypw8z2k0AjRR4TgWYZii6QLb8hj2+3iuS56XgEYUz1hMB8wXUxrNDoZhkMQh7U6XNM0Iaj62dV4FudOpM5+HtDo1bE/j6HBEsV3y0ud2kKXEdlxGkzkInf7ghLzMebj7ECErzo4PCVyPZrPD3t4OJ0fn124QgqLIcGyLqihwHIeyzDnr90mSmHZrCUPXydKE+XiBIRw0CVUFo9E+jufQbNSYDiNMQ8PRTZIoQwqNoNFkNJwxHc/oLfco8pKqqLj38h4bV7o8/sxjvPriNg3Hp9Pt0T85QNfOd/+LPAcBRVGeF/4SFUV1XiTMMM6LuwlNx3EbGLaH5VqcncwfToeL/+ZXfuVXVACgvCWoAEBRFEX5PXXnuee8hVH0sjhp2qZxu0zSy0kSN+t+87GoSjxN9+pB3bNrnRaLWUKvW2NQzkkXGa5jkCwMslSSxBmB53OcnGBbNrXAZW3TJwotHtwdnu8O1y2OjibYnolh6sxmIQiN8SQlnKdMximzWYhl61xZX2KxM6DZbBLFC2p1n7woqTUcpISigqWWz+dfOCKJCw73J0x9m+WVJqZxnjWmyCVHhwscz+T4OEKYOtduXvvCIjtgPhwgRMXW5XUMIXFrBo5TkScamhQUSUK7VUMTAs9z2Vi/xDxaUK81KMIE3/fpdFu4jsliFgMVaVYw7M8xTYOyEviey2w2Yzw+JUtjlmoN8iwjQaBpOovFFMf1sGwLz3dxfQPfNzGtgFrToShzDnZmTEcL0kQSRQucNOPevZcpco2NjQ1Oz06RSLqdFYQQ1Bt1iipH0zRs18V3fKSEpm2wmIzPH1rbNrPZhDha0O2t0Gh0iKKQokwp4xIxN4mygiArWV1bwzAEbsNGMwSLcchwMEUYGo1mG7fm0e02GPRPGU+nnB4eYpg2N27cYOe1A5aWu7RbLU5PBvj1JnE0ZzQ4JklCDHF+9aesSrRKIKUGVOdpXoWGrmtkeUZvaYWV9TWuXr/EeDC+/zd+9mOfutCJoyhvIBUAKIqiKF92zz77rPXRj340+9Hv/u7aQqZ/rAiLJ/NSLsosR9fMr07DjFkZ9RzH80pKbM/FdjXms5Ru1wVykrhCIkjTHM+zmM9ndHsNrj56lSRKaXUCqqpkNs3I0hLb1hBCJ69KttaX2L434OSwT1WVnBzsUZUlWVrhBz5Sluzs9Bn058hKww8cag2HVscHJLu7Y8IwxnEcHjw4JU0rpJRImdNbWmI6jpFSMJtFzGcRKyttdrcPWV9doxAlaGDZIHRBb6VHs32emlLmGnmsM58tKPKcJInwA5ug7nPJ3GBn+xCq83vqVVES1F0810JWEllVaEJSlHB0csKVKxscn/SxLJPxcARSo91ZxnYCZJWfZ8IxLCxLR4iSLI3wPRsqncU8Rgid/umIdrtJHKYkSUEUpkhh0B+MKYqCdmeFg4N9HMflxtVbGJZO/+yM+SLk6tUb7O9tU/MDkBpCagxOj9E0jU6ry9mgTxwtaLc7+H6NWTQlzwvq9WV6vRUs16feamJbFkII/JqNbumsrHWZTuZMhhlHR6fs7x+i6xmmKbh8+TKd1S5PPL7FZz/7eQ4Ojul0W9x7fYd2ZxkQTEdTWs0utmlzdPiQNJkiRQWcBwKU1fm7AAmSEil18jynkJJazaMZ2EQz69Vnn71dfvSjr1zcJFKUN5AKABRFUZQvqw9/+MO2lk7f9QPf/W2juEzeZWTy64qsWC6KYiBNY7XWqXXTrG6NJmPn6Wduc3zSx3Ac3MDl/oNj2t0r2J5LluZkSUWRl1iWSYVBULeoNzzm8wWu53D/fp/ZqCRcxEwnE3rLy9x4fIkozFjMM9qtFq+98hLD4Rnd7hKmvaDZapCkGUKDeqPBbL6g1a3h1yzSLKeqJJZjkeUVn/rEfXRhYugFURxj23XGo5gsL0iTioODAdceWUJokmvXL5HEktP+BNu1yPMKIQTLSyvU6ha2ZXF0MEI3Stodn6mWoBs6YRRjOiZlJVmEU4LAo8hTHMdma2udLM/IkhJdF/i+w97+AX7gEUcplYQ4zdFNi5XVTVzXJssLDN1mNpshixRNNymijLIoSJMYoWnUGw1M08GwQAiNosgZj4dYtkWapQxGfTY3rzGfz0jzmI2NSxi2y8Od10izhMsrVxiNzjg53adZbxMuQjQBG+tXqDUa7O49RGqCS1du8MgjjyGlhl9zsByHOCqYjqbIqmQxndKPQ9IkJai3cDyfE9ug3vTYuNxmZb3GbJIyHk6YT2d8+uOfxvZcHnv8NldvPMposMC1HRzHIYxSiiInSeZE85SylHhei4qSPIuAii9UAAMpkRrwhcw/fr3F8voa3dUWSZSEJ/uDv//Rj360vMBppChvKBUAKIqiKF82f/F7v/dWmYZX4jhbI0se1aRYraT+qG15vTQOL+dZVpNdEVTCFEWlCdODdq9OmuSYhkG7WWM+LUAzsEydLC2QUiIErK7X2dxoMJnOWFlpMBqnRFHJ4eExo+GAbq/H2maLyTjmwd0+0/GcMk+Yzyc0mh28oEVeZEynCwzTpCwqLM+g0fQJ6hZZUjA4C3Fci2gR0W21efjaNsvLa8hMYmgGRwcneK7D+uYqo9EYqpKrV5fZfniKrkmCms5ZX6LJkvEgRpYlZZbz8O4eSys9DEOQpDlFJogWC6J5iDAEVVmQ5xlpGnH58gZVlaNpJnGckmUZhmlSq/mMhgNOjg+58chNBv0ZUoMsy7Adm7LMyLKcpZUeo+GI2WxMVZUEfoDrugRBjcV8TpqntNttHNfCcXTytCBLczQBQkqm4yk1P8AwdZIkod3ukqQJ4WTEYj7B9332dx8yXyxotFokSUpepliGQX94zHQxZevyVVwvwPcbmKaN6ejU69YXUrmanLo6Z/0xEoON9SuYJswXIUITFEXBYhKSZwnLK12WVgN6Kw3itODyjS32d3Y47Q+43mzh+ybT4ZgkjVnMFxi6SVXmjManmJZFVVQIYaJpJuK83Be6Bhry/JTGdLAtn/bSKlevbeDXTSzH2h/n+f2LnkuK8kZSAYCiKIryZfHDzz3XLcv48TiOH0vCRVMvi6c9x+9JXfiW5zZdNH02mdtRlOumZaFpNvNZxfrlHvfuHjMYjektNzkbTJGVYD4MWVnpoOsheRXz2O2bNGoWWZozGkTcu3vG6fGILMlJ04LOUpOSkvEoYbEIQRQMh2c4jocb+OiWSTSfE0cxZRVSq/vYXpullYBW2+aVF445Ox6wsrzE6cEpg6MjqqpA0wTj0ZTLl1c52JvTaQf4noEQDp1OF8sqsW1JlkhODvvE8zmBt8RksaDb6zAZnjEcnr8pACiLkvkkOb+SlKV4lo9h6NTrTYaDPq6v47g1qkqyv3fI5uYSfs1jPFgwmy2wrfMiXpPxDCHANB2EqFiEM9ZWN8jTgjzLkZWkFjTQNIGmaWR5ihRgmucpQRutGrIqiOLz7zdbTYqywDAtlpaXefDgdUzTQVY5+/sPzk9GdIssTsjzlHqthq4bJDJGIpFC4DoNGvUGg9M+jbYkyyocz8OIDY52pxgGtLptNrbWWL+8wsnRmCwpKfKKoF47f7RblRimhqHrjAYhjbLAsEzqdY96w8f2XPrHA6LFHMtyOTo+IxyPaDZqxFWM0Aw0XSeOpgjAMM5Tn2rid6oA5wgNdGGgoaMZzvkD8OmM5e4Sg9PRy7/wC7+g0n8qbykqAFAURVHecD/8fd/9tCyT9+ZJUivmi/cWyaJWyapr15stu9Zw5lFsW4FvNG1DhFHEpa0N8rJCtwT1doPNLcnBwSlNUVGru6QRjIuQLM1Zu9RkEcb0+2Oi0CRLS15/5YiXXnxAnufU6x38wMf1Avb3hxi64PRkhyzLmc9mGLpBksdcbTbITYPhoE+z02J5pU0YpVhmHVMzKIuKWi1gNDhjNh6QJgV+4HD3tXtcvrJJt+dyegxBYNNoaPRWltBEyWy0QFY683nMoD/D1HVmswVZkuMtN1gYgv7ZCZato2kGtVqNcBFTFucLW9dzaLYazGcLllaXaPXqDE7mZFnMeHTGxkaPPMuYzeYkac616zeo1wPiKCTPCsoi4/B4n0atDgj6/VPSJMF1XTw3IMtjgiAgSRJ0XaMsIU0Sjg8OQUBVCTY2lwkXKcPhhNW1NeaLCE0zWF5e4qUXP01ZFjQaHcIwJM8yyqpCUFHmKVIKtrZuYBsWk/GMwbCP4zp4no/jBudF16KIqoI8F1TV+VKk0fRYXWsxm8acnYzRNY0yl2SFpMhi4ignzyWD05zxcEAYD+murFOvL+FYJod7hzSaTa5ev8Lu3ZLFbIAb1EEKLNMhTyOqKqcscjRdRwodTTcoyoKqqvBcG00zqGSFEODYBnXXjPf2Br8GqOs/yluKCgAURVGUN8wPfuADzcrksSovHidNni6TpF0k+bpW6b5t2nXTcvx2p2G6gRTjWSzWNpd5+cUd8qJkabVF0HAwrYqV9Tp5cb6oNKTGPMzRhEYYpvTWbBzXJ0/hte0+w/6ch/cPiMIZ8/kMgU6t6aEbxvk1mf4pRVKyCBfkRYZEI5xMODk+JksLtq5e4rEnrmM7GkfHJ5ye6CSxS56n6EIwm00RQsf1LKQEqNjc7GAa5wvldseh3bGodINoUTEfpxzvjpnNYnw/IM1y4jjGcwyGZwOODg4YDM8oi5KVlVVSyyaOY+q1Go57nmp0sYiIwozeyhLj4YLpZMaLL3wG36uzv9MnSaPzdwd5iuetkMQpVVni2Danp2doCEzLw3E8DMOgNAwc2ycvUnzfZzQaYds2WZah6zrDwRDbtinKknqjeZ6bv2Xi+j0mo5i8gGvXH2M07GNaDiaCMI6QCFy3gabpeH7AbDah1WxyenpCmeW4jk3g11hb3WI+mzIZTWg2Ovg1D8u0WF7pYTs2/ZMx917fRWiCp565Qa3u8InffpGzw2PyQqDJijyNKWVBViSYuo0sK3Yf7rKyusGVa4/QanU5ODxifdMmKSKyIkFGgirPSKIQTRfnxb4AWUlKWVAW8rwQmNDQNAPdsAmjOVsr11ldaVHmxUlRVK/wuy+GFeWtQQUAiqIoyhtBfPjD39Ut5sU3kFfXqyIzyYumif5o5dhtKqfZ7ratlcs9kZSSm2/b4MH9U+bzBb3VDv3BjJXVOitrTVzPIApLNi63GJwOQRMYhmTrRhPDFASBx+nxGMuWPLx/zMH+KWE0J80yrly7SpHrLK/2cDzBbCI5OxkQJSHd7jJ8YaG3t/s6Xs3i0cceZWWjS9A0KfKKVrtNVWhEUcbx8Rl5nBItznfW67U6flAjqBnIKqcqDdodh3rDJE0KGh2H+Tji9HjG6fGAoO4js5x63QcB4WxGFEZomkCg4dgeoHF2ekqz1cYwTSQl4/EMKcGyTF75/KtUVUVVFaRpyvJynUpWwHll3K2r65QFzCYLhCYYDAdomsCxHbLf2ZkXGrbtMZtOidMF8/kYx/EwTYsgCLBtG8MwKauKRqPGynqbzpKNJnTCRYxp+vg1mzQ1OTsdkOclne4yRVlQrzWYTkbMFhPmZzNM2yCOBZ32Eq7j4fs1TEswmgyxLIONtWWQBrohCII6B/v7zCYTylLSqNXJ85yPzxKuPLLFlWvXuLq1zunpGWcnE8q8wWw+QhgmUThHFgWUOYd791nM51y9cZN2s0schdx+4ja/8o/+HnmWUPcaSFGSFzlSSjRNoBs6VVWSFyWmAVIINN0gK1KEpnHp8gZLSx7Hu/3DSoidC55bivKGUwGAoiiK8iX78Ie/q0uYf7fM8nVTVGtlXjbzNPNdy2/7Na/V6rWtoqpwaw7dlkO/P2Z5pckLz3+OdnuZRsPn7HTEykaby1trCCaMRxMCz2YcJQR1nWfeucVsHjMdRchScHY8Y2/3CCl1HLuO73UxDBfbLXjksQ0G/TkH20cc7B2SJAuC2jUcx+fkdB/b8rh8ZYtHH71KkqWEi5wkTMnTAq0UnB33WequMBqcEocxlmXT7rboLnVZXqljWgLbMtFMaHcCxsOYJMzwAx3NEriBQ7tbp+yP6bR9hqMp4XzCbDxCMwzSLGMRhnhBQFkV+L5NkRdMp1PiOGVlZZnd3YccHuzSbHbI8hTbdjAtk8Ggj+s6rG0uEwQ+Z6cD4jhmMh3TbrdJ4pSTkwnNpsFiPjvf2S9y5uGUqsqo1Rq4vk+z3vhC5VsDTdOwbAvTMmg0aoTzhPksOb+iVLcJai6f+8wOWRZy6+aTSKDW8BmOhownQwpZEjQadNtLWJaLEDDonxDHCzY2t3j8qSdptuuURYZrG5ydzJmMpsRxguMEVEXC2ekhURhTb7XI8ozltRWGoxGalFy9tokbuBwfDxkOQ5JwzGh4cp5FKJwzHh3x+RembG49RoVGHrd517vex2/+xv+b+WKEaRgIDYRmIoSOlBVCSAxdwzA0TEOnLAsWsylXrz/B2voyuqZlVSU+s+Qzuuj5pShvNBUAKIqiKF+S5557zjTT/NE0zw1RpptVJa51251uUVaGEIaHifno2zaZTSMOD8Zc9j10Q+fkaIZlOoyGQxB1nnnHbZI04fhoxtJSwHgwwTQMXM9iMg7RdY2qhOEgYjrJef3VPcJFwtalawhdI8sylla6uAHIUrL38Jj9/R1M22Gzu4Rtu5yc7tPvH3Ll0k2We8vM5nOKsiKoBUz7C4okZzw94+h4n8uXbyCR1BtNkjhB0zUcp2Rp2cF2NEbDBFM3kFT0+zMMQ2Nts0WyCKEoiRYJQkIUzknjhNF4yHw6oqxAConnecwXIatrbVbWejy8f8jJySlXrlwhiRMmozGe52NaFpbl4DguRVYQRxFbVzfwPYfJeIGumeRZRq/Twa8FHB0cUgvO79q7nsWg32d3b5tup4eQklJCHEeMBn2klCz1llhaWaVWD9AEHB2cUeQV3eUG3SWP05MZD++fYWg6X/nep6nVPZK44OGDPU6OTllbu0qtUaNeryOlZNA/ZjA8Q1QQOA2SKOT+63e5/eRt4iTCX1+i2Q2wTIuV5SXCKMXQBEKXRIuEk+MheVYRzmZc2Vrn5Rdf5+TghM5ykyeeeRvW3hll2mK5t8zB4SGOW2M6OSFNInYevMyVK4/y+qsv0uksc/PRp7l/70WkLEEKhAQB5+8LihLHNrFMA9dxyYqS7so6zXabpaWA0WB2NhzGv/Z//bt/Z37Rc0xR3mgqAFAURVG+JA2Kt5V59meSxcJM5qOe79S6ZdlqePWaHceFvrLRo7fSprfewrB87r1+zPXHeozGE+I4p5Qlo9GcOE14+iuus/PwgIO9kKqUxFFCULOQ1fmDUllqPLh7jK45FKVOveGzubXEgwd79Hot1jZqlBIe3D9hNJiQpykbW1vYbsBkOiWOEhpBi62rq7iuwWga43gmw+EcXTM5PXlIHMUYusfR4QEbm+tYlsvJ0SlZlnH5apfNrRbzWUxxkrK03PjCY9aK+axAMmc6jpjPQhZhSpKG1BotoihjPp+SlTGz2YJGrUGchNi2z+raKp7vUJTguAFRFJOmKZphYOg2juNj2x6mZZ5fPZpKPC9gNg0piwrb9vC8GvWay87ePtdvXKHRaLIIE6qqRNN0rl65gaYLxqMxeZFRJgWT8YjLly/T6nQwLYOqKillRatTwwtsDMPg9HRGmpTcfHyTSmYgBEmYgSbRDIvHbj2JZhq0mjVOTw64f/8eo/4JtaCO7wVE8YKiSCmk5PjgCN8L+NwnPs+Nm9dYhDFaWeG3PExLI0oyastN/FaTNEoZ9PsswpDbTz7CyX6fk6NTPvEvP0mn1yMMY3zP5/LWVfZ392g2l5mMTsnyiMODB3Ta6+zv3KfdadNurzAaHoEU58XXNA2Jg2boxEmIZbYRQlBUJb3mMjceuUTNNzgb5mempS8uen4pypeDCgAURVGUL0lOWlFmG4Ft3ZycJi1bePUoCnW7ZojltSVOT8d0T30uX1/m2mPLeIHPvXtHFFKgaYI0SvmKdz+G6+loomR1rcP23QOSJMX3XOoNH9MSHB8Nse3aF64GtanKiitbl2k0z3Pir6y1sSyN2axA11zKqiDNYpAgq5RoPmFz/RKe57K82kPTNXzXQdNBdwQPd3cYj0bU683zSrXzIbWag2Fq2A7Ytk696WK7OlXlEdRjgrrJbBJTq7kMzwYsZinzRcTu3g7NVofReMiW5TKfjonDOXmZk5c5pmUShhGW5TKfpkwnJ/i1GnGaATp5HuO6HlJW+H5AFEUkacjSUpsgCMizivFoxqWtFdKkAipm8xDTNGm3W4SLhCSKyfKcWq1GHEUM+gNM06LTCpiMxix1l6kFAc1WAwlMxjMqKdFNg0YrYDxcUJQFSysB3WWPSjrsPOxjGjZ5EbJ1ZQnDNigrjY/95sd49ZWX0HWDsiyI4wXz+QQ0wcrSKq7jMT4bs7ATNKGRxBVxmlP3PYbDKfPZjGZriaIIMXUdyzTQNY/7rx2iaZIiy8mThGSakcQp4+kQpKTRbNBsdclymzgNSacRSRIymw/QdcnZ6QGNWgvPrREnESDRDR0pS2Ql0XWTsiwAn2Y9IEtDHFfimFquGfIzpi/uXuTcUpQvFxUAKIqiKF+UOx/6UBAW8yeyefgV0Wy26rv+xpVL1yyhG6K51CApcqI0Yuv6EnfvHtNb7mB7OpqZsHm1i7A05pMZs+kEISTLK22m0zmGpp1n/Jln1Gsetm3g+Q0GZyHzJEETJnmWs3Vlhc2tDkKUNJs1oijG81ocHexj2QGartPu9rBMm9PDPdIkRWsvUW81kNIgXCR0l2o8fHBEq1Fn+/59bCugqs7vh9frPmtrDRzHIYkSGm2PTtfHskyyNGFp1afMK+aTFM9zSJKEIhfICtI85ax/hKYZzKZTBsM+QtMwMDB1kzRLaTeadLordFeaLOYVYRjT63XJk4IoXlBWJWVZYlomRqZxdHTCxtoyzUaT86Q0OuE8pd700ESHo6NjLEdiGDrT6RRdN3Edh+FgiOM6rKysICswDIOqrPBcl1anzXw6YzKd4dgOUsJ4MMNxLISQNBou03HK2ekBna5PqxnguhqtlouuaQwHIZ/62PM8vHuPutvBcly0pqCqCqSs8HwPDUjTlM2tLRzXI6jXaPXqBHWbxTRjubnC5aurVGXGZLjg7GRCUUp0w6aztMJiHtNqWeiiIo5DpNCpNZo8vH+X06N9BoNjTMvDDwIsQ2c+m5JmEYZmI4gJoymuXcPQTYqioMgLHNsB7Tz7j+f6lGVBEWdc39xgZaXNdDTdn0/jv/uf/+R/e3ixs0xRvjxUAKAoiqJ8UdJidruM029PF+Hbiri6JhzL1E1N9DZ7dFbbrG2uonsdjg532by0zEsvbXPz8TUcR6c/mNLr+mQbPdrtLnFcUJQZdd9nOoyYjEOCwMeyNRzX5uy0j5QVs2mCYdjU6j7dJR9JQZ5LanWHySTmYH/A/t4xSytLmKbN0lITAMO08TQL13Wx7fM/fZZtkiY5tuGyv3NAnhUUxYJOrwWyxPcNdK1Clgmea1Cra3i+hmmaBHWJYcDgLCFNcgBqQZ3hcMR0NkXTDKazEZubV8mLijiOsS2HJA0RGji2T7O9xCO3LrOy0eJTH7tPkZU06w2Gs/OqvbPZBN+vE0Uxw+H5jresBEIYGIaJroPrm7iezdnJCUWe02z3KKuKldVlykIyHI6oigLXdbBtl/l8RlmVrG2sU1Yl8/mCKIyI45jZeILjOAS1dY4Pz7BsDaoeaZKBWVHg014J8GsGw9OY11864fPPPyRJEt7+zLuZjKeMJ2OarRZZmpJmMbIC03ap1zogbEzbo0SSpjHNpkO77VJUBZZl0mp3kFWBYTgkScZ4HDKfZ5SZwXA4Zzyc4poBln1eydgPHD7/4mdJkxhZhsTzKbomEEIgJUgpMQwTWVUkaYxpmhiGga7rCMCyDIq8wPd8TodnrKwts761hueaDPdHdyez7JULmlqK8mWnAgBFURTl39qdO3eMxc6rX2XJ6lZjefmRMMpqeVlqzW6HvJAMRlPcZsD60hKPPXGLaD5mOlnw4N4RtuWgCxPX0ml1bLanY56+dQND05iPp1SlRhzlmJaO69eopCRNSkCcF+equ+iGxqA/w7JNHEfH822ms4xBf4hjB+TpeTEn33UpypJubw1d16g1AsIwxK9ZeKbPZByT5xWD/vliW2oS09SxTQvXKVnMMgyr4tLlDkHNBqkBJXEc02zWGZzGFGVFWaRMJzMW4YI4jpFSkBcFhm5TlBVVmVEKmzRL0TUdxwtY2Vih2fNJkgxN6MiyYD6fkecpx8cHBIGPbTmkWUqap9QbDZIsQwjYfrBNmifoZo7lbBLHMb1ej0WUIKUkTVPOzkZURcnly5s4gcMijCiKHN/3ybOceThH0zSCeg3DsggXC/xaneFwiGt7GLpHksT4vsPlKz0abYfJKOJou+DkZMjR4RlbV1doNhos5jH90wFL3SWEfv6oNopMwmiGX/Not5ZodFs0ewGaJmk2XVot6zwlqoA4KTAtjbLUqaqCZstmdbWOYRoYhk5RwtnpgoO9Pqcnc8ajhEdvP87Syhq72zvsPLxLVExJihSBRNdACIGh2whDQ8rz05TzjEfg2jaarqNrFpXUcL0Wa5uXuHxlmSIMZ6Ph7O+/N4rnP3HRE01RvkxUAKAoiqL8G7tz51lrNkMf7776tXm02JoP+tSCmnZp65pueDVyWWAYJrbrkKUF89EJue9T5gLHhq0rK3ziY9uUpUazbbGy0kDXdMJFxI1HrnBycsJ8FuL6Jq2Wh64LRv0pmjCpyhjLNbEdAylhPs9Jk5I4qnBch9PjPq++9nmWeuuMx338WgPHdQjDCMOw0AwIah6Gdf7AVcoCx7HZubePY7k0L3UYjU5BCsqqpN5sEGcl47Mxb+vUEcIgiXPqjYAszUmTnCRJ0HSBkALH1mk3WxzsH1MWJYZukeYFaRySZSmVFLhencViTruzxOpGl6rk/CF0njEaDliEUwzdQFYVG+tbLBYR8+kIQzfwPI+yLKlkQZrmuIGP43i4jke73Wbn4TatThPPt3n+s8/je01sxyRoeBRlBaWg1Wrgug5FUbKxsUJenOfCHw2neJ5PnqcY2Ni2hWFIKorzE4bTOdvbxwipYZgWzZrPrW94hqDhcu/VPicnpzzy2BbTccjO3j55nmEaOmmaMJQDTMOl1nbx/RZ5JjnYG/PqixOgpNlq4gU+g7MJeVagCYmuV+eLdENjbbNNu1fD9z0evbXO0+90mE1zXn35iDV/Bce3aXbb7G7vMhsOWSz6IAukBCFAaALH9EmzBCFAVqBpAsu2yOKUNM/YvHKVVq+OKwqi8eKzlSl/+Vs++lFV/Vd5y1IBgKIoivJv5Meee251fhy/r8qzdhnFX20U+tMNv9vJ89zd2TuivbJKvd2g3qyjuaBpFXEYoQmB73uMFiFlCVvXOrz0wgnhYUynU+PSVovtB6ccHZ5iWyZxVBDUTDQD0jQnWhQUecV0mhDUHBzHIlzERFFEt1unVq+xv9tnNptyafMS3W6PJM0oKg2haeR5wdJaG8PQqcoK363hBRq1usve9pAonFNV55l1TNMlCAKKMmExT7Edj9XVZRAGUXK+qC2KHNM0mc9DNB1sQ6eowDB0JpMU03SwrAIPQVGWDAbHyAo89/xdwrVr17j5xHU2tlo8vN9nNoqZTGdMpkPKIicqK7rdHoP+GbP5lF63i2e6SClI0pgoSvD9gNlsTK3mM5uFnPZPaXXrdLtd+mcj6vUGq6uraJpOt9dgNosYj6YsLbepqpyW51NWJWlWkqcpVVWQZQlVBZ7nk+YxzU4b17EZDicYpuD6I+u0Oh6UGv2zBf3RlMkiZTROaS/1ONg9YDSesry6jq6bRFFIu1Oj2+uAKEjTkFc+9zpVJXDsAE3oxEnBeNTHccbUA5/5OERoOtEiZjQ8T78vRYnn21y5egXHtbBdC8ezCDwbw65YWtlgdb1Nq13j7mv3OT4QJIsxyAIhJFQVyArT0ACJJs7faBiaidA0pCZY21zj1u1lNrpmtj2f/vP/49/4udH/6W/+/MVOOEX5MlIBgKIoivK/6T/+we+/GSXJU8UieiKO5q0izjdcp3mpt3nJ0y2doO5Ra7kIo2Lr2hKGrTEez0BKdCTzaUgWQZql1GoWz7zzEg/unaIbFbWmzepGk7Is0XWLsqwAiZQFaQxRlJBEBUVekucFQlSMhgtsy6Ld9UnikiRJuHz5EqZpkWY5tUaT07NT0ixBIqnVPDzP4fRkRP90wobbYTpOmI1CsjRmbX2T2WxOo97EsmxqjsdsNufy1TqP3FwmSVIm4/n5u4E4p9HwODoYES0ykkVBHFVEUYrQBKZlIQyTZtAgimOa7WWKLOPS1jXidMI3/aGvRhoak3GIqCqyKGN4dkYUhcRxiOt4RFFGGC3QNO28TkHgMRicsLq6wmg4wnNdBv1T6kGL6WRKVUk2N9aRUhBHGb7v4wc1hMhJ05SiKGk0AxaLOY1mjclkRlBzqTcckjjGMg3qjR5lUTGbLYjjnN2dE9qtJq1WnZWVNpquMR6HmKaBV4PuWpu8lESLGM/xuXr1KRzPoEKyWJTM5iGGJth/cMKD+w+Io4Q8LzEtHcuyqDUDOt0uXtBg//CE+XTO+qUlLFvHtpfQxAbhLKN/OuZgf5dP/tYncJ0AN/BJsow0iynKBMMy6LR72K7B299xi+1Wk72H2yxmA8oip6okZZkjKfFdBykr8jyjMEocv440LEwT2nWT+WQxWUTZx4QQ8qLnnKJ8OakAQFEURfn/60f+3He/J44WT2dx2JuNJk/KgkfjKO7mlWnZ8YwnH7tOq+MjK4kwNUqZUyVQFhVlKdkbDMmz843YsioZjmIqqeEHFp5nYxiCjc0lBv0xWZZhmBXjQUqz5TMczJmOU5DguQ5VUeG4FgiBaZmUhSCOMyzLIk0TVlYavH53gO10WFtbwrIdjo5P8Hzz/O55IyAKY/KsYPE/s/fnMZZleWLf9z3n7svb34s9MnKpzKy9urqrm7P2zEgzFFdLIKkBvOgfyfYYhCnLIAhD5B+N9kJAIAzZWghTsiWAC2SNCJqUaEGj4cxwerbunp5ea8vKrFxij3j7e3e/95zjP6JmTIj6kz0Fst4HCGQikRkRuBk/4PzO/S2rjKY2BL4PaILApdUOiFoeUeQx2goZDANcT+J5PlHosFot6XY7rBc5q2mBrsCyHJJVgjYWaZKCscjLHDeKQSs8J0bKCtsN+MKbt8myhoYGC4vFeMXF6TlpmpNlKUWVUZYlIAjCCM8JCf2YJFlRliWTyZSyKpgtJpR1ievaHB9f0O12sFyJauDq8pq9/R2yPKHfb/Px0zNacYfT05ObBWE4eL7D1laPsmyIWx7tTkxTK6aTBaqpCEMf27ZodyPiVsBynlMUFZZtaHXaKK04P58RhB472x0sx8J2LKpGk2eKq/MJ58cTTk9OybKbZM33A4QoaZqatFpTlDWz6ZIgiNjZOeT0xTNePH1Mrze4SaQ8hzAKaLVCvvRH3uH0eMzZ2QVX1+cUVYkwGikEZVly+vQFtSr59u/+Hvt7tyjyFKVuEkYEWI7EEjc/f5YQ1FWNcmu0gdFwm93tNk2WMT4Zf6s0xXc/5ZDb2Pih2yQAGxsbGxv/lF/8xa+4z55l3uR4+VDl2Y9Xebadp+s7ZV6/Hvjtg9H2ltXpdHFjn9VK0dQrut2QYl2QrCRhHFBVBsu2WS0LvvN7H1PkJe1eRG8Q0+t36Q08yrJGShvPd+l0Q+bTNbpxKIuMi9MVda04fbEiDF16fQhCl7KoiCKPoqhYLj5ZupXk9Hptwtij1fJYzhNq1XDnpX16/RZ7h220Mvzg25fkSYFl2cymKf1ByPPnJY5j8fY7LzObLcFohGjYPRjgBYaqLPADi7jts141Nw3IVxlZUlOVNQaLNMuQts06TSiLDKMUqqqJQoeybHjr859HyIbd/SGXZzfTdibTKR++/xGz+YRud4tKNyTpCs+18Hwfy3Z4+/PvUFcFX//mb3H//kNOT06oqoKz84Qf+/KPE/kxxy9OERIGgw7f+8775MWaXv8hRZmT5xWW5eL5NkEQkeUl3X7NaNRDCCir6mY1rtAY3RB4Hp1OjzRP8AOLVitkuUwIIx/dWGTrhsV8wnAnJohdBJpa1Tx/MWO1zgkCm/lsyXpVkK8LwqjN/uEhRiuW8wVVVRIGEXGrQxy3ELIGy+DFgnuv3yZLdtCNxrVC8rymrAvee+9j8vwHuJbDajXDCLCkfbNgTCkc26MVx5SloC4zjp99hGu7BKGHcQRVWaKEJGq1qIqSWjVgNBqF63oMhj22Ri1ElRQa+X3ie5NPO/42Nn7YNgnAxsbGxgZwM9nn+NGjL6TL2cP/93/6tVuNrjtKNUOKZtT243aZ53fCVnev1R7Jwc4AI0A4Nu++d8pkvGRrq83BrR0aXRNGOY4r8QKX6+sV63XB2ekZ+Qcpti34iZ98h3svvY42GVpp1usVrVYIwNnJnMk4JV03RLHFbDqmaXqEbQeV5jiOTbfXIssq/MDDdX1UA2la8f77xwwGPYQs6YU304GMMVxdLNnZ6zMeX7G/u4NtSVzP4sGrO1xejun0Wjh+TX8UIjFMr9ckSQ7SAqDV8fEDl7ppKPISIaDdDjhb5gShT1EVeEHMOluS5hXtuEu2XGHikL1bu+zd6rK900KVhpPja9aLBYv5gqvxBb1uD600trTpdAZgNGHQoTdssXc44Nd//Xd4/e3P04rbnJ2dEYct2v02w+EW77/7iK3tLQajDudnY1aLnLc+/wa9QYQluxR5CbpNkmS0Wm2ydEWr1UJrzWK2JssbWu0Yx7K5SK4I4puxolIqoiigLmpUo1C1IakL/MBme9RmsNVCaUWnEzGfJdy5O2I5z2kaiIKQsTOnaSmMESyWa5LlAoGg1x9gWTfPNMtXtLsthtsDRjsdelsRWV6QJxUXL6boecnxk1N6/SHMpsxnExrV0NQFCIGUEiEEdZNTNxYSG8uWCDTGKIriJrELXBuMoS5KLEvSKIPrhwRBj35/i1de3acdWUye5afSdn/5q1/9qv7UgnBj4w/JJgHY2NjY2ABgdnn8AFP9bF4Urxd5eStN15HAiqusGMz0KhgNttw006I7sFisCnAkRZ5QFpBXmvceX/LsdEGnG9Prt8AobBdMY6GahmQ9Y7aY0NQ1f//vXyGsmn/lT71DVZVYls3F2TVBELB/2Of42RzLcdEafD9ECoE0DhiB51lYEqqyoapqQCBti5bv0W57ICBu2QxGbaRQdNoOaV6wnBd4gUulC8KgyzDosloX3Dra4/B2GynBKIUf2Fwq8FyLdjumrhRCWCitCAOfLM2wbYluFFlekOWaRmlk0zAYjZg/eU6yWjHoDxnt7PCzf+KPsLMXcfzxmO/97guePn5MliYYA1HUotsekuUFWzs7GFPz9OlTdrp9Xn39Hk+evCCKO9w+usuL5y/Y2t7FsyVKa54/PkGViv5BDyEMV5czRltD2nGL4bCN49o8/zinUTVhGDKdrgCLNCmoSoXSNbZjc305ocprmsZwdGfI2dkVEgn6pmcjDEOM1kStgChysSxxM6nJD5jP1ywWOZPLjKuLOU7g0Bt0uHW0DRgur2a44RC0Il0n+H5E3I0Yjrq4vsDzPK4u5/zKf/fbdIcBr7z+KnVV0ZDS3/K5Lw/47d/6Jov5AguJ49wcW4zRaG1ukgBpIQxoY0AYLGmjtUZrhTAC27KwpERrQ1M3WJaNbbtYbogbBBzstxG61mVdfdfvdL/3acbgxsYflk0CsLGxsbEBQNsSqR2HS1t3zqus2bOH2x1hZFvaVqxp7N3dA7QQ1EoRtiOWq5z33nsEQhC12rx094hGVaRpilES27GQApbrFRcXp8yXVyzSJUhIFin/+d/8u2Arfu6PfoFu10FgoRqNFwj2j7p88IMrBv0uju2RZzlF1uBHkqoCITT9Qcx0skZYYDuC3sBjMGxxfZlyeNTDcSR5WpBmDUmqaPSCuw/2qQqFQaONIs0kRkKn63F+ssbzLIq8xvNsPM/ClgJjQZ7mBH6EMhrXtrDdgn6/Q5IUnJ2mpGnKKi0R0sf3Qmwp+NEv/xGOHvTZ3vUwteLD7x/z0YcfkaYrtAKlavwgwHV9HC9gsDPkyeMPGA53ODw6ZDZNsW2P0SjgyeOPaLfb5IlLEEYURcZ0PKXb7mLZNlme0W61aMUxQeShdM31yYLpeMFg2OP6esFiPiYvVty6/TnG1wsevnqbZx9fcn25JAgcXnpwi+lsQd0ohsM2eVogpaSsa+L4Zltu1YCsHDzpsFyuUQiWi5IiL9ndb3N4e4Tr+5yfzxEIuv02q1VJrx/juRI/tJF2zXw+I0szep0ug1GHn/rZL3F5ec03fusHtNox9+8f8t3vfpumEfzMv/xTTCdTHn3whCIrgQatFUrd3PQbpW7GfYqbNwIGgxDiZmSqBml7KKXRukFrjZQucafL/uF99m8NEKZmvUjXQRSkxm6cTzsONzb+MGwSgI2NjY0NAIR0uq7dWC3PVXleV1Josbu7FbqRY2kpyXLNaKuHG3mUpUBYDm+9/RaL1RLHlkSRpN8f4blbN829LhhjcXpic3zsU1QVlTJoBYiGqmj4m3/z7+IHki9/+U2iKGS9znFcm+HwZm77eLxEiJvb3aopiO0WearxQ5umqen2ImxHMhq1sG2J40naHUWWVxTTmqq8ub0v8xpVW6TJFNe36LTbSCmIIo/ZeM16VbNaF8gUXBu2t+ObQ6OCdJ0jcREaMIaqqvEDl9l8Qbvb5vq6QmmNbVtgJAbD0b19fuSnX8J2DPky5/mjCR998JSqzDDaEIYtrq7OEdLC2bdZpSmN0Xiez+HhHtfX12By3v785/i1X/sdkvWCtz/3JTCCqqxZrdYYFLZ/M8pyNOjT7rh88N4Je4cPmc9yPvrgnKM7uyTrAgGcX5zw5S//KJPxAtd1mY6XJEnOwa0hd+7uYNkGpRp2toasFmtOT85xHJdur4trW7iuh3IMjaWxLMVou0WnG9HpxRhzc7uudU2aNjQ6ZDEvaXKNrktWq4TryzHX40swBimsm0VdtsAPfPrbfT73xZf4n7zyJb71zcd883fe4/U3XyVLcr72a7/JcHvIa2+8wXS85MXxM0RTInSNUiDQN30MUgMWCAlobFuCgEYpDAatNQhB3OrT6e6ghcILHfLUaNeSS+3YukjF5ly08Zmw+UHf2NjY2OArX/kpm7k6lCBtRwxc394SympX6dqxg54Y7g6xPJuoHWKkptGafXvAflJgOYI4cojjgDKvWa9Totgiin0m12tOniuyrKTRAo3BtQOiIEY1JXm65m//7f8vg/4273zhNrYjqKqG/jDi1tEW7333FN/zGQyHDEYhSt+M27QdyWKecfvuCGMUtgPj65vvxfEli2VJnijqMsf3XTzXRggIA4+6brBdgdaSumhAN1SlwnYktmPjSoGQUJSKNC3JU00UwuXlmjByKcsKW/rkqSJLUppKUeYFyyphMDrk3v27/Ml/7S129nocP7smXSjee/cZ5+fHhGELIV3A0Ov32T+8TV5WCCEYX13w1luvcXJ8wWIx5k/8iS/z0aNLPDdi96UdOq2Y9Tr9ZIxlSVkVdKoSrRqaWrJc1rS7PkVRoVTDy68dgjHkmcV8Nufhw1dxnAjfh539LsvFmtGwx9ZOiONJJldrOq2Ii7Mp0+mC3d0hVSE+2eMQkKUZ81nOzt6AILBxbJs8T6jrBK0lZdkQRhF1XVHlFXWlUBpanS5hGLGzu0OePSRJUmbTKdPxmHWy5HpyxZOnH/Pbv/k7HBxt8y//7E+zu3vAk4+e4wUOP/rjP85//9//Eo8evc/u7j7dXpvrqwvKKrvZJIxEaIUUEiHkzQIwDEKAFDdJgKpvdno5js9o+xaHd27R226hm5rlfK0HPausdL1OPT//dCNxY+MPxyYB2NjY2NjATu4f1qY+MqIMbKEi13c6YRzHrUHPmqYlaVHT64Zs3xrhBx6qqahKRSsHL3DxfI8sTWl3YkY7XZqmRJsGy3G5uBhzcvaMpEoJgi6HBy+jGiiLlGR9weX1nP/iv/iH9Lr/Okd3RjSqoNElu3sx3/itFUIKPF/Q7XtUlWK9KPB9D2kl5HmBUobewCMIJNK2qJRCYBO3LMLtiMU8xZKaNGlYLVIsadjaPWJ8Nefx+6cURc7WqEueFOzs9SiKgqIwFHmFrg260eS5JpsWtLoV2ztdsqRAa5uL8xmPPnzO9dU1WsD9lx/yxR97yJ07bYpVwsXzGfNJwsnJGWEYgxTo+ubfbm8fEIQ3t+fnF8f85Oe/RFUari+ueen+S6TZzYjRVhTjuh6L1YKdvSHXl1eEYYfRzhZvf+4B8+ma+XzJzs6Qdsdjd69L09wkL+mqoN32CB4eEkYhk/GK0XaHOHKJwiF1U2LbNicvZljS4ur8Aku4dDo9ZrMptuXiOh5Xl7Ob6U29Lp5vI6TFbL6m0/XwAx80OK5LWRqytGIwiGl3NZPxzcSlbi8iWSekSU5dD5lPhzx55PHe+wvAxrZAWjZnJxP+8//Xf8mto0O+8PaPsE4KlssZ73zhR/nmN36T85PnuP7NBuRSZNRNg+P4CEArjUCjqRFCYf9+b4A2GCSW5bC1t8ed+3fo9HwG/Ra/9Wvf5M4f/ZyyHXK3caJYWG1g+ulG48bGD98mAdjY2NjYoCrrV+06PxK6aVmi3o1brX7/cMtxeyFDP2S1LBlud7DcTybwpAXGJDTKpqkaXNfDj9rUSuPYgiCOqKuGs5NTvveDx0yWc4wR3HvpTcJoh+liiu/HSDfCjZZ8/HzO/+fvf4M/++d+jG7PwXUsOr2IKAooy5JuP0BKgWPbOK6kURXdfkxdg2UZWu0A33eoG8Vy2VDkMwaDNpYl6PYiricJdV2jaoW2DForfN8hTSumkymtVoQQmjDwUFoBkixpmF2nDIctri+XdHstTCMo84qqapjPK07PpsxXa9rdIUWVsXPQod+XLCYrVvOKZx+dk6U1Vd3wxptv8NFHHxH6EYF/c2hVTU270+bw8Ij1MuPyYsyde4c8eO2QZ08u6HW6VHlD3LPY2uljGsPp84wf+fFX6G3FzMYJWVbi2i5hbLO712FylbBc5qxWCa++vodj2xR5A1IxGG6B0UyvE8rmZinX+GpMp91jNl0AsFrNSdOSwWDA3sGAjx6dEPgeWkGyTihVRVbW9PsxUQRZWiKlxCCxbYs4DjDcNNvqGh6//4zx9Zjz8yuSZEWn07lpwrU9+v1tLi9PKMsSITS2uPkcZy/Oubz4+zx8+BpC+kzGK8IwJlln6LpkXRYooz55AyBuvpYqMVqBkLRbbdANZVlggOFon05vxJ0HdwliH8cR/J2/+V/Sb/Vot72mKdKkLNU3ps3y6lMMw42NPzSbBGBjY2NjA6lRolF3fUvsS2FGqk69Ismw4xg3kuwf9vBCgyUUi/mSqizIszXzaUZVaHZveeweHVAWFcY0SEtSlUsevfeCy4sLGqOIoh5b27eZzjOqpsa2bMJ2j6gzpFhN+e1vfJs79/f5yZ94SBz5pFSEYYyUgt4wAkDpiuGoRZIUbO92WSwyHEeSJgUYibAEWmlWixzPcwlDhzDwCEMH32+hK81g1EbVMJssMSiCICZJawaDiDyrOX5xTLfbYbQ9ZLGY4fk2Wml6/RhbWMyvExA2V+cTFoslShl2dra5+3DEgwd9LEuQrCvG1ynrdUIYtbl79z6zxYqd3X3qUnN1ec5bX3iN2XJJEIWUZcPz5+d4ns3ewTZFWTMY9liME7b3usQDj8BzePbolL29HY7uDHACh8WsJI4i4pbD4dEAaQmMSPjwvY957a0jlNI8+uA5w1Gb+w/28EOL2Tjh/HzGOkmoa8VgMGAymbC3t8OjD58TRx637x7QNIqiLLj90pBW1GY2SRBSE3g+o2Gb7sDHoFnMCxzXxfM80nVJU2uU0ghZsc5KGiGoTYPtONS14OpyilKKRjcIYcAohCXRGkB/MrnHQWvNuz/4Pnv7h+zu7bFcTmm0wHNstKkxxiClhcAQ+AFKOUghGI128WyPyfQKIQ0IzfbuEftHh0jbpdVq87Vf+xXe/egRf+6P/1GENk1dqCVS/MZXv/qfZJ9qIG5s/CHZJAAbGxsbGwDfFbb11DT1vcBvb3tB6OZZBcsMtx3SKE2zLtHaxvNc6iIjXeVEXohrNxilKYqbxU9VmeOFHrPZnMl0RakywDAY7KCwybIFRlUgHRptCAObyfqS9XrCL/3SP+btt4/Y2+9xdrJGG82du3u4nsBxJQO/z+XFnK1WjBcI7ERgjGQ2zXAciyJrCEKPBw92WKxyhIR2x2c6W9NqBUytNVWjOD29QlUwnYyRUuIXHoKI5fpmpvxslhBEMeAwnSZYlk2aV2hlULWmbkrm8xRjBH4geOvztxntxFgWLBYZZa64uJiwuzdEaZvFeoUf2kRBl+Nnx2ituDgfc+f+HdI0I44j2m2HdtdH1RXnp2uyrMLzLe6/tUuWV1yeLXj80QtGwyGzccpor0uRpGilaPfaZEVNmpbMZgWHRyPq2nBxtuTHfvIhQWgzuUrIM8nZ+YyPn56yvT1kf3eXi8sr+v0uL55f0Wp1iGKX2XLB9k4f13GpqobFIuPs7JpuN8BoQ5ZkxF2Huq5xXAfXc3FdSRiEGGGznCf0h222diXvfOkeUlr87tcf8/Wvf4er8zF5kpGsxjSqQgqB7QagaxrVIBA3iQEWjmNxfnbCYjnj7p0HRHHE5cUZUli4to3AYEuXVtwjiloMhiN003B9dUWvv0VZ5niBw87eDnlZcGe/z/Mnj/nO976HjeBgd4Ar9WIt+F4q3c3t/8ZnxiYB2NjY2NiA0e3revz+d9yq+VmMFQs3xPFt1mmNXOR0pEEZwcnxHC9wCXwHz7aplcb1JY3KKbIUzw/ww4Cmrnn86JyPn55SqU8aMO2Auq7QOkfoGktKpBTURYpuCgSC09Mr0kwTxhFFqYnikP4gpN326fYjxtcJRd5g24JW20Nrw3pZ0mrF+JHL6fMZ0obDwxbddcjV5ZKo5bC332E2Kxhu9VgvUpq64dbtIR/6LmVRYEzDarUmbrdJkpw49hFIBoM2y2VCkVdMxwUHhwFZsaYsG5Q2dLoddg52Obo7JMsKikyzXBfY0iaKQqpSMr9eErVc7t6+x3vff44fBhg8Dm7vEAQuRVZR1zd9DeuloqlLsqxEG8X91/ZxPMHk6ZIyrXjjjZcZDCOMgW/8xgcsZhm7uwNWi5L1OqMVh7i2RX9vm9UyQwqLxx9eEgQBliWYTRd885sf4HkhlmVTqZSDWzvUtaKua7zg5i2LH8LuQY/J5ZrpJOHyYkG6zmi1Y6qmRhsHVUO7HWE5AjAEvk0UhziuRxw7rJcZZSlZVivmizWOZ/EjP/FFzk8mvHj2BPsc6rrBwqbMK9b54maMpzYompuxnggcyyJPE37w7u+xv3+Lg9t3uL64xHdcorBFrzdACMnW9j7GKC4mN9uSo2iI64fcf3iHWil2tvqkqxm//I9+ibRI6QVdfMenyeuuLuqtyDGv/+Iv/uJv//zP/7z6dINxY+OHb5MAbGxsbGxgzy7u1EXzcpqsPM/28GwL6cXUacNkVuJGAdKB+aKg1bicPr+m14todSLabky/PcANAtJiTSRjhIFOq0W730e+uDnIFfmCJlvQ5Gscx8V2JNKSrOZjsnKJtGx+5md+mvsP7lDXhsWy5NbdEXcfbBO1HCxHooUmiG2CwMOxbUbbPaQ1p9uL8AIfaTkspisENq3YYuFbWI6F6zsU+ZJ0VVHkOVlaUdeK+w9vM7lMEEIznS3Y2tqhFbdoVEGWlwwGEY5r4fkR82nCaDtESPB8j14/wgjBg1cOsWwIY4eiVAhp0TQNtuPx4vgSL7B4/eEDTl9MePW1e/S3fVpRwLPnl2RZhetZqFrS6/ncf2WPOI5YLpd4ns1gK+bF8wmjQZfwwGa03WKdlFxfzfA9mwcP96lrRZrmDLdaSNslbGmkFCxXa5aLhLsv7SJkRbIuOH5+xcHeLaStuH13yP6tPhena2zLxbYH1FWF42n2Dnb43neeMr5coZXEtiTDUR/LtojaIULYnDyfE8QWu/sdbNuiLgtmsxQhLTqdENuVrFclq1WNUh5GG5IkIytLvDDi1dfeoS4bXnz8hKqY3sz1RwBgDBjT3Mz01yCFwAAnx88JohavPHyd0G+RpSWDwRZB7BGENt12izRZk2cJcbuNF0coKRhs9QiCkL/7i/+QyWKOFIJep0dvtMPpWdpJZumf8VvOQVH+1t/9a/+nv/iPkiY+++pXv1p9mjG5sfHDtEkANjY2Njagyd+xm/oV14t21knF8sU53b1d4naX6bLgve9fs73fwvN9zs5mdDohGsnzZ2Pk8QI/HPOFH32V3cMtLOmgdc2D1454881XefHsmIvrNXm6Yjk7R9cVAkGezLCkwFQJRkOr1eVf//l/icODLs+enSFkw5vvvMTu3gDbcUnSNbfvHLCzneI5Do7rUCkNEkajHtPZgm6/RZ6XaDRV02DbNlobMJoodEkXDVlWMZ8veP7UYjBsUzcLpCWwLY/5fMZwq0OaWriuxLIMQtYMR0NWixSQhO0Yx7FolCZq2WztBBS55upyjh9GtNoucWiTLJYYAztbI54/vSIIYvzYYp3W1E1Dtk6ZL3MOb28z6IQIYbAsRdySdLsdzk4WPHt0yTqp6XQdej2f8WRNbxTzYw9f4ep0xvnJkmdPL9ja7THc6nBxcclg2OPZ40sm4zU7u0PyXPH+e88wWtDr9VjM57z9zm1efW2P6bSgLDUX02suzq7Y3Rvw4OUDvvOtj5DS5uhwm0ePXuD5PlvbQxANeVowuSpptUMC4zIbF4SRR13XuL6NG0BZKlzXotXzMdJmPFlxdb3kyZMrvECwvbPDar5iOhsTxTGNamiMoKoLlK7BNNSquckEuGnstYSD7QgEBmMEjudzMBihEewd9dk7jGlyyXe+0xDHnZstwSj2dkZoKn7rN3+TF8cvcKXEkoIHrxwxvN3l+YeKSVJ13cL8ZE/VQatv3e/61df/xt/4G//NL/zCL9SfdmhubPwwbBKAjY2NjQ20zaVt0dJCOsPdXdJMMx+nhAR4vsv4as3zJzXttkfTaC6v17Rij1bkE8U+nueSrRYsZwLp2NiOQ6fb5Y/82EO+8VvfYbG8pshz1skUz40RGFSdgrTQVc3n3vwcf/xP/zRvvvUyTZNTlhXvfPFltraH+H6INjDyA1bzKU4U4gcOy3WKETajrS3KIgNcEA3bu220UURakqU1GIUtbZpKIS0BBsAwGU8x2kJakjAMWa1SZrOMl+532T/sfrI1VuB5PkIYwtgnjByU0Qih6A0i2j2PLC0xRlKVgnZb4vs2adJQViW7e0OKoqA/6LOcrygKyTotOLq9zStv3OHqaoWQNr/3e484Ox3z0oNDbt/dRdU1vu+yXhboxrD3cIfhdsyt2xaNgqdPznj2eExdNoShj6obHn9wgmosLJMjDRzd2caSLlop7r10i7JU1GXF7n4frS1ePF8xvl5ycjJnMZtx69Yu+wcD6qamP+izXie8eHHBYNhha2fI6cmY9TqjURWD/pDZbEmjcg5ubaGUJvA9/NhGWpJ2N6DT6+H7EWlacLuq2T+b0uu1WCwLHn/4EXlaY7SFEZqiKrEdC89rU9cVWZ4hMSANQto3s/2FhWcF7O7v0447rBdzmqrg5Tdus7Ub4TgO1+drPNelWC0YX55z+94R44srfvUf/yrn58fYDiAkvt3i9TdeRQgLZVwmqxopdDBbF2/v6Vbd7yFV9fQa+M1PNTA3Nn5INgnAxsbGxmfcV/7t//Ut06QvF5Wahp5nySDAtiWxETSW5Oo8IVlXaJOi6pjFMmW9KnF9SacfMxx2CCKHrFGsc8Xd+wfY0qOpa37iy69RZX+G//g/zHjy8WOKLMOxbTRQVhm+2ybw2/z0T7/D//R/9rNUZUOWF7zy8ivEcQeMxLIEVbGmyFakqyWrZcre/g6+18ILu9iuizIT2o5kPp3gBS5pUrKzPWI5W5Guc3q9LstuxmJek2XFTfOqHaMUuM7NlKB7L+3T6UaMtmN292McWzIZZ7iujR86SCkIYhsMZElF3PaxLEGaloShy2jUIklyzs+XGG3hBR7zVYpjS1aLJdeXc06Oz0EKTNXQ7rWQlsb3JYdHh/S3tuh2AmzLpso0ja05OOwSBA6GAqV8rs9nnJ7MaLUCHryyR1mWlHlDVSlePD9je7vLy6+NEGKL8VVCkTVcX66QlotSOcNhn9UqJ000J8fP+fDDx/heRLfbYjhqMRi2yMuSJE2xbY+t3RG2I3hxfEmeVbQ7IUE4oCwaqsqwXhk+eO+EwaBLFLtsyZi4HVKVNeskIStKmsbgOZK794YMBhEXlzM+94UDxhcZz55dk6xSsjxnNrtmmc6om5txnsZoLNtBChuEAdPQjgN6UYc6zZBNiYtDvxNjSagaBZYkTVfkyZput83x8XM+/rUPyYoM17Zu3gS1Bjx88Ba7O9tkyxJLWFRVyXg2oWmK+PTi6ovtWHR39gbyL/1v/s3xX/t//GePPu0Y3dj4Z22TAGxsbGx8hv21v/i/iMqqels19StC6QfrZengrNBhxM7dLcraMJmVKA3LxZoibwjjCNepoZEUaUPZ1mRFyeVlxuNH57z3/efcfWmHL/6RB4RBj5/7Uz/C7tGQv/uL/4jf/trvMp5eY4RCIOkM2/zxP/aT/Mk/+SXqMiPPFHGrTxiGCCGpipS6qtFNhTaKre0dfL9gtc65fe82jh+hlGG1WuK6Lke377JYTWi1bVSV0+2FzCYZUtRsb8csphUCheM4bO9t0+5GCEq2tzvUTcPD13Zod0OKPKPTjpCuTdh2cD2HMiswaBxXEkQB0+madtuj2wuoK4vJZEqyarAdn9V6TZY1rNYppyenXJ2dfHKLLQHBhx+8z9b2kJfu38YLIpbLlFY7pg48JukKg+HsLGM5iDi806fj+SwXOddXSyzLQRvNbLxEKU2aVJy8GLOz3+aV12+BqMnSEs/1efHsguOTK1xHcPelfYwGzw356IOPmc1vauH39ncYDjrUjeb50zFlVbG102WZVdRNg+3adLsxgV8zG0/59re+g+/H9PtDeoOYrZ0BQhqMsVCNhetaWBZIc/Osfc8BCVfXY8q8Iggsilxj2Yr+MKbTDXH8t7i8mDC5umA6PSdNl6R5BvpmpKwQAiklURhTlRmqLrAtSbu1x8X5nLu9HQb9mN/99R9wdfwMx3O4uL5gurhGqRrXkaAlluPTH+zwxR95m/miJFkuKSpB2IkI8pTVsiBZV62yUHeMkIUS7vjP//k//x/+9b/+15NPO1Y3Nv5Z2iQAGxsbG591UnSMboTRpht6gUMDZQbj65sSm7LMiVshloSLizEg8b2I+WJKkq9ZLea89rkHWG0P1/VJVzW/+1vPmVyvuXV7wP6tPV554z7/+7u3+bk/9i/xzd95j+vLKxbrMV9851X+9J/6McJQUDWS4c4OvhegdUVdNVjSplE1XtDCD1soBUeDA7KiImz1kJbFOkkZjXapKoVtS4wwSAl5InAdD9dOiQIPSc1oK+LNz93jg/fPiDs+XghHR/uMtlogYWu7S6fTJU0XYDSjLYdOt0IrxdqFsqww2lBVBY4l0UpwdZZzfj6nqiTJsuBy/Iznpy+YLxfM51OyLKXRCjBIJI51s0n3xeVz3v3wXcIgwPN8Dnb2efmVO7x0/xZaCKLY4+Jkiu0IVkuLvb0+g2GH5apC0xC3I1pxRJpljLZ6NE3D08dXfPToCVXZ0Gp1cT2f+/dvsbvfYTbNePb0AqM0/UEXKR0aXRJHAappuDxfEUQhUHJ+rGi1Yg5uDZhNE66vL1ktcvJszTtf+hxVBY5jcev2NleXU4pCkfslRZHTNF16A4/BqI3UkJQli1lGUdaEkU9e5Jy8WJKsaoRt8e1vfYfrqwtCPybLcnwvIgxa+OmCqixomgZtbpbNaa1I1gtA0Qpb5FlFRwh8z0EiMI1FlqVUSUZZNzfLxSwbrcFxPLZ37vLmW6/S6/g8eXrN+GLNKk0Yz84xTUmZZlgWRH4YlXmwi7I/50nvHvC9TzFCNzb+mdskABsbGxufYX/p//q3s6/82//Wd5XSbwgIjZTMFmvi3QApLM4u1izmBVJKXNthf38XpRq8wKIz2qMsa549ec75+ZQf/anP8f67x7z62i3WqxYnL64pMsP11Zq6gcO79/jxn3mHL//Mj1KVFXk+pywX9DodXCfE9TtoNFqVICzCIKCSEiEFcdRHWhaW7WKQeLFBSuem9jzQ1JVNGHoYU+O6NyUdVVGwtbVNFDgk6wV+4DLY8ji8fQvHFShtg9VwcGuL/aMRCAvLsrAsF7spcCwbx22wihStGqoqxxJQFDWqEWhl8ej9c66vMoqiplQ5Hz99yun5Gat0iUF/8pQFnwy3QaMpVQWfDJrMq4z5+mbKzeX1FcenL3j04S3u3LvDnbs7CN1QZjXb2z1mk5TFYs1rbz5ga7uDlDZCgKGgyCueP53w5MMpRWoBFr4f0GpHSKn58L1jBDa+e1NOo5SmMQXr1YqXXz5iNltS1TX3b3Xp9SOaSmE7FlXVAIbPff5l0uSmdCqMXfzAY73MuL5asFyU5HmGajT9QRuBJEt8Jtc5ipveia1Ri9t3t1isc9ZnM+4/3Kbb87m8SHDtL3B+fM7l+RV5lqG0YrGcUZQJUv7+VCCNFBZVVeFaEttxkNIiqzKCKKSubxq+DRb1J0vGpHXz7LWGVmtAq73Fg5fv84UvvML4Ysl8knB5fUGeJ1TFmtXqGlVXGCFIbN/2fccfJumg1Wn/6Fe+8pUPNlOBNv5FskkANjY2Nj7bjNJa6FpvO7bX7e9t0XZ8jOOSNwYpbLq9iCgKmFzPcT0fS3osk5RBK6bVafPaW/d478MTat3w5/6Nn+XicsrdV4+IOxGrxYyd3SHHL66xXZtbt28jbQ8/cLCdDi06OJaDEAKNwTQlRhXk2QK8CD9oIW0bIxR5niFtD8fxaFQNwsK2XFzHQgqBVgrQGKWI45tJPel6jh9I8rJGWoLDO12MNvzET3W5ur7Cdh38yCJu9zHGRmkFRmOMi+V4KF1iORVKKYSxybOMyTjl7GTOxfmCyfWK+WLJYr3k/PqYZbL85LGKTz7MJ0/5n3zkv//nn/wqBApIq4STq5zxfMYHHz/m7TdeZW+0z4cfPGW9znjniy/x0oM9kjTj+MWK3igmitocP72krhRZWuIHHreOdvEDh7ppePL4OYvZkk6nx/b2EGNgvcjIi5wsTekPuqxWKatlikFycTpnNlmhVMOto10QAstyGF/NEJZmMIzY2e0zm+WkSU5V1bTbEbbtML5esFisaXd8IEIpTXcrZmuri+sJqqbCcQS3j7YJXJvxJOXibIFRmsUqZbZMqWvFYjUhzeafJE0CISSBHwISy7ZxHBuMYJWmdLaHeLHNaKeN40Gn18d2Q/I0wbYFEknY6tEd7rK/f5vX37jN+HLK5Cpne2tAkieMPzqhyJa4jo+yJGVVo40SyXrtJ8na7xbdh+nMPQQ+/uGH48bGH45NArCxsbHxGfYX/sJf8Kx6+UUh5NHu/p7vd7voyMYNApA21+Nzqkpj2yVaSZSoGGz38EOH5bJAGI0fOfzcH3+HRpV4ocNPfPlnWK3WHB7dYbWYcHVxwdZeTK/XQwJKFSh1s+jJmIZKVxijqMqUYr3AsSVK5czH5wRhj7jVphYSpcHWCoFBmxqQCNsmTRMc26aqC7Sq0apCNw6uG9L4FVXacOvwDpUqUUajtUBpw8s7g5skwg0RMgCjsIQFRuEHLTQNVVVijMCSDnlecT3Oefp4zqP3PybPcs7Oz5gsZ6zzNdqom0VWmE/GV4p/4kmbf+rZ/34aYIxBfHLYbYwiKRKSYs2vfG3Knf27vP7q68xnCR99dMn1ZMVoK6LVDpiPU0xjsbXVZT5NmI8zwtAljh2ytKEqDUVekGUFcavh+PiUuqxJshWL1ZLAjXBdl7OzGUWRk2cpy8WCnd0hW9tDXjwfUxQVQRATBA7DQYRtS97/wQl1BXWtEAKqOkephrjl0x90sW2J68Lu4QjpCHSjEJ5DnubYjkUUeYzHc84uUnqjLqNtiR8HtLp9puMpz56BRpEXOY1q8FwbIQV1XeF5HnEUg7CIYodX3rpHfxjSjh2UdqiaGse1kZnGwsWyPaKoS6c1YG+vT6sV8oNHx0jbpS5LXC+iPzygyGOydImuwHcsJAKEsJI07Wf5utPuR//0f+DGxj/HNgnAxsbGxmdYv9831tViV0qvtZivTS+K8eKIi9M1fhgy2op5/nyMH8YMtwdcn0+ZzhK0UTx87RZXkzFRK+Tw9j7g8vzjM0ajO+zsHlI3NaOtQ27feY0sXYGp0KbBoLAth6bOMfrmJjoMAsp0Tbpa4PsOnu8S+AFVkTKvctrdEbbjsZiN6XX7JOkCaTk4loNtS4oixbYtbMejUArDzRsBzwtBq5vSHhXhej5NoyirklbnZoOs49yMNi2bHLQGI0BodFPjuRarZcJ0OqMsFE8fT/nedz7i7Pzk5vZ4fo3SzR88z5tG30+SAD75vfn9s6P45KB/0w1gjP6DvyOEuPm6Rt9MvEFQ65rHJ49YpSveePVzcAJK7zGbpBwcdhmNYk6fXRO1Anq9FnfueVyeT6gqg+MIvKCm1XY5OHjAeLwkSxVCWNh2gO839HoDoiiirgx1VeP7IQKb2XTNcpmwmC2wHZfhaIBjO5y9OKMoGw5u7WKEJghdDrdiVKOpSs3VxYo0SVktG8bjOY8fX+CGPsOtNoOBTxQ4IB2ep2vStELYLllRIAy8OH5BmiYYUzEcjoiCiDRdMluM8dyAqqwZjLa5//JDuq02nb7HrTs7TGYJR7cGBIHH+UWGVhWr1QIpLRzbx3FDwiDizTfucfelLV48m6CMjRSQpjll1mC0oGkaLNumF/apipzVai7yMreNbizfFuOu503/0IJyY+MPwSYB2NjY2PiM+mt/8S9Gyfz6nmV7d9zYGYZxLEttiH2HzqDNt3/vOcNhn4ODEe9/cMKDV2/x8I0jPnp0Qn844M7LA14OjqgV2F7A7s5ttrb3Wa9nRGEHL4gQgO/GBH7IZHZCowy+Z1HlGUJXpOs5F+dnbG3v4LkOruehtKKsFBjodHsI6d18LiHoDfrURUaRrWl1etR1RWMUgR+QpWuEbaFRVHWG68aUVYHSCo1G2i6W4xCEXXytsW2PmxrxCtu1MNKhzHPqssTokrrOuDi5ZDHPuL5KOP54wnd+7yMuLk+5nJyTVxna6P/BU/0nb/4Nxkgc20MKSaMrpDFYtkvYvUtdleTpBNsGR7oo1WBMRdMUNyVHQqAFXM4uWHxzwc5wn2Sd8PrLD5hcZbRin939AcbYTK4T8jyjLAyzac71eIrSOWA4fnGM67SJWyF5WmBbFq7jkuclVV0ShW0QEm0MRleUacVyucT3AvzQYzCIkZZNtjIMRj1aHR/daIzQzKZr5rM1vV6XTjckzWuWs4JOJ2R7t81op0WRK54+mqKVJs0a1klNUdZkWcne0QhLSj589wXLxZTVcgoYorBNXuR021tsjXbxHI9ev8Xe3h62Da+8totBsx92AI024LgB8+kSjEFaDrbrEQQRt45ucfvOkKKsmM1THC/EqBpHSoosIUuWLBcTimqNZVnYUiClwXbQnU448zyHpqpiYMnGxr8gNgnAxsbGxmdUVdextOQ9pWShhNTacoUlbV48m9Lqtrn70gEfPTrl/sN9fuwn3+DRe8f02iF37mxRKUOru83tO/cJ2300Amk5DLeGbHNIWdef1OU3zJbnpMkM17WRGMp8zXoxpS5S1ssFri1ZL6Zktk1T13R7La7H1/iuTxS3aBqD40Voc5MUaG2Iohhp+ThuhKpTqqZBo7C0xpaCoqzxfUkQtklVRVWWuJZEG4ll+wgBQtzUkteqoqlytFYoVVAUK7J0wdmzC772ax9wfrHk4uqKdFWwXE4Zz8/Jy+wPbvn/SUKIm+p/IbGckFZnm3bc4friYxqTY2EDHvHWAxy/iyNLymyBaWrqck2VLSmLJapI0aahbAoMiqLKeXHxjOniitlsys7WkCQ5pNtvUdc1e7sjPN9jOpkxmy9YrRZUpWI2nTC5vsL3fdrdHp1Oh3a7xd7+LstlSrcXs1wkOI6F41jkeUlRpISBS3/Y4+VX7rB7MCRLK5aei7QMWVqiak2aFbiuR+B3uDhfMJutcF2fuBXi+TZC2qRpg+86HN4e0OtFrNclbtAiSdfUVYHnB3z7W8/YHm3jWS6O8FAqISty6rrkzTfe5mB/j9PTE97+wkus1iWtXoRwLI6fjtnajVkuFVE3okxzzl48RwqFbTtI6TDa3uXtd15Ba3jxdE5TC+JAUpaSqiqRUt68EapLalWBsBFaIKRF5Hply3Myx7VPRy+/fP2HHqAbGz9EmwRgY2Nj4zPk//mX/lKr6oZHf/6vfPXdv/If/AdXX/nKV/4bcX32wPd9z7Vd4cceg4MuZ5crqqrm5dcPub5ccLfb5U/+az+BMg1xp0WjJVEnxot7+GEH1/FuSlqMQCOwHSjznNXqgixd4bmSukpYLeY4tqTMVxit6PY6VGXBOlnjGZ8sy+gN+3T7W3heiDY2AgMojK7wHI9SA9LFmJteANf1ULVCOC5pukQIizCIqesC27ZRTUMYxmDZOI6PEBZaFUipQIOFplYlRbJGUrOej/m9bz3mH/69X+f99x+xzjOU1lhSonRNUWf/I0d/PplVL5BYuF5M2N4laA+pixVN02BLDyFdaulSCY3tC+Koy/aog+1arFcJi+mYMl2higxVZaxWY+oqoTEl2mjW2Zpvvft7BI6HIzz63T5HR7d4+cFDtKnwAw8pDaPRgMU8YzabIWyJsTRCaALfp6wKptOMnZ09+v0eWhtefeMOjm3z6NEJVdljf3+EkIIoDrEsm/VqwXvvPUbpmv5wSCsO2dru0zSGxTLl6mqBVhopKzxPYtkOk8kCZxEQxi57hy2kC3tHLVrtNq43YL0u+c63nhNEHuk6pyhLbMvBcTqUtebO7UNefe1lVJ3xzjv3GQxaDHfbBJFDux9yz93H9QR+ZONZPl/75V9hfH2KbdvY0iaKAh6+cgc/EDRlQ7rOkUIgJbTbwc2uCWlRNxWGiixdoJsCC0Enjpvtfm8Wx+FJ5Lu/9gu/8Av1H3Kobmz8UG0SgI2NjY3PkJMwTPfRvb/17/3lz/8b/4e/+m1AV7r5cDabnvS13smaiJ2ez/7tNvN5w/bOkC/+yCt88N4TVumSB6+9SdRtEbUGuG6IbkArhREN0rKpmpJVMsXoirrMaKoCYRrWyzV1XVAWCWndYNsSy7IpywppS2zXJYxjhG0hLJ/BaAfXCzCqoSyyT8pbVpS2jx+EKKNw7IA8S24qblRNWaZEYQvVGLJkSVWVhGGAFAKlGnw/QkpJVWY0usCYBqE1WhfU5ZrLFydcX874+u885tf+8e/y5NkzyjKhMg0gkH9Q2//7E37+/+U/v1/HL4SF78eErW38Vh+EZrW8wrIENj5Oq0sQ7+F5bdq+x3p8wZPnP2C0s82dh2/Rat2mzHJWixVltsTyQrJkQra+plYVyigapdCuR9zrE8ZtFsmax8+eEAUxcdxhvV5RVQVlWbJ3sMPR7UNOjk+YL+YIXKQlMKZhsVwQxj4vPdhHSE1VKNrtEMsOyYuCsqyoS8HTR1fUpuCnf+5LjLYikBaXZ3OSteLi9IrlYklZFty5e0CrFVJXGssSKF3j+ZLRVgthCepGkOUNYWQwRhDFET/x5bdIkpTnz6/54N0u5ydjZpMlrVabfr9Pnt00dh8cDmh0ReD67B70AY2QFq1WzHpZ8A/+wW/wrd/5HlBi2zaWdInbEa++dsT1eM3V6YqyqOl0A3zPvlmglmVYlqTf7ZPnK0ydYxyJRDPs95K9ve2ncb//gYs7/hRCdWPjh2qTAGxsbGx8hnz1q1/VX/nKV37nnqX/V3/n3/+q9+1HL9a+0l+0pNNzvADp+6TrhtBSrOcL8iQhaj3k1bce4votxuMxBkHodxD2TVOrkIK8KnBcj7xckWdzpL6Z559nKVm6Jl0vP6mttsjTgih0uBxPsByH7d0B3d4IKR1qZajqikgIqjLDtlxsx8FzPXzfI1ktydI1VV0Qxi1s26YuGzzHpi5r1tWcVruDFCCMIs8SbNvBDSRCWghhUdYrmibDMg3ZesF8Nub8eMpvfe09ppOcr3/je5yPTyiaHPMH0zwN2ph/oqnXABIJgMGxHSzbwZibUighJKrJMarCkQbb92mqhrKBwAlZzy/wtE/k21iyYTk55dIPObj3kHDQwQiBH3pYjovtBDi2z2x6jO3Y3L//Kj/+41/i6GiEYwuSdUG6zCjSAqMERhvmdY2QEmMERV7i+wEvvTTCdW0Obm3TbofMZiuaCibjJb1eCEJw7+E2vu8SBA5VrZheremNQqKWR9zyUabGlQ37hy2a2nDvpe5Nec2zCUJaNEqxmKeEccRg1GHvoIcfeJyfzzk7niGE4Oz5nCIvWS4rnn18yWQ6JY4thsMud+9v8/DV2yznKbPrJUo3dNoR3b5Pq+8Qt0KEarg4nyOkS7Jo+NX/7lv86i99naZegFAgwHZdXn3lVepKM75YslysiVsxW1tDfN8hSQrMqiRZLzg/O6XIFuimAWq6nXazt9077w27H3qB/3iYF7NPLWA3Nn5INgnAxsbGxmfMV7/61eY/+spX/tZe2/o/Ptjfvrx4fvmTceTdEY6N37K5nmQsVjWjQZf1MuH46SnvfPnHGG7fZkfD5dkxk/ElewcBCBuMjWU7KFUhTI0tYJ0uGI9nPHl8TOgb6kpxsD/CthXCkiAdRjtb2JYH3NRsV1WN57qk64TAv9mOq4UEA/PlFa24j+24rJYTjNKUWcFisWR7bxu73SGIOzRNTZqnGNUQxRF5Wd3UdyNxwxpMSl2lLGYTzl+ckK/XPP/4mnffu+Ljj094+uIxq/WSBo2wLAQCoS30zZaCP5jcA2BJG4HEsg1x3EYIi6apEULg2AZTZ9RljrRspGODKMjKFLW6Jl9NmK49Hvz0H6dIpmSzC9bzC06fCdq9bRojqeuGpjY0RmOk4JXXPseX3nmDH/3xhxwcDpBCI4zCNBarecaTR1ck65osLzBGABYvnp3gOALXuyl96nTahKHPYp5zeTEnjluUy4qmKWl3WtSVjSZnuc45eT6jqfTN/gUp6fcDHr66RysO0dqQrBKM1mgFYegxGa+ZzlKkkNh2Tq8JULXG+HB4tM3WbsNqnVMXJa7jcH5+RV6UdDt9qkLx3neO8T+4pLc1wvVd+v0W/WFAFHk4vkEIyXpZcfpizm997ftUecM6XTK+usaSJQ0Gx27juB6vvPqQ23du8eG7J6yWaxAKxwHb0rgOOLagKjLGk2vmqxk0Gb5r0WkN2e13ilboz5Qx88aYqjef/w87vTc2/rm3SQA2NjY2PoP+t1/9avJ3/vpX/qPtg8F/phtzJ5vlRtsCO/J55XCHi7M5SZawfzRikaS8+93v8/rnXbb2jnjwypvUdY3S4No2TdMgjCbPxlT5mo+fnvLd7zxiPFnR67l42x1Wy4x3py9otz3ilkPrTpvlcsXF6SkH+0MmkxnGWHiuhesKnj55xtbWEMsRtOIucdSlKDOKIgMEjmOzXicYo7k4P6epaoI4/qRsSFJUNcY41GWJlFA3imQ1ZzmboVTBbJLw3vfO+d53PqIoSp4+e8F0NiMvSsKwR6NrEGBhEwYhYRxz994Rja65urji/OKMxTpF6RpLWmB52I4HVoXlONiuS5WnIG426jrWTS9CVYzRTU47bhOHEePra2xp44dthBOwnM1ZLFLa7RGulAzbHodvPOCLP/qQVx7eJg4clEpupvgkBVma4jgORlb4sWQ2q1ksF1yNLxiPL9FK0Wq1aUUtFvM5772fIi2L/d0jRqMhVVXS7cVYtiAIXHr9CDCkWUW740LjMdOCy8sLyiKjLGosywZtIW2LbtfDtuXN92BsiqzBsgVhE3J1vsIYTX+r4eD2gMPb21hWQFEqkiQlHnY5ur/F1cmSJx9dUdYVjm0xv5rS6cbotofr2hzd7RKFHot5zumLKf/ol36bq4tLyirHlj6uK9GmxnZ8pO2wtT3inS+9yWQ85/pqhmUbXNfH81z80KHXD+gPQlzPoahvdkNInWOjkaoyvuNUvutJS3OLuv6dn/+v/qtNArDxL5xNArCxsbHxGfU///Nfffrvf+Uv/zsPHhz817PpSrqRzdbRPkWZ8frn7zCbJFRNyZtfeA1tHFzHoqlrGlvh+iECgWoa0A1ZMkY3CR+++4i///e+zuVlzvZ+h6OjPmlSMBjFhF5AluQUheHF8RjVNLhuwOnZAjewuL7Mmc/XfO7tQ4xSNGpCrxexmK0YDoc4roXtWCznOevFza2uqg1BFLBcLmiamqYZY4B2t8N6tSRLMry4TdBuUaQFy9mKjx69QGuf58cTzi9XYHIC3+HenTvkucJzfVqtgMn1mDffeMDDVw7o78Rs7Q9wHMHsOuf502ve/eBjvvv9d7meXCGEg7Qj2nGfuqlB2iAsjDYIYTDGUNc1RisiP6DV6eOHHRbXV2gM0o6xbZe9nT69bosHD27x9hfus7PbpdP1aXVCTANNVbFeNdRVTVWXtDttmlojqDFakGclURCxu71HWRTkZUapKrLZFShN3ZQoZbBtl04vxg1CsqzC9zySdcX56Ql1U/DglQPe/sJdyqJmcu3xxucOqMqKyWTF8fMJs+mK/rCDFB0sS5AXc+bzFWEYARbLZU7gW5THY/KiQWtFus5pdyLcwGMw7LN/a4uLsysuT6d88Ufv8fSjfX7wex8zmazp93vcu7NPEEMyT8mXObNZxn/7X/8qT548wbbBc3yEpUjzFCFdgqDNzu4uR0cHPHn0gtl0jtbgSOdmt4TnUFUNdd3Q7UUEvgPKolitMDphp99ne2tbR6FXGmgapXxRKcn/2Ba3jY1/zm0SgI2NjY3PsA/eP5ml6/Qbb3/xzT+bNjXXl1e4vs/p+SlZUtHrR1huSLe7xSpNCVSD0YqqqrAtmyJfo+scP/S4eD7hl//BN5kdj4n8FovLFd/49ZR7L+1zdbqiKSsMAiMl/WEHIW62yU7HGUFsIyxJUQqMCanrBQGQJBntdovZ/JpOp4MQFnmecX66wpIWmoYgLOgPYiDDcSRlVWElFkYphOUQtbdx/JCqNHT6PVbr55wenyOMzR/7V75Eu+MyG2ccv5jQjlzabYcocglCyYNX96ialOH2EG1L2u0ut+8IXnlzxJ/6s59nPvvTvPveUx5/fMbHT6ZMJynT2RS0QdoBqq5paoUtPISw6Xf36Y128KMu0nIIHYcgDjjcH/LgpX1efu0O+wc9hsMetm1R1TVN06C1oa4LqqrED0KMp3AdyWqxIllXrJcJWhkODnt0OjEvXricX1wyXy5o6vJmWZk2uJ6P51ok6YrjFyf4fgvHkuwfHqCNQdqKu3e2EQiuzuc4gYXnezSV5vjFJWnS4PseR3e28TyXMPYoi5JWO8Dzb0rB0A6XF1OKsiZutcmynOXco2lqFvM1rudw/OycuNfFNDbvv/ccxwWExZ27txmNMuJWQJalaG3TlC6+7/Gb//i7PHv6DESFEA4aQZrnCAHdbvzJ4f8IKQVPnj5DK43r2riujWUJfN/BcVyStCDLKpK1YtgbsuyPSJeGMluZ3NNZFI2WrmcvLUuuhGVNPuUQ3dj4odgkABsbGxufLQIw//5XvtJ1nPS2xP5SU4nhyfMT8/ZPfV40KJqywY9rylIx3Brhh12i1pCwNUArsG0HIR2MVkjr5la6KWv+27/3q8yPrxnYGkmOsn3mkyU/mC1o6obFIqFSDTiS3b1d5vMVtu1wcOuAq7FinazxA4uj29t4jmK1GtNuhRR5TRhZhH4JQmI0HBxu8ezpGWHs0hu0sG2LLK/pODHpek0Qxni+j7QjpOPSaEOr06Mscpq6Jooc5tMF15eay3NJp+tz67CFKyT37nUYDGKCjsTvRKDbgMZvtyjynEXaUFYN11enpFkFWvMjf+QhP/dHO3huSFFWTK4T6qpitVqyXmY47s1SLdd1sX2XsB1SVw372yP6/TZ+5NKOY2zHp65TtFJUdUVZFjRVie24eK5HslrTVCVlkdFUFckqoaqaT2r+4fxszmyak2Yp/V6PLFtTNz55mdA0DVXTEIQRURSTZCnrJMW1fYK4RX8Yc3A0ot8PyJKKslSo2iZPM0ajLoe3drBtyfX1jMl4yXJRIIXE9T2qskZKl+U8o9226Q8CbMcmzyuqVYMRkr2jW2ztdDH69xuXCyxL8Oqrd3j/3Rc8fXSOKis6nYBur4vlSOL2zbK23/36x1xd3Szq0rUFRmIJiR9F9PoDdnd2cV2f89MzEFDXNRiNIz08x8Z1LFqxS7dvE8UR0+uCxXxOWZQMBl182dCOBO3YqW1HXGLbj2zHPQmUevppBuvGxg/LJgHY2NjY+Az5v/27/+7W3HXXJUVbVOZtSfVTEuth1Ark9dUZe/ceIiKb7PyC4ajFaGeHTu8AhIcxDa7noBqDFgWqyhFAGLp87ze+y9PvPsbTNbIpadI1xrIJjGGeJEjXo+VIpO9zOZvx+N33KbXCSIu8KIk6XXzHo8oMv/Hr79EKbX7iJ19iOl6DAVsEfHB6xmg74uxkhhcEbO0N8P2bg29TaYw2HL+4QivYO4pwwxbSckmyBNsOsIIA1/EJfJ8gsJGiYX5dUJcVUitu3Yop0or5PKWoct44vE+twHMEedIwnY55+nTCu98749mzS5brFKNBSovb94e0Oh6Hh3sc3Npm2OsCNY5d8dorh4x2t+h0ujdjROXN9CTX8TFGo5Wi0ZpVMsEog+u6rFcJmIamqcizAozElhamETiepEYzvV7SVIZuv0VOwdaOT38UsZpnlLkmzSo+frbFR0+fM74a40hJXuSEYRshJNfTC4yqCLwQYSmKIuXqss9oq0+3G9w0aMsE25JYtqDdDVkvcw5ubdNqtSlShdIaP7QYXxU0RuI6LqCJ45gkzRHCIm7Z9AcxeV5w8uKKqBVSZJpWq0PcMWhV8+prewy7MU8enVJkNUXRMGiHxLHLyemKk5MxR3ceIixDnmdsb2/j+T55UbG/s0eSzDk5fgZKYTs2xoDEYIzCtiVxHOL6km7fwwsshPAoig5pekloHLrhDqGnjWNViXDllR24S8tzfvur//F/spkAtPEvpE0CsLGxsfEZ8r/7q3/1+v/+l//yVi1tkTfVt01RPOi140DVhuuzGddX3+LowQPavQ51XdAoaJRCWgohDMooLOGgmwqhahCKfLbkG7/8XShy6mIJtaJRJY7lYiHpexaWJxBSINB0dnvM0pKrZYqybObzCZPZmGF/QCvuIK2IJK149weXdFoWjuuSpzVZmqKNoTvocn15s3n21q3+J42+PnlZ8uzjJVWecXBvj6g7QGubOAg4v7ggOryNH/aYL1POX1xzeDRisTzh/kuH9HsBXujhRyFVU/Dy/SOqUnF+seTxR9dkWcl7PzjHsh3OLs6Igi77eweUZU6WlHz03glFmRMET4n8gCxb4Tget+4egSWJw4D9/R5B7HHv4T0W8xlCNPieS7fdoygLVukC24HAd3FsiaqhqRWL5ZpsVSGM5Ox4RhA7dHo3de3LWc5iniNtge+7CGlumo4dh1LVtLs97t2WlKuS1XrKajm5eaNgO9RFged7tNoDVGORZxWX5zMuzidsjbbZPRhy624Xo2oWiyVCSq7HKemzCaOtDoskQ1rgxh5+HJCuKpKspKhK/MDHaI0fWGztdNCiwfc8+sMIadl0uzZh7CNFw3SS0e35FFlGtxeR2Q1V1XD8dIa4vc0Pvv2E9z/8Lm+98QW2RiMmkzFSQLJeIaTk+PhjsmRFWaSURY7jhURhjJASxE0PhlKaLFWsVwpp2biepD8IyPa6LCYLXK3xbK1VVRVImUvXmTq+PP6043Vj44dlkwBsbGxsfIYIIQxw9Z/+ta/8tKDzxXpt/YzrWN3VsiBvJFiC93/wa9x+5R4PXjni+PiMV9tDhJAYoW+23drcNLYKgZSaF49PePboBXVZUOYZ0ihAUygFgO1Y6KLCAEYrBJJAC2KpSGqDlDZIw9X5McsgpNUbsLuzQ5oU2MLjB9+7pNWSfOGLd9FaMxr1OX5+je87TMZrdna7VI3m4iQhKRTbox5lXqCbhtlsTlEpDg4OqOqS3mCLP/FnfoJH737Mu995zM7+FtPZglu3tzg9ueal+/sYE/Lee1dICybjkg8+vKKsaopcMR6f4jgWloTZZAwGfD+g3x2wXM4Bw3q9IlnP0Rgs18d2PJIgZDlZUjUNv/FrPyAKQqo6JwwimlKB0HRHMZ1eSF2W+J5LmZdkWUO31yIMXJbzBMuyqCqF1g6dbkiv20YI8CMPx7VQlWG5zFitCnzPpc4mnB6fIN0G27PZ2tnHGLCFfTPmVNzsCsiqhHK6Jg7bOI7LZDKl1fMpi5hOJ8BzJQLJw1cDFouULGvwIxchYHy9pikNYRDgeR3qpsIPHHrdiEZVTCcpZaVI1tf0+gGjUYuo7dOoirqCF09nJKuCbj+iP4rp9g2LaYlqJGenK84vJszXU377G79CHIRgDI5l43kBlm1RFSWIm0VtlmUhpAAMUt6UCpVlQ5HXVKVmPl2hVEh/EOIHklbXI3B7NKuEKltXyhIGRUeVTZ+S5tOL1I2NH65NArCxsbHxGSQcd7I9DP6k6ruvpauS2fWarBCE3YjR9oDzk3P6gx53XjpiOrtka2sPiUB8MgtfG0GlG3xL0lSGk5NnxK6H1NCoGq3qm8VZUuDYLajBGIUQoI3Gt1x2u31mScZVukYGLXAC6qpiNrnGc1x2tyOEMCTLlOGgQ68XkhcZ0/kax3cZ7bbp9Ya02y1Ozo45PNqm06kYX1xSVmCMYGt7n1rBfDbDcz3m4wmddpfd/T0evfuC1TTBKIv1MgcNl5dz4pZPr9+m1Yl58vQRtuOitWGeJWwNd9AKHFsSxS3QBsexyPOconBZLCYEYUCn2yMIPFxHopqaxeyK4+WaVquF5br4tkNTKM6uz7Btie04aKMwGnzX4/hsxsXZNU2t2d7ps7vXJwgdWh2XrZ0W7a7P+fGSxTxjtBMTly7rdcne3pBu3yXNcyxbc+/eHrZweHF6QbNlmFyPqStNki5ZpwuUUlR1TNMoXEtiSedm0ZswlFnF9GrNerEiCDz2D/u0Io8o8pgvUuLYxXUdlguH2STj8vySxTyl2x1Q6wJVj3Bciyj08AOF6zgIo8E0OLYkSwsuzxbMpznPnl5xdXXN3u4ei+kUVRu6wz5aGcqyxBhDVpc0qsK1LDzHpVYlUlrYloNn+0hp4Tgejm0jEDSqIk0Vjm2RpRlVUaEjn6bSLOcZUkji0KNWhtyWKCF13ihjCykwzW7je68DX/u0Y3Vj44dhkwBsbGxsfAb9L/+dv/Le3/ob/+dfubXXeWWw143bu12axmddGJCSL93eZ7CzRX+0i217pHmGLQWOK7FsD8uysaVA1RW7t7bAbnj+4pyXbh+SFjV1nWOMJvB8VFOjlUbrGs8NsKyb22ffsfC6bcIo4Hg2x0iLJCvxPQdV5EzHGStnTXfkce/lXZIkZ/9wh8rA9v4OUdgmjmLG02sevvoWQkrOT0/xI4vh9j5YPk7UInQjLMclWy/xfI80zUiTFdk6pdsNuL6ekVc1B7e3sD2Hbjfi6mLJfFXRG7ZI0pI0TdnZ32HY7zO+moJlE0UBy/mCZJ1wfHKM59g0dcX4ao60bOKojePmNI0hiCK2d7c5PzvHsWwC16FRDdKG+w/u3GxTLkscR7B31ObWvQ5v1Lc5fX7N2emEvCx558fu4riSVtvD8ywwNot5yXSSMxjEzIuC85MJg2FI4Nn0bm+zmt80Eh+fnZAsMoIwwPUMq/WcrEhwbQ+la+q6JA4G7O8egbQII5c0SfngvQV7+0N8X3F+uqTbjUmSnFY7RpuG0XaLh6/sc/x8ikGxWleMZ1PKPKfKFVHsE0YOvu9zfvGETqfNwa0dzNMpWztddne61GXF4WEPx7a5OJ/guR6Wp2mMZnw5ocxSAsdF2hZGNUhAa4Vt2zi2g225eK6P7wdobbCERCuF41qEYUgQBHiOg2oUTX3zZsBzHbRW+J5AZeD6HlI20nZRpVaJdJ2pdKg/7Tjd2Phh2SQAGxsbG59NplH88nqR/qv9UWdra3vI2eWCkxfXjK9TknXO2+0Wfl4SeDa+H1CXBQYJCKQUWEgaYxjujfi3/sK/yf/lL/97ZFVBrUpq1VBUOY5tU9clGINGo4zCFjau42BZFqHrEeoAW0gukpSqcgiDENuyaOoKpKDTGXB+viBrO+zu7yAti053RKvTI0/XdHsDwnYP24lx/QH3Hgh8P8J2XLI8ochz3CDEdhxcx2ExucZzHWzbYbFMOLizR3+7y96tHhfnK548vqYqavYOBqxVQhx7tOIDlvOUq6s5WZpi24IsWTCbzCirCt/30aomSxMaVbO1NWA43KGqStI04cGD+2RphlEGKSWeFzC7vCRJFqyTOY7j8vprr9NpxWTrkt4wIAxdXnvrgP39LSbjGXmW43ktnn40IU0L2l2HwShmvV5zfZWwWqUYY0A6lHVFXa1RlSLNMh48eIn1qmS+TJgvl4RhzM7gFq1Wl+X65sC+Ws348KPvsbW1S5l3sKQkDAMapVkulyTrGmNsev02xgiKXPH133jCe98/Y3evT5EroqiFbSW8/uodyrohzyrCyMdxLB4+vIcXWBgEq1XDb/7j7yPRDAY9gjjAsSFwbcqypr/VQRsYDAekqznduE9ZZmBLDAopBbZlIYXAd31c28WW1s1iamOwpIe0JEYLyqLGtnP8IkCuJH7gYNuaMHJoNLiejaxtIieya1uGhapayvEWjSUbPpma9SnH6sbGP3ObBGBjY2PjMypN6ueRaa5UVlRuO3c7vQG3b0tMM6MdtQlcD0FJUWkcfGwnwJI+UljUdYHWBlt61Gjuv/mQ3Xsvkc0nWFqhdE1RlzTGoI0AI6iVptEFomzwtIXvSxpt8B2HURwR+AGu7ZKohq29Ed1eRLfX5sWzK15+9ZA4alEWKX5rwGB4SK1AyYYwiAnjPrbtE0Y9tNZYlo1uDE5T01QFRlooLXFcH2FJ1mnDv/rzf4Lx5ArLgTCQqFqjgfF4hS0sZpMFi1lGUdSs5hPanRZB7FIXDnVdMptN8TyP3mBAURTMpmNc1yP22sRxh3WacHFxRuiHPP3oCXGrxWhryOnpGU2jabXaxHFIGPrkeck3v/lNbCnpdkcc3t4hil1cR9Dt9rh9d0BVFnz0/hqtDctFxvOPC9qdEM+zSNZLdnZjdg+61A1oHVCXhvl8Td3YJOuSj5885vziCoXCGEE7jnFdG8fxcF0PTENZ5kxnV5RhhQD0uGG5HOIFIVEc43kOYWyTpzVx5PDK64dMpwvOTid0OjEvvbRLsi5odWJ8XSOtAte1cGwbKWyuLid0BwH3Hgy5dTTg2ZNz5tMllxc3i8S0NmAE86mk1YlxHIvBaAfLdplMzqjKkqrO0EYhsJDCxpIWBg0otL7pBRBCfLKETdA0DXme42cZtm1TpA2eLYlDn7jlIaOG0pNML2YmTctUW6yEw7Vru+NPOUQ3Nn5oNgnAxsbGxmeUZayW9MVlHLvrJNeDx989IW9sWsMWZ1cTomdPefDqA/zAQ+DgOD6eG6J1Q92UN3sAHBckLFYJWVHjCBsjDHldUTaKutEoR9OoiqJRXK7mXCZrjOXSD9rc3z6kH0UEjocvbXqBTZ7UXF2O2T/aJi0qhjsdkIpuP6Y/GNLbvod0I1qOT7s7RCtQWlNVOUJIbMtBGIElwfPbuH6Ma9uk6ZJ1NscJIn7sp36Eoqi4df+AIs+5vDglrQuOXtrBciTX50vyTNHpxcgkoyptNBV5mqJMw3K5wPM9hoMBSkNZVnQ6HWzbwrJcpHRxHfjCF9/BtVyquqHX67Jer/B9H9UYzs+e0e60sR0JaLI0QUqbTlegtKQ/7FEVJaenE9K0jVINy3nBZDrG9z1c1ycvUnZ2YoSA68s13W6EtODyYkWVw/PjSwbDLrdu77OYl8StFqs0pVGaNEu4uL7A9z3iuMN8domUNloJHMchCmLWyQoE9Pt9wjDEYEiXFZ4niVoulmPR7UdkSc7jj65QjaFsSq4+mrB/MGLYj8nyDNcVuJ4Aq8vp2TVXl3OGoy5pkjGdrjCmod1pY1keVV6Q5wWpgDCOGGwNuXf/LtdXB0yup6TrBVrXIAWWlFjCQukaKUA1NxN/HEdiWRbmkz4Uy7ZRjUagbxrRhaAqKqChaRSO59Le6tpx5G9nefGwUCZrGqOA559ulG5s/HBsEoCNjY2NzyjH9aTri7blChxlcC3JRx9NqFD8yE+8xmhnQKMaGgNR0CIOIhplqKqMpspBSFzpoFROkqX0+n1WZxnacPPv1M2NulKKRmnG6xVP5xNyrYGcWbak1g2vHdy9qd1GEPoulilYr2quLmZoGnZ3ejx59ILPf/4u0+Wa3p5NrWqElEhjgbmp0/j9m1+MQaubQ55lCYyxMUbi+zHCljRNSVWk+IGFMQ1aNdRlyXQyZ7lYAQpbWuRlycXVkvlkSZGWBJGH6zlIWf9Bbfl6vaYsa6I4ptOJ0caQrDP2D/v0R33KvOTs5IxWu8352RmLxRwpbMqyxPNcet0eSMl4fkWr1aHbHWCAyWTOerWm2+ngug6Cm2k24/GEJK1YrdKbZyZtJhPY29umKjTJOufw1pBGwcnZNUpJ0lxzfDoljALa3YbxbEqSrnFdlyDwmS2uCfwAjUCrGqMV63RFVmRIJFVVYYwiSdZs73SIWx6qNtSVIc8bTk8n7B0OGWz3OX52Tbcf4rkBeVIQBQ6e42LZNklScHh7yP2HferSMBkv6bQiirzk9771PYwR9HpbaK3p9XtIYTG+njAYDlBK3SwmazSdTh/LEqRpRl7kCAcsy0EKQVnlKKUIpCQIAlzXxbJsLNsCS1CrhqqqqGsXrSVa3/zMCECrRqRpXguNLQwWkumnGZ8bGz9MmwRgY2Nj4zNKyywtUqdysUBYeF5DO4ZnL5b87m+/R9x2ud/q43khtuWhNVRVTlkVuK6PtF2kkCTrNUWZMtoaUc9XpMWcRhnq5mYMqNGGsm6YZwm51n9wSEfA8fwCheHuziGelKhCMJleME6WTOfXREGLrydrDo/ucHax5Md/6lUcr4PleBgDYGF9Mv6xUQ0Ig2VJjDForcGAlAKlGooyJc8TXC+gqms820XiMJ9dkyzXnL245re/9gGeC8NBhzC0aJqGNJvhOj5C3JSZVGWB1jWTyRrVKKJWm7Ismc+nVFWNkIbnL57w4ljgOREAk8kVrhuws7NLlq1odEar1WW+WJDlOZ7nEHghTVMynlzT743wvJD1IkF/UppjWTZBEOK5LmHYJsvWhFEENJSFQinFhx9MeO/dF7z8+h737h/y/e+dUOUFcTvCEh5+WDCeTBhPTul1R9R1g2oayrKi2xnhOg7L5ZysmrE9OqApK7RqGI66bG0PmM9WFHlB4IVk0xyNwPE8JtMlO3tdZlOP8eWSg/0t/MDQ1ALQqKJkucioH18QRy6vvrHPvQdDFrOC0XaHn/mjX+S9H5zwg+98jOe7lGXF9fU1fuBTFAXG3Ow3ENKwXM0RCKKohTIaS0oc26ZpaoRVglLkeU7TNPi+j+f5RHGEZdtIy8bzXPzAuSkb0ha+ZyO1IWuUrutmbQSPGsv5WlybzQSgjX9hbRKAjY2Njc+oUg51Xq8qKy98advcrLVV+IEDUqMtjR2EeF4Hy3KolcJws6nWtm3quqaoErSpiFserXaIsG34pFFYA3wy9lN98nHD3HRVftJaeTa/YpatsQRUqqaqGwyaRbrAkwH9zoh792/T7sYo41A3CqUrLMu6mQwDmE8O/krfHIQBjNE3M+9tC4FNGLQJwxZNU+E6NsZoxtdnjK9n9Acdbt9TnByP2d3tc+fuiPU65fTFmO2tIfn/j70/j7Y1vQt63+/7vH0z+9V3u6+9q+9SlY6QxECACKEX5eARUQFBPXoFm6uAUWw4cFBQRFA4wlGvKEGFBAhpqKRIW0n1u6p27X6vdvbd2zfPc/+YdTz3nzvO+cdUIPMzxhp7jDV2M9da8zf283ufX5OkXLt6k7bTAGAeTpBK0Kh3MIzFtBnPc+h2e4zGJ8RxSFEUVBWsrW2ws3WKoBaQZRmt9iobW9vkaYoajKjVm4ThjEazie85NJsNbt25Q69/gtA1NDQc2yMIahRlgSZ00iwhK2KuPf8q589dQmg57U6DJC0xdMH1K12ODsasr69h2jquY+O1XdqdGmH0AE99tmQ+H2GaNrbp4bk1TMNGViW6YZDEEZPxgO2tHVY76/SOJmxstNneXaV7NCFOcmZRQhhmmKZBnlckUUaR54RRyHBssao3GA3HrKzWcVyLoFbR7gTkWcnhwYRKZjRbAcl+xvUbR0RRSXutRZ7GFJlibW0V3w8wTINGq8ZsOmFmmSSJoihzpPQI/Doai83KVVUhNB1FTqUUQpZkry09q6qKPC9wXRuhSYRQmObiPS9fm/Zfb3rCt4zmeBS641IlX6w4XFp6PSwTgKWlpaUvUw8/eOkb19Zb70xmE2c26pGpQ2r1jDQ2kUJHx2altYvv+iDVokRk8didsqqQZUFVZUhVYdsCy9YpZUEpK6RS//3QrxQIIXAMC4NFiZD6/xmsolDEWQSApgmE0BCYGAh8u8ne1hnOX9ihs7pCvdVECEGaJDiWi65VSF1QFeVrNwtQVSWGYSwWQQFSKsqyJC8SpCwxTAtNM0mzIY1GmwsX76bM59RbDTxfZ9gPORlOGA9iDN3FsjVWtzpkZcz167exrRr11gaWtVg0devGdUzTpNPpAIosW5SZ5EWOYweE4ZSrN17BMHTKIsO2fZrtFbY2dvGCOmE8pdc/ZjYbYVkm8/mEslQoJWg2myRJxHH/kOo4Jy8K/KDG1sYWnuuzsbHHLIzJ84w7+0cYusHpM5ucOXeJly/fZjwZ0267zCc2N68P0ITk4qUzBH6NgzvHTMZTojQhSRM83yPPMuIUbNtCAVEcYZkjYsPiM58KuXjvadbXO6Rphe7odFZ0Br3J4vubldT9OtqmjmmbzKMcx7WxHYFSOVmWIwTs7jUQQsdxFv/Gw4/usXNqlRvXhzzx0c/TPRlTrwVIKZnNZiRxTFmuU6sHnDt7Ftu5i7Jc3Hr0B6PFzP+8QNMWP2/HcRcLwZT6v5aDsdhE7XoWpmOgvfb+U5UkL0pkXlAkeVVk+TRXqmfq5s3/5Z/9bPZFC8alpS+yZQKwtLS09GXq5StXPlzmm9+4s7Ozs3PqPBcfhls3D/nUk89RypKz5y8upsPAok5aSDQWh+w8i0jjCUk6pqxShBDMwgnD0RATtai7FgZ5UeI5JjqChusTpAlRmSOVQqChazqGMNE0jUpWi0ZjMyBwfRzT46GHH+TNX/kg9z92no2tXQzdRwiDes1BFzpCF2hCp6oqKrmo51dKkeUphm6i6wZCCAzTQEoL3XKRqiLPM/K8QIgSNwgYD0Ki+RTD1Dg6HDCZJQSex/hkSrc/pLPZ4NHHL7FzZofAtxj2Z4zHIfGs5NaNG0hZopQkSWICv0a9ViOKQgzTIkkSbMdF101WOpukSUo0n3Irz5ESwnDKdDplroFlWUgpsS2b6WxMloVITeB5dQxdZzIdEccx165dxbEdLl56gCgMGQznrLRX6feOmM+npKnEskxuXLvDJ4/26ays0F5Zp9Xq4Dghiopev09VlpimQZorxpMxlmUhhEGeFCTlkKyMaTYb1GpNjk9OqF5QRGcqNKFh2zaz6RzPdVBIoijFtgxOn9uk0fQ52h+RZSlCF8hKo15v0jsJqQcelp2jazXSOMMyC1baHkoKbp85TZ6axPEEXRP4fkBl28hKISuJ7ZnYnoErLLLebHG7VJaURbEoAdJ47WMxDcgwTUzLwvYsvMDGDSxqDQfPNZBlAZlEFhV5miqUzKWsYk1hmzqP/sQP//Crf/Mnf3L+Oofp0tL/EMsEYGlpaenLlK2nZ/LZYe3k+iHH1y38ziarG6f5zj/3rei6i+X4KE1QSYmqFEWVIaVEypKyjMizOWWeoxuCoO6xsdlZbGo1DAzDRNMATUepRTmOZZo0nToqDcmqElSFpTu062usdLaJipQoDjl/9gz33HeG1bUNLt5/iov3nyOor2A7DXTTIksTpF6glIZpWliWixA6QmhkVUWep5imgVzcWSClwtR0HNtb3FxUFYZuEPgt5uEYyaKO/M7NY+bzmHrDR0rFjSuHjHoziiKh02ly82oXN3DoHo54+nPPcnBwCGhURUXQ6tDv9/A8n/G4j1QaSZoSTwcoqfBrDWzbpts/ptlYIZpHzI4PsWyLosiwDJs0TxmPRnj2om/AcV0qWWJZDq1mhyzLWeu4oEmGwxOiZM7Lrz7P+fP30OseUWQJnfYaCsHVa68uSl9KSa0W4Hk1srxAISkySSU1VtZW6Z706J50KVVGnmUUMsN361img7AAzeTqjSskWwXNWhvdMOn1RmxvrZKli59BnhWE85RKKnq9GbMwYnO7QSOoMxlnFDJA0xR5lmDbFkdHY1BwsD9nc6eGLBVCzxe3CobGZNJnNhuw2l5HGAZRHC2mD0UhfuDTai8mIo1GM5QE13UpdEGShCgF5ms7JtRrPSAS9drnNTQkGmCaOgWgqQpZlRi6rlVlVek600JyKOF6T0r5/z96lpb+cFsmAEtLS0tfhn7iJ364ZqDeZunVKdc29bIsGXdvsr9/g8baeS7e+xZ0UyBfO0DnRUqRR0iZU5UpeZ4gdAPfqwEVpSZptDxyWaDKElku/pwQBkoY5DIjyReTgQxhYesercYqrlunXvO5dM/daLZJpXIefeQuWus+d917kaC5hjBspAJhmOiawNAN4jjEsT2SOKaSFbZtA4snvlJWKCURmkBKhVISTbFo4hUaaAohTISuYVkWUT5nPJ2QJDlVDq5js3nfOs12QPewh6Z0NM2g2bRxXZtPf+EW80mCzCVZmYOmmM5m1OtN7r3vIg88+m5mYcwzn3uZGzcOOel2CaMZaZYiK8nNW1d47VhKGidUVY5j+limhWmYhFnELJ1j6w71Wp0sSymKHNM0mU4X24xdr0FQb6GAcB7j1wKOD+6Q5TnN5gppkjCdjVhf3SDwmyRJQme1Tr3uo4mCIKixuWMjhLl4gl4tbgLiJCLLM8oyJ8sLWs0GhimwHAuhL361HJNeb8KZc3vo0YxWs0alZYzHIa1OkzSNuXPrhE4rpdVuILSK1U6AaZjcutkjDENc16dedxj2QyajlLX1OqZtsne6jVIP0O9OyVNFmqeUVcp4FNGoddB1g+l4hus6NOo10jTDMHTMeoDruAx6x2RpjFIK07RwHRfXchYftoNAUOQVlVSYroXSCwzdoZCRSmbpKJHVS7nl/PqP/vTPPvP6RujS0v9YywRgaWlp6cvMv/yX/7i13ax/f6tpvqvmGx2BotIqhDTw7YDO+i6WGyBVRVGmlFVFWeRUVYlUBWWRoaoKQxdUZU6ehkzHPepNF8t3OL59G9+2yKUiTAtAEGY5kyQiygsCv81Kc527777Exu4ma9t1Tl/YoLnSwnYsOittispgdXOHSilsK0ApjUoqKqkwTIsgaIJaNCQXZU6eCwzDQNM0TMOkKArKYtHQapomsqzIihSoQFOoSlJVFZqmowuLeqPGmfPbpGFCfzAgjmN2T69z5twapq6RZ5LROOTVl46ppMLxPNbtXYKgTiVLXNdiNB6RJRlVpRF4Pg8+cC9VZpOEJXeOryB0jU5zHde2UVIhBZRpsVh+JcBzg8UBN5ygGRqWsCnLnDAOmYYTdE1fzLcXFoEXEIcpEsV0MkDoGo63mNYURRFlldKoNxYlPjWL/kmXJE2pN2zuuecccZpTKZ3VtTbHJ4fMh3OmRUxR5liOA5pGpSrSIkYrdaxwwsW7LtHuNKi3fQbdCdLMWd9pc+PaESvrHe669xTdox6WtUXveISsDPrdKY5nM+xFWIZBISUnxxGtNjiuiZYZqCqnKIbUWy6ObbK62kGWNjdv3mI+m3Lx4l2E04jZNCbLElzXwvMdHMdmNpsjK0mepaRpRFWVmKa56P/QFsvnbKUwdB1DN/A8B9+z0XUQSpEmBVmYYFYqFqZ+W2j6saVby/GfS3/kLROApaWlpS8z3W469XVxoCqCMnFMw9DBMKm1Vuhs302tcwpN6ChZgQRUiRCLJ/qaVKBKDK2izDOicEoUzpCyYu/UOhfvvsjVV64jNUVeSeZFQS4roiRinqY4Tps3vekrOH16mze85SK7F7YxHYOyrGi0V/G8Jlklado+luWT5uFrTb0ujm0t5v9rYBiLvoI0S3BsD6kUWZYuEgDdwDAMlKah6wKUoshzknSOboBCW1wEaAIl5WsfitksZD6b0253ODrqcuPaHbpHY3ZPbZHnBYPeiFvXDxmPB7iuzfrqBrVagygKKfIM27IYjyKe/exVgkaNspBcuLiLGxgknwqZz8fIqsQ0LTRNEGcxVVGhYVCWJYZhYjseRVlSlTmyLNCFSaveQaGQUsPQNfIsZT6foGSF63lMZlPQFGsrm/hBjSSOCeczpOej+4sn+A88cC+abvDKK9dJo5g3vu1BLKekSAvO7F3gSD+ikClllaEhKMqCPEsIwxkVBePJiFu3rtFsPYzjaTz2lnNcv3HMcDTF1D32bw1QVcmZM1vM5ylFXidLKiwEUkpKqbOyUiOaJ9z34CmiMCFLS1zPQdMrmm0bx7XpnoTcuDpjMplimQ7ttstwEIEmMW2TZtPHsmxmYUycpPi+j6HrhLMpeZ5RVRIhNAzDxnEcDENgOTa2a2EYi54RKUEqDV0H0xSkWSZn0XyQV3K/sv3rud86er1jdGnpf7RlArC0tLT0ZeZ973uf/LV/+1Nle7Whu4YuijQnzXPCMCKoFF6lIVWOlCUgQAmkAjSBQiKrjDyeEocTppMJcZrQ7rSYhXNOn92j0VlhPutRKklWSqRSTJIIx2tz//2P8PZ3PcTO6TY7F3bRdBvLCcjSjDTJcf3FnHZd6JR5jmk4CGFi6IKizFFIylKii4pCghAs+hJeK/lQSi4O9koBijzPFw3MOpimgaKESgIalUoJoylVmZJmEZZrsOI00CrF6koDJWF1pcnJ8ZTLLxyAynnwoTN0Vh7A812qAm7fPCEMC6bTGfNZTLstmM102httmhs2q6sBdz+0xfpmi0987HkOj29imBWtZpO8KnAsH9M2SZOQ/qiH5wdoSqLrOpZpogsD2/GwHQ8lNZqNBmgVk+kYhSCvUupCJ5xNSOMQJNTrbXaCs4TzKWhweHjA4ZHi0r338JXvfAs3rh1w69aI1fUWaZohhEat7tHtTRmMu8iqwnN9qqogTSOKquD0qbPEScRsFqIdCrpHU8Bi3E0YD2fEUUQ4mnN0a8jO6TaWZfPqlZt02m10zUB3Svr9CUIJsjhj79Qqs1lIGM5ZWa2jGzp+3WbHsojmYJiKwWBEHMW4rsuZc9tYjk73eEKWVbQ7ddIkYjKZg1TouoYfNJCloqqqRYKo65imiWmaaDpouoaUUOQVSSjJdIWNjut5mlbJlot4MKUci7B78mM/9mNPvO9971v2ACz9kbVMAJaWlpa+jPzyz/+zC0HNfcy2jUeF4dp+p6HpukFWKCrdxXZqIDSEZqCbJiiFpilQGlWVoSoJVUmWJKhKUavXEZaOUhLP8zl3fouzZy7w1BdOqLSCtEpJipJcSb76bW/jq975ZvbON/BbPllRYuk2umlRdwKUlETRFC9oUCkTTegYmkGeZWiWjm4alFWBEBpFkYGSJGmE69bQdQslJaZuohsGUqlFg7Kuk+eLKUUIgVYJoCLNF7X3tmVRagpdN3Fsm6osSNOSF188ZDia43s24Szlvvv3WN+oM50kHB+NiMIDygJms4g0zuh02gSBT/fkiKJogFrn/MUd1tfrOLbDxnqHc+d2efGlV3n688/RO56hKsWlS/ehoXF0fIe8eC3pEhqB38SxPYoswTRMNta2QROYpmDn9A5FUZEmGftHh+gaTEYjDu5cBS3BLlLu2ruL2ayO63ucPrvDdDxjPsuYTRIu3X2BPMuZDWM812U+jzFtj2ZzHdOyOTi4znjcxXF8fK9BnMSE8xDXrjGZztAEmIaL0HOUBqZt4Soo8oyDwxOSrKDdbtOod+j3ZliWzvbeCuvrNSbjjNFwyu3bXXZ2OmiaSzjL8XyLwTBi1AsxDUGnGVCvOYzGY/JckhcVtmtiWjpVWSGUYn2tDQLytGQ2jZjPFJquY2nite3OCqUUmi6olAUKLF3D1BWWITB1HZmW5ElOVZWl1FQm0VwhxJtq6XwMLPsAlv7IWiYAS0tLS18GfvVXf3XNdbWHfNt6oN2qvaHmOfc7jrGrhE5RVFi2hXDc1w7/2uIJvCqpqgK01/4SJRcH5CxF0zUMy0IIQVFJBv0hw2HCzesj8qLE0E3yMiMrYsqq4oEH3sCb3vIwe+fb2J7GysoGEkGhJHmWUWlg2waqKsnTCGF7oHSKssRzfRQSXdPRdKhkSVIsmj91TVBkCZWxqPdXlcQCDMNCmYsRoBqCOJlRyfy/jwk1TBvH8dE0SUqIkgZJnHLjaperr/TorLicO7dGninOntlEE4oXn7uOrATrGw32zq7iOCYAveOIk6Mxjm1x6dJd3Lxxh353ykc++Hm2tzZxbItollGvO9x/3wVOnz7LJ598msvPvcCg16fTXqdVWwdRUVaSKJziB3UajTZ5klEUKbop6KysYJg603nI6VMbVLIgVwXNWgNdKDrtFlkm6aw0abbqbO5skRUlldI4c2GXLE0X03rKinA2Z//WESvrKzSaTbKkoNGokWcreG7A7dtXkVJiGjqaVpFlKc3GCnme4fkW49EMXTdxXRfX89EQhLMZVdUgTTKiOKZeq2MYBifHXXrHU1BQa9hsbLUwDQPEYmeDrmtEcYXtCRzXJcpyDAMc18Yw2iT5YjGcEIq9vRXSqGT/9jF5UWNlrc7Kmo3nGcRxBijKPCHPKoRhYJg2pmXjOC6OZeDZOq5nIMsKWZZYhqA0RFrmcqSqYiw1O8or7fNlo3b19YrVpaUvhmUCsLS0tPRlYGVlZdrtdj+nl3J/EEe+qnlvqWqeafs+luchLBfhBNhuDU0IyqqgrHIqWS3GflYZVRaRhFOKPEMAYRwRRTFRnBGHKSeHU+7cGSGEQa1WJxnPAZu9U2e5+76HWd1u0FwJyIuM0WjEytoW4XSIKiscO6DAxLYswnDKfDqiXm/hBA3m4QTLttCExDZ9lIRa0CRJ5uRZgiYUJjZFaeA6HvNwgm1Zi6+jLHG9ANetUZY2cTxmNhvTbHYQurnoL7Bc9s5cYGW1hWO7eA5sbrVBCZ5/5g6T0ZQslzz48EXOnltnOp1z48YRs2lBUZRITWG5FllWMRp1KaqK6fGQ6WxCb3/IW9/2RnRTYzLPwI6otwK+8Tu+gje+5R4++qHPcnTQo6wy8iJGR6ILE1kpBIIgqNNsb9Hs+Oye2sA0NZJUAhXbu2ucOrfGbBzSate474EdXnnpiMk4oxbUqTUMvJrDtSvH3J4f02o3kErHtAzWtlpMpmOuvPIqtVqNzkoH13cIZ0OqvKDVXKGsUuI4xjRd0jTl9p1rrKyu4dg+juvQP5nh+QWWZWBZOv3+Ca1Wm+29TcJZSFmmdFYa+DWTsiiZTCJMy8TxTMqqxHF9PE8HFONpTniSInTQdIGJwrZ1DNtBJBmgk8cJlBWu63P63DqOb1JvuLiOTla3mUclg2PBrMzQLQvLtvE8h8CzsW0T09CRVUWVaVCV5EVBmuVlNJ0NKlkeaJaxj9BetUTw6R953/vC1zVgl5b+B1smAEtLS0tfBt7znvfk73//+x/oNIOvkkX6NmkYRmXYSMsiUwWyjPFFDV23qaqSIk+pqgo0kDKlKlOKPCTPQoRQ5GlBmqZUlcQ2TEqjYnOjTb8XcWh4OFaAQGNjfYfz5+7F93zSOOXocECj5YHKmE56mKaJZVnE8RTTtEhTgaUbZFnKeNgnkArTskmSjDRJqNcUrlsjzyp0w8bzm6TpjKoqcVxvcWMhU4b9EyzbxXY8skxgWQGO7S2WRCkN07AxDQvbdKlkQRwN6XZ7TGdTzl04hWGavHJ5n5de3EeqkjJTHNzsc/m5GygUqxsNHMciSwXRLML3TUpTMZtKnMDBsE3Gkyk3blxndXOV9c0Nam2X1a06mqZotBx2T13grvt2eeXFmxwd9HnhueucHBziBz6mbWO5Jo16g2azzub2CqZhoCqFKnNsx8ZxLBptB90QpGHJdBhjmSaTcRfbEIzHBRI4d2GDOMpeG+dpousa7ZU6X7HxBoRmMugNyPMc07IIgjpRkjAfjBiPR9i2i9AMOu1V6rUGVQHD/pjVtQ2EroijkKq0KQuTqoCb129ycniC5zvs7m4zmU7Y3l0hmhcYpoZpg64vJjnduH7CyppHo1mjKApsS1Cr2xyfTJmPC2xHY+d0B7+mU+WQmDpxnKNURaPpYXsmnudQZAXzSY7AQOgC07DRtBJN09EEGLaGoYNjm8iqIg4zVBJBmVdllsyrqpiUmtbVNPMwNpzfft9PLJd/Lf3Rt0wAlpaWlr4MKKX44Af/q2lalq/p0jE0FSTzuTg5OESKlPbWNvXGJmWZkOYxVbnY9iqlpCozsjSkiOcUeUYSh4RhiONaVFIxmUVMRhGyErRbNc5d2KHb3SfwOjRaLTTAMhQy17j2ygnbu23O3bWNQGM6nbHlNzFMk7LMObpzSJHlrG9v01ldQ8kSyw6oygpZKYb9Q1bXt7GtAL3S0RwP3VyUkwh0iipb3FyUGXGegiwpigy9rqPbHo7jY2gmmljsOFCyJC8SSlnR6axRZjk3rt/m1o0ugWfyznc/gOdZTCcR1185oigLNndWuXTPOtNZxHw2wLEtVKVhCA0pNXr9Hv3+CUWWYzs+SZITBA5RmGIYgp3dDpa1KFlpdzze/q7HODka8rZ3vIFrV/Y5PpqS5RXbuy08zyFNE4SQDIdjDF3QXmmwf2vE7ZtDgoaNEJJGw6eoMlodj7e87T56xz3OXDjFrVvHZJkkqAfEccjKap2TkwkvvdjDNC0Mw2Q0GnL11it4bkCj0SJJEhr1JlmSk+YRui4YT2Lq9QYbqyvEScZwOMCyLObzOSKKWF1dQYjFBKY4CplOJwyHQzQBk8kmzXqb46MunbU6GxurhPMI0xJ0uyFC2LiuRVnkxEmKaVtUpKS5II5z6jUDzVQYlqRuuXS7Mwpp4xVw/dU+GjoCwXAwZTadIYTCdR1s28H1bBzXRNcBVaE0haYW64KzopA6lKZpommaWaJNU5Lx6x2rS0tfDMsEYGlpaenLgKZp/Nf/9J+Gw2L45M0XXnKnh4cPICVuo8befac521nH8pqgBLZVQxmSvIyoygxZ5iArhIAsy5hO5/iBj2ObKKlhWDm1to/vOhi2S7cb4jguthVQFIuJPKbQmQxDkrigzErm04iVNQdDaCTJHA0T32+wvaMzHY/RgDCcY7ouo16Gbiy2/iZJyMF+yNbWeXyviVQS3wuoKoVhGCSpICNEFzaVyjk52qfZWcVxPXTTxDIdLNtBCI28KFBCENTaCGGCLDk5HnFwq8vWWhvDgHAecfPGEbW6w+7pDSqpsB3FeBLSbPk8+vg5rl894uhgzHya02q1sF2XeqPGtSuvcnJyiERhOTZvefsD9HszJuOUBx/eQ1Zw42qPRsujKAviRGIHDm//6l163RGObVOre5RlxWg4ZWWlBkojnIecOtcmzyom44TpMCeeTbnngR38usGwN8dxfSaTmLvv3aXfjRgNQwxDpypL7r5/l6tXDnnuqVvEcUi91SFKQwb9LroQFEVFEs8JajXKyaIHRGglN2/dwDBszp45h5SS+TxidWWFMIpJk4yyLInTiEazDojXyocM5pOIcBJTFjlH+zGmbrKzt0rFYgFZnkNZZOzutTFsmI4z+idjwnlGHPmgSTzHwrR1Wis1HN8gjnOChk69uUaeVcSRJElK0iRBoRC6iWEYeJ6NY+m41qJfRNMUQpMoXWCaelZlZTcrq+vKsg5LZXzmJ37iF6avc6guLX1RLBOApaWlpT/ivvd7v9d8FDi88lw8jfIzWl4+ELR8f+vUNjuXzrF19hJ+a40KSVHEZFm6GK0oAFmiqhIlJXmeUVQSv17HsW3SOCKJEzQkhqHTG8S89HKXeZih64tGYiEWJSeObVHmJZ22TzSP+MKnRpy9sIlft/FcH2FbSE3g1GsYtoUQOpouUEoyGfbRNI1mZw2lFFWVce3q8+ztngchcLwaGouGYcMw8bwmpulSFjGO38CwbNIsBy1CsJhYVBY5mlpMjRG6gWlYeG6dRx59EM+2ePLDT3P1lTuEcYxl65w+t82li6dQVUVRasSpIjmcY5uwvdvm9Nl17twecLQ/YxbFKGHSaLUpi4IkmnHl5VcZTUa87R2Poqmc575wk7XNGpZjsH97SJrlnL+wi24qJBlUcPmZAyajkLPn16g3HUbhFIlOECye+tfqNo63aGqdjRM+/rFnuO/Bs2zvNcnynDSRzGcZnRULwwy4fWOGEJCkXQKnxqV7zlCVOa++cpML5+9hPp9z0j2kkjmj0QDP8wmCJkVRYZoGrutRFAWj8YhOu42UJVmWIWXFfJ7jOC6u63J8fMT62hZCMyjygtWVDQzdoChSgprPxXtOk+UhgevTblnMpjP8uss8jLFLnVbL5d57T3P1lQMObo9oNBzW12tYtsHx/hDPM+m0fRqrAfWai5JwdDgijTOKLKCqSjQhsRyB0MG2dRxbR5MVlApZFOiqqvSyjEuq48LQr+m6+QUH7+nXO1aXlr5YlgnA0tLS0h9R/+s/+DvnbM1+u2Xr99q22SnC2V6n453f3Nnc3Tp3BmHYJHHB/s1r2Mf7mK6LG9Rw/BpKF5RlTlFk5EUKUmIYJoEfgFDISuLV6pRSYzjuM5ukHB/OEUpDoGHoNo5tE4V9bGcXxzVp1Ux83yKOJXEYU1UKIXSEEFiWhS4WS6MM0ybJMizDxBACw9SZjMeLcZN+QBpFVGlC9+Q6pmvh5x1sp4FEYhkWtuNiux5C76Ckem2IkU5VFuR5ilI54XTE0cFtXM+jubKG59fRhIETNNk6vcrpuzbQdZMkTfCDAMdRlEVBq+3hBBbd/oyj21OKNKFSkr3zKwSBT1mVhPMpRV7QabUYDU4Qps54fMJw1KVMKh58+BIray2O96esb7c4e36d6TTh2qu32Tu1QRymmJZFo+kx6qc89ekrvPGtF5CajqSilCUyL0mTDNNUPPDwHrNpQhhGdA9nlKXkocfO8PRnrzKfRTiOz8pajSSRzCcxruvh13ROujkCjUt3n2c2jWm3OwgdTrpHNJstwihkPp+i6zpJWiBVSbu5wnAwXNTZ6yZJ+lqvCJBnMUVRsLq6ge3YrK6uEkcx09mc9bVVgqCDVCVRlNJqB+zf7mKYBqdOrxEnGVItjiTzWUw4W2xyllWJJjSKosL1LdZWO4SzjJOTkOE0ZWunzupqndaKRxwWRLOU0XCGa1s4jrXYnKxp6LqO0DSqPKUsM7I0isosuVUY2g0M76rS9Ct//af/afK6BevS0hfZMgFYWlpa+iPo7/7lv/zwrSvHPyQL7d7N3VVnZ6+zsrq353q27+RJxrNPvUSaJRiGjuvatFdXuXDPfdTqbZI8QwFKKlSl0HUdhaSQ1WLBllQITRDHEUkcUxSKNClZafoMyoTJeMo8mhHFM9A0er0TdHEeQ9dQVYWsSi7evcbmThOlQb87xA0yOmur6LpBkhXUm21MxyWJQoJGB910AEVVFGRxTO/kGHfu0VppoCOoigLNUCQV1IIOFQLH8dGNxahOpSoMy0ArNbIsJ4xnICo8z8Z1fCzTRTcMDMulXaW84a0au2cHdI+7DE7myLyi1xtzcHhErd7AcRwG3Qlr6wF7pzv4DZssLxFGTiln3Lx1B5krpCyYzyfYto1l21x99TLTyYQzZ85x/yNniMKU2SzF8wS7ex2Oj3rouonvm9z70BauZ3LnluTZp6/w9nc9Tq3tECcJs7HE0BU3rh4zHM5501svsnumyWQgmU1jRqOYrZ0VXn7hCKUMPE+yselhGToH+0M2RZOz59b55BMvUBQVvuchdEFRFETxHE0pbMumLCs0qSFlxWQyIE1SWq1V+r0ee6fPYZs50+mYoiyoNet4NZ9SSgQ6aZpiWAZruxv0T06wnVVsy+Hm9R7jocPm1gqHByOuXjmhvdpidjKkVndptR2cwKTZajOb9YmTnPMXV7FMjTs3ukgpqDcc6g2X6SgkjhJqtYCiUOimoNkMFn0AtomugawUSZSiS4nMYvIsygXlVGoMpNLmuibCtLZ++XUN2KWlL7JlArC0tLT0R8xf/FN/6ht6Byd/pb2x+cb7Hru/trK1gqErrr10h88+8xK1wGTjVAtNCILGKvc+9BCr6yuE0ZjB4ADHq6PpBqoq0FRFnkYURUJVlqA0lJJEYUyRp1iGgSwUZVIRZ5JBd47n+1iOSaUybMul2WwzGkdYmk0QWAhDx7Ak8zCiKMCyTSYHhyRpxNb2LjU/IEsiLMfF9QMqyyKod5BVhVQl/ZMBUkoa9TplpsjiiGgeoguopKJIY7x6C8u2KLMcXehIqTBMgak7BEEL51RAtDJmHk5Is5RKKQzDpJIlZSmopMOFS/dy7/0PkMRTsiwhSTJMQ9A/7jPoTzCMkpdfPCRNSrzAxPZ0zl/Y4/SZU7zy8j7Xr97gxtXr6JogTeLXlmbZzGZjXnnpJWbhjLe+4352zqwRRQkagrvv26PfHZEmJb3+mHOXVtk9U+f5L9T4+O8/xzu++gFs30IXBVmZ0m63uHnzgDAseOChHeo16J5MePozV9neWcHxDNIkI08LdENDCHBMi+7RnI0twYW795jPUqbjCKUk589fIIoixpMhli4wDEVVSUwhsG0b1/WxHRtJRb/fpVlv0VnpMBqO6PX61JtNgqCGrBSOp6ObMBp2WV1vMuwPWF1dw/MMylJy89YRnU4b1zHxawZ+0CSaZ+i6ju0YOEGOaQmqStIbhDQCj5pXQ0oJUlLkJUHdR7JIesJZhCwllq1j2+DoAtsx0DWFVoIqC1RZlEKVwyLPb5WauCF1646mqVvAcuvv0peVZQKwtLS09EfIP/zhv/zORjP40dbqysOjWaU/8fufJQkVjz5ylsAWrHV8ElXhdNZ5/C1vZn1rnSybMx4cMhn2sV2PwK+TFyllnpBEM6qyoChzhCbI0oSyLCmKRTJQFjmWoWHZOvNpimGaVOWMcD5lHk2pZEG322NnZwPTrYG2+I8nTSqEWTCZzvD8xWz/cDpnVhsjDIO8yIhDHcPysG2PeTijFjSwnYC9s5KbKqXWalNJDdu2iOYho2GfsqjwfZ9oPgIFntugqHKkVOhGQF4VaCVYpkOzuUW9vkZVFWR5TJ7HzOd9Lj//Ch/8jU9w++o+6+tN6m2H9fU1Tp/b5fzde+yc3WXn3CnKPOP0XSe8+PwNesdDooM5t29MsS0NTde5+9LdnDl1ii889TS3b18ny2KSLKPuNXAdmE/nPPXpVwjnCZ3VOkmU02jV2Npe4/Cgh1Ims1mKrsPqRpOsKMiyDHQWW3FNgV0ryeUK/W7MU5+5Rq3usr3VplbzuHa1y12XdqjKDNPSCecJaVpwfNAjTBJOul1WV1fJ8xLdFISzmFpQZ3NjD8fx6feOUKrA91wMw6YoCjw/wHV8siwlimZomoZfr9NeXyWoBYxGY6J5SJqlrG2ssr65OPCH8wI/aCClZHNvk6JIkUpD06AooXcUEtRMGk2bNC6YjhK6xxM0KoKgRjjLGA8jHNvEsSzcwEK3dZReLXoiai7RNGPcC7Ftm0bdBllSFQVIhcoztCKTWRaPlKqulpr+IqZ5IExjplvWlR953/vK1zt2l5a+mLT/+9+ytLS0tPSl7jd+5Z/eHTjGd0+n8z9x+85g91OffUl/9eoJQri0Gps89OhZzt3V4cxd57nr3odZ31unLHIGvROuv3Kd29duoFTKI296kPbKOnE6J0sWYz+zLEcXBkITi5KfqkTTBFWWk6cl3aMRg0FG9zhiMplz/cYrXLn2LHmRIjTB2vp5Hnr4TZw9tcq5U3VUJTFtg5XtJoZhEEcFw+GERjugs9ak0WqRpAmm7lCr1xFWgO36CN3ENDx0oZhNutieSyVBVRlCKg5v32J//5C777mE4zskSYLQBIZpEAQ1DMtFmDU8r46Ghi4WzcZlmVOWOZUsiOYDnvzox+gdDFClIs1Kbt88YNSPsGyNBx7ew/ZMstykvRqwvbdJp9OmKFMObg54+cWbdA/7FHmO41oURUYcpRwcHnJwfJv5PKR8bQOtrgs67S1qjSZnzpxBNzSUVvGmt96D59pIBeE8Jk4rHMtkPIiwHR3DMJiMY9zAorHiMhtkvPLiAXun2gz6E+aThFa7QVEUlFVBZ6VJNI8Ruo5SGkID27XIi5LxIGIym7C61qFeazAaTJnN5/T7PebzMbPZkCgKMa1FM7fnNdjbPYfleASeQ384wK+1cV0T27QZ9rpkWUYUxaysruHXatQaPrW6i65JxqMZ01nI7u4GrmPjuBZHR2OiWUZQd9jeaeJ5Ovu3ZswmCWm6mF509/1nqLfNxRSkWUGSJGzt1ems1UDCsDdnNirpHQ1RUtGsu/ieQEeh8hJRFuTRJJaqvImuXi41/ZpmuC+VpvXZ9/30z736esfv0tIX2zIBWFpaWvpDSimlfeJDv/KYLMr/ef/W4TfsXztYu3XtwOqPE607S7UwrLC9Jrtn9njHV72Rd3/Du9g+s02ZlRzcus4rL17m6HCfPElB6dQbLg89djfCNMiLhDxLqcoSzwtQSpFEMVVRICXkRUaR5YyHGSf7U0aDlNEw4vDoNs+9+Fnm8QjbMBez5i0Hy2lz7uzdvOXNlzh9qk2RVazvNAjqDlkmSeKcVrtOVqQ0Wk36JyNODibsnd2gtdZhdeM0lutS5BmapmPbHmhQlgV5NscQgjQKiaMIx3UxTAMlJUUaMTgZ0usO6Ky1OH3+PF5jHd30sQwbTVv0N5RlSlkUoErCSZcXn32eGzeOueuuM6ysNYmikls3Dzg5GZCEOfPxiEG/i0KjVm9w7sI25y/usbG9zvFhj6efukwaF9Q8j8HRiPFkzmQ+Zh7PGY76jIa9176XJbVGh057G9/ziJOYi5dOs76+TpGX7Jxa4aQ3pdmsIcuSk+MJZVGRJwWtjoflWejo+IFNmia0Oy0uP3eDQXeGHzRBVOiGwrMtDg/6uJ676P2wTYSusb21hlSC46MeSZyytrbGYDig3+sSxxFpGjOdD7Eta7E12XDY2Nil0eywsb6KV/M4OuhSZCWVLBkPhxiGQNM0NM1A6Ca7p7bZ3d0gL1LyvFiUkM0zOisNWh2H4ShFUxqB75KkEWvrAdNxxeGdIbWGiyEUszBjZT1gZ7tNFObEUYofmNSaDkHNQ2gao96cJCxJkxxDA9/RMATIIkMmqSrieU8X8gXNET2pm7cy3fuVv/e//dxVTUO93rG8tPTFtkwAlpaWlv6Q+YVf+AWzYeb3+6b6U9PJ5Ouf+fyL5166fMvcWtvGslwG85T97oisynjvt30jf+q7v5W9vQ3GoxnXrl7j8rOXKbIpssqxXYc4zcnSipWVgNW1Jk5g4/kOSmq02ysoJLPZhKqqiOYR8TwCpYjDgts3xiSRZDKccXLc5dkXPktveETg19CkRNMU8yTG99t4QYN77nmIt/+xh9nccHFcC9s20TSBUhqNpk8cp6DryLLi9vUT8rLk3ofuwvU9DN3G0HUs18GrNRHCRFUVVZVjWS5SlUhZInQTWZUgK6L5hGsvv0KnucHB0SF7Z7fZ2NlF0y1A0GpuooSJrusUeUFRRghykvmYD//Ox3npmVfZWK3jNTw293bYO3sKw3QQVcXh4SHXr97k1qv7jHszDMtgZWuFC/duc/7CDrdun/DcZ68x78dUZcE8mpPkGZoQHB8fcnR0m7JavGbdMKnVWqRpTFok3Hv3G1BVRZaFbG5vUBaK02c2uH37hOFgQsNvkucpZ86fRRiCja06hmnQOxmzsdHh6iv79HsTdGGiVMX6WoeyWFS5SEBYgsOjI9KwYHWtg+979Ho9NE0nSzOUVBRlxtXrl5nHU3yvhqnrGMJka+s0nl+n3mqxutFEVZIbrx7QbLVRVU6/32U+m1KUJb5Xww9qrG+ucPc9exwc9MiSgmaziRs4aEIRBA5JVFDkORfv2eLqlQOmkxyJwPddTENDlhIJrG/6OLb+2sZfQVVV5EVJLXCYTxOmoxRdg8A10JVC1zUoC5LptCiT+LrU1SeFYz2jmWavKOwPve+f//PZ6xnLS0uvl2UCsLS0tPSHzH/6hV9ofOGZp37wxksvfodKso0kSVfHSaF5tTWqymJ9b497Hr2Hr/3Gr+LsXWfpnhxzcOsK80GPq1eOCTwXKxCEUUqVS9KipNGpcfrUNu1OHcs2mc1Ctrb3kDInDCcUeUZZlERRQjQLiWcZ40HMsJ8yHsaMhkOuXnuVg6MbaEJhmS4KMHQdKSWSinkYcemex3n4DQ+xteNz/swKZV5SSUmtEdBo1hmPpvh1D9M2MITGaDjDr9UQukH/ZFGWs7rZxg18NrdOLZqTK6jVmkgF6BplWWLqBlJWKFUw7nfxvQae3+aVl55lbaOFFzSIoxlFLtk+dQ+m7VAUOXmRYAgNTUFVxpzsX+fo1jWytGAepyhdYuoBQbDK6voWgR8wHY/odgecnAw4PDgiS3MaTZdH33gJpSSf+J3nicOM0WjAcf+YSlU4js98PmUwOCIOp6R5juPUqNUadAeH2LbH+bMXOTk6JM4iWo0OrVabZqPNwcFtfK9Op9VhdWMVKQSz+YzHHrvE9StHaJqOaViLGf2VQkmFLgSmZTAcjVEKTNugvdLi5OiY0XBMrRZgWjbDfp/5fM7pM2dotzvcuHWVZ194iqLM0BAYukGntcb25mm29s5iWoJG02M6Dun3RxRZhmPaNJsNDg73ydKCVqfDeDRic6vN2XOncRyLgzsnuIHL3tk1ojDDFALXtalkQeDXuHx5nzjN2N1dJ40SVAVRVmBbgtNnO5iL4U44rkESZ9iWQ1WVlGlJOovwHAMdDaoKipx4MpllafqS9Oxf18z6v966L0u+7/t+sXg943hp6fW0TACWlpaW/pD59m//dr1ZFX/j6Na1HyjTcsfz2/QGEW6rwbu+6et59ze/m+3tDQ4PjvnUE5/mzrWbrK0F7JxaZTyboiudJEqptTzQDNqr62zvbeG6FlGccHzY4/y5c4xGJyitwDQ0VCWJo4jxaApKMexFjHoRg17MdJJydHzM8ck+RZEiNAPH87EsmzgMSZI5YTRFN008v4nj1zlz9gKPPHqKTtul0bDxPIc8L8jyitNndyiRBG5Avz/Cr7nousnVl6+TxzntToO0yNnY2qSz0iDLc1ZXt8jygqDeJIxC2u01iqKkLDNMXSMvStrtTeL5jMPDV7Ftk7LKObzT4+XnD3jzVz7C1m4H0/bJ0oQsm6MLQe/4kCKZgarQbYeyVIyGE2zL5/bNQ46PBrTX1tneO82Zs7vUgoDb+z1eefEad27c5u77diCXfOR3n6IqK4oqZxpNMCwDVSlkVZAkMcN+nyieoRsmCo0omtFurVKrNxiPRyRpQr1W49Kle0mTlH53iKkLvJrLhUv3oRAEroFl2Qz6E6J5TBjPkGUBSoCm4wce9aBOnmdM5jOEttiuPBz26A2OabdWaDVWyKsCQ9fptFdJkpwXLn+ek8E+oGjUGiRJhiEM9k6d48Jd91IUFWgVlmVyfOcQlEDTFk/py7LCC0xa7TqD/gQ0wV0Xd9ncbLF/Z0BQ89g53SaapwgElqOTxDllaXByMiWOEgLfBaHwfIs8Xbw209RxXJN6wyAIbKoKsjRDV4oiztCVhioyRJ6RxVGVpsmdQui/rwL/J/7Jz/2bZc3/0pe95RSgpaWlpT9k7tnb64xv37i/5tbqJ7MBdsPla7/rPbzn29/D2s4ar750lf/wS7/O1Zevkc0z2u0mhiboHd/gzIUVSk0SxpLds1ucu3gO09IRQufosMfxcY+HH3uEj/7eJyjiAY+84S400yZJU+azGUpW6LqBLCuqEqSEOEkopaRea6BpTWwnwHY9KlktSoXikEatSRTHjAdHWOEUx3T4dFZw/vw6jz92ivk8QlYS3RBEYYSwDEq7wnJtHN/DsmzWt1bpnwwoqxTfdegdHRDPpkg0dE0jjhPSOMQNArI8QSEWU4lUiek4RFFEs71KUsQk8y7RJGZje51wVPIb/+53ufv+Hc5f2mZje4WyKNFMiyyLuXOti2fZpEWflfUWK50W168fYmom99x9hjArmPRu89nDfTAszpw5xVf+sccR734r49EQzzWZJwWfffI5apZHEPjMwjmGLYjSBMt2CYImo2Gf8XiILCWB28AwHapSYegWll4ShzHPPfcMZ89ewrAMijzmzp0eSVpy/q6LaMphOp2jKtA1gSxKomiO6bgEfoOyrOj2etTrAZsbG1RSMp3NOHv2Ausbm5wcd0nSlHqjznQ64aWXnyVJMsoixxQmUkmKosSxLZCSyajPycEdTp29QJREFFmJ7/scHN0hqDdp11dI44QozKk1TC7efYHROGQwSPGDCsd16femZGnO2mYLw9RJ4oKVNZ9hP8b3LTRNcXI8wA980qREU+C6oORiIpVje1BTWL6JJgTRNEITAtswKYuMaD5Dk1VsGiIsNTG2jKL3esfv0tKXgmUCsLS0tPSHiFJKe99f/L5vzePk7Qir/vZv+Ca+6bu/i7P33M2Vy1f4F//oX/Hh3/pd2o0NVlebmIHC9U2ytGI2TdDUmL0L27z7PW9DN3UUCk0Jnv3Ci6AJ3vmud/Bbv/Ehnv7ki9x118Zi5rpSFGWJbpoITafIClAgdIECNDQCzydwvcXG306LeZTS7fZxHA/HcVCyxLFtpCxxLYd+9xZRNCeLR2ysr2AYkp3dJlJm7N85or3aBqUQmkEWp9iWTWe1iULiuRZCwGSkc7w/YjQICXwb2zUYDY7QxgY7e+dI0gTDNPHrdYq8wHUESR5Tb20gZUlLA6ngK77mjTRW2/zBx/6AW1dvc/6udc7fcwav3mZ94xT9gzGf/sTzKAXNVp1a06Pe8EmSFFUp0jQiSXJMyyGNR3zh9iGfFxZSCVa3Vjh/7wW+7lu+lvseuZdnPvs8x7dOsE2beTxnvVFnNp8yGo1w/TqT6YQ4m6FpgnxaIJGgNKgkhmGQpDEvXXmGdnMFx/LZWN9hPpvQOzpkc3uXsiipXiuB0jRBrdFe/BoEtFebjCdjpuM5RVnSXu1w4dIZVFVgDBWOvYfQBVUhcWyPdqPD0eEdbk9HCF1HIBCattirgMA2bYo8xbYFQb3DdDJDEzXW1DZKGriOy+7uBnGSkqUVSVoQhSFVBdeu7uMFJhfOn+L4aMid/SGNho+uazRKl63dDlHSZTaraDXrTMZzTMNaNKBnJbW6xLJMblzrkWVt2hsermvh12yySFGpCt3U0XUhsywfV7p2qFvmBMOxXu8YXlr6UrBMAJaWlpb+EPmR7/+z56P+5Fvb61ub3/HXvpO3fNW7OLizzz/78Z/i8594muFgBFIjLyOyIqBebzLsz+j1pzz0xvv56q96G65nMhoO2D19isFwwuc/80nuue8Sj7zpUT7wXz/EJz/2Odr1BvWGTZoVlKpAN0wcF5IwIk0zNKEhdNAF6LqOIXSEbtJZbbC502HYny22+kYxWZKgC+j1jjF0A01TFGlKVA6YWYInn3iaTqeOaZ1la7uOXcFsFKJrGkJoZHmO53lUssRxHbzAo6wKdCuh2fFJ04zRaExQ96nXfQ4OukxGIe21BpZj47ouWZJClVNVkmZ7E7++SprO0KuSwfCEBx+7xNpah6c/+Slmown7N28xm13h5pUxskqhFCgUCugdTzg5GGMYGuEsZWunTaMVkOYpXmCQxBVlWRKHCTdeHvH8s89x7uIZ1jZWefAN9/FVX/8OBsMRLz7zKs987jJxJJG5ZDafgALd0InTOaayyYqCQpYITUAGEokGpGmEa7msrWxiWRZpnNI/6WG7Dlmace7cKbZ2VwGFbuqvLduyWU8CuoczBoMZWZJxeLCY9b+xukZmVMzCiHkYUuYlSZxQKcXm5g7H3QOKPAU0KikxdRuFjus1ybMS0xIURYTrBGxuXeDg9hHd4xPm8wln7zqF7VQcHQ5RVUFRFrheG8MwefWV22xudWiu1Tk6HJPGJWUlscwpnufhWBmj6QxZSuZxhG4I4kQRxQa+59BpN5hPCgytQO9oCF1hWRZUFZopcet1JTWSqlAnmmldfd//9q+WNwBLSywTgKWlpaU/TDRdF3/2jV/3rje965u+WVNWwL/9pV/hA7/2m7x6+SVAsbK6jue7FEWGrRv0ugOCTo1v/hNfx6nTu1x+9gpb2y1OnzvL0089w2Aw4q1f+VZ2z6zz8Y8+yRc+9Szt1mK2+v6dEcKG9c0a7XaLrCxRaAjdQBgFlqVTa3ikucJxbdzAob3mYTiSZsdDaoI4jKgFAaPxgFqjhR4vpu00ah3KskCWkuM7t7h1IwNdo7P+OEovCGcJQhcUZY7rBWjaYmOwpgl0oZPECbphsLbZpJAFpmvi+g5ZlZOlGvs39nEcQRJHNOotiiwnnI+pNTKUrGitbDM3fIpqiiU0bly5zPnzD1L/mq/mEx/9II2Wz+65PYr4Fr/33z6GjobuKCbzOo7tEU4TLN0kimbMxhPOXDxFs+PiONZi6dY0RwiBaYBbOiSzCXOj4hd/7YM0V2s89MaHeOwtb+BNb32YF595mSc+8iSXn59RlSWyUghhoGk6liEoC4nSFKDQ0BCahoZGJQtmszGGsHAdjziek+UJtmnx8ksvcPrULo1WE8/3Wd+so5tgmDAeGWRFSiV1bNsgz0o+/7lncB3vv/cgFGVJlIbM4xm25bDW2aY7uP1a4mdQyhyhaYDk8PiEXXuDU2fPcPWVm4wGQ9rtOvXmNkdHPW7fOqbTWSEvUkxDkGUFcRRjWj5BLeDwsIvvm/iuiUBnNIipBR7dkx7xPMa1XDzfoVIlx8djhG6gCZ00LYnimI21BvE8JU8THEfH1MFQEi3PpFDVTJjWbcMUL0jPfPJ1jt+lpS8ZyybgpaWlpT8Efux7v9d797d/y185feH0D/tra+0nP/EZfvmf/xLPPvV5PMej1VphMp0yHB2zsbGFIXzOnz/Lu77hHdx9/yU+9+QzdHtjvunbv5Yin/OpJz5HY6XG29/1DqQhuXb5Kl/4g2c5ORiTpSW1us/Kmk9r1WV9y6fR9ChLSZ7n6LpOGCaEs4zZNCVO1aIp0zHwahaGqZPFiitXuvSPpty+cQ1kgWnZ5HlGlqXYpsNk2scyXfIiJ8lSLt3/EGsbbc6e38IPbGqBhWloRGFJ0DAJai6gsbLWRlFRlhKBQtddSpmhGxqO7TEbF7z6wku012p4vkN7tYOGYjYLqTXqCF3n7PnHsEyd8egQTVPE0yknh7d54NF30DvpcfnZT6EMyZlzF7jy3C0+9dHP0O4EuIEDwqLXnZDMFyMnbc+j3vZod3xMU6coJNNRyHQS4XoeigrDgp2dNV54+hr93oj5fI5bCzhz4TTnLp3m0r0X6Q3GfPz3P8Mnn/gsJ0cnFNkcqUpKUaGkBDQkCqEJTMOgyktqfoOa65MXBa1WkyIvcR0HTRP4QYNGc4U0yxZP/zfabG2voRD0un0mwwgdgaYriqxgNJqS5YtDdZyE5HmMVJBnGWgSdEWZ54BGWZTYtsvZM3exsraNbpgITcMydaqq4OjomPZqi1Nn9hY/36QgCVPmk5AkjvCCANux2T21QjTLGA3ndDoB7dWA8TgDNJQGRVow7I0Ioylb25sIzSZNMxzXRqDQ9JJW3aPTDtCUpExz6r6JSS7j+ey4qOSrBfp/sHTnt/7Oz/5s9/WN4qWlLx3LBGBpaWnpS9ijYP7iEx/9hp27zv2N5tr6Gy+/eIUP/Pp/5cknnuJkf58knpIXOZrQsW2bOE4pgW/81m/mT3zXn+DO7QP+4OOf5y1f8QgPPngvz7/4HK9cvsqpvW2+8qvfRr9/zGQw4TNPPoPnGtiWSRQVTEYR/f4I24V3v+cRDEOjkhXNdg2lJFlSkKYZSVKQ5grTNDBMHdvWsG2H/Tsj9m9N6Z1MiWYhruUynYzJi5jJZIJpGEwnAwzTBASBXyMuMuZhwqV77mFlrcO586vcd/8W+3eGBDULy9TRLYGmCdorDVAa0TxkdWMD0zLJs4JGewOk5Orl5zBtC8NQyEox7M+JwpyNzSZe3cJ2N7nn4TcQhz0oCwyhc/v6C5R5xb0PvZNXr7zCEx/8MLZn89hXPkI0zbj63EvYjiCJc467A+aTBNuy8Go2umGR5QmWreM4Lp7n0DsZIqX1WmKiY1oaV67cBCmYTufICkzT4s7REV7g8OCj9/Hw448QtBo88/kX+diHPs6rL71CGs+RlCgUQmgUssQ2LXRNpyorPM9ffD7Lafg1hDCxbRvPqxMEdVqtVebRjKxI2N7ZxnIcdAMsYZAnJfMoZjwcUpYlEo12u81sFrJ/cHOxzVkXzMMxWZbRbLaRFRRFgmU51Lw2a2ubbGxuEUURhm1w9vwOxwddDvdPuHD3WSzH5vatfQzNQhaKXu8YPwiw3YALd2+wd3qVl148pCo01tY9kkQjSXIqWeHYBgKNk8M+k8mcdqtJrV7DsgxMQ8MLFomHYyp8zySfZ8g8wxD5rCjTZ3IlPlWa2r/4yZ/75aPXO5aXlr6ULBOApaWlpS9BSintd379V+6/68GH37e5e/a98/lcfOD9H+TDH/g9ukd9dCGYRzOmsylpFqOUIowTHnrkYf78D3wvzVaL//Tv/wuW6/Jdf/ZPsn/7Dr/zwY+zu9vi4t3nue/Bh3n+vMQ3agABAABJREFU2efZ2mrzyU98Cse08AObQT9k//YJ+3dOyMqKP/mn30Wr6ZElEUHDRtNNHEunyEvKsgQUZbkoT0Fo2I5FkUvGo5jucczNa11MzSSJY4q8ZDTqYdsWcRQxn0/wgxpZGjMeD3C9BkpVSGWiWw5v+cr7efzN9xKHIbaj02h5JIlkMprSbNVYW+9wfNTjrrvPYlomcVywtXeRKBxxfOdlLNvB0AVRmNI/njLuTemdDLn73jNgOTzwxjeTJSPWVpsooTEfD+jevI4V1Lj34Xfw0Q/+AR/9zd/Gcg2+5lu+ljNntvjI73yE7p0jmvUaCoVUEt0S1Js+jmsymySkScV0GtJs1LEck9k0Ik1zRv0Z1159FceyiOcJ8zTE8erUanXmsylJlFKhWNle47GvfIxL99/NZDDhid/7FJ/+9Oc46d7E0Q0MXaeSCt/z0XWdsihwbJs8y1CvTWPyHJ8sK9ANjVZrlfbKKlmeU1UVjWYb2zIZjYa02itIqUAplKzIq4IgCLBMixdfvEyvd0ReJJSyJEnmlFLRaLSp15rkWUbTq7O7exrL8ciLgjQraXVaNFs+49GQ4WDMSmcdz/N56fJL1IKATqfJzVvX8L0WnfUWj7zxPEHN4+hgSFFIskxSpIphf4JSknarCQomkyloYOgmrmvjexaKCs8z2NzwsS2deBwzG0VlmiZ/YLniC5pgpLn6r/yjf/oLh69vRC8tfWlZ9gAsLS0tfQn6tz/3c+sPvPWhvxXUO1//8d/+CE997BMcH4/RKoFEEYUzkixkOhuTphFBs8Ff+Mvfx3ve824++N9+l89/+lm+87u/k4v3XuT/+KV/x+3rXU6d2eSxNz/C6fMX+e3f/B0ef+wenn3qZbRKw64L4jhhPk3IQvC9Ou/9+odptgKe/fxVdnfapGnO5nbztc29FYahoesC01zMAjIsA8MUFJZGGOZYps7e7irXXj3ANEwm4zFVUeA2G6AE9UaDNMmZTWfohqAsUkzTIs9idEth2T7PPHUHPzBZ365z6d4dLj9/HcexSZMEXRcUhWQyntJo1gAd1/aYT/po6KCgrMD1HLa2daosZ9J3uPbSIUHTQdOew6vrvPz0i9x132lMXQOhMxudcOWFz/C17/0aegeH/OZ//HWuv3yFP/Fd38q7//jX8eHf/gjHN+6wudui0XbQdZ16w0VoAssSjIcR4wE8/4VXabR82it12u0aqtTJ0pI7t2+gJNi2QxrF5GlCo7GCECZxEjE+mvDffvUDfND+be5/9G7e9TVv5lu+42v5+Mc/xe/85u/QO+piGoskTDgGAh1ZVCglKVRFnEaUZY6GIA0TkjQhr0oct4au64z7fXb2Njl77hSWYyCEzmQUUxYSW6tAk2xs12ivPMYnnvgsh4e3KPMcIcAUBmE0Zx7NWGmvkVc5w+GArZ1dNtbXufbqDSgr4jhm7/RpppOU3kmfeiNn79QpRsMR4/GY7e0dJqM5VVbxhU9f4Q2P38Xudoej4xlFlpPFEb5nUxUVg96ANMtZW1uj2z2hKCS1modGHdd1oJJkqURTCr9moyo1lTrXpaF9tEiSz9aTjfj1juelpS81ywRgaWlp6UuQv7YWDg6Oy0++/3cmV56/2S50g0mccXR8xGQ2QJYV8zAkyVIef/vb+P6//BfpHR7zd/76j3LvA/fyvp/6O7z68jX+wd/6RwhNZ2tvm2/4lq9mdXOD//Tvfp3HHr/I9Wu3GA2GrKx6tFoBvZMpOgIl4bE3X2Brp8kH/ssX8GwN0+qwd7qDG3jIqsI0DaSUKKWoXhsVKoSOVApY7AfwazpKQWejgaELDAFTSyOOYjzfpywLdKHTaa2SZh55XmBbJrqRcvbuu3j6qcvIHDa2O7z1Hd9C/2SMISTCFIBACDBMg/1bJ6jditbKJrZhMur3MQwTIWA+j+msrFAkMzqbdYSAgxtDPNfihWde5PGvfJj/8u9+m69575vYO7eJY7rMRxndo+dJEos/+T1/ioPb+1x77lme+OATTOOc93zrN/DpjzzBrRvX0IQiCBxG/QjL0rFdC0PPqQcue3sbTMYzbl07wK/XSeMC3/PwPJf+oEecRrTbHbI0ZiqH+PUaKytr5HlJIEuSJONzTzzDR377o2yf2+Ybv+Ub+Mmf+cd86g8+x2/859/g6GgfM4vwHR9dWJimhVZWKAlREuLaHs1mG6UUk/GIi5tb7O3u0Dvpc3v/mEYj5szZHVY36+iG4s6tIWWxWLh15eVr7Oxu8/hjj/IFXXBn/wZ5IaiqCsOwqGRJr3+C77rYtsNkPMWreVy47xxXX7qNGGpUhWRja4XLz15BVpKNnW3anRXC2ZQ0LTEMk/k8olYLuPHqALQhuqmDphPGCUIDyop2u05vMCRNQjzXZl7GGIZBkRcEvs3qqk+rYeB7BrpQcy8wPuaHzvuniXzlR/7Fvxi9roG8tPQlapkALC0tLX2J+Zmf+Rm799LT3zyYzR4gKZrbWyvi1mBOGIbMZiOSLCFPUtyazw/8je/nvgfu45d/8Ve5fW2fH/zrf5EzZ3b45X/1Kxzc6NPprNDaavOdf/YbqeKCf/9Lv8ajb70LTUluvHqLlZZPGhd0szkohReYPPTmU1y6f5PPfvI6RSrZvbBFvRngBh6VVBiGsTj4VxUKDYXAtgWV1BbbX4uUZt0iqFnM5wPqjRrTSYjruUxnBVvbq8hKp9froQmFYZlk0wIlFdiCM2fPMemNuHPjKpbl8+ib7kEIwbNPX+PcuVXyMsOwdDShI5TOsDvDsk02ds8zHU945fI1Hnn0LipSLEPg2i5TFWM4Aq/lsLpTR1USw6hoBB6r7SaXP38NpZXcc98ZJqMIx7b5whMfxzQ9vvsv/Tn+9U/+M2xTo4z7PPu5T/DOr3sXL7+4xo2rL1OVUMmS/Tsjykziew5FWRKnCZ31OucvbTEZx3zhqZdJkgRN0wmCgOz/LNlpNUnSnCxbjNn0gzqVlLQ6qziuh92z6N3s85M//k/ZPbPDN3zzH+fH/smP8Aef/BQffP8HmAzG6FoD27LQhUQBtuMtxnVaNq5bxwtqICWua7F7ehOv5jEcTDg+HBLFKbW6w/buCoP+hOFgjKY0nn36VXzfYWtzl1q9zo1b14jCKYZuIoFao4OmFMfdA2bzCXGZcv9DD7J9ap3DO0cM+xOarRatdouiWHx9nutQq9UZDgc4joVh2uRFRZoW+IHNdDZjdW2F85c2UFLj4GaP6zfuLMqeCsnqygqGYeE4Fq5tEAQmvrcoS9M1iayquULvlVTP/sg//EfHr3MoLy19yRKv9wtYWlpaWvq//NiP/ViQ7V/782I6/fOkxcVSOMYkK9Ftm6oqybKMcB7z0Jse4n/9F/+YLE75S9/9g+RZyo//zN9nPov4uz/0D7n6/G0s06S12eE7vuebuXOnx3/4t7/FSqvO1toKn/z9F/AdF9sUi0bQWUqSSEzf4Pw927z4/AHPfvYV8jim34s4Pp7Q7U2YzxPiJCEvCxSLufSWbSIMA8uyMQwT27II6jZlVlDzDWxTo0or0iThgQcexHZshK5jWzb1WkC9HuD5AY1Ok7P33MV0PqV7eIwpdNyaxVf+sTfx/v/4EY7uzOj15pQFZFmF7TgIoVGVi5p7w3QZDSYc3Ogyn8SUZclsPF9MnglzZCkQQtBecdEMSaNlU6Y55y9ewBQ64SSlKHMc32X/1oh8nvNf/t1/ptLgm/70t9PZbrKyEVBlE578+Ee49OBDPPLmt6DbJprQ2N3rsLnVIgxDsqwAITg+HpFnBaYpULIkTuaUZfVaHbuHZTk4jkuj0cDzPDQN8jwjnM+ZDcfYhsHuqR3Onr7AvWfuYXoy4qf/0U/z43/3H1ALAv7m3/t/8zXvfQ8pBb1Jn7QsCdOINM+xTBs0ge83iKKENMkYDacMR2N0A1qtOtPJlGF3yuGtAbNRhGM51IIavu+zvra+SNT6XSaTGbbl4Xt1HNcBTcNxHDy3jmE4pFnCsN9j/8YBnZUOm3tbKKGRFRnrG2usr2/gBwFlUVAVGb5rkSQhSkls00QXgjTL8Byf2zePyLKKPM/Y3u1wz33nsW0blEYYR2i6hh/YtFoe7bYPmkTXIEmK7mxWXonDrKtJUX+9Y3lp6UvZ8gZgaWlp6UuIEYYdAx40hXV+WuHsTzKk6zIc9+mPx/iNOn/ur30Pe2dO8/M/80u8+MwL/IW/9Of4ine+nV/9N7/G5598Ctf18AOX7Qtr/Nkf+BY+95kX+cgHnsI0DL7uG8/zwrMvY+iK9Q0X19HonURESY5Xc3jowYtMJyGf+4NXKEuF4/ooAZohSJIcTZqLUY+yQEqJrgs0BRrGf78ZsHyfNEnwXJPUthiWKVmasLvdJkszhsMZ7XYDoYNhWtiGTlCPOX32FN3+kCwt2dre5PDohG/7jvfywovP8eTH/oB2q4Vu3M/6RpPdsxtIaVKUGZoOjuvSbrV58frzOLrNrRv7nL93h/07IzQR0O9N0GSG6YJtGJiWTa1mMI+mdDZbXHn2GqY3JU4UYVgwnyTkecZkMub/86//d/7K3/qrDPpHuHpGY8VhNJnzwjNPct/Db0bTK65ffpGjGydommBzu8OdG31kKhESDm6PGE2G9IdHdHtHSFnRqq+hqNB1nTiKsG2XJEup1ZuUlUTKgv54gG3bdFZWqDc8xlXJ9sYeGorJ0YBf+ul/xdl77uJdX/c1PPLGR/no736ML3z6M6iywjBNiqogL3KEruG7HrPZlN6JjWlZmKaJ7dqsrLVJ0oRas4ljOwxHQ9I0pdPpUBQFrucy6AvGkzGu45NlKbP5BCE0otmcqsrxvAY1f4OqrJhNZswmMVub61imzosvvIiQivXNHbQiQ6BwHZNCpdx970UO9o8XjcNmDU3TmU5CijynzBRlJZmnc1zPZvvUBqNBhFQSUNi2jucLhF6i6xZomrQ863JSySfKSv37/9fffd+N1zuWl5a+lC1vAJaWlpa+RCilNFOW7yavHrfq3qrmexi+hZKK2TTk4ccf5B/89N9jNkv4q3/+bxJOE37+V36e0+cu8KM/9GO88JlnsW2L2WzOqYs7fM8P/s986Hc/w8d+5ylsy+BNb79EmIV4vs6Zcy2yPEdDp7PaoNnxePRN57FtwbVXjrjr4hnuf/giugH9Xo/RIKN7nNLtjhiNxkynIUUhURI0tRhnqWkCoS/GdC4aYjXSJEfXKs6eW6WzVifLU06fWQetoqwKNA0MXVCrBUTziHgyx3N8TC/gDW99mEv3nua33v8h8mTM4fEN9veHPPmxZ6jX21x/9ZAslwjD5Nz5s9iWw0n3GN2ErJTU66tMJwnzMMQ0Ne7c6DEZRcwmKf3ulKqUmAZs7K7hNlxMwyKJSvbObVGWBasbbc6c20OGCU996rM8+uav4PLlA8b9hHa7SZHMeOWFp9jYPMvF+x/i1IU1PM9mNo2pNz1s2yAOMybjCdPJhLLIF8u9LJuyKvA8H8+ro+smSZqglFr0QdgW9Wad9c0NlIIoigFFUFv0X9SDNu3mCq16k8Nrt/n5n/pZ3v9r/5mveMdb+As/+P1s7e2SxAlpmjIPJ/R7Rxg6NOoNFCBQRPMZg26fLE/YO7WJXzfQzIx63UcIQa/XZzwes39nn3k4o6wydF0ghEZZFqRpjCYEnlujyFPSNMF2HHRdcHhwxHgypdVocGbvNLNwyosvPMPtW1cJoynX79ziqNtlMgsJgiZKKTQBrXaTjY0Oa6strl15FdMwsF2HwWDOcBii6zqmYSCEIEsz6g0fzzexHB0pVS/L1MtSclTqLJt+l5b+byxvAJaWlpa+RPz03/ubb9Rk8TWG49w1TgozyivW1lqM5gnf9t1/nI3dLX7xn/0ST37s43z9t72XP/O9f4YPfeDD/P7vPslk0KXutUlzyeNvfyN/8a/9BT76oU/xyjO3sAyTBx8/zZlzGwy6B9iWIEtKdHSyRCFVjl/zKcqK25cPWV2toxs6l5+7ydGdYxzfZr6SYZiCZrNGs9XEMA3KIscwdISho5REEwLdMCjznCIvyLKCZtPBMQVJliF0ietYrK036HXH+F7A2nqLIoPhcEKaZgR1HyU1dMfkO77rvXzgv36YIioBDcswOTq4Q62uoZTi9z74GTY3N6i3PPbOnKffHTHojbBdg87qGkJ48FpSYpkCJTRM3cQ0BXFYEM+nbG6usrXXZuvcCrqCUX/MG9/2Zs7d3yeezPA8g7KqePm5Z7h43z08/pXv4sO/+X7OX9qi1ba59uJ1JqOYt779XVRlRZ4+Q15Ijo7HKEMnLebEUUhZFjQbLRzHo1ZvUOaLRWauG2BYBrZjE0YRSZQgpc3G5jpFXmAaFkWRk6Qxpmlz6vQZrl17FS2RmIaJbStMw+bOC1f5+Ss/w5vf8Q7+9J/7bl56/iWe+L2PMB710ZQAqfCDOnpREPirrDdX6Xa7xGHCyy++yt6ZDU6d3WQ8iMjzOvN5SJ7lrK6u8sqrl4niKZblkeUJhi6QQmc0HbDa3sC2bITQCMMZ66vrIEzGgwl1z8Ov1zh96iLdkyPSbMZkKtBNG1VKbt+6xcbqDhqCbneE0E0mgxGmZeLaHndu7rO6sU6aFuRJitAEvmfRbvvUaiZFkVE3PDQlidK8V6A/7dzY+j/+yi9+X/F6x/LS0pe6ZQKwtLS09DpTSmk/9bd+6G3VPP/ueVi8LbJ0VzdNCqnj+y7f/M1fx+UXXuLv//CPMx5M+Zs/+jd48PFH+Cfv+wluX7tDu96h3egQpQWPvu1xvv+v/nk+9rtP0r11RM0CUbN4+A3nuXHlOu2mjVKCcb9PrRZwfDihsepx6sIm11894eRwRhQm5KkiClOEIdCFTp7lzKY5Z861sSyBUhLTMtF1HalpFGWJY9toaIuVADq4vo0qS/JkUbLhBy7hJCSOUwLfZeVUHdC5daPL1uYqk+kMqRSWZ/POr3sjh4d9Xnn2Ouurq9TrNbI0Yzw+4au++b18/gvPcOvVW8xHOe/4+sexXZeXnnmZcXeCH1j4QZMkKxFC4fsW8zDG8U0kEs1QNFc8ylRSSoUwHVqdBkKVCFPj5GTA3Y/exyc/8gkCw1kszFEVv/+h3+Xb/qfv4s7tK1x9/hXuvmeDZJ7y1BPPMu6GvPM976a1eY4ku4EYRPS7A2rNNYpKopcFtZpJWSlcN6AoKuIoopAVOia+H+A6HrEbM49CxuMRa6trhGFEkiQ4rk0Sx/ROTljpdIjjiCwJKYscITRc10UqyZO/93s8//SzvOe97+F7/tL38pu/9n6O7+zj2AFoAiMr2M9ygsDDcRxM08YwDG5cPWY0nPLwI5ewbRt7YNHrDimrkvW1Da5fn4Cs0LXFpKeyLLEMnel0yNrKBnme0mytcHR8RKu9gaY5jMdTojhibaOD7ztkaUZv0CcJI7IsIksjlBKsdDao1QOmoxlVBbPBFCklfq3OaDhb9LLU6iTxDF1As+7TXvMIAhPL0tEUZZxWx3klL/8vy8P/0tL/I8sSoKWlpaXX2Y//0A/uZXHyffN5+e4oNdbiVGc4K9m4cJq3fd27+MiHPskv/8tfx6+1+Ymf+wc0Oh3++g/8EFeef4Xa/7kMCsGjb3uUv/AD382HP/D79O8cIyqoNx2+5o+/EVlEBC7IvGQ2mWNaBkZgsLbbZPvUOgf7PV554TZPf+Zl8ljhuRaaVuG4Nn7Nw7J0Tp/dxAssKgm6roNSZFlGluUITVuMBZUSwzKxXRddCKqqRDeh3QkYDqb4vk2zabGzVwdR4PkaZRVTa9js7W2g6yY7Z9bYOtXhEx97ika9Qb3VpN5o4Fg2G9ubPPrww3z8w58gnk3I8ikX7tlDSnj18jUMoXF8NMPza4RhiKYWryFLSqpSI4krorBEaaCZiigpMMwAzRDU2j6OYzHsd1nf6rCxu85kGmEYJoYu6B8d8elPfJK3vf2ryUuD7mDO5ukWlaq48syr/If//T+ytbNLo72DLASe5VKpnHZ7jVZ7Hdup4Tg+Qtfxax6aLmi16/iBRxzFpGmK7Th4rotSitFohJQVhi4os5LVlVV0Q2M47LO2tkG71aZZb+I4Hpqho6FRc+tMhn1+5Zd+id//8O/xx7/tvbzlq99JGEdEYfRaGY9ASihLiWEYaIbO3feepaxyPvPJF8mzkqLMSJKY+WxGHKU0GysYholpmNT8OrowkBWUZcE8nJIXKWWR02i1sW2bqoLJOKTeaJBkCV5Qo15vsrmxg+/XMSwXTTdQmkZeFmhImo36YoOxX6PZ7qDpGqahoyqJbhg0GnVW1joIy0QJsD1BkhfysB9+bhqp/4xZf/H1juWlpT8slgnA0tLS0utEKbSf/bG/fcnT7e9ME+1Ns7jansQpkyjirV/3FTz4+EN85Lee4ODaEY99xaP82E/8KE8//RL/8O/8fSa9PlWZcXxyQH9wwhve+ijf8/1/ho9/5Eny6ZDtjRqdTZ/Td23RaFgcXjsACZrQF09yDYv5KMVxDF545gafeuJlbl07QEnFeDCmSBWO69JqN1nbXMUNHIK6i+faaBpo2mKRvAYgK4qioCxLlFLo+qLO3TBN/MDF802qKiWLSyzTIEnSRblMUlGrWZw5u7UoiakyLEfyhjfey6c+8QWaNYf2agPXdqnVajiey1e9551MTiZkkwo0g7Pnt6jV6kwGEU9/7lksV2cyC/GDGif7A473p4xGITevHTPshgy6MfNJjiEEtuPTH4wxLY0sl6SlRqtTI57N6B73uXj/BYRhcvvmkDQpaTU8Xn7+GZKi4G1f9cd4+XKXybxi79wGUZYwGYz4lX/zHzl76QK7Z88jCw3HqJFlBZ4f4NcCbHuxMMy2XZQGtbrH6lqber3OZDJmMhnhOi5IiMKINErI05T5bMpoNGR1dZ2g3kAXgma9SSNo0q53aPpNdMMkLVIsy8YydF74/NP821/6Vda2N3nv//RezLrDSfeAPFtMO6rVPUxbx7Z1bt28zdb2Hhs7m9y+c4QsNbIspT/oYpqCSirSNMM0TTQEpmFiGDpllZHlCbVamyRZ3EbohsIwBJPpjOF4QnulQyELptGUJEtx3Dqe16RRW6EZNPFtF1MXhOGcSircwMN0LHR98V5Z3DhkCH3xnjMNjU5rMcHKMY3Kc92eVGoQhuHy6f/S0v9DywRgaWlp6XXyU3/7r7xhPJr+7W7v/8ven8danuZ3nef7+T2/fTn73W/skZGRe2Zl7eWCapcNxmVsKDA0+9IMbqCZ1ox7Zhi1RMndPeqhRyMkmoa2MVMGe7BdtjHglSkvZdeSVZlVuS+xR9wbdz/7+e3rM3+cbP4GiSSVrfP6K6RQSOfeOI/0+z6/7/f7yf7aaFpeWEQppu/yx/7iD+G4AT/3xV/j1lsPee4Tz/D5P/05/tlP/hQ////5OSQNgopG1dBInnj+Kf7Kj/x5Xv3mS/h2xua2g9MWXL6+xpPPnOP+nbtUZc1klHF2HBMvGo4O5qRxyf1bxzy4PSRLS9xWwNbuFu12gGbAYLPD+s46eZHT6boELZcwStENE6FpVFVDVdUURUmRZTT1Mo1WEwJdN3FcB2kY6IZEouPaEssCy9JotS3aHYs0zbEdidSh1XX5/s9/hpdefJnZ0ZS1QUArsAkCB9e2WdvZ5JOf/hAvvfAiW5sbSK3h2Y89TZpXPHxwyNnh0fJ2vR3Q629w58Y+J0dT5tOM2XjG3Zt7VFnFq9+5QZkr8rzCtm1OTw6wbZ9bbx2hhKTTa/HW63eANpZnU6ual7/9gMk0Iw5jvvzrv84zH32KzXPb3Hj1iKbRaA3aCCAPY37qx3+aT3/vR3jsw08QpwW24xLHKfN5tLx9V4q6rpYrLx/skUQRYRRimSZlkZPGMY5h0u10aPe6bO9eoN3p0jQ1WVbgex2EJjAMg0F/DV3XkZok8Fq4josmQAodS7eIx0N+6Z//LPfv7fNDf/aH+NAnP8JiMSWaTxienuG7Ns8/f41nnr9OXtS0ux2ClseDvftYtsv6xgZVU9HptkjSmKau0HWJEALV1PheQFkUpEmCbds0dc14OCRJQzzPpK5qRsMZtmOxub1BrXKKLMF3PDzbR5cSzzMpy5q6EjSNoiwrirwEBYZpoukamhS0AhvPM9EtgWXpOLaN60q50TMHG32n9/bbb9fv95leWfmgWM0ArKysrLwP/l8/+qNeXRV/MFxkT5yNi8vjWczFRy7yw3/hB3nz9Vu89I03qJqGz/3J76HbC/gf/+7/xN1bd6nrhAZFUeVUteBDH3+O/+OP/i1++9/+Nl1f4PoWTaXIyortnQGLyYzFLEVKg4aaaB5TFRqOb9Ae+Lz6xh5NBUoJtnYHGOjMxxF1o2h3fOI0Zmu3gy41Xn7hBls769BI6rrA963l8K/Q0HQDBSgBjarRECB0DMtE0DBLYvy2iWrAtk2iqERKyNIcyzDwAo0PfeIJptMF99/ep9/rkKYZlqnTODVlCc89d400SpiOE0zHYOfiDtvnz2GbDm/deJ2qrhCGoDtoowvF/t4edV2ShDlCKdIkYjqZES9SXnvpFjsXL3LuSoeXX3obU+rUheL+nQm61nByOOP6Ezlx3IBmokm4c+uMwVqHNDnm2996ne/5I9/DP/gf/yFSUximgWEamNSMR3N++sd/lj/3I3+OSsFr33gZ17PJi4TJfMH6Rp+mhqAVoFRNXtTLUDWlyJKE+XREq9XC89p0+gPKquLSlcsURc5iEZLEOW0/oFaKoNWl3RswGp0wn03REKzZGzQNzOYTtGJOU5S8/LsvMD4847N/+FNcu3aJr/3ON4ijlNPjKZomePy5i5y/sMlbbzyg2/UInnmMO7cfoGod0/QwLcmjjz7O8PiULA8pqwpdmliGg6l7ZHkEKJZBZm3KpsEUijxJmIxGnJ4Idna26fUGDKtT4niO57VocqincwbrfUxNJ00y8jTD912UUlRNQ1lWJHFOaEi6Aw8v0BGywpAGTSmomzLQdNQv/MIvrAqAlZV/T6s3ACsrKyvvA3+gr01H88+cHs0eaxqNx597hM//+R/gy7/5Vf71v/gNhK7x5/76DxNFIf/Df/v3uHPjHcosJA5nJHlMU2s885Hn+b/+d/8N/+oXfoOz/VPabYdonpOHFVK3qWvBnXeOoBYkSYplaWhCEsYpvV7A17/yCrNpSJblIGpmoxDTkFy4usa5SwGDdYte32M8XHDn5gFCGeRpzdnxhEG/h+042LaN49goWLYBZRlZnFDmGZom0A2NWjUIKWh3PbI8x/Z02l0XoQkQAk0InvvI45i65PDOQ1ptn/FwBkqhaGi1Xby2zzPPPcqLX38Z3/MIWg4f/fRzFEVB2/V487W3sQMHpcGVRy4SLebMJ1Ns1yBLc/KsRBOwmM3p9/rcu73HzbdvoZsNZycTbr29h9B1RsMFk1HK8CTi1W+/xfUnrnDn7gMMw+bk6Iy7d/eIFwm/9StfZvv8Dk899yzRvKAqFU2j3r2pDlhM5nzpZ36R7/uBP8i1Jy8zGk545NFLDNZaVEVBkqWYlont2GiajpQ6RZbRaQU4rkP57qrNxXRGOJtz453XWcwWdNtd2h0PpViu+QzneK7D4088wfbOLltbWwSeh21Kdrd3uHrxSXa3r+K4ksVwwq/+wm/wcO8Bf/xP/WE++dlnEabi6HDCC7/7FovRgqefOU+tFIeHQ7Y2Nwg8F01oHB4cggLPD/D9ZWZAVafkZYptOQRBB0O3qKoCITSSOCaJM9IkRdckru0wm82ghvXBBpqAosioVU2UZBwfn2A7Jk5go1RFkaWYtoHrLr9frbaHYRkIXWDbJr7rIkWDRlMpZKRqNfh7f+//ErzPx3pl5QNjVQCsrKys/Cf0pS99Sf73//Xf+NPxOP0L1PLaZB65567v8rk/+Uf45Z/9db7xlVfYvLrFX/hbf5KXX/42/+wf/XPmZ0NMqVMWy35oic3Vp5/l//bf/7d87Xde5vD+GVtbfZpakS4Ux6cLLlxe56UX3mY+y0jTCqEE09OUIqu4fHWbd97c4+ThAs+20YVBnTZoaORFielIfN9jf2/K4f4M17fY3F6jagRIxaXLW0CNrhuYlrW8qc1L8jgjnkeUWUZTV9RlTl03CCFxPZM0yUFpuL6F6SgMU5LGFd2NLt21DrfeuIFlamxsdpaDzXmBlIKmqXn6o1fRNI3jvVNavofr2Dz17OM4lkM0mbIYR7iOjWUaXHnkMscHJzR5TbvtIaVGlmcYlkSTEmlKWu0OUbSgqlPiecJ0nBFlKQcHE/KyYT5b8J1vvczmzoBW1yHLMxCK6WTKYhZydnjCV3/363z/n/h+hC5RtUJVDZ7n4gYOjm8xOzrlX/3iL/JD//n3c/HaRW7fvMfO1hpJkqEpRVmmnDu/jaYpmqZClxpRFNHrrNFprREEbaIoxHMc1vsD5tMJ49Ep7U6LrXNbrG+sMZuO2Htwj3bX4NHrF6ibirwosWyLyWRIEoa0Wl36/U2krmNoOje/8w6//Ztfp73W4bs/9zy7lwekecUrrzzg4GDERz52lSef2WU2mzAeDynLHE0I9vYeoOkalmXiuQGBN6CuGuo6pyxzqqYABVKAqhRJGGFInSRJaJoGTQmqsmQ+nZHGGeF0SpkleJZBmVWMRyPabZet3XWKqiYME/K8XO79z3Ns18T3TTQFcZhj6DqmJQ+aRn27qfQvJ4mbv9/ne2Xlg2JVAKysrKz8J/KFL3zB3H/lm3+0KZrP7d87+0tpml/87h/4NJ/9gU/zUz/xc9x8Z58Pf9eT/B/+1p/jl3/23/DL/99fZTI/pRY10rDZ2DzPzu51Lj/+JH/nf/g7fP33v829tx7w9FMXaPWWt8ZJlHH+0U3CMMLSJaYjkSaoWidNKmzX4XQ45eHBCN2QlGVDVVV4noPvmXiezWSY8M2v3mI4nPHIY1v0ei2mkwhUhWtJJpMZhmkidUGWp2RpRjyPiRcxWZq92wqkqBuFagSO4yJ1SZ6XOK6BaiRKgdcy2NxpcfXaBR7ef4BqStDUco1nYAIKaUiUBtefvMw7r97AsgykLljb7tPqttnc6PHKS69iSw3XsnBMnfMXt7l94zaWrqNrFVJCp90CKrzAxfFMLMdgfaNPXVYc7Z2RRhFSChaTOePTCVLC6eExt2/d5+Pf9SxRtCBo+fh+QNU0WKbBN37nBVr9gCc//CTxIiKLM4qqpK4KyqxASp3JwZAv/cwv8lf+5l9isL7F+DRCaA1nJ8cUWcX+/iGmaSJ1A7/VwnF9xuMRRZnitwO2drfJq4JWp8PVa+eJ4jlpEjOdTJBScvnyRRQNX//9b7OYR3zmD36Kc+e2qBtw/QChVcympzimz+baBtvbO6zvnCOe57zwW69z//YpTzx/hY/+Z4+yfXGNo6M5t985pdPp8NxHnuCpDz3OoN/F9wJc1yFOQjShEXgtTNPE93x03SLPM6azIUKTZEWB5wc4jk1ZVbieT101jMdj4iRkY3OTdqdDWeXE0ZyiTOl1OoTzmP37h5RlyflL2+i6tpw1UA261BGaWn5HHQNdNNR12TR1c5hX6mv/5f/577z+Yz/2Y8X7fMRXVj4wVgXAysrKyn8ifhVtzcfTzx0dTj7x8DS8dOXDTxnPfuoj/PRP/BIH98/4ns99mh/4/B/mJ//RT/Od33uVluWhNwZpmi0fOi2Pzto6/9X//b/km199ka/8m9/HsXW2dz1aXZPZJEezNHq9Nu+88hDRNLi+gS4NqroGKblz74jf/52XOHi4h9AaijQmSyPKogCliJMMocGV69tcu36es5MpRbaM+7UdEyEFQctf3tAXJU1RkUYJdbVsv9Z0jbwoKPOSKi8xpIFpGNSqwXIMvJZDmiRomqTdDXj6+ce4c/se4Syk1wuWGQKaxvZ2H8s0SBcRl6+eR1MNi+kUzzOxTZ1HH78CQqEbJnffeQfbkriGxHU9AtflcG+fTruNITXqrMSQJoZu0jQF3Z6H69lceeoSeVaiKkUchyTTGNOQzGchhm7gWi4v/N63eOLZxwjabQxdx/UcbEfi2gaqLvjmCy/x2T/83SAEeZRRZiVlUaKaZUCXqRu88+03+NV/+Wv89f/TX8MMWujSwjJtFvMQQ9eIohghNbKyxHVdLl66gG6aZGmGaZmcu7hNWqQgJZeuXMB2DK5eO0+aRQRBh+vXH+P8uQvs3z/k7u277O7scP78RWzDoSorhCbI85RFOCfPK/ygy7mLF+kELd5++S5f+603GQ9Ttnb7PP2hSxie5Gg05/7BhBs37xNFIVcuX6bdDogXIapWCM0gCHpIoVOXJVLTKauCyfwEJSBJQrI8+3erYTU0WkGHuoE4Teh0ujiOiyYFujSp6hqpSwQao9Mpx4enmFLHcw26HQdNgm5oSF2jaWo831wOH2dVLCpuCSHU+3y8V1Y+UFYFwMrKysp/Av/vL3yhV+f598WL7MrRcH7xY9/3Se2RZx/nZ/7Jr3B8MOcH//Pv5cnnrvJP/pefZ3gS4/oebqfD9s5lzm/u4po2ZZPzV/7Wn+bhvYf87q9+lUG3x+Z6C9uTVEVFFGZcfGSbB7dPSBeKPK6pC0WelmhCY76IyfOSsoiRQpEWGUVZ0eu26HQDojgji2pcy8DWDQ7vntIUiqIo6HZdLEdS1oLFPGY2n1MrhWZILM/C8k0qpZjPMxbzhPl0TpokSKlRliWqaWh3PExTIg0NqWns7p4nSiKKPIFmuRnHcSxUDY5nsL4RoBsal67scOv1m/i+RVPVmJbk0tULSKlztL+PFA2WJdEEtNvrxLOEcDIHAbZtYToCtJpur0NZ5limhm2ZtNoOs1FEvx/Q67UJFyGGLqmqiqqu6PY6TE7npHHO088vA7J0qaNLSa1K2oHJ2y+9jN/ucPmxR8jSGKEpTFOnzHOqqqBqajRN8fJXX+KFr32dP/s3Ps/G9jaO42DbMJ+NCTwPU9dot9vMwgmNaPADjyLPkVJQVBnrGx10XSLf3a7keQ6PPXGJ2WJKkmRsbAy4cuUyqhYcHp6gmpput0e3s05TC+JkQZIk5HmOEArDMumt9bh4eZvZeMr9W0e8+I0bfO13X2c+igg8i0cf3ebS5V00wyIpE3Z2L+C4AYtoQZIm5HmBEoJGNHS6A3Z3rqBrJov5mDSZk2Yh08WIpi4pipw8z2maGiGhVhWa1FFKLGdQUAghiONlgVEXy7Axz7WwbQPbMQkXEUVegVoGz+maTKqSYSHoK6XE+33GV1Y+SFYFwMrKysp/Ao5tK8q6Nx6H1z79uT+gP/rUFb74j77EcDjlh//a59g8v87//Pe/yOxsgkFDXTUoNDTborW2zsa5Hf7mf/NfUJc5P/dPfont9TUef3abS490KOua4Wm4DJeyBLdvHlNUJWnWcHy4YG9vyGyaMp/MmAyHJFGKYVhsrq/TbntEUcR4PEFqEtuFyXjOG6/coy4aVA2WrmNIndk4Z+/OsnWl2+5gWya2beH7HlXTkKQpk2HMw3sThsdzNAF5kZIkKYZugQCpa0hd0u71iNOU05MjOl0Xw9JZPgRW+L5OXlYUdcGjzz1CHGfs3zmirhpsy8L1baSp0W63uPX2DdpdF9PQ8fot1ta3uXv7HlLTcHyduinQDR3HsyirHF3XaVSDYWqYQjA8mVM1FYHvITWBaUqgQZcSP3BouQEvf+sNPvrpp+mvdSjzCE2rlzv0TYN4OufV73yHT373pzBsjXgRURUVVVGSRnNc1yYrEjodn69++Wu8/eZb/PG//IOs7W4jhGTQG7CYz+i0fHTN4OLlR8iKijRNOTk5ZP/BfXRNZz5LsSwT29ZZzKeMRxPSuGB3dx3XMcjzjCzPaRT4joNjGWxtr9PpBfR6XUzLoaoLjk/2SZIply71cFsGlRI89tRlbAuyMKNKYTrMOL434fYbd4nnMYahAxrr22s8+aGn6A0GOI6J7dr0Buv4Xo+yrBBomNIkT0PCcIFCw/NbFFWOUjVSU6i6YjoZ0moHrK2tEwQBShVMJickyYIwnJHlMVWVo+tgmgLT0iiKlE43wLYkuiEQAiqlSpSai6Kyf+InfmK11XBl5T/AqgBYWVlZeY/9wy/8TX9x8vAvnD4c/dGPf/enNq4/cY0v/oN/yWQY82f+2g/iBQE/9Y//JSpVaKomi5cPXXm4YH5yyPHBQ777+z6B43j8g//nTxI4AesbA649ukOr71EWNWGYs3NhnXs3TggXOVGSMppOGI/mmLrD7Tv3SfOC05MhpuGSpiV379whTVN0Xccw5bvDnpKmAt/zKMuSOMqYjGIe3DlhMcvZ3ukzWPM5OztlNp2RxClVWaMpjSxumJzF5EmN47jMFglpklAVOU3T0DQKNA3H8/BbLQ72D6AR6LpGoxoUAqUUpq1jWQZlo7hy7So33rmDoRvMxnNsS7B7+QJVA6qBxeQUGuit+bT7Hls7m7z9xts0Wo3v2wQtnzROsQyTwdqAJE4xTcn27hpnD8fEi5iqKNE0hWVLTNOgejeZFmCw0eHo4QmGJbl0bRNL17Ftnf5Gn6JsqMqKF3/vG5y/uM3m7g7ZouD48ID5fMLZ2QlxuMA0TIqqwNZ0/u3P/f9YTBf8oR/6Q5i2h2WabGwMKIsaXdaMzk4JvGWbUFWWnJ0cc/f2A1zPYTiaoekGg7U1FouMs6MZhw9OqcuSZJGgmuVWpTAMmU1naFLw5JPXuXT5PL1eH103KIqc1197na/8ztfodm1sF+7eOaIddLh8aRPHlYTRlDzPsA2feJ5x9PCQu7du8s4bN8jzFE0Hx7ExTROBoNPuoVRDGE6xXBvL9vE8n35vQFnWNI0iTfN33wRBEqacHY9RjQ5quZlK15cFIECWppRlQZk3jEcxs3FCmTfQNEipMEyBaRlI3cyQ5jup5n/lR37kR1YhYCsr/wFWBcDKysrKe0uo0rw+Oj753ic+/vRzO4+e17/4j3+BKM74K3/7TxNnKT/747+ML20s00QaFm4roGpKptMhw7MTPvHZ57n22CP80//lZ7l08SrPfuwxdnZb5HlGtEixdIt2N6BUNeEsxbYMLMdEKcloOObuvTs4rkeeF9iWTqfr0+112d7aYXdnjf6gTb/fw/FMHtzbYzgcEYUhUhMELZu8KrA8m2tPrtNbbzGaRNhOm1a7R7c3wLQsdEPDdgw6gwDbs7lz64TRaUS0yKiqmqapUEBVN/QHa5wcn0KjkFKjapYtKULT0A0D9e4mmd3z58mThGQR4ng6RVqi6ZLdR87j+1327z7AkBqW7WDZko3dDSzH4vjwFKUL0jSjP2iDqkmzCNe16bR71HXNxnabB/f2KLIcIQSu62LoGqZp4LoWeRqTpQmtroVtabz16k12r2zjdVp4XkBZFsxnC9Ik597NexweHPChTzxPVTdMp1Om0wlN3fDg3n00pTE6HpFGMUVS8vP/5Ofp9Tp88jOfYrbIcX0Tx5ds7QyIowk3brxDWZWsb2wAiul4SBRGDAY9oijBsA3aPRfbM3Bci3ARLVewljl5WaCEJM1Kbt64zd7eIf3+gGefe5qNjU1c10MIxenxhC//xou4js3169sMh0ecng7p9nq0Wy3KPAPZ0Ov36HV6qKognIzJwoJet8/p2TFJHFJVGZPpGXW1TIIuypxudwDAfDFla3MT03Lw/BZV3ZCmCbPZhOn0lNlsyHw+IwwjRCPQNJ1Op0+n08PzAlzPpq4rqqqk3fFxHQtVC8oC8lxRN6RF0xz/6I/+aPq+nvCVlQ+gVQGwsrKy8h5SSnFyMn7s2U88/ez2tQv2T/2vv8hiFvKX//YfI01j/vXP/AYmGuLdMCnXd0izmCxOaRrFZ//oZ/ijf+L7+Md//yfJw4QLlze4cHFAt+fgejbTUcytWyfsXNng6HCINMAJdEajBVIXbGytMRqP2du7x5uvvcrx6SHD0TH9fgvL0gnDkqJcDgjbro8X+KxvrjFY76MbJlII+r2ATs8hTXMUDecubDJY7xB0WghNo1E1hqHT1IpwlnNyMCdPa1Aas3FKntXkWUESp8sd+dMF88kM1TToUqMoGkxTR7cktm+CANOzOH9pi1defBOBREiBJk38Xh/NELiOzf7du9DoGLagLGF75wJZnqO0mnbgEMUJSVpgOAZ1tZxBsGwT03bJygKERasdUFYVSRITBAFVVaFLnflsxGh4BELgey533rlPp9dm88IaRVUzOpmTRhlZklJXBS99/UWe+PB1agosy2EwWKfX7VFVDQ0aRVkQJzFFlbKYzvjp//WneP5Tz3Ht6WscHc7QpYmQGk8+8wxNXXJ6vL9cCdpfw3N9Dh4cEi7muI5FGmd0uy0Gmx2koeO1WxjvtuRURQmiYX19gO/7jM5GvPjNlxiPh2ztbNLudNnYOI9lWxR5xte/8gr3bx9w9coFqqrkrTdvEM4STNMhSzN836Td8el01wmjkCSc47su21vbCFWzu7NDEPigFFLTGI1POBvto5uSNI45OtpHt3SkqTNY20BoksBvEccRSRYyWOtj2yaNqpcDw6pGGgLLWRax7ZaD75ioqmE8XBDOC/K0Js8U4SJpG7rYfL/P+MrKB9GqAFhZWVl5Dwkh1Ic/9eSz565d2v5nP/7LjM4W/NX/6s+xmIX8i5/4RTzLRKmKNI5Jkxjb0jl/fhtdN7hw7RI/+MM/xBf/4ZdIpiXPPfcUFy72sR1JVTUc3B8yHeZohsH4LOLezRGaZlDXEPguZVnz8OERuzsXaWpYW99gY2Obfm+DNMpYWxvQ6bp4rolt6ZiGxLFtZrM5jm+iWzrTaUg4S6HUaPkO3b5Dq+2i65KyKCnKElgOctquhRdYSKlR5DXDowVFUZNXFXFcIjWLLMm5c2OfMquRukZRVsynKXXNcgOQ0BA6XL1+mdHphHC+XM9ZVwrTkly4eg7VwPDslHg+RwN0KUDTuHjxIvPZEJoa1zER6GR5Rn+tjUAu99e3TExTsH93iKoF/X6LS5e2aOqawHcRWo3nmlRFRjRbMDmdowtBPE64e2OP609dYzELKcsSz3cpixTb0XjnjXfQbR3DMYkXEY5rods2/cEaVZVjOzZhFFJVBbZl8PDefX7pZ36Bz33++9BNiwe391nMFtiWw87mOVASqZlEYYSmgWFIbrx5k5PDIaOTOQ8fDKFZzkyUeU5ZLDtgDEdwNjxlPp+zsb7J1vYurXabt9+8wYN7D9ja2qbf3yDwu6RJiAAW84Ib7xyxu73DM09fZjw5JUkSTN1A6DXnr2zxxNOPcfHSZbI8ZXh6iqmb+F6b2WzBYLDO9u4F1jfPsdbfJApDRqMTiiIhXsw4eviA2eSMxXxKUWYsFnN8vw0Izs6GAGhSYpommibRpYHUNMoip65LDNMgSytUs1wvW1U1KIVANDTi6j/+B//dM+/T8V5Z+cBaFQArKysr76Hf/c1/fnX73ObnfuVnfk2Lxgl/8W/+CWbhlJ/74r+mKUrKqkQagjzPGI9Oef3Vb/Odl76D1dL5L/7Wn+DLv/EVju6P6W2so9sGjmvgt22kKUmihr29Mzp9j8OHZ9QFDE8WCDQG/TZlWQI6s9mcOI7wPB/H9rAtF02zODkdYts6GoLpcEqZZQgFAoGUkrquSaIc39VpeQaG1mAZOmWRM51MicKQIi9o6gbbNtAN0E3w2y6O4yClQZlrjIcpcZShasXd2wckaQFCkKQFi1nJYpYxm0akaUWalDiBy9rGGrffeYDQNAxLpyxrDNeit9Gj3erw1ivvUKQFmglCatgtj7XNNYanh+RJgoaiqhrKssZ2TDQpKcuKwbqP1DUmZ3OqIiPPCgZrHWzHJo4TBCVJHCJ1Sbc3II4yHu4dk6cZb718i3MXzuF4zjLFGIjjiFYnIIpnvPP2XZ742HOcDYecnY3IixqhGei6SV3X2LZNkiSMJ2Na7RbffuE7vPiNb/FH/9T3UjYNhw9HNCVkeUxeptRNTuAF7O8/IEkXtFo+h/uHHOw/4PTohMODMYZukGYJh0eHRHHIud1zXLp0kdl8xPHxIVIKtnd2CII281nIjRvvMJsNCYIWg8EmUbSgKHKEgOOzMV7X5+Offo40LxiN56hGo9N1OHepw6OPn8PzA5I0oyhqZuGM8eSMg8M9FospnXaL7c1zbK5voQlBmiUAWKaJ0ASKZjlbUhVE0QLLsOh1e3iev9ywpMvl90aTSE3Ddx1oNOazGE2D9S2f3mDZLuUHBq22dVajvSSVOQZWW4BWVv4DrAqAlZWVlffQYhJ+/Mu/9HvrBw9n/Im/+oOA4F/8k39JYPv4QUCW5URRSpbnVKphNp0xX4z5U3/++3jztZvcffsBVx49x/UntukOTObThHiR0VSKxSKm03exTYPx8QLHNGlqsGzJeDRFQ9LttJgtRqRFzGQ6pm5K/JaLE9h4rYAoTpjNYk5PhywWc4QulkmsRUayyNCQqIbl/IBtMTyacf/2EdEiIc9SdAm2ZSA1HU3TMB0dIRuSLCaJC+7fHTM8TKhyyfHRjCQB3TDI85LZKCOalyRhyXycs5jn5EXNzrkL7N07JA4z4rBEAHleIkwb27PRtYrD+/fJsoKiguksZ/vCefIiJ5xPEEJRVDXUFU1RU+QNtmdRFiV+y0PTdLI0xXMdatVgWFBVGVEcU+QVcVyAZhJ0O2RZwvBsRN0UnB2PWIznPPr0FcIopswKDNMGNPrdDi9/61We/eiH6a2vk6UlaZIRpxmW7dLp9+itD3D8gDCKiaKEC+cv8Pu/9TXcls3H/rOP0SCYzuaYpsnR2Qn7hw9QCPr9Nc7OTtGkpNvroukaZVUwn4bsPzxhEYYITXDz5g1u3bhPv9/nqWeeJMsTHjy4S6Mqzl3YpdvroGmCk9MDHh7cRYmaK49eQRiSOMtB07l3/wxp2lx+5AKGLnnztZvcv3XCbJwilM3zH36K85d3EFKQJSlnwxNOTh/yYO8mx8cPGY5PGY5PsSwbx/Zw3y06pdQJo4gkjvE8DyEEi3DBZDrENE2CoIWUEiEEjmPjOA40Csd1cFyb3sCn03NwXZtW28e0BJZtn9a1uPnX/+u/c8D/NkG8srLy72VVAKysrKy8R378x/+6cef1t3eO9075nj/+WeyWw8//1K/SlDUKge062LaBRC3TY/MCTRr82b/yeUzT5Mu/8g02N/s8+dQu5zYDdrYCLAOSacn0LCUMS7Z3exzsjUnDhtFwjGEqet0OaVoxnyeUVUld10hNw/NcyrJksYhwHItHrp/DDzxsx8DzfObzAk3TMHSd6WjGw719xsMRp8czNCE5PZ5zcH/KfJywmM3QYLmBJo7J04K6UmhC4LcMLl3boNFqojiiLmuODxfcvXlGnuZURUk8z4nmOfNxRJZUTMcZeVrj+Q6OZfHmq3dJooqyqInCjKwo6K75DNba3Llxj/loSl0r4ihnfBpz6dJVHu4/JE0SLNtBaOC6BuFswXS8QBOgFBRlSVVWVHmDJjWCwMV2JKBh6gbRIseQJlLotFsBnuMiNY3pZMJiMuLN197kkeuXMQyJahQXz+8yHc1QlcbJg326nTabu9tIqTObjLBME03XMV2PdreHH7QwDIPFYkGW5fR66/zmv/kan/ne7yLoBsynCzyvzfbmRdI0ZTIfs719Ec8JGA6HIDV0w0ZIHa9lkxU5ujTQdYt2a8DZ2SGnZycoTM5fuEyel9y7cwupNVx/7Dr93jqGYXA2PGRv/z77D/fY2u7T8h0O9x5QxRl7dw8ZjybUdUFTV5wcnHJ6NOLg4TF7eyd0W322Nra49shjrA02SZKIOIu4s3+Tw5N7qKZCNQ1Cg8ViQV1XrK31WV9bIy9SpBQ4tsugP8BxXKJ4QZYtMyMsyyTLUibjKVGc0qicdtvEcSSoBiGWeRF5UVCWWceUOO/3OV9Z+SBaFQArKysr75FitrVGTe+zn/8ea+vKZX7yf/45qqzEdhyyNGE0HDKdzjgbnTEej5iMhjzzqSd57EMf4Z/++C9jmw5NqYgXOV7HxmnbmLZBUTaEYc7azjLA6/D+hEZVBEGAY9mcHJ+B0KjqiihM8Jxlwm4UheimgaYJmqoinM8JFylB22f34iYXLm+hCbh7a5/JcA6qYhHOMQzJ6HTB8HiKoQsCz14GTu2NOT4YksYFi0VKXVWggevraLqG13K5dn0HIWtuvnOf+TQhWpRMxylnp3Omw5AkzIjCmDiKKcqS8xfPcePNu4STlDhMaMqCyThCkxaPPHaNPKl58zvvIDAoy4r5LKYRks2tTW69cxNVq2UAmG/R32hT14o8rgjnyfJzzlKKPKOuSlRTk2U5SVxTFTWqrrFMG9d1yPOcLElpt1vYroOuSc6OD7l38wGmqbG20Ue3zGXBJHVGZ0OKuGExXfDhT34I3ZQopRidjrBNC1UrlIJWu8Pm9jZK1ITRAhrFYrzg5Zff5M/81R9Gtx2aRmHrkpYXkCQL0jSh3emxCCeUZYHvB9RVhWoUrVZAksToUsP1PDzf5+DggOlkgmmaPPLINcpSsb9/QJrmbG/v0O2u4bo+RZ4xOjvh977yO5yNTtCkxt07d5mPZmxtDsiLjMHaOrP5guOjM0zDQgqD2XiB67lsbK1zbucS3c4GpmGDgjSNyYsUlKKuC2zHplEN+w8eIJRgfW0H0/QAyPIcx3YoipL5YkFRLPv9+/0OmqZQAjRhohoN09RoGoWiQTclaBZZVm5A/n3/9J/+P9be56O+svKBsyoAVlZWVt4ji9m0fvzDT+9sXr7s/Isv/muyuCBOM+q6oqGhaWriKCLLE9Ik4/Jjl/lTf+GH+ekv/iJkGi03oNtzMSyN6Sjm8OGEe7dHy4fxyQzXs1hMcjQNWoGDQDGbJoyGM6azMXmRUjclioZ2u0e328exHTRtObR7//YRmpRUlKAtN/I0qqGqCpI0AiFptdrwv/Vvt2xs1+DhgzF3bow5O4nJ85pFGCKlRprWaEJD143lJpotn1bHZDHP0IRGHIXcuX2Pu7cOGJ4tlp9zHjEdzairGrflohC89uJtyqImiWPiKCGcR1iuy8WrV3jz9ZtEsxhNSKbTGUVWs3Vhm6Io2b99sEyJLSqqXKGbJqZtUdcVhqEznUw4OxqiaTqWbZCECfNJxOg0Jsty6qbBtJfDzzs72xwfnhBFcxzPot0d0FQl+3f2uPn2LZ7+yBPLlqGieHcoVaMuSx4+2OeRx64TtDusb2xguw7T6RTXcZZrW6OIbr/Lhz76IZIkIgkXbG51ef3ldzBdi0//oe+i3R2wvr2ObftUecFoeIIftHFtl+l4iGUadLpdprMQ1wu4dPUqcZygVMO1R69T1w37e/cpyxypmfT6A07PTnnzjdeI4jlrG1v0BusopWiqZRH0xtuvkhQxrU6Pvb0jXvzma1iGT16U6LZFHGWMx3PKoqARahn0VVc88dhVnnn6ozz1+EfY6G/h2B5lXRCm03f3/4c0dU0raDGbTanrEk0TIBSaplGWFZpYJkM7jotAEM5D2q0WrcAFpVCqwfVN2h0HIXUqJcirhryklcXp4+ms+IhazQCsrPwHWRUAKysrK++RC488sj7Y2X38d/7tN8X0ZIJl6XgtH920sGwby7SQmqSuFd31Nn/tb/55fuXnfo2TW/fRZYXj2ssd9bbEdTSaRDAbFZycLnBtG0vTefP1+ximiW2brG+1QKsYjSacnBxycvqQ0fiUuq4Bjbpulpt2NA3Xs3Fdl3ARs5inJGFBWdRUVU0YLiiKFKGB5dicnJySZgnTScb9u2fkWcV8mqDJBtPSME2TOM4p8pp2x8N2dCzPxPF0ppOMNK1paJjNJ0wnY8ajMadHJyRpynA4Ikly0jRn61yP3/7NbzE6i5hOZ0RxwmQ25+h4zObuLkJKXv72a6hGMY8WKAV1rXjksavcuXWXydmI8WhGuIgZD0OE0JCmiRCQpyV10zAZT5lNIvxWQJoXFFnJ8cEQqemEYUJWJJiWyebOOoO1HnEcs7bWA2Bze4c6L/nqb3+bc5fW2Tw3ACnpdFpoCAyp8fD+Pv21HoZto2mSVrtNv9fn7OQEgaAqC9I0ww8CnvnQs9x78JBXvv0WgWXyr37hV/nEH3iG/tYa6xvn2d6+gOcEFEVGmqa0Wj2KPCZLEuq6oj/oMJmMMU2DVrtFnmUkScaHPvQhHNvmcP+UMJrTbrXY3tyhKDJu3HyT27ffxnZd+r0BAg3bkhRlwq07bzKejrBsk/FozI2bt5jPF0ip01CT5zFZllHkJWlScPOdO7zxxltURU633eOpJ55mrbdBLxjQ8fp0vC4tr7NsQZMGrVabPC8oy3L5fyMlruug6zq27aFLMKSg12vjeiaOLTENgWVqNFWJEIpW18O0DfKsJJzk1uws68Xj5In/6e/9Pf/9Pe0rKx8sqwJgZWVl5T3SG3Tst156dbB3+wEYcjl8mkTkVUldViRJQlHmOL7LX/4bf4b7d/Z45Rsv47vuu6suz0jTmrRokIbObLpcCel6DpanU9YNRV6RxAWz2YI4TinrHE3XkLqOUjVK1e8+YDmsra3jeT6dTpuqLMmLhP7Ap9dr4TgWdVMt04BRJPEC27aWCb0K5rOYsq7Iy4Jbt+5i2xq6aTOf10RhjSZ1rl3fotf3sD2Tbs9DkwJkzdp2i8H6gP7aGpZhUZcFdZ0wmZ+RJHPCaEowsDl4cMwLv/cd8ixifHZKGi4Ynp6SFCnXn3mMb/3+dxgeDqmKgqquMEwDdMGVqxe4+cYtFDVJnFBkBXlaUJQ5tmUg0CiLEsMwCfwOh/snIDQM26BpSrI4RJcSTWioRpGkMUHbpdNv43o+lmXSGbQYbOzgeAGn+yfcv32ba09dRWgag60+RZWhW5BFEUHbodvrLMdShULXBYO1ProuCVyXZJHy+iu3mExC1jb6PNy/x9tvvMPejT1e+P0X+QN/6OPkhaLX7bGxcx7DtCjzkl5vDddt0SgYDU8QFASBwa2bb9PpdOj0uoSLkNPTIc9/7Dm6ax5SaoRhyNbWFmuDNVp+myLLuPn260TRAt0wKcsK13JBwf29GxydPSArYqSEJA6hadjcWMMwJePZmPlsSpoktDod4iQniVNAYAc23/v938Pa2ga6dJHSwLYd1td2lu07qmF39zytoItt20gpKcuaXq+PZZhoaMRxQl4UVKqmqBoQCi8wcBydpoG6KhGqwTANhKbpVcH66Czk4OCgeH9P+8rKB8uqAFhZWVl5D3zhC1/Q9l5++XtUON707OUAY9U06KaBqkryPCUvc7Iq57v/yCdxnRa/8xtfY2Nji/76gMGgT7fXIS9Lwjhnb29EkldMpyFFmXHxkR1GoxhTt/EDCz9wOTmZMR7FWKbNWn8d12lRV4pGKVrtgPF4SJ6lZFlCXddMxguiKMY0FUm+YD4LGZ5OiOMIQzeomxpN05C6hu1Y6IbiYP8h/UEfzdQ4OhohWPZnX7jUR5NQFCW6oeF7Jqahsb7Rod22sGwNKTUMQ0ephqquMXST+XxGVEzYvrTJr//K7yE1jXCxIFxMWCzGNGXJxlaPoO3z27/+e/imy3weoguJhqTV8mm3A+7fvI2UAg1BVRSopkFKbZlXkC9DqhzXZjDoUGQZ4+EZNBWgaFRJGM7RhCQIAjqdgDiOiZOEJIq4feMW/Z5PoxTdtR5t3+elb7zKYDMACQ2K7fPbTKZTqrpG6jo727t0+x38wKGmwnYNbEvQbjvUdQ5lxeHeHlKTdDs9hsMzJsen/Nov/ia2a/Dkc4+ghIkXtNjZPY9SYrmydLABAjrdHvfvPWDQH6AJjb29BziOjeu5FEXF3sMDnnz2Gu2+g+cH5EXBlauP0Aq6tIMOnaBNUeRYpkHb79Lyu7iWi2tbhOGM0eSE2WxImoacnu5zfHSIoVu4ts3R4UNmiwlSCkzDIM9TGlURLXIWYcTnPv99OG2XOA+pqhJYpkBHUYSgxLIkmiZxHRcpJaBwXBNNCqqqIo4zppOILC8Io4LFoqRSNVVZkUYFVBq6FDQoFMoSTX3VCKv19/fEr6x8sKwKgJWVlZX3gF0vnmIef1olmeHYDq7rotHgWjaD/hpCGCymcx576iLPfvxZfvonf440zqmb5UOsbVv019v013xM06CpddKkxNANdFPn9HjMyf4JeZ5SlSn9tTatjkujCuaLGWEUEgQter01LNOi3TG5cHEHTWrESUyWl5iWwYN7x9y9dcR0FDEejcmzFNt26A3WsSybqiqX+/G1htHpiI21bU5Phuw/OGJtvUNe5NiWRRwlVHWBYWh0Wi2EAl1KTEPiezbtwMV1PHTDx/HauK5PFE2Is5APf+KjvPPWbc6OzlB1zmw2QihBoxqyKuGjn3iWvVv3GB6cUmY1xydnVGXFbDTlwsUdJqMJ88kYiY5AQ2i8O7egKOuKMIpQCkzLpNVx6Pd71GXKYj7C83w03UApRVHmVHVJq+1gmgbxIqYpS/KkYDKaUBUZLd+l2+8wPQ1RdYUX2KRxjlAabb/H7TdvkSwKgm4AUlGXKb1+B4SgKGpqpbG1s4Htmui6QZFV9Hp9NE0wD6ecHhzzm7/y23zyM8/jtVt4XoDUTc5f3EI3FIZukmcJgddia+Mcd+4+ZPfcBZqm4eDgIXESE8ULqAV79w+4cHGLnfMDkjQjTTOuPfoI7U6LVquL4wTUdYNSy3kUz3GxDY/N3jaO6ZJmKYhlQtvJ6TGHRwfo0uTChUtIXRLFEY7jIITg6OE+45MTXvv227z88pt8/x/7bta2N0nShGgRopoKBIynMxrVoEsdTVuGfy2LABBCW76tskzWBz1816LTdggCHdPQ0YQknKVMJgvKvMBve0K39DzO8nkp9Oz9PO8rKx80qwJgZWVl5T1gy2be1AXTYcTp6Zg8ydE1naqqmM2nzGdTOusen/uT38cv/PN/zWIaIiVITWEYBn7g0e47tPsmSlTklaJulv37vZ5PuijRdYuNjQGO4xEuYizLptvtYFuSLF1wenpKU9fYlsn21gZbW2vsntvk0UevsrE+YG1tjcuXL2AZFoPeGrZpkaYJmi4J2m0a1eB5Lq3A4/TkdNn7nWWUlaLKGl7/zm0ms5S8yoCGpgHTtIgWGZNxhEJguRpCa9A0Dds2CVoBtm2RZyWq0nju+afZ2Oxz4/Vb9NsdUMuf3zDksmXk4jp/4Hs+xVf/7ddosozJ5IzFYkye5YRhxFMfforXvvMGWZxTNiVFXWO7HpomaRrQdZ26qanqCk1qIEA3DfqDPkIILNei1e4gdY26LrFNgzzPqeqUza0utVB0B32Oj4YkUbx8c6A1GI1BOAy5eG2Tk5NDdN2i1WqjSji4f4jjmxRpRlXUjEYj2m0Px7WRusCybdbW1+n1BxRljuf79PvrFE1FUoS89LVXOTs548nnroHQsV2XTq/NuQu7GLZJVcNwNKQ76LG+vk4UJ6yvb1DkBVWZ4/su77zzBuEs5Y1X7hAENttba0zGU05Pzrh27RF2zp2j11+jrmuiZEEUTYniCKnpSN3kyuVH0XWD6WxIlITohk6SLDg82qNuSjY3trBdm0o1dHpdHM8hzxOoa47vT/jOC6/xsU8+x86lHaJ4QVUVGIaJado0ajkAbJomZVkwmUyYTCZEUYyu63ieQxJHlEWFokKhsB0bw5TY9rJYU40gS3JR5MWuVOKKaNLz7/eZX1n5IFkVACsrKyvvAdfwcpQKJlFCGKfEWbRsvWlqqiKn0Sr+9F/9PF/9yjd55+W3cGydOFpwdPiA46NjyioHAXFYA7C+6eG1BFWTYhomaZajaJiHIbN5SBTlnJ2OicIE03AwDBdNgqKi1/c4OjplNp+zttFCaA1ZlhJHCYZhUNcNN95+izic4lg2DaBJiee5pEmCQGLqDrPpnMODIzrtFkmScXQ4psgajo9SHuxFxGnN2emMxSLCso13H9bAtE38tsNgvUWrZWNbBq12mytXH+FTn/gIh/dPGARddra2kYaFbupIS+A4Dj/0wz/AfBLy+itvgCzJigzH0gjDGVbLYfvcDi9+4wWiNCJNMtKkoMwz6rKizCvyIkfXdYRQCBSqgboG22nhB22k1JBag6Eb2LbFbLpAopOGKZ2uT7fr4/k2rZaHbenkaY7j2NRNxevfeZPHHr+IISsm4xMsR6e/vsYsnOMHNqfHUwzHZjGLmQxnaAg0Tcf1LVpdj1Y3YG2jw+HDfdqtDrbjkeYZNA0//zO/xDMffYxG1CxmC85O5qSpQug6juuSZhlHR0fvFlY2Ukh2d8+/27aU0O8OeOftN8mynNdevsl8FuH5HlEccef2XTa3N9nZ2WZ7+zztVg9N0ymKjLopmcxOGU9Oabc7GLqD1HXSPCEvEqJ4wsHhA27ffIcsjYCS4fAM27TZ2TlPr9ND12E2Tnj1pRs8/fTjfPS7PkRRFeRpQjgdU+UFTVOTZSm2bWOaJp7roWmCcLEgiRNsx8ayJIM1j6Bl4Xk6tq1h2ZJOx6auS4pcUdXS1aV1VdXl9ff1wK+sfMCsCoCVlZWV90AyH39mkaTbi6JBGQaN0KgbULVCGCbf/8N/mMUi4xtf/g6+51E3NY1qMC0Lz2/h+T6m1DClzugoYnK8YNDrsLnZpakKsiRFNeB6Nu2OT5blxHFIuJhRVRVJGlE3DVle8vDhEXFUcnYy5+RoQpbkxItsmca6WKAahWM5pEmGbuiouqLIU5qqIUtyJqMRSRwxm07I84S9B3sMJyOuXDtPNE+4feOU2SRnMorRDQ3XNTEMQdNUy8HXrkl3zcZ0dLyWx/b5XTZ3trn+zCUarSGcxGysr+N4Lr1Bn06vi2G5PPXhJ/nQx5/mW199Eaqc7qBFlkTomiRJpjz3yec4PTjh4Z27VE1CkeQki4wsSSiyjCTKqEuWbSa6gWoqmqpC1wRN3SxbYKoCz7NwXAvbMhEojo9P6HR6727xWe7c39wc0Oq08DyP8XjMuctbDI+GzCcj/uBnPwpVSbyYY9iSLMvw/A5CSOI4YX2wxnwaUaQwG4cs5u8OCvdd1tb6WIbGYjLm/NYFdOlQlDn3bu1zd+8eT37kKRZhwt7eAfsP9ohmCzRNZ3t7FxQMT0fkSU6WZSgU21s7VKWiKpdbMd+58SZSk8RJSLiYoxoIw4i9ew8YrA/wWy6B38Z1WvheB01otIM2URyR5ymtVh/f7tBp9wGNPM+oqwJFzf17d7h1402iaMzB4QMePtwjzhJM2yJNY6JZyJd//XdRdcVnPvNxBmtdpG7iOT6e46LqGl1K2u02pmXh2A6WaZOlOUIpOh2b9U2XVscgTyvKvMGyLAzDQjUSTWoIHTWaTN0oip/6whf+kv3+nvqVlQ8O/f3+ACsrKyv/eyQtIy1qLR8uYibTlKrW0A2DOM149LmrrG30+cm//0Vs0yPLI+q6wffa2JaDYUqgYTGPEEjKoubG2w9pVMXu7jZ6pXAdE+FIyjLHth0sy6bTbqOqmjTLkFIjTkI0O6CuauqqwjAcDvZPEYh3d7ELWi2P6XyKqes4tkOeFti+jet6pEnGbDalyNPlLTqCeLEATbJ76TKj0YyizGi1WiSJgyZaHB1H9PomQWCjGyaGWZOlijQqljfkuksclphOiyvXtnntO3cxbYtW4FPk1XKIWOh4gz7Pf9fTzKZTHtx8wPrGBroQ1EXOMtlA8LFPfYpvfO1F8jSmEQ15njIajQjDEIW2DIwSAtO2aJqKulakWYVuashcYBkGhi7x2z5Jvkxidl2L07NT/MBH6hpKaVRVBZoCXaEZGmdnJ3Q6Hp12wPH+GRce2WXn3AYHD4/oeRskYchg7UmkqTEfL9h+vEelHBaLBWmWEEUhAo3N3R6JKLh6/So33r5F23JZX9ukQSDQ+a1f+30+9/nvRchlQXY2irAMG8v1OT09ZXt3nXa7xd0794mjBM9z6Xa6+H5AlpV0u5vs7d/ihW99hScefxbDtKCo0KXB4cNDsjzh8SceRZfLLfpxnNBUDaDTa7uUVYEQIHVJWZf4Xot5XSPE8u6w2+0zX0xJ0hgaMA1rmSGRNJimTZVnqCrn2y+8yoUrl/nIJz7E6emUs8MxnVaLuqqYTMbUdY3jOEgpEUIiDQtp6EipgRJYhk5RQKMaiqJA1wVB4CBlSVm19aNDW0/iqDfaE48DL7+f535l5YNi9QZgZWVl5T3gWu1XPNcadX0PwzQRmiIKF9hdi498/Gn+xT/7eSbjMybjYxaLGVmeUxYNum6xttbFNHTqUmM+y5hMln+v6mXIVV4W9NdarG977Oz2aZqSs5Njjo+OMQ0bQzexTIfNjS0uXLjAs88+zYWLG7TbzrLXXZXkeYFh6BR5ieM41E1NELTxW208L8D3fQaDDrouKPJl2JjvOjRVQeB7VGlOFkZIoVGXiuFJzM13TkiTAssyME0TgaCuQDUalmXQ6Tq0Ojatrs3Tz50nClOqQrG5tYFtm+j6sp3FD1p87JOPErRNjveGxIuEditAVTVoUKuGnXMX2Vhb4/UXX6JpCqAhjkMW8xlZllAWGYv5sp1E1wFVU+Y5URhSlRVVVVMVJWmavzsroIFq0DUN2zQ5PjrEMQ3qskQ0kCU53U6Lqi7YXNtk//4hRV5x+52HBN02buBgWRZnxyNcx8bQFf1uB63ROD4ZMtjo0WgF89mYOAwp85rx2ZRwHiINm3MXLlJTc/HSRQKvhW2b3H37HnEYcu7KJmVVYpg2i3hOWWWUZckrL7/CO++8w/b2FoZpcHJ6xnA4RhMaUTynURWPXH0c227x2huvcDo8QUqJJiVN0zAeTnjxm99kc2eN8+d3sE0TN3CBirouAUUUzYmTBUWe0TQ17VYXISRCwGIxJfDauLaP63oUZUoUzlBKLW/qLRvXbdPrDAinEd/4vW/juw5PPnuBrEyYz+YEQQvHsUmTGNU0tHs+jm8ghKIoa9Kkoa4BGlzXIPAd6qqmrHLmi4g0qYSpW6Yu5Ulpmm+8n2d+ZeWDZPUGYGVlZeU9EBtlLRukp1tI3SCbLZCW4nN/8nv52u98k5MHR/h+gGkYOE4L3/dpasV8NuXO7YoL5y8hdIEQApQCBbo00ITJYpbQ6brolmR8EhPOY5IkoygKRpMhZVEidYkuTfI8YzyZ0O/1abUCpKFTljXRIsH1XKJFuAxnKioM38ZzbTSpMZ2MkbrG9u42um7SNA22K5GmjVLLzyRRNFnFfDHD3Q1QFXiuy+F+jGkk9Hom7baPtJe36EmTIqRifTsgaBvcvRXS6baoy5J5lFLXNYZps3Oxz87uOgcPhkSTkDROkRuwmE8xLIc6zviu7/40D27f5uHdO2g60NTkaYyhW2iiJs1i6ndXgVadgCzOsSyToiiJihgqRZKk5HWJlHK5MlQYhIsYXeocHR5wYWeXIivQDZO6atA0ied75GmO57mMRmPG0zlH+wdsXdrkwZ0TRF2zmIyBhjicUZU5cSxJ4pSNrTUmowlNXXN2csx58zyzSYzluvhBm8kkJM0yHnnsMnfu3IGp4ttff5VPf88n+dpXXkTTBY5nEi4mOLaHAN5++y2Oj465cuVRyrLidHjCdDZCN3XiWYxt23S6fWzbIVwsSJMM32vhBz6LxZxsVvPC117h8uVLdHt94iTG63tMJxOyd98klVWKlCZ1o0jTFMfxiOI5aRpTVQ2dTo+yTBBCvBv2laHrBlI3MSwT3/GosoIqz3jj5TfYvbTL409dJJxlHD0cUufgugGGadDUik7H4tz5Dkop4iTHsiW2LYnCDE2TgIZtG7QCl2SeiHan08nzrDOdTldpwCsr/55WBcDKysrKe6Go1nRTZ5GMSeMEVM2n/tCnOHiwz7e++nVUXS9DjczlQ3peLB/MGtWQpRlxErG+sY4QGlVZU2QlnudhWZK61onCDLfxyPMa3bDwWwG2Y1FWFUkcYVkG2zvbzKZzwjDDtkvmUUI4D6nr5dDrdDKhyHLqsqIqCkDhejZKKcLFcnWm1EuKuqCuakQl8fwOtVJIqZEmGUo1eIGP0EravR6HBzMWs4StLY+NjTUs2yTNEjRdYDkWlqVYX29zcjTHcW1qo2E6LlCAbljYvsmlRzZ447WHdAY+D+6d4Xnu8n21As9pY0ibj376Y/z0T/wUZVXgmBZ1tdzpLyTUeYXKE5RS6LpkdDqhKEvqSlEUBQgwpKSqKySSs9MRlmmia5IsLdANQZaW3Lr9ABDYjk3f7lIUFZZlU2Q5nU6HOIpQdcHL33yLD3/meaQtCZRDNJth2jqGIYmiKVkdIzRBp9NjMBgwm4xp+x6LWUia5oRpSqfdwXFcHh4+oLUW0O33UEXDG6/c4A989qM8/8nn+ObvfoMgWBaKSjXUTY3rOSzCGa+8+hKDwQDHNQkXc8qwwrIswiSkzHNarQ6maWMYkrxIsW0Px/GYTE8ZjyOGo0PW13do+QOiMMJxPIJ2mzCcE08SNC2jFfRx222SNGTQ3yQvcsJwznw+xNAtHMfH1B3qKiUJZximjem4VMpESA2UhhAahw/OGJ/O6PcDds/3ybOSNKmQusBxlpkRZV7it0ykrpHEKVJzUMB0EmGaEr/tYpgaDTmz6UxD8UzbMteBg/fv0K+sfHCsCoCVlZWV94CBQSWFNAwDoQTXn3+Mbifg5774b2gHAyq3xLZs8jxH0wSGZeH7AYN+H8936fZa1I1gPg2ZjKfUdU1XCuI4wTAleVKRRjOKslpuTkkiFosZpmHgBwFQkyYLgsCiURZCV9i6yXxaURQ1QghM06QuKhA1uuOQJjGWbWGYJk0Dhm5QFDlZkiKUQmmwCOe0O10MXcexLYKgg2ZIds6vMZlEZFlDf+DSXWthWh4np+Nl8BMamgC3ZYIQSB2Cls1svHygsz2bsqi5fG2TOMo4ORpy/sI6k7Mplm6RpQ3SNMmTkGvPPAEI3n7zLayWh6wVQtewHIcGRQPoAjShqMqC6WSC7TqEYYguDZAC09QRurbc/1+UZGlKXZUgxDK9VxqMhmdUTUVeZVyurqALnf5an7JqsE2BYVjoUudkf0oaZniWQ1bkSCmpVc7O+S2OHh5QFwVFmBAjieI54+mIoiq4du0J4jTh6OFDhmfHbG7u4jo+N9+8g99uEc7HqLrhK7/1At/16U9x5/UHLOZnIJatSq7jUjcVWFDVDcenJ5iWgZQSXTfIigJDN3E9n3k4pakbDGnS7a0t16yKhq3t80TRnNPhKcenx6RpgZQa+TxBlwZlnWEakkU0o6orLpy7jGV1GE2mGJaJZdokaUVeZJiGRd2UGLpGVTYIpWjKhjIrKfIMTVPoEmxb0lQFD+4dcnR4xtb2Ohuby6RkpSpc10QItfxe2AbzWUpZ1uiGQKBhOwZlUVPXDaZhMZ8tkrJJf9ew29P3+divrHxgrAqAlZWVlfeAoardMK18pMfF622uf/gRfu1nv4xWC5SoKcuUPCvwPA/TtNA1A4FAGjqtjk+3HzAZR5imQbvbJglThqMh/X6PTq9HVVWMx8v03tHwlMV8hNAUfitAzzRczyNJCtI0Y3tnCyV0NN1ke/ccZVaQ5jl5llM3zXLAV9MwpfbuGtGSusyp8pyGCsPUicIIwzSoqpyD/XsEQYfz567guCZlpWhqsdzfbwrabQvfNfn2iw8IAoOtbZ8iLwgCl36vR5LEaFJRNxWGpRNIQaME/W2DoGXx2ov32L2wydnZjLoCzTYoqxqhGeRVzCe++9O89vJr6LVA1x00S6AasGyfmgYhNCQaAkFRFqAEhmlQNw11XWNaNkIIdH35O9elTqUUaRGhacsB6ZbfYjIZEiURk+kUKXSqouRqcw2JzqIKUY1Cmjq29Dh7MGZ9s8ObD2+zeXmb2WRBUVfs7u5weHgETU0Wh8xnU+I4Zu/hHmVds7l1Add2mC+mPHhwB9t0ly1XVcPp6RFVWSBeEXz448+ztrWJ1DRmsxOmszGe28K1AsJ6hmlomJbFbDEjrwo03aDleGgI8qKk012nqSvmsynj8ZAojuitrVFUFb7fRilJWRTUdUpViWWh1EBdlFiOj+0EpOmCvf3btNtr0DTMpxNaQbAMeNMNtHd/55a93PWvSwPXcdGkxGm3ltuDGkW4mKNJg7Is0YRiOgpJwoLNnS5XH9tmsOaAaohmKVle0NSCLK1wpaTIKxzXROqComg4PZojlVYJTR7+9M/8TPx+n/uVlQ+K1RDwysrKyntACG2tVpqMiozHPnaFt16+SRoW+IFPUVRUpcI0DYqiYDo9YzY/Yb6YcnY2YjqJmI4T8nR5I20YkqDlE7RaVHXDeDynqqFpGspyuVMdAVlesphHxEnK4eExD/bvMVuEDIcLkrhgfDbi4cOHnJweE4UhhtTRpSQvCpRQy2087Ta1qomTGMPW8dsB61sbdPsDWu0+m5u77OxeoN3pE8cphpQIpTg+OKUqa9otGwn89m98h4N7p8hGZ3gSoRpJu+dSUzGbp8RJCRJs30QzJN0NmwtX+0zHEVUluHh1l8kkYW1tA9txqRUYhs3F69e4/vh1Xvz6S9hugN/q0uqu4QUdPL+FbXu4ToDQdMq6oSiLZSJwVVHXNQqFaeg0VYOuG7iuh23bGIaBZdnYlk1dgyYNDMPE910sy2S2WJAWOffv3yFNY07PTiiqDKkLVF2QhDmbF9dIiojZZEhdNuzd38d2PIKgS5ylJFlMkqcoISgbxctvvMKde7dxAx/btjB0narICOcTNKFz6fKjSNPgzs0b3Lv7gIvXz+P4AesbF7DsgCSLKOsYXTewTAsN2FzfoR10oKmIkog0z9A0wcHRIXWj8FotiqpgPp+wd/8O0FBVNXG0IE0jNKGT5ilhtkBaOp7XocxTUBWakGRpxmw6pFYFrmuQZjGO4+B5LUzLxXZ9dNum3etj2BZlVVJXFdEipqoUnW4Hy7YoqwzbttBNE00Kumsdyrph7+4x80mEY0vWttoMNtps7gZ4LQshludgsUhJkwLVNMRxwtl4OBGm9IVYjQCsrPz7WhUAKysrK++BpqmkY+vOUx+5wsGdQ9761g2gIcsydCkxTZ2qzmmaCsOwaLUGWJaz7O2ua+IoJYpSonCZjmrZNlIKPN9Z7pePUkzTxLYtLNvCcR1sxyavCrI8o93psrW5Q6/XRQhIk5RwEdJUNaZp4boepmmg6ZKqqRmNTjg4uMvR4T3icAqiIQ5DTk9OEcDm5gZROGM6GaPrJrbtYVoWVV3juMsVoXVR0RQVr710j8W0ZGNjnTjOME0d2zWQ0uT0aMHh/pQkrDBMA91scFsG5y4N0NCIo5zNcz0836HMwXJdlNDQNBNh2Hzqs5/h9OiM+SSmt75Jq9sDoSN0E2mY6IZJ2SgQ2rKdh+W6U6UaDGP58zZCkFclQkqkaWBYFpblYNkujusjNIkCXNenKko83wFVg6gYTc84GR0TJRGnw1OmszFRHHF6dIKmSy49fo6zyZgwXjCfz7h95xaaBMMylw/jQoASrA02QMH9e7eZjs+o8gJV1wgpsGydJFowPDvl/LlLdNsdXn7xZc5d2mQ4PML1XLa2dmi3B2RpjqEvB7uF0AgXEwLHY727AUpRFDlxEqFLGA1PmEzGaLqGbhlIqbG3d4/RdER3sIZhW4wmZzR1SZKl7B/tsUjnKKFQVY0UGo7rUjc1aRohlY5tupR5iS4ElmmgCQ1LtymLisBr0W63qOuCuqnI85zRaIpA4toBhmHR6XRY2xggDYlpOaAMzo5jHj6IeOfNQ85O5lRVTa/vg4RG1LQ6LrohKPMS07aRuunXVeX/3b/7F1c5ACsr/55WLUArKysr74EyywYbW51eaHg8/MotLp47z/HwlDiNmUcjDGmiCZ1ut4dlG5RFhSYFuqGRpSlFVqJJyfb2AMfRSLMGqTtoEppaoWka8/mcKI7J0oQsz/7d/v+6yjk9PqTdbqOamp2dNoZhYZkm88WcplkOxyIbpC6xbIuikETRnDRN0JD4gU/TKNI8ZT4fc/HiVVrtDmmS4Tge7XYLP3DJ8gKFhu861HXDvdsnCCEZbK1T6QrDMymqEsfVieOMG2+dkoQlG1vLB3whIeh4SENneDSjrhXb51pMp3NQDZqUSMNAlRlW2+G5j3yIX/7ZX8SxHRqlKMsChIZuLnMWkjRdrqnUNKBESh2lFFIaqAayLMM0bcqqwjUc6gY03cDS9He30FTYdoamaUjbxtAtTNNCI6KoclqtgCyLqOqGOIkpq4pOq8NoOmLr8i6djU3SWnL48IjR2ZAiTwmTkMHaGkopqrJCCg2p6Qy6A6JozvD0ENfxUQj8VoeqrvE9l9PjPXRN0Wn3GB6dYLkm7W7Ards3uHTxEt3OAF2zSLKIwaDPfD5G1RWz6RjXa+P7LfI4ARqqusI2lz9PmqXopoHUNAxD5/TsmPliTrfbodvtUmYF7XaPRTgnzRJM3cKQBo0q/t18QVPVmJaL53jEcUSeZ5iWTVPXWIaFahRVWWLbFnVdYVkmdV1RFhmoZXGlGwaGoeP6Np2eQ1M1NHWDEIrpNEShGJ0mxPMSx4/Y2GmjmxqaajBMA9uBpq5xHEsXmigmk5Z6v8/9ysoHxaoAWFlZWXkPeC3Dbm207F/9+ZdIkhqhF2R5iqDCsT1Qy4RaTYM8KzBNk6LIqeuKpm6Qmon97n7+drtFUSwosoqirCjLAsM00DSNpm7QNA3HcWm1uwwGPeqqZD4LKcqSyXRKVTX4fkBdQ5pnWIYBKIKWD0pQZDm+GwACz29R1zVNXVFVOZ7v43kBeV7heD5e0MexTFpdm04/YDaNScKCMivIi5KyqvACG9c3MKRBlmTsnutjuyZvvXXKIirp93ySuGIezrl4uYcQGtNxRJbkWJZFb9Dj/p2HmKZGUSikoWF5Fh/9gx9jNplw9+aD5Z561dDUClBoms7yT8viqK4qpDShzhGapKpqUALP8SiynKKqcByXum6wTIOyqjBNm6Ys6XQ6FEVGXdesrW9S5QWWYRNlEYauk8QhRZHSNLAIQxrVIDXJG6/e4MpTz9Lf3OXseEw4X6BEjTQsjo+O6PZ6CCkpsoy6yQiCFkI1FEVOURXouiSJIjTDwbJcNrZ2CGcTKmqKpmQ0GfL4h58jjV7h4OEBrVaA6wU0qiZJIh577Elu373NYjElDKeYtoPve2RFQVXl5HmGRNIKfOZRRNUo+r0+vttiNh+RLGb4bhfbNkiTmMANcGyPNA1JsxShCbIso99fx3cDiqKgrEta7TaabqIbBpomqFQNmkZV5MRxhfbuvxOaoMwzmqbCcSyktCjLkiRMCHwL37cwDI2irNANHcNQWIZOVTbkac3wNKLVtRGqwXUkRZFi2hIhlKFpxnpd1waQv68Hf2XlA2JVAKysrKz8R/aFL3zBXdvQd996fV8/PZmRN4qiKjAMjTDMKYplqFJVF0RRRLe7BqWirita7Q6eF9BuBezsrqNLQRLl+N6y3SZNSwQOYRRRFjmqqaibkurdwKrFbI5umpiWhaZJ2mttNGlgWgaablBPljmzWZISLcJlp4wGCA3bdEjSBENaNJokL3OkNAjDCKUagpbHI9e2mM8WgEDXodW2SKIUoSmapsbzlv30qhEkYULvQgtd19nfH5ElBefOdZicLDjYn3Dh0Q1OzzLMeYYUDbohcTo20oQ8LbAsC92scdBppM2HP/kcv/KlX4VG4AcBZZ5TVtVy139T06hlMYRuYFo2WZpSJQ0oAIESUFQlRZETtNoUZYkpBEJoyzWghkRJiUAgBGgoCtMgEjGOptFqt5hNZ7iOjyYlRbEcpk7iBMs0uXf7Hp3NCzz5sUe4/Z3hclONXqGiCMd2uHP/3rJXXylAkMQxne6A6WSI1CS6bqGURlmmxIs5Quj0eutMZ2c0WcPDmwc8+eHneeObtzENg7PTh3h+SqfdJ4oiTk5OuX79WY6Ojzg6uENVFlRVhaHr6FJDQ6NRDVVZ0fEDkjghTRNM02Ktt05ZlqimIs1zLMcmyzPyIsd3fFJRIESNY1tURYHTd+j3B0wmY4qyou0GFEWG0mCepsuBdqmhGoVtO+iGie8HROGULCtwfR/L8WgaRdU0xFGO5cDadg/DNCmKirqsUE1FK3BI05yyrkmTDNuyiJOcJFHLAjSPTwxPfHttbS17Xw/+ysoHyGoGYGVlZeU/sqtXe/rwYFY/fOewcgMH25SgarIspagK8jL/d7fVjuNQlSWtoMX62ua7QUdQlg1ZkpNnKSdHY44OpxR5hQCKssQwDNbX1ml3eui6TZyETGZnCKDT6tHt9vACB8sxqOqck9MzsqJgbWOD3sYa0jSX23I0fXkzW1fESYxSFWkaUpU5qhG4ns+FixdwvRatoItpCPrdFhLB0f6IOCwxDRMpa8o8YjqZMZ+F5GlOu2NhGIIozMljhWtY3Hv7gAe3jwl8l9FZxnSaQSOoUo29+zM0aRBFGULouL6BaUkaGq4+8QjhLGbv7kNMx1iGkUmJ5/ssc8mWPf7tTodur4dlWTRKYLkOluMiDROERlGW79781+RFSVFU5EW5bCOSEqkLpBTYto357mpWy7ZodzsEfgvdWK6+bHkdXNvDdz00oFE1ZV6wf+8eQdsjTTLqRtE0UNU1YRIhEJyMzpjFCSCIk5g0L1hf3wElQRi02j00AaiCokipUVi2gy7g7ZffAFXSqJSySNk9d56yrlmEIaZlEscx4/GY8xeucOWRp+n11hFooBS26WJbHp7rU+YFRZ7hOhaOZSGUoiwrhNBQKLrd/nJI3TAwdI00SzGkjuf4dFt9XNtjMh6jSY3rj1+nO2hTVSVZlhIuZqAqTFNSVSVpmpKlGVVZsJhPcRwPw7TRpYPnBjieg6Eb6LpECJOz05jT4wlVmWNZOk0tWMxypCZpBQ6ea+E4BklUEsclKPADOzMsa+/HfuzHqvfrzK+sfNCs3gCsrKys/Ef0pS99Sb71wgv6gCxaW2uXudEYYz0jL0uKMkfTJLbt0PJbCDTKssJ2bCbTCZom6Pb72LaF67gkSYVlC6oGiipHr81lkFOWI3WdLC+xLJt2p4NSFYv5hOl0Qlk2OJ5DlqfLXvpGw3YcVFkTh+EyNEs15FmBbVvYlosuJbBMetVpqKsax/FQjWBrexvHsQjDjOHZnCxZBnfVFUzHI5QGjqnhei6zeY5pSlotF9PRMGxQQjEdl5wdTYjCFNP2WSQ17Z5Dv+uRRiW333qIMCRPuw4HD8douo6tK4QuqTXJcx95mt/+1a9gSI1CVJRJCZqgKEuyLMO2baSUgKAochSCTreLEII8L6mrAqFJLLEMOovjBNOyKUVNYwuyosSydKSuo5sNQkCepbiuQ14W+L5PnqZ0Om2SJAHVUKsGaZiYhk1WpJimRhxP0FHUStEotWzvatmopkYpheu6TMKQpm5wHYu9/Qdsb53HcwOyIiNO57ieR101NE1D09RYdsDGpsciiZhNI9a3utx6/W2KMmNzc5dwPuPs7AhN08irnI3tDbygTZmtEwQBo/ExWboM//L9Foau0zQVTaNoajBti6aukdKgaZZviLqdNsPhKUHQwrBNkiRCKIGuLwtH0zSIwmXv/7nzF3FMh/v37nJ2dkwchzRNvRwWdyzSJCZJI4KgDUh63T67F9bQdMF8pui0PGxXkiYFlmug0FhEJUVeIxQ0SrBYZOixpNU2cH0HIQWua+B5Nod7RU8J/Pf35K+sfLCsCoCVlZWV/4gevvCCGYfzHyzK6BHf9kVezinLGqUElungOiWT6Zj5fI5ju5imBSy3qnieTxpnxGaMgHc3qJhIXdIUCXleowmb/qCDEoI8KzgbzkiSDNdrAxq2peN6HkIz8IM2hm4wHg1J04TppAB0LNPCNA1cz6OpaxaLkKpMKfKEMl8OEntBF8t26fUGuI5Dp2ejS0Gr45HEKWWhSNOKokjICwXGclWnGzi0uy08V8d1TOKoYTYOOT1c0FQNUZxQxzFrGxskacL+g5holiCwaPVMxqMF9+6csb3VodN1yacJTz73NEUYMTw8xHYsZCHJTNCkRrQIkdLAMm2EplPVFZqu41kOTV3TNA1S18lzQV03qEZRFiVe0EbK5YOsoqGqlm9dpK7RoCFUg9A0DNNc5hsYxrINqt2iaRoMXS5nMFRDkRcYpYHUdBzLokxzdM3AsW0oK+qiWLatpCmB55PnFXGRAjWNqHh4vMfuxi6mpRPFIVIY9HprSE0nikJc16PbGdDqbVBVgrWtDns3TYSqmQyP8NwW7VaH47N9XOVy8+3X+cgnPkU4PWGxCOm0u8yUoGkgikIcx8E0PcJFiKIhTVKUarAshalbNHWJabpsrG8Txws0IfC9FtAgpcQ0baqmwjEMqlJx7/YDLlzc5pnnH+PuHZfDg0PyNEN6BgqB1E0c18K2HVzPZef8Gheu9BA6nBwuKJKCNAVdM4hnKZ2+iy4MLNNAGg2WZVFVNRqKbtejUg2WYXP33l1uvHmrFAZvu657+n6e+5WVD5pVAbCysrLyH9GP/v2/n37hb/9IlCXyyv5o6qQlWK4Fi4a6qlAoDEOjrivyIqVRNXFSY9kOQdCl3x3gtzzKsmA2m+G6LlGUMJ/OaJSgrAu6/R5Bq4Vp2DiuR1VWCA1a7RaqhjyrQBRoAnzXpdtr42Q2SgFINCGpqhxdl+i2hW7qhLMS1SgMQ6dB4AUB29tbOI6FUiWnJynRImM8GRNHKUXRUFWCOF4wHI3wPB+v1WawPkDXDU6Oxzy4m7K1s0Ucl1R5wmw8Is0z1na2iZMYy3bJswrftrm/d8TGlauMRgl1JbFcE8PWafc6PPXs43z1t7+KLgSNIdDQsJ2AJFne0EspqcqaIs3QpFi2zEhJXdfoUhKGIZblUFc1RVHieiaWZaHUMhdgPp0hNIEuJUITCBSGBF03QAh0Q0eI/z97f/KrW5bm52HP6na/v/Z0t40+IjMyszoWS7RlmjYFS4AHhgfmfyAY8EADcyJ4YBRzrIltwQ0naiDJgFiAObBlyCYlShQlURZZRWZlRlZ2EXHb05+v2/3aay0P9lVpSgIBBAL4nvHFveec7yzc913rfZ+fQApNOZtP2kslQQAIKg4kWUISp8SzOftNg1YJp2dnNK2k7xwISZ5l9H1HmcTsW0ecZLjO0w4Db2/esJytyJKMqj6QlzOcHVFSsNvcYkxEHGXUh5rHT5+Spj9naA9EUULd7JiVCx6fv0dV7dje3/Lzn/6E73/6ff7kTyo2m3v6vkUpSJKS7XbDarFmNptRVXviJMXaATeO6GRqQrq+Iy9K8rxAK421Iz44un7Sz8ZRzP39Lc4NhCCo6h1vL684OV3z7Okzbm9vGW2gyGeTcSnPWaxmLFdzkizl9nbPk+enfPL986kx3Fl2mwOHbcf1qz1RJDFJhEkkq/VICKAjhbVT1ldbD0SRoWvakM3NZXF+/tW3eOyPHPnOcWwAjhw5cuQbZr1Iry3hvrMyCOfEaC0COc2h2xo3erSOkVK+8/6PzMsljx89RklIYkOSJGwfNtzdPhDHCVGS0A89Mkju7u7I8pLeD9R1TQie5nCg7SuKbEZZzpEawLPb7ojTmL4fscM4zbfHCUpIgh+x1iGFpCgXpEmGtT1N3wMCpZmSfgdLXfXYsUdHCVlWkGaSq6tbnPeTzUhpzs/PMUZw+eYaN3oeXSxYLzP2D2/ZPmwYnSeKDPd3D2TzOW13S7Pbsb29Z34y5+LpKT/54y8pi5zFMsH5wGc/+gF1XXF7+5Y4M0incJHHe4isQQpF3/f0Q4dAYUxEW9fT168km6bB++nmf78/sFiusHbA2h4p4fLtK5q6JstK7DASpylxFKGyiCAlQgmixDAMPV3bk2U5aT4nBEuZxIx9D3iSOEUqw/rRIw6bA7HRzGYL8C2LMuP2/pYsS/He0VtLGkUsFyeYQwRiS9f3BALOO6Io+vPPqmtbpDBstw/MMsfm6o5nzz7FRBF2kCiTkEqDsxYBzGZzdrstd9dveVvM+eCTT7l6+4b99o7rm1dTbkNSorUmS0uSJGe33zGfrdBKYe3A2ekFdV0R3EhvB0ScURQFVVMRxzFVfWBWLMmznHGM0DpCKslhu2H7cE9kIkxkyIuCJE1ZFzlJlpKkmsU6Y77MqKqWl1/dEOeak5MFjpHlecnp4yXVrqHe9TRVT9+CEpLFKqGuO1ohwEvqw8DPv3hJcDipdPQtHvcjR76THBuAI0eOHPmGCdI5a2tvlEBLhQ2Ox4+fcn13xaEKWDeQ5QXBQ1XvWC3PiKOUqqp4/OgMpTS7fUUUa6KopK4brLUIIUnihNC22K6bXPh+nMZQbMtud8tuc8/Z2eMpCXfoESrgXSCKUozSdI3Fdj1pPHnXpdFE0eRq11GEiWKQDQjB7e0dQnhs79DacH5xzu3NHmstbWsJITAMlqIoKecLxtFzd7shy1Pe++ic1TrjfrOlrlucG6jqAwHIi4Lr119x+fZroijik4++zw//4ue0XYuShnIW07UDi9WaJ8/f5x//V/8VRZ7QyRFfdYQRBIIkiXl42DP0Dm1SEIKm6wmjn+b8qz3W9nRdx+GwY7Ve8fb1V9hhQEioqh1Ns0crjceTFTlqnCxAkdEoqWjbflq8Hgacd3ghUFFE8BAnMZ2SSK3QUqGjhPXZkpu7DZGKefb8Gb/pW5arFaOfloRnRcm+rpDOkcYpkUkxUUzT7pHCk2YJm812+jxUjJAGJdW0ZGwHqu2BNE+Ii4KH27ekaUZezHi4v6MoFjTNAa0lRivuH64QkWaxWvP06XP6P+5p6gdG29APMUJAOZuzXq6pq4okLyZhEpInT97jcNhjbUfXdYTgyZLinTqkpap3f65Rdb6nyAtOTk65u7sljbPJQiU0WZGSzHI+/OyM2SzGaEHbdbz38QllkbK5a/mzn77h6bMF+01NU41oFaZl9lWC95KmHYhqiQ8BaSTVfuT6zZ6rt29CnPAzE83+46urq/rbO/FHjnz3ODYAR44cOfINEkIQ/6f/3f/mo8RERopBOD/gcNT7A7e3l9NMtRR0XTMFVgmmfAARWC5nZEXGw/2Woe8xRuH9pIwMLuCBMs8w2lAfKh7u7hjdiNYarQ1ZVuJGT11XCAHOTarRR4+eE0UxfdezWC6QUqFQpGkKStJ1HUPf45wjTVKev/eEJDNERqK15PZmz35XMzpHXe2omg47gJSSp0+fcn11zW53YBhGTk4XRFHMOFqECCgVMVpH0+wYB4cPgTe7L9nXO/J8xiff/xFPP7jg2dMVTevIUs1imRGC4cnTD9ju7un6HXmeEPw01jTYka4ZqQ7Ta4pSkig2CCHQSuKtY7d9oO9qDocDdX0gzzOqw479fkcIDikFwzAFWyVJQZlP+xJuHFBSMI6K1mvsKFFSYEcJ0hB8wLsRrQVZFjOOA94JIBBnCciRoWnICsOzDx6z2T4wn80Z+p76cMCOA3GcUjU1hPFdmJciTwsQgcF2zGZzlFJ0bYNQCiEESih0pGmrhgCcPT7n7Ze/5OHhnrNHOUIExtETxwldv0dJzWG749mzpzR9i7WKTz78nK+//iVJoghOYMeBw35HkmTEaYQPARMleDey2+2Ik4i+b2jaPc4PZOmcJEmZz+b0vUVrgzaGqq7Z7vYU5YKnzz5g87AlyWasTlbEaczqvGC2iHj2/hoRJFobqkPL/tCyrw5ESvOrn17yB3/5I3a7luvXFaP1VLseHUE5jxlHz9A5tk3P7e2Odl8T6yikmfjp7//gB/+vf/3f+Dfct3vyjxz5bnFsAI4cOXLkG+Rv/I2/IZYgoyjq4ggvpZUBuL27pmsrILyz//ScnjxhVi7R2vD4yWMePT3BGMPmASQSNzgGaxFKURQZ4t3SaVmWNE0HeGzdMVqQMuLJkw/o2pa6qrG2QypIo+nPKhNhtMb2A0mWE0UxPni8dfhxqp2KPENHhv3+gBApQwdtZ6mqPU3dMtic4D1v31wSmZgiz2kaQZxE1F3DydljEIHdZscHi6fEcczOHRhGSwga61viJCLyCR+eX/Dx9z5jsV5z/mwBMrC93/L8vTMi45Em4vn7z/jiZ/8tWRYxiIAdBAGFHT0AWZ4hpZmc/VJgB89h3zD2A1JptJnyEJRSBAJd12CMATRSKoxJSdOUJJ5SafuhJ00zEAKpJxuNtZ6gBQFJ27YkSUYIvEsaBu88sTYEGTBpzGAdSgnavidf5jx97xmHhwNZltH3A857tFLEUcZgB4yeGrHIGBbrFS9efkUcJRgT0etpt2Eq0BOkVERJRlNZZvMUYyKEhO3DHUYp+m5HnGTk2YK2bUjTguvLWz77/Pv85le/IYlTFoslbVeRZBlJkrLdbdnt7lms1qRpTte1hCCQUrDZ3mN0RJZmdF2LTwaGIXCopgajbVuWyyXPnj3j9vaefnCsz845OT/Be0FelESR5HQ9o28HmtqyWmUoafjo4zPquuFrrthevWa7afn7f+dn/Oj33idJNPu+AwFZFtMcAnkxjaI9PNR89ZuXvHn5S0bfudMnJ6t//Ouff++v/bW/9sd/9Ed/dGwCjhz5Z+TYABw5cuTIN8iPf/xj/3/+w7/+KzfWGztYH3ovvRspijlpEnOoduwP0yuAVIpx9CSJIS9S+mFks6mw1oEE7wJ5kSGlpGoqxnHEec/eDoAEIaZF1uAYR8d20+O9o24O9ENDbBLKcoGJYuzgKN4FMnnvGUdLXmYIoajrir4fiOMI7Yd340aeNIkQwjNf5dNY0qYBIfnoo8/Y7/YEH3AuoIzhBx99zv3dlru7PU+fXRCCY3tfc3+3JQjJcrVEHBy3D9eMFtbqjHEcaOuGy1cdjx6dMj8pSFKPEoof/YXf5VBvcUNLFGlsPyLlVOj74FBa4/uGrFBEJqJtBtrGkqQGkUSMg0NJRRwnjONIVe+RShPCtOgs392sJ0mCQEEA9W7ZN4kTIpPi/IhUgmGwdH1PZCIQim4YsQ6QHc7B6EaSLKGcp1gbIEj2u4rFyYyiLLm/2TKfr6iqFmNigg8MduBkNqfr7WQGGjvmixnPeR87eGbzBXW1Y/uwpSiXxGlMXpY4EdBSU5YFaTaj7Q/ERjFajzGaopjxsLlFK0VZLugGy9Xbez54/yO+/PI3QKA57JECZvMlSZLhx5ZXr76ckqTXFxRJMRmWqgMA89kpdrimOhxI0oQin9G2HVJCddhTljmffvoh292AiTWr0wVFESMlHLY9d7db5usZD3cHghup9g7n3vD4yZKzs5JIPyF4x0/+0Sv+9E9e8+jJinIWMzpL0wx4B/vdiPMK5zSIiM5Zmn4fqjf9j2Sa/qvvffDB3wT++Fs8+keOfKc4NgBHjhw58g3yN//m/9rYr4cfVIfuUd12Ko4NHYHFfMV+t6Pv7qYbZKFQUuH8VLw3dY+UmuAhigxaaaI4ZrSWtq3JkoRyXmJH/+6Wv6Fte4bBQgiT8nIYcc4jBSRRglKGutqyXp8SJxld2zGLE2azGcYYmrZmt9tMgU1dRdsdWC5PyPMZtg/8+pdf0NmKNM1J4wVpmoCA+/srhn5EioiA5uLJOa9evGV3v+f9j5+S5hFV15GLmCzLOewqNpsHHu7viaOE1XwFMqI9BPCWT7/3jLJMaNoeoxVJNufx03P+9E/+G7RU+NEhARMZum5Kth26ATdCmmriWDPawGwGSmdT0WgDaWao9oZDdaAsZxCm1F/xLotBaYVWmqaqCQQQAiFhvphz2NckaQReTgpKpRFCsdvtsXbEOYsdPVpr+m5ExiCFIkkkQcT0w4GhdyRFhFTTq8VqtZ4+LwT7ww5lInIzLR37NiBRPHr8hNGPeK9YrOZYO7JYzdBRQT6LUbEmjI4nTx/z5PlHDF3D3c0VJ4+WbDYbimKGVILLN6/QRnE6X9APPYMdWa/O2e/uWCwX7PY70qxmPp+zfbimKEoO+w37/Z6PP/qMIpmxXp/w5u0LQgicPrrgxde/QUrJ2flTnr+34PWb1+AFXTtyODQ8e/4IpzTFMuXR0xnzMqXvBva7nofbmqapGO1AWZS8+vKemzc74kgy9J5HT1cYbXj54oGb25qz05IkTmibBoIABG/f3LLZ7Hl4uKFqa1Ri9sv18kWUJK+MNTff8tE/cuQ7xTEJ+MiRI0e+IUJA7H7F79dV9S9orR7N56UYbE9dNUip6PqeJMmYzeZEUUzT1CRxTBRFUwHvPCIINg9b7u7uqKo9Vb1n9I7BOi4vb9hsHuj6bhoNCpJZOSNOUuaLNfPFCVKpdyMcGqk0Smn6tqWpa5wPdF3P4XDg7u6Wru2oq5pxdJRlSV6UKKUYbM3u8EBR5KyX56xXZ6xPV7R9y939FXW1pywLothQzOY83O1o2obT8zXVfsvubkukIpSRtG2NtSNDPxKZmO3Dhuur14x2YLd74OJR/s5/36GkZr8f+e3f/z2u37xm6Bo622HHEaUVRutpNrzq8AR0JEjTiKH3SOVJ0ikobX2SMl/F6FgTpRGL5YL1+oyiyJBSEccRs3nOajXHGInSgmG0jONIbGIO+3rSfirN6DxKT7P/1lr6bsCOFg+0XY8PgsGOCKk5VBYTa5SSmLhgGD06FuRlRtt2nJ6fkuYZUkmyvEAnKWkxI4jJGHSoDgz9yGI158l7S8pVzvMPP0RHMYt1RlrEnD+aI5Vgdb4gneV8/qMfcPH0Gc5Jnj57HyElFxdPOXv0hKZpePzolCfPntD0PXVT4wVYF5BKUVVblJScXzyjb3viyKBF4ObyNePQcXp+xnvvfYwdHXle8vnnP8Ij2O92ZHnKb/3eb5PP15w9eYaJC3o3cnI+YzZLyLKY00enLM9OePz8lB/+7nMePzth6CS7XcNHn12w29XTK5J1/PxPp4yH1emMLE9pG8vmoSFKFXFqyPIIpeHNmxfcbd4w+IZddVggVfXee+/9P/+Dv/0fvP62z/+RI98lji8AR44cOfIN8Tf+xh+qXN7+cOjq533Tp73TIY4jERnH4XBAKUmaZWy3d9ONcxDcP9wyn48IGaibBv8uAVYKgR0cAcFgO4J3VFWFVJI8LxhHx+im239rLUVe0g0D6/UpAijKEik1fT+ACwQCkYkxJmIYLM4HmmaPUkwBWRjKMse5kaIoydICN3qcdxij2e637xaXA2lSsNsdmC/naAPBGc7WJdvdw3RDfLKgbXps8KxPC968fMXV9Qu64cBiseZ73/shbT8glWS/b0EpYq057Cp+9Pt/gSiKeHnzFilAKI1EEpwniBEkZEXG6Cx5HtNWPXYYMZGm7TqWq5zqMC3yFuU0597VHW0zNU2eQDkrmc0Ktpstfd/TdhVCmHday5G26zg5PQEp8AHatkVJiR176mqPD4EoilFa03YtAY/3AesD/eCIs5hx01HVHeVpSj4vubl+oO4GVBShA0hjWJ6cMPQjbpxeFAZr8d6z3zU8evaE0TmE0OjakBSSKErouoH5sqRYxshYcr/d86Pf+yG//rOvKIoMO4zUVcvFxXP2+3vevH3L5z/6Ef1gGYcBuklB61yFHRr2hy1FseD07GJa1JYWN1pevPyK75czzs4eoVTE/f0tTx494bNPf8Rms+H6+oHns4w/+B/9kPv7PUVZEoJAK0gzRRRN+QvrkxVvX19T79tp+b3vaR467OD5/IdPefvqlounC7pu4IufvmJ1MuPxkwX9u+C6fJbQDwO7XcdyvWC+mPGwfY3SCjmGoKTqlFL9t332jxz5rnFsAI4cOXLkG+LHP/7x+H/43//1L0fTVFkhm/3NLjStEKOfrDNCgh89WTYjjmOk1Bhj8A4OhxpQFFlOIOC9QxlBnheU8/N3qbrNdPvt4e72AR88VXVgHEc221suLp5ih4GHhzv6fuSd05GsyCdNpTZYa3FuJIRJlSmEpixT8jwlTTM2uz193/+5s/7+5paq3dM2FbPZkrKY0Q3dtATrBYdtTZ5n3N7dUJQzkjhhs93w3senvP/pBT/5R7+maSuev/eMR48vWC5O2e0q6mYgKROefXJO1wz84mdv+MFvf8gHHzznl1/8hGFocUBm3r2OANLAcjmFhw1WUx8mN39RZvTdQFGmNHVPXQ1kWQzBYQeH8yNZntAPOaXWpGnMZrNjt9ljtEHrBBMZotiweTiglMIk079rh4EQAkjoupbRucnBby12HEEIIq3RxmCtp7eO3o7TfkPj6VuBjiLSLKXrLHGSYIIgEEiSGEQgz0r2uwNV1ZFlGfk8Y7dt+N4PHtE2b0mLBd5ZZouI1y82XON5/tk5n/3gfb764pK6a/jgsycoFYFz/Nmf/gYVGc7OLxi6kTevr7i4OOXX2w1SKvJiTp7lk9rUgRCgdYwxGVE05Zs1bcOLr77kd37v97l4ekFaFNxe33GyXvPRp5+y2VXc3zdcPDnhD/4H36OqGrwP027Lu3wLicRZz3w+56tfXSKDIjaG9ZOCh/ua2nQ8+eCUtul59N6a5jCyua0oy5j5KqWpRrwTlEXK/VXD7fWW/WGDcwO4kUipLsuSK+/97bd36o8c+W5ybACOHDly5BtksINIU/PWDeoTpRPR24ZAmFJ3jcZ7jUAw9ANxIrAD9MN06661om4OeBeIk4T1rKBtO37+s5cYo2nbqRiNoxgTxSRpipCKrm3p+4br61uSOCLLcrquYxxHvA/kZcZivUCrmP1uB94z2gGlI4QQCDUVfLe3V2iTcFe3775mGIae4B0mMtR1TVUdEIopXCsELs4fcTjsWS6XOAd11VAuIj789DFf/uoN2/uOslxQZBn4mJ/+5FfMZzMW8wWzs5Jf//IVMijee/+Mf+Ff/ItsN3e0TcXoLLPFDCUEh7YiMgpjDCGeFo/b1tL3PcvVHMdIJDXBCaqDRRmwo8V2U/Lv6fmMatcSmQhpNMM4cnd/Cy4wm5XY/fQ93t1eE0Lg/OwxdrDYYWAcB7IsmTIVpKKYLRAh0A8dxsQkUU5epnhgHB0hCOqqQxlFQE67ElIwX8/Z3u7/PFPAGIM2ksPDAaMNcZ6iTU3X9kSpQY+w3becP17wcNtyfV9zelpwel5wd1/hBs96XRB9/xGHuic2mt2h5YP3z+nagdvbHdokJLniUFVsNjs++vR9vvrykgD0fUWaFQQk2sREsaPra4xOWK9O8cFyefWW+4d7fvh73yfNc8r5DE+gKAsW53OCF3Sdx4WRs0clxkTc322ZzTKUlNRVRZzEnJ6dcXp2x1e/fENRpNzf7zm/WHN7vWWzaXn+4RngQQXSOOXq9QGp5KQh7SyLVcFqWbC5qVBSMfQdkhDyIrvP0/T+d37nd5p/79/7977dg3/kyHeM4w7AkSNHjnyDyDi81Gn6K+fFfrB+ss3ANHYzuimUy0QoJRmGHjsOzOcznLPc3l6z2dxjxwHnHA/3O5pqCvyKTMpyuaYsSnRkGN2IGx2RNkSxRmuFHTo223sOVU1AUJQlJ6dnSGE47Btub2+4v7/h9u6SwfY0TUVVVygpOD1bcXJyxqzM0QrcOAVfVdWBru+ITEScxMznC2b5HO8DIQwcqh2zckFdVXhvcb7j/OyEl1/d0fcO70eKvEDpmOvbK56+d8bqtMRozfWrPcJLHj0958kHz4gSzS9+/jPqpmG1WqGVZH+oEFIglAIhCUz5Bj44illKnCmyPCYr0mksKFPIIBl7h/ee84sZSaJAQFFmxHH8biwK5vMFTTcQEFSHA3VdsVwuphvwpsPakSzPMEYz9BYTJeR5zjD0xHGCiRJkZAhSYf1IkkR0jaOqOgICbRTOjhgjyGcZzo/0XcdgB/q+Z7ADs9ls0oPaESlgd9ixr2q0inj51Q19Y4kjSX1ouHr7QJHHZJmm2jaEAG0zsFxmuGEkjSNubne8/8mK1ckcL0DHmuXJknZwtEPg/NE5WmuSOEMIQZoWlOWcWblivXpMUc4YvWB1+ojf+Qu/Tzs4hIbT8xnP3jvn/NGa5WnOxdOSj79/ipSOEGA2LyjLjCfPHtO0HUJ4lqsZh0NFXR343ucfEILksG+JjeHm6gGjDd4G/tv/8ucoEXj6/poxeOI4ZnvXTjpW6WiaATc60khT5jNO1+fkcUKRxYcsSfq3b98ea5kjR/45Ob4AHDly5Mg3yRi31rbxvmqS7aEVo1OM4zgtlQqNlA5lDDqE6UY7wNBbpITlYkGeF9OYjnc0TY1zjqY+YEzMarUiKzKauqXpapzzGB3RDx1CwGw+AwJCSEBitEHJSW3pxpGubYiMwvbQHmrSrKTrK9q2AjdnGHruN3fstluk0tPtrh/J0hwhDMYIQvCYKOP99z4lzQ0Xj065vnxAKfPn4zi31zseRYr9viEvMoIfcd7x4cdP6LoRpKJvHUkKZ2cz6nrHs2d/kX/4D/4R49Dx2fce0/UtQz8QvCcvS0IIBOexUpCkBoSg7yxaT3P6rnNkWcLQWnwYiRKNVAITR7R1y2yest91+N4y9B2n5+fTz973aBOj7cj5+YI0zdhXFVJPszBpnnN7c/Mui6FkGBoGO1AuFkgTI9XUlAig6wZ2+w4hpnErCHRdy3y5oGksQUqEVswXS+ww0A+WKI7pDnuUzJDS40eLG3r2dw3e97xpBpancxaLOdtNQ5JmpEnK/c2G+SpDKEGaGrbjSBCaqqoxyvHo6Yqm6qmqPVFSsN8lVPXA6emc08dn1PuWODJYO6KimNwYBjeyWhTkZc52e+D9T55y/vyEICRnFwsO+4p1PO1JSA3zRUyeP6G3PVIopAqkxnB+ccZ+/4B1nuViwasXb1msZnzw8RP+7n/037JcxHz86WNub3esT2d0Tcbf/7tf8Du/9zHrRym7u47gNHVjKRea+9uGy9d31PuKx4/OkaHDdQfB4FItgvhWz/uRI99Rjg3AkSNHjnyDCG8/HNrug0PdzQ9dR+enQlArzegcSivatmEcBmyvCAjiOCWEwGAdounJ83Sy93RTAee9p24O1E2Fepf6q5R8N8MPeT4FNUVRQt/1OD9ix5EmBLQ2JHFCCA4lA97DrDzBO0ucRBgN15dvuXzzCo9kGAaEnJSbUZRwsX5Mns/ZbO64vn6NMTHlfEWcxZTlKW/fPiDQCD2Spwl2GDk9Tdnvaup9R1kYBucoZwVvr65Is5TD4Y7FYsbp+Sm/+vnX/MG/+Fu8fvWG2+tb/uIffEY/tHR9jyAwm5cYY2ibhraddg+0MdBZlAIpAkpHjKMH7/BBEeWaoR8ZR8f+0JFEEUlucMGjG4mJzxBKsdseKOcZfdOjtCTLMpyf0nStc+RFhrUDCEUxzwHo+gFlNHlZYp1HK4G106x61x/wCMoixzk37VIUCUPvsKPj9GyNEHJaug4BO44keY4dRqJoahIRoKRk6Dv6rqWtp5C3oespyoTLt/csljOq/YiJJOXMcPVmRznP2B8q1iczXr284dPPC7LCoPSSuhnw3uOs5/p6w6PHK5IsZRhGnpzOefHyitOzE7J5hBslJ+clq7M11lseP11SzgusHcjzFG2m16KHhz0hwGKVEFzGaC1JWiClRGaCwIJxsMhcMJvPuLq8xjt474M1X/3qFUmc0vWW7eaaTz59yt1txa9+cUM5i1icJIxW8rCpiNIZ64s5D/c1r1+8oev32G5Kdvb45dgNq2/3xB858t3k+Gx25MiRI98gWvJaG31QUoyJMTTVjr5vCQLyIicAVbWlqrd0XQ3BY4eerm0RIWAizf4wFfvWDrRthRCS1XpNOSuJzJR8a0zMcrFCaTmZVZqarm2wwzROoqWizEtiY2ibCikgilJMlOKAdmi4u7/Eezs58uXUWFw8esxsviDPS5aLNVpHvH7zFW/evkSrBO8FbV2hheD+dkeiSrqq4fzRCVGssdayP9RoJfj0s2ecnZ+xXM65frvBdpbddsvz5xckacwXP/uS9z96zu//D3+Xumv47PMndG1D01iMMazXC5SSNE3DfrdF4EFMBbdSgjgxJElCcGHam4gNUSTxLiCCJNjAYhEzW8UoLfBCEGWa2TwmiRV5kZBlhsW8oJyVSK1BSpRRSCWIIoP3Aa01UknqtmUYLGVREkWGMI4IBH3XUdcHiiJluShwbsT7EZB0bU/TWZarhMfPFiSZRGoJImAHOy0DpwldPxCALE+JkohymdO0LaP1jIObTEcqJjExh11DZBL22wGpIobecXe7p1zMOFQVkUl4+fUdowMTa4oi4nQ9Y+havB2oDy2n5wvSXJLPEj757IK+b/j448d8+skJy3lCkQkePZoRGcWjixnnFwuiWLJc5ixWCWcXa5LYQAjUdYOQkiTJsNYhpaKcFVNuBJKT8xWPH13QNT0vfvOGi0endLbHxIbdzvL28oEPPzln6HuGPrDZNIzOkiYRh82AHx2fff8Zn33/Q/KkwPYtTbVl6BsvpfBF2x5fAY4c+efk2AAcOXLkyDdIkqpGaGm10s67EWd7xqFDCkHwjqY5IBAUxYz16SkmioiimDTLkEphtKEsZ5T5jMVqyXy+ZBwHLt++YrO9Z7ff0DQVECYfvfcoKTEmpq5qmqbGunEai3EjUkqKYkZRLMiyEoEERnQkETJw83BF3dVorYhiQ1Uf0Erz+OIJQz9wfX1J1/bMijlxbAjeI4XksK/IsoztfkMUK5p9y/Z+R10dyLKIxWrBOHrevLrmy1+/5mFzx+b+ATuM/OLPvuLLr17z7MNT/hf/q/8ZL75+y/11Rb1v6bqO+bxktZzTdj11VTP0Pd55gg9IEdBGYSJDksToKGJ0nsUiI44kWkqUnMZy4tSQJBo/eobeEseGJE0wkSaKFXlhmM/z6eY9CEIISCVQWrGY5xRFQhxH7xKIwShFlhfMFyvu7x8YR0fb9hz2e9YnC+IkpreWfrRESfSuGfOUeUSaTF9LEkf40ROCJy8yYqMQZsockFIjlGK2LJES8rJARxHWOZbrObdXtwgHfnAY7VjMM169uCNJY+7v96RpSj947GjpG8fmbvp9iCJBOY8xkSbPU4oy5nCoePr8lL7tePJ4xfvvnzJax/njBU/fX3FynlMWCRJB13UYo0nTiK5pkSJifbIkz1PyLCUvM7bbAwKJlJL9viJ4S9O2CKGwQ08xy3j/w2e8995T7m4OVPseN3iiSLA7DAQpyfKYt6+uiKKYm9sHhPQYI9neNUgx8tEnzyjKYgqBC5Y0jTdRZLZVmoZv+dgfOfKd4zgCdOTIkSPfINaK3DufDUMXCzxKCbphwDlLV1u8c+9ueksICu9H7NCitUArhbXD5N83I7PFnHK2xNoBsQ84bxlDS93UaKMgKEIIZFlOmuYIGpq6wTlPFIEdB0LQZFmMNpokiRmGlrbtcd4hhCSLUxDTHL33nmGYbt9fvPqazcMDduwxJkYICATyIieOM4qiYLO5QwqNGwVXl1f0Q0+aZgRv2G47iizC2pG6bai7jg8++ID1yYqyiDl7b833fvcTXry84r/4T/8pi3nOvFDksxLEyOHQ0zQNcRzTtgO9DYx+JDcJ2ohJxTlYHu72FHmM0YJhCFPj4z1BOOI0ZugDIBFIIj01Pd4LeutI45SH+x1dN9K2LafnS6q6JVIR80VEUkTUTUucRCglMFohpWSwjjhKUUrh/MijJ+es1ksuL++xw8BsUdC1A6NzzOYFzoXpVUMH+sEzjpbV6QoIVPuGQ1WR5yUMgSzNSNKYw75BCknbNMRpjEAQPFxf3zBbzAhegoe26dhvWgSC3WaP94KqbtFKgBL4EHNxbiBIlNYkWcz6tODq+oGhH1itMzbbA/NlSdd1IANCSaJUI0QgeI8QkqJIqPZ7XFBs7iuevjen60dMVHJ2uuDr+iUvXrzh+XsXDENH18Jh1xGpLUIEvJDs2waTaj76+Alff3XNfrNnfT7jbtNxf3dgPs+5ud6z2e7Jizk2eJYLQxRpokhz6C3lYsHy5IL72w43youhG06Lojg2AEeO/HNybACOHDly5BvEeZ4IyLMsC2fnMdu+p3MNzjuKogDhaNuWcRxBS6TwDK5n6C2D7WnbltlsidGK+/ubSb152HE43OHD+O6WVVNXFXk+I44nlec4Wpz35EUBTG73NM/xbnoh6PsBrRQheKIoQZuSsW8BzziODNbS2R4pA4fDAeccZTnHhykhd7ffsFguiZOYyES8ffuak7ML8qxgu92TpQVJkiGV4HDYMl+c07UV+92OJIl5/8P36LqeN1+/oK16Ht2ds1yV/Od/5+d4r7HpiHOOcQjstw193zFfzGibjqrqGEfHYpESxTHBecbR0TQ9aWJIE0NVjRwOkz1JCEWeR3g3KUOttdjBkaTRO7XpSBhhu99zf/uAMjHLVYHRilhHCDGSFwUexWgdaZIhBahM0A4WwnTT7f2IkFDO5lxf3rJ/OJDECV01MLiB9ckCkByqnsUixroRh2N5OiMyhv2m4v72HpNEaKOIIs1iMccOA4ddRVt33Fxf44NHSRBC8fCwQUea2yvJ5mHHfFby6sU1jHD5aosyivk8p61bbN9R5jGH/UCaxVw8XqKMIskMZ+cLhtaSncTgA26wpImmKFL2+woRNHEsp+9bS6SQeGcY6dnudqyaNUII9ocDUgVOz9a8fHHDbrfFmJjIpFT7Hj9YHj874X57QGk4HCpef7lhvZ7R9QNJHIM/YHuHGx1FGXFztSMyMfksY3QSOTreXm6IopjZrGCxWNIebhHSo7Xs+AHjt3nmjxz5LnJsAI4cOXLkm8SHWEqZmsiE9qEK1nqhdYRSGq01Shqcq3B+JE5Tum4y5GijkVJyenKGiSKccwQvUNJgtCHLCkKAOM6IkylETAhJ17X0/YAx+l14l8c5h1QKZ6dFVCUgTnK6vp+SZ51HKU8UJwgCWjsO9R11UzPYFucCeV4ihMAOgcViRZ6XdF1D27Z4J7h4/IiiWHA4dMRxghSSvrcE2fGDHz5jt+l4/fqWR48fIaTlF7/4gtubO5z1PHp2yl/8S3+Vv/+f/oTDduTjz57w+PkKYwL7bQchMJtn3N/tCB5G65nNS9IsxnsP+GkPQCqUFmw2Nff3LXFq0FoTPATnQEiQHh88Wisg4INkaB37TcPl5RXr0xPyIiNJDc56+r4jK2JMnHB9uUFJRfIuHUuqGL+rEQjqemripJHsNnvu7+9RQhK8x/YjaR4jpKSuW8p5QpLEVE03jR+ZiNvrB+ptjbOe1VlJnEYoIdhvdygt2N5vGQdL1zb0Xctvfv0bLs4fIwUEF7h8c42j5/TiCVma0B46mronTjRRrMnzmO2mIY4m4xJiYLZMqXYt65MZeluxD5Ku7zg5ndHUA0oJ7GCZFQV3tzvSJKPvLXXdkiQxq3XJduu5utzx5uVblquCzfaBzUNPmuacrAse7racXVwg5EBRxLz8+oY4z/FecnvzwMXFmu1Nz83tHWfn5+z2DcUsxnaOat9ycjLtizRVTZRKHp3P0DKgljGbTcv24YHrqzc0zYEoU3uTRNXtf/T1Crj6lk/+kSPfKY4NwJEjR458Q/zhH/6hlOEwt84n3jltTEyelfh2QOsI7z3GRJTlAudGlDQslifsdw80TUWsDEiB9yCkIkkUbVvR9DV2GCc7zWjRPqIoctI0Y7vdcjhsCWEqXgEikxBHKSF4ZmVMOcvRxnA4VIyjZXQD3aHCOUcSx7hxZFdt6brpRSAEQV1XZHnG8+fPMTrhzZuvEUJi+4HV4hxEzGADUWRo6z2jlQxjy1/6y7/Fr/7sDaODZx+cU+8rXn39goe7B5bLkkfPnvA//lf+EiZNObs455OPY+5utvyTf/QlWRERRZq8jFiuGpTWVIeO07OCNI0Y+o44Teg7i1SSKJJsHhr2244k1SRJhHPTmBVh0qNmeYw2I33riWNDU3ds7ytevbgkSmPyMqEoIkbnqBsLUrA+W1DVLUM3sFoVhDBiYkPbDQgRiOOYqqoYBkssU7qhx42WLJsRRTFj8GgTEVxAR4o4Mly/3VDVHUkW05uR5tAjPBCmMbEQAnXV8PrlK4QAN3qEFGijub25IQCRjrF2MkMN/Qgy4KzncKh4/OSUQ90htEJqQwiB2XyGlIEoFrRNS1bMuKk3EDyn5yVRLKl2A8oIdBQwcUzbj6R5QlFGBBHQJqJpLXJTEUJgdbLAWs9+vyfLprGy4MEOIwGHUgLvBGlSUJQpeW749c9f8Mln71HvauoDfPy9p3zxpz1IwehHjImwrqfbdUgjWZ3MOexbhs6ited0neGZXnPAI4VHCIcx0aCkJAhhvsVjf+TId5JjA3DkyJEj3xA/AH2JO0EIkSSxS7UdjQhGIRntSJImKKWQCIQyeOcZ+o5h6P5cAenclAqcZCl929E0EUpKvNREOsb7Ea0NxkRorZnN5u/2CAbsME6aUGUwWtP1HUIYhmFk6C3OjsRJjGtGIh1hCTRtj7XvbvGloqn3aK0p8jmr1ZKhb/n66y9RSpFmGUIoxtGiRwcm0FQVzgVUBH/hL/yIn//sJWVeMp/PuLvZst9tUVHCX/xLf8D67JQnH57ywcfP+If/xZ9yf3XHT69uSOKM05M1wTkCAqkU+/1Addhw8WjBk6fnNG2N95Lq0GKMxGhF3zgEklmZkqSG0fl34VER+23LfJlhIkFzsIy959BVWBe4f9iS5inL5YL1KqfvRsbOIWEK0PKW7UNFPk+IU402kw2oaSGO4ymnYRzx3iGFoG5rhFDv0ms1RgqiKMKLQBRL7q7vuXp7zWy5YLFYcH+3wY+Bar8nThOGzlHdbrm7vqap//vGbPQOAIGg61vqpiIEiOIErR1tN7zbAUnpu4Gz8xnD6CGAAqqqY3mSY60jJsY5S6QNr7+849MfnLKYpYTRY3uHlBI3TsrTpu7wIRBpTZpJ+n7kq19fsVpmJLFmscpo247N5oDSgpOTNXEc8/CwIYoi4jgCYRBS4EcwRlMdKsoyZ7PZTHsS85y2azm/WHJ3vyeKNbdXWxSC9ekKE0ckiaKuHbbfo6Wm6R1xUrJanbG5e8NoRyGVePN/+bf/7df/13/n3/k2j/6RI985jg3AkSNHjnxD/AxYC1mb2DwMTb93Y+e08MbZliBhsZrTNDU6MlPB5Ua6dsQYjdFT2qxSksVyNjn+iSnLGX3X07YNnoCJE2w/cHtzjVaKYRgYx4EkTViv17gxYKIYO07udx8cBE0IoHVE13UoZfBeoNUIaISM8EOgOWypmgNaS4zRvHi5o+9roigCqUHAcnnGfLFEqWhaWh4H8tmMT3/wAVfXN0Rxxvr0hLcvrpBKo5OITz/+kDjO2NZ7fv/JGX/v7/433F4eePJozdP3zonjDC96louCrrO8fXOHUhFPn655+t6Su7sHggsI5VmfrJDScdhVuDGQpgnBWwIOKQNCarYPLVkeEUeKl19vGHrHapkSvODu1QNZkZFlKeU8RinDaDuiOAJlSTPD0Ftms4I0ixAykBeauuohCIoy4bBvwAtEEIxjjw8jeV6go5SkSEhzTd8FIqPQBr749VeUsynMq2072rpDK43UZiqcb+9pqgo79CRpQtu2BAICgTHT+JGJIxCSKIlQJmY2j/H3B5TRLGcZ1lriRDFPc0brcMNI34/EscIHz/5gWSxzAp6b65Z8UWGMIMtinPPYMeCdIy80XW3RkaCuO4pZ+m6vo2e5KnHO0/Y9q2XB4dCRpjFN27JYLriIU64urxhci9AFUTT9zNMsoeta9vuWx4+W3NxumS1K9i+u3jV0GmFBetg87NBJRJpNtqb724rVskBlkq5pKRY5UqesTh4TXDvHuid//a//q0vg4Vs+/keOfKc4akCPHDly5Bvixz/+sfVe/jx4f+1svzGSIYkj0jgiUoaHhw3OT2MVznuGYUAqiRsdu+0WZQxCKA6Hmq7rGMeREAJKaeIkZTab4f006iOFYBgGImNIooTROm5ubjhUe7quYRwn8xDv/ChK6clkYyYTjjEaHWmcHxlsz+3tJU1zQEmJVJr9YU/Xd8zmCzwQgidJExaLEm0kzrlJGWoiPv38faQUNHvPcr7g7ctpcVWawMc/+BjnA3/8j/4p3//8fS7fXHH1akuWZdStZ7fr8cIRxTFffPElL19ckRcpSZqSz2Jev97y4usbPI48T6iriqaqaauecfBoPXn1lVboKKLtHdoItIbL1w8YrXj63gykpG4cUWR4+vSUJDXMFimHqiWKIuxoieIIpSDLNUn67uelBVpJvA9IJVEKksigtCJNEvBgZMRyPefkYsbZxZyu7ckLw3KV8vbFJVrHnD+6oG176kNNnhd4H8iygmGwDMNA8IE0y4nimCROiKOENM3QJiLLi3e3/oYsK8nLhPlqSV6m5GXEbJWQz1JWpwWr04Qkkew2NVkWEaRhtswQYgqOUxqqpubutuFh03J1fWAYLftDSz84sjQBPCbS1HWPFILZrOTsYs5+15LlKUZGpHGKFAohNN47rq8fyPKc84tzql01qWNnOTqamsm+9Tzc1fzZF69RaGbLgvl8zs3bB9p6slKNbiQ4aHYNYXT40ZGkBiEGlHQ8fjLn+ftrfvBbH7NanyOhrPf736k3+yff5rk/cuS7yPEF4MiRI0e+OcJGFn8yF+0HxSx70jX2t+MO0jTj0I6MdprLbtuWECxVtSdNM3wQpHnGYrGgaztm5RyjDV07kKc5TV2z3T0gWvnu5WAy98znCwgQfKAbeqIooJSi71usHafC1lqsHdFa03U1w9ASguNQTcV71zccqu30ihDFzOZrur4ljjKWyzVNU9G/U4NW1YEvv/wNaVyyWp+jdMRv/c5nzGYx//Af/FNO1ufUhwNBBh49f8x8nXN388Av//SX/N7vf4+m2vL/+A//Y06Wj8jSjGqomc0zdrsD3nuePbsAL7m7b5kvBW9fb9k+dLz/4SlDH3j59R3LdQZecX9Xc3paIpWf7sqFABmII4mXCUPfsVyVZHnEbtfQNANSB84ezWm7aRG22lVEcUq1q1FGkySSOFFY67CDR8pAGhuG1uMdIEZC0ICY9g1GT9c51qsVZ+czilnMm5cPKKkRUnN9fWC/bTk5O2VwI4N1ZElC3w9EsUEEGMeeWTmnEhVZntA0NUmcTi82xjBai4kilDQEIC9zykWOMXB2sWC2SskKA8KTZYYkjaj3A5tNxfN5jDHQ9Y7ZLKbadfStQClBUzfMFkvcOEKAcbQoKbBuoJynGGNI4w6JAA/Pn674zS/fcvV2w4efPOP1i0tOT1fc3Nzz5Pmar766YrlckWYJ9a7jcrwkzTXLVcHV2w2EQBYnvPrNHX6AkwuHTjw60vTdyECPVIK6ahEB/GhRkeHZe2tms5K2Hnjx9T1KKrb3e7I8IXv2zAgR/ordtf/Tv/bX/toXf/RHf+S+3eN/5Mh3h2MDcOTIkSPfIP8T4KeR6WzbeTt60fcDTdvQdY5yvkQw3aZ7D1k6hX8VRUldVRyqmtN1Tj/0IDx+DO/0kBFZluHeGX60kQglaLoWNzjiJCLPM/q+xw4DPgSUkmhtUFKT5wVKScqyYL97YPNwSxynxGnKoTrgRoiiaQdgv99ioojZrCAET91UKC1QUiGEIksLZrM1UZLx0SdPyArN3/s7/zVZktLUB5q+4dmHz1idL9nc3vHlT79CSYXUCX/7P/w7xCrh9GTNy1cvODk7YbE6IU1TlqsMPzpurg+cXeRIqfj61ztC6PnVn71AqZhn763Zbwcu3+55/t6CcpEyWguAiQzODeRZghvdNFbkPHYcaKqBONaMo2O0HoXB24C1HoSj6UYulgXlXBC8oq5GtIYkMfgQGJ3HeU+Wxdzd1BipJzWnkWQ65eLpnMUqZ/vQovS0VH11eccwTKm4JooQSLRWCAlKSYwx75SvM4SUSKVI8hikIksTuq4nerd7cDjsiaIYEBRFynyeIYKnKCLyZUKRR8SJRknJbtsRgiBOI9IsJommGf5xDAQPgx0pZhlZPi2UF3lMlqV//j1qrfAOhjBwdr5itFNSdRwr8iyhb0eyLKOc5wRGVus5AsGjx2d8+eULnj97hFSSw0PNdjuQZQlpqnCDo5xlFGWK0YbDtqOYx1TNNbO8ZLvZIKVGSsEwjqQhJoljum5EKsFnP3zCYr3nP/s7f8L27prt/Vtury9Znyy2xXpxHP85cuSfk2MDcOTIkSPfIH9id6e49vPm0DwbbIjafkAgJpe61PT9gJKaSEcYpRlsTxB6cuhLQdM25GVJHBs6P3Bze4uUkjQrqKsDIgSGoSeEwGhH0iQjiiP2uy2EyVDjJo0Q1lqyLMf5kabt8d7R9RapY5LY0A1TAWqMoqoPdF2L8w4fAvv9gaZp3o37gJIgxfT3lqs1H336mMUs5u/93X/IrJyUoVdXV6zP1qRxyvb+gV//2dc0TcNv/cEntLbh8aPHnF+ccn//wPe//xEff+99ilk8ueQNjCMs1wl9Zfnpz19SVx1aerzXnJwl3N003Nze8+EnF6xOCkY3IoUgyhJcAD9CmimaOrDdVhgVsdu2xMm0CG2tJ9ISpSX7Q4WQhjevbymKhNnCkKeSzUOLCI7lqmQYRrreobUiSQxD5xgGRzpPSbKEKI7QRpCVCX3XE7zE2gEQdG1LGAVBSoIUSCmJpJjSiJPpNr/voVzmGKNp6ghlQEdqWhQ3GqPfLeQKQZGn2MGxWGWkqWG0I9pIilmM0Yq0UOzvB37x07e899E5F4+XzBcFw+jI8pjXLx5oa8v6pCSbGdIiJksM4BEI0iRmu2uI4phxHOh7x2Ku6dqaKJ12G9anC25vd3RdR1kWtHVLnAIByizhZdtz9faWOEt48eXltL9w5snymIf6AEaQlAmhDxy2PSdnp8SxZrfd0ncDUnryWYmONEEqhJI8ebqinCc0bcf7H5zx0cdP+c+++jV9U5MYQ1DiQRfxP/mjf/94+3/kyD8Pxx2AI0eOHPkGiYwOYQxJECIHjNby3SJuQGlNOZsRxykBqJuGcRzp+w7nR6LITGYZKdEmwvuAVhprLYfDnrZradsWoyOyd/PiQ9+z225IopSiWCB1hA8C7ydlYl3v2e+39H1D2zYE7yiKqWCXQgKBruve7RrIP/flj25kuVwRmZjIJBAmDePgRhw1Qg78//7LnzJ20FQNN3cPzOZzYpVy9fKaL3/+FePgefLhOZ9+7z3uLq/pu5G72wfWJ3NOTpZIKTlUA6t1iZRQ73tefbnhJ3/8NQwOIwaqpiKJFfW+4pc//4oiN5xfzKjqGolEyanYtn2HQNI2I23TI4l4/fJhukmPI6RSrE9T4kwxWEtWxDRVT/Dw9PmC9TIhMoZxCKxOMkwk6bqBEDzBAwhGOxL8CMKxPMko5oaTs5wijxDod3agacTGWUfTdGitpuZPTbf35SyjmMWUZQRAmiqSRJDnEecXc9brgtnMsFzlOOfpusnBb4yhnGcUi4QoE5jEIFRAELCDZWg9L7964ObyARECq3VMnGqqesC7ERECRhmKUrFYJMwKxWqVoKRnsBZBYBxHxnFq8pwDFQmUkgQXSJKc1dkJCBh6iwgBwrsXFa3ph455mfL2zc27FxjD2xf3PNx2CC25unpAC4HRmhAUeMfN1ZbHTx4z2vHdwvrUKJ2en3B6sSJJNdeXN2zvau7e7nnx5RV5VvD+B8+YzUucd/Rtvz48NJ9/S8f9yJHvLMcXgCNHjhz5BrG2uXBuzPrOxsM46jhOkPU0UrJczvEhEAIkScTQt+z2W9I0J4ojhr7HGMPQDzzcb9FKsVqt2O231NUOoyWCqWjf7jYYFZHEMT44hAhYOxCnCcZEU+EWwNoBKSVd1+HcpK7c7u6nPIBxpLcdo7c4Ny1dSgWRMUjx7hbbe5qm4eTkjLPzxwgduDg54e5yj2C6re66jtVqQfCw3+/o2gYpBbP5gu99/yP+87/7D/n5n37BcrWmaxOcdRTFCoenKFJumo6XX97RN443r16w3d6y399Szkp+63f/gHrfs909sDxZslzO+OpXN3z82Tm3NweMMWQZJElK21pCkPS94+F+z/o0Z7HIadue80czuq7jsHfkRcIwOPq+5dPvPWJ9kuN8oOtHVKSIc8Nh32AiQ/AjWkuqTQMC7OjQRpFmmiiSZEmMHydvv/eBJJYMdlrqRQiKsiCOosmwU2rKmcZEKW9fbUhiQ5bHAOjIkWUxzaHn7HTBYdfw+ssdTV1zcnqKD57l6QITS+LEoESgqUeCl9SHmiiK+epXr/EOQnDMFwVX1zsWyxltbd+9IpmpkShiklSxWJS07UjTdqyWM0ob2O8bPvjwgqq+JklT2sQSvKdre8rZnLRI3yVKg3MeFwJCaIoiojn03FztSdMCZRRlmVBtauJE4QiMYyDLNftdjUkz2sExSzVRmhCCw3mPlJKhH1gsS548WzErI2wzQJDc3hxoOwdCUzU1GMbdvjp/9fr1//Jf+9f+tb/3b/6b/+btt3v6jxz57nB8AThy5MiRb5DBuloiWh1FTmlD14/4IBByMueMoyUvMrSRtG1LHMUopWmbmnFoGfqWu7trquoAcnLiSynfLeFW7HYbqromiWKSOCVJcpI4o+5qrO2ww/guDdgTRTHL+ZIiy0mShMViTlnmpGlKlmVk2TQ+5P1UDAsBxqRkeUmSFiyXZ5TlivlshUDg3cCiLLFtjxwlfdtQVRtmiyXD4NlutlT1jtFZkjzn8XuPqbYNL756QxQpbm/f0PcNy+UCO1iuX91z/XrDq9/cIpzn1YvfcHt7xTj2/Oi3f5e//Ff+Jepdy93tjiRJGa3n5dc3zBc5b19tuLvtaRrLaBXbTcPQO+7vDtjBcf54uk2vm55ykTCM9l1qsSaKFMNgef+jE1YnMX3X0/WOQ9UjjcDaEZhsSVme0NQtQ++mBkFKTCxIUs1qmZIkkm6YFK390CNUwI2BECTayKlY9pN9Z7XOiRON1mBHz+pkhhunhe68jHDeUcwipILr63se7u+QgBSCJIsJYkqMHrqpYdNaUVcDfTc1mHVVUR8a7m523FxX7Hc9JlLUVc84BtJMIZRgHB0g8UhMbDhZz5FSYCJJU7dEWrNaFTgPaZ4hjaLreuIk5umzJwx2REcGpCTSiu12jzYGZSBNDDeXW9I8xsQaRthc1yRpzpurDcvTOdnM4AR4AspIPJMJabQ91XbH9m7Dy6/ecn25p+8si3XB4iQnKzIe7jZ0jaVrB4QQtQ34ly9e/ZWv/+yL//nf+lt/S33Lx//Ike8MxwbgyJEjR75B/vV/42/+WifRl+D2wY0W53DjiFaaqqqmWX8h2O22RElEUZaTlaWtqOo9XdvgRksIjvHd6E/TNggBSRSTpQVlXhJHMVFsQASsnQo6pTSR0pMRhymAKY4TQJClOUmSkaY5WZYzOs9m90Db1oBDKoknIKVECsk4WKqqBiQBT2978nxGve9o6pbLq7ccDgcWyxNCgL6rITi0iijnC04fn5PPc778zdcE52j6hqAkWTFn9PBnP/8l+4eaw74hTgwPmx1JWvL5D3/EX/1X/mWevf8JX331hoftnvlyRpzGhBAoy5zL1w+8ebmlPvTs9x0P25qq7vnqy2uCd2SFxg6eh82BYhYRPFTbAeGnW/CmtcSxoZgljM5jXcCHQF31GKNw1pMmEUoKQLK5bzHG0LeW2SxDAEZPutAokpSzBCEEUayITYoQktEOeDvixyk9OC8ilFYorWkay2KZYhKF84EApKkhiiWLdcrD5sDmoQUJJjYMdiDLEyRysvIExWHXsFhk3FxvuLupuL2qEMHRtTuu3my4v2nRUiOCJ800UgjiJCIyCu+mhmm/q5FSgPSUZYKzA0oKdvuGs/MzqkONUYY0iYnjiN12y/nFGXEyBdoN/YBz0Pc9zgfWJ2d87wcfcXuzQQqIYkhiQ1sNdK1nu+nZbWrOzuZEUWA1L2n2Bz746ClKa8bBUR324D1GR1y92XJ7XfPiq1tev7mfzExBc3t5xWp+xsnyoj07P/v56Ef9cPfwr/ztP/q//8G3de6PHPmucWwAjhw5cuSbJSDUW0loInyfaslqViCCR8tAFAmyPCGJY4L3tF1L17cYE5EkOWlREsUZShp22w23d9fc39/wsLmjaStG22H7luqwp2lq2qbBuREpFVGSYpLJH6+URAjJMFqarqPrW8ZxREpNEiUoKYkjjdYCOwy40SGEREqBHSxKKtI0Zhh7tElYr8+5v7vj5vaG29stSkYsFiuiKCbPUiIToaRCSRidI8ljDvs9r1+/Yhgadvs965MnlPMFL17+htPzNbNVwen5jGFsaLqOYl5w8mhNlCVcvb3E256TkxVCCkIYiSLN3fWGV19e4oYeArS1Y7cZuLqqmM1yBBEPtz3DYEmzlHEM1NVAWw+EIOjbyRqUpAqtNVJOxffmocUODi0VUWT+vImq9h3j6KbiPoqIYk1wYrIzJQYTGwgCqTzn5zO8s7RVS3iXEiwEJKkmLxPGccS5EYDZLCUyGiFAazGFwRmJ9x4tJQrJbDYjBEFeRMSpRApIYokfA95P2Qf1viZ4zea+412UNH1jGW3AWYcInvk8JYoEtutREoJ32GGkPjTMygwTxwThMdqQpQnjaJFKoZVhc79FCoVSgr5vp9edNOWwP1AUBdtNzXxRMvQOhGK1muM6y+G+I3iJThTew9CPNFXL1eWGvps+AyH9tHtiFMUyJSsLkjwjSRPOLhacPZrhCMR5SttJvvjpS+5vb0giQVVvcaGvHj959E/P1utfSSlcGP2TP/zDPzzWNUeO/DNwPChHjhw58o3jLmfL/GWWibsiVWSxxnYDUoAxkvu7W9q2Z7QDh92GtjkgREDIqWBsu4amaxFKoZTGKMU4DPRdjRsHBjsglSJNCmazOVIqtDYIIVFGo5QijqebaCEEPniarsaOIwJF3w5oIYl0zNBbgpAEOf13MLoRO1qcH7F2YDZfsj45o94feHi4ZTbLWa9PaNuOpu3QWtP3PV3XEMeTxjLNM5Ik4je//pLgBZvdA0+fvk+Rl/zyN7/m/PE5zvdY1/Piq0t++cUb+m6gmMV4Z/mn//if8HB7S1FkbLZbrB3p2pa+ban3B5r6QJZnDIPlsJ9CrdI4pWsdV1c72nbEj5rDrmVzV7PbDDgPzgVCEERGEUWaODI4K+hqy2HXTT9/KTBGYQdL8ILtpmIxzxEeskxjraOuW5yDEBTOeUCQZ4bBjrz8+gpnIYpixrGnKHN0rJkvUwKBfpjGfay1JOmkLk1Tg5IS7zxSCPI0YhynkDdtBCfnS5QWLFYJ5SzDuRGtPU3dY60jyyOECPjgSdKcvMyAgBCCtp0CtooyQWtBHCvsOL34jHYkTTVJpN8tOnsGNxKnMdW+oijm7PYH+n7Ee0jSmBA8UioO+wofAnYc0SZlsVpxOFRAoCgKXv7mDucDr14/0HSWoXekWYS1gc2mZbSOzV2FUp626Xj/o+dEWYyJIrp+YBxHsiJifZJhYsGTJwUXFwveXr7l61e/oGpuGcbWihBkmqXbOIk3cVa+/vGPf+y/vXN/5Mh3h2MDcOTIkSPfMFFYvJHa3CSxPiRKhqHv0NqwXp9Os87DtHDbDwPg8O+KbWt79rsNITgWyzlRPC30RiYmigxZWmKijCTOiEz0zvCzQWtJ37fs9xv2uy11XdN3A8O7m/3IGIp8QVnMGYaBYbTY0RKAJM2w40jA40MgilKytCCKMlarU5bzJQ93lxwO95ydXqBUxKHao4xmtV69yyXQFEVJVR8AzeOnj6n3DSoommZHlpVolfLll1/y/MP3uX/YcHd9T7tvuXz9mmIWc36x4Bc//Rlvv36DbXqsHXj56jV5OWlMpRRUhwMPD3esT0+QMuL+tmF73+Os4/pyy5vXG0YbkEJwd7fn/rqhOji61jJah/fuz00+Uhju7/bsdx33ty33dxviWCEldF0PQlAdRrp6RClFwCOVwlrPaD14QddYmnogiqfF6Tdf39M2HYEerSRFWVDOcoIPREbTtZbIRIDARBE+OMp5SlpESCmp6gEhBYOdXgmGwbJYFsSxRirBcp1jx2nH4+R8hkCwWs0pZ9OYl1KaxXLJ6qQk+u8SeDtL2/QU84SsTIliwzAMxLEhzxOkFJRFhpKaNEvw3lFX7dTYCMF8vqBpWpQ2JGmBMdGUbRAnhBDI8hQlI7KsACQu9Hz+2+9zc/OAHyX7fYf3TC9KScZqOSOJNUoFDpuGN18+YGtPGid8/PH7lOWCNMk5bGv8APu7jr4ZqXY1FxdLPv/8e3z22W+hdETXDZkdbR5FUdd1fT42zetv7dAfOfId49gAHDly5Mg3TDMcTutdda5QsVY+aDl50vv2gG0tcZQg1KSGnGQxkqIoMMoggmA+m5NlBYvFgiIr0SYhz5ecnD5muTojTqYGIDYReBjf3Zimaf5u/EehtMIYTTd0dH3HYHsOhx2Haks3NNgwMtieuqnRUjEr5swWi3e7BRHPnz9nNivZbm+pqi1FWTBYy+gcSinSNGW/302aSymnIlEaFosF4yh4++qK2+u3NE3DxcUTRmd5//33uLu65OWLl7gRvvjipzgss1nJn/7pT3E4inmBdYGgLJ/94CO8cyzmBYftAy9f/Yb3PnnCJ599wHZ3YBw9SgWkCKSp4fx8QRxLqroDNM4HmsPAYd9QVS394NkfeoSQdG1P1wXaznJztyeOUuI4ou8sbhD0TeDm7YbdtmGwI8Zo2sbSd35KWB4s1bah2Q04K7h6s8FbgdGS/W6Ps5ZZWZKkmkePFgz9iFKaEKYGQhvFMDiSbBo3UpGk6y0uKDbbHm1i3OiZFQXaCJarjLxMCEjSPCbLppvy+XJ6CWmaHqMTynnJcl2Q5YY0UygFShvyWUyca07eJRZLJUhzQ9OMJFmJVGZ6QUgy9ruWJE6xtiXNImbzGWU5QyDxAdq25eTkDOc8s/n8nS510shu7yvm64zZqmC0jtksxTnBMPTU+4qzixlBSFbrBUp7lDBU+56u63n2wZqzxwtOHy349PPHnF9kPHo6B6FRRvPzL36Jsw377Yb3n7zPvFjYxXL5J2me/8YO/XIMIf62z/6RI98Vjg3AkSNHjnzDeD+etnVzsjtUcd21QWuNHTqSSLNaLpBSEAgYE6GNIU4S+q6j6RqiKIUwhXhppQgEtDFIrXDeIwR/rvD03iGkQUUx2kzjKCFMCcNTpsCkphzsiHeWfqgZXUc31NzeX7Pdb/BuZHQj95t7bm+vOBw2DH3L5eUrbu+vUVJQZCXBT3PvUkqknGQrRVHQti3X19eEACae6q+ubumairapee+9j2nqHmM0l9evubp8zawouL5+jdaCWbnkJ3/8T9jc3fLZp9+n7QZ04vnRb3/O/f0Go+BnP/ljbm4v+cv/0r/A9374OVfX92gF5xcFj58uePp8xnsfLEiy6ec/aU97gg8EN7LbdoBke1+jlUb+d3Ym52hqC0jSIsX7QNc5+mEaU3n75g6kRGoxjUmJaV8gNpqmsmy3ln3V09SeurbsDzucc8RxQtPW+GBBBAAOu47qML1sxPE06x/HEVGkSZIYO3riNKLrHIOdPjc7WoIUaCNJMz2pXYWnmCXYIWDtSJYZxsFjIoM0GmVgsUwoF4Y4gTSPKRc5XniK+WQSevRkRVYkRLHGRNMLU5ZF5FmC0qA01HWNkgrrLFKB1gYAa3uGvmOxWiK1QSG4urxkGFryvGSzqfEBPv38Oa/f3vC97z9HyoASCiEkD3cVi1WBJ2C0QhmJiRRXrzdcX97x9PmaPFfYwRGC4PS85NmzBWWRcnK64O2bK9puy8vXX9tiMfvl6vz8/33x+Pn/rZzNvmrq/V8+7gAcOfLPxvGgHDly5Mg3TDC6LRazh7zMuiTJaeqG0Y1T5qqErp+c/EVeEEUxVX3g5u4GpRVJmjCODhGgazvGcRoHiaIpoKtte7QyeB9wPhDFmtEN1HXF0LcIEZBKorSm7TqEEKRJOi19VhX39/fUVcW8LMmyDM9UuKdJQpFmFHmB94GmqbGDxdqpUFZa4caBrusQUpEkk/lGCEESJ8yKEucc88WCcejYbu54/t5HSCk4Oz/l4e6Gw2bDcnGCc566rjE65urtG3a7e37rd37A0/eWSGP5rd/+Pv/0T/6MoQ588bOfIJXhr/7L/zJxesJvfvGacRg4O1uyXKc8flby9PlyWq4NgqzQlGXGcpETJYrNriFONH07mZKkEuy2PVU1MPTTOE2WxXjn8SPUlWW/bbi5vENIyejGd8Yb9y6sbcpXqBvL9e2Ouh7Y7RpGH94lMIMbLWmW0TQ9zgnu7mruriu6qic4Td+/K361R2lYrjOcHYmUpu8a4lix321IkoiiTFB6GtNxzqMF2M7ycLsH51FS48eRPEvI8owsi0iziDQ1pGkM75aI60M/BcvphGJekmYRSkryLGJ0A24cEEJijCTPE9quxnk3LQz3HX3fk2U5Pni8szR1xdn5Y5x3CBzbzYY4UfS95+rNjtNHc4p5znbf8uH3HhEX6dTgtAN90/Hiy2vKRc4wDHgXmJcl1292fPWbK5QSEDxvXh741S+uaFvLz37yGiVT1utTsmxGmuebKE9+msxO3v77f/RHXy3Xq3+gpDr94osvjvlGR478M3BsAI4cOXLkG2bU3Zso0hul5OiDQ2mBiQz7Q8u+quj6gbIssaMjiXOatnpng4nouqmI79qWvu/R2hDpiOAV1g6kaYyJDVJJpFbU9YHDYYcUkiRNEUoxOoe1FmMMWincODJah5SKLEtI03ha4m0atFZ458mihEgndN2AUrBcLpiVxTuLTcYwDGgTkRcz0iSl6zr6rsePjuA9l1dvycuUfGb4+sWvOT97zEhgfb7m9u6KcbQ8evQEpeHy6g1ZlnJ59Yaqqnjvgw/54e/8Fpc3D5yerflP/r9/Hxx8+dUvsC7wyfc+5auX17x+dYlW8PjpnGKpefrhktNHCw71QJJFZLmZFl0jSFJJ8JJynpFkEXEaMfqR/aEjIHAW7DAtZVs7TtkAo6dtPG9f3XN/s0GKwDhahsFTNwNaaeJU01tL3wWcDVT1yO1thR38tAtRFvgQiOOEKEq5vdmx3TTc3+8ZrOfutsb2nv22wpgIYySj9Qz99DVIIbB9T9c3lIsSZCDNUqJIo4WkrR3jCNZ6tFY475ASytKwXJYsVgXGSKSURHFEnGiiSBCbiMO2AQ/1oX0XaBYRgqeu9tjRcaga1LvciThWNE1FmqY0dTP9PkVm2qVwnr5ryPIZaZEyjp67mwf2uxqC5PWrW9p25Ae//TFvL285u5jjvCXPUoJXGKHp6ophGFmuSrzz7LZ7zk4XZGmKD5rFOmN5YtgdOnrrWa7n/ON/9BPq6oASgkhrpYI0SdsGgGx58vdmi9lPy7I8jgEdOfLPwLEBOHLkyJFvmKFXTiDGJIo6KaS3/UA/DJTzhMWyYDYrKIsZaZLhXA8+kMYpJoomH78bqaoKOwxE76w+UxiYZuhb6uZA3dW0bcVge+IoYT4/IUlyRJi87G07ueu1MeRFzsXjR5ycnmFM+i5ALCaKYoZ+mG55xwHvPVJqnIObmxuGYSAvZqzWp5ydPZ4Si6OIuq7Ybu7Z73eMo6Wqd+hY8ennn/LTn/4EP1i0Tjh7dM79/Zbr60vOHz0BpXj75pL5YoYPjouLJ6xPVuRZyVe/vqNv4T/+j/4Os2xGFEc4Efjk0x9Q7VtmheHTj5/wwUdnrC/mfPDZmtVJzm53IDCSJjF2HMiyjDjRWDuSZor1SU6aKmCyzZRlCsEx2AYpJQ+3FXawRHFE143s9xVXV9eAmF5gBsd2U1PXPUmqMUZT1T0uBPre8nC7YbetGAaL0dM8f1YU+OBI0pj60FLvakbn2O8OWGu5ud6x21okgvow8vb1A0kyLdXaIbDf1wQpETrG+4CJYBwd3gceHmpCCCADHqaF3lQj1MjZ45KsSEiSCK0lygSiWDD2ltkiputGmrqnrgakUByqqRmyo0UoRRDg/EgInqKY4QPoKII/t1O1ZFnBflujpEDIQJQkeA911XI41Hz6+XtTdsEA1aFnuVpyezsV93Z0NE3DqxeXrJYlr15cUsxSVCSIEkPXe5SW+DDiQ2C5npFlKW9fb1ifZDx7ds7tzTV9WzGOgxi9W+6a7TOAf/ff/Xe3H3zvh/+ff+vf+rcO3+rhP3LkO8KxAThy5MiRb5hCSOnxXghq7+wQvEeIwMXjBctFxnxW0NYN+92WzfaOyESkaUbb1Ay2x7lpvn9K9B0Z7DCFbQ0DzjlCmEw3xuj/fuRHqXeJvh0CQZIkOOcm69A47Qb4IMmLGUJqnBsnM0uWT0WekHg/4lzPOFpm5YLROnbbe7bbe0LwBA+H7Y66mhoP8PT9QNM2/OC3Puf65oG2Gjg7OyPIkaHpuL++5YPnH1LkOW3bcXZ6QXWoEEIBgtl8xdcvXrDf3vOf/yd/lyJO+cEPP+duc8f7H7xPkhi0CXzw4TOqpiGbJTx5PkcbQXXoKWcJjy7mjKNltZ6DcOz3LdqYd+5+yTh4uqanLDKMFngfKMuCh4cN+33FbJ7RVj1vv77h/voBJacwtWEYEMB+19APAybS9L3lUDWE4HHO0dQ1fdvh7IhWCmsdRZ6/04g6Ii2o9jvyOKY5VAyt5er1PSI4Hu4P9K2nbaZ/5/LNjr6x3F7dkKU54+BIUoPWAakEm80BHSnafrIMEQRj74mNxmjN6UWJ1AJUQBtJZCKG3tF3I4KA1pLNww4/BrIsZbetptE0L4jjiDjWU+BZPwCa+XxKbE7zHOc81aEijjNGL2jqjnGc7EBFURAZTdt2LFYzLh6vqQ8DxmiklPStpZjHnD9aoI3i9nY3aWpRHA4tOorIiwwhFXXVUpQxSk762vOLEhk8v/7Fa1arBfOyoG0aoiS6Nkb33TA+/+/O3VEBeuTIPzvHBuDIkSNHvmF0EQ/ei9Z5PxgRxiKLWJY5MqjJmy5hdzjgw0gUxURxzGZ7T13v6PuWtq2REkII7Pd7QnC0bT2lAM9OWC5OSOOEvu8Y3y0LSynRerLwrNYr8jwjiiLSNJ0Wgp0nTVKcm26S4zhFGQnBI4NAK4NSmtFZvPfs91v2hy0gMSahaSp2uy3z5Yr5fIHWMYRAO1T87h/8HnEyo94PLOYr6rahq1s2d1tOT05Jsxw/epbzJX3fcrI6wTmHiTSHalKZvnjxK6QQfPq9z/jyxa/J85LT5SlVdcv3f/gRP/vZrwhy5OLJgt72ECSzecJiXtC1I3keQYDd5kBeGNJUIaWYbu/3DRDIinhqKJTmsG/w3nPx6ITBei4v72i6gcGOxHHMMHQYM1mBmqpBS0XfO/reYgeHtQ5jNEpLrB0QQlC3Lc47PJ44SWjajqxMaOqaJDHMZiWbhwYEBAltN7LbVuAFX395z9WbLfWhpetGijydshWSiCiO8M5THTrS2DB2lqJIQAiQgjF4ApL5PEYbGIdhSvZ1UxjZMIzcXlUwgjaG2+sHvBvwfqTa7YkihQ8jSaSItWbop9+B+XyJtYEsK9DG4OyIGy3z5Yy6qsA5nB04OV8itEBJxa9/9YYPPnnMoT7w7L1HBBzzZYIPnhA8JjF0g+X2ZkeWRVy+uSSJInSiKcsYLaGpW7qhJ04U54/nPHm2otr3/OrPXtB1PUpLr7TcGZPuJPrlt3zcjxz5TnJsAI4cOXLkG+Z/++P/41ZIcSOlbIVwg9GSRbni/mY7hXrZKdVWaU1kIoITxCahLBZ49y6RVwmqasvoRtq+I81y5vMVwLScKUBKjTYxUimUkoBnt9tzffX/Z+/PYnXNzvtO7LfGd/6mPZ6pTlWxqjiTkmjLQzsdxEDnwkBiJIDUCJBAuTKC3BgJ4HT3RSDwohO4lZuGETQgwEEctBO3BDfa7YYTOHHbbkmUrZEUyWKxhjOfs8+ev+md37VWLt6vysllOqLKor8fcECwwDq19/7OKj7PWv/hjBAGZvMcpSV1VdN1LddXl1Tllq5rKMstTdMQAGkUUgAEjI6QUoKAOEoIIeBcT1lumc0m2N3Q7oaGrmt48623UTrl8vUlBk8IA23XYdOYxdEBcZZxu1yyXK3YLFcUeQFhlDwJoXj05BOEFpTllnffeQ+lU66u1hzOj6nKjsXihD/8w/d5+PYp733xwWcFWZMiQyvDyxe3eOfpu8Dl5ZqD4xlHxwVxrBgGj40SDk8Kju9MsVZRbhtWyw1RpJnOCpwLrJcV3jO+imiFDwHvIfhA17bjoiQl19clwwBJYmmbFhEksbHUVYkU0DUNSgiatiNOMtq2RyhDWmRUdYNUBjf0aG2oy4HlTc36tmV92/HsyQVtPXB1vqSYFATvUJrxFUNbqrIb+wi8QyiQWmAjSZJEpHmM1GDsWHDWdwJrNN47bKx3PgPBMHiiSOPwmDgiiRO2ZT1+v24MLJIiYLUC4QDIsgxrI6IkQUcJZVWRTVKSLOHm5oaurUkzQ5aNRupyW7K83vD2O8e8fHnNw7ce0neO0+OMs1cXHBxMOb07pW4abBRDAO8GIgNRLDg6mY7eCK24vtpQ1R2nbx5x9+ERs3nOprzF4cokm15Lra8O8vzp53XO9+z508x+AdizZ8+enwBC87Qb2sb7YSjynKatUAL6dkAqjY0Mk8mMPJ8wnc64e/cNpFRENiK2muvLC6yNMMYSxwlxErPaLKnrLW1b433A2gilNE1Tc3t7xWazQWvNfL4gTwuur29ZLVdoo9Fak2UZIQSGvqftaoahx7kBN7jPGoCjKCaOY6yN0HqMKK2qkkkxwzm4vrygqbej5GZxhBsEt9e3DF1PXW4RgNGGMKZfYrQmjhMEAiklF2dnVFUJQvDo8UesVisG5zg+vUOcTvjgxz9GCHh19gITa1arii9/5R0WB1PSzHJyMmM+m2JNwrMnY1twmkWUVc39BwsWBxnOBbbbBo/j4CTi6OSQvvfYSANiTNZRBikUygjiyGC0xlqLNpphcGg9lnMpKdDa4D009ZiUE0cRBI9QgihN0EojCKRJwtAN+MHjXUAGyeZmTRqnLJdrQKCMwvWOq/NbNrdbyk3Hxesl29UWPwyEICiKnG25YTIpsJHCuUDfBuLYoIwiK1KCHOM6s8IQJ5I0G2NCiyJmcB7n/dgFYSVZnpAXloCjLBukhHJdMZlkY/pR8HS9wwcBAtI8wTs/Gr+VZhgGrLVEcURdVURak6Y5dd2xXm9QQpOlOUJ6pPR89OMXzCZTXj5/RZYZVqsOrS14wfe++yF3HxzT9hXXN5csDg7IspQiT4kiUFYRZ4r5IqOuen7jn77Ps8cXvPHmKb733L/7JlGUbW2SXiVp/MNf+dt/e/s5HvM9e/7Usl8A9uzZs+cnQPBqnefFZjrJ+q7vuLq9ZHAdN8st+TRBa0UxKZBKMZsvUMpgtMEow3q9JI4jRPC4YcAaS9NU9F1PFCUYY3G7pB/vR9mzkII4Hhtdu7bjZnmLCOxu2sfmWSEkSZwQEAQvGPpx+NdCIIRkMlnsmmo9IQQmk9kYrZkWFJMFBIlznrZtRgNx39M2NUWegYTBD9R1hY1iZAicHB5glAYvWCwO6bqWJE1J44yrm1eUzZrF4oA3Hr7N6/PXfO/7v0dVbambFhMJvvzVh/zct742fj3ec+/+AX3nIRg+/ugZs3nGbB7jfODwaEqaRbTNQD84pvOch28dMpvnrNYrssKSTyKEciSJoZga4kyhlBoNs1qhtCYQiLIYHRmMMYRd1GkIjnTXlJukY2nYMAxEiSVKIkCQTSc4PF3dEILDRJrV7ZKmriEI6qYhjgwheOqypu9a1usVy+XYxyCkJ51m9G6U9Cg1Lh/bsiIIQATiRLGYp+RJzGSakRcxUWwopgmD80ymGVLCEDye8RVDaQE4ktTQVh1GSaptzXxWEDxkSUEUW+I0wjmQQiC1wHlHP7TUVQk+kCYxkdFoKZFKMZ8vxmbl4DHWYmxEklqkDvz4g+fcvbvgh9//mMODgmePX3P3zTnL5TXPHp3x1lsPkVITkDRdh2fARpq7d6dEieH6puLhW3eZ5Ck/+t4jnj9+weA6zs+uMSZp0ix/keUH30Xsihb27Nnz/xP7BWDPnj17fgJoaZ1QqpRSDdtyi7EJq3VDlETYRDCZzlBKc3B4QJpn9G68ZSUMQKDrG9bra5zrkAjSqCBLC6Qcb9eFlGglESEAgjyfEkcJ2iiyyViaVEwy+qEfYxONGeVGjM2wcZyOQ5ux2CimyOckcUYIDucceZYz9ANaG7KioOtbetfS9R1ZPqUfem6XVxwfHyK8QgVJ37VU1Za0SHjw1hvc3N7Sdj2Lg0PquiOKM/LJlKvrMwKgVcR8vuDDjz8gimOU1LR9RwD+zM//LMMw8MEHH1KWDQ/ffMDzZ7e0bcf15TUHhxMWBwVN09FUPU3b4YPDGMVkEpFPLFk+Lk5pbimmEd57Do8mnN4dl4UQHHFsx+F/NF0ggDSNyWcZUkukNiRxgto1NwsRsJEc/RLDwHSekeYF27KhHzxKa5qmYnAdJtL0Q0/btUTW0DajWbjcbACPdwNVuaXvx8/YOUdVtXgv6DuH1gE3DDRNzzC0RJEejbpWoK0kijRKCYxVpGlEcGKXEARSSbQRCGVo6oF+CEipMZFEW0Hb9Qx+oO8Dbd0hhSfLErre4RxE1iKlAAb6fpSMIcEmFqU1Qkkm0wOUiii3Fd4LEAalJHmW8OijMc//7OUliVU8fXRBXTb83Dff5ebymu2mYjE/wIcBYyVJGtP3juvLJcenU04ezGmGli9//SEHizmPPrpEGY2NVVBGX2pr1ynsE3/27PlvyX4B2LNnz56fAHXbqaZqs7ZpVWwsdicjOTiaMAxhN7RZ5vMF200FQeC8p+1bhqHldnVF1zcoJYniGGPM6PmUY19AGqcoZRBqLOUyxuKDRypFcIHlzYbl7RZrRwlRABCf/gpobRAouq6nLCv6rmO7WXNze7UrgILIJrtb3p715gbn3RjPuUsnssZwc7Pi9mZJVVZsyy1aa6b5nO2mGbPtzfhSIBAUWU61XRMEtE3DnaO7LG+XZGlGlmZ0TYPwgQf373J0OOE7v/H7gOQv/dvf4uzsYkxDQoIQGAmr5Yabyy1l1TIpctzgUUoglWI6nSCFAi8ZBo8EDhYZk0nCtixpu9FImyQ72Yx3eODkdM5kmkAQoCWzg4Ikt0SRIQjIi4Qk1gy9B8KYz280QULfNIgANhoLuMLgx74GOS5H+NE0KwX44Oj7jmHoxwSn4KnKCtc7mqpGhIBWAj84usbhOo9gvNGXWuMGR2QVcWSIrKXvHEob6qal7wOB0SMsJDgXqKuWqmqxsSFNIyDg/fj3XJ7f0NQtSkfEcUxTl/jej7ItpUczdF3TtS1aW7wXDM4TcCwOFtR1SxxZisn4giBwaOF59uico6NDfuf3P+Dhu6f8wW//gM2q4cGDU/ww4Al43E6S1qGNoWkcH77/Etd6Xj695up8jTWaoXM8f/KKsloHlLtFCr/y7buf0/Hes+dPPfsFYM+ePXt+Agg4FIQ4iazMI0NiNWlm6buB1e2Go8MJR0czbq5XeB9QSqKVIgBt1+CGjqF3WDs27m7LDdvtesyF1xHWZmgVIRilPMMwjFIV72nqjuAZNexK0TQNfd8D4MPoHUAIvPdopUmiCG0kve+YzQ6YFHPiJCXgub4+5+r6NZNJht79XsH1lOUGH2C73VKWt3RdSQieo+M79K1nu9pgjCLNEqwxTKcTqmpDVW8QwOnJA7SNaNqa+XTBxeVrrq7P2GxuOTgq+Gf/9LcIPnD33h0+/vglddOTZxnrVUNV9ay3DX7wBC84OipAeIbej6ZmKamrhu22pe8Hjo8KDg8npGlMXTdorciyT2MvLReXt0gpuffggDg1tO2AVIGT0wWLwynaeJJEoyVMpgZwBOHJigwbGeLEjvIgN8phikmOAJqmJU0yCKMEy8YRUmsQAq00QcgxrtREBC8w2iCDp29bfHCkeUI3BLabFtAMg6csW6RQtM2Ac6CtgSCpqjERyijD0Pb4fhz8pQxoa1Bq9D6UVU+S5WRFjACS2LDZ1vS9pK5bZosCZRRt26G1QSmLVmMSUdeOL0AQSCJLVa8ppgVRlFLVNZFVZGnE5cWGJE/46MNnBB9wfkxj+ua3vsLl6xVPHr3g+vqS7eqWtqpo2oG+FfjgODieYFTE5dmKIon5J//oX/L73/mQtupo6g1tVzXeIxFqnQT96HM63nv2/KlnvwDs2bNnz08Ab/3LoNS1FpI4NuRJjNaB89fXFJOCLNdsyw4XWtIsI88L+n5AKYWNYqyJ0HrU85dlSdPUhDAuCsMwAKPuX0iBiSKElLtb5Z68KLBRxOAcXd/jgme1WnJ9c0PwnsE5lBr17gKITERVlhR5zmQyRQpJFMV0fUPXtWRphrUJ1kQUWYEbeggBay1Ns2W7vWG5uub45JQoSnh9/gzXVxweT5nOUqLIjNIZa0mThDwvsNby/OUTTk/vcX55zouzl2STCe995Ws8evSKjz96RpYWXF1fcXOzRe6+7+XNBu8ABG3tsZFEKk9d16RZjFER3gUCHmMlB4cTksQSxWaMukwMs3lOmhqcc6zXJbN5wb035kSRpGsgyxK0tmR5RFZolAKlwBhBkkb4AJFV5EVEYMBGljiK0VoDkul8ho4MAokQEqMNaZZikghl1PjZKTkWvwmF0RqlFSFAud0SgsNajdSG1bqmbAf6EGiHQNM6/ODp+wHE2GSslCRNE5zvUFoihKCuakQYpUpRHBEnMdrIsReg7Tg6PqB3jjSPaLqOthlYrzdoI4nTmKZrd68XmqbpEAgia3B9Q91sGPqWoesJDOgojLG1XpIXMW+9e8D9BwXVaskf/cv30QNsbkpubzYkacLdO/eIbUS53dA0Lbe3S8qyIU4inO+xVvPi2Q1GS9770kMuLs756KM/YrO9wjOs0yJ/lefpP/mP/87fWX5Ox3vPnj/17BeAPXv27PkJ0LV+6Np2UratNNYQvMNIhUYymyW7ZldH1/VIIfHOE9kELS1xnJGnExCwWt/SNDWRjcahvOswZtRn611yTd/1NE1J2zUMznG7vGW92aDU2DtQl6PESCsFn5laAxBQWlG1NRDo24bV7TXL20tWt1fUVT0mEEUx11fXlNWWrqtxbsDYiK5t8H3Dze0VB0cHNG3F5eVrIqt594tvkSTxaHANPfce3B1ThUxGnk25uDznzp17tE3D64szFosjjg7vI1Asb1ecHt1ludrQtI433rzDg4dHtE1PksR0Q89mM+AIHBwvCMKQpNnYQOvqcfg3BoKgrFvSPEZHCqkEaZoghOR2WTEMgcOjjMVi7EpQSrI4immaBrvT2BOgbXuMVhgjkFox+IE0i8hSjZSA8ERRhADiJCbNYuLEYKIxtSfKEpIioZiMTcpKa6RSxElMFBmsNUQ2AjzDMKCUJo5SqnVL2zjarsMHzzCMvzbrBu/HJt627dBG4N2AGzzO9WgrkRKkEjSNo64rfOgRSBSStm1R2jIMjN9P5yi3NcEH+m4gSTIQnq5tSaKUtm1Yrzfj61RTU27XLJdXdE3N9fklQzfQNg3BOdLUkGeGB28e8ld/4S+TTiQ//O4HlMuKo5MjotxyfnnBbDFnNp9BCOAE65uSm6sNm1VHP7QYY9hsOk5Op5zeORpjZ9uabVnZpu22X/3WX3zxOR7vPXv+1LNfAPbs2bPnJ0DfuMOybO8FaYohCHrvcT1EdozkrMqONJG4PkBwLA5mY0JOPiFLJigTjZp7I2nbCikFaZoRRaMkyJiIOE5wg8f7Ae96qmpLVVU450nTbPzf7wbONM1IkgwlFUPf0e8iHt3uRUAbxTD01PUW7wbAk6UpfggEL8jzDIGnLNdIKTFmzLRfr5fM5zOatqWua+JY8dWvfZG+81y8vsV7z5e++C43V1dEkeX4+Jiu78izguACL55/QhHHHM2OOJgdcnN5jdUSaSR1d8tXv/H2mN6DpOvGG/w0s9hI84V3H5JPCtpuNK5eXtxioxSj9Vj2tdlyeDzDpqPGX6jAMDiePb0A4Oi4IIoNUSSJY5gfRNjIUBQpp/cmKC1ZrUoE4ytOnFiE9ESxJk4lNlZorUkSg7ESaRRREtP2A1keU0xTlDFk0wxpJUkWEacxSZ6irSFOY6aLGcYapFYoq0nzHKXHheb87Jq+HTBKE1mN6x1uCJSbDgLgA34YU3vatieEUZuvtCTJYoxRuCHgBsiKnK5zhODJ84TNdkPbe7rOk8YRw1Cz3dZsNi1xnGKNpusalB4Tf66vb+g7RwiC5c2Sm6sb+q6mrrZcnJ3z4sVzXl+cEXBkWcJqteXgTsov/s//Ml/71hd4+uwlL5+/4OhoynQ+49Hjx5jIcnxyhHOOsqxJkoTb24bXrze03cCLl+cYGyPwFFmBNbFX2obtevvW7//jf3z4uR7wPXv+lLNfAPbs2bPnJ0A7dP266vRy26arsqF3nqZtsYlhtarRRoEI9H3PdDZjcI754oAkTXHBgRxnPIKjqTZkebq7tQchxkx95zzGjPGebduSxAlHh4fkWQYE+r4jBLDx2Das9KgjN3pMj0ni9LMCsRAE3eCxcU5WTInimLLc4JwjSwvSpEApTZZPSJIMgcK5gSAVIUi6uiXPE9577z0++vAxn3z8lKYuefjGPW6ub8Y0oXRM7ZlkU4zWXF+9Jo4TTJQwnc94/uop17cXTGZTVtWWn/35v8ByuYEgefb0NdpotmWFtZa33r6HG+Dp4zOaumV1u2E2yVBilDfd3q65c/eQ+SzBDwOSUWN/c7vBxobFQY5QYszyTyKiRJHlMd71FFPLZBqzKaudzl6BDESRBe93nglFsltE0sxiIoGxhrxIQAiUNru+AUGSmrGFOFHEqSHJE9I8I4oikizdZd9HREmKNIo4iVDG0A+OumxGMy8BoQSDg7JpaVtH3XQoIwki0LXQNB19H/AhkKQZQhhc37PdVgyDw/WBpumQSmAijQ+O68s1UgiSOGG9qnny6DV9WyGkoqkr6mZcKLXWrJZL8mICQtOUHVdXt/TDwHSacrCYsLqt+PjDMwiKPE+pty1pYvkf/7t/ib/yP/xLDI2n3jTcOTlksTjgyZOnXF5dE8WWrh/4+KMz4sTSd4xpSq3nd77zA66vrrhdXoWub67jNH6NkMWqrt/+HI/3nj1/6tkvAHv27Nnzx8wv//IvxW07/PnByXc2rdA3m4bL65uxcKntWC83xLEBDFGU4QaPMZq8SKmqLf0w0DQtsY3GNlkh2G7WNE2NlIIQerbbNSGAlAatDAcHp8znRwQgTmPSLBnVFS4gdvE/Qow391JqhNC0XUfbdrsFoiOyEX3XsdksaZot+aRgOp/Ru56mbmmbjrqqkFKRpik2isjznEmxIEkyTg7v8P7336faVrz99gPeefcBL19c0nYtxycHFEXC/bsPxn8+4J0DqXjw4CHPnj/m6vac07sn3N6ueOedL3N1dUteZFxdLkmilB+//xxlIg6OFlxfLXnx/IxyU5NnMcUsxsaC4OH12ZLJNGE6LQDo2orgBuqyJ/jA0eGE4D1SwGyaEkWS+WyCFJLpLEPKMRKzLXuUgDSJiNMxVlSKMYJVaU2aRUSxQmtBHBuSdPdCEI2RoXFimEwyhBDkWUKWGZLUMJtnZFlMkmqiWIESxJmlmKRE0dgrEAQUkynltsM7T9M5vPfUm4pq23yW6uMdY0Mwge16/LPSdT3DAHGSIsy4MPreg1A4J+gqR2QsfdPy6tk1Uiua2pEXCVcXt5RlS1PVOOe5vb5GEDBasdmskEIwmc1AStqq4eb1mucfX5PYlC+8c4e27Pnhd19Qr2v6xnHxcsVqVfIX//I3+Iv/vZ/hZnXL+eUVb731gDfffEiW5UgtSFJLEltePr3EyDHJSgTJelVSVSWDd62Ko+c2SZ+ryJ5v++bP//Iv/7L+/E75nj1/utkvAHv27Nnzx8zNzcRu6/6tTd1n29bTDgFlRp33dl0Sa0OWxpRlzWIxxXlHFEes1kuEEKNGW0ic5zOD72pXDtb3Lbe3VzjX431ASjneHEtDWVZIOf5rve16QvAIAZvtmtXqZmfENSg5SlekVph4bBtWUtI2NQRPlk6ZFMekScYwtCgFk2mOkIKua9hu158VkSkh8d6TpxNuLlcEpzg9vce2qvj4oxco5fjGz7xNMYmZzxfEccL4OtHjvOONu/cpVys2qyXvvP0uOE2RHfDs6VPWqxvWy4qrizU/+sEnZFnM4cGci7M1N9drklSRFYZ+6HDeI0TMo08udxIpSQiBuvQ458fGW+c5PJyiFESRIc/GF5D5fIK1kiSxCBGYLyZsNzWbVYMxmmKaMJnGTKYWrSVaCbSWJIkmzy3WaLSRFLMUHwJpFmEjBcIzP8yRQuKGnqIYXwFm84hialBakGQRSWrIckuaW5I0Ip9kOzOuJcvjnQ9hgCDYrioIYSxka8a23mFwxIlhta1G/bwy1FWJEANSCIKDumqxMZhI0fY9201JnhV0rcN5hwue2FqkhOvLNdW2RITAarkkeIcIAe88q/WSNI2YzSdoqzk8mdD1A7/zLz5iaCVf/cabmBhePF+xuh2XlcuLW/7wez/m7sMD/p2/8nMUs5inz58xmU3xwGw24e79Y6SRnN495Ob2hrzQ5FmMsZppsSDPp/V0MT9fHB5+MD88+GEUJ8P777+/n2H27Plvyf7w7NmzZ88fM3EcB5Surm42om47pJIUacb19Q3bVUkUy/H2PggmE4sbHH3viKKY+WKBNZq6XBPYRTga/Vn2fl2XxGmCMpogPB6PEIK+b1FK0bYtN7e3eO+Y5NmY6e7c2BqbZ1gbjSkxdcm2XBOcG9OHtCHNCubzI5IkY7NZcnFxRtc15HmOD44QHGW5xfuBqtrSte14K11vubh8zeB7Tu/dxQvYbjvm8wnf+Jkv8fL5DavbGuck23LDcnmLVJLT03skUcLt9SUnhydIqajqmvOLZ5yfPWO7qnj+5DU3VyvqduD0zjGffPiM73/3EX3v2WxrlLZcXZVIqXn16oreeeZHOVGcc/bqkrJaE8UWbRRpblFGAIxm4r4jikb9/mh6HUiSCIRjdVuRFymLwwnTWUSeRySJIc9ztIY4UlijSZOYOIkwVpJldkzhkeOCEQhoEyiKlBDAe8hyi7GKYhKhtEQpSBJLkhnS3BLno5xoMstxviPJNFFkxhz+ukdIiY0Mzo2xp3XV0DQNcWoIeNrWI/AMXcfgekSQ+H5gdV2htaQfHP3Q4wZPnGqywu6iaHuSWDGf51RVA0g22y3aSNzQIaQnjgzlZkXwHUlqxy4JFbjzYIHrHN/73Y+J44Q/9299A2U1Zy83vHh+hXOBclvzz//pH7Lalrz1zn2m8wXL1ZYkjTk/v8L5nsUiJ4oFxSTjk49e41xPtS0ZupY0jrvJbPJofrB4UeSzi/n84Dd/7dd+rf98T/qePX962S8Ae/bs2fPHzK/8yq9s3rj/xj9bHBw+KZvK123Ptqqpyga8J00N5bZmMklxw0AIoJRgMZ9zsDjatfTG2DgeC6V22n/nHFGcYG2M955h6CGAGxxKSfq+o65rsiwjiWNulku0tuRZgZKW7bYc5SRtQ12X5EmGFpI0jrHGYq1lcKMRuOtbht4RRQkhjOkwaZownU4BxsSXJMEHT9u2hCDwQeCcRxDo25p+CHz80RkX52vcEFitbrldLpnN5izmB7z58C1enZ1xeHTKnXv3qKuati+5uDxnNpnTtw3Xl+c8efoxX/rKQ549OWdzO3YczOdT1suBy9cNaZJhleH2uuT4dEGUJLx4eQlKcXg8G/0S3qOUpto24/fZO7RW2Eji/cDQB5QWIAJN7RBSMpklJCkkmSWOIow2aKMwVpOmliSJMUajtaSYJGR5jFSCKFJEVpEkETbSxInEGMUwONLMjr6AxLJYZGjF2EegFZNJQhIr0lSTF4YoipBSoJTE94H1uiJKIoQArQR11dC2LW3Xo7QkTSP6xuGcp2nGP1dlPcZ5+gASPcrBgmS7LamqLUluQEi6rsf5gcVBho3Gz9G5QBRHRMnodTBWYoymrlqytGA2n1JteybTnK984yE2cfzohx/Q9zXf+rPvcnovp2sHnnx4wVAF0sjy3d97zKPHl0wWc4IIrFcV1mZcXiwhwPq6pis9fdXw/h/9iLffvsO6ufSrzW0vg1RZln3PRtFv/d1f+7XfFUKEz/GY79nzp5q9fm7Pnj17fgIcHR39nv/S8LeFGKaXFzdfqJpOhgH6YYo2mrb3BDeghCaOLU09GiZ9gDjNyPqOPC3o+x4pJSE46qYkzSZ4PyAERNZSldUo55GaNE0pilH3vllvx3ZgD3VdsVqtMdrghgFjLEUxwfmBzWaL84E8HZuKfXBMiinGGJTWCDn+Na0Uq6albhuE8LRNRUAynS0okpS6aqnrDctbTZpGCCGJbERVdWR5RPBwfn5FFGVkWUGcKD788H1CgHt379G5UeN+dXnNl7/0dZbrWx4/fURkDf+TX/pF2ralaxsuVxu+8bPvcnZ2ydCBjTxHJye8/4OnYxpR3VOVNcUk5uTkgKos2W4qsiyl2nYkcQpA13fMFxOE9LhB0vfj4Nw1A2kS73LpFVFkmU4y4jhiGAa6viFNI5QeZUZtFwhiTAYydjfIz1IEnq4JBK1JtKcsHdpIQGBjg/eOLLJ4HFJofPBoLZgfFFR1QxxrssxSVT1CQAgCgUJpSQieKDaEMOC9wLmAc47FPKWueqRU1E07xr0ODiEENh5v9K1RYzOylKyWW9LUIKUkjhUhOCaTFGsVUo6ldMYoghZoYwDQeoxRbZqGPEvwi5TlcsXx8R3QgavzW67Orwho3vnSPdI85jf+6+9xdbFlW1YsjhZcX28QYsvp6RFlWbFabUFNePniljBaFUjTmBdPN3z04x/x83/uW+6HP/rRxzZN/9C/m/zmf/rtv9N8Tsd6z56fGvYvAHv27NnzE+B/+R/8B7fpNPvhu++9/dt37x6+MhovFGhraZueuqypqwGjFFGkEHjiRI057HHOdHZAlk3I0gLX9/R9y+B6QnAM/RgN6Z1DSUWe52MOvRBsNhvatiWOIkIINE1FXVVjkowE7z1G6TEjv6ow1pIkCXbXMaCUpm1bvA+4wVMU4xKyLStCEGglKbdrmqZlMp1zsDikLEvabszfR0DTtnRdy/J2iRRjsdbNzQ0nJ0csFhMePLjD67PXeCf4wttv0XUd6+WStq744rtf4uLijB9/8j7res0Xv/IVimLB5fkNVVkTRE/vNC9frhiGnqOTCWevbgFJ13coI5hMY46OJnRtze31EmsN3nnErpSt63om04woGjsU2qbHOQ/hU4NvIE0i8iJiMkuYTPMxW19LlJREkSVJIpTS9N1AFBnSzJDEmijSWKPIspg4jfBuICssxmgIAakFUim0VZhYEaURykKSGZCBYhaNhWZWkeQGG0vYfXbaSKQUDMNAFGuiRDMMQJBIYFrERFbifUBrhR8cQngQApto2u5fvRQN/YAQiqpq0AryNEZIkAom04zJNB8TjtIUsyuli+MUbSKm08XOUDxQFBPyPOb89RlxHKGtYrNs2a4qPvzgBZuy4Ws/9x4qEjR14NXTSwwK4QMvnr1kfjChmMa0VcPqtuLZsxd8/4/+COccSZxw9uIFv/c7vyO+8IW3v5ymuYvOIvc5H+09e34q2C8Ae/bs2fMTIjjXGs0Hbzw8+a037h6+jK2i3GzZLhu8Ezvzrx1vPcWYEFTvhvLZ7AClLMPg6doerTTWGPquJQSP9x4AExmarqWsSgDiOP5M7qKVggBdV9O2o5b/8PAQKRQhBNK4YJJNMMpSbpf0fY0xlsgmJHFGHCW8eP6Cpm6YzaYYo8eceWmZzY6ZFAuqqkdJS5oWTIoFTdvSdi1xFBNFMdNpxpPHzxHCcP/hEV/9+tucvbpEa82f+fmfZT5fcHV9xcFixtHRCavVildnTxAI3n7zSzx84z1evjhju9pyeX3BW194k8efvKSpB7Q1NK3ng/fPUFKzvN0wn+X0fUtZ1lye34KQZHmB94o0s/RDi9KKw6NDttsarTVCQJrFBOExeny5CD6QJprptEAbi5IWgQQkUkq0NoCi7z1Ka6yNRlO1VRgrEFqSFpbghnGQLgyD99hIYeNd7r8WzBcZNlLEiSVNY6QULA7SsexNKyazBBtLotSOaUOJwkYGISHLY+JkXASlBB2NUiRrFXlmURKkFAgVmC3GgV5pxsWl97ghkKb/SoYWR9HoX0gS4rSgmMzRJmYyOWAYBFpHZPmMtvfcvfsmbR+QOsLajKJI2W62nJ4esl631JVnOs949fKGtu148PCIh19YMAw9F68vCc4zm8958vg5i/mMvu1Y32zGorK65kff/wF9W+Fc65bLm49evHz1I6vF/+z2xYuDz+9E79nz08N+AdizZ8+enxD/3v/uP/pdodSHVonbxbS4nuQRiRb0dY8UMJ0mJKlEaUiShPWqIQTHbJqh1FgAtl7fjJIMBEppnBtQEvq+R0iFkBIpFUkS4/xA33ck8WhwLcuSYehRWmPsaDbebDeUTQVSoLSmdz1ls8V5TxynNHU16tyNGV8d+h6tDX3f4b0niVKyrEBpye3yirbZ0jQVwTu6viGfFGRZvstxr3n0+DEguPtgzle+/ibn59dU9Zavfu1LgOD5y+f8/M//HEmS0TQ155dn+AAnJ6d88xtf5+rqJevlNY8fPcaamMuLLQJYL68IfuC3f/P7DENP53refuc+5XZLcLBdlwghmc8LpFBYM95YDy5w5/4pZdkghEBrizZjJr5Uary1F462H5jOMtIsRUgNQtEPHVKDNmBjRRBgjMHsXgac60kSi1QK1PiakKYx3sFklqG0pK0H8tTQVB1GWyaFZTotEEBexERGk8aG2SzGWok2MD/ISFJFnOrRXxAphIAsi0kzjbHqs4bhfJIQJxJrJXEcEycJQgYWi5wi1xRFRBRpkkTj/DDGki5yAj1CKaI4w9qUOMnIihlCGorJfJST7boI4iyhqkvuP3iHq+slNoqRUpPnGTeXG95+9w3W6xIRFLGVfPj+S7abnvlBwb/93/8Z3v7iA3rXYWNBkeWcvbwmSQ3dUHN1eY3RhthCWd6gI3GzOD76YVRk/+dh6P4zbcV/9O/+1b/65ud6sPfs+SlgvwDs2bNnz0+IX/yFXxhbtqTyUob2eJauHpzOQmQEaaLJJxplNHGsmRYJbnA7eYhFCkkIA+DwYUApje8dVhv6rieEUfctBChACgUEZrMp3nvW6w1SKdI0GfP9+5bNZk0IgiiyBKD3HWVdjoViNmIYOrQxSKlou5rVasnhwTHGxgTCbmA2GGu5vR3z4ctyNTbCNjVI0ErRtB11U31mGH3jzTu89+X7fO8PP+Hy4op3v/iAqq65vFzyrT/7Laq64+b6mpvLC/A9RT7hG1/7OlfXl0gpefboOcvVFffuHeG7nlcvnnL3zgG/+9vfo2s6bKSx1rDdlqSJRe2G0dk8w5qYrm3ZliVd65jNJyRxwmq1ZjLN2FUk0HU9gvHGvNxWxLGmmKYkaYKUin4Yf+Zaa2xkxwIzo4isQYqAFhItJVFsgYDVCq0ENtJ07YAWMJ/lEAJaSQ4PpiyXW0Awn2ZoqVASolgjhCTPIqazAu8DxmpmsxytJXEWEWcWZdS4tEWWIo93XQMZWisWB3OM1XjnOTo6QkiBtYaT0wVpYckLg9WKJNYEP7A4mlFMMwgerSOUsmhjidMME6c0Xcf84BikZHA9WkqkDLRtw4M33uL8/HyUU7WONEvYbLbcvX/Ejz94weLoiNVyxeXrJe//0SuePn7Nw7cP+Zk/8y7VpqTalKggKDctb3/xHouTCa53bDa3NN26S5L0dVFMrmbT4g/+0//8H/4nBPEPlHD/i1/4hV+Yfm4He8+enwL2C8CePXv2/IT49V//dWcy/RtxnD1aLOaf3Llz8DxPVZlEDi2BIBBi4M7dnLZpSJIYbQVVWRKCp+8H2qbBO5BSo6TEO4cbevzQQwgENyAFDF1PGucEB03dMJ/PyYuCtu0oyw1d1xAnEVFk6LqOvm/pmho3DCTJmF9P8EBP3Ww5e/2ctqvZVCsQo+wnjnLSLKfrWpQev8662e6MrBKrDPW2REvF0eERzvd882fe5Y2HR/xX/8U/5+Wz17z7xfvMZgXr1ZbDoymb1Ypnj5/x+vUrJpMpR4tTvvn1b7G63dDVDRevz3nx/CV37p7iBnjx7AV4xatXl4RgaKqeOE5QxpIkmjQzpElMmqSEILm5XbJZl+MrgFVMJjnXV1e7gi6FlJrtpkYgxmhWDVU1cHwy/2z4J4ylZQKJMRZjLOP/fQrCLohGCoHSCqFGvb4SiijSeAAhEWIsC4sTS1XVHCwmZFnC1dWaIQxM5yltM5DEEUIEQggUWUJeFLjek2eayTTGh0AUj/n4AoHznjTPxj6IKEbs/rMoCpquIZ+kFHlBWdbkRc7h8SHGGpQdk4q0kggBi8WcKBoXRcRYHqa0IU1zXAigNWk2GxfNEMiLgrJakyQxSZTTlg3VdoOxgvOzG+LIEsWGDz54zrtffoNHnzyh2qz5+P1HvHxxjVCK07t3WBzOaNsOJWPaXvDNb32Nk7sHu69BvY7z4sM0z84CYgLwf/sH/9Xf19b+o1zzM5/Pqd6z56eD/QKwZ8+ePT9BNhQ3XvvfNdY+0lJeJpG+PZglg3A9Ugiy3NK1wy7yMTCdJBA8TV3Sdx3aaIyJxoIvAV3XIqVEEJBiLHEaQiBKErSxrDdb4ngcBLebDX0/4JwnjhOk1Nze3tB3LSI4lJAcHx/j3IAbBqTU1HVDCIE8L8Yh2sNmuWZ5e0sIDgnEcUqeTpnPjkiTAoIgzybjkqL17tXBcOfOEdZa/p//j+8wySfcv3+CG+CjD5/QNBXWSF6+eEGSGO7fe4A2hgdvvEldN2zLDc45PvzoQ+LEkiUHfPf3f8TF60vOz2+5vtmQTxNW65IQYLMpidOUbDplcXyMF5LBB+qqxlozZvanCVXV0A8t1mq8H6VUUggia4mTGIEijizHJzMCmgC0XUMIHmv1uABYi1CSAGMaUxyBUtjIEsUKT8CHgI0TEKNcyDkHjMlBURSz3ZacHM+QQF23xFmMjSJC8KS7jH039CxmOZHVY0HZPCdN7Ti4y0AcW5ASoRT5ZEoQgjTLCUAUxURxQtM0vPHwDYZ+YLnaUEwmHBwejr6HIiXNE5q6wUYxk9kcKdXYHOw9BInVCVk+pSpLYhOT2JiuaxmGgSSJWa5uOD094dXZLdoaXjy74Ktff4vf/s53OT6Z471DG8PiKGe5WbFZ1/zwux9RlhVOBlSccvLgAB9atIp48fyCr37jixTTSRBS9VEUVUmcvpgI8/1Pz9T/5df+8//GFPPvfD4nes+enw72C8CePXv2/AT59re/7f/Gf/gf/zcd4Ts2No+T2FwoMazbah2882zWHUpZpB4HvNlsjh8GXD9gjCZJc2yUEMcp3nukHG+tlVJ45zHKIKXGe09VlbsBTuGGcfBXWpPnE6yJ6Id+11SbYW1Cnmc0TUPfN8RxhPeSSbEgSTLSZCwFOzg4ASGp6jWr5RXDMKblpEmExOG9QyhFnGVEcTLq4q3BB8f52SW//3vf5/TOPU5P7tA1Pe9//wnX17e8+97bDJ1gPpvwxht3qZua6TJ0vroAAPoYSURBVHRKZC19W3F6esQPf/RHWGs5OLrD5eU1q9Wai6tz2q7i7v1DHn/8BGtitpuaNLGIEMjSCXXd4H3YdS7ECBmIk5jNtsb7gDUxfe8wRgKONNUQwGhJXTfcf3iCFwEpNX3vCD4AAZBEcQpy1ODjA0oKoljvknoEUWyItCGEMXFHKYmUfDZUhwBSQiDQdQ2zeTGmQlUd88WUgMDEEdoahBRI6ZhMx5eIKDJMJ5bIilF6pOQuDSqMRmVjiJMMIQ1SaYpiSt87kiTh8PiQuq5p6pr5bE6SZGitySfj68F6vSXNJmT55P+rdyIAkY2RCMpygzYGpTTr1QqJYrvZMISKYlHw4cfnLJctr16c8a0/82X+63/8OxSJ5cfvf8y777xFlqd4RrP7b//GHyAY062Ojhfcv3/CxdkZ/bblkx8/5t/67/68ny4mvu3agDG0mbf/n+fqV3/1V/clYHv2/P/BfgHYs2fPnj8BfEh+s/d82PX+si6bK6NUH9kxqccatXsNiNist3jv0VoxKaZEUUIUpwx+lAGFIIminMFBCGFseh0cIYRx2FQCqeQYo5gkRFHE4Hq6vqOqSibFjDjKmM8Occ7Ttg3eO/q+I01SbBSxXt2yXN6Mun8CeZ6TpDnT6RypAhJom5rNdoUPgaPjuxT5lKquUFqRpJazV2c8+vgps8kBAsXV1SVPnj7DB8dXv/Yu83nO4iDnrbfus16vefjG28RRws31LXdOjvnx939AHkfMpuNA+uLlU65X5wijuP/GCVW5pVw1CAICwe11zd17d3DOUa4rcB4lx8z8JE15fX6NNpa+H5BCYK2m6zu88wzDaNbtu4HJJKeYpjtz8Di8K6Xo2m6UDGmFd4Gh8/R9jzYKIXd5+R6slhAEWim0kERGY6RGfVro5Ud5j7WKoR+wZowI7bseHxxpkeMRSC2ReiwPi+MIYwyDH1+KtNZEcUTwHqUUUoBzA1pHu18GIRTWxkSRYXl7y50797Empm06vAvji43QpHHGdDpls9nSth15PkMITQiBwLBrgIb57GA0gjswOsVGCU1TU2Qzri5uOTkumE0L+sbz2//8R2w3JV/60tu8eHqBVobf+q3f4ctffYukGL+XxMScv1hiJLx4fkk/eBJrefzhB3z4w+/zW7/5W/z8X/jzh4vDY9F3w+vb2+H28z7De/b8NLFfAPbs2bPnT4B/71d+ZePj5B+Spn83aP3dvCjKrqkxSnB9udql5nREkcVE41BotCSJE4wxaK3oBkdWFCitkTLQdw1VvUFKiUSi1Bjv2bZj+2vbNGw2a/qhp65KBII4jjk8PKTvewbnqNuGpm+RUgCezXZNVVfMZ3MEgrOzFyyXV1ij8MHTtS1SKTySOC04Ob6HUZaq2hJCQAp4+vgJy9sbjFYEJ3n9+oKXL8+I4pjDoxl3752yWtaUm4aL60ve/MJbAGy2G7Is4/nzlwx9j0JQlyvK1S11taLrKt56+w1OTo/56McfgfCgPC9evKIqlwyh5+bqmuA6xgRUT2yTMXHHjIVrUo4Z+VVT03Xt2KJsLDqOSNKYPE8QPmBNRHCO4EGbiCDEqLv/VIrV1uOCJGEYIPiANoo4Seg7hxRiN+jL0UOhNMYohJAIodB6NAt0w0CaxQg1fm7WGKRQ+BDGG34bUdc1URoTkAghsZEmSWO8h2EIGK0RAZTUGBuR5cXu6zVoOyYcOe84ODyi63p615NmOd5LQlBMJlPSNGF5e4tUaiddEiAEgTC+PKmIJMto+w6hNWkxoe4GZGTJJzPOXq5474unlG3J5XXD//2//BccHM3ofSCfTEizhB//6Clf/8ZXWBxNAU3XOZI0IU40z56/YL1aM58vSKzl+uxi873f/+76/uHJXzZCHP36r//6Pv9/z54/RvYLwJ49e/b8CfE3/vd/6/1rO/8vglQfOedetGXbNWWDFAJpNc5Lbm/X9F1PPi1AwuHhwU5zPQ6xaZrRNRUhBHrXIoQiyVKiOKJpGqqqGn8/IcbbfTfgdjp3pRRVVVOVFZGN6LoWgscIQ3ABISWTfEqRTyiriuvrS9brJUPfcX19yfL2kqpcY4yiKKZ4H2ibjq5raLsGrTVt2+FCQNmIJC+omorb22uK6YzJdMHp/QXXV7fcXK3oGfjqN79O07Q0dUmkDdYo4ighTRMEgjydopREhMDd0xOKNOXF0xe4LrBtNnSd48mTRxweTbm9XNG1PV4EvNB4L3beicBsMSWEgTiOGdyAEhLvoGsHDo8WEAIIj3MO5wKb9Yq2qXHDpyVsDoTAu56uqWibBsHom3aDAzkWfElhkHJ8YXDOoZTCGLXrCrBorfE+IMTYJ9B33bjkKUPbtqzXa6wxo7RLyF28q8c5TxRF+OCx1mKtIU0TmroGRonRzo6M3hV3eQd5tiBJU+qmYjIpcA7qpkQqmM5ndEOHMTGTyZRhaGmbijRJUFLh+46hHT0hgx9Q2uL8gPcDQ+dI04KXL19ycLhgudxwc73l7Xfv0fQl5+dX/Jd//5+QRJZPPv4xic24vnjN00dPuffgHofHxzgfuFmuyYopi8MjEFCWa1xwQ1EU2+22+uCjR4+eCu//1//T/9H/4N/5HI/unj0/dewXgD179uz5E+USnSavejc80lKtRBDYyCKEo21rzl5ekGcZymgWh0d0fY+UCmsj7ty5w2azpB/Gv/ZpE2tsI5a3l2y3a5wbmE4Luq7DGEuajoVe2tixQTayKKnAB0LwRCYiiRKMiUAI6qam7SpW61u00Rwf3SPL50RxStd3dH3Dan1LWa6pqi0IR9Ns2ZZjWpA1FqMjFgdHzOYHBGA+nzKbZ0xmMdJErNctSRzz1rtv8PjHL3n5+CU3t9ccHR2TpimxjZBCMimmHC5O0EqTpTlxlPDk0WPWN0u6rkM4aDYrRJAkWUZdNrQNtG0gjmOkVITA+KqiQWuz07cHJIJqW3F4cozAMwzd2KysND4E6qpCabmL8Wx3EaiKrq4YulE6ZIwdpUEhELwbE3hMQpJEu89UjLGh1mIjg1IGY8zYxtsNaDkm6pSbLXmaYLWiqSrC4Ijt2OzsAyRpTt/3RJHZFZcJIBDFBiECXTt+1oTx1l4gUMpQNy1GR6TZZCyFE5qT0zuUm7EdOk3G9l/noCgOSPOUpinxziOFRCEZuhbvB6RWwFiS5vqWoW+xWnPzuuKDHzzhrbfucXF+jY009x4csC23rJdbnj95zunRAY8/+YjIWp588pgnjx4TWU1fN+Aky5s1201JbA1DVwcf+rW29nwyn752Wv7LbdN8z/fhb/zSL/zCtz7fs7tnz08P+wVgz549e/4ESatMdEMQINdai6UUeKUEeRpTlxUCByJgtKHvh3G404bpZDZKbJQiSROGoSOKYpIk4uzlE5a3l7iuJ4li+p2BOMsz8mJCnKa4EDDW0Pc9XdfjnCdLU5x3u1vvgdX6hpvbC4ZecOf0LebzY0DQdQ1dW7Mpl5TNBhd6pByNwIIwpgoJEASGruf09C5JnBHCaAg+OT3k3v1jpILNdc319Q0mCyyv1pw/O+fVszMWiwOUtVR1S11tMcpyeHBM2zVcXl5xcHjE+flrHj58wOB7tuWaSEsuXr3g3Xfe4cWza66XFc+fn5OlOVqPptu27ZB6d5PuPDaKUFqx3Y5Rq8ZqNpsVIXikUgit0ZFlMp3StT1t/enrxli65r1ncH5M3xESHzyCQN20aK1QWu1MvBHD4JBSYiKLjiw+BIZh1P0LIcc4Tq1p2h4hBcZopJBUVTVm/CcZ3kOejx0AIYxfv5AKKceytjRL2ZbluBSIgBRi1w8hEATariFJMoxJ8N5R5AVxHPHixRl935MmOXVTo60lS6eAomsblFLj96gVbTu+hMRxipAWY0b/QblZ8eUvvcujj15hTYw2McvbCqNjjNYEWpq2Zbtueeud+6xWGxaLI16/esX561fkaUK5XhNJwdCWPHvyiKGrB6H8JVosQyCaLRYfxEXxf3BC/B+VUuLzPr979vy0sF8A9uzZs+dPkLhpuhDYKquW2spzG6lWy4DrPGGQTCYFQowZ+wSPNZokjkjTmBDC7jZf0/Y9SZKzWi5Zb26RWqCtRmpNPwx03UDAjznvSJTQSKGQUqK0RJvRcwAQxDgodl2HlIr5wQHs7LVKj1nxwXuMTphOjvBOjIViNhlvsrXFmgilDJPpjHK7ZXV7S1NVRLElihMeffKMZtvx5NETnG9ZHB7w/NFLnr34hHyWc3J8Qt9UdDsj8WJxQJFP6IeBo+NDlqsb3nvvIcENnL18RZHGlNWG2eGC25trPvnxM549HqMo40jTtwPeQ5RGTKdTbm/XCDRKaoY+MDjHZJrTtWP/ghRybEw2BmvHMq++G9huK5TUwNi14P2oForjZDfgK0xkEUFAAEePshIfxhQdBONSYMzYEBwCxmicCxDARuOi0HefvvSMYTfeDVgbY2yEUhprIrq2Q2uNVGbnA5GkaYqSks1mO0aHurFMTggFeLwfRuN4nNMPA0JJDo+OccPA00fPKLIpbdvQthXFdDG2TfuBtm1RNkKq0cDctRV914GXrLcV+bTgZnUFquNr3/wy/+J3f4g0MZ98dM50WrA4OEZIixCBly8vmM4WHN2ZooTi9OQ+zsOmHuVozx495mCe0DY3rFZXTmm18QiPUNs0yb7z9/7+3/+j/+wf/sN/8H/6e3/v9z6fU7tnz08f+wVgz549e/4E+et/62+1Oor+OVZ930b6PAS/CsHTtQPOBSaTCdtNSVPVEALeOaJoHEBDEBirkGo0eBoT0bY1RmtiGxF9JhvxxIlhNsu4uDxntVnihhbnHF3f0TQNTVuTxGMUZNt3OOewWqOkYr1e0g0lSo9G2r7vqaqSyMZoZYhsgnOObbWkG1qiKGUxO8LalBCgrmq883R9jzaWx09fEILl9dk123LFV7/5ZZ58/Iqr15cUecE7771H3TYYpYiiiJPTezx88+2dpl7gvWNoa44Wh3z40aPRHxAkk0mOCIFXL5+jZUTfD9y5s6BrG+qqRinJZDqjadox5tMq1qsbNrcr0iTGxBalNEPnGIaxxRYEQ98xDN2Y/OlBBOjqHoJHKYEQYK3ddTKoz27kpVQI3FgIJkBJsYsXNQjEGE0qPB6HGwLOe6QYk5aquoEw+jQCDu/HGFKCwJixeVgiPlsUAgIhJdpYkiShqrcEPyb2aDW2IQ+Dw7keFxxRmoPUdF2LMTEP7j9gvVxxc3XFYr5gdXtD3w9ESQaA9w7XdwTn0Sai73ratqTvGrqqo617Tu++xdPnL7j7xozFQcEH7z+mqcfl4cEbJyRJQluViOB5/eqan/25n0FZDUKS5inBe6w1xHHE08fPKNIMqUXjEZ3SusyK/Emh9cvP77Tu2fPTy34B2LNnz54/Yf5X3/6bT7ww32uH/qXw/bNI0EkRMLHF+YAfPMEHXD+w3ZbkWUYIDoTHmPGWN7YxAsZb4KzARgn+04Uh1tx/45QQJEpZ0mTM/e922nUA58M4tAqJknIstgqSNM2J4xRjNGevniHwCCnJ8oI4jun6hm15TVWvqJsSrRVFkdM0Ld45wq4Ya6DH5jG9d0wmc9J5wXq75Of+7Nd5/vQlz548xyE4PLrL0PcgOkxiOTm9w4M37mOtZrVakiUZCs2Xv/Qlri42WD16FoSQ5FnB1c0N88M5k1nMnTsTqm1JVVVjZGYaEycp5bakmEzpuh7vxuhMbSOsjfAuUNctUo839OVmQ9dWKCVp24EQoKmr0bA7DOOiZM3oGfCOKLK7W3eJ2hmtpZBopRncGFEqhaDrOrRWWGvGFxU8IFBSkaYJBHZJTECAvu8IIeB3bWOjj8Ai8GilcG78M2JtgokTjFZU1QYhRx+A0mOa0GazhuAIBNKsoHcdbdeQFwV37p5wcf4Sm8RYm3D+6gXWWrwLJElCXW0RAqQYy+hc37JaXmGM5Mc/+gBrLKcnJzT1lsPDKZGJefn8Ba9fXzE7nFPMZ9x78ACpJWXZ8vLlFW+99wbKqF0J3eHYV+EdRhvK7ZYsS3DeS22iMi+mP/5P/q9/d/k5HdM9e36q2S8Ae/bs2fM5oEk+8IinJhKv81TXi2mG1nJMm/ESKQwuBOIkwXvP5dUF1hgiGyMQmJ0EJN5l/UspEEKQpAlZltC2HZcX1zvJyFg8FcUxkbUIBGmckSTpzlA65sh7PHXTUFUbbm6uUbuhNwRBmub0fUfXVYBASsNifoK1Ea9fv2C7uUaIga5taLuebDphMZ9x8/qcrl2zvHrGO1+4y+uXZ3zy/lOEC8TWQoCmadAywdiMg9MpJgpcXa0oiglHh8fcvXOfaTGj3Da8cf8+IoA1Fq0tp3cO+cJbD7FW0LcdXdfT9QPOSZrac3NzS57n9F3P9fX1qK1PE6Q2WBuxvF3R9QNpltD3wzh09wHfK1arLUorvB+H/qYeX0o+TfLRRqHN2PIbRZa+71BSoqRASoEbPIFRDiQlgP+s0TlJIpwbb/rjeGx6FlIQ8Citdpn7A0oL+r5DKIlU8jOtv1ZyfBkZBqIoxmhDU5f4oRt9CUoRxTFtXdO3Dd4PRHGKVmZMP+oGju/coZhNOXv+gul0Sr1ZU682u5cMgQC6riF4RxTH9K5HatiUK4zRPHv6MVlmaLuOw6NjqnLDNCv44Xd/xJNHn3Awm1AUU2bzBX5w3F6tiVKFtmMC09APxFHM+flr+q7E+YHlauuMjWolZevCMEY47dmz54+d/QKwZ8+ePZ8Df/3b394EqX9krCltJJdxHEJexNjYMnhHP/QkaQIEnr94gXMeISTB+TF1JoTRYGpGzbgAhAhoLdFS8+r5BWL3r/hhGIfW2NqxMMpYiukMPGhtR1+AHBcK8DjX0rYl682K5fIGGxnquqJtS7z3RFHKfH4EQtI0DXEcQ/Dc3FzStS1KKx68cY/15orG3fLOV95klh+wWte8//0PkX5AK4PzgavrGzarFmMt73zpHtZqbi5qpDTM5gf0ruH+gyNevbxkvig4OT4iSxLe++IXmS2Oee/dd1neLrlzeoLSUBQZfQsEwZNPXtJ3HYGxvyCOIpI0BSFRylBuW7bbLdoakjQjeA/BE0Lg6vIW7x3BjwvQeOvugIDWhmFwRNZ+tngZM8Z2Sj36MEIIGKtI0wgIO2lW+PSTwkaGYejHsjElkGr8faQUKCmBgHMDcRIT/Lg4aGsJQtD1PcaOiUZVWSGVHuVC3tO3DcENhOCwUUwcJ1RlSXA9hIBW45+BEAYCMJ0vGJqWvqlI84Szl68QKtC0DXk2oe8a2nbLp03IQmjWqy3OO9q64fEnz2laR+e2TA8Tlusl0yzh+uya7XpLU7ccHh4xnU85OFjQV4H33ntIlEi6pmZ1c0NmIy7OX3J8fIwyUXS7XM+lkgOI/K/9tb+W/gkfzT17/o1gvwDs2bNnz+fAL//yLwslhRuGcCl1WGa5DodHKad3DhAy4MLAMDjqumK9XjMpZrRtS9e3SCHHAdOMmfNKKZz3CARaauqyRvidtEeMZt0xzacdlwGjaduWKE4wuwVAK4Ug4L2j7RqatkIqQZqmNHVNVW7wwSOlQStD19d0Xc0w9Gy3JVIbjNZsyzVpZujaLdeXV/zsz32T7//BD3nx7Ixnj55A6Al4mqGl957ZYs7h8QGzWUFb19xcrlivl0ymMdtqzb0Hd6i2HdPZnC9+6R2Wt0sW8yO0jnnrnTfpe8eDO/eRYuD4zpzZbBzkX7+6pChitAyU5ZZ+6JhOJ7Td8Nnt/8XZBUIIprMJUlmENDg3AOPPIIktPrixO6AfCN7TDQ5tok/n+DF6E8bbeS1xPqCUQWmD1gKlBUrInWTHj7fru0jRKBo9G0ruisEIo3dAyc+kXniPEB4fPFEco7UZ5UJCIoXalZEZtDEIRvMwwdO3LQE/NjRXW/q2huBG2ZK19EPD4FqSNMPGluvrC7J8xrbesl2vkQKMMcRRzGZ1Q1tumWRTltdL2rqn3JRcna/58QfP+Z3ffp8nj8/J8inKxrgg6HvPZr3FeQ/e8+abdxn6lvXNlq7teOsLd7hzb4EKjnK1ZugGPnr8CScnpzJL06xpmkxoVQH953RE9+z5qWa/AOzZs2fP50SH+mDwfEwQS2tpT05TTk4zTk4OGPqBrnUQBEVR7AbC8RWg7RqMVTRNg3OOEALOB7SJqOqaum4wRjEMHsJY6mq0JniBNpoQPHE8lkUV+YTYJgyuY1st2Za3ONcjhcLoBGsjttsVQoztuHGUorUmOE/X9tgoIs8zjNGU2y1FkXDn3hHnZ5e8+4W3+cPf+QFt2aCVZ7u9pWsahJAooTg+OuT49JgHbx5yeJTz+MOXXF7cMpnOQAi+8Y0vgrfcrlb83J97j5ubGyaTGZfLM45PJ0yKCCUsdbMlSRRFXlA3gQ9+9JjpNOXoaEpddayWFcba3cAOUawJYUDKwGwxwUTRZ0lHVkdUVbO7wbdj4k8S03QtNjZoE6G0HY3ZQiC0QRoLcvzv3nsECinH3H8YlzWFQCIIwe/agAVejFvEp7GtQgq8B4TEWIsPo18jBEFwIMRo/JYE2L02jPGrAmtj+t4xthwE3NAz9N3O62BYr5YE7wmMX6PWmrbp8CEQZxn90BOCJy9ybq+ukRKarsJGY3HaenVD13fkk5zLixWrZcPLl9cYFfH0kxc8+eicsxe3pGnGdDpDAuHTf07viSLN0XHBZr1mebNhs90gxMB7X3yDulrTtxVVs/Uvz56vZvlkVRTTq0ia9a/+6q/uF4A9e34C7BeAPXv27Pkc+Pa3v+3//W//zWedE/9l0/kfOu/boog5PM7IpxHaWpTROCCKU5quBaBuaoQURNZQlttRs+7HuFCCo65q2q7D7wZ/rTR5NsFGMVES4f0oH2qaCjf0NHWN82P3wNhWG2NtjFKG4APb7Zquq9HakqYToihmuy1xLjCdzXBDwJiIpqkRCu49eMhHHz4mOMeTR0+x1iJ84PzsNbFJWCzu7hYZiOOI2TRl6Cr+xXf+gPOLS45PF6QTwxe//CbltuX1qzO+9s13SLMMqwsuLq75ylff4b0v3eXsxSvqtiSdJtgoolw3/OC7P6ZvB+IoY7suWd5U1NuOLIto24YkiTBa0NRbkiwhSlLiOKGuNxglqKoGgty9rMjdK8vY2hvZiNgauq4ezdpe0A+OaBfVGbxHeI93gYAYpUAIyqbF7XoGhmEYF4Wdxl4KSd87vBO7FWHsF4DdvhJ2H6T4VJUvQIydAEJKRHAMXU1kLd4L2rbf/XzHJugA5PmUvuupy4o0SSnLCqXGpCIRYDpdYHeLnbGWpm3ZbErqumJ5e0OWTnj+/DUffvQRk+mcpulIY0vfDpy9vMDX8PEPHnP+/ILQ93g/AJIkSZAStBHc3tYcHh9wcFRwfbGiqQaqynN5teG9r76DzVNAea3VUlv1/fl8+lhK6Xc/hj179vwxoz/vL2DPnj17/k1GLvxFvZY/bPvworB6lk8D9x4uqNpAuW2I4oSubTBG07YdMKC1oa5ahr5HCkAo/ODp2gqjU2QSoY0mL3KqqsSamKppaJpyjJkMnuAd3g9jik9WUNbQdu0uKQiS2JKmMWVZYm1EINB1LXVbUuQZWls26zVSKvq+Z7le8o1vfpXV6pq23lIcHlBX48ArgmKxOGYYOgbniLKUBw8fMgyOVy/P+OjDH9B2nq9+7RtoZbCp4Xaz5kcffMQX3n7AfDHj9aslL1+8opjEfONnvszN9YquHTg5mROnKa9fXxKZmNVti7WSjz98RhwrLi/XfPWrD6irkrLsSNKYYRg9AUkakxUT/BBomxaJYFuWZNmYEAQBG9mdzyEZb/QDOO/QSo/Sq8GNnQC9o+sGtJSkxjJ4TxSnODdeYEul6F2PUBqlLSEMCAHeB4beU4eWySRFKY8ABhdIjOVfaY0+9XlIQhjbe8XOfzD0NY1w2MgyDD1NWxLZiLquIUiKrEArRV1uMNYQJwl1syGEQACU1mTFDKU0k+mUvu/YbErmZs7zp6/4+te/wXK5pakHFrMpp3emrK9LXOe4PFuzvr3m+vKGLM8ICNI4xxdj7Onh4WJMnLKw3lbEWULeCmKt2WwrLs6vubr6hLe+8DY2S9XyZlls6yY9CDgRhx8ymg/27Nnzx8z+BWDPnj17Pkf6C2uNFnnow01Xt0OeWQ6OE+7fn5FnEWmc7Ia+0ZwKkqZu6Np+bGtlTNHxzhG8Q8hxMEzSGKkVaZYhlNoZP8cWKyU0So1ykvn8kDTJIUDbVPR9jQ9jOovzDmMMfddR1RV123BychelLH03YExMmua0Xc+d07vc3mx4+ugRJ4cLlrcrmqYjjmKElDRtD0ikUiwOjlkuVzx78gk/+N73CN7w7rtfZD474PpyxXbZ8uyTc06OTzk6nqGU5PWrK45O5rz7pTfxHrZVx4M3j0hMTBwZju/MEcrT1B1l2WMixaOPL+g7QRCe6+uauu6xxrBdl9goHl9FbMx6vWHoBtbLNXFkSZIxVQeh8B6E1pjYEoCm/bRPYfRoCDG+Aqy3FUgL0mDjaBcRmo5lZFYTWUvX9FhtUErSdR3GaEIYi8W6rkPInRlYCgIBJccEodF8u3sFEAKlR7nRMDiU0QQhqOuxD0II6NqKrqmItKFtK7blBkRgW62pmw3FpMD7UW7UdS3SGPJiRtU0FPmEg6MjQgBJwvXVhs1mw+nJPX7wvcd88MNHRLHk5nZDnhfji1BZU1Ul6/Ua7wM2jZjMc6bzKeW25OBwyuJwyhAEs4Oc9WZN8DC4Ae88m3XJ7/3u76Klcg8evjGrqvrrN1c3D45ktvzcDuaePT/l7BeAPXv27Pkc+ff/5t9ceWnqqhrO61V71m27kCYxk4nlcFGQJBFplo0mX+kZ+p66aej6sbW3H9xozlUS7z0I0FohpEdrQZzYcfDfiU6sNQgJSlrSZELXOdq2G+Mk4xitLVEU0fY1q9WSuq6RynKwOObw4IS6aqmrFmtjFosFSimsjRBobq5umc8WvHh2xtANWKPHl4muJTCm0hSTOduyJC9yuq4my3Lu3BmbYT/65GN8GFjdrsmyjAcPD3n73RPq7RYt4fBgAUHQNDVpYpgUGY6BN9484MH9Y5bXa6yRvP3eIa9frbm9qYhiwc11RV154jil6zxV3Y3fqxlfLzarNUJA3/XESYyUCucHlPz0ln9ASknTdRgbjzGgzuOCx4cx4UcKQRRZtDG4oUOpscAr+IBREqHE7nMSBOdpqwajzdjWbBTG6F3JWgyI8Zbfj5n/WmuEULtyMIndpQ9JoZDKAoq2GT/Dru0JTtA1HUkcowjU9RohPFpL8A43DKRpRvADUoy9CMoY+q6lbioWB4dkeUGSZmgT8erVC9586x6JyfnR917y6vkt/dDT9RXd0JBkOcV8wXR+gLaW2UFGnBtmhwU2jXnx8pKqbDHKELzi7XdPefHynNP7R5gkkOQR2oj28vzV1Wq5vJ3NZkUc2beumuXR53w89+z5qWW/AOzZs2fP58ym9v9s1fiPlrebHw5t52xkODgpuPNgynSWU0wmRHGMEAoXxsHz01vivu+RSqGNYegHECCVxgdI8xStx4HfOccwjI2+VbVFiMBmu6KqNlirmUwmaGUwxtC2NVW5xvvR5Ku1ASHYbNa76EpDFMXUdU3X9uRZznazIo4s27IEKRn6AWMtzo9Li7EWZSwYzb37d1mvl9RtS5xmoB1X1xccHx+SZjGTScbhUcH9hzPOX99y9uqG+w/uoCPB3QcH3L13xGya0w0Db713SpIr6rrm6mpLZBVGKW6uV+R5hAzQd4FyW5OkmtvbW7I8GQuohp6b6wuaqsQPjsE74iQev2bnaNoGpTRKauIoG+VJkcV1Y+Ou0aNPIi8K8iJBijGxx/kerRU+OLwflwQ/DFirQIJQcmwFRiAlSDEWug1uQOixpExrvesJcMCnEaEaHwKjLUBirEGIXR9APzAMPcE7+ran68aFII5jXD9QbbcYrem7ga7rxuXMj2Vifd8hpSCKYy6vLtBRzGJxRBCB+/fv0fc9g2v4Mz//JV69uGZ923J8csDzZxdoE6ONJstz0jzGRhpj4Qvv3iWfZLz9xVOEhBdPzrk6u6YuW4bBc3p3ws3NNSenR9RNFQ7mBxdHJyefxIn9vlDi/5Vk6e+FoL/6S7/0S/HnfT737PlpZO8B2LNnz57Pmbe/8ej9T7739j/pE/3Fvh+aWJHPDnIGF3jw5gzxXOEdXHbnYytvktI2DVqPsZVGG/q+pxsGtLYIqWibHinGYrExXcbhfY9SkjgxdF1L31d439M0gZubawKOyCYIIXZyFE1TN0RRTNe2RPGoh4+imKZtkdKQpgltVROcox16tDWYOEZIRfCOoeuI4ogojpFGcXp6RLm+4emTj8mzHKTk5nrDnTt3CB5c8GjVcu/uXZZXNY8+fsXxyYLpPGZxnDKb5txcb3A4Th8umE5SvPe8urxmcD3HdybcXmzRwuEHh3MZbdvSNGMakBCOokhom5rgBTfX12RZShBgI4O1iroeqKuGaB7TO0+cT8cmLxEQSlE3NVFs0UqPMaAhYI2hDbuiryAI8FnUJ2HM4Dd6bB4WQjIMHUE4kAJl5C71qSOWCmX0rlFY4FxAhPCZabdre5QUaDuak733hODHduLdIB+Co6pqpBTkeYZSiqZtEVVJnEBAoLVESk3T9ti6xmhDGqdcX9/Q1j355JDb2wsOjxY4P5qBH7w54/TujGfPrumdw0TxaAjOC+LII3XPZDbj/PxqXOIWOfceHnBzueHZtqRcbRnalu2mJk0V83lOOwjefOuL4eXLR/W946MPJ9PFx2k++a0GfvOvDIEfvvfm3gOwZ89PgP0LwJ49e/Z8zvziL/66S2P9tHPiR3XDq6HtwzB4sjxlfpQxX6Tkk5gkiZkvFgilP8uT77qewQ0458Z8+yhiu1pTbta4vmM2KRDB4YaOtm1pu5bgPd551C6qMgSIogSjI5Q0CKkxJkbriChJCGLUqG8327FJ1nukkFir6fqa3nW7hltBP/SUdU2eFWP2PR5jFbNFQZJG9F3Nj97/Id57usFT1hWz2Yyy2rLaLHHOcffuXT764CVXlyVHJwuOT+ccHU+IjGZ5s2EYBt5485g3HhzgfcAPksvzJXkRcXQ8Z3ADVdmSFRmrdc/FxYosT9hsSkLQ1HXDalXSNg5jYpQ2DMGTZCkIaJoOay3FJKPrO+LY7r4PS1uPP78kTXBuwJqx0GsYeqQYS7yCD3jn6HaSIu89ysR4r9BRRnBj8dqY66PQShFHEd45mqqi70bj8KfeDR8GBjcWmvVd/5n3wDm3exmQSAmDG3sGYIwPdc7R9z1qtyxUZYlkDBXq+540Tce/V8B6dYtSkiSO6ZoGZROECKSZxdqxN6HrGv7if+fLPHhjQd940jgniWO0EhyfTDg6OsBozVtv3mO77qmqgQ9/9IJ79484PplTNxXbTcPQdVycXfIH//J3eH32lNO7x0ymUymlXM1PDn/j7a985Td+/dd/3f3ir/+6+/a3v+0/v5O5Z89PL/sFYM+ePXv+NeCv/2//w098L/7R1W33ncur7VOBAOkJwTE9iDg8SnjrzQckaYLWBhvFSCXHZt/dABvFEU3TstluCUCW51RlRdd1o5Z/dzvtPQihSbMJcRwhpEcQdibSMLbe+mH3ajBQ19td94ChaWu00mijWa5u6fsW5x3SSNIiw0YJhwfHDDvd/GQyRSnNcjmaRr//ve/hHMRJTmRjpJDc3F4hFdy/f5fpfM6rlzdYk+B6R9+15EXEdlPjvSRKJQ+/cIeDowWuh5vLNcvbFYuDKad3D2jqjqurJdkkR+mIy8slSRKR5YY4NhgjaFuHkgapxsH5U0Outoam6WjrjjxPGYYe17fU2xVu6GCXr58kMSF42q5FSBi6BgYHbpT89P2w+1QDAU/bdiilGLwnz4vdUpEihKKte4bBI8WY8tO13VhGJkApcK6n79vx5+zGEjUf3M4Qzs5EPEqEggcp9WgY3oXn1E1FFEWjHKt3BAJRZHfSIo+SAucattslt8sbiknOMLQgAhJF19coPb5mSKM4ujvny19/wGyW0TYVx8cZDx8ekaaaN988Is/HBeTgcMbh0ZTl9Ybf+c53mR3MePjOCdvtkuB7CB3WKC4vX/LD97/XPXjj4SzJMqUE1/uhf8+enzz7BWDPnj17/jWh9/Jx27TfCS4MTTkO7FFkMHqUhQxDT5rGGKPxwdH13Xib7x2u7wnOsV4tkXJs8K3LDjcInAOkpCzL3UAYkyQpUki6rsV7TxxnIMKYAuQdWmq871gurwkB8jwfb5OVIssyLq8uGPpR3nN8eozUY/HYdHowSpC6hqapuF3e0vUwW5zwwfvvU9c1i4NjFvND+q6jqUu0tnz9G19nNj/g7OU5bd9yfbPi6uqWr33jzVEjLzSDc0wOZsSZpWsbXjy7pql7jo5zDo5yfHBcnC8RUpOlCTe3K+JEszhMiRNNFEUMQ0/b9tjYIgjUdY1QiiKfsbpZs15tx4QjK2mbCkkgBEfbNBil6JoaBLRtwzD0dH2PVIbeefq+xw0DbTuWnWkd4RyYKEYphbEaKQXOD9jYoIRk6B195wlyjATt+4HgxjIxJRXD0O9u+z348Nny4f0wSrWEgCAYeodAjlGk2hDHEUoJhBg9BtpYtmU7msad28l/up2ECLTW1NX4Z05rSd82GBtRVSVaK5zvsZEhSWNO7x5y940Zb7x5SFP3vP3ePWwkqdYlf/7PvUcUG9qmxvuWb/zsewz9wKPHTzi5c8zd+yc0bUNkJevNkvl8jutc9/Lly3Ml5NtN288/73O4Z8+/CewXgD179uz514T/zbe/fW6MWetA3TdNsEYzKVKMVQxuQCpF1za0bUXXj3GUdjfU4h3lZk3fjTe2TdsilKLr+zGzXgh8GAjBsVrd0jQN/TDshno9DpRIlLJYE6N1jBCSJE6ZTKY0TYNSiulkxvnFGQKYTmeEAM+fv8APHmMs3nuqbUlVVdRNizKGYj7j4tUZTbnl/oP7LA4WrFdL2q4iiizf+Nmv0nvH88cvcMMAQdO5kj/3l75E0znOzlZUdYdSkskkYxg8y+uScrvlzXfukBY5TdtSlR3eSebz6S5ZxvDGm0dorcas/qGj3LbESQI4ym1F23qmsyl11bJdV6yWNW3bI6XAGos1Y+Sph10MZ0AbjdbjMK+1RZvos9IvrQ1Ky1GihaDvBmwU4dyo4x+GdlxotMJG0WjolePf+2mkqJASrTTBid2wLndJQJIA2N0N/jB0uGFAG8vgBkw0Go/DrjogiPEivet6kjil7zw3V0v8Lk42uDC+KnhI4gwfPGW5BTxVeYuNLFZblJKjTGoIIKCYFNy5d8Abbx4zn+ZcX73m3S/dp24a1uuGd790l6GDi9cbvBCc3ruDawPPPjnjjbfuMZlPWa03tH3JoyefdJNJMUyK/PeFlH8w9P3x53T89uz5N4r9ArBnz549//oQtvB716v2j6ra3XoPNonIJpZJESMlnJ9fMgxjdGOcJMidTrwsV5TVGvCslkuEgKapSLOEtm2om5K+b2jbBqkEgx8YXM90ukBKgRCSxfwEpQ3Oe5RWICRRFFFutwAYY9lut2htmE5ntG3D9fUlcRxTNy1d19K1DcPQIYGimGDjlGq1ZLO65s6DO0xnU16+eMZqdUMUJ9x54yHDAM8enXF+dsbQOdzQ82f/wlepmo6PP7wmjiKkcmRFTFk2bDZblssN88MJR0czVrdrktggg0IrwdGdhGHoOTnJKSaa2XxsLx46j9EKowTbdcnZq2smkwwlBRevL3ADrJYVJjIUkwJtI7wXuMGRxAldPyCNQipJ23Y4F7AmwjuPjSKSPEdr+5lhV6kx4kcKQT+0aD2+Ygx9N5a4mQhlDGmeEEUpUgusHc2/EOiHlmEY5T5i91lIqVHKMgxjElTbdRhrCUhsHJMVOUobpDEobem6AefGpSVJYla3a7S0KAFKCKQI9F1HCJ4ostRly3azpdpesV5eY2xMQKCUIs8L6qZlW1ZkRYqO4OAoJYlirq5umB0seP7ihig2BFlzeXHNxx8+YnqQMQwd/2/2/jRm0yy978N+Z7n3Z33XWrp6m5nWcJVEyTBtQUls2B8dIx9CBAYCCHHAQPaXyEaAhDJgKAgcQIkjJ0IQaSKRsilKghgkUSIHUiJZsUJTMkVyOBzO3mvt7/as93bus+XD/XIkA0aESJ6pSeb+AY3qRlVXv/VUH9R1nfNfjvsjX/3tr5FngrreMQydS9JkU7fNszTLsmqx/NV8of/TN3kAJyZ+WJgWgImJiYkfIJzTz7Z1/N8fDsOHh0OHl5DmCdU8Iy0U5+cPWC5PWa5OEfexkD4ErLOE4DgeD6RJRt/2uMHh7WgQDt4TQiQvCnpjGGyPUgJrHd5Fzk4fYO0AwaFUBDyCcRBNEo2SCmsHhJJolVA3Nb0xLJentG2DDwOISAzufjmpsNayvXnNYbfhyfsPePK5d9ntj3R1S1HNWK3PKIs5Lz57zdWLlwitUVrz+NGK/jjwna+/JE81u33No8eP0OmYdy+QFFXG5z54l2NtSPOCPE8QyvP47RWzWUaSSi4fzjk/X5BnKX3bk6Yp5SwnBM9h19MbR1Fm1IeGvusxvWE2y3j46BylJL0ZAJBqHL7bpifLK5TSWOtJkhQfPdb2SK3I8goQOOdG9X8cB2+lE/reUBTFvXGX0SgcPGmuSVJFmhYkaUaWpwg1xoUOgyHR6l4CNMZ6CiHGFxsfUEKNy0eakd9/XXlWolWGYPQEeOdx3hFDoKwynHf0fYdOFFFA8JG2bYiAD9DUDfvdjq5taZo9UgsGYzF9T5aNHpLd4cB+d8DZyHI94+zshBgUxvRoBUPvef8Lb7HdbHn99BUvP3nKg8cnZFXCyaLi29/4OlIFlxX5bV4U2yzPX8tEfyqE/ujP//lf3rzB4zcx8UPDtABMTExM/ADxJ/7Enxh2ff9rIYiPtE6QOkWnGeW8YHk6p1zknF2eU1VLhBSkeY5QCUqNZVxlOUclYx7/4BzGDvSmJwrJcnWCdQ5n7egZCOPwenryYNSiu/67rbRDbyjzGVk6pt2EEO6lQqOsRIpR5tK2B9I05/z8ksVigQuWKEBINXoJkoSH77zF5774e7h5fUu9q6lmc568/TaPHz9gd3vD9fVL/L0WPctSotD8+q99g8V8lKWcPjhB5xIzWGbzEmcj6/UclUrKWYGUOc4Lzi6WvPXuA5qm5913L7m4WHB+ccJ+XzOfF8yXKUWVYYbx13PxYM1uV7O5PeBtACIPH52gtcCFSJIkRDGaq511EAVlMUcpjUSQJAnOG6zrkWKUT+kkxdnhu4N3URT35WBj6pL3gSzPyYtibP+NHm8NUirUfYSr1ClCjlGs6r7dV2tN33fjC44cG5WVkGipkCjKohzLwaQgxjj+3CJ+N060Ny1VlaG1om7qMfY0zQkB2q4lImmbHhiXghfPX7PdbBlMR55leOeojwdO1iuc8bSNRQTJs6e3PHjrgstHJwxm4Pb1ke984xnBSX7/T/0YXWexBl4/2+D6SDWbsTqdYe0wzGbLq/l8+Wy5Wj4tZ9Un6wcPnr/Bozcx8UPFtABMTExM/IBRSvkgzdW7SaHJi5KsSMkKjdSR2SqnmOcEIciynCQtUFKhkxSZJuRVxfF4xDp3LwdRxAh5nnPc7wjOItXYCxBjJE0zfAijabdrydKcvKgoqzkxjsbWRGfjsOssUkKIY7dAjJ6ziwsuHzxESs1+t6XvOogeazusG3j7vXd4+533+ezDV9y8uEFpxRd+4gtcPjzn+bOXPHv2lGHoqOs9gzGszua8vrohzXJciGRlwsXDNUKBIGFz13C33VEuFmTZbEy40ZLBBt597wnNsWaxmnNyMePkYk3T9QzWcf7wjPXpGpVokkxTzBLOz2d0dU+SSBCQJJo0TXHuvr8gVd9t/w3BkeWSyGi2JToEgaaux5v4yL0pF6wxtO2RYRiz+GO4lwo5j2TsVxDqPutfSQZnUYm4LwnToxdDarRORsOvdyiV3Kc4BUKwBO8RSiATCMKT5CmJThESdDrKlmIM6EQzDD2uN2NvgI/Uhz1usCidEhhjQYeuJ0s1SiXs9zXOBT7+8Bk3VzdY19H3DfvdAR885xdLrl7e4L3j7HTOV3/7mzx4dMJ7Hzyibjpub/b82q9+E5Eo3nr3c+RVxVtPHnL14jV//1d/lfXJKfPlSZwtlpuzy/Ovr9Zn387y4ma/30/dRBMT3yemBWBiYmLiBwwNT6pZWV08uCTLCpTSZHlKmWfMqwKtNEmakOUz7OAQSmG9RydjUZcxo8Rjt9vTG8tqtRpTIeNYKhW8IwZL2xzwziKJSCJlXpAmGYlUtG2NMT1Jko5LgvckSUKRV8xmc8qy4sHlY2bVmrZp2G83eBcQUtL3AzHCe+9/jpP1mmeffMrN62vyvORHfuIDTk9O+OZXP+Sw2ZIlKYfDln7oePTkAUoJXr9+zWy5xLjAwyenRO9oa8PdbcN2W3N+ec7q9BytMzabHU1z4PFbZwQ8bdtwfrYeYy99ZLvZ8eTtRyzXSwJQFDlCRvIyxVpLlicIESiqhPMH69E8LUaNvxARrVPSLIco7gfwMREo+ECqE1Qcm4eDtQgRCc6PMaswav8HP5qpi4zONBRlQYigVEKWFyQ6JbqAs8NYFpakJOnY6qykwg+e4ALeufuvq4cQSJSCMEa3KqnuU4c0xLGDQERGQzWBvu1w1iKUJM1ymn3LYAxRBGIU5FnJYbfDWcNgDW3XkWcVfet59eKK/a7h+bM7lNS8enUNMnB5ecpXv/xtBIGqLPidL39IUWgePFrjbaBvWr7ym98kzxTeBbabLfOloqk3fP1rX/NZXu6SNH+9WJ09my/Xf61ozN/4+Z//+eMbPXgTEz9ETAvAxMTExA8YSaaq08vTdbVYo7Qmy1JMPxCiJy80IQZ0kozttFKMt/9K4Zyn7zuEANP1eBchjkZRH8YiK+ssZuhp2gPD0JMmKVk2GlfHKFBB33dIAbP5nKIoCASSNCPPS4piRpYXnJ1fkqY5tzevGfqBPK/Ii4q8mHP58C3e+9zvIYTIs6fPub26oSoLzh6conTG17/yDYiePK8wZtSfv/XkbfIi47e//DuUxZK27/nRn3iHED3eRm5e7dFKU1YJFw/O8c7x+tVzDrsaqSVPnrzNq9c3rE9XzBc5eZZg2oHFYsHFgwtMP6B1irMOIRSr1YJIoJqPGfmLZUmaKsDfS24UIQqWyxUIifVhbFkWCV3fU82XCKHGiEzrAI8dLHawKKlIkgQhJN4FQohE3Nj+yzjkK60BcZ/2AzHc/+UcWkqEgOAcdjB458dyLgHNscX7wGB62qYh+DjKsiLE6CBG/ODxzo0yJOsQUdJ1HYPpOTs/ZegHTHuk745keU6aZGOJ22DvfSIpTd2QJpoXzzYoqWmbgaefXXF2sqJrLWZoefudh/zaf/5Vbl/X1DvLR994ydnpnLeenOCs5bhtePn8BVoKjvsDg4GHD99GSfkyyeTLYjZ7mmXFX/sLf/kvf+dLf/2vt2/00E1M/JAxLQATExMTP2AUZVYuV+t5klVoneB9RCrJbF6gEk2UkXJR4oVAJenY+OrsP2wIxv/DNB4hcdbdD50K68bSJyElSV6S5DMGF8emWiQ+eoSSJNloGN0f9igh0ErQ9y1SwGK+4Pr1K/b7DcvFCSfrM3SSkiQlp6fnrNYLBtfTNi2pTlifnJCXM9rGsLndY7pxED42O0KInJ894q3Hb/OV3/oKWV6hc8U7718iJMQgefb0jqTIKBeKy4cXzKqKut7TNT1N0/P48UNuN1eURUJZZHR9zTAMNL3h4sHlfcSmxNlARLGYr8iLAqVHCc5iOSdJUqz1yHvvQhRjyk5ejGVlfW9I0/EziUjKaklrelSq8YwyGu8sSPCMTwDeOWLwY0uzSghR4NxYFhZ9ZDCW4AN5keNDvB/iue/wEvcyqzGBx7oxqSc4h3UWnSSjKVhKfBgLvrq2xdoe7svCkjRhsGNzcNv2dG3Paj2nnOf0psdbh9IRpGC2KKiPHXe3B7I0RarIfJYTbeTVsxvee+8hr19c0zU9q/mcZ0+vkVpyenHO1776HZ5/esU3fucp3/7GC3ozcPF4TQyOq5db7q5v6ZuWzd0NEhXeefudY57n35nNZ8/f++IXP3ujh21i4oeUaQGYmJiY+AHiZ3/2Z5NqVf70bLVeyKjwv5vVnyjyMsNay8nZEkHEdKN5tG6PKKXQOgG4lwG1GFPTNAekVCQqxZgBM3T44AkxUmQFInKfNS/ul4dImebY3mDNQFVW98OzZVZVKC149eoZ88Wc9foMEBjTM5tVzKoZXddgTUe937NeLQkxYIYBYwyzaoZpGop0vInPkoR5teKD3/MB169f4gbHbFaxXC9wLtA2llcvt8wWBQ/fXrFYF+S55vrmJW1dc3u74cnbY2y8MS3LVUWMEW+hrQfKsmSxWnGsjygt6PqGWTVjNpvjXUDqlKyoxmXHWawdyLIcqROcj5RVifdjitLvGmFjtJRVRjWfk2YlWV6RZjnG9EQCaZ7d5/Q7uq4lSTSRgJSaGCVEsMYymGH0CpgenafEODYwq2Q0Ag9muO8UGFOARmNvj07GRUynCTJR98lACgBrB4zpcNFTVAUxRpwNSK3oe4uUYw/B6eUJIAjWIYAQHWmakqQpbdPftxI70gxOTmd855uv6JueWVXw7W98RIzwxR/7HF/72oe89c4lb719ycvnV1xfbfjs0+fcXB1YLOf35mnD7fVrZPAUWU7fd3shElvkC5WXZf3s2bPizZy0iYkfbqYFYGJiYuIHiHVV/ehitfj9RVlKez+UCiFI0xQfAvNFSaIku/0BqSVJmqJVRlWtiDFircEYg9CCpjnQ9z1ZmjAMAyF4RtlJMt5qD4b9cUPT7AlhvP1Ok/y+B0BTlhXeO4hwcXpJ9IHr6ysuLy9J05S7uxusM5xenhEj7A8bqirH+YG3334LZy2mG1ACrGmIwSIiuBBYLJakWc7J5RnGtDx7+ilSSBbrOa+urnj96prDvqWc5ySZJFiPQrLZbOnqjv3+yHxWMZsXNE1NWcxJkoz9roGoaeqGLMswpiMGT9+PMaAhjjfezgW8i8wXC6SQJDoFKcjzFCUFWVaQ5yXODfRtTZFn+OhBSGazBQBZXpCmOTFC9J4QLGmaURQVAkGw4++fv/dnxOAZbDcWsA0WHwJCyzElKHh0mpFmGVKN8asxBNI0ITI2+UYYvz4BSoIgEonI+9eHEMZoUhECeZ6PyU1aorUizVNCiPR9Q6IV1gZ601HvjyAEg/V0jWG9nlMfOoL31O2Y6OSd52tf+YxHj0746Nsv+fbXXyKV5sHlOb/6//wNzi7POLtYUh8O7DY7dpsjd3cHzh+c4GyLMy277TWJkrYsSwPc5UX+KtfZ/ng8TtKfiYk3wLQATExMTPwAEWN0s8XsTKUKH4ZxKE/T++8NROBw7EmzjPPLc3x0pEWJEJIQPE1do1WCiOONd9MecM7hvRtvmXWKUpqmrTns7zCmwXmDMR3Bj3pxpVLyNBslRBLKsqLpenyMPLh4QN8ZNne3lOWMspxT1zVNW7NcV5xfLnn48JJXL1/y/PlzrHXUzZHVeomSgiIvqKoKqQWzxZz1esXzp89BKM4uLths7jjcbcjvC7sO+44sSxmMZ3PX0daOrhlQMmG2KOj7nrzIybKM+h+ZJdNM33shRgOsFKOUJknGoBkfAkmiyTJ9n2wUqKqKCJjekOU5WqW0bYuQEWstIYBWGu88bVej5PhHqFIKfR+R6pwjy8vx5l2K8fcsRsZq3kBb15i+I3JvEjaONC1I05TBDuOwrzRCKrwPVPexrmlWolQCiPv4zggBRIy07QHvB4ZhACLqd5uKlaIsc7y35LlGKhh6g1RgeosQmt1ui+0th12HEAm2tyQ6MJulJCrh+mrH2cWK3/i1r3F7d0CKhP/4//CfcHPVYXo4bg1f+fVv8MEX30GnCqk0u7stH3/jQ5pjjRCe/f4m9ra9jtr92uJ0+auL9fo7SZLdxKhu1uv1NIdMTLwBpoM3MTEx8QPE5eX6R5fr1UOExHtHosd4RyklRVFSHy2RyOpkjvcRIVOSLMf50WyaZtnYGKsUw2Dw3jLYAevtGCuJpOsNEcFgDV3fEqMnRIdQgYC/H5QLEjkOgeBBRk5O1rRtw253YLW6oCgrpI4sl3M+9/m3+cIH73Hc1/zWb36F7d2Wqipo2gPL1ZLzi0uCA2cNfVcTiZydnXPY1QihyYsZs8WSum5IlCYMKS+f3fLo0TlX1zsG47HWkaajIVUpQRQBqcYb9P1hj7UD1SxH63HYT7Ua/50kRwDOja8cdrD0TctsNmPU2o8tx4vl+Iqik4Q8L2jbnrbtyPOcw+FIluV4FxlMT/DjsF3XDUJKohj1+jGO/QE+jO3AzjmyNLsvVYPo3bg4iFGyM/QGrTKKsgIixoyLFkhiEMj7UrWymKN0Ql5U9zIhjfeBVGvq4x64jxBVKbP5kjQrxoK0ckaSZ6RFRpZn9L1j6Ad8iHStRSARoWe/2bBYzthtarpmIEsLgjecns5RWvDO+w/46//Hv8352Yq26/ibf+1v4m3g1atrnn78lLu7DT/2e3+U1ekK5wxD1/Dxt76BwDG4PiS5/nBxcfJ31g8u/8bibPV3ikX5f/7SL/7Cr3zpS1+yb+akTUz8cDMtABMTExM/QLjQb5JkvOlVerwJ7kyPVIrDocN6y9n5Yiz0cp48L5BKobMUlWQUswVJntP1Hd5HZrMFZ5cXzOcLlNY4b4l4vLdj020c02e8DwzW4sO4dCipxxQbH3F+vB3fbu6om5rFcjVGWaaK+WrOk3ceIwR85ctf41vf+Igyn5NmGTdXV1w+uODs7Jyb61v2+y3GGNI858njJ9R1S6IzhJDMFxVpIun6lrIqqZsD73/ugk8+/oz9rhn19Sk09ZG8UAgZKIsSb6HvekQM2KEny1KEivf9B5HBDKRpikAymB7Tt3RNTZoopBR0XUcUEqkVxICSkjTLAIHzjmo2p+/HW32lJKZrcMNAojO6rkNrTaI1wzD+dxACKcZxXycJAUjS9L5cbYAgAUGSSgZrscPo8SBKTGdItCZNM5JklCtZdy/bShNihDQZ+wDGHzP2M+j7BJ/lao3WGWk6pjHl2YyqmrNYrEiSlKoscUNkc9MSrKdvLfVxoOsHqipnu9mRFyX1YeDm5sAweAQRazo+9/knXF484P/1d36VH/3xd/nwG9/h08++w8O3TmjbI9/59jMynbCYl5yczYlxwPRH9octIkl8WhZ3s2r2HZllf/ut99//5T/7C7/w9Td5ziYmftiZSjcmJiYmfoC4uLw8X8xXCyJIleJCT5ZlbDc7emOZzXNMH/FekJcJ3hs4CnSaI4TEWsNgerz3VNWc5P4mOM1yYowIxhvqECJaQ4iRpusQQpBnOXmeI5MEQiTGQJLmJGnKfrtDxMhyvqQoC9IsYzavyLKUr3z5K9SHBu/h9OQBXX/gcDzwuXffJ81y6rrGmI4sT/Ahsl6vESJyul6w2x7QWvH4rYd89NFHpEoSfeDktOLq6sD1ZsdP/+Ef5XCoSbMlSaZZr6txMWpaBBqlJNfXt+R5itaKrm3IihLvA3mRIVSk248FZYfdhlRntE1LOSvRaQZR3mvsJdZ6fvduTMjAYrGi6wx5kdN1LSE4pFBEH4k+kBQa7z1CKJwfZUJVVY7Lm5IMbUeSpLRth/ej7yBNPM6Py5dQCmsHQgwIFAh1LzuSaJVyOBxI8gypJN4HIpE0GV+EpB4lN0VZ0fY9VTmnN44QIQRBlhYICSFE2rYnTXMEkuubI4kGJSPWR5KkY7Vc8tFHVygp2NwdONYdy9WcTz98xelJxcff+YSzizV91/PhNz/m8194j29949v81B/4SYr0ffa7hv12R9c1eNshlKNuj6RaU5TVIGR6t1is/+6f/YVf+PSNHrCJiQlgegGYmJiY+IHhZ3/2Z5NHTx7/9Gy9zp1zBO/RiWQYPKa3FNl4C7yvW3yENEtx3t/HhI6xkKatsaa/v40GJNSH45iB7z0IRZnP0Wos9/LB4bwlSVOEUPgQGYaBzvQIrdCJxhiD0ookzZjN1xTFDO7Lwz769kd0tWG/2xKCRyUCay2np+d0/cCLl8/Z7+7I85S8LNFJSte1lPMKT6Q1htOLM+xgEWjStKCaLSiKOcfa8MUvvs3mriEvUoKPzBYzhJS0dY9pDSJabl5fgQ/jINz1WOvGr3voSbSiPbYc9jURiXejIVhqhRmG+/IsyNIcbz3eh1FKI8a/lFRE74jB4Z1F6fEGfjAGaweIo7+iKEra+gAEAJI0R8oUrRIG0yOJzOYFECF4cAEIlFU2LgMEZKKJMdAcD8T7pmalNMEHlBg/f6k01kLXDuPfO09WzMmyAoEaTcBSkKYZSo/GYe8hSXKcFyxOVgx+YHCe/a4jWPjoW6+4ut6QFwnHfYuIklfP73j94o67mzu+/tVPeP1iy8sXrxHaEWNAKk2qJM8/e0GaJBSpZr/d0B1rdtcbsjQjy3Lqw55MS7Ncrz+O//w//+JNna2JiYn/ItMCMDExMfEDwo9/7vKnl2fr/5YXo0xkNIkOmN4Q472ZNIJEIgHTWY7HDoHAuwGixzuL9/4+HlLQN91Y1JUVLOYnFPk4QDtnUUqipKYsZwghQIxNvsYYAIQQo7Qlz0jSjPl6hfeRzWaLdQO77ZaubXn9+jlJpnjy5CGbzTUxBozpODYHjvWB07MTZtWC+tjjg+DkbImxFhfABUeeFVxfbzk9PaXIK7KyQucZl4/O6DqHiIFHj1f4EFksZhx2LcdDjfOWwfaEEFmdVFhr2B8bylk53sYTiSGy3x9IdIKxljTP6AeD1ooiz4kx4MM41PZ9Q4ye4/EwJvsgCGFcCvq+RQiB6QasdQQC3ntC5D6LP+Lc6J9wzpOkKUolGGM4Hrf0fYMQiixPMP0wln5FyPIc5wZCcKRZhpKKtmtom5phMFRVhXMRIcaEpiQpRpmRUkipUTpD3ntErHUU+ZiqKXVKFAKtU7rWAIIQHdWsoizHHy+k4nhsGCz81m98TPBgrcO0niLJ+c1f+x3WJzO+8c1vcjgcubneo3VBNavQWvK5z32Ow/5AphWH/S27uxuGtiHNFLfXr8mzLC7XJ43W+turRfVs+7f+Vnhjh2tiYuK/wLQATExMTPyAsDxflmVRrGUYr+6t63F2wFlzb+yNSCUIHmazHO8dSmoQY5a/s/fDv3cgx0bf27sbVCLRaUJRzO5bXWuUkkihybIMrTXeO3Sq8N4wDP39QiDHV4EhkCQp3jm2u2vAkiUFu82B7eaGrMh4773P8fz5ZxwOew6HA847OtNx+eASJROePX1Jmqa89eSc3lnmi4Ku6zg5O8V7z3w2Zz5fkuSat98/Z7PbUtdHDoeGH//Jt9luW9ZnC26vdmw3NScnJ0QC1kakVug0pWl7yrxAADF68qJgcANZphAqkqQapRTG9FRVSfAOYzq8H5clISRd12KHAa0kdrB0bcfhsMd7zzAYnPPEGHDeUVYzlEpJkpSuG6U+RBgGQ5Lo8VudoNWY16+EGk23UhMixChIdMowjGVhMQRCjARvcUM/djb4sU8gAAiQSiLlGP8q7g3QY7Lp6Hnw3uHcP0x8kkKTJCnN4Ui8lyj1jSVNElanBQFLWw88/2zLr/+9r1HmBU+fXjEYi5Ip3/rWJ/zYT/wId3e3SAH7zYHdbs/6ZEE1H7sgPn36CUWlef3qU47HW15dfVYvlrNrKcNvXz56+GtPPvf+316tz/4fv/zLv+zf6AGbmJj4LtMCMDExMfGDgTy7eOtfrRbLedvX9EPLMJj7QTYjhMBgI7tdg9SMA2SARKvvZr4jJIEw3u5LiTE9UoFMJcWsIM3zMcoySUmSnLJcoJRmGFqSVDEYR9t26GQ0xHZdh5CSoirJ04z6WKOUIksy9psDXdshBZydXXLYHzgej9ihY7Fck+clWgm61nB3tyXLU05OKj788Fss1wuO+xocrOYLhqHj/GJN3bR8/vPv8tlHz8lTSV5kPHxygnWO3a4nTRI+++Q1FxenJGmCkpquG0hTjTGWGCJVmeCdI00ztJYc6yNZniIkZFmCMQNlUYxDvB3/nTTLcc7TtQY7jIZnY8bW46ZpCSGOpmgUzg0kWUqapmitx9cX75EC8iz/R15fJMfjntm8IgRGKZEU3G0bVJKSZAlZkY5Ga+eRSpNkGVLIMcJTRGzfYYeecL90KJ2S5iUqGWNhvXNjf4MQYypQiLTNWMTmhw47dIRgKfKM2+sNu21DkuQcd4GXn27ZvD7QN4Hm2NMejnz87U/48JvPMb3n44+f0nc929savObdd98HJLvdFjc4vvX1DxERlvMFfdsjAKUlx+N2s1gvv5GVs195//d88H86f/z4T61OLn7hz/5H/9Ek/5mY+AFiWgAmJiYmfgD4n/47/6PPLU/mfzgqTSQCY8SlB/reglCEMKbB9INjt28RUlGWJT44fPBjgZQYZT0xRLI0GwddZ0nShERryqKiqhZkWY5SAjP0ICIhBLSWVOU4HO/rHVKKUZaiEw71qKHPsgrrAnVzIEbP2cVDTtYntG0HKE5OH7JYLHDO0nXdmKyTKHQi+PCjj5gv1lRFxetXt5ydLxlsg9KQ5jlvPblguzkigZPTE26vDjx8tOaTT19z+eCcZ8+uefvdB5ydzbHWIJXEeUtR5vRdx8l6gTE9Ok1Ikoyu7YCI0JokH+U1BMZSNTfKfpIkQSBpuw6lBDpJqGYznPXE4KnrmrzIEUoipCRNMoKPpGlB23bfHeCzPMOHwGD7MfHHGJQch/m6qcdEoCjwLjBbzIlEtJLjS4wEYiTRCqUleVGAFCgtCd4T8WidIGT6XbmP9xYIBB8I3qG0IoQwvooMY9Rq04ym3L5rSFLFqxd3JGlgta7G3H8k201DBPq+pT4eubp+gUo8gUjX9RzrPa9ev6SqUqSQlOVsjBEdHN/8+u8QvcMaw/b2jkcPH0eZps8WJ+e/fvH4rf/LyVuXX/qrf+2v/19/4S/9pY/f3MmamJj4L2NaACYmJiZ+AJgv1yflbPmWRJEoiZKC4B2EQJIlzGYzkkShtaJvPVJKqnkJ9zf9ZjCjjEeMA6TWKVpp7DDQ7I9YY0mzDKE0Uqj74qkWKUEIhTUW0/ejkXjoSNOUPK+wg8VZS56XpGlGWVbsd3doLVmfnjNfrO+z8gvOTi9YLlYcDntub26Yz5cERl35bnegnM25vDxjc7vn9PSUJNVs7jacnl3S9Y66tXSm4+zBKZ98cs3Z5YrBDSTJGBWaporz8wUuOISISCk4PV1hTM98Pn4+PgqEStA6oa4b5vMFOtEoKema+v7Tllg3tvOGEOi7FtN1hBAoqhKdJrRdi7UWIWC5XBC8RwgYbKDpDDFKQgxjWZpSCDmWgXk/+gDqw/F+AYtoKUmSdFwIlMDZUWLlvaPvW5J0LCOTckwBStKcgEQqDSKiE4l3DuLY/Ku0xg6WVCf33oUW27eAQycSpRXWdbj7RWB/2JJlmuefbnjx9AVvv3fC9c01d7c7hGCUHDlDohWHw4GiyJBSUFYFVVmy2+55+fI1s3lBlmZjw3NTs9/e8vGH3yRVkeNh77u+s6fnF2J1cvKrj94/+2tf+tIvvXqDR2piYuL/A9MCMDExMfEDwAc/+vk/tFgulyEGQpQ4F3GDg+DQSmCGgabtMGaUmCwWOdYOo2zFeuaLJUVR3jf9JnjvqJsDg+k4HmuCj+RFwcnJGavVCTFEpFAEH/F+lGYnSYZ1cSzmyiqatiVJFHme0rYNs9mc7fYOrRWL+YKu6TCdIc2ye/Np5NXrp5i+42S9pq5r2rYFBD4E1ssVh21P13QgHMb2PHz0CGssMQSa45EPfuxdDnvDyUnJxcMF+32LlJK225PnCUkisYNBCIFWCiUkaaK/m8GfpQlKjDf6xoxfW1d3uGFM6wHJ8diRJAlKZyAkxnSYtsdZT5bndG1HcA7nDLN5iXeOru0QwH6/Z76YoVRClqVYP5DohLbpEELRHFsSnbDd7lBKYp0dtftSEAkgPGboCN5iuo6+PZJoNSY56QQp9BglOpujdUpAIqTgsNtgTUNwgSyfkWUzhNQIKTBdQ9ccwXtM16GlQgpBezzSHI9EF6gPPaYJfO03P6MsEqqq4PZmR9u0tE3Ng4cXtG3Lcd/gjBtfhNKM88uHEAP1vubu5oblYsl6vcYHg5KR7fYqNt3R61zdGm+/qhE5zs/+g//gL+zf4HGamJj4xzAtABMTExNvmD/+b//b75ycr/57aZ6KEAaCHwjOEmzA+UjXGfa7I84KiIGTkxlaaobeIaVgNluT6Pw+az5izEDb1jg3lqzawZBkiqzIcN5jzACMN/9lOSPPCrIsu/ccBIpigfOeNE2YzeZcXV0xm88xg8GYnvOzc25vbnHOkSQa7zxt01HXR1aLOctFRV0fcYPl9HRN3zfM5xVSRp4/+wyIaKUwfcB0jr4zHLY7Hj1acdx0DG3H5dkJ1y8P3L7asZxlEB2n53Oss0glCcGRpCmRSJIm6EQjlRpbdmPgeDiwWq1GA651OGtRKmMYBmL06FThgiUER9+1ODewWM7p+47meCCEQF4UlEXBYb9nNpvR95Y0TSjLkmFoMX2PlGNS0vZuh79vYxZCjIVdRLxzJFmKtaNMJxIZekfwkaY2mM7hrUcKiZIJWZajdYJSo+TL+4AUkro+0jYNg+mI3pHn+fh98ndfcyzWWg67PUPfE1wky5Mx0ShAdJLBOD798I6Xz3dcPlyxud3jDfSdY7lakxUFpm/55JNPmc3G15/VYs2sqrBdy/72mm9/5+vj5KAUxgw+SZNDb82HRVHdrE/W387ms//7YIef/u//zM+s39yJmpiY+McxLQATExMTb5jP//g7/8J8dfKBsWCHnmGoMV2N8wMhxjFBRo0SmO/KeuoaKfSY/HI/4BrToRKJcwPOjbfkgxlABFYnBctVRX4fEzlYQ1nO718LxhbgEBx5plACRJRkScazZ09ZrZfMFnMQkcvLSzabLQjBbDGnqEqGYcC5wOnJOWW1oG5aYoQHDx+SJClZlrJeLfnNL/8mRZUzGEtTDxwPhq7vMWYgKyWz+Zznn77i9GzF85evGUzPO+9cjAk5cWzujV7StQNFURJFBBEpioIYx2jMYbA0TYO3jtmsomlamqZDaMXtXcPgLfNFhbdjYk700NYD1XyGzhNs3xGcRUhQKqXvBwQRJQWDMSwWFVF49ts7vLP0fYtz/ejaCBYpBUoJ1qdrDsc93luCc2w2W7RWZGmKsxHvBM6PUaPWGczQ471FSIEQY0RokmaIe29ABBBj3OvxsMV7iw+RiEDpFJWkOG8RInK87yPo+n70bxwP+AA+ePbHmhev7khzzfp0zdXr10iVUs0XPHz4CJ3k1PWB7faOqszY7w+cnl2M0arBcf36M771jd8MQhKKouzLefnx6cX5by9Pz//6fLl8fnr54G8UZfUVI9yTN3ikJiYm/jFMC8DExMTEG2axWvxEVmSJcwMxAkKT5CVZUaKlHAdCAtZZmtYAkjzPMaZDxICSgnv/LzpJ8X4YDaHBY91AWZZU85yiStFpinOeIq8A6HuDlGPZlEDjbMCYnkQnOGuZzSuevP2E7eaWEAKHY81gHVpr0izjWLcgBMvV4n65kCyWaz7/hQ84Pz9nt9mgpeD586c8fPAI01kG19GblsP+ligc5Szlgy++z4fffs6Tdy7ouo7dZs9ylRGD4pMPb8nTEtM7bu8OdL1DJmNqkdYJaZqgpKTvDMfjuHysT5Ykieb1yw2mtwy9oz62FEVJkmpAMAyBwQRCCMyXC0xnsNaR5AlZkaH12NIr76U8WabIioS+bem7DiUkXTO2AycqYocBKSHgaZqGKARJmkKIWGOQQrJcL5FC4KwjzzTeeoL39E1L1zbj60/w9y8Ao6bfOU+iE7yzSATBW3wYE4BEjPgQyPMCnYypRH1r6HpD2xiC8/S9wQwDZZGhFHz20TVNbQBP2zW8fP4CawbefvsJj996m7woefH8M4IfqPd37O5uQUCRZeRaO2/728G0v7NYLb+1Wp+088XienV6+rfWJ+f/m0SprywePPr5pNIv41hFNzEx8QOIftNfwMTExMQPM3/0X/uj64vLB38wyTJcZ1AqJeqAGTqcHQjBkiSKNNPkRU5Reawfdf1SCKy3QKTvO2JkjKu8H7siASU1i8WS+uhQWpIWGfOTNUNbs99vmFUzNtsbYvQIpcaSKanGnHmpePzWW3z00cc4C0VRkef5eDutJYf9jvliyXy9oGlqlJRkRYKQgvX6hE8//Zj5YkkUcH55zmF/YL+veevtR3z00YesVkukSHj4+IzrV1tOVmu6tubZ09c8fvIO3imef3ZFoiSmbQjzhGef3fK5Dx7RNg7wlLMFg/U4a/B2IEnGboM0zbi73tEcj5yerdjcNlycr8kygUTR2x6kZnDDqOkXguPhSJHnZFlKbwxZmuGdRSeawQ5kSYqQkr7rybKU4b5QzA0DVVViB0ea5jgbaZuO9emSPCs4bnajn0NI5H3EpxCBokzZ9YYYwAaHMS2Qj4VvgHeBLM+xg2U2m9H1DT44lE5IkgQzGITgflHp0VIR7mVBXTtQljMO+y0hjMvDMFiqakZzbMizQHdfMFfvD7x4+pz1yZrPf+E9vv47Ld71PH/2GYkS7LY78iLHmc7leblNy/Q769Oz3ynmi6eEoCIsE6UOf+6Xfun5P/r/9i98f4/SxMTE/xdMC8DExMTEG+Sf+W/8yI+v1+ufiGGMmQyDw/T9aEK149AWA2NWvBDYfsD1/r6oS+Csp26OuOhRSUrbd4Q4RojaYWA+WyMRXL+4Jiky5vOK5ljQHWvmsyW3t6+I0eODR7iAFJq8LFFaU1YlNze3OBcpiooYIyF4rLO0nWFelpyfrbi9u8V7T1nOERJm8xm77Z6qnCEQCBmRBI6HHadn5zR1y/6w44Mvfh5iindQHw1aS54/e0E1m1GVOYddQwyWdDGDGHj9Yoc1nvZg0Flkfbagv/czSAQxBvI8QWtFdJ7jfs9sViKUopqlrNcVw9BjgwMgS1P2hyOLeTWaleP4udreYroeozVKjIZsqQIgcDZgB8tiVnI81mid0bcdaV4yOItOUu5utkghyNIc6zwBiDAWjGmNShQykYj7zgZrPT7CMHQopcduBmvQaYazDqU0UkqyPB9/rXJ8mUi0xjqLUgrvPUmSgBR4ZwmDIy+S+6biwGyZgvR0TYvWkhdPb9AqIU0KlD5w2O1pjjWPn1zw9rtv8/f+3lOyJEXqkpvjjlko+1mWbYMSN4uTs68uz86+VuT5Uevs73Yx3qUhpG/mBE1MTPyTMEmAJiYmJt4g5WrxLyZlsbbOEZzF9A3BDRACgxnjJg91S9sZggss5jMW85L5rMD7gbZtcK5HEsmyMbFGRDmaYREoqXCm4/b1c0xbo1RECsFysaJpaswwoHVKokvSLKcoZ6R5hhk6ILC5uyNRY1PwYlFRVjlSglaa9ckJt3c3bDZ3ZGmGEII8z/DOoaRkVlYkWjOvKvqmJU8L3n7nHa6urnnn/bfRaUZT1zz99BkgeP3qFXZwLBdzdrstRQ5FUaKUpipzPvnoJVWZ8/LZDbNZRVv3xAAhBIwZy7eUThBK0PYNZZkihCLGwGpVYkxP21qUHiVAWmuUEuRFTtsaQggkiaauW7qux1k7+gtCIIZIjB7nBrx3hBABgVQaoTTOBwTQdwbbGdIsxXpHcKPESCrFYAwCQZIlAPStJU01WknwEeKYyJRl+VgmFsefM3iPkHy3rThJEvq+Gz0RwY9xsQiGYVxsjscjUgr6ziOFwtuICJ71akaMnt1uhxSS46EjS0uKLMVbQ3Pc8dtf/i2KQvHk7fe4ut1w6FpOzh+Eq90uOCUPJNmNDYEoZJA6+40/9xf/4ie/9Eu/dPjSX/7Lt2/i/ExMTPyTMS0AExMTE2+IP/qv/dH1Yrn6fTrLCcFiTIP3HeAwpsd5j7MWIqRZgpSB4C27bctHHz6lrRtE8PjBMA77GilHCU+UCpSgt4ZXVy9p24Y8T1mfrpktZlzfXtF1DWmaUFVzTk7OWSxWCBk4HDZA4Pr6CikEIO8HfE3fDZTFjLKcsTscubm5pchKYogIIolKOB4O5FmOSjSL5QwpQKc5733+R7BeIGTgR3/si9THlpfPn1NkCc8++wSB4PRkTZIkzGZjys1gLI/eXvDixTVVkbG7rREImkPNbnNARDju9veyJwkonA9oremNp21blosZzgeM8aMqXUS8j/RdT16kSCVGozAK58L9UjRKmYhxvDVPFImWaBVItcb5SFZW+BBI85y+t+RZhbejJGsxn+GsHeM01djtEHyP7S0gKPKCrjVkSU7wbmz1dREp5NjuCwQ/EEPEBk9nxp4CIQDB+OvrOkSA4Nyo9e86siy7jxwFlWjSRJEpjQTyPGe1mnN3d8vlgzWDbTgetqS64HC4xQ4du+0Vf/8/+xXeevwWq9N1vL659Uon/WK18je7XR6k7Bw4a70f4JM3cW4mJib+6ZkWgImJiYk3xMl75eLs/OzHtcy+W/QklMQ6h5RQljmzxZz5vCBLND6M0ZF1bfCe+8bagbo+4GNgvpiRJjk6TYGAEmCGjrrrAEEIHm89g7Gcn59zenpBnpUoleCcpWlrhsFCFCQqwTr3XXOp0gl1faSqSrIsA0ZJS1GUWG+5295RVmM7rg+eLEuQQlCUBTpLOX/wkOV6Sdu2vP32I9bLksNuj5KKp59+gvOG1WrNYrUixlH/vtt0zBZjYdbVqz1aaw6HmhgjVy92BKdomx4pJVKNN/J2sORJwWHf0rRHHj68YLc9IiUoCVoohr4jz1IG15MkCoAQIz4GrHcM1iP16IeIQTAMfmxcjhHTW6x1SCURwiPkaLZOEolOJJFw/+1oSj7sxhhOoRQxQgievhvIioz5skDIiLUR0w9IQAjo+x47OJzxY5xnonF9B96PWn4zkOiU4BwQ7n/PIl3bYXpDVZbUh4Y0HY3agzMMg2O3q6mqDCUku92Ox29dsNtf03V7hAhsd9cIJXj2/Dm/9ZV/wOffez+u5vN9tP13zk/ONlkxE/umWUYpbZKmL40x/Rs6OhMTE/+UTAvAxMTExJtB/tRP/bP/8snp5bvOdsToGIaO5lgTxnxIYoS+GxN95FgBAEIQwkBe5Ji+p+0aqvn8Pt3HIhWjiTREhBhjRbVilLI4OGwPrJZLZtUcYwa6vuN43LPd3Y2mVpUwmy/pzUBVztFphpRjDn2ajvn0QkCRp/RdyzAYdrstbz95gneBY33g7SePGIYBIQWzWc5qPWMxrwjOU+UpP/rj77O5OSJ9oD3eErzn/OyUNBubeQkBN0SqKufiwQnXL/doEtxgSbRCS0lztHjvGezYWtzUY1GXkoLD/sBh33NycoJUYkxH0preGCKBJMnQiSRNEsqipO8HpByjPqUANzjKPCVLE8wwSoYiEWsdpjMoIXDe4b1HAMYYlAhY0xKcRWtJfTziTGC/aSAqrAkkSU5WppjBEpwkL8t7Db+mH4b7QrbR6+GdJwZo6walBG1zRIqxc2AwHd4aiGO52XjfP6YBHQ8NeZ7TtZ7uaHA2ImTCsfYcjjX7XcODywd89ukrTk/XxNhzPG7GkjQRaNoanSo++/SjuLl9Hc5PF7vlsvqwKvK/99ajBy8Wi8U+TfNDVOrZL//yL/s3eoImJib+iZkWgImJiYk3wL/1b/3Rxyfn838jK6V2zuC9RWtFosds/77v2Gy2tF373Yz7GMGHwPJkSVmMGfcISZKV+DBGTw6DgRCIPt6nyUQSLRiTgizOR5QWDNbRm56AH/PwY0AI8d3b9zQvyIuKGANd3yClYLVa4b1nuVhR1y15XmCM4Ud+9McAwWZz4PLyHB+hbjpmVUKWK9IkA+FIU8nDxyvyvKBvLUN3JFGS8/MLqtmcGAN2MAymp8gTTi8W7HeGrh1z+ce9xqMSRd22JEnC5u7AqxdbtErpWkOiJVev7ri4OCVJUpq2Jk3VqIUPgaJKUUmC9x4lFRJB33QkSiBFpGs6YgikWYoQKW3XsT5ZEgEpJSEIdDK+gCyWK6zz2MGOvoDfHcajoms7nLPE6LE2UOQ5Qih0miABKSDLivFlABiGseHZDQZnx3ZhNzj6rkMrRdt2DM6hlMKYjhAdIUZscGRFjtKavMjoup4YLUpqNrcNzdHinEfEwPWrO+r9kVlVkIqMw+2e9997m75vR9/AvZk4huCrstht7m4+zbL0MJtV9btPHv+tB+dn/9H5ydmuyqub9Xr97Td2eCYmJv6pmRaAiYmJiTfAj3/xCz918ej889aNkpLgxzx4cR+dLqUgLxKKIiPGyDA4un7AOs/x0FA3NW3fMVssSNOMWTUDGKMh742p3nucHYg+jEM+EakkzkfSLEUnmizL6QczTqRCEImkeYYQYypNXR9pmoaz0xNMZ0iSDGMs88WK+WLF48dvM1jP7tAQCWRZyeZ2T54nY+GWd2w3R8oyR2rPYrlgc3OgazqyomB9fobOU6rZjGB77DCQlxXLs5LAOLzWdYeQkrpumM1zXry85uzylP2uZXM7EAI477CDYXt3xBhPkkX6rh2H+0TR9f0Yb5qkSAHee0JwdF1HUzckaUaeZVjjqaoZeVkw2EDbdVSzgmAD0QeKKkdKifcR58ekpnBv3PUhkGYJcTQaEHEUlQICZZUgBIggSLTCuQGlUrzzCCmxLiCExNkB03dUVcngDYMf8DFQViV925JIRd+Oi164f5UAiVaKokhJkpTbm5osS3j22Q3HumVzV9O3A6Y9srm7IUsVq2XF089ecfHgLaKSmMHQ9z1SSJcqfVjMF68Wy+WHQvBJmqYLKeW3/8BP//Sfe3B5/qdny9mnf/ZLX+re2OGZmJj4p2ZaACYmJia+z/y7/+N/84PP/54v/PHZfD7v24YQHDF6QojjTbNSZFlOkZdIqQgB+t6hdU4MEtN5xgQaRVGUOOfo2pbBGNKsIM0rdDJGRg7DmDNvWgMh4swAPo6m0KzAu0ieFSiVEGMkSVO893RtS304IKXgrcePsday2d5hrSMKWKzmPHh0SdcbuqZjv98yX8wRRLpm4HS9Go2zUiJwJImmyGeY1jJ0A0oI8rIiy0uKPKVINFrAoqqYLzLyLMcZi2kGlIwkSuJ9QIqI7wOzQtPVDWWRkGSC477j6vme66sDq/WC2+sDzbElSUYJU9d1QERKxWCH+8K0SN8bhIyj4VdAXfesztYIKTkeR79Bmkj6tkMKcS/DMURvaQ8N+MhgHDEqBusQShKiQapA0zQIIdEJRAHWDfRdw2K5QmfFWPglR4N18B5ChBCo63GZ0qlCSIGUkuV6hZQKESFRGmssmUoRLmL7DqXGRCKi4ObqiHeedt9x2NQcDi1RCB48uuRYN7RdRwgGZw2HQ8v7n/vC+HWHYNM83xbz+VVWFS9Ozk+/dXJ29veLav4bQuu3AP7yL//yr/2Vv/JX/mMxJptOTEz8/yjTAjAxMTHx/UX9+O/7sX/j4vGDnzoc9hhzYBharLM4bxkGQ9d11HVH31sEYjTdCnDBEWLA+zFdRqAYzJgS5J0jyVLmyzVZOUcnGYKxRVgkCToraDrDdjPGeiIVeVFRVTOEgLY9UJYVy8WarmuwbmA2X3J29hDvBE3dk2UFRVkwX1c8eOuEzgwEIvvdhuAtaZJyOLSkmWZfHzk7nXP1ekNZ5STpaJAdhgGlJEEGkiwl0QmrxQytFNWsYrbIWa0qjseW4DRda3nw8IRjW1NWGV3TUxQZbV0jBUgRkAief3zD/q4bDcxa8uLTW2B87dht93g7MK8KBmuRWuH8AATs4BFI8jylPhqsDyxWS6yx9E3NfDbDO4f3YXxJMA7rPNF76kONHSxtMzCYAEKPaZ44yipFoEdpVyIRUjGYHoTAi4izDjtYVKIBz3I5vpY0TUf0AWJAa4lQEucCIgqEEATGdB+tFAKBUpK+b7HDgBKaalFireDu5oDWks31EWEVV6/uqBYzFqsZd7cb3DBguh2HzQ2JTLg4O4tFUXRS6lpn6X69Xn2al+X1YrF6dbJa/cU0SX7761//evJmj87ExMR/VUxFYBMTExPfR/53f/p/8Yff+8Ln/zuDbVTTjLGNQoqxjMuPOnDvPV1jODYtznryMkdIRZIqpJJIqdnvrzGmo6n3LJejrt55h5QaxNgQe+8Fputq+rJFJTlJntIPbhxUQ6TvW+r6yIOHjzg/e8jmbk+ic4pCUZULYhA0fUuW5VTVnMWqRKaCGCN5lnJ5ccYn+x2nZ2ccDke0Ujx99hF/6A//QdrOcn174McfXeDt2GuQJQmD8wz9QJlrnBLMFgsOu4G0TFmdzLm92ZMWCWbwzOZj/OgwWJarBfvWslgLfBSk2Zih39eeq1d7FvOK+arg6Wd3RBcJNnD16pYHj5cEL0AyZvlbDzEQQmSwA/K+M+Hmekc1r8bb/bojhkhVZYQgQHicCxy2LeeXJYMZ04lW6xX7vUGIiDMBJUZ5UJbNGewW6zxSCbQUdPfNwYJA39ZEIM8ygnMsZvkoz3IR5xxKSbSSKBEJgwUlKMsMpEBJib43JiMi1g4oNUqOpBRoJbl73eH9mNSUpjmH/YE8S3n86Ixvfv1DFrOCpt1hXcfJ6QVVOSOG2EctPk3zYqtVWs/KaqdS8bWf/6W/9NmbPjcTExP/1TK9AExMTEx8n/gzf+ZP/nP/7B/6qZ9fnJxe1s0RZw1CjoOkdw5nDIf9kaurLa9e7bl6dWR3bOgHgxlGI+x8XjBfVFSzOd4FpNJEFFEkrE/PWawWYzOsc8QISimkBDs0tO2eLEkpi4IiL8iLkrJc8N57X2A+P+NY95yeru/1/wPWGer6iBBiLP9KBWme0LcGpRTnlyv6vuX84gJjDMb0/NZv/yZCwvn5GR9/dEWaFRRFzm7bYs2YiX88HLHWQlSAIM1TQhxYLEqIkqbpKPICACHHjH4/eKKLCCRZmqIU9P1AmibcvN6RpgmzRYaWgu1dQ16l3G2OCBQCNcZ3Do5Ej/GcANY6kkSRZRnXrzf0faCaF1jb0TY1QkCSakw/Fpvtdw19a9BKczz0dO0Yk1oWGc4N9J1D6wQ3eKqiomt6lJAoFH3bMphx2VBSQnC4vqeqSkLwpFqSJAprPYj72/4QydKUrulo23YsA7tPNEKAUoIQAt5F+t7Rdy1d3RG8Z7c7MphAkgrM0CAj7O82KBKktByPO+bzFTe3VxwPdzhrwmI+88vl4tXF5cXXZuvFK6XTj//CL/3VL7/BIzMxMfE9YloAJiYmJr4P/K/+5//u+z/5kz/xvzx7/Oi9Y33k9vp2HNSDp+87hs7QdS1d27G53XGse4YhIITCWthtem5f1+y2DVWV8rkPHvO5D94j0SlpkvHg4QPOH1yyWp+QJAURcZ/uMxqIox/wQ4e3Dq1GI6qxnsdvvUeiS7rGUOQZV9evaLsGKeF43BNFwAVP37WslnOuX15xerqgKFNiiJjecfnkFGcDm80dvel557332W4bbm52SAmbbc319Y4YBcdjy263I0lTnBMgJXmhyYoUOwS2t0fKvMDZMfFGa0n0niLP8d6TZinRw3Hbcjz0hCAQ2jNf5lw+WHB3s0OrSFJIolas1jP61mKGgA8R5wNda5BC422EIDD9wH57ZD7PyPMEMwwMg6WalZTVgq7vGMzA3c2exXIGQnHY1oioR3+F6YnRk2aaNFUopQlhbG52g8dZcM5jBotzgTQtMH2PswMIiVACnWiSLCFN1Oij6BqsG9uN265jMA5rLfG+9dc5dy+nUgghubs9YDqLH6Dd96xXJU3dIJXEuwBOcPP6FbvNhscPHnA87sbPVylu714botsF3CFPk2I2W7w8W5z+J7fH499h0vpPTPz/JZMEaGJiYuL7wMPHj/9rZ48e/HO9cWxurtBSgZD09wVPxIAUkiTRzOYFXX9kvsxRSvH80w2vnu847Ft2uy3RO04vLtEqY7U64Xjc49wpu50lBsahWEgQEec9Xd+xi1DNJUgFUiC15MGjB+zutoQYqWYFTXMgRHcfQ2rIsxyhBEop1ssl11e36EQRoycvcm5f7Xj3vUe44NFas9ttWCwWJDpnszny/MWn/NQf+AN88uFLEAKlFbe3G7p+QCU5rTuwXlcIJcYBtw8IImVVkOc5oW2IfozYPL9cUdeWolRkaconH15z9nBG23WUZY6zgSTTtLeB2TKhqkpMvydiv/sCEHzgsK8ZjON4bDHdQJ6VmH5Aa836tEQAzliG3pKcpvTG0fc9IowpQHmu6VvDcd9xfnnG7dUWOwxIUZGmEqUhTROsdbhg6cyADwHvQUmN95HgA+6+Q6A3HQJBZIxh9d7hhgHnBqSQRCFQCuwwtv26GJFSY+2AlAo3+PHloDP0MWJaR/CgE8FymWIHh06grrcE3/Ptb3+N9955n6osaOpdmM+Xbd0fak+8zZTeCeTce7f/c3/pL/3Gmz4zExMT3zumF4CJiYmJ7z3iwVsP/+WiXIi2PhCDY7GYE7wnUZo0SVAqGYu2tKI3FiEFeaFpjobXz/fUx5YsTamqCqkUx+2BF8+e0bXHUePfNZRFQQSyMiGKCMj7aM/AsW1AJEgtmC0L1qczXHAgYFaVHOs9h3qP6Q1SSZJk/FqEFORlTl0fuLm5oVrMEFISPeRFxunZgq42aJ0yX6xJdEJVpvzWb36Ztmm5vTnw8vVLnB/Y7xtevHhF2zTs7u64u9lwdrbguDniejsWaYWA1hHnLEWZ0bUD83mJD46iTMmThKefvMIHx2I5I3jL0I+Z/tttO/64KmVoDe2hRykJKnLcdwQXMN1A8JL9vgYJPniOx3GJKIuMwViGfhyuo49YY3DOctjX5EWC947dpifNM6SG25sdkogS8bs+DqUkprdINCJKpIg4N5CXKc729F2N947B3g/1NhIiKPW7rwHJvRE4MgyGNE0IPjKYgfpY453lsDvSHFqO+2ZcnobA/m4g1RrvPPXREJFjB4AIdN2BED29OfLy9TNMb0IIoSuqqs+Kaid18irJ88/SLH2RKGXe9IGZmJj43jItABMTExPfY/7Mn/6TP33x4PJfMkOLNTVCQtN1zBdztB7bdZUU9z/ao7VgeVKyPJ1h3YAQkbzIWZ5UvPvuW5yfX/Dw0SWzWYlAYpqaj7/zda5fXtHsjjSHA1onSCHHu2Xr0FrjouPxuyesTrOxFMxFpNYM3uOtJU9Slos189mcEDxaK7yzRAKdGSjKkt4Yqqpg6C1pKu5Td8bhvypnLJdz+r7l7u6KCPS9oW53ZJnieDxwe3dD2xnutrdopcjTjOef3eJdoDfDd1uG7WCRQhMiCD3enhep5MXTK7Z3Pacna4beIRAcjx0RT9/1pIlECsnN7R6dZiRpQn3o8CGik7FJ93hoMcaSZSlNMyCVJC81UqlRp680Skti8AymIVhwLpKmenyxEZ75KuN4ONL2PTpLUcn4x+l4mx851jX1sR+H9+gJzhGcxVsHcTT5Oj8uDNY6jLH3un5JnudYF1BaYb3F2jimKInxZcYYg7WB+tDhBstx1yOi5umn11hr8TZw2HXcbQ5IJYkxYkxH1zXkWcLxuCXJ9NAN/V5KzLychSzNdnlRPssW828Xed6+scMyMTHxfWFaACYmJia+t+jHTx7+6+ksuTgc7uiaI13XU81mEEcTZ0TgvMWYI03Tc9wbFsuKw75hv+1x1pGmmrJMiXFgvV7hvB2XB6FRRA6bG3Z3V+w2rzlub/DWgBzbgH0IpGXOT/7Bn+T84QWHg0UoTZKmJFmBTgsWqzPyvAIJm80GKQVN05ImmueffcL19Su6rkeJlHo/sN82JDph6B3r9YyySHHO8uDBAz777BnWD3TmSNcf8N4SETx9+pT9fkPT97SmJy9zdruG27s9N3d3dJ0liMhgA03d0HU9IUaKqsC7wHHXcXu1Y3VSIXUkuMBhb5gvSqwd+xO8i7SNIXqBSgSDtey2LbNZfp8mFDCdHWUzboziDMF9t3+h7wdiiPcpSpEYAkpqEp1hncf70RAdg6NtDVJIQgSpRqmO9wFjxjhXpSTOOaQa05iyJMc0FmccMQhiiKPmX4Rx2egHEp2OC0E34KzDDYHtZodU4N3Y/1Afj2glaeoxMvR4aCnKhK4Z+Ozja4TwbO9u6OoDh82GWV6iVYrpO6yz0bnBIXBZnu57O7xIEh3SNI1Jlh3yvPhoSPJ/8KYPzcTExPeWaQGYmJiY+B7yzjvv6MV69UWpNLZtubu9wXlHWZb4GPDBM5iepmkwxnN329A2PUUiOW5btnctXefomo6hdxgD3jtCHJeGw3GDCwNCeOr9LaY7YkxL3x1xzo2pOVnFkydfYLE4pTsYUqXoe0NRZMzmOUVRkOicY33g5uY1MBqHrR14/vRT+r6hLAuKokAEye3rA8FBDIEk0VSzhCSBi4sH5PmScG8bLfOCpt4yny2xNrLZ3uC8oW72GOvwRF68uqUzhpu7W+q6QStFczAcdy3eBmZVSVcbrl/vqXcdiZLMqgpvxwz/trYkSow360FgjSPYiOst0Y2lZArJal3RtZa+9ehEIITiuO8wxmEHj/cw2Ijzo2wmRJBaEIgEAgFB0/Ykqca58fMfjCUvUuww4H3AOYcZPCJoTGtJEslu1+K8pR8sOsmIURJ8uG8WjmityBKJlpLjoSNGKIqMJFE0h4Y8TQnD2BTtfURGiWkHbO847FoGF9jc1bjgyPOE73zzOWmactjd8PrZx7x+/oLd5sjJ+hKt0zgMndGpPvZ9N+RlHlSi9kHwqU60zbL0mCblb/ziL/7i3Rs9NBMTE99zJhPwxMTExPeQP/JH/sjby9XJ+6bvaZojSZpSzud4IsFZpBiz6a0duLqqORx6PvjiW9SHjutXR7rWkucpXWt4/WrDYjHDmI6h91gTWMxPqI8bhFAEoCgq3NDj3YAUASEkRTUjy2c09YBpDyyqnNksBwnHncPbgbrekejRj+CDpWtbhBT0XUOeFtTNkSQ/Mpt3PLg4RUmB6QOrBwpjIqdnC6SUFEXOarYmT0suzi/Y7TacL8/ZbY9Ya4gx0JsjGRUhBDbbHU3dsN3cURYVddOAi3THjvxtjfOB559ckecp+8OevMhompq8yhmMZb6qOBx6pJDstw0yUTgfCVGMS0IXiCGAjHS9Y7drefBwRdsOoxymNmSpJnpojy1KQtt2KKXvk3fGW3chJTGMpWzOeYSMRAJKw2Asznns4NHaEoOgbwfmVcZm02KHMEqq0tGDgRBjc69QaJWQpAl9Z2n3LXIFAkmaa5yPFFoiVUQgKNKcQ1vjHePN/95SFAPWeJ4/vWO+zHh99QIpA2We8urVHXe7O8pyju0d5xcP3bHZdkLKo/U+Vuio06xOi+IqK8tDmulv/Pm/+Bc/fMNHZmJi4vvA9AIwMTEx8T3kxz54/M+kWXLZtUeKsiAvZywXS6LzyBgJ3tI1LddXe7abmstHC7JMsts1SKnJ85IQ7mUlxmKtxfRjJKRSEqUUxIiSmixLMcOAGXpiHCNE83LOcn2Gc55Xr15yqGtkKkkzhekNzjmOhwYhwQ4WISTWDxhv2Gxv6E1HP3QY01AWOfOqwAwG5/0oj1FjIddsnnF2seTBwxlpkvDowTuUxZxqvqIoK5JEIaJE6wStNKlO8M6x3W4QYizaOrZ76rrlUNcM3lE3A598/BmHfUuiNXXbgVIM1hKiZ3AOqRVNbelay2DA20hTDwgpkRJCiMxXJd4H+ranKMfbdQ2IGHBDIEkV6l7/DwEpRu+DdxFvI9FHorekqaI+1sQYUUqQKI2IAiIc9i0hRLwbP5dRWuTxziOchBBp246iSun7gSRL8AFCAKXTe/mSpW97dpsDhPtiOOuxQ+CwaxiGgcEYghMc6zEG9bjv8Tbw8beeYo3F9Ec++vDrCAFaK4a+4fbmebjbvDTBD+b84mGvEl0rpfYRGoSw3gcVEE1Z5N9+0+dlYmLi+8P0AjAxMTHxPWS1Wv1emQbZ7vZE71msT8Z4TjsgRSR4hx3GwXO+zLi4mHH9eoszIGVkvko57C1ZniARDGbADZ7eDOR5Tr3fIKUkr2Zk2aiVd36MnpQiIctKetMTt6/H+Egz8LkPHjM0A0VWYJqBLE3ZblqSTLHfHjHDQG8MWZIRosNYw4MH7zCbLbm+u+V0vWYYLO9//gydaopU0BwdeSGJQDmb8SDJiARkosmzFG8NWapIdIJQGiVTsiylro8sH67I0oT9foNz73A8tkQX+PSzF/TDwHqxZrtrabuB+RKyRGN6SzUvR528DTgT8MGR2jGdZznP8Q5U5qkWBab19J1hVhU0h44sG6M0y0KP5WBti5TjUH88dmgt7wfuQIwBxPh5WufQiUTECB5sZ1FK09Y9ZSWwWiEkFEXCdlNjB4dSmugjXd2RFWr0FggIwdO0HUqCc+PPE6Oga3sEK7SUGDNQHzu6JuLtFq0F222LNQPXL29JlccNgtuXt5RaM69Knn72CYSAkiIkWgy77Y2ZLRZ91w3bLEt7IZfROtckWbpJUm1a48rURil9Opl/JyZ+SJgWgImJiYnvITLTYhhauqYGqVikBW27x/mBGAJaj0VOIBj6wH7T0h7vb/mHSJ4LsmRJ13Q0tUFLwfFQY4MnBAcxglDMFiuEkBjTgHcQPFJretuye7VFIKmqJf/S7/u9EOJYrBV6Qgy8unrBerXi5u4Vg/XMZgsS3SKRBATn5+cURcWzF085XZ/Q954iVyxWGS4YNDnW9qxOKo57x3I5YyUl290BpSHPMvbbGxazOXmeYV1EJxlt05GohESlZElOxNK1PVmScn33gt70lPMFQsF2u6Npa8ywRmhJVVXo+1v76AKCgHcBEw2zeUYMgSgVZZWOZVebmizX4CNtM/YlqDQhz8fUnuDBu8AQHLu7mvXJAtNb+t6TpmJ8DVB+/L2KAq01g22RfURnCcRILCK2t2MpWJ6yXC65uTowDJboA94ODAjSLCOEQJanY3JRmhBjQGqBUGCdxwwBnWb0XcNgAl3bst83XFwucHZgvzG4YWBzfUeeVURvefb0U8qiIISBY7N1Suk2zYtWaXWHEpssy1qVqDrVZee9z3Sa3uZ5uVVmyNM8ff5f/1f+ld3/9hd/8U0fmYmJie8D0wIwMTEx8T3ij/3rf+ykb/ZPZJjjrCVJM7RMiN6NOfBmIE003kVMF9nfdSxmCctlhTE1wQfKKuXqVU2aalwe2N5tGfoOpRXOgrUD8+Wa5fqUvj4iYyB4TyTS9C11349yGKF5/4Mfx3nJfJaiRML13Q7nDU/eecz27pZj3XJ6coH3ls4dSdKEqpxjbWC/e8aDR2+zWp1xONQ8evI2TWdYL2fs7mqSNCFJNWbouHiwZLdtyNOEVEvMYOj7gZPTBwgih6ZhNluw3WyoyopEK5TMKIsUM/TkWUrfdwglKYtLnHOjB0EnxBhxNuCdp2s6dJIAAfDYYaCcl+RFxm7bcHK6INUJphklQrNFSd8O4MAOEXRABkHwkqrKuLvdo6Wgay0nZ+PQ79yA1hl2CJS5RGlB1zqKQmEHR1EkNI0lTRkLwRIxxqo6T0SQ5GMuf4wQoiMEjfAOLxQSR3PsiVVx7x9IyIsUN3h2myN5ntEeHd4Irp7foZPI7m7D5eUJr168Is00m7stWdrR9TX7/ZYnT95CJ6oPwe+yLO2kVn2SFa+zsvw0L7Iuz/KtzvLbGKNQWl1JnXx1BnRe7n7mZ37Gv+EjMzEx8X1iWgAmJiYmvkc8fGfx37y9vv1cNdPcXd3x8MkKZwfcMGbCO2NpDzX7/cD1ywOvn99xsspRuWdz01OWGYmSVEVK347yleOhpmn2eCuR1uKcY75ekSQpd/WBYegIAayLdIPFRxAhcro+Ic/mpJkmRnjx6obTswrbWz6+vuLlq9esl2fEYNnvj1TljDTNSZIcBLz79vsU5Zznn33KfLmgqjIUmrub0T+wXGV4H8lzhZISsQ+sTxbs9w3b7Z6iqFiuV2zvNqRZRppoEp2QpRV5UVJWM7y3aKXpe0OSaISAPE/ZbrYoqUZpk/eoENlsdpyfL2mbAa3GKE4zDCijMWZgu21Zrmd0R8swDBAc3lqGwWN6yyJTxCEwOMFsmQKC4MARyNIU0w6oBJwNqFKgpcB5P97W+4AbwLuIiBLbG/IsRUqJHSzOBXSiMM4wm+cM1hGjhxhHn0DwyBAgwGAcxFHSExPIcoUSmmbfoYXm7rrmeOy5evkCP/TMljPE/TKx3WyYVyVdZ/DBcWw20bkHlOV8b+NwleRZm6bZISurV3lVfZZn+aGs8q+oKv2drJHDH/5Xh+ZnfuaXp6F/YuKHkGkBmJiYmPge4Z1rtne1sv2zsN328tETiQs91lmCj9R1Q1MPfPzJHdcv9/z9X/3POTn9F8jKgq98+av8vt//EwwmstnW7A8tMQS87SFEnB+ww9hSe6JPcdbgvcWHgI+BKMAGjxCRZVWRpgmmP5JpzcvP7nj8zinD4NjcbWmOO87Wpwymp2sblsvlvUSlQiCQUrC52yJ2DbPFmifvvoVA8vLZjtPLCiWhmOXs7mpOThZ8/OEVaZYQo7w3zCpOTkfvg9KKIi+J3iGlQCmFUAqdJbjWffeWP0kKyrKk63vsYFgt11y93t8bonucHVDqjM3tjtVqho8C7yPWOHabmhgig/F0jcH7gJAaa8M4cCNw1hMt6FSSZQltM5Blmq4x5LnCDgbiWEgmiFjrSbMxYWiM/BxLv4wZEASSROFdIPhxaRBCMAyWLEvou7GIzPmAwhECCBdQSjL0huBSBJJuMPgYsC7y8sUd551nt++4u7plt7+j3u9Ydkvq9sj6ZE1T75HRkiYlEuEEsdntNjIvip0mfZYV+b7Iy30xn32aZrMdiWxWIvsH//6X/mID8Kd/6Q0fkImJiTfGtABMTExMfI8osvLv3lxv/tsv2v1PdL2T735wy/xEY/oB17f0reXupqPeOfrOcre94df/wVfIdMpXf+u3SHXC6uyMzbYl+oA1LX3b3BuHLcPQcjjuyIuMspzjvcO6MclncJYQA4lSDMbQqRYVBZ9++ILHTy64uz7w+vWW4Czr5Ql3dxuM6YlE2rYhywqE0CAlbXNkPl9SlHOqxYq67vn4o1ecrNa0ref0QU7T9Sgt2Gxq7m4PPH7rlK4d8C6Q5wVSaYzpgEhZlhx2e7TSYzSmHJOEuiagtERYSNMMpTRNfURphZSSSMQYg0pSijznsG84HhrKqsA6S993aKXp2o6yyjnsa2IsGGygrQ0hQt8ZqrKgax0hWGarYjRWW4tS4KyjKHP6biBGyWAsMTJGe3Z2TAUKgbYdGAYQ0pBl4wtCU3fEoAg+Yq0juEhZFjR1h1Zq7AgOYXy10OK7S0N7NGitCMEipGS/a9huO7rGj7f73rK5u2K73xDiwN32FoXAWcOhtjFNrPPemWpWXbnohiIrb6py8TTJ8uskK/rZYvE1FeSXfZ6bf//P//nmTZ+LiYmJN8+0AExMTEx8j/gf/vE/fvU/+7mf+5Ovn7967+OPn//+R0/W6uwsw9Q7+sazeXXguLFEY7HGIqTgP/t7v8KqLJFKYI1h6C1aCIw1mLaha9oxOzI4vDPs9ncgBOerc6wdRpOqFBg3ttvGCAhFnpVE57FDg+kthATvA+v1CR/d3aB1SjUraRpYrU9YLlZImaCTlK4Yl4vDbkvfd/iTJQ8fPqJ3LbHTvJ2fsNvUvPXWKb/5ax8xX85QiWKwASEVs3nFbnfA9B1JqhEiIqVEJ2MbMVKQZznX7SvEqaAoMtr6iHcBGwyzckbXtUgladuWk7OKPCvYbvcgJUmaUjcNfd9T5CXHumY2L2nbnjRL2W8bIqCage12T57ndE2PD571+Yz2MBCCJ8axXdjbceAf/xkSpWiOHUmqEGKgKBPqw7i0eQ95OS4H9dEgUCglEEKMRWnK03eOyEBeKrTW7Lc9aaIJ3pCkCdu70eOBAK0Dt9cb6kPDdd2TFRn1YQ9EmrYmVYpI5OnTQFmUoa0bTxm9j64tZ9V1UhSvirxoq/Xp7+gkqRXio8XZgy//qT/1p7o3exomJiZ+kJgWgImJiYnvIf/Ov/fv/fq/+d/9I3+qysT/5G//3/7TL15eVHq+Kri9bdjtW/rOs9vuOGz3Yyuw62n6wHy+5vLhQ/rBYbqGvm1w1qGTBG97gnMYYxi8pTc9XdcSg8d5R2d6nHcIKfAhIlFUecVyMefsYkGWFWS54t2zC559ekWa5iwXc9qu4+LBW2Rpys3VNUJYvBsvjEMMpHlGUqQ8fvttbm9umC/nSBu5fXXg0Tsn3N41qCSlnOWYYbw5z4uUutkilaU3RxbLNSEEpIKiKkjTFCUVQz+WlllryIoEH8cc/HBvls5zBQisHYgRmrbFe49OUnrT07QtUiuOzZ5IoGkNaZDM3Jzd9kA1L7i967HW0fU9x6ZDSYGIgvY44MO9UTdImmOPUJ4QBCGMMaDWBtI0oe8GlJYcj4bgI8FrrAs4Gxi6iPM9RZ4SI6Sppj529P39opAbihJM53EW9tues/MZx7pFSEUIEWsDu23N9vYGiNzeDRRZirUWnabsmwNlnsSb29f+wfmDQWtVd6apZ/NKBCVeVfPF17Mkk3lZ/GpQxbf+wn/4H/Zv9ABMTEz8QDItABMTExPfYx7/yAd/s++Pv+/jb2/LX/k7v3H+oz/2+Wp3NLJrDfttzW5zYL/bcKyPSCVIdEpVLum7gcF5DocDWgl8sAjAO4ezA3V7ZHCW43FPiiQQaExPbRoiEREFIkJZzSiLks3dhv3+yOVbcHp2wuaup206zs5PMV2PFAOm67m9enWfJCTIsgIQrNYrRKKpZguur3aYrufm6ooPvvhFDsbw3jzlow+vyZOEGBzHvWE2y7m92dB3/b38RaDVmL+vkEitkUpAjJi+ZbaY0fc9i/VyvJEnUJYLmuZImuZkaYF1A/XxCGIcztdlQd8a7OBRUnE47MmLgqZtUUnFbrunro9EAm3XkaYlL19co1VKmir2u462Hg2/EYVA0bUdi0VBPxiSVI9RniYghcMYj5ADwYHpBnpjkSpSVik+RLrG4i0oJQDoe4sxA0TNdtugEoExHvpAUw8kSUeaJbx4fosUihgixjiurq94cHHO6xefcXFxTj8Mo4TJeS+s6IssbQdvurxatUHxoU5SobOkL+er54mSX0/K9jtf+tJfnYb/iYmJ/1KmBWBiYmLie8zP/dzP3f3cH/sf/K/r3Sa5ef3sp3/l+upHzk4fz3vjZNc27A9HXl09pxvG23YXPHW945OPvsPlxQNUcCghEc5i+p62b9gcNhz6IxEwfuD1/hoYb+ojIMQoQ9E6wdqBpy8+IZEZjx4/wpoDV696tEwJ3tMPo/Y8z3Our18j0KRZTrUoOT09BZHQNjXWOfa3G5ruiDeW2XJJOc94+N45L18cOO571itF33mKoiTNJbvDgUxXvH71iqIoyPN8bDHWyVgUpgR9N6CTBBE9x7bFu4hSmq7rmC2WhLrG2IEszzjc7AFJAKSWrFZrNtsd3tkxZtM5BmMAQV1D33VjO/KdpShzXr16yf+bvT+P2TXND/rO77Xd+/0s73q2OrV1dbfdtoNZIgZNJMgwE4SUUTQRPRmZ2AQCIXgyCCxmRjN/tCzNhiJPGFmgpAXG7W4WuzPARIqYCQTwEGAwdINxr1VdXcvZ3+1Z7/1a5o/n2BiC7W47+LSp6yOdP85bp97zqH636r1/1/Vb8ixnPl8wDJKnT7b0Q898VhL8hBCCzWaLFAKQhODZbye6ZmDsLW03MPYGOwXafcfkHEI4lFJ0bc84OLabltm8AiHZbQbcZPHiMNv/1p1jxnHDZtUxTZ6mGajrAjs49vsV282asqgIQbBeXWFUYHXzDOcmZ631eZHtEm32OjU7mSSNNNKWVf00r+Zf8VP/keD98KP/5V/+uy/mSY+i6NcK8aI/QBRF0QfF/+V///3HX/ziV//9xw+e/q+uL9dv9DYsunEUnXVsux2jmyAIUqORQqKk4WRxxLyeMY6HcZbWTax3a3Z9gw/hn/n+Qhzq1v/p7yHRGhUESZJRlQtmZcnYD9y+8xJ37txHSknfD+jE0LUdV5cXZFnK8mTJ4viIq6trmm2DUZq+61DysCG3WsyZnyy4c/8Y7zyXT/fge+7drVmvBm7dO6bbjWxWLQLJl77wZc7Pl9x/9S7vvP0+CoM2CiEl+12DnToIE8NkmS+O2dys2Ww33Lp9m7bdY61nvphz8fQJUkCSZkiTMJ8dMXQ9zlu8t0zTYQfCfDGnbzuMSdhstyxmRwxjx7OLp+RFzenpGWmSYq3FGMXRcoFSir7vmUZLVVUEJGkuqeuS1fUOay2T5XmzsGPoB7q+5/RsyXI54+ZmjTEJQ2/RRnFytuD6ck0/THgfKIuc1z9ywm7T8fW3Lum6nuXxAik9V083dO31YfdDVmHtjvfe/xomMWw3V04nyb4dbJ/l+U4nqkmM2S7m86dFUQ5VVb03Oz7/76wfLl3X/TZK82Of+cxfvvjVfr6jKPq1I94ARFEU/Sr5P/zf/uT1H/kjf+S/SLJ8l5ZP/6dvvvXOb1k3m9P9OGUB0FKhjPbDOEpEgDDQPm0wl5oAh/GeIeCD/xd+/599+RcIhBReCZwUwmZp6oqs0F2/z4ySvHT7JWbzOf3YUxUl83nFdrfHOctsNmNxNMOkmkcPHmGUoUgzmqbBO0+WJCgtGZ1jmGBzPTF0PavrLa++cYubbUfbdiRJwsObFbOq4vrygnqWkxU50+RomoaTozP6YWCa7GF+/jSRaEEIkn4c2bUN2mg2uy2pNiAC290ek+VsVldk3rPMSzbrFWmS0Lft4UhLSJTSrG6uCc6hpcFNE8PYcXX9jLbdYZ2lrkoIjkePH3J6ek4IgrJMubrcUBQJ/TiitcYMghAE+6an73ukUHR9zzB2GJ2wWq1IUoOzgt2uoZ6BnQJXVxeUVc5kHZPzrC6vUOfnPHxwzWxW0fcNzbYhLyRpnjP0LcJbLp+8T1FUZEWKCw4VdFBKDVKIfZYmfZ6nV8WsepqYZFeUxXWRl5s0y7++HYa/9tnPftZ97/f+rqeZS9Sv2kMdRdGvSTEBiKIo+lX0n/1n/1n3Ez/xEz/6d/7Wf/25NC//3aurq990vVofd8NUj/1QF1U1rna7et80c2OSoe3acvT2nznZ//mklB4IIQQpECBCSJKkLfPsJkuzTZYkXVHkK2w4PjXFdwpkut5scEIzW0hGNzDZEYHAO0c1q/FO8OzxFep5vf44DgzDSJKmz7f6dlSLJUZrht7x7OkFEthctVxcPuPOnSWPH16zXbfsVjdIqcjLnKPjYy4vrmmbnuJeSts1TNOIMRrrLNqkOP98FwCBcbIkJsVNFmstq+2as7NTRhtQDsZxZOp7umaLSVKm4VBapLViu7lBS0ldLRiGnn2zxbqBfmjwwdH1HW3b0jQ7hJRolTGOA+M0sL9YURQF1k7MZjO0TFmvDlOM6lnN5dUzpqlHycMtTd+P9N0N1h5uaBKTsVqvWF2vWa821NWM7eoGCeyairt3FUoplID9pkEJg1KBrhsIwnJ18wC1MQEl7NA3oSgrO4z9kGX59WJ59HY9nz3WRnVKmS7Pik1a5V/5zI/9BQfwYz/22Ue/ek9zFEW/VsUEIIqi6FfZxz/+cQf84//dH/gD72zOz74NqU82281vVFJtri5vvssJMXvn3fc+VOTldLG6OW+a3Vwnpttt9yfGmN56mwbvZWqSbZKaDkQA0EqMCOkWs/n7x8ujd4qqeFgW1dtJkuS73e47V5c3brPefthaO68Wc1mWGafnZ6xuNmx3a45PTzFJynaz5uTohGGcaJo9AD44ttsV3k2kecHy9JhpGtit9/jJkmYJz548ph1bsvw+773ziCI/jOc8mh+z223ZbnY8fPCENMuRSrDdbZFS47xlshZGyWq9op7NSLOMm8srFrMl1k6HWv6+o20a8qwg0YbLi0uyTDOOA4UE5z3BCXxvny9FAzMNrDc3CBnQRjHZCSR0/Zahs4xjR9sEtpsMITTGSNbrG7IkZXV1hTEJzq3YbbcoKRmGjs36gjwruFqtqMoZc3vMfrdFKUnTOhbzGdM48t7775CYFCECzo+sV8/Ixx4RDrsRTKZRQrLfbMFPJCbBGMNq3SHVaKuq2jrvQ5olHiH29XLx3vHJ8deyIr9QSTIEL9okM2/de/XD//gFPs5RFP0aFHsAoiiKvgX8wB/83WcuK9T28fq4n6Z/UxqTPX38+CN5Wfc31zdnWkl/vV6djEO/XC6Xn3/27OIjR/PZSiVq5YOQWZbuvQu6rKqbsqouqkX1OSmTn/n0pz99/Yf+0B+qLi8f/4Yn7zz+/XYMvz1LZ2fL5ZKzuyfeWpSUh4qRcZhomobEGJqmxTtP33aMY0/XdTg30XUdp2fnLE5OkEIxDZb9do2UkrZvOTpZkmYpTx49oygTklSBg8mOdF3H+mbHvTt3STPF219/m5PjU9Ik5fLqGUYbnl084403PgJ43nvvfc5Oz5BCcHnxjMH2SCkpy9nzJWFbnBspioJpsmRZSpoUTOOEnTombwkEnHUEZxFSsmt2hBCo6yVCaPb7NfPZDO8Fi/kJIXjcNFIWFav1NcujE5IkpR8GjNYYpXjy7NFhmtHzxWt377xKPwx45zBao5RinAb6rqOua3wIaCnp+4Ysy6nqOVleoJWi23dMU0fXbtAS9vs116tLK2RoZ/PFdUBskzRt0zRf5WX1tdnx0XtZUV5qlfxDlefvffKTn2xf7JMbRdGvRTEBiKIo+hbzAz/wA+U43hTDanoNpapJyifdavWbTZ6/fXV5+eGT5ekX+t5eZrl4vc7zn/a5894XXratBFBCuD/56U9f//zv+ft+3+87unn09P+8We3+x1Kl9+vZItdKqdliJodx5OZ6w9B2LJdLBnuY4Y8PeOdQSuKc4+r6knEaOTu/w6yuefjwEVmS0nctOk1I8wwlD1N0hmFgs73iO7/rY3zlK1/h5Zdf5Z2vv02iDIvFMT5Y3nv/HV66d5/JOna7DVmSst1sODk5pShynj59SpKklGXBNPRcry8ZxpHFbInWhnHsCd4hBHjvyLKcPC+Z+gmwtF2Det5QPY0D3jtGZ3HThDEpSV6w222ZVSXjOFHXRxhl0ErhvcX7Q69Fmuaon9vkG+iHjnGckFrivKeuFozjiLee5dExm/WaPM/YNztmsxkhBKQ4lP1IKUiThLqeIZVhGAa26wua3RXeWhCepmu3QolVUZWrLM+fpHnxMMnytqxmD0yWvQP6C5/+8R9/81f9wYyi6F8ZsQQoiqLoW8wP/dAPNUADXP7s1z7xiU985Qd/8Ac98JM/749+7Rv9nvfu3VsP+/2nlZLv79v+X7u5efbr+q4/mb5uyyKbZ8vlktu3z9jtOorssKDLucN23JvViu12zbNnDzk9vUWe5Tx4+Ig0SdBG4ztLXtRkRc5+u6dttlyvLsjygnfefZftbstmu2OaHDLAerNCJYZdu6HtO1brDUJ4nHcgBf04kuYZwzgilWa93TIrS5AKj6frOtLU4/yEFJIQAkoprD18XiE8bdcyTSNJmiHkz45DBaMF+IAgILxDS4m3jiQxDF1DUh5uA0IQCKXwzuLciFIZ1lkIAYEkzzKarmE+XxC8g+BwziKFQGuF956iKEmTFKUOS76qqkYphbMTcPgM3juyNGF3M9INLR4/JFmyUyq5TNLsJs2Kx/Vi+Y4pynWSpF9Oy/nf+eQnPzn9D/awRVH0gRRvAKIoij5A/vD3fd/iuht/69WzZ79rvWp+qzHFaZ5nKk0zud83JGlCnmZstxusnRDS0Pcdl5ePMYngY9/+3ey2Hf3QM44jbddytJxxfusWF1dX9G3PenXJzfaSW7fv8+DBO2RZTpJk5FlO3zYQQKeGZ1dPWS6OGfoRCBiTQPBobbhz5w5fe/Or1OWMfd8yryo2uw3dsCfTCRKFSRTTNKKVoigqvPMYrRHB0w8twXtm8yMQh6FKbbvD47DT8/dnH5DqcA6mjEEEqKo5RmdYO+KCRytNCB5jDFrrw9fdYcRqCP75ojSAQN+NHB0dM9kBISRaGcrqUJKU5TlpmhFcYBh60iQ5bGsWgs31E/abS9q+cQ6/FYZ1UdTvV/Ojd+eLxdeT2fwrKtGf+7Ef+/GvA//ibvAoiqJvgnzRHyCKoij61fP/+NSn1kkl/lGSplOeZUbgps1m5R88fC/keQrA5c01XdehlMaOEyA4OT7jox/5Dp4+fcI7777Jk8fv0DQbZnVNmhU8u7jg6tkznB1xIVBXS6TUjFNH4DC+VGvNMA0MdqRtW7K8ZrPbEnCM00hiDN5bdvsN1jlGN7Fpts//nQkfPFmaMVpLb0es80zW0Q8DXd+ilGAau+dL0CRSKpRUGJWgtUbpw++1Nggh8ECSZAihSHSKlOrnfo1TjxSglAQCzk0oJRFCUeQViUmpqhlZWpCYjMX8mNlsTlHkFEXOyfEJRVGwWMypqgopFEWWkyYGpSTWOYwx7PcbnB3xzhJC6NIsXaVpfm2ydJNX1eOiWrxZ6/xv/diP/fjbxJf/KIr+BxJLgKIoij5g/N5+V57q1M/MX76+2vy6ROffvVieCutg6AZEkFTzBZvVmqIoEd6SmIIHDx5wdXWBNgllWVLXCyZrefrsMdPYY56P0rR2ZL44YbfboKQkOI/JNNY6xulQtuPxBCHphx6Jx4eADxbnPNtmDyHghWdylvA8KUhMQtcNyOfLyLTWlGVF1+4ZhgElJKnSgEAIEEI+34b8fM+ASXDOI7A458iyDOcOE3mkMkh5+PPDcGh81lozDANZliEEKJUAE0lmSEyBtY4szQlCUBbFoQdCa7RV5EVOXpVorVgslwzjgNSe+azEYVndbJg6QZZotlcNnuCUwSKCLev5++V8+WY9m72VLo7+6n/+yU9uXvQzE0XRv1riDUAURdEHjCjD/+/o3vH/tq6qr1Z5mRZF3thpaPfbjc/SBAHsdw31bIbUhxPwq8sLVqtrhr5hGjrwnma3pd1v2W3WDH1Pnudoow8vzCi22xXOO/KswAdPmqZ47xBSMI3D81p4cM7jrKXvR9I0xwXHMHSEAPJ5Q+40DYfRns6h9eEUve0bpFJkaY6WmnE83D5M04hSigAoZZ6X7xiSJEerBCEEUkq00kBAmwQpBFIqhqFnnDqEhGkakAIgoJQmzwuUNgQEZT0nBHEomSpy0jylqmtMklDPF0zeUhQZQimUEuRZihSKYANaaoo0J3jLs6cP6foGcRjhOkIYkyzfFNXsUpr0i5+ML/9RFP1LEBOAKIqiD5g/+2c/e1kU9kYGkS2O6r9aLs0PmWT8KyE0l5vNFdPUI4Bxmhj6nuA8zk4IIcjziuXyhGnytN2eptuhlaSua/qxo+16lNSM45a22aGVwSQZKIkyCUJKBGDtiJYCrRSJ1BAC49Aj5WGj8TiMGKkxWhG8PzTuOofAg7PMqhk+hMNegDQjNSnGJHjvCQS892hlSJIUKRKMycnSEm0MHo8yhgCHU38pnzfqOkLwWDsikAQgSIE0Gp0k+AB4njdIh0OpkYQ8z0gS8zzxAWMS5rMabQR5nlGUCcZIJuvYNwNSarSWbJsV/bCnG1rfT9NNUS/eL6rFU+dcaodulnl5/YvFMYqi6JcrJgBRFEUfQD/0Q59pxu/Rf/z+cv5/Oj85+dTxyeK/TTL9lX7onRAwjT1j11OXFXa0eA9GZ5ye3WKyE+vtNS4c6tjPzs8xyeF0X0uJCIK+7cizkuXiBO89R8sl69UVw9Bj3YQ2CcE7lADxc3X2I3YckMDQDxA8dhpBCkY34UIg0QpnLRLBrKgOs/dNilSGJDEobVDG4LzHJNnhxF8qTJIhlSY8f8kP3h9Gdwpx+CwcypO8CMDhNgCpDs3BQqGUwXmLUhJjDFIp8qIkMYfNw1prhPSkqcGOIyZRKKPpx4FpssxmNUWR0Y8DTdvgA3jr2GxWoOmDFDukuMpns68naXplErNOtb78JcIYRVH0yxJ7AKIoij6gPvvxzzqg+cT3fZ+7HnxQITu7dX6iAoK2bSmKAhB4bxESXrr3EpvNir5vuXP7Ds4Fjo5OaJsG5wLb3aGh1RiDc47l/IiqXtINLSIIvHNkSUYIHikUznryNCMIQaI1IoAxmmVZMk0DuUkY3XToI5ACO1mKLEUqQQiBeTVnu7khhMByuWS3XWOMxovn033EYfynJSCUPjTbBo8IHMZxEkjSBEFgHAcQYEyK8IeSnyQrSNP8cIthDqVDVV1j1GFjb5ok2KnHJBofLHme48aGpmvJipQyS1Cl4ebqhq4d0DIhMznNtGdsG2SALM3CNNmmnqV7bXSTJmZXzo/e00n5t48+9KH9i35Goij6V1NMAKIoij7gHvTTvxcm/7uTxGxD8NskLWaT80zeQ3BY5zg5OWG32yGF5OWXX6dteoo8o+snnBN4exjBiRRYG5gvjgg4dvsNZZWz3ezQUpAmBuc8JjO0+z2pSfDeYUyGD4EweY4XR4Sg8FpB5xE6AW2QSIq8JEk0SqcoaZAChqGhLiuKrGQYu0PDLpLUpCijsZP9uclAPhySAWM0HkmW1TTtFmcnsrQkUQYvJ5QyFEVNkiQkSco0TWRZilaKaXJkpSR4z3bbUM9r0lQBEmUUCIEbJ/JU03U9Z2fHbFZ79ruW0Xqkh8tnT9jtrujGySpjdklWPZwtj79Uz4/fVYn6mWacfub53ocoiqL/wcUEIIqi6INO+P+mms8eqlz+5sfvX1TDOH4soAghkOU5J+e3GIcek0i6pmG/7zk+OSFLEgY70XU9Y69wTPi+49VXXub999/l6uaSO3deJgRFURY0uwlvJ8p8hkkMuTmcpA/D8HxBlsOYQ318Wcxomi0EjxxH0tSQpxXee8qqJM8rmqYBciYOjb9FUeHxhw3BHGrxnQ+HlVvhUNojpEInhslOJEmOs45xHEjTFGVShNBInZAX5WHb8DQxXyyh7cjSHAR4bzFao5SkzzOUVJRlgfeQFSlSCiSese8QIbDdblHaoBNN223Zra7phpbd0GKFxAbhpsAgtRml1O/96J/78X/wgp+IKIr+FRcTgCiKog+4H/mLf/HxJz7xias3/8k/+deroiyHQaKTQ8NuUVVM04QUAuss89mcrMjpx4HtbsswjKR5gQtAEHzoldfouhYlBC+/9DKvv/5hurZntbrBJhnVrXucnt5ivdkgwuHW4Ga1Is8zjDJM4/i8sbZGa03St3jvGMee2XyGQAEBow3z2YK+b9kFz2RHCglJepg4NLkJF8AHkELg/WHSUGJSxq5HYMjSnN1+jTEpRbEgy3KmYcKYlDTPSdOEYXcYO1oUFUIcphKlqcQHx2JegbBIKQgB0lTR9z1ZnoCHaQAXPPv9gJ06pnFg7Fr2+w2bZsckdBjHYcx14sfJpe1g87T09kU/D1EU/asvJgBRFEURl+++eySlVkGINi2SUM8WYhwnpAxUVUHfKwKeMstZb7YMdkQIxWJ+xGQtZVnwxhuvgRc8ePiQ1179MHfvHaOk4tk0cOfsBCHPCAjsFDg+MqxvLtE6wRhNXdUooelkQ14UzOdHdF1DkiQcHx/x7OIJVT1H65S22T2fSJSRJJr5fMF6fc0wjSRJhnUJaurx3qOUYpoOjbgBgdYJ3nmqcob3jsm21OUJWmcURU3j9yTSAAIQZFl2WAYmJYiAUodFYsMwoI3k6GjOMAwMw0BdLyhKT9f0jN3Ift/iPEiV4IVCp5Kriydc3zxjch3WhlEqtUfKKU2zbZFn1yoV6xf8KERR9AEQE4AoiqIPqD/yR/7I0Xa7Pf8zf+bPfLl17tvx/LqynJ2UdY31ghAEZZEQhMQHSBKDnywBSIxGJhkmMdxaLqmrkr4fWa323Lt7h+XRYQnWZr3jzp1brG62eG+xLoCYqMuKrmmQ8jCKsypLpNTMljNC8BydzBmGnMtnA6dnxyhlGMaBLC+Y1xXX1zeHptyqput67t15mfVmRdt1GJOidUpelkh5qNm31mG0YpomlErIspzdbkuaVkipSdPDCFGlFcYo+q4lTXOUMkgl6bsRpTRCeNJUoZOc/a5luawBxzh6VqstZVnQOsduv2foHS4EQnCHLcduIs1S+mlk2zTkZdEkeXqTl/kjkySrIJXVXse6/yiK/qWLY0CjKIo+gL7/+7//zjAMo+vcd/ye/+X3/BvO+7uTc2813f69cRjE8aJmMS+o6+Jwyr6oDmU6JmG5mJNlOfU859atY+azkqHvkcJzelpxfn7MODj2+4bz20v2zY7ZIkPqQ/PtcrkgCMfp2Qnb3YbF/Ii260gyTV2X1LMUpQLHx3OOT44QMnDn7ilZmpIoQ5FlHC0WJElCmmbM53MAzk/PuXXrNlJIkqTAqBRnA0JIpJQEBNNkyZKS6XljcFUsn4/5lLTtnjQ5TPsZpokkTVBKobRCKnEYM6oUzluOj+eIcNhpIOUhaVivNwghmbyjms2ZrKcsK7RWDH3DZnPDOFmqeobSxg0u2KqqHty+ffunZ/P5Yy31NFmbvdgnI4qiD4KYAERRFH0A7ff7mz/1p/5U00zNXxoJr1gbaofVWrtpfXO9v748nKZvNg1KSvIsQSlJliekScrJyYIPfegl6llJ2044FwBN3zn2+z3lLOH2SwvyUvPRb3+ZxWKJQFJWBVmecu+lUxbLHKUkd+/dYrc7nJ5neUZqDG5yCALL+ZLVzZbFMuf09AglBd4dxn5WZYm1lqqqyMsCaTR1XbM4Wh7GeQqJ84cafSklIQS0TlBaY60DFFIqsrxAqsOPw7wsCUGSJjlFXpDlBVmecHyyJMsT5osSITRKQlEkOOdJTEqSaoSQrFYbZrM50+QoypJxGsmzhCRNWDdbHj95SLvfh7qqNkVerIOQo0nTNi+Ky6IofupDIfz0C30woij6QIglQFEURR9An/rUp3qA5XJ51zf+bzbj5t/d79q63W2VEqmfH1UcndTsNwNSa5SRWAtNM2C05+7dM/ZtQ995fIDNZo/WGoKkKA+z9bOiJM80dnIkiaMsMhZHFfUsQxvNu+++y3d+50dZrTbcvn2LJEnI85R2P2GMYrttSYzGmJLttmdxlFGWKU8e35ArODqq2W4anBsoy4SusyRJ8nwnQIeQCuk9QSqc84BAacN+tybLcrz3TJNlvjimbXcYo7HOkaQ52qSHfgLbo/VhxKcRkqrO6LqBzaZhNs+xw0iRGYIVFHlJ105U1eGzXbstQw/TYBm6kW6/Z9esSJOk90G0VV09nYJPr65Xr1X1/Kuf+vN//nMv9qmIouiDIiYAURRFH2C+72un1Hdbz5MQwm8RmLPF8SLTWoXri53I8wKce36SnZMVNYtZwtBZrp82tF3LNHkkkn4aMMagVEZZZgTn6PaOoZ9Y3dxwdFRTLzL6vqdpd+R5iUkKtGl5/fWX2TcDdZ0AJWkqCdseIQSLZU2z71kuc7RW3L5zRNP0BCQnZ0s22y1JavAB7GRJTMZsPmcaHVJqnLdYO2GMOczwz3OU0oQQEFIhhGC3bzg+WtK1LUVRY4zGeUcQDqUk0xTw3qJkwdFxyZPHVxRFihAwDCPaaPIixXtB0zQ4J5BKs9lcgQ+0zQ6CRwjhXfC7gOxtsBzPT98t6tkDh10L8bPjSqMoiv7liiVAURRFH2B/+sd+7IsO96Ybp980DuMsLwvZd637wj/5MsPYk88UMpFkeUaeC4pM0Q+ed957ws1qizGKJFEURcZyOePeSycsj0qa/cB+1dE1LdrAy6/dIq80zX5gu+m5uWoo8pphmnj9jdcBx2xekuYZSaZYHi0oSkNZpWS5oGt79s2IMZKyyCiyFCUUwzhwenpCanKqIkEqSdsN1PM5JlFIGbD2kAB459AmpShrhNDkRcl8vsB5R1mUOOcZ+h6lBAhJ34+EAIGAFAGB52a14vR8RponWBdI0pTJj3gcUkq0kVjrWa/3rDd7kjRhu1mx3lwx2hEbsELp3XyxeCCkmpbzxfuv3nn9z2qd/bX48h9F0a+WmABEURR9wGVZ9lUl1bYo8vLB++/uvvSFN/3R8Uzcv38HIRQekBqcC7hJsF13KGXIyxyBQUpNNSs4PTsGIRiGnrxIUeYwNrNterabHm0Uz55ds1k3zOcLTCK5c+cUrQPjaDEJBKCcpZhUkBeG2TxFSzg+WXBz2aGkJzCSpilFkaKUpu07ispQlPmhFl8G2r4nLyt8gGHogIDSCWmSo6Qmy/JDP4DSBA/GpEipUVrj/aHPoNm3TOOIsxYpgSCwLnBxseH07IimadjtRoI39J0geIkximHw5HnNMI6AoJpVXK6ueXT1jB7Gxnt0mmwWy+N307L82v9s3Dz57Gc/617oQxBF0QdKTACiKIo+4IZhWAYR7Hq7eUubZP+hb3vDL0/P2G47wgSLeUaaagQC7x34gJGa5bxivshZLEpCGBmngb6bcFYyjRMhgEeRJgWp0Vw8WZNow/n5kiyVvPLqKfv9CjuNSKXICwPBUlc53jmWyxl5YQgEFssCrQO7bc/x8RznDwvDlvMCIwRd12PShMW8QkmFmzx2POzU8v5wOi+lRAqJEJIkSQCB1oY0TYHD5uDE5ECg61qapmGz2WKdx46B/a5n6AKXT/esbzZM48R6vWW1bkB4drsdBEgzw+rmGiUETy+e8PjiIV6DF9jBWjs5pzf7Zjmr66dVnv/0x+PLfxRFv8piD0AURdEHnDHGFmX+laIuZVnWH60XZ+bpVYdbaupZhh3BTh7vA84GhrFjeVThPYzjhPUTJycVXTORJhohBcEFnBRMU0+aCup6xhsffonLix3aBI6OS955+yHHJ0cQJF07EUJAaY/wYK0lKVIOP6YCEKjnCXbydJ3j7HzO5dUOETSzKqPpLW3TIYSmrmbsdj3OToBHKf28kVeglGScJhACrQ99AMYc/rn3h5sIrS3b7RrvPFIpVtcbvNOsblaE4Dg9PePpky15mjFOA4vlHKMlzgbef/eCxdEM7wN921CWGY8e37DersmLogmCjUqSVidJb5Lk84uzs6+/0OBHUfSBFG8AoiiKPuD+9J/+0w+DlP/fup7PQ2BYXa2um3Y96tSHEAQQ0IlhcoF2HKnqEudgs20JUnD7zgnjENisena7lq7tMYlhPi84Pq25d/8cLxy7fYvJBCFo3vzKI46O55hE44OnqnKmwaGUoml6xsGCDEjtqWclk7Oc3znGWo9zlq4bOT6u6YYenSTUVY5E0LUTSinSNCUEzzhOpOmh3EdrhfMTSoF6PhY0yzKSJMEkhybeoW8Yx4F+6OmHHmstX/va+9zcrLi8uuDxkwc8fvSEYehYrW8IXtJ1E00zsVrv2e5bnjy9BuTh7x8GFvMjsiyfummcdJo282r2ZDmfv5/k+Rd++Id/eHjR8Y+i6IMnJgBRFEURxpuTVBqnpd727WadGe2nMRHb3Yh3jq7pEAFSrdltep48ukQAU+94+nDD9U2LE4J2GBidZ7tvaPc9+13LxbMNSgpMAkkiefL4mrqqIGj2256+7ymKhKZpSHSCQOJtQARJXWUslhlaC46OCubLDCnBTo7gA/NFQdf1ODehzWHc5zhYsjxnGh3BC5Ln9f3GJHh/KPWREoQQJGnKOI0kJqHIC+p6jpCKsqgIweHcwHp1TdPs8SEwjiP7Zk8/DEyTpchy/DjSNT1TNzJ2DeubS/p2x77Z0jUNzrlw6/hsdXp0fBHAJ3m6Sct8JYSYv+i4R1H0wRRLgKIoiiKcdu+ZPP0H+ZSZJElfsRb39tff8ucnR+LbP/ySKAvoe0BqpICT0yMC4P3EZr0DeZjIU+UpVVkymyd0+w5lAke3K7SStE3P46dbklSDlJRVynBjCfYwcef0fEGaKOxosRM0uxGTCKQSNLuWm6s9i6OSrhnQRrHddCyPCvJC0XcBgUBrxTi1CARJkjBNI1JKfPCHjb1JglCCJMtROmMYJtqu4/R4SZ4VjPMJH0BrTV3WDEPHNI503Y48zfA2R0qoq5qyqkjTlNpUbHcNJklBBNr9jtQoxqHl2eUT0rywWsrp/PTs0a5vxizLbqqielAUxVdfdNyjKPpgijcAURRFEZ/61Kf6JE/+zmJRvZkl6qea7dXXcO3w2uu3RFGnlFXJbHZokD2/fYRUh1P41bohySSLo4IPfeSMu/dPmC8KhsHj0SyWM7bbHV/50vs8ePcCow1XFzu22xYQXDxdMwyem5st57dOsNbStSPWBepFQtcOCGEwyvDmF9+nKBOG0ZEmBiUFbTOR5CnKSHwQSCVRUtG2LUlqMInGOsuhF0AwjT1SBLI0/bnpPgIYpxGTKm7dOuHoaMZyMaesSo5PTrh79yXGcWA+n7NcHlOWJUJAmiTkZUaQ4HEgA6dnZ5ycnNC1LV23x/pxGqb+yhTZJfjd/Tv3vnDn1q0vFkXxYBzH5sVGPYqiD6p4AxBFURQB8Gf+zJ959gd/7+/9ySHtj5fnx6/ev//Ktz98uAqPH6zF/XtnWDuSZSnTFEjTFDt11LOaECzlPKWsS54+2jKOh/n/RWFo2x2EwPmtI2azggfvX5LlgpdfucVXv/J1kjSlrAxCGMbBMQ6B3W4grwyJMYy9QxtxaKZ9v2W7aihKQ9cNFGVKP9hDyU+pGadDOX3gMPt/Gnu893RdQ13Xh10A3jGf1XRdQwiWPKvpWsnQjwhAGyhNAgRmsxypJPN5zXa3YpomTk7P8G7COcvTp084PjomSwqmYWC/WR++h4TJTkhtgtZmU83Lt7O6eFDk+bOsyFZVtfiiMOLvfOYzn4nTf6IoeiFiAhBFURT9HK/1AymSZZHnH/3pz/3jVd+O8+Pz28l8VomT45JhcOybkd1ux3q9Z7vf8Mprd6nqmtX1nt16T9M07PcDt28fsTitmSbLNMDF0x1FkXF0XOCtZb8d+c3/xmv07UTfj/R9h1QCISTWjmzWI+2+4+S0Aim4+9ItLp/tuf/qCc72oCV+8IyjIJGgE4l1IzYEnHeMw8gwdoQQcC6QJOL5+E9DP+wwJsUHidQKpTTOB5Z1jjGaabAsFzNcmHjWdtx/6TWurq5w1tH3HUpJuq5jtVpzcqyx1tL3HcGObLdXbPb7cHRyOpydnr9XzKs387p8P8+KmyzLviYT+blPf/rT8fQ/iqIXJiYAURRF0c8RQiyNkdPl1dVfF97+hqJI/Di2s92+zaoql5P3XG92XF1sGMaeo9MjVJLzU3/3S8ggGMeOspC8/Mopi3lFVaVIkWGtwySKtu3YbjumyZHlCfN5ztBN5IVGa7AaZouC+ZGhayzOQd87TGaY6znrdcN2N1HUCV0zUM9ytpueafQofdgZ0DR7grf/dImXgHHoMUahdYJ1DikPP/6ccwQCR0cLQnCEcBh3mqQJJhFkJkOqgJSSIq9wbmK/2+PchFSSYWjZbG4oi5q+3bLe3dB22+CxbTc2j07Pzt5fHB8/zsrsWarTf/KZH//xv/uCQxxFURQTgCiKouifEk0zpVny+cW8ukqkKreb/X7oupebtjvd7nqpUoM2msW8YhoNi1nN177yFmmSUs4WnJ4fsZjlzBcVBMd6tT0s4EJxs1qxWu1om4b7L9/h/itH9EOH1gqpFWWZstv21HPD+a05Tx419K2laQbSVLJrJ2ZFiXeOEATTCCE4slxhJwj+sC9gGAbsOOCcQwgBAryzjGNPPSuQUpMkBu8l0zRQ5AXzxRxvJxKTEACtDwvDhNAURck07g83A+NAlqY07YQIAUXAjiM+mVBS4oMjEMYkS9ezef1ulmVPpFCd0em1yrLPv+j4RlEUQWwCjqIoin6e//wzn7nwzn3RaN0rzReqqtpUeba9uny6bdomWHcoW1cSjo4WXF3eUJUFQkj63tI0Iw8fXfH40SUXFyua1jOMHp0o7ty9xSuv3WG+mHF0vOD81iljD957hsGhTUZRJpyeVeRFwsP3npIk5rBYLMA0WWTCYYlXokhyxTBZlFEIKZBCwfP6+812A3h8cDhvkVpirQUEQ9+jlCFJEpRSnJ+fHpqKtcKHQAiQJAapBV03kGU5SgmUBiFAaYUg4MYBLcEoSbNb0TUbpBQ2z/NVnmXXRV48LWfV0zRL1ij19U996lP9i4xtFEXRz4oJQBRFUfTP+OSnPvUVIeWjLC+NSeXXJtd+wU3D/uHDR1PXdBitKWcll1c3XF+tePT4GeM4kmWCy8vHPHrylC99+R0ePLhktAP90HF5ecnDB+/zD37q87gwcnJaIKRlu2nxQTB2lt12x2yRMV8meOcZhpGsMAQHzgoQElRg13SApJprpBAoqdGJIBAQQaGVxE4D1o+H2n7rGMeByU4IAc66w9bfoSdJDGWZ0vc9Qkh22xbnJsbRYpKAlB5rLUVRspjPSFJNliSUeUGapoflYlPH5eUjmmblJjdcl3Xx/tHR4s2iLh4nJt1nef7lP//n/3w8/Y+i6FtGLAGKoiiK/vvS9KelDafDOH44UakQGV01W7giz2maPVdXG7abHV5MnJweM6/nfO2tt/HeMlsumNU1SZbSdQNDb7HDgNKOoip47bWXubrcU8+PMCbl5qphtjA0uxEhJGPpafeB0/NjVALtzuJtYL8bODk/otlNXD7Zcvf+kizzdE1PURrsFPDhULrjvWWz3nDn7msQAvv9Gqk01k7Y0ZMQmCZLXqSHbb79yHJZc/nwmqI4BQ67AMpK4H0geI/WGcvlgrHrqauKse8Y+5Z26AnBYf2wLmez9+ZHJ18o6uphmmSrJFGXQbmnQHixAY2iKPqn4g1AFEVR9N/zIz/yI+8VefLf1NV8m2a5SLM8KClD1/QYnaClZDarOD8+RSJ4++23adod4zTR7RvafcP15Yq+m+j7Fu8tt+6c8Vv+jX+dyXnySjNNgstnW0DgneTmukUpzdALvvSFByyWNV1r8QGGyeFwjKOlmqVMk6DZT8zmGeNo0VohpCeIgLcefMBOA1or0jxj3zR0fcduv2W730AIpGmCD4Lrqy3jMJEXEmsd1nrAYW3AWYGz7nkj8UhVlyijyNKEuioRQtC1HdbZPsmzi6yq3itn9Xv1rH5UFNXnToX+S5/+9I9/+UXHM4qi6OeLNwBRFEXRv9BV0zw+qYv/Nwq2q114+vRhNnSnLy2Pljr4wH67YbV6yna3YbKePC/w3iJkQdN2ZFnK06cPmYaBD73xCkfLY7xzHB0XLGYlD967ZrvtuP/yGbtdy+pmy52XZkipeP/BNcuTBQ/ee0aaFlR1RlkbdtuBk7MK5zybdYtWOXWdYZ2nKBKG/ho3HZqEpTIIqRHB4/2hIbhp93gXCCIgtQYE221DWSUkqaEoU6x1hOe9AMM0UVY5u801UgratiF4z37foKRESoG1AxD2UumboigutVITQl433v/dH/3sZ+Os/yiKvuXEG4AoiqLoX+izn/2sC0rt8zz9alllnyszfTENo+2HgSTPCD7QDwNZXnByco4QAmM0q9UNF5dPuby+ZJosH/3oG3z4jTfY71qGZkKh+NLPPODrX39G0wx0/UA/jCRpwdAHvv61J1xcruh7S/CB7bplv2uY1zVKwjiOzOc53nm61qKNRKlAVabM65Su32P9hJCHcqAgBADDMDKNI0pL5PNf0zSS54a27ehaR1ZkhACgEIBzloAnzQwhQGoMSgiMMggkbdfS9K1PimyTl9VKCjUgpSOo5rPx5T+Kom9R8QYgiqIo+gWN8FgJ8R1pljRShQd9375SVrezrMjo2z3PLgzjNJIXmtPTO1g30ux33D075/T8nDzPqIqEZxdrun5kso6/9/c+x3xxRNM2zGYljx8r1pstZVVweVHwhS98jV3b8s671zx58IjXX3+dzbojuBtu35lhtERpyWxREIJDaoFJFAHPbFZgEoV1njQrGcYBpTVZUSOFIs0KtDFYFxB2QglFmhcMg2Wzbjk+XvD08QaCYxwD0wC77Z6qqNhurjFaIpXGywGjEwQwjB1yRBxlx7u0yDdJkjVCqasXHbsoiqJfSEwAoiiKol/Qj/zIj+x/z+/5Pf9ESGmF4tUkk/vjk/rceYd1E3du30VnGWmWE4Jju92Q5SVZWbNa79iu97w/tBA8dTXjwYMtUuVInbBaPaJpWjabDmMM0+R58M5Ps95eszg55tmzGx48fEpZ1hRlwXrX4B50fNvH7qMUVLMEO1nSTEMQyCCRUlGUFUJKsqyk6zsWyyPKesY0OpQ2IDXDOBJwnJ2e0XQtUmusDYAnzxV2ErRNh1IGYwJdNxCCZxwdSmmSLKPZ7Rknh9Ta+wBCpfvZ7OipSJIrlLIvOnZRFEW/kJgARFEURb+Y8KM/+qNv/Uf/wX9g6tn83xQhS/a73iGEuv/yfZrtnourG9brNZvNCucmqqrG+0DbNCznR9RljTFQFSWJSWi7nqGfmNVHZFlO2+65unpGCApCoG021Is5dhrJ05LLqzUnQnF6OmO9bhjGibRQjN2E95AmipvLPXlaIIVCBEGVl4dRn+OIEAIpNUEGggA3Wdzk6JzFeU/TNkihuLnx5IVkPs/oGsc4DEzTiDEJWmq0Mkgl8c6SaUme5tzcXIHU3Wxx/M7i6ORtWRSft9Z+6TOf+lTzogMXRVH0C4k9AFEURdEvKYHLIimbtu8uLp9d9VoqyiLHOU9wDtu3YC2JUkgCN1cXdO2OzeaK3W5NUWQcnRyRFRkmVUghWC4X7Jsdj5++z/XNM4axYZh6ENC1h8lBQki0SfFekJqU2bxGCEmSaooyRSdg3UiapQQRUFqQFwU6yZA6wVrLOE5Mk4Mg2ay37LZ7xnFitVqx2Wx59uyKvh/YNz1Pn94wjJ5+GFEywXtJP0wM44C1lt1uizYJ1jn2Tcs0WUBO+Wz+MCvL93/n7/ydn//MZz4TX/6jKPqWFm8AoiiKol9SWRS+m/aPskx+tdnuji+eqmxxtFTOW5LEMJ/PSdOcQOD65opxGtFKcvvObc7Pz9Bas97sQQjSNCOYwPvvv8d6vYYgmM+XDMPI0dEpSmqsHciyhCFPWCzmnBzNmM0ykiwlSQzOWbQWVCbH2RGpHVJIdKIo6hqpU6QAuxtpmh3WWrIsZ7u5Yhon0kwzjD3vvfcuWiXstnukFPRDitY5Yz+QJgbnwbkJITzOjljnWK3WKK1JsxwpJXivpskxeX/5xS9+UX3f932fiVt/oyj6VhYTgCiKouiXNGVZz37fGCXfE3Kc7/fb8vT06PTOnVO2m5bNeo9RIzfrG7IspywqTk6OuHXrNt5b8I5ESabBIqVkt9+R5TnzANPYMw57ZsWc4+NzELDfbEmTlDc+8ipIRVkb0kJwelaS5wYtA2mq2e16sjzFaMd+P+G9I8kMRhuGvmUaR0AghMDaCectfd+wXV3hAuzYs5wfoZUhz1Ls5FjdbOjahuOjY/qhw1pHlhqEAK1yxrGn7QbqquTV119h8t2QGTXm6O7JkyehbVv/ouMVRVH0i4kJQBRFUfRL+qEf+qHm937v9z4Omle9DM9kCIOzlnpWIRF459gGx2RHvJ+oqpI0Sw99Ad6RmQwpFM55+nEEKRASTKJJszmr64ksL+n7nqPTGbfOXmGxKLhzt0YoAcGTpYqT0wolBcEDAoo8YxwnpISyzNhtG5QQlHXNdr8FIbDWHm4ngqMq5zgHJskpdEKSZxhlSJOEerbATiOTm7DW0/UjznuGcSQxCWmaMgwDaVIQwkjX93TNGiGkKMtyFKk6+e2//bf7j3/843H8ZxRF39JiAhBFURR9Q3SW/XdpCH5RL/4X6+v95vL62cnte8fZNDq01oQASZJRJgVaay4urkgSxXxWExJJP45YN7HZbCmrnM1mzenJOUopNqs1nsN4z5PjIzKTUdeGo6Mck2oEgqGbkEi0lnStRUqB1IHCZGw2e7SW5FmKdyMeQVFWDONA33ecnt0GQAiJSTNSk6KV5uzWLYJzeDyL5RxjFJvVBuccPjiyvKCezXHWIqQiTTRPnz6jqGru3D2m2yVcPH2o3DgmwnuzWq0kEBOAKIq+pcUEIIqiKPqGfPKTn2x/4id+4m/+tf/qvz7pmu54MZu9Mo49JhXoVJPmGbdv30FKWK1WFFnKfDFnNqsZxwnrLH3fUdcljx8/wPuAtZ5hmMiKnLPzU55dPUMJhbeQmMOPKG8nTk5rrqfpeS1/QZpC1/b44KnrhKoqaZuRgKcsE4ZhIC9Khr7DB8/x2SnDMCCURDV7loslSZpS1RXBe6RSzOYFRZaRJJp76R3afcd+16G1IXjP6mZNPSs4v31CEIoQQGtDXpRBCDGJEPK///f//inw+MVGKoqi6BcXpwBFURRF37CPf/zj7pOf/tSPn58ff6Htu13fDRyflVSzjLxI0Vrig6Oscm7fvsViXuM9CKHQSiNQXDy74OryGe1+D0AIHqGg63vmiyWT9eS5xiQaKSVpZg5Tf+qMJMlomp4sM2RFytB7um4gSRQIh0kki0VJWWR451kujtEmQWmN1IpqVpFk2WE7sArkZYbJDDo5lCet1mukFIzjgEkTggist1uatsVaR9MOlGXF6fnR84Vilr7r0nEc54MdU5z7tj/wB/5A8YLDFEVR9IuKCUAURVH0Tflf/77fe3uylmls//Z2u22cFSjlWSwqslxztJwzn82ZrGe7a8jyFG0U2+2O9WbDMIxU9YKXXnoZgqcoM+pqgVCKNEnZbVvywmDtgNIKIQQgqGc5CI9zjnG0pKkhSRRSKqSANEnQOlAUCbO6wgdPlmcIKem7EecCQUiyomDfNngXUM9/CqaJYRh70jTl8uKGrhnZrrZY6xAKAoHl8Zx7985QSpJoydFxyWw+Q5tU4/1CB/EEpX4KmF5kfKIoin4psQQoiqIo+qZMWjd5Fv6hPCpfDj70dhzL87MFF08bjJI0u45hHHHWMl/McNYemmfTHOct2+2KqpzRtg3GGIQUXF7ecHZ+QrVckiiJzqCsE6o6Y7vtaNuJsjJMO/dzG3mDEBRlBsA4TUipSRKL1pIkTUFKnAgIKVlvtiilyDJDnmV0bctqtWGxOCLLUhCQmEPpUN+PJEnC0dEMqQTbbYdWirJMyDNNXRe0TU+WKBbLGbPZSTL2m5d2+/2H/p8/8RN/VQgRpwBFUfQtLd4ARFEURd+UBG4rpe5pnXRN276z33eE4BDCoaRhGEbafYMAgg+0+5bgAkmi2W032MkhpWS7XZHnBU8eP6Ke5dy7e4tX7h+TZYLz8yV5kaKMwCSa1bpDaUOa5kyjQEnDOFikVDhnSZKUYZpQMiHLNVIFfIB+tGiT4exE22wJwTH0PUZrrHVcX62Z3GHhmBSaPMtZHs0xaYo2CbNZzt17C+pZxmxR0I+W1arFeU8Qgtkyo+lb2Q/2tp2mj/z+7/3eD73o+ERRFP1SYgIQRVEUfVMSuAom/H0r5f8rzYqf2e37p/1gycsUbTRgqesKrRSbzYa+H9htNqxursmLkldfe5Xr6wuKomb7fCLQ/VdeZnlSoXVgMS+ZzzR5phA4ijxltx3omhEhA0MvmKxDCk3T9DgrmCZLcIHdrqMoE5JEkCjF5uYGN420+x0311esrm/o+4Gu65DA+mbNdrVju96xXW8Zh4k0M4Tg2bctLoDWmsVRhjaHGwcXAjo1CCPJyoRXX7vF9epZ0ux3CzeOH/6J3/W71IuOURRF0S8mJgBRFEXRN+X//slPXj252n4xkyZXmgtj5Ho2LzG5pKg15+dn5EVON/RM44SdJqxzlGVJWRY8evSAxGSkSYE2ku/+9d+FtxNFZkAIjs9KgnQcnRV4BNMEfWvZbQ9Lubq+x+Ox3tJ3FpMYCIIsSwkh4Kzj7HhBCJ6ub7i+ekLb7piGgdXNimG0OBdIM42dRlJj0FrRdyPr1YrjoyNOTuekqWK3aQ67C3qL0po81yyXOWmuOblVUtQJt+/c5yNvfCzt993d7X7zsb9eFG+86BhFURT9YmIPQBRFUfRN+/aLC7FanDzNs7xJ09SNkyPNDFkxQYBd0+LsYT9A0zTMF3NcEFw+u2JWz5nPl0xTx7d9+2sYLXn5pROEdCyOa7IcjMlodhNppmn7lmpW0PUjZVkQCGijafcd1gq8CwgpMIlAKYEQgfk84/h0xnq7w2mDEJKqnKGThLOzc5rtFucGFicLdCpJ84S+HzE6cHl5xfmtJcv5nN22OzT9phohBG1ncVMgrw0ISZoXNF1L27RpopNMKykIfWwCjqLoW1pMAKIoiqJv2g/+5E9afvIn/8F//Hv+46d9P76Kn14t6rJotpZ9u8f5wGw5x44TCIHWhm6347VX7nF8suDy8op6dkRiFHmeM5uljEPPyXGOUoHHDy5JM8Odu3OUEJgUnIdxtDT7ESU0m3WPQNA0ijQLZFlOmh5q+00CL798yrNnO6ytSBKNlAqtJWmW0OwCRVmTFyXOWSAcGnrnGaubLX0f0NqRZjnrVctsYWiakaaxECRBTUyTQ2tJWdQYk4lpGk+a7f61rK5OgbdfdIyiKIp+IbEEKIqiKPplO3v57BHBfzlP05CYQJ4rZlXB2fmCW7dP0UlCPasYx57jkxn37p8fbgTmS/KsBGC+SPBOcHw6BxF48O6WyyctxghubnY45wnW46fAzVXLzUXDbtPRtYFxklxdtIxjwNoRk2i01mSppkgzyrx4vvBrRlmVCCnompb1ekdVl1hn2a4Hxt6x2ewZh4mqqtk1LQFJ1w84Dw/e2/P+uze03URWKu69suTsfEFA8PTJFe3QM/Tujh3dS2EMcQpQFEXf0mICEEVRFP2yPXnyJBNSZ23reh8k5Tzl/O6M+TJlsh3nt084PltwdueY07MTHj+6IEkSlkcF9dxQ1znaSNq2BRFYrTo224HlcUkICikU1kLfjdSLhMlZnl2seOedG64udzx5tObtr13QtQ4pBVIFgg+YRFJkCcfLEiUlbdtgrWUcJy4untK3e8ZxwgfBODmePblkaEfe+dpjnj5e8fDhEy6ebnjw7jUXl2uywuC9wxjBy6/NuXNvTl3lpJnh9NYRWV7Sj6No9k092fG7P/GJT8Qb9iiKvmXF/0FFURRFv2y1yj42ON/umu6tpSiOA4EgQGnI85y+n3Bu5ORkxvpmT1nkHB/XZLlkGCzBa9rdRN87trsJkxiy0tCPI9kk0Drn+mLL0UlOOU959qxntAHrAs4F7AR5kTONFiEF0guEkmxu9hRFwfFRzeMna9qhYxh6hq7l6uox3nvefPMrnBzfYr/b0O53nJ/fpu8daXpIRt786nsoqfF4xsny8stnvPTaES+9cgtjBHb0vP/OBYiUs/N7+NGpQHOn3e6/c/XkyR3g/RcdnyiKon+RmABEURRFv3zBvDeJ/V90k/92O7rfnCSCqRdImTCODVIJTk6XNJsRrQUnxwusDXinkAqadsJ5iQvQNAOLVFMtCnbbgSTLCBKur3fcfmlO8BKB4O7dE7JMUxQVm5uBu/driuJwSyCQhCAAzeXljv2uZ7/fIQ1sVhua3Ybdds18ueTRw3fRQuP8BBrW+zXLoxOyLOXkZElZ5gDU85Lj04KqNmR5gnMTBIEIgqOTOV/5maesV2uGcY/WQQzd8G3vvv32/+bj//a//V9+26//9T/1gz/4g7EkKIqibykxAYiiKIp+2X7oP/+hiz/4u//gmc38zBgVTCLFoB0IOL+zJC8Stus9KhEsZzO8hXHqmJznZrXh5KSgqheMduTW3QW7fQ9ScnpWcH6+YLeZkImkqErWq8P3OX+pxkhNmknGwbJYFtipZxzAewtBEDzcrDqeXO3QmUFJUFJQ1zOSTJMXM85u3aXvWs5O7mOSlMVywfHpDCECi0VNPU8RAoQIVDNDnifgPe2+RUpxSDQE3H5pxpf/8TX73YoklZPQtfMifDQE8fu/9uUvj8DnX3ScoiiKfr6YAERRFEW/IlsvpnvLPKnnhej7nsmOFIVBG8HX37pCCkU1M2ipQDrKekbbWe7PzqlnmqtnW2bHFR7Pfjdw+86SspRM48h61XB6eoS1gfW6o55VSCWxg0VrwzhZvPdkWcI0ANIx9CNKCax3SK2pqoq6rjBGI5VgPp/T9QNVXWOnkbqeIwSkWUJR5ICn60b6fkSKQJJqunYkzyfSVKG0IAQPSMbRUc8y7ty7w5urS9V1+6KalWut1DoQGNv2e//9f+ffST/9V/7K33vBYYqiKPo5MQGIoiiKfkXyfBRtM17vti1JJimKnHEIPHt8jdGKss6ZLxKchbJUOO8RWuAmz8MHG/IiRSeK6+uOqiq5vt7iXE6729MPE8po2nbCTgKtEqZ+ZLftSdKMthO0rSNZaHywBA+TFQQpmC0rmiHw6OEKKHjp5Vdo9g3lrESnDucm5kdLpsGDd3Tdln6cEBKkEBitMFowjg7dSDahIy8T5suMNFW0XYdUBp0pPvwdL/P00VOxWU9hGMeiXMwfVmX1NYLIvFK/7T/8D7/nwZ/+03/u4YuOVRRFEcQEIIqiKPoV2m63m2VZvydl8Eli5DQ4ggvUdc2QtGSFZrW2VLXBBUHbBDYbS9dOECQ600gEeabYrvYEATvleP/dS9746MtcXa0wpudrbz5ltLDbdAxdzzAErm/WPHys6YaC5TxBCAshEFDMFilBJGybhqZvQSpubtY0+w6pNUJL2ouWRKcUZY4PsN81FHlKWhiKQmO0xlmHcx6lDiVHq6sGkxx6GEwKIXiOzmZ85GNv8Ll/cH3cD+7VEMIXi2X91r/1O4e/8Tf+q/RYJrP2RccpiqLoZ8UEIIqiKPoV+exnP+v+rz/4fzTVrJBaS9ZT4Oam58nDDUopdLKjnyS7/cjNsy3OOXSasFyUXF2u0Lng7u0FwzSw2ux5/Y07XDzbkuYVV1drxt7z5uP3eOvNh/igaPYtU99zfLrk5nrDclmSJ5qqkBSpQkiPnTzGaIS0zGYLEAFCoB4dQnrqugIEXTdgdEKWGBazEuccRguSRGCMQklFcB6Lw3uBkIJp8ggkRiv6acJkimA8H/2uV5j8lH/5p790Z73evoxQv+Wv//XzL3zyM5958qJjFEVR9PPFBCCKoij6Ffmjf/SPnnSDfWOcfJhcEOM4keQJ1bzAjmCdY7ft2O8Hhn5EBMH8SDKMA1mRc3y8YLKez/2D9/jIR+9zdblnvw2UNQgvkQK+/MV3sdZzc9HSNnsuLp4xWYkShjLNmdcZiZEoI9BGsrlsmbzA+8NugL4fmS/mCCRVlaC15smjC7p2ZNIjUjjcNBGER5U5zkmE9UjjyXLDMAiGfiKEw44B5xxaSBCHcaDGSHQBb3zH67RNN3/y6NG/1XXTyW7V/C0gJgBRFH1LiQlAFEVR9CvSb/rFLM+SvDCi70eOT2Y8fbYlyRTDYOkHR9d0bHdbiqLATwJjUpxVLI8LVjcDb37lMcHlvPP2NSFYyqokS3Ka/cjQeSarUEoyuQGPZTarmYaRs1tHID1FFcgygRACgcA72GwnJufQxuDaHu8d7b5HAk+fPmCzXpNnGVVdst3s8N6TFyneOYwxVFWGsxNaKaRUCCEwRuOcxQFKKRIDaWHw3tN1gdm85PU37ov15W5h3f6+HfyHgZ98wSGKoij6Z8QEIIqiKPoVGRh2y+Naaynx1jMNjvk8w/tA10+06x1BHMpyNqsNVV3TtnukLNntPBJNmuTkC816s+Olu6esV3ve+vKGalaw3uw4PT1FKUmWa9LkcJKvRWC+LJjPE/I8IdESpECqCe8F223HZrsDKVksKnbbHVeXl6xvJFdXl0gRMFqx3W4x2qCUoNlPDP1ACIFdnnJ+6xSZSvp+RGtF2/Z0/YRSCoQgzVMgEELATzB0HcvjmjSXPHv3QpZ18sp/8p/8J7Mf/uEf3r7oOEVRFP2smABEURRFvyJKqfT27dnHpFQMgyPPU8ZxwmjBfJFQ1rd59mTLYlHQd46yVty7f0S7n0AoVtc7PvThM7ydeO1Dx+x3HZuNRyUpaa44SSrKArQKLJcVPkwED7MqIUkkd+7VeGcRWqGfJwnjODFNjpOTJW07QhDUszk35pqLp89QSqAU1HXFdrMmUQIlU6z35HmJ9yPDZLm62nD79glCKsbJkmcJ82WFkB4IZJlCG4W1Dms9/fPk4PU37rO6vDib+vHW1DSvf8/3fM/bf+7P/bmYBERR9C0hJgBRFEXRr8jHPvzKx49OF69eX9+gUmi6jv1uwCSK46Lk8mLHrfMCZ2G16rj/6jEmgfm84vGjG15745iiUOx3A82+I0kT5vOK+UKyXbccHdf4mT/U3csEpIcgWBxl2LFHKUWeG5yfEFKhpKSeG/Zv7nGTZ3IjWpeEEEizhLwo8N7ivSWvSooqY7/bI5Sirkrabsc4DKRZTnCBaRxACpw9NACnwVGkmrIwJEYiRCBPEwSK9aZBiMD9+7d48LXTrB322nmfCyGOgZgARFH0LUG+6A8QRVEU/dr1/d///XdObs/+PY9HqMMOAKk0LgjGyTGNgVmdcf/+klmdcXq7xIWBQGCYWorSkCQpFxc70jyjmmUI6clyjXcT02TZ71qyXFJXOWM3kCSSaZroOstkBetVg9YSCFhrGTpHWRxq+K11SGmw1rLb7jk+PQUBdhzJ0oxpnNBJxuL4iJOzE2bzObP5DOscQ9MTnMVayzR5EIGyPpT89O1E1w/0vaXrJpyzSBUoyxQpPFJBNSt113VjtVx+Bbh4waGKoij6OfEGIIqiKPplu31+8juKKnvDEzAmoe87pnGkrjOMUXRtx727x+y2PcM0UVc5JgmURcHlsz37bcf65pKsyNhtD/X3eWF4+GDN1996wEv37rDfd8xmNX3T8+ZbD/mOf+0+aZZzcbknNQaTJOz2HVmqkELinSd4Tz0rCKGHACZRJIlBSs3prWMev9dx+9YtnAhIITi9dcrl5Q3KC4IPKKFJ0oQgwJiMotY8e7pmtxUsjiokHmsdSiq0FDgHfT/ivUcbQ3AgtRRaquZP/Ik/cRNCeNGhiqIo+jnxBiCKoij6ZZuc25okkdZZPBNpmnB6PGdW5TgXWMwXrNct+7ajrBKMhrosCH5CKUgSTT1LWRwlXDxdo6Th+mJPXWe8/Mo5s2WO84KLZzv2zchqveG9dy+5vm6xFqYxsN3u2W0HJhsQSLJMYcwhEdCJ4fT2nNksZ1anSBV46eW7jG5i02x56ZXbnJzNETiM1NhhYhws292WzW6HB8ZxQErJbFbRtY6hm0gSibMgCBgjEHDYcCwk4zQxuYmT01NMmhW///f//vmLjlMURdHPF28AoiiKol+2o0X1hjGmDEJDAqvVjr6xTJMjzTIuL28oioKz0wUXT25IjERrQVFVrDcdH/22W/TDyM3NjvPbC/zkKCvDSy8fsbrOMCZlGif225Zbd+bMZhXbdQ9o8lxRHkmmIdC1I0pJqANCBrIsJUk1ow14H9BKo7VkMVPkeUJdV89n+mdkOVw+vWG33VHmFTerFq0VBIGzFp1qtpuWNEvoh45x0EgUszrDGIEMEDgkASBIkgQlBInJEU4f3749DC82SlEURf+smABEURRFvyx/7I/9sbqeV785TTPh8dhxoiwLpOgJPtB1PYvljOAFNzcteVHg/Ih3gaEbefn+GZv1huuLhqwsyPLA+mrk9Q+fIoJkNk+5c/cEJeDJoxtOz0rgHtNkyXKDEoH79+fstj3GKPrWYowG55FCsFwWOD8wjRDUSJ5lFIUmeCjLktl8zjCMFGWBEIqj4yOuLq7Y7XeHF3oRGIYJZx1KayCwPCpJE0WaGoRwCDTaKLwPKGkOZUFCIiR0Q8/N5uaVt79Q/3rg777gcEVRFP2cmABEURRF37T/9Af+0/JabX6bg0KlAiaH0gLXOggCrSRGGbp2ou8n2nZCK0mSQppJloua6+trJis5Oq4wiWKyjuxOTd8NhOBJ04Ltds98kdA2CfNlwun5OUPfUc8KJmspkhSTSLbrDq0V42BJE4OdGopMURQJjx5dc+t8ibUBBOSV5tatY5zTSAkP3lvhpkPy0PUjSaKpqgUSMCZht+2o6xKVG2bH5eE/gBQYYwBHkiYMwwhCAeC8JThw3rFt9+XN+ubf/P7v//6v/sk/+SevX1jAoiiKfp6YAERRFEXftCt9pa8fXH/+Y9/1mtImp+8G7OQYx4nNpmfoR7RO2W5HLi82gKEoDfO5Ic1L1uuG3c5irSDNQXko8gTv4OmjLVmuCc6y2YwUhWJxXIIAgSfPUgSCsjAE6ymKBGs9RarY7UZ2+xaQBO9Yr3bYySOlxDtHXZckCQih2O0G8npCSWi6Ae8tR0cn9FODFBqJJssMWh8SB6FAaRAIxnGiqnKkONwUaK3oh0MPgHMOPwb8GDhaLFfD5I5XTy6/G/jrLzhsURRFQGwCjqIoin4Z/vgf/+Ob8mRZzub5R7U2SKURSmF0Al4xdIZ/9I/e56d+6mvsWwcSxnHCeckXf+Z93nrrhsePt1xebdnvAjfXDW4MXD3dEIJEa8XV1R5rwduAnSB4CQG63tKPE207MPQWpQSzWUKaKpJMAB7cYWa/c4KzWwuUgYDEeYsQh9P7zWbDZr2naXtAYkeP9575fMZsXpOmmizXHJ/OWRzlVFVKCIHEaOzkUEqjtUJrTZomBOeYRosSijB5us3Oz4rqC3fu3v0rIkxfedExi6Io+lnxBiCKoij6pv3ET/yE+uJbX/kN+bw6HoNApwWZDzS7jr6feOfdJ4yD49atOVmRgRTUdcHF0x37fYeQgo997DZKS5482nJ2Zuj7nrYLCOnYrC3eBnbrgVQlCClwztJ3jmeXe155/TZd26B8IEkFQ+/IUoUxiizVNGNgmiwmMXjvGQZQCoSQSK1puo7NZs3Z2RlBgtbmcKpfpygZyDKNKAxpekgasjxB6cPtg5Ga4Ceafc/ZWY0QghAgyxOmwTFMFpDkWdbIJPzVT/+Fv/CTLzpeURRFP19MAKIoiqJv2uf/5udny4+c/Ka8rJRWGcJoptFSzituvyq5dX/JNFrGfuLpRcN2PfHO158yjYGyzpDKcXm1odlZiiJlnODRwy277cRimXPn1oy333qX01tztluN0h4hJYt5QZ4FusZSlQWryy2zecZ6tePsvEQIjxAepSVFkbF79zHOBpRMOb89I00MY+948vgCrQ1d15GToZRCSEdZ5RSFQkiPJ5Aag50mxmEieEldp+SpRJsCKUAqRQgB7zxSgtaCgMY6j3Ny43Cfe9GxiqIo+ufFBCCKoij6pqVn6fkbH37lt+ZFroauxzqLTlKW+Tnzpcc7y+rqipura2aVZrvp2e/6w6KsxKNNwuVlwztvPWVW52y2W7rW8sqr9+mGjqvLhmdPdxTzkvV2Rbffc/feEe1+RtOObLcD3/Xdtwh4bq73dK2lb0dMIkiThL4dkQJsP/Deew84OT7lpfsz7GhpG0vXWdIsxVnHbtccGn9nBSFYQHByWjO6ESMlWmm8l/SdpWsnEinwHrLCELxHSsW22ZPoBKktaaLZPt1wvbp+tzw5Wb/oWEVRFP3zYgIQRVEUfVN+4Ac+cZZk+j9KUvVRby3eO4I/NMdOk4Xg0UqTlyW3jEHIp5zblKmvWa333Ll3wqP3LvmHn/8iiTFsN5ph7NHK8PjRE6ZpIDDS7BuKuWG72rDfbNmuG9K8xCQpXdOwmKfUlUEphdIDeIkIh+Y2rQ37zYp23/Ds4bskWtCPL+GDYL9raHZ7jo6PkErivSfgCUHQDRYpBWkiYJD03YgqE7p24ORsjh0GxPPG3922o6oL+n7Ae8Fu15Imh/0Bu91AO+yeLYtz8aLjFUVR9M+LCUAURVH0TdntnqzmJ6++b5IsSGUwOoAfmCZL33dM48SsrjBZipSSs1t3eellxce+c2DsJ978yiPeeavjO/+1D5HnCeM0kKQZX/qZd2ibPW2zYrV6wvzolNXVBV/4J/+IulzQ7TqUUeRlSVHM+cm/8UV+47/+Oou54eysxlvHOEKz75hGQZYoHr3/DsGNGJUwtJ6ry4bPf+4LpEmCMQnTNOFdYD6fk2cJRZaQJoahnzg5ybm+Dgy9AxGYuh4lA0omtG1LCIHdrsNOFoSgHyzGKLrtxM/84y9ZJ2xzpHUcthFF0becmABEURRF37BPfOITSddNv/7W3aPfMV9UefAgpGCcRvquI88LyrJkmkaChaKsyTJH3zcgJV3fsjzO+K3/k4/hHCTGIJTg8tmaupqxXu+4enbFS9Ntyqrk4uKCxeIYGQQwMvSWfmiQBJ48XJOkmpfuLbn/8jFSeIbWIoJEaYHRgskOlLMl57dvIxF8/auPePTgkjt375HmOQJB1+6ZzSqcDxSFJs9Smmbk6CilLBMm25EmGq0kAU/TDjgnEEIwDhPj6MF70jSBoHj3a+/z6NG7T+69fv7ekNrkRccsiqLonxcTgCiKougbNo7JvF7q//nxafHdUnqsHfHeAhxKcYxGAGmaMU0T290G7y3jOBJ8ICtLyrpmHAb6bmK7aejaCWMShumGJEv4db/p20iN5t13HqJ1wuuvf4hUgxtHlBJMPrC6WePGkWbf0/eC68uGNJV0m4G0SJjNc9p24mhxTjVfUFY1XdPy9a+9RZakZFlBYg6Th7I8ZxgnkiQ5vNSPA7N5Stc7htGSFgnNtiURkiw3WGuZxgmpFEZrNjc7pFKkKdhJ8+TBhSvr7B8VVfGu3fmYAERR9C0nJgBRFEXRN2wcb9rz8py6qpZ28nhvEQKkgCRN0FozDgNSCJSSpGmCc5IQAvt9S3CBvEgYrWO9abCTJcsSemdR0jCOgcubPZePVzT7NUfHNaP1LJcls7xGK4lH8Or9U7brDhccCInSGmc92miUFEgZ6NoWKQ87Cq4vL7m8eML65pLT83t4Z6nKBUIElNJM44TWkmn01FXG6qbB2pQsFyxmGbiAnRzeg3fgPRit2W1alD7U/RthePTeJTerizdvvXTrHyZZ8Q8/+elPv/+iYxZFUfTPiwlAFEVR9A0TInn9aLn8LVVVahEESkqC9yRJilAKAuA8q82Ko6MjqnLGbrslMTCfK4J3GKMRQmKtp+t6/GS5c2+B85ZnFy2XN3vasaNte1770Ms8frrh2eUGc2cB40hiFLduVSg1cXp2wvVlQ1mlbNctyEA1zzk+L5hd7njy5Ovku5LgXbi5uSLPKjH0HdMw0Oz3SC1J8wTvA+Pg6FvLOOz40hff4jf+pg9zujxF2EBZGvpO0GwHrPWHZWDWYacAImCk5uai4+2vvnOTlPovHd1b/kgI2cWLjlcURdG/SEwAoiiKom9Ynut8flx9JHiPD/b5VwOBgJIChCTLU7q94unDJ9y5f5+sKCB4vHOHaT9GU0qFEIE0NfjRMY6WepZQVJo7Ly14dl7yxX/8dcbBsbpZczFaTKr59m+/gwgBC9x5+YhUa5JE0DQWrSTTYBHSYv1EWRW0w45Hl19HSolWiQ8BFu4oYK1q93uRFAWIkSQ1uCmwXm25udmgpKEscqbJ0Y2ONFdMvaXrHG70iFwxjh6BPPQjPHvKO2+9M4xT+9O3Xj77//wX/8WPPXqRcYqiKPrFxAQgiqIo+oZVp9VrJtMnCIVE4r1lGDuE8LRdIDEZWgpC8CS5oWnWZEVBCAGBwCiDc55psuR5QWpSdpuW3b5jNq/xwTNZy9WV4UPf/hpDP/LK67chCLyDm/XInTs5xkBWpQgnUEwUwiCDYhotRZ6TZSnWbVBSYv2EQnkhcevmUqvL0GvlfZbW5ZwzKVwgM4a23XL57JKyrnn99ZdQSjDYCecOycvYBPqdY7NuSBODCw43eZr1mq+//WbrRfvf3v/Iq5/+7t9y9lM/+uMvOlJRFEW/sJgARFEURd8osahm/6M0y3QIIPCMU8d2fUNW5hiTsrq8pGla7r50j2WW471HKUXXt4fNuQSmcWTsJ5yyJEZydDwjBEvbNnSdRUpNligePrrBJJqyypnNEqbBUy8M9azk+KjGaImWirbZ0rUjznYsTnJMITk6XqLEJakS/rieXVRVebPZb892bbe8WD/N+qlti3TmjvdrMV+eiGeXjrZpMDrj9t3baCnodj1hShiGEZxAeM3N5ZaLZ1dICbvVNc1+7cZx/zirzT+699pLf2tRzv72H/7DPzy86EBFURT9YmICEEVRFH1Dfsfv+J66rqvvMEph7YQIkJiU2WJJ3/c4P5ElhrI6QWmN946h7xjHHu8DAonWknHs2G33JMagZwW7ZgDhOT6pSJPy+Vz+HJMKQoB5XRL8SFlmLJYFfnIoAcNkScqUol4gdYcEAo68TFFas9s0HB8tL87M/O8mWdotmtnpg8dPvmvftkebZl2v92uerZ6QJCkSxYde+Sgnx8dgoVn39JuWLDPYyTP0Aw8fvc/N1TPGqWezu6Hr9+HkaP7F1994/W+hxGhM8aXTV16Jdf9RFH3LiwlAFEVR9A35ju945bQsk1elkrjRMjlLKlKUNPTNmr5tkSpw5+497DTQ9hPjMOC8Zb/r2Kx7yjzl+KxGCYX30LYD7d7SNHuOj2ds19dUVc7yqOQ3HL9OcJBlCbvtjsePrmn2I3WdoYxBIRnGEZMkBKXIyhyPJy0y6tmSafLM8tL//9u7txjLsrM+4P+11r5fzq1OVXVXX+Zi2vaMIU4MRBYKD45iFEhkRUIzE6EIQSQPQjxFPOQlklXP5M3CSC0UaQiMYk8uOEEREQQrCQaMid3E0z3TM9Pd1V3XrnNOnbPP2dd1zcMZ8hLZ3XbGqTL6fi+lUpWq9v72Q9V/rW+vrzeO70W9/JZzLuz3B+8eHB3/6KIorkmlkk7JuGnLKPIjY6Q0TVWAGy3q5VzIToHBwlqgk6299/C2KsqZl8fRKgyDST5Iu8HG4L0wTSb5YPDQAj7Wg4jteT8rQgj5TigAEEIIeSqXrgx/LIjFNSkljDEIwxDOWVijUa0a1HWDa89so5MSTdNgPi3xcG8CLjjieD1dVyuJebEAAMRJCDiGatUifv98fcYYFosVUm0gBEeepTDGIowCxPF6srDSFr1eDGctpDSw1iBNUmjPhx/4sA4QYYjR5gaqqu0Ntvpu60eu/94Io3rnmePf335w6ScODvb/wfzs7AWpdbJcrTaatu0dnrznjK4LKdWIe9x1TQuPMx2GqYJwEkx6WS81ERdyY7Sx//yNG78Xp/FEOevgR//V47XZ3d015/uUCCHkySgAEEIIeSpCuBt+EAgwDjCACx9wQLlcomoqbGxuQvgejHWI4hTjbYGN7T6atgVzDIvZCkVRIwwFBoMeisUSTaMxGCRYLGq0rcJsUsEYg6vXPYSRj1W5QuCHiJMIV69fwunjKbRWqMoaxkhYC+R5Aq0ktNEQnKNedVgUBT76sWfgxSLuGpmPPjZqd1/e1QCOAfy7V175R7c2F5t/r67rG1LL8XJebBbL4mrVzpOmaWtjVMDB9M7lS3eCgDfLstgZ9LNqtDE6YNzjztmgLAv74o//+L/f29uzr732Wnvez4cQQp4WBQBCCCFP9NJLL4n+ML0huIBUHQI/hNUGXVujWpXgTEAIB0/4WJU1rAN6WQbHHBwYdKfhnEVTKURBjtWywWLeQnAPxgLTSY3paQUGByUdrAb6gxhNK7G5nWCEAXzPx2g0xLJYoViUGG/24HkejLFYrSp4noBlHMYYzOcF0jzC5taQr5bVxuorp9sA9v/qfr74xd+9xxi799nPfna8nBz/jeeefT6aPn783Nls9ndEIDQD74zS0XA8eidN4mJ+NrvhCV+HUVQ454xSyqVJFp6+/fbGa1/84v53KB0hhFw4FAAIIYQ80Yevf/h63k9+QioJZy0YHOpqieVyASkdnLWIAh+rZQljgd6gDz/wwAVHrzdEuSwQhh4AD4tihbbWeLh3jDxLUBQlOPcgW4XAFxCew/7eFPeVRt7L0TYazPnY2MoQhB76wx60nkFrjbbtYK2DYGI9WKxtwTmgWoVKWWxvb7blqpqEnvd/rdA753Dz5s0pgD96/3P+T//Jy18xxnr9bHhmrBUuDJde23qD0eag6zpYp3/M88Jv/f3PfOat3//yl39IrUefEULIDxQKAIQQQp4oGSUx5yJ31iGMYihjYQFEaYzT6RRaOUijwITAeDyC5/vwgwBGWSxXBZbFAk3VIIqBoZfjRC7gXIA0i6GVQ13WYAxgDChXDWS3bqXvZAPZBni0dwLHNjEY5rDGYVlU4IwhCNbvDiRhCGEZpHNQygEw6NoOw+GY9fvL4r2fPDnD57/zPTLGLIA73+bLEwB49dVX927evKn+1W//NgDc/YDKSwgh/1/x874AQgghF5+1dmytXQ/WMhrCE/B9D86uV9K10bDOYjAcwjkL2dVYFnMs53Oc7B+iWlboWokkjTEcpGhrjWJRo646MLfeQVgtaxijYGGwvZPj8pU+PF9gOlvBOQY4h6Zp4fvrtas0SxGEAcIoRJxnEJ6HNI3heRxKGTjL0DTK87xo9OLtF9kHUYebN2+qD+LnEELIeaIdAEIIIU/EOZ8yxsDeXzYyUkIpCWstfM+Hn3lI0wx1VcHzODxfYH5WoK5b5L0UaZri5OQUxmgweHh8dIYkCpH3YnS1weWrfYANcOXqBoQA4thDUyscPFrAOQdjNKwBOGNQSv2f6+CcIQgDaCPhBR6Yc/B7GYqihJQKkR8zZ50+Pj7+QAIAIYT8dUA7AIQQQp7INI0RjDFr1/+My269Ep+lPVhrkCQ+pOrQtDWqqkXTtkiyCP1BitHGAMYpJHGILItw7+4h7t65j+EoxvRxidWqwaKo4Qc+pFTwPIGm6hB4HDs7A/T6ERjjOJuWqKoWd9/ah9aA1gbOMQRBCM8L4RyDsQbWWsRxCMGAclUJY0x69/Jl6tUnhJD3UQAghBDyRHVZKqWN1EYDzsJYAyF8dJ1CtVwhz3M0lQJjDNoYCO4jz1LkWQptFDzuo60lqpXDnduPABiMNzOMN/tgjCPP+uAM2Ls/RddaDIYDdFJDBEB/kODy1Q1YZ2C1hmwcwiBYtwtZA9lJKKnAGQMX61OFwBh834ezRhsl848+eLB93jUkhJCLggIAIYSQJ1JSGiOtYcyh6xQY47DWYTlfYnM8Rtd2WC1LWKORZwk84UGr9WAv1Wns3TsCA0fT1FitKrz4wz+E8VYOxi2CgENJCThgMEhxNltCa4fNrU30+znC0MPmVg/Xnt1CEPrgwkHJDlmWwvc9hGEAMIe2beEYYB2DtQ5KGmgltbWGced6511DQgi5KCgAEEIIeSqy6VRbN1C6g7EOXdcBsPBjgST20e/FcMahbdZTgRljaOoGMA7j8RBxEmC5qrFzZQtXrm5gNilRLBqkeQxjgfm8QZKFCGKBs8UC09kCbdsiyzMwMORZAiF8JFmMMAnWL/qCgXGGIAjABIdSGoxbSCXR1BJHJyfKi8RDZObkvOtHCCEXBQUAQgghT9S2TBWLatk0DZSSULIGHMOyqNd/SDgDe/+jdYDwOLRU6CoJByAIAGMlulbiIx+7iqvPDBFGYv19SsHzAGsd5mcVpicVPC4g2w6yW6/oZ1mGKIoheICyrDHeGINzBs4FtDawxsITAs4xMMsAa9A1Cm3VNM4Zp1SSnmsBCSHkAqEAQAgh5ImUpybzs+JbsrHoGgvVGjw+nmE2L5EkETgDuOBQnYTgHNYYKKmRZhGMsZBKwWi7btnxPWitMd7sY7yV4kMf3kSahbhydYDhIIYfCJxNS3DBwQXAuIFUEtZpOHCUSwkpJaIoBucc1lgYrcEABD6HEAIcHs4mFRh4yQXrfGOC864hIYRcFBQACCGEPNHNmzdVVXQPilmty6LD4qzF9KSA7wXrc/kdoJUGB7AqljBKAwCSLMFgmCOOQtSlhOcJeB5HFIToWoOuVXDOoWkaSKmR90KkqUDdSMznNc6mJepqvevQNjWK+RKcR3AOUEoCAJSUUFLC6PXvN0qiWio8fO/ICY9PkjSeK2Pi86seIYRcLDQHgBBCyFOZTeYnUrlpkmeXhAeUVYvxdg/GWFijYbQFZx6clei6dn0KD9YtPgwRHj44xZVrI8SxB60ZurYCA0fbWGyMU/h+gDgOoXoGYWSQ5TGaSmJ6usRwxBDHPrQ26LoWcA6eJ6CNQZzEUEpBKw2lFJzjWJ21eLT3oGaB2gdnVdzv7593/Qgh5KKgAEAIIeSpVPXi4Ojw5KjXG/fDKI21tdjZ2YQxClXVwGqgqSskqQ/nLMI4hGAeFqs5ymWLy1dGGAxTCE/ANgpccAyHKYyx2NzuoViUmEwL9Po5otggTSIEvkBTK1SrEs4lODxcIM1CtHULN8jgnEUQxrDWQjAPUmloY3F8OEXb1mdRxBur9fTzn//86rzrRwghFwW1ABFCCHkqnoe7Fs2b3/zGf1/e+p9/au7evoN77+5DKwaj8f5pPD58zwdjHIwxODD0ez10bYvNrR7SNEG16tatPXWL8XaOtpMABNI0Ri/LAWcBrF8wdjBgwsLzfTDGsCoqcC6QZgkYE7CWQXAPzjC0rYJsJYySOD48Qae7QvhcSSmvfO5zL/nnXT9CCLkoKAAQQgh5Kh968cX742H+n5LUuz+dPGjfeffruHf/Lpp6PQCMMQdjDKqqgzMcxrj3e/dbVGWHplZomhbCd/ADhvFWBmM18l6AYlGBMQ5jJAbDDFobCE/A93yEgY8sj6EU0NQGzlgordY7DEJAdhJtK1HXNTgHVKvQtdIq3TWcBzIIw9M7d2DOu36EEHJRUAAghBDyVHZ3d+3Ozs6fPPvcc18JPFb2876L/D6O9mdo6vVxn1wIKKXRNh26pkFdrbD34AhaG/T7GYx2OJvWaFsFzgSscRhtZGAMaJq/mi+gEPg+uq5F20o4Y+AJQAhAqgZpxtF2LZqmQxAIdG0DxgCtJWSjMH1coyjKWd5LD5yzjgl364033qAAQAgh76MAQAgh5Kn92q//+tF4a+v1q9evfXVn59Lj04NH7ut/fAeTkxqLWYvjowJl2YJzjvlsgZOjCVZLjThJ0HQNmGBwjmE4ytHUEkZbOA3AOeR5hiCMkCQJ8n6CMAigNWABdI0EB4MxQF1rwAHlaoVVUWPv/jFmkzPIRmJ51uLhu8dutVrsjzZHd0eb23/e87Pj864bIYRcJBQACCGEfFd+87d+6/YPf/zjv9bvhW8+PninffPW1/HO7Uc4OSoxnVVoaovDwymcZWhahVZKFEWJrtVwxiFNQ/T7KTzfw2LeYDZdoesUjHEQ3rqNKI4i5L0MXDBYCzjmAAD9PIeU69BglMTJ0RTv3T7F6cEKi0mLx/tLvPXm27UIzH6c59/qbW7+2994/fX5OZeMEEIuFAoAhBBCvmuv/MIv/EWahn88HMaTsjjBW395C0cPZ9ASKBYdmAtQ1x2sE+hajSwLwWChtEGShmhbibZVsEYgiCP4YQBjNXzfQ1XVqGsFP/DBPUB4PrwwhIGF1gyytlCdgbWA1Rr1SmI50zh6WODPvvoNnM0nR0kv+Uo2Hv/uF77whfK8a0UIIRcNHQNKCCHku/apT31K//LP/dy/rlbV39SGi/nkaOfW1/6MPf/RFzDcGMMZh6b14QU+rLGIIx9ceKhWHYKQo2k04AQYtxgO4/XMAOfgeR44t6jKGsLjyLMcq1UJrSyC0IdWLWRlMZuUcM7BKWD6+Azv3b3nymKql9V8cu25nT8aX9v8Lzdv3qzPu06EEHIR0Q4AIYSQ78lvvP76/esfeu5fXn/22lfDGIeHB2/bW3/xpzg9OsHZ6Qqz0waHD2eoK4nlskO5bFGVNaxxUJ1BnARIUg5rHTzPR7EoUSxKWOsghIe6Xr8UzBjDclEhED6iwMPZdIGmcjjcW6ApFSaTffvNW/9DHxy/VThWPw7jYD/1En3e9SGEkIuKdgAIIYR8z67eePw1pS69YazTbdf83dns4aVvfqPF9es3sH3pKiw4wsTHeJxBa4a2sQgjha410LpGfxDAWYem7rBaSSzOzrB9uQff8wHnMJ8tYZ2DswyrokQcBfj6u+8hTCP00hS6A9IsrcOYl0kaT+I0OZVS9qSUtMBFCCHfBgUAQggh37Pd3f+mv/SlL/2H//jGv8m06hLhH7w4nZx86K3bczGfnWIw3EYY93A06mHn+gCzWY3eIEVZ1ahLCc4yOOvgXIv5tMF0UiPLE9RVjX4vAOMepFLwmcDkqMTx4Rke7b+HVTm113aeqTbGg6qp62o4Gk56WXac9npH40sbX44nk4fnXRtCCLmoKAAQQgj5f/Lyyy+bf/ZLv/QHDJBhEHza44ydzhZX7j+6ncSTh+jl2xCeQxi9ACUdJo8LFIsGqjWolxF8T0Abg7Lo4DGO+aRBXXaAtrAOsNrBKI67b99zd27fLvxAV1KeLWYLd8S98X4QCnb1mWvTMAiqJM2/9jOf+dmvvfzyy3TuPyGEfBvsvC+AEELIXw+fe+mlYF/g00cHB/9wNp9/4vjxZGe5Wo58L2FJsuF95CMf967sXELWT1ndGHAORAFDf5AhiDkevDvFoJfCOANPcAjm0EqHalW5k+Pjav/gwUqa1UEvDee9XrY/HPYf5b3Rbd/z7nmc687a+vqNG3u7u7v2vGtBCCEXGQUAQgghH6iff+mlK0o3P11X9Yf3Huz9ZFXLUd00fYYoGQ22ok/86N/2Oq1ZmiUwUsIPAviBhztv3sfWeAudrBFHMXzfubJt5aOHj4q2m76zsTF6yLjTURic5Xn+IEmS//yctfu7b7whz/ueCSHkBwkFAEIIIR88xvArv/iLO8fH+/94uSz/1sHB4QuL1XJrVanRR559oUqzXjAeb8aC+77R2hpr5P+686ZJ08wYa6zHRcu4bYpyzja3xt9MY3E8GA5PwjDsoiB4nEfRH3zhtddOzvs2CSHkBxEFAEIIId83//zVV/uT1eJThyeHn3609+iTq7rrp1FaeF5QJ3HG0ySPqrZ1Z4upX3Yl4jieJEl8FobhMk/zZjKdXd+5vPXmaDg8Zpy3eZL8eZhl92nAFyGEfO8oABBCCPm+cs6xn3/llZ9aLpY/07Ztbpl7FIZhaYyzjDGure6XVTWwDCwMk6LXy96Kougdz3hLLfTQKrUVZ9le5NzsN3/ndw7O+34IIeQHHQUAQggh33fOOfYvfvVXrxog/sQnP7l3+w//0CvznNnFIlxI+SNd2xaeEMo53z7/0efv7e7uUl8/IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCvjv/G4hj+Ujq//mNAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ] + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAIACAYAAAA19gs6AAEAAElEQVR4nOz9eZjv2V3Yd77Pd99+++9Xe91bd+vue293q7slIQmBBGZzbCdecDPGBgQINyBbYDDYCSRzrXGSmUnizGBsHJPBMTAwCbKHiVdmMME2i3apF/V2t9rX37589+XkjxLEfjIzsaUWRbfP65/7VNXz9HPOqd/pOp+zfD6gKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIry1iEuugGKoiiK8kb79V//deOle9vvMQrj9Q996DvOLro9iqIov59oF90ARVEURXmj3d3evlmUkw9nev9b/h+/8subar9LURTlf2FcdAMURVEU5Y2WFJMnHX3+TKvm32R+70/8v/7J3/wXWez8xrd883f/TxfdNkVRlIumtkQURVGUtxjBX/3PfvRvh/39D4gy06oyNZc3m+mjt28cV+bS3xqcrPz0d33XH59cdCsVRVEuigoAFEVRlLeUn/u5n1t66TO/8T/uvvLiu6sypdFokKZzbj2+xNve9VSie2v/aFZ0/stv+ff/zCcvuq2KoigXQb0BUBRFUd5SHuw92Do9OrrZbDYlGqDndJeW+eTHXudf/tNfd4ge/smue/aLf/tn/sa7LrqtiqIoF0EFAIqiKMpbShlmW1kU+45vi95Sj/liQa3lYfktXnl1xD/7Rx/HKgfXNtbS/+znf/6f1C+6vYqiKL/XVACgKIqivKXE8aKazeZ6npesrK5y+fIV4jBha2uN9Y1L7O7OeemzDwmM+dc12w//0kW3V1EU5feaCgAURVGUtxQ38KP5Iip++2OfYu9wl3avSc2vc3w8oNGus3llncEgZnxwjKtPPvQP/ukvvOei26woivJ7SQUAiqIoyltKu7dkPv2u95xtbF7l05/a5tOf3ibLDDyvxSc+8QK249Bottl+cMLZg9datjj6q7/0q7/auOh2K4qi/F5RdQAURVGUtxTbsO+2l7uLxx77QxzsnvHaK3f5/Kv3uHX7Gtp9nXt3j3BthyzLCecDhLf9B9qb7f8YxI+CvOjmK4qifNmpEwBFURTlLeX9H/rQg6PD/sm9u/eptzTe9weeZnPrMkI3yQvJyemUh7t9JpOC1+6dcveFB6KYHHzol37pp/74RbddURTl94IKABRFUZS3lMc1LROYDwfHEwZnfQwr4cojLZotn8ubl0kzyb3tYwzTo6wk80nF7LTv+V7xfc8++0v6RbdfURTly00FAIqiKMpbi5Rowvr03buH1T/+B7/OL/+9X2PYn2FbFU89c5ONjTXyRHJ43MfzG0znIaPxHPL4Hc9+a/T2i26+8nvv1q1ng3/9O8/qzz77Q+7vfvXssyowVN5S1BsARVEU5S2n2Wy81O4szzStah7vD/hE+Rpf/f5bPP62q+wdddh+uM9gOCVwl7Esg9F4jne43V65VvvgnTu//tmPfORri4vug/LG+57v+fNXWp51dXU9WDMtHovm+aC3UnumKIrNLL19Lw6LiUCbhPPiyeksPfqub//Q33cC+XJZ1itgetHtV5Q3igoAFEVRlLecoFkfN5rBXNBoanpJVWn81r98DaFLvvJ9T/DyS3u8/vpdGjWPS2tdHKdOGqdU+fDZW2/b+fSdO/JnPvIRUV10P5Q3hPZXfvwHP9hueM84pnxHvWZsuoG2JEDEdZcwHuG7Buur9fdr+MhCMBwsOOkzcafi6+Zh+tuaXPzzO3fu/L2PfOQjKjBU3hJUAKAoiqK85ZRlWZ6cnjiTwR5+zefGozeI51N27x9z+/FH+JY//bX8nZ8Oubt9yBNve4QKSbPZJJ3OWqZv/8XNzZ/5/wC7F90P5Yv1rP7+93u1p2+b6zeuNH7Yd7VvT6KpGU8zTvcSzs5GzBYhaVKRpSVe4BAEHr7v0+zV6Cw3WF5tNC1bNLPd9PYile3+fv9jqM+E8hahAgBFURTlLafdDsaNZmcez6e9fn/Apz75adqdGvWazf72CYGn803f+B5+67efZ2fngNuPrZCnMZrm0mrnjxad4t2oxd6b0oc//H1Pry81v6/TMd5Wc4xr08Gwe/flU/pnE6IkJ0kKBqMZaZ5SlhJdCNyFhxBzDN3AsAw0Q+PRm9cRQBpLTdfct49m8x/44Hd88H/4mZ/7mU9edB8V5UulAgBFURTlLSeHFctxvaDVpdapI0tJu9nl+PgeYZSgSQeZJdx+9Bpn/T7HJ3NcR6fXs0iiFL/hvB34Hy66H8q/nR/7y9//h69dafxko2FfmY9CPvkbryIrl6PTMXGSogmTLJckaUqcphRFQbfTIysqxuMBpmFSVAW+57NYRNy4fh3XdfB8cVnTat+VFWL5T//p7//wL/7i3xpfdF8V5UuhAgBFURTlLcfx7LU/9q3f6JtawWI+4t6rD0jmAtPQOD4OKToFszBG6Aa67vPqq8fMJhMeu15y2TJoNLOn/i//3S83f+i7/vjkovui/G/74Ac/eHO9F3zHlcved0/O+kv3X4jY2z9BYjJdnHBy2seyHJIoQlLh+3UsBEHdIspiZrMZRVHS7rSZTmdkeY6IIk5Ojlla6mLqUq+5tdZxP/4aoRWPA79x0X1WlC+FCgAURVGUt5w0De1X7u/Y80mf5aUaV652mAwTFqHOfBpy/cYSR2cjeu0azWbA4cEOwz70W1OaI4etW/LJtebiL/3nP/mTf+3HPvzh4UX3R/n/7t3vftb96nct/5GtLe9/71ry1vBoqH3qUzvMFjG2bVOJgoOjE2pendlihmVZBPUaxydHUMHiJEJoAr/m41gW27u7WJZFvVYjSRP29vfJ8gxTu4zEwHXFymKcXkEFAMqbnAoAFEVRlLecxTA5/ORvPR+P+0eWrkvazQaPPnqNbrvJ4UHGqy/v0mq22X14wFNvv8mVa6s8fH2b4dCjfuShldGyqxff7BbFTwMqAPh96IPPfrD9yOOdvxJ45TdXyWzt+DjnY7/9EpN5ieN5GFJw//59akENhEa71WEynfLwwUNM0yLNMiQalm0zGI6p8hLT1PA8j0pKkiSlyFIMQ0fXdC5fWWd5ZUU/68+/8YMf/OBv/8zP/MwDQF70OCjKF0MFAIqiKMpbji31U0v3wzLTGqZrEyeSl158naeefpLl1S6H+wc0A4EsdQ72R3S7yxztnlGUGqbtMO4PaQS9nu/LTWDnovuj/Ov+8l/883/g2qXgTqtmvO+1l3YZj1Me7h3x2v1dtrYewfcCJpMJZSGYzmbAjDiOEAKWe6tUEuZhSFFVDEcDNMBzPQLfw7QMirwkSwsQMJ8vSOIUL9DZ3Fony7LHo7F4m5TygRDioodCUb4oqhKwoiiK8paTaeJ6nBVBUiQcHB1yejYiSSV7e7volsSwTMbzGVkhsW2Pfn+KZjs83DlA1w2SKKFZk826W/ylv/bX/tN3X3R/lHPf+q3Pdf/Kj33oP3niVvujhpa/73OffpndvRFnw4j72wesrV8mLwt29rbZP9gjSSKSJMYwdB555Cbra1s0m01q9QDHtknjEMcysQyDwHcpyoIwjAjDiDgOEehYlofn+QR+m8Usoln3b4L2we/9ru99/KLHQ1G+WCoAUBRFUd5y0ip+7PbbH3X/8J/4I3zzN/8Jbt++SZKnnPUnZHGF63ns7RwRLkKG4z4bW0ucnfWZzWIe3DskWoTouhDLveYzg+PJ0z/4vT+4ddF9+nfdt3/7t3eeulX7iccfW/srw5Nx+2O/8Tr3H4wJU9g5OKLV7lJvNqiERtBocOXaVVbW1rh2/QY3HnmUNM0pK0mS5YxGY0bDIVVRIiSYpklZVRRFQVmW5HmGZZsIAdPZiP7ghJ2dPWaTBe2mb2XpfDVKFl//Pd/zPVcuelwU5YuhAgBFURTlLeUXfuGnWkvL1td2O7bZqnsEdZu3v/Nxvu7r38v1R65hOTquZ2IYBlIaRGFOvW5x5eomVSnZ2T4mSQRxmlBrmiuNhvcVSVHcuHPnjvqbeUG+8d3f2L651fxPLq25f+rh3R3tM5+6zyKuCGN4uHPAbLHAtC0836EsC0CQphllWXJycsbHP/EphuMhw/GA7e2HDAZ9TEPHcRwsy8Y0LaSUaJpGWZZomkZVVRR5QVVBFGekaclsmnJ4cEj/5EQr03y9SIubFz02ivLFUG8AFEVRlLeUMA+/LvC1dz2/dxrnYerOJ1PyLAWtpNttkqQJtYbP+uVLvP7KfcxQA83kxmOXGZ6OqYTg3oNjllcDuqu25jjaI5qhvWN4fOb/yId+5OP/1U/9VycX3cd/lzz3Hd/9vhs32j+0uep+0+svP9D2d0NMu8bwrM9J/4zZLAJNYhgmx0cnVEXJbDalLDJmswWaYeD4LqPJkCrP0XUN27IpZYGsBJqmYxg6cRKhifOFv2EYaLqJkEAFmmaQZjHNpscUgWEGO8I0fyVMwt+66PFRlC+GCgAURVGUt4wPf/jDdrKIN+2GU7N1oWHomBbYtkccJ4xHEbLQiKKEpdUu917T0DCIkpTeSpd3fuXbeOEzL6MJi4OdEavrm2yse4+fHC+Kxay8EWexAH75ovv574K3P/ec+X7X+JOPbNX/w17XfvL1lw945ZUjbLfBzoMdtnd2iMKQbm+ZdqvJ4OyMoihJkozFfIaUEj/wKIqCxXSCbVkYpoUmBEV+/sDXMBxqtTpQkiQhRVEAUJQ5RZJjWiZCaAhNsrqywtJKD8RY7hye/MNf/KVf/GcXO0KK8sVTAYCiKIrylqFpmptHpRwm4/Djv/Fbues49vrmJs9/5gUsS3DlynV0zWAxjbjxiIduVISLmMU0Y3A2oV2v0VtqUa8HdFZWODkZ0PBrdVmkTwtNNJMsn9y5c+cffuQjHykuuq9vZc9963Ndh/x7bj/a+2DN5fq914/45KcfIjHYubfNgwe72K7NM29/O6trS+xs73PW77O6uka7rVOWq0RRSP/sFImkHjTO83VWUFb5+e5/WVIUBUUeI5FUVUWe5xiGieW41GstpCxJkgRD0xmP5/T7E9IsR9cs9ftX3tRUAKAoiqK8ZfzET/zE5G/9xP/h4Oh4lue5MM9O9siykrc/8062H94jSTPiKGU2mzM4HfL0M7d5+cUdZtM5pZQcjPtsbq5wcnrKY29bwam5LC1vEcev18ajaNWrBe/cee21jR/6oR86DcOwsG1b+8mf/MkMlQ/+DfPss88GX/GVq3/DENXXj08HnZ1Rxv3dY+4+3KURNAjDlM3NTS5vXUZScnx8zHw+Z2P9ElmWEIYhmtDIsoxWp0er1cateWgaDPsDjo8OkXn1u3f9s7xECA0pwTQtNE1DliWjyRBD13AtD123CII67V6dOEoKbUeL7ty5o33kIx+pLnq8FOWLoR40KYqiKG8lopDFuu1onXqjWdvY3KKsJJUGz7z7PVx99CobV9dwPQ8hNFY3elx/5DJJlNFp1xlPppSVQVVKXnt+G8OUOIHJ0toStuV0HMd6XDO8PxaGoTUejytHiEt37txRyeDfIH/0/R9ovv325g9trrt/kjLt3Ls/4mgw5+HuCbPZgrP+GZ1el8tXtyirAllqdFqrPP74bRzXZjIZ0T89ZjwckMQJSMl8PmN/b5e7r7/GaDRCAAKQEoQQOI6LadrYlg1CUJZQlhWGEJiGDkJimgKBxmw2w3dsc7Xb+47P7e/7Fz1eivLFUicAiqIoylvGBz7wAbsouFVIUW5dedSaj6fMxkccH+7hOTb1tsfqepuToxM03aHW8PACneWVS9iOw0ltxIP7uzzz1A3iaMFiPGbk7LKx2aZ/ONQsQ6+VjvVsuIiNbrf7M16SHKpd4DfGs89+V++db+v+ny+vut96dDDRn39hl2kSczKYEIYRmtRYW7/M8sYqZV4yGY1ZzGecnZ1h2SbNZodms0er2aOqKvwgwDQ1Tk4OmY/GOI6PYehI3SQTOoZRgZCkaYaUFVKWgMC2PQTiC2lBKzQhWYQz5vMZeayBb5BX+e4/+Dv/9/lFj5mifLHUCYCiKIrylvGzP/uziS7Eb1WljMo8r9AqwrhgMYt47dVXiaMMw9JpdZo4js10HLG21sUPfBzf4D1f8wyaodM/m9LqtNjfOSWOZly9ukyRpcgq01eWG4/blvXVWZat9A1D/R19A9y6dcv6hq/d/K9vPtb6rvFo5rz+2jHTRYFu2UwnE9Ik5fLVaxSy5NOf/BjPf/pT7D68z3w+Y3VtjdWVdYLAZ2m5Q2+lR3elh2bqJGmG5/l4vkOSLpgvRqRZhOt6+H4dy3QwTRPDOH/sq2mCqirJi4SiyJFVQVWV1GotWq02sjLY2T7h6PjwAercR3kTUycAiqIoyltKTvlCmRHv7dxtvuOdX0HQ8EimKVESEkYJuqHTWaqjC40KSRiVeIFJGJf4fs71R7bYu3+MHzg06hqjQcTVR116Sy1GozH1ZqfWiv2N4+PRNxkYvw188qL7/Gb2R//oB5p/+Os3/2qvZXzb/s4J43HBSX+Bblrcfe11Tg9P6bQ7HB/ukaYplmnieR7NtS5Bs4HvB+gIoGA4HJKmCWkWM53OSKMYSUVZ5pRlhZQSKSVlWWHbLpblYOgmZVGSFylFmZHnBZIK07DQDR2Q5HlGkkSYlqSm+9KxvGsf+v4PBT/1Uz+1uOjxU5QvhgoAFEVRlLcUQ1pas92qbV6/ZMziCY/dusK9Vw6pt7o4gWAyDc8rvxYS23EZTEc0mi6GbRDNU9K4Yn1zjZ2dPW7eukSeFzhuQa1hc//egqVJLEzN2NLQ/rhZCR0VAHzRvvc7v/PGO9+19V+vrzh/5FMfv0e/nzOdh7z6+j3iMGbYHwKS4aCPEBq1WpOl5RUuX93EsHXCKCWLEzTdpMoLFosZo+EQTUgMXcfwHSoJmtCRwGQ8pChzyiIhLjKEriOEjqGbCE2i6waaZmA7JpowEAjiJEXXNCxbZ32zzWKeC6Rm9XqhygSkvGmpo0tFURTlLUVYVEWZzx3Pm1x/5DKbV1pce3SZRtfCdnWEFGRJhUCnKkvW15e4+9o2raaL55kc7g9otup4QZO8rLBMA0OHRssnilNODyfIvGi1Gt4zaHLjueeeMy+6z29G/+GP/NAffMc7L/39Rl3+kRdf2OX5Fw54+eVtXnjxNU6Oz0iTHNf1aTTamKaN5/gs9ZZpd7qEcUY4T2g3fNqNgE6rRq3u8vjjt1hb28T3GwR+HcepUQvaeJ6PZVt4vo/jOGiaBkKiawLHdkAI0iShLHM0oRFHKdPpmEoWGLqkLFMWi4jJbMHp6Rl5ngBbFz2EivJFUycAiqIoypvWnTt3NIB/9SFulglfE0ZydjRMDne2ux/4nv9A3H5qnTwpOT4ckqUVVSmYhjMqzq+PpEnJ/deP2NraQLc0mr0GzsmQJMnQ9PNqsaZlYlsWo/EUy9OF65lBPM7f3z+Z3QJeuLBBeJO5detZ60//767+exur9l+v+calV1464nOf2WY2T0nTjCxOkGVFkiSYukmel0gJhcyZzcfopo5u2NiWwenBHgKDsqyIkxTTNGg0GownI0bDU0zToJQVlQRd08nzgqqSgI6mQV4UmKbENEzKUqeqKjTTwLVshPAo85woiuh22gS+j6EL1jdWOD2ddl555RW1hlLetNSHV1EURXnT8n2W9JAMGAHcuXPHiSbzcValWpZF/oNXH4p//Mv/nD/5p/4gmihY3ajTHyScnp7SbHgADAYL5tOCMDzFMjwarRpFmTObz1haXsKyLGQFfs2h3qgzOO2TLDJAoOv6o45j/slnn3321Y9+9KPZBQ7Fm8L3f//3tzqe8SMbq963+G516d6rfT77mQc83N6j3V5iMp7SH/QRmsA0TGpBcP5Y1zbodltkScZoNEFWJYauE0YL4iQhySLKssJ1PIKaz9UbN3jt8zFpHKFpAss8v9oTBA00oZPnOVmWUpY5iPN7/gCO42AaBlEc4vs+cVEiNI0kzbBdizTLMR0L29D7v/jRj0YXO5qK8sVTV4AURVGUN63JJN4qwPmdrz/ykY8kpV6URZrq08nIWur1ePGzr/PLv/RrTCYhlmuxeaXD6kYb3RB0uwEbW13aSzWuXt/g5Zfv49gehwdnLK12uHf/gDgsKKuMZtvFcTWEqEiiEikFq5tN79Jm99t90/+h7/zO5574nXY899xz5p07d9Qm27/iz/zxP7N6fc37L971jrUfyqPw+id/e4dXXznm5VfuslgsODjYYzA8pdFosrGxxY1HbrG1dYXllSWarRaj8ZjB6IRmq87G+iaaxhfSc47RhcWljS0a9RqHBzuMRwMuX7lKs9OjRJBnBWVREscRaZpSlRLH8bBtH01oGLqBEBpVVVIUGUWR/u6/mibY2Nyk3akT+D6TcSijJHkJUOlflTct9T8nRVEU5U0rSjMvEab+r37Ptt2rMq9qspD5fLHg8pUr9PtT/vmvPs+7vuptXL6xxCM31zjY7iPQCOoWT7/zEWxTIy9CXn5hF8u2eP/XPsn+wwO2Hwy5cnPB6lqX9Y0Oo7MJQgiSMCFLdC5f7lx2LOPP9geh8+yzz95vubV3FkVxf297713PPffcb/z0T//04KLG5/eL7/nA9zz15K2lH796I/gPRqdj61O//Tr7+1OOzg4YDAYYhonj2iwvr6DrJu1Wm6XlDroQFGVJkkZcvXEFz/OIZiH3Xr/PeDzGdjwsy8EybcoyJ4xC4mhBmWXkErq9JdbW1hESZrMZSZqSpiFISRRVCKGRpBGGYSCkpMxLKlGhCUGepYgvlA3rD/pcfeQKfmCxfW8vr8p8fNFjqihfChUAKIqiKG9aUtebNcP41wIAS7PKVCSuoZvS0HVMx+LWk49wejRicBpSyUOuPrpGJeDuq0cIXQNRoVFw8+YVDnb7zGcV81nE1uV1oigDAaZtIDSBppskSUhRGsRTj6kZYWv6ZQPe3rT9P1cV5XVK/qGoqq8pqtx+7rnn/v5P//RP5xc1Rhfp277tL/rr7fwbe0vGh7auBF87GcT6P/wfP8NLL99lMplg2x5ogqzMMCuNyXSI59SY6pKH269gmTZra5v0ltpURcF4MGH7wQ5xFKFpOhUVmqaRlynhNKJRb2HbAZ7rMBwNmQwG2I5NVZbYjk+93ubs7JgwmiKrCttyMHRBVRVomk5ZVlimTlUCZUWr3iQvcsqyJElzFlHE5uWlbL5I1PUf5U1NBQCKoijKm873fd/3LQ3/m+GwW/M7lmV2gZ3f+VmSxjeSJEMTulgsQvI8ZzJakGUFURSxpDc42Bng+z7tpQDTcvjsx19hdaXHqy8/pN1cYjTYJ5xUlHlFOC+YjkOESIiihCBwOD6YEQQBs3FCkpbUao6xttb8uv7Z5PpwNN/Jy+QPSyF7uq6/19L1HSH4uJQXN14X5dpG8WfXNrzvvXql/djZ4Yzf+J/u8qlPv8IinuO7AaUsCdOQIKhhGg71Wh1D0xDApY1L+L7LdDrjhc/tkiQx9XqLXm8V36uxWMzIsoiiqLCtgFrdwDJNtMBC1wyWTZckWZClCXmek6QTsjTHNEyoJCCRVEg43+eX8guFwKrz4EJKkBWOaaI7DtPZgjSrCHynEJpxcrEjqyhfGhUAKIqiKG86dqVd+Shnoz9QeyaIsqT7r/4sCMzHB/0kNDSj9viTt3nfN7wHzZDs3B9wcjyg2WmwmCVYVkSRF2R5iKzOC0Stri/x8d98lZPDQw7aFvVaF8ezSeMS13YxTYswTCiKCl03kUhkJUCTtJd8T2jVI7Kq6qOz7EqSR1GlyV5K/nV//ju+rZnLSuiOOLX8pVfTNNXfykWk3v/+9xtf8xXv+J5HbtR+eHnD2zw7nPGr/+QFXvr8Q0azAe1WG9fySNKc69duoiHpnx5TVTn1oE0Wz4ljnaPDFKHpCFmhC0EUzugjCGpNdNPCNU0M3QApGYzOSNOERqOOrpnomsFsOkPXdUzTwtI0sjSlkjkSMHQTTdPJsxwNqER1HgkgcFyHNE2J0xRdA01KBv0p81mIrRmWFDQudoQV5UujAgBFURTlTUegNwAcyzCEsP+1n5mGeDRLQn0+HZtlFRHFKV5gs3W1B5VgPk2QZcHewZh2u0EcJZSFRpIW5LnO8mqPcJGyfzjgySdWMUwDx3YoywRNlJiWA4ZGpYHQDGxLw7Z1sjyn1Qv0zlKw/vKnq2xvdzKzTK1ajCYii+artudMAt0fl5OjpzXJ+EMf+sBv/9RP/exbcif5m973jqdXVvz/KAi0zbP9iF/71Zf45GdeJE5z1lYuYZkOZVGwstolyzPOTs/odlcxTYN+/5hur0fgeURRRBbHxHGIJgS60PFsG9/1sb2ArMwY9I+hqLh69TEm0xHHRwe4tkNV5lRFiiZsCqmDqJAIPK9GlhdoAqQsgfMCYFUlMTSNsiyhqjB0E8/1iJMFjm1h6zq9dg1KTFHKpYseY0X5UqgAQFEURXnTEZqo3brV13RTM6ryf/lb9oEPfKA5GYVzUzeX8iypxuOI8XDCYKCzutwBwLJNLMNmMc/J0hLXDajXJIHvcu/1PZZXOjz19pu8/touhqXjBi66YSJlyfJqi8WiopQljYZLkWs0Oh7Ntkeelwg9Y6nXwA0cq9lodfIsytJ4cX0yPwt83z4WWesUSYJphJ6sX/pL3/ftr5qa+ZrR2zy+fft2+Ylf+ZUNaZRukjIpbHv4Znw78GM//Oe+aWOz8Z+ubQaXXvn8Ls9/Yo9XX39IVpasr1/CMFyqsiSM5hwc7BLFC27ffIpOu0uap9y6dRuB5OjwkFEyYjoZUskK36/jBTVmizmjyZRmp8vNx5/gkceuc3J4zGy+IPDrbF1+hCRLmU5PmY/PELpOEDQIggZ5XpBnOa7jksQhRXE+vLquI4T8wteSLEsxdJMsjcnSFMvMaLd8bt7c5LOfubs9D5N7FzvKivKlUQGAoiiK8qYjtMrq9W5bhm0g0vR30zGKrPrK+SJv+7W6WF5b1zVhoEmN1fUu03FErdFAaAUlUJYCL7AZDMYIoSGEgSxskiTn8tUesAVCghAsFgkIDc0UmJZgfX2VTs+hqio6Sx7D/gLbMTFNqErB2uUOlmWJg+0T24iy5Ul40k7n48uiyPdBhIZtzWSeLKUz85pum+8zZmfj33z4wqKSwi1SaWSFkCLVTn7gAx941bDtXb0o0v/y7/yd+Rs9jr/07LP6y7duiY985CPFG/Hf+/Ef+Qtf/453rv3tRtu4PB2nfPZTe3z6ky/iBQGrq5eQleToeJeizNA1g6BW5+mn30G9ViPLEqI45d69l+mfnaIJjVqtzY1HnqRWb1CWOcPBkKLSQGQkYcjnPvVJVtZXuXTlGt21VaJ5zOuvvEaz3Wb18iqf/URIEs0JoylpEmLbHkVRYhg64vziP8iKNE2wLBspK4QQVFVJnOcYho7j+jQbywTNBpN5iJRakWXZwRsxXopyUVQAoCiKorzpWJrWevJK80nXdIxQT3j22WfdWq22ZOf5e2RR3JJCw7YCdK1i98Ehvh8Q1B0WUUZZSmp1F02fU8mcesMnXCTEcUFVQbiomM1yOst1pJRYuuD0eMZoFOIFFkHDZTLOsByBZTvMpuf31C3n/C56XhRYjsbSRgPP99l7YOtFmeoindtkiZPkSSKybJqn2bomWFieMzZNqxS6sZAlMi81wjTTHdst8fO3y0g7Mm0z/v4/+2c+8bf+21/41J07d7R/tfLx7/jBH/xAU8S2W5J4cZzqNSsYFJ5X/PW//tfnQoj/1RPkO3fuGB8/OPhaMzn+JDD9Un4fzz33lxtpOl69eq35V1fX/Mv3Xjvis5885PMv3GVl4xL1VodXXn6e/tkJvd4yT9x+iqKUrK+ucnJyxMnJEZPJlNFogGVZ9Lpr2JYDQicvJKenQ+q1Jssr68wXY8oS4mjBeNzn1Zf7HO4dsLJ+mZX1dR67fZN79+7ieg43bz3D6y8/T57HQHWeAhSNSp7n/JdSggBZSdI0QQiJpplUFWiahmEY6JpGSYHp2EzmCfsHpw+3GlvDL2W8FOWiiYtugKIoiqL827hz545RTUd/YZHk8iu/8smr29uHuy9+9jVRalVQ89yv3riy+v7ZLOZkZ0S3UyfJS5pdj0Y3IMtK8qykqiTjfvSF+/sus2lEWRQYloUb2EhNEPgmtquhVQIqQdAwcBzByWnEfJaxtOTT7XqcHs9xHBfHK3Ecj/EgwnIkvaUWWVJQZhWnBxPOdk9YjEZMZiMZJWFeyTh1HWvhOE5clEUmhChNy2ER5TLOiqrVahHH0anjOTMJM92292zHuafrpo5mzoVWRUUlD6oyXxeVuCQqva5r8qoQRi+oNW7meb4TLsKRaYuPW7b58crVDtvtS3PYYTZre3I2uymr/NpP/Hc/93Nfyu/j277h2/yNJ7rf/9itpT9640b7q84OB/z3P//P2d4bsry2RlmVvHL3ZQ7399nauMzXfMMfoN5qMDgdkcxShmcD4niBlBqOYwMlYRiT5QW+X6PeatFsN4iinFrdp9UNyLOc3QcP2NnepeYH+G6TNEvIZEG92UAISaPRBHQOd/c5O9klL0LO83ueP/iuvrDbL6sKXZzXRZVINKEjhIZlGdi2SxwndJaW+dpvfC+PP3WNf/ZPP/3TP/vf/9L3fqmfY0W5SOoEQFEURXnTuHPn/ca8f/z+wHEv6zAoynJzMV88U8ZJb7YYG6lrt1c3urieh2EtEIaJberUGg7D/hzb9hDCYDyYkUQZVWGSJguE0EnSnJV2HdPWGI1jqrykXtkURclsmuNNdWzLYjhMqcoSw8jQNIM0Bt/XyXPIs5zRNOTG0iquX8N2UzRh4NZ9gpbHfLTM6HQi5qOJdXywa+mYbjhfFHEyLxqNdiFsq0qTuGjWm0YWF0mZlLV5NEorUSWu619JNP09CLHQTaNfykKAHgR244Zlu81SVujYnbUrPavZaQavvbx3u9tezhfR4g+N+5MHruvunwwf7OuGYRbZWc2yjbj0/B//Un4f/+Ff+AtX2x3/Rx99rPtHV9a91YO9Ac9/7pDJXPL42x5jNi14/sXPcnJ8wrWtR3nf+74Kw9TY295jOpoxG42pBQ3WNzbJioIkjdC0Cq9ew7Itmu0G9WaNRtsjaNQoy4w4LigLeOLpr+dzn7zHyy/dJS0r6u0Ohu2xmM0YnB0wH09Y3dhkqbdKlWeMJ6dkWUiZ5wiq8x3QSmIZJlVVnZ8GSKhkieOYIGA+n2FaNo4VoEmDe6/slfNpfPeN+TQrysVRAYCiKIryppEOHm+UWbopzXKpqIqpaRp+FEePyqpq2sIU2SKDUqDpkkKWOIFJuEg4PlgwnsQYRoKpS8qiIs8hTUNcxwWtwnZchIDJaEqRauhCMB+fp4wsy4osEximpF63CRcxnmfhuA6zSUSjbbNYFIxGM65cX8Kv2SAkRSVxPJtWvUGtU0NIwfhsQjKOeP3lNuPhxCiyxDDmk6qqhJT4VbPtiaqqisWibxV5VhmaKDTD1rJUVJahk5VJXIbRQheGYdl+0wyCRnd1xSjKkjTJqTeajIcJ7W5bW1lr29v3znq1Wr1XFNW7KymzJIpkkWRJEi0+zjz6Ux/6wAd++ad+9ovLRuQFxlc98baVb+90bX/7/ikf+817nA6mLG+sU+QJr7z8PHla8syT7+Hq1iUe7uzwysufx3d82u0O08mY8XhCnKasbKxx+9ZjLK82MEyBruvnBb90C900sGyJJkw8z6DINQ4Ohnz11z+N1/B58bP3SKuK1dUulqORhTOKPOHeKy9jmDZFlmFZDrqukesxeZagy4pKSoQQCCHQNA0p5XkWICRFXqHrAkMXGLZJreVjm2IuJb/1xn6qFeX3ngoAFEVRlDcHiUi+N353WZZ1IZwAKdbKqvSyNPVs2xE6BrZuEiUFQpM4ls3gZMjyWpc4zmnUHIq8RBMazY7PaBzjBzVm0zlVKZBUHJ0kiEoQBD7tpRpZVJAVGVe2eucFogywTYss9ajVDKqqwrRtoqxgEcU4jk+apZTSYxHGhFFCU7OoquILj0w1Ous9qm6GdAw0AYd7Iw72zjRNk2iloQsExyeHmmEHtuVr0rFsWVVCaEIITUiKWKvXmo1lXbd003aE7tr4DR9NFwxHUzAlZ2cLrj22hOHprF9tMT4LWWp6jEahJSuNPCtsUYj3e577rsVi8b7nvv1P/TWzbm7/zb/58//Gd9v/i7/6419//Xr7LwU1wz84GPPxjz/g4HBGVUESjrl/9yG6brN1eQ3btnn55Rd5/cFr1GtNbNujLAuarTa+18B2DTRhsLM74OikT6/bQTcEi0VEEpUkSY6mw/H+IbPxlEdvXaG9ssa9+3vcemKTqqg4PBijG4LVS10Od3dJsowsS5CyQFaSLE/RNA2h6RimCVVFnudUlUTXdaSUaJrG71wR0oSGaViYlk93tU1vtU48TmPbdGpfxk+5ovyeUAGAoiiK8vveX/6BH7iU/9nFVydR8o4szw3qwSVdCDMrq26WSdvyAyxXUgK+67JYxDQbNWazEE0X1BsWrmNg2hZIncU8pFZzsGydorDIC8iyCsOwSNMIqVUYlsD3HLLMpMhysrSi35/TbNUoZEqWushSY2d3yP2Hp1iGjWWa9JbrTMdneIGNaWoUeQoVhLPze+2r68skRYntGyytNOlttNi6sczwdM72wwGeb9LeuKmZtkkYFiKaJ1iWSThLGJ716XWWjFqrSb3tkcYVo1HIaBZjWyYISV5Cc9kiTmOKWYFpamR5wXwesZjHJGmG5Xl4XsuxLcuZ78b//qS/uNop3OPv/c7v/NG//Xf/7v/PFJc/+t0/WjsaHwXv/qob33nlavfP1mrGlU/85mscHi4YDBPOBhM802W+mNBZ6fLUVzyBrdt84rc+zvb+fWp+jW6ri9D4QtXd8x33OBKU5RivZlNIwcH9bdI8JWi1qNda+H6DvCx57HabnbvbvP7KPsuTBFlsEgQujXaN0WjB/t4xjz95jVtve5JXPvcaaRKSZwlSlucnOVUJEqQU6JqGaZoA6LqgLMvzkwD9PAuQZZqYpoXnB4RhSjRPOTocDAZx/Prv0cdeUb5sVACgKIqi/L724z/8/ZtJGH1DGsXfUuRlj6qykyRta7pRk5XWzPPz6yLrW10QFa5rkmY5umaQFza2o6ObOqYhycsCw9bQYwO9yhGiYGmpwWyeMJ+ngEa7U6fedLFtnfHZgjQuabRrjEcLqqpE16HVbLL/cECr5XN6coomPIRIiOOE+bTDtUd66FqG360RLkLQTMJ5RLvV5OxsSBKlyEqyvztAInEsk4ODCWubLdYv1dEMnek8w49SZiObIs9pdl3WL7dAF6S5RDcMTndPSAvJ6uUm4SwGaTA8WdDqeaRpSRym6GZFUcDhwZgiL5GywrQs4jRDMwxWNtb88WDxFVVVycWwb33Hs9/8dz3HuydsTRPIpLd+5d5kMvGS8fiRWTX8I29/77U/eOvpy0+ZIjd/89df5nOfeojtu6CZVHmF3fDYurnFyqU6s2nK5196jZdfe5V6rYNjOpiWhl+vnz+61g16q8ucHg/Z235AEi+QssQ0HBzPxW1MqdWndJd61FsN6o06b/vK25wcNTnZP+Lll15l5VKPOIloNOtEccZgPMV0bbprS4SLEclkikRiWTZJGiOrCkPXkJqOruvoX6gkXJUSKM8zvwJCQBgusJyAbqeFlEIOx7PffO97337wz/7ZP7rgWaEoXxoVACiKoii/79y5c0fL89lqOY1upGH6jiyKb5e53NKF6KVprqdZbjqBY5eV1DqdBmfHY0pZomkSx9NoYFEVBhUFvdWA2Swiyys0dBBgugYVEk1AWZYUhcQPPKIwwbQdJpOUKKyY9EMs28SrF19IDamjaxV5WhFGCQd7p4yHCxpNjXqzheU6tDoeQeAwny/IkhmtJY+SlCLX2H94guc5eJ7FZBpyehKxtt7mNJ0SxiX0QwpZ4tc8ZmGIqRvESY4QIHWBMExm05T5JObuKw9Ikoz3vO9xOl2bIss5OxjTPxvgeg7tdpOgdn5KEc4T0qRgOhnj+T5pmuFJj7Iq6bQb1NoeVV6KSjS/aTQ8fTyW0bCSVWba1nByNvlEVVW6Yftf8Y6vvHzryWcubZpGxqd+6wGf+8weUjdY2egyHsZsbq6Tyxy3bvLg7j6vPL+NYxs8/dS7mC1Clpe6rK8vEy1CZos5cZQyHs/QhM71R24idI0srTB00EwNy7ap8oL+wQn9w1O6K0vohmDr2gqPPbrF4eGIo6MB125c4vOf3aUoBK5jMR5NkZVgZX2dskhYzIfngY9pkGXZ7+b6B0FZFuc1AZBUZYWUFYZhgDg/pfCDGpcurREtEnlyPP7Y/+3n/9cpWBXlzUYFAIqiKMrvOy6sWWa9OconV9IoeTyP0g2hW+2ykEGWFnqRV8J2DGE7Os22T5YU+IFFRU4lzne54zghDhOyuEJUBlmSUpQFpuaQJhlRXOD7LmleYFg6liNotpsIXWM8ipiOQ2azBUurPUzLJM0meJ5LnkiODgac9adUuYaUOrVmnVqjDmiAYDaNSZKK+Tzh+CzCD0zKtGRlxWc6CimynHrdYzKICecpBwcTikIwGs7Z39UJGhbNTsBsOsHQTExTQwjBZDwnywQPXntIEoasrq3R8F1kUXJ6OOTkcMRiMSMMM9rtNkmck4wSsqxgPp8yHvSZjEY4nsV4dF78LItzmu06pm1i2YHWbhmbs8loczGf4AutmI/n7/YDi2fefaX2nq++aUz6Y+7fPeVwd0KalWxeWWP74TF5Kjg9OuDK9auE05zD7T4N30QzDFY3VrnZqRPUPF5/5S7RYsrSaovVS3XSWHK4e8ZoPMG0LYqyYDIaUOYZhmWy3F0mqDVIkoLZZAFI7n7+Lu1eh9tP3cIyYXd7QLvdwHVtxv0p3W6H4937hLMJtu0jq5w4nqFpYFk2lBLE+TpeyuL8LYdhnBeD+8J1oaqSaLpFs93CcXV8z6PmNyYXNysU5Y2jAgBFURTl9x276Rg1u/zDk0PRlqV8KitKzxDCN2zPsCshDMcmqDnkeY7jufi1BMuW6IZJUVSATlGW5Dncf+2MvCipCkmjE7AYLahK2H5wyCOPXkY3NGzXIMty8iQhaFpYlkZZlcxmM2pNj+lYx/dtOi2f08MJnhtQqwf4NZtrj64wnaZUZYZpm5QSBoOCNMnprrR5uH1EGHqs9BxqNRvLMoiinJ3tIe2Oz2ySc3oyotFqAFCVFadHfaaTGbZjk2cJQWBzcjRkPkup1wOSZEqj1UQ3dXa3j1nNW0TzFNu2yTOHokrpD4YUWUm9UcdxHZhAXmQUeUaWGRR5gR+0GA9nGIZFrR6QpSmlFDhBnUroLC23jMd6V1obl9s8+sQ689mIB/dP2X8wZTpNaDSbnByNCRcVJyd7RIsZ7ekSUZojKRnPJpSlRBoGRbXK8eEhly6tkCY9NE1gOoKV9QbLmz2qXDAdLwijiLJYpUxzsqxiNJqwt7+LbuhsbF3CtGr4QY37r7/C2a+e8ZVf8x7WLi3zL37t06yuNFle6TCb5bi+wWIskWVJlmbomk6Wp5imjeU4lHlGVRXouomsSoqiwrJMpBTkRUZVQVBvYFoGS8sNZuP4qNTK7QudGIryBlEBgKIoivL7xn/0Ax9c1irrfafbB0H71vo3Wq7XW8yilm7YXiGlE/i20C0DhMTzLYTQzheYUiPPJFUpSJISy3SZjCeU1Xmqx/kswXZNEBqWpRGFFZ4XMJuGLK20EUKSLGA8nFKPbKpKZzaKMS2HjUsdDEPH8w1GZwsWs4LeesGVqx3qDYckTrFMDU0zKauC7rLLaJgRNGw0I2dtvQOyotlyOdgbs4hyZvMUBLS6PsfHfeqNGo1mQJZkzKYL8nlGNkmxbYuyrIgWJmdnJ+R5xnzqIoA0z6hpGQILpEFQ85jNTimrClnBbLKgXqtTVCV5VWEYNoblMF+M8PWAoiiIogmaYaAbJhIoqoosL/Bch6BmceV6l2fecwmvZrG/02f77ilnJ3PiSLK/f0ZZZszDGMfxSPKIUgPL8SmrhFdfeYG8KDFNiziJefnzn4NKsra6iWXWMUzByuYSk3GO4zqYtsTxPfxak7IqSNMM3XLZkIIqT6mKgsUiwrA8DEOj0X4PpycDPv3Ju3ylb/E13/BO/vH/81+wFlW0Oz02Nlc52tnHMi0k5fliXwNZFeT5+R1/zdChqpBUCCHJsgSh6WhCQyLI8xLT1DGMivk8GWaxiC96jijKG0EFAIqiKMqFevbZZ/VHN5Zu9Qrt7q6Rlto8eVJU2jvn42S91vBXTg5ORbvTdAzHFJblIEtJkkdYpo4sUuLZnJO9M8q8hURyfHR+VSdNCyzbIq9KOt06hmkhS4lre2zfe0heSirpIGVJmUqKPGU4HlOUNdrtBp2lOlXpnb8rsAWyAr/u014CNzBYWqkRxwVJUtFd9ljMY2zbZG21AdWMk6MprXaNs8MjWp0aZ6cl9+8d4TjnC3jL1Rn2I5rNNnGcYlsCwzDRtDqu7XF8dMh4PKKsSjRhkiYRmtAoypzVtTUWi5AqK4mjmCJLabV8JhOXspDohoWh68ymI/TIxDAtsiTDNG0kBkKY6IaObtpomkme5USLhPk8xPddltc9bj2xhm7CaDjhwd0F+9tjPvvp1zB1D8s0mE7G9McDWp0Ws8WUw4MDnnnHu0GveP7TnyIKFxiGRSkzzk6O8D2PTqtHs97CdX3a3SZLK23yssCt6chKZzQcMzgbkmWCCgt0A9cysR0d0xSkcUo8nrG2sYZTr7Fi2vj1FjvbE9q9Hl/7772XFz+7zUvPv8K73/0knZUO4WhOUGsxmfYRQqLrGoIKWUkANCHQNKikQJbnlYA1TUcIQZEl5FmGpmtkWdZPRkb/YmeLorwxVACgKIqiXIgf+8EPPVUJa5YXhcyT/Om9PH9vOc+6aZ4sp/MscH1n7dZX3KiNRiGmadJecYjmJRoa6TwjikqieEYcx8znC0zHxfNdNM3EtEySJCOOI+pNh2arznA4p1hkHM77+L5HUVUsrzbQdYnv2eztnGHbDmlW4voGRVHSarcoq4yilNi6pN21WFtvsLs7IEnz89OERUZv2edSt02j7n5h9z1hPo2Jw4Kd+0dIuY5u2kRJzHg0oZIFT7/9NrphUFUpjqdh2xZpVlBkMXmWIsuM/tkJjUaXUqbUghphGFKv1VlabqMLQVVVpGkKlBQF2JaBrLlICaPBiCIP6fZ6TKYTDMPAti2ajS6GYWLJCtcL0HUDz3eJ4wRdF7Q7ATefWCZoarz84iFlKhkPIuK4oN8f4bo5rWaTNI8Zjvq0u1329u+zurJGu9Hm7uuvEM6meLZLKSVVmWObGlVZUlYlo+EpaRrz4H6FYRpIKag3WzSbPYKaS6sV0Ggtc3w0ZDSckuY6SVTh+i61wKcq4eG9PRqtBs12i1rNRk9Ntu/3Wb/c4j1fe5vf/NWM3YNDlldXeXH/CM9xaTZ6LGZDZFUCnBcAA3RNpygqBJKqqjAMgW17JGlKrd6gs9SiKAqEFCe0h+mFThpFeYOoAEBRFEW5EGUpn6SMrwL7ZZY9WhXlk1mU+WWRt0zbXh2MF35WZHgNhyTMMSwD04ZolpJnkvksZzoeM+qPkFSEUcjmVhfbBU1YDPoT/JrJ6lqH0ThE6ALXCVhEKbee2OT+g0N8z2I2S8mjhCvXVoiSggf3DxkNE2azOWGU49ccHNek3rCwbAOQDAcxCEG9ZrOYz2l3V9F1iabDaBwyHkekecH+/gmSCsOySdISKkn/+ITLVzbxPIeyKml1XTQ0jvanxFFOOF/guz4Cge94tBpNhNApypw8z2k0AjRR4TgWYZii6QLb8hj2+3iuS56XgEYUz1hMB8wXUxrNDoZhkMQh7U6XNM0Iaj62dV4FudOpM5+HtDo1bE/j6HBEsV3y0ud2kKXEdlxGkzkInf7ghLzMebj7ECErzo4PCVyPZrPD3t4OJ0fn124QgqLIcGyLqihwHIeyzDnr90mSmHZrCUPXydKE+XiBIRw0CVUFo9E+jufQbNSYDiNMQ8PRTZIoQwqNoNFkNJwxHc/oLfco8pKqqLj38h4bV7o8/sxjvPriNg3Hp9Pt0T85QNfOd/+LPAcBRVGeF/4SFUV1XiTMMM6LuwlNx3EbGLaH5VqcncwfToeL/+ZXfuVXVACgvCWoAEBRFEX5PXXnuee8hVH0sjhp2qZxu0zSy0kSN+t+87GoSjxN9+pB3bNrnRaLWUKvW2NQzkkXGa5jkCwMslSSxBmB53OcnGBbNrXAZW3TJwotHtwdnu8O1y2OjibYnolh6sxmIQiN8SQlnKdMximzWYhl61xZX2KxM6DZbBLFC2p1n7woqTUcpISigqWWz+dfOCKJCw73J0x9m+WVJqZxnjWmyCVHhwscz+T4OEKYOtduXvvCIjtgPhwgRMXW5XUMIXFrBo5TkScamhQUSUK7VUMTAs9z2Vi/xDxaUK81KMIE3/fpdFu4jsliFgMVaVYw7M8xTYOyEviey2w2Yzw+JUtjlmoN8iwjQaBpOovFFMf1sGwLz3dxfQPfNzGtgFrToShzDnZmTEcL0kQSRQucNOPevZcpco2NjQ1Oz06RSLqdFYQQ1Bt1iipH0zRs18V3fKSEpm2wmIzPH1rbNrPZhDha0O2t0Gh0iKKQokwp4xIxN4mygiArWV1bwzAEbsNGMwSLcchwMEUYGo1mG7fm0e02GPRPGU+nnB4eYpg2N27cYOe1A5aWu7RbLU5PBvj1JnE0ZzQ4JklCDHF+9aesSrRKIKUGVOdpXoWGrmtkeUZvaYWV9TWuXr/EeDC+/zd+9mOfutCJoyhvIBUAKIqiKF92zz77rPXRj340+9Hv/u7aQqZ/rAiLJ/NSLsosR9fMr07DjFkZ9RzH80pKbM/FdjXms5Ru1wVykrhCIkjTHM+zmM9ndHsNrj56lSRKaXUCqqpkNs3I0hLb1hBCJ69KttaX2L434OSwT1WVnBzsUZUlWVrhBz5Sluzs9Bn058hKww8cag2HVscHJLu7Y8IwxnEcHjw4JU0rpJRImdNbWmI6jpFSMJtFzGcRKyttdrcPWV9doxAlaGDZIHRBb6VHs32emlLmGnmsM58tKPKcJInwA5ug7nPJ3GBn+xCq83vqVVES1F0810JWEllVaEJSlHB0csKVKxscn/SxLJPxcARSo91ZxnYCZJWfZ8IxLCxLR4iSLI3wPRsqncU8Rgid/umIdrtJHKYkSUEUpkhh0B+MKYqCdmeFg4N9HMflxtVbGJZO/+yM+SLk6tUb7O9tU/MDkBpCagxOj9E0jU6ry9mgTxwtaLc7+H6NWTQlzwvq9WV6vRUs16feamJbFkII/JqNbumsrHWZTuZMhhlHR6fs7x+i6xmmKbh8+TKd1S5PPL7FZz/7eQ4Ojul0W9x7fYd2ZxkQTEdTWs0utmlzdPiQNJkiRQWcBwKU1fm7AAmSEil18jynkJJazaMZ2EQz69Vnn71dfvSjr1zcJFKUN5AKABRFUZQvqw9/+MO2lk7f9QPf/W2juEzeZWTy64qsWC6KYiBNY7XWqXXTrG6NJmPn6Wduc3zSx3Ac3MDl/oNj2t0r2J5LluZkSUWRl1iWSYVBULeoNzzm8wWu53D/fp/ZqCRcxEwnE3rLy9x4fIkozFjMM9qtFq+98hLD4Rnd7hKmvaDZapCkGUKDeqPBbL6g1a3h1yzSLKeqJJZjkeUVn/rEfXRhYugFURxj23XGo5gsL0iTioODAdceWUJokmvXL5HEktP+BNu1yPMKIQTLSyvU6ha2ZXF0MEI3Stodn6mWoBs6YRRjOiZlJVmEU4LAo8hTHMdma2udLM/IkhJdF/i+w97+AX7gEUcplYQ4zdFNi5XVTVzXJssLDN1mNpshixRNNymijLIoSJMYoWnUGw1M08GwQAiNosgZj4dYtkWapQxGfTY3rzGfz0jzmI2NSxi2y8Od10izhMsrVxiNzjg53adZbxMuQjQBG+tXqDUa7O49RGqCS1du8MgjjyGlhl9zsByHOCqYjqbIqmQxndKPQ9IkJai3cDyfE9ug3vTYuNxmZb3GbJIyHk6YT2d8+uOfxvZcHnv8NldvPMposMC1HRzHIYxSiiInSeZE85SylHhei4qSPIuAii9UAAMpkRrwhcw/fr3F8voa3dUWSZSEJ/uDv//Rj360vMBppChvKBUAKIqiKF82f/F7v/dWmYZX4jhbI0se1aRYraT+qG15vTQOL+dZVpNdEVTCFEWlCdODdq9OmuSYhkG7WWM+LUAzsEydLC2QUiIErK7X2dxoMJnOWFlpMBqnRFHJ4eExo+GAbq/H2maLyTjmwd0+0/GcMk+Yzyc0mh28oEVeZEynCwzTpCwqLM+g0fQJ6hZZUjA4C3Fci2gR0W21efjaNsvLa8hMYmgGRwcneK7D+uYqo9EYqpKrV5fZfniKrkmCms5ZX6LJkvEgRpYlZZbz8O4eSys9DEOQpDlFJogWC6J5iDAEVVmQ5xlpGnH58gZVlaNpJnGckmUZhmlSq/mMhgNOjg+58chNBv0ZUoMsy7Adm7LMyLKcpZUeo+GI2WxMVZUEfoDrugRBjcV8TpqntNttHNfCcXTytCBLczQBQkqm4yk1P8AwdZIkod3ukqQJ4WTEYj7B9332dx8yXyxotFokSUpepliGQX94zHQxZevyVVwvwPcbmKaN6ejU69YXUrmanLo6Z/0xEoON9SuYJswXIUITFEXBYhKSZwnLK12WVgN6Kw3itODyjS32d3Y47Q+43mzh+ybT4ZgkjVnMFxi6SVXmjManmJZFVVQIYaJpJuK83Be6Bhry/JTGdLAtn/bSKlevbeDXTSzH2h/n+f2LnkuK8kZSAYCiKIryZfHDzz3XLcv48TiOH0vCRVMvi6c9x+9JXfiW5zZdNH02mdtRlOumZaFpNvNZxfrlHvfuHjMYjektNzkbTJGVYD4MWVnpoOsheRXz2O2bNGoWWZozGkTcu3vG6fGILMlJ04LOUpOSkvEoYbEIQRQMh2c4jocb+OiWSTSfE0cxZRVSq/vYXpullYBW2+aVF445Ox6wsrzE6cEpg6MjqqpA0wTj0ZTLl1c52JvTaQf4noEQDp1OF8sqsW1JlkhODvvE8zmBt8RksaDb6zAZnjEcnr8pACiLkvkkOb+SlKV4lo9h6NTrTYaDPq6v47g1qkqyv3fI5uYSfs1jPFgwmy2wrfMiXpPxDCHANB2EqFiEM9ZWN8jTgjzLkZWkFjTQNIGmaWR5ihRgmucpQRutGrIqiOLz7zdbTYqywDAtlpaXefDgdUzTQVY5+/sPzk9GdIssTsjzlHqthq4bJDJGIpFC4DoNGvUGg9M+jbYkyyocz8OIDY52pxgGtLptNrbWWL+8wsnRmCwpKfKKoF47f7RblRimhqHrjAYhjbLAsEzqdY96w8f2XPrHA6LFHMtyOTo+IxyPaDZqxFWM0Aw0XSeOpgjAMM5Tn2rid6oA5wgNdGGgoaMZzvkD8OmM5e4Sg9PRy7/wC7+g0n8qbykqAFAURVHecD/8fd/9tCyT9+ZJUivmi/cWyaJWyapr15stu9Zw5lFsW4FvNG1DhFHEpa0N8rJCtwT1doPNLcnBwSlNUVGru6QRjIuQLM1Zu9RkEcb0+2Oi0CRLS15/5YiXXnxAnufU6x38wMf1Avb3hxi64PRkhyzLmc9mGLpBksdcbTbITYPhoE+z02J5pU0YpVhmHVMzKIuKWi1gNDhjNh6QJgV+4HD3tXtcvrJJt+dyegxBYNNoaPRWltBEyWy0QFY683nMoD/D1HVmswVZkuMtN1gYgv7ZCZato2kGtVqNcBFTFucLW9dzaLYazGcLllaXaPXqDE7mZFnMeHTGxkaPPMuYzeYkac616zeo1wPiKCTPCsoi4/B4n0atDgj6/VPSJMF1XTw3IMtjgiAgSRJ0XaMsIU0Sjg8OQUBVCTY2lwkXKcPhhNW1NeaLCE0zWF5e4qUXP01ZFjQaHcIwJM8yyqpCUFHmKVIKtrZuYBsWk/GMwbCP4zp4no/jBudF16KIqoI8F1TV+VKk0fRYXWsxm8acnYzRNY0yl2SFpMhi4ignzyWD05zxcEAYD+murFOvL+FYJod7hzSaTa5ev8Lu3ZLFbIAb1EEKLNMhTyOqKqcscjRdRwodTTcoyoKqqvBcG00zqGSFEODYBnXXjPf2Br8GqOs/yluKCgAURVGUN8wPfuADzcrksSovHidNni6TpF0k+bpW6b5t2nXTcvx2p2G6gRTjWSzWNpd5+cUd8qJkabVF0HAwrYqV9Tp5cb6oNKTGPMzRhEYYpvTWbBzXJ0/hte0+w/6ch/cPiMIZ8/kMgU6t6aEbxvk1mf4pRVKyCBfkRYZEI5xMODk+JksLtq5e4rEnrmM7GkfHJ5ye6CSxS56n6EIwm00RQsf1LKQEqNjc7GAa5wvldseh3bGodINoUTEfpxzvjpnNYnw/IM1y4jjGcwyGZwOODg4YDM8oi5KVlVVSyyaOY+q1Go57nmp0sYiIwozeyhLj4YLpZMaLL3wG36uzv9MnSaPzdwd5iuetkMQpVVni2Danp2doCEzLw3E8DMOgNAwc2ycvUnzfZzQaYds2WZah6zrDwRDbtinKknqjeZ6bv2Xi+j0mo5i8gGvXH2M07GNaDiaCMI6QCFy3gabpeH7AbDah1WxyenpCmeW4jk3g11hb3WI+mzIZTWg2Ovg1D8u0WF7pYTs2/ZMx917fRWiCp565Qa3u8InffpGzw2PyQqDJijyNKWVBViSYuo0sK3Yf7rKyusGVa4/QanU5ODxifdMmKSKyIkFGgirPSKIQTRfnxb4AWUlKWVAW8rwQmNDQNAPdsAmjOVsr11ldaVHmxUlRVK/wuy+GFeWtQQUAiqIoyhtBfPjD39Ut5sU3kFfXqyIzyYumif5o5dhtKqfZ7ratlcs9kZSSm2/b4MH9U+bzBb3VDv3BjJXVOitrTVzPIApLNi63GJwOQRMYhmTrRhPDFASBx+nxGMuWPLx/zMH+KWE0J80yrly7SpHrLK/2cDzBbCI5OxkQJSHd7jJ8YaG3t/s6Xs3i0cceZWWjS9A0KfKKVrtNVWhEUcbx8Rl5nBItznfW67U6flAjqBnIKqcqDdodh3rDJE0KGh2H+Tji9HjG6fGAoO4js5x63QcB4WxGFEZomkCg4dgeoHF2ekqz1cYwTSQl4/EMKcGyTF75/KtUVUVVFaRpyvJynUpWwHll3K2r65QFzCYLhCYYDAdomsCxHbLf2ZkXGrbtMZtOidMF8/kYx/EwTYsgCLBtG8MwKauKRqPGynqbzpKNJnTCRYxp+vg1mzQ1OTsdkOclne4yRVlQrzWYTkbMFhPmZzNM2yCOBZ32Eq7j4fs1TEswmgyxLIONtWWQBrohCII6B/v7zCYTylLSqNXJ85yPzxKuPLLFlWvXuLq1zunpGWcnE8q8wWw+QhgmUThHFgWUOYd791nM51y9cZN2s0schdx+4ja/8o/+HnmWUPcaSFGSFzlSSjRNoBs6VVWSFyWmAVIINN0gK1KEpnHp8gZLSx7Hu/3DSoidC55bivKGUwGAoiiK8iX78Ie/q0uYf7fM8nVTVGtlXjbzNPNdy2/7Na/V6rWtoqpwaw7dlkO/P2Z5pckLz3+OdnuZRsPn7HTEykaby1trCCaMRxMCz2YcJQR1nWfeucVsHjMdRchScHY8Y2/3CCl1HLuO73UxDBfbLXjksQ0G/TkH20cc7B2SJAuC2jUcx+fkdB/b8rh8ZYtHH71KkqWEi5wkTMnTAq0UnB33WequMBqcEocxlmXT7rboLnVZXqljWgLbMtFMaHcCxsOYJMzwAx3NEriBQ7tbp+yP6bR9hqMp4XzCbDxCMwzSLGMRhnhBQFkV+L5NkRdMp1PiOGVlZZnd3YccHuzSbHbI8hTbdjAtk8Ggj+s6rG0uEwQ+Z6cD4jhmMh3TbrdJ4pSTkwnNpsFiPjvf2S9y5uGUqsqo1Rq4vk+z3vhC5VsDTdOwbAvTMmg0aoTzhPksOb+iVLcJai6f+8wOWRZy6+aTSKDW8BmOhownQwpZEjQadNtLWJaLEDDonxDHCzY2t3j8qSdptuuURYZrG5ydzJmMpsRxguMEVEXC2ekhURhTb7XI8ozltRWGoxGalFy9tokbuBwfDxkOQ5JwzGh4cp5FKJwzHh3x+RembG49RoVGHrd517vex2/+xv+b+WKEaRgIDYRmIoSOlBVCSAxdwzA0TEOnLAsWsylXrz/B2voyuqZlVSU+s+Qzuuj5pShvNBUAKIqiKF+S5557zjTT/NE0zw1RpptVJa51251uUVaGEIaHifno2zaZTSMOD8Zc9j10Q+fkaIZlOoyGQxB1nnnHbZI04fhoxtJSwHgwwTQMXM9iMg7RdY2qhOEgYjrJef3VPcJFwtalawhdI8sylla6uAHIUrL38Jj9/R1M22Gzu4Rtu5yc7tPvH3Ll0k2We8vM5nOKsiKoBUz7C4okZzw94+h4n8uXbyCR1BtNkjhB0zUcp2Rp2cF2NEbDBFM3kFT0+zMMQ2Nts0WyCKEoiRYJQkIUzknjhNF4yHw6oqxAConnecwXIatrbVbWejy8f8jJySlXrlwhiRMmozGe52NaFpbl4DguRVYQRxFbVzfwPYfJeIGumeRZRq/Twa8FHB0cUgvO79q7nsWg32d3b5tup4eQklJCHEeMBn2klCz1llhaWaVWD9AEHB2cUeQV3eUG3SWP05MZD++fYWg6X/nep6nVPZK44OGDPU6OTllbu0qtUaNeryOlZNA/ZjA8Q1QQOA2SKOT+63e5/eRt4iTCX1+i2Q2wTIuV5SXCKMXQBEKXRIuEk+MheVYRzmZc2Vrn5Rdf5+TghM5ykyeeeRvW3hll2mK5t8zB4SGOW2M6OSFNInYevMyVK4/y+qsv0uksc/PRp7l/70WkLEEKhAQB5+8LihLHNrFMA9dxyYqS7so6zXabpaWA0WB2NhzGv/Z//bt/Z37Rc0xR3mgqAFAURVG+JA2Kt5V59meSxcJM5qOe79S6ZdlqePWaHceFvrLRo7fSprfewrB87r1+zPXHeozGE+I4p5Qlo9GcOE14+iuus/PwgIO9kKqUxFFCULOQ1fmDUllqPLh7jK45FKVOveGzubXEgwd79Hot1jZqlBIe3D9hNJiQpykbW1vYbsBkOiWOEhpBi62rq7iuwWga43gmw+EcXTM5PXlIHMUYusfR4QEbm+tYlsvJ0SlZlnH5apfNrRbzWUxxkrK03PjCY9aK+axAMmc6jpjPQhZhSpKG1BotoihjPp+SlTGz2YJGrUGchNi2z+raKp7vUJTguAFRFJOmKZphYOg2juNj2x6mZZ5fPZpKPC9gNg0piwrb9vC8GvWay87ePtdvXKHRaLIIE6qqRNN0rl65gaYLxqMxeZFRJgWT8YjLly/T6nQwLYOqKillRatTwwtsDMPg9HRGmpTcfHyTSmYgBEmYgSbRDIvHbj2JZhq0mjVOTw64f/8eo/4JtaCO7wVE8YKiSCmk5PjgCN8L+NwnPs+Nm9dYhDFaWeG3PExLI0oyastN/FaTNEoZ9PsswpDbTz7CyX6fk6NTPvEvP0mn1yMMY3zP5/LWVfZ392g2l5mMTsnyiMODB3Ta6+zv3KfdadNurzAaHoEU58XXNA2Jg2boxEmIZbYRQlBUJb3mMjceuUTNNzgb5mempS8uen4pypeDCgAURVGUL0lOWlFmG4Ft3ZycJi1bePUoCnW7ZojltSVOT8d0T30uX1/m2mPLeIHPvXtHFFKgaYI0SvmKdz+G6+loomR1rcP23QOSJMX3XOoNH9MSHB8Nse3aF64GtanKiitbl2k0z3Pir6y1sSyN2axA11zKqiDNYpAgq5RoPmFz/RKe57K82kPTNXzXQdNBdwQPd3cYj0bU683zSrXzIbWag2Fq2A7Ytk696WK7OlXlEdRjgrrJbBJTq7kMzwYsZinzRcTu3g7NVofReMiW5TKfjonDOXmZk5c5pmUShhGW5TKfpkwnJ/i1GnGaATp5HuO6HlJW+H5AFEUkacjSUpsgCMizivFoxqWtFdKkAipm8xDTNGm3W4SLhCSKyfKcWq1GHEUM+gNM06LTCpiMxix1l6kFAc1WAwlMxjMqKdFNg0YrYDxcUJQFSysB3WWPSjrsPOxjGjZ5EbJ1ZQnDNigrjY/95sd49ZWX0HWDsiyI4wXz+QQ0wcrSKq7jMT4bs7ATNKGRxBVxmlP3PYbDKfPZjGZriaIIMXUdyzTQNY/7rx2iaZIiy8mThGSakcQp4+kQpKTRbNBsdclymzgNSacRSRIymw/QdcnZ6QGNWgvPrREnESDRDR0pS2Ql0XWTsiwAn2Y9IEtDHFfimFquGfIzpi/uXuTcUpQvFxUAKIqiKF+UOx/6UBAW8yeyefgV0Wy26rv+xpVL1yyhG6K51CApcqI0Yuv6EnfvHtNb7mB7OpqZsHm1i7A05pMZs+kEISTLK22m0zmGpp1n/Jln1Gsetm3g+Q0GZyHzJEETJnmWs3Vlhc2tDkKUNJs1oijG81ocHexj2QGartPu9rBMm9PDPdIkRWsvUW81kNIgXCR0l2o8fHBEq1Fn+/59bCugqs7vh9frPmtrDRzHIYkSGm2PTtfHskyyNGFp1afMK+aTFM9zSJKEIhfICtI85ax/hKYZzKZTBsM+QtMwMDB1kzRLaTeadLordFeaLOYVYRjT63XJk4IoXlBWJWVZYlomRqZxdHTCxtoyzUaT86Q0OuE8pd700ESHo6NjLEdiGDrT6RRdN3Edh+FgiOM6rKysICswDIOqrPBcl1anzXw6YzKd4dgOUsJ4MMNxLISQNBou03HK2ekBna5PqxnguhqtlouuaQwHIZ/62PM8vHuPutvBcly0pqCqCqSs8HwPDUjTlM2tLRzXI6jXaPXqBHWbxTRjubnC5aurVGXGZLjg7GRCUUp0w6aztMJiHtNqWeiiIo5DpNCpNZo8vH+X06N9BoNjTMvDDwIsQ2c+m5JmEYZmI4gJoymuXcPQTYqioMgLHNsB7Tz7j+f6lGVBEWdc39xgZaXNdDTdn0/jv/uf/+R/e3ixs0xRvjxUAKAoiqJ8UdJidruM029PF+Hbiri6JhzL1E1N9DZ7dFbbrG2uonsdjg532by0zEsvbXPz8TUcR6c/mNLr+mQbPdrtLnFcUJQZdd9nOoyYjEOCwMeyNRzX5uy0j5QVs2mCYdjU6j7dJR9JQZ5LanWHySTmYH/A/t4xSytLmKbN0lITAMO08TQL13Wx7fM/fZZtkiY5tuGyv3NAnhUUxYJOrwWyxPcNdK1Clgmea1Cra3i+hmmaBHWJYcDgLCFNcgBqQZ3hcMR0NkXTDKazEZubV8mLijiOsS2HJA0RGji2T7O9xCO3LrOy0eJTH7tPkZU06w2Gs/OqvbPZBN+vE0Uxw+H5jresBEIYGIaJroPrm7iezdnJCUWe02z3KKuKldVlykIyHI6oigLXdbBtl/l8RlmVrG2sU1Yl8/mCKIyI45jZeILjOAS1dY4Pz7BsDaoeaZKBWVHg014J8GsGw9OY11864fPPPyRJEt7+zLuZjKeMJ2OarRZZmpJmMbIC03ap1zogbEzbo0SSpjHNpkO77VJUBZZl0mp3kFWBYTgkScZ4HDKfZ5SZwXA4Zzyc4poBln1eydgPHD7/4mdJkxhZhsTzKbomEEIgJUgpMQwTWVUkaYxpmhiGga7rCMCyDIq8wPd8TodnrKwts761hueaDPdHdyez7JULmlqK8mWnAgBFURTl39qdO3eMxc6rX2XJ6lZjefmRMMpqeVlqzW6HvJAMRlPcZsD60hKPPXGLaD5mOlnw4N4RtuWgCxPX0ml1bLanY56+dQND05iPp1SlRhzlmJaO69eopCRNSkCcF+equ+iGxqA/w7JNHEfH822ms4xBf4hjB+TpeTEn33UpypJubw1d16g1AsIwxK9ZeKbPZByT5xWD/vliW2oS09SxTQvXKVnMMgyr4tLlDkHNBqkBJXEc02zWGZzGFGVFWaRMJzMW4YI4jpFSkBcFhm5TlBVVmVEKmzRL0TUdxwtY2Vih2fNJkgxN6MiyYD6fkecpx8cHBIGPbTmkWUqap9QbDZIsQwjYfrBNmifoZo7lbBLHMb1ej0WUIKUkTVPOzkZURcnly5s4gcMijCiKHN/3ybOceThH0zSCeg3DsggXC/xaneFwiGt7GLpHksT4vsPlKz0abYfJKOJou+DkZMjR4RlbV1doNhos5jH90wFL3SWEfv6oNopMwmiGX/Not5ZodFs0ewGaJmk2XVot6zwlqoA4KTAtjbLUqaqCZstmdbWOYRoYhk5RwtnpgoO9Pqcnc8ajhEdvP87Syhq72zvsPLxLVExJihSBRNdACIGh2whDQ8rz05TzjEfg2jaarqNrFpXUcL0Wa5uXuHxlmSIMZ6Ph7O+/N4rnP3HRE01RvkxUAKAoiqL8G7tz51lrNkMf7776tXm02JoP+tSCmnZp65pueDVyWWAYJrbrkKUF89EJue9T5gLHhq0rK3ziY9uUpUazbbGy0kDXdMJFxI1HrnBycsJ8FuL6Jq2Wh64LRv0pmjCpyhjLNbEdAylhPs9Jk5I4qnBch9PjPq++9nmWeuuMx338WgPHdQjDCMOw0AwIah6Gdf7AVcoCx7HZubePY7k0L3UYjU5BCsqqpN5sEGcl47Mxb+vUEcIgiXPqjYAszUmTnCRJ0HSBkALH1mk3WxzsH1MWJYZukeYFaRySZSmVFLhencViTruzxOpGl6rk/CF0njEaDliEUwzdQFYVG+tbLBYR8+kIQzfwPI+yLKlkQZrmuIGP43i4jke73Wbn4TatThPPt3n+s8/je01sxyRoeBRlBaWg1Wrgug5FUbKxsUJenOfCHw2neJ5PnqcY2Ni2hWFIKorzE4bTOdvbxwipYZgWzZrPrW94hqDhcu/VPicnpzzy2BbTccjO3j55nmEaOmmaMJQDTMOl1nbx/RZ5JjnYG/PqixOgpNlq4gU+g7MJeVagCYmuV+eLdENjbbNNu1fD9z0evbXO0+90mE1zXn35iDV/Bce3aXbb7G7vMhsOWSz6IAukBCFAaALH9EmzBCFAVqBpAsu2yOKUNM/YvHKVVq+OKwqi8eKzlSl/+Vs++lFV/Vd5y1IBgKIoivJv5Meee251fhy/r8qzdhnFX20U+tMNv9vJ89zd2TuivbJKvd2g3qyjuaBpFXEYoQmB73uMFiFlCVvXOrz0wgnhYUynU+PSVovtB6ccHZ5iWyZxVBDUTDQD0jQnWhQUecV0mhDUHBzHIlzERFFEt1unVq+xv9tnNptyafMS3W6PJM0oKg2haeR5wdJaG8PQqcoK363hBRq1usve9pAonFNV55l1TNMlCAKKMmExT7Edj9XVZRAGUXK+qC2KHNM0mc9DNB1sQ6eowDB0JpMU03SwrAIPQVGWDAbHyAo89/xdwrVr17j5xHU2tlo8vN9nNoqZTGdMpkPKIicqK7rdHoP+GbP5lF63i2e6SClI0pgoSvD9gNlsTK3mM5uFnPZPaXXrdLtd+mcj6vUGq6uraJpOt9dgNosYj6YsLbepqpyW51NWJWlWkqcpVVWQZQlVBZ7nk+YxzU4b17EZDicYpuD6I+u0Oh6UGv2zBf3RlMkiZTROaS/1ONg9YDSesry6jq6bRFFIu1Oj2+uAKEjTkFc+9zpVJXDsAE3oxEnBeNTHccbUA5/5OERoOtEiZjQ8T78vRYnn21y5egXHtbBdC8ezCDwbw65YWtlgdb1Nq13j7mv3OT4QJIsxyAIhJFQVyArT0ACJJs7faBiaidA0pCZY21zj1u1lNrpmtj2f/vP/49/4udH/6W/+/MVOOEX5MlIBgKIoivK/6T/+we+/GSXJU8UieiKO5q0izjdcp3mpt3nJ0y2doO5Ra7kIo2Lr2hKGrTEez0BKdCTzaUgWQZql1GoWz7zzEg/unaIbFbWmzepGk7Is0XWLsqwAiZQFaQxRlJBEBUVekucFQlSMhgtsy6Ld9UnikiRJuHz5EqZpkWY5tUaT07NT0ixBIqnVPDzP4fRkRP90wobbYTpOmI1CsjRmbX2T2WxOo97EsmxqjsdsNufy1TqP3FwmSVIm4/n5u4E4p9HwODoYES0ykkVBHFVEUYrQBKZlIQyTZtAgimOa7WWKLOPS1jXidMI3/aGvRhoak3GIqCqyKGN4dkYUhcRxiOt4RFFGGC3QNO28TkHgMRicsLq6wmg4wnNdBv1T6kGL6WRKVUk2N9aRUhBHGb7v4wc1hMhJ05SiKGk0AxaLOY1mjclkRlBzqTcckjjGMg3qjR5lUTGbLYjjnN2dE9qtJq1WnZWVNpquMR6HmKaBV4PuWpu8lESLGM/xuXr1KRzPoEKyWJTM5iGGJth/cMKD+w+Io4Q8LzEtHcuyqDUDOt0uXtBg//CE+XTO+qUlLFvHtpfQxAbhLKN/OuZgf5dP/tYncJ0AN/BJsow0iynKBMMy6LR72K7B299xi+1Wk72H2yxmA8oip6okZZkjKfFdBykr8jyjMEocv440LEwT2nWT+WQxWUTZx4QQ8qLnnKJ8OakAQFEURfn/60f+3He/J44WT2dx2JuNJk/KgkfjKO7mlWnZ8YwnH7tOq+MjK4kwNUqZUyVQFhVlKdkbDMmz843YsioZjmIqqeEHFp5nYxiCjc0lBv0xWZZhmBXjQUqz5TMczJmOU5DguQ5VUeG4FgiBaZmUhSCOMyzLIk0TVlYavH53gO10WFtbwrIdjo5P8Hzz/O55IyAKY/KsYPE/s/fnMZZleWLf9z3n7svb34s9MnKpzKy9urqrm7P2zEgzFFdLIKkBvOgfyfYYhCnLIAhD5B+N9kJAIAzZWghTsiWAC2SNCJqUaEGj4cxwerbunp5ea8vKrFxij3j7e3e/95zjP6JmTIj6kz0Fst4HCGQikRkRuBk/4PzO/S2rjKY2BL4PaILApdUOiFoeUeQx2goZDANcT+J5PlHosFot6XY7rBc5q2mBrsCyHJJVgjYWaZKCscjLHDeKQSs8J0bKCtsN+MKbt8myhoYGC4vFeMXF6TlpmpNlKUWVUZYlIAjCCM8JCf2YJFlRliWTyZSyKpgtJpR1ievaHB9f0O12sFyJauDq8pq9/R2yPKHfb/Px0zNacYfT05ObBWE4eL7D1laPsmyIWx7tTkxTK6aTBaqpCEMf27ZodyPiVsBynlMUFZZtaHXaKK04P58RhB472x0sx8J2LKpGk2eKq/MJ58cTTk9OybKbZM33A4QoaZqatFpTlDWz6ZIgiNjZOeT0xTNePH1Mrze4SaQ8hzAKaLVCvvRH3uH0eMzZ2QVX1+cUVYkwGikEZVly+vQFtSr59u/+Hvt7tyjyFKVuEkYEWI7EEjc/f5YQ1FWNcmu0gdFwm93tNk2WMT4Zf6s0xXc/5ZDb2Pih2yQAGxsbGxv/lF/8xa+4z55l3uR4+VDl2Y9Xebadp+s7ZV6/Hvjtg9H2ltXpdHFjn9VK0dQrut2QYl2QrCRhHFBVBsu2WS0LvvN7H1PkJe1eRG8Q0+t36Q08yrJGShvPd+l0Q+bTNbpxKIuMi9MVda04fbEiDF16fQhCl7KoiCKPoqhYLj5ZupXk9Hptwtij1fJYzhNq1XDnpX16/RZ7h220Mvzg25fkSYFl2cymKf1ByPPnJY5j8fY7LzObLcFohGjYPRjgBYaqLPADi7jts141Nw3IVxlZUlOVNQaLNMuQts06TSiLDKMUqqqJQoeybHjr859HyIbd/SGXZzfTdibTKR++/xGz+YRud4tKNyTpCs+18Hwfy3Z4+/PvUFcFX//mb3H//kNOT06oqoKz84Qf+/KPE/kxxy9OERIGgw7f+8775MWaXv8hRZmT5xWW5eL5NkEQkeUl3X7NaNRDCCir6mY1rtAY3RB4Hp1OjzRP8AOLVitkuUwIIx/dWGTrhsV8wnAnJohdBJpa1Tx/MWO1zgkCm/lsyXpVkK8LwqjN/uEhRiuW8wVVVRIGEXGrQxy3ELIGy+DFgnuv3yZLdtCNxrVC8rymrAvee+9j8vwHuJbDajXDCLCkfbNgTCkc26MVx5SloC4zjp99hGu7BKGHcQRVWaKEJGq1qIqSWjVgNBqF63oMhj22Ri1ElRQa+X3ie5NPO/42Nn7YNgnAxsbGxgZwM9nn+NGjL6TL2cP/93/6tVuNrjtKNUOKZtT243aZ53fCVnev1R7Jwc4AI0A4Nu++d8pkvGRrq83BrR0aXRNGOY4r8QKX6+sV63XB2ekZ+Qcpti34iZ98h3svvY42GVpp1usVrVYIwNnJnMk4JV03RLHFbDqmaXqEbQeV5jiOTbfXIssq/MDDdX1UA2la8f77xwwGPYQs6YU304GMMVxdLNnZ6zMeX7G/u4NtSVzP4sGrO1xejun0Wjh+TX8UIjFMr9ckSQ7SAqDV8fEDl7ppKPISIaDdDjhb5gShT1EVeEHMOluS5hXtuEu2XGHikL1bu+zd6rK900KVhpPja9aLBYv5gqvxBb1uD600trTpdAZgNGHQoTdssXc44Nd//Xd4/e3P04rbnJ2dEYct2v02w+EW77/7iK3tLQajDudnY1aLnLc+/wa9QYQluxR5CbpNkmS0Wm2ydEWr1UJrzWK2JssbWu0Yx7K5SK4I4puxolIqoiigLmpUo1C1IakL/MBme9RmsNVCaUWnEzGfJdy5O2I5z2kaiIKQsTOnaSmMESyWa5LlAoGg1x9gWTfPNMtXtLsthtsDRjsdelsRWV6QJxUXL6boecnxk1N6/SHMpsxnExrV0NQFCIGUEiEEdZNTNxYSG8uWCDTGKIriJrELXBuMoS5KLEvSKIPrhwRBj35/i1de3acdWUye5afSdn/5q1/9qv7UgnBj4w/JJgHY2NjY2ABgdnn8AFP9bF4Urxd5eStN15HAiqusGMz0KhgNttw006I7sFisCnAkRZ5QFpBXmvceX/LsdEGnG9Prt8AobBdMY6GahmQ9Y7aY0NQ1f//vXyGsmn/lT71DVZVYls3F2TVBELB/2Of42RzLcdEafD9ECoE0DhiB51lYEqqyoapqQCBti5bv0W57ICBu2QxGbaRQdNoOaV6wnBd4gUulC8KgyzDosloX3Dra4/B2GynBKIUf2Fwq8FyLdjumrhRCWCitCAOfLM2wbYluFFlekOWaRmlk0zAYjZg/eU6yWjHoDxnt7PCzf+KPsLMXcfzxmO/97guePn5MliYYA1HUotsekuUFWzs7GFPz9OlTdrp9Xn39Hk+evCCKO9w+usuL5y/Y2t7FsyVKa54/PkGViv5BDyEMV5czRltD2nGL4bCN49o8/zinUTVhGDKdrgCLNCmoSoXSNbZjc305ocprmsZwdGfI2dkVEgn6pmcjDEOM1kStgChysSxxM6nJD5jP1ywWOZPLjKuLOU7g0Bt0uHW0DRgur2a44RC0Il0n+H5E3I0Yjrq4vsDzPK4u5/zKf/fbdIcBr7z+KnVV0ZDS3/K5Lw/47d/6Jov5AguJ49wcW4zRaG1ukgBpIQxoY0AYLGmjtUZrhTAC27KwpERrQ1M3WJaNbbtYbogbBBzstxG61mVdfdfvdL/3acbgxsYflk0CsLGxsbEBQNsSqR2HS1t3zqus2bOH2x1hZFvaVqxp7N3dA7QQ1EoRtiOWq5z33nsEQhC12rx094hGVaRpilES27GQApbrFRcXp8yXVyzSJUhIFin/+d/8u2Arfu6PfoFu10FgoRqNFwj2j7p88IMrBv0uju2RZzlF1uBHkqoCITT9Qcx0skZYYDuC3sBjMGxxfZlyeNTDcSR5WpBmDUmqaPSCuw/2qQqFQaONIs0kRkKn63F+ssbzLIq8xvNsPM/ClgJjQZ7mBH6EMhrXtrDdgn6/Q5IUnJ2mpGnKKi0R0sf3Qmwp+NEv/xGOHvTZ3vUwteLD7x/z0YcfkaYrtAKlavwgwHV9HC9gsDPkyeMPGA53ODw6ZDZNsW2P0SjgyeOPaLfb5IlLEEYURcZ0PKXb7mLZNlme0W61aMUxQeShdM31yYLpeMFg2OP6esFiPiYvVty6/TnG1wsevnqbZx9fcn25JAgcXnpwi+lsQd0ohsM2eVogpaSsa+L4Zltu1YCsHDzpsFyuUQiWi5IiL9ndb3N4e4Tr+5yfzxEIuv02q1VJrx/juRI/tJF2zXw+I0szep0ug1GHn/rZL3F5ec03fusHtNox9+8f8t3vfpumEfzMv/xTTCdTHn3whCIrgQatFUrd3PQbpW7GfYqbNwIGgxDiZmSqBml7KKXRukFrjZQucafL/uF99m8NEKZmvUjXQRSkxm6cTzsONzb+MGwSgI2NjY0NAIR0uq7dWC3PVXleV1Josbu7FbqRY2kpyXLNaKuHG3mUpUBYDm+9/RaL1RLHlkSRpN8f4blbN829LhhjcXpic3zsU1QVlTJoBYiGqmj4m3/z7+IHki9/+U2iKGS9znFcm+HwZm77eLxEiJvb3aopiO0WearxQ5umqen2ImxHMhq1sG2J40naHUWWVxTTmqq8ub0v8xpVW6TJFNe36LTbSCmIIo/ZeM16VbNaF8gUXBu2t+ObQ6OCdJ0jcREaMIaqqvEDl9l8Qbvb5vq6QmmNbVtgJAbD0b19fuSnX8J2DPky5/mjCR998JSqzDDaEIYtrq7OEdLC2bdZpSmN0Xiez+HhHtfX12By3v785/i1X/sdkvWCtz/3JTCCqqxZrdYYFLZ/M8pyNOjT7rh88N4Je4cPmc9yPvrgnKM7uyTrAgGcX5zw5S//KJPxAtd1mY6XJEnOwa0hd+7uYNkGpRp2toasFmtOT85xHJdur4trW7iuh3IMjaWxLMVou0WnG9HpxRhzc7uudU2aNjQ6ZDEvaXKNrktWq4TryzHX40swBimsm0VdtsAPfPrbfT73xZf4n7zyJb71zcd883fe4/U3XyVLcr72a7/JcHvIa2+8wXS85MXxM0RTInSNUiDQN30MUgMWCAlobFuCgEYpDAatNQhB3OrT6e6ghcILHfLUaNeSS+3YukjF5ly08Zmw+UHf2NjY2OArX/kpm7k6lCBtRwxc394SympX6dqxg54Y7g6xPJuoHWKkptGafXvAflJgOYI4cojjgDKvWa9Totgiin0m12tOniuyrKTRAo3BtQOiIEY1JXm65m//7f8vg/4273zhNrYjqKqG/jDi1tEW7333FN/zGQyHDEYhSt+M27QdyWKecfvuCGMUtgPj65vvxfEli2VJnijqMsf3XTzXRggIA4+6brBdgdaSumhAN1SlwnYktmPjSoGQUJSKNC3JU00UwuXlmjByKcsKW/rkqSJLUppKUeYFyyphMDrk3v27/Ml/7S129nocP7smXSjee/cZ5+fHhGELIV3A0Ov32T+8TV5WCCEYX13w1luvcXJ8wWIx5k/8iS/z0aNLPDdi96UdOq2Y9Tr9ZIxlSVkVdKoSrRqaWrJc1rS7PkVRoVTDy68dgjHkmcV8Nufhw1dxnAjfh539LsvFmtGwx9ZOiONJJldrOq2Ii7Mp0+mC3d0hVSE+2eMQkKUZ81nOzt6AILBxbJs8T6jrBK0lZdkQRhF1XVHlFXWlUBpanS5hGLGzu0OePSRJUmbTKdPxmHWy5HpyxZOnH/Pbv/k7HBxt8y//7E+zu3vAk4+e4wUOP/rjP85//9//Eo8evc/u7j7dXpvrqwvKKrvZJIxEaIUUEiHkzQIwDEKAFDdJgKpvdno5js9o+xaHd27R226hm5rlfK0HPausdL1OPT//dCNxY+MPxyYB2NjY2NjATu4f1qY+MqIMbKEi13c6YRzHrUHPmqYlaVHT64Zs3xrhBx6qqahKRSsHL3DxfI8sTWl3YkY7XZqmRJsGy3G5uBhzcvaMpEoJgi6HBy+jGiiLlGR9weX1nP/iv/iH9Lr/Okd3RjSqoNElu3sx3/itFUIKPF/Q7XtUlWK9KPB9D2kl5HmBUobewCMIJNK2qJRCYBO3LMLtiMU8xZKaNGlYLVIsadjaPWJ8Nefx+6cURc7WqEueFOzs9SiKgqIwFHmFrg260eS5JpsWtLoV2ztdsqRAa5uL8xmPPnzO9dU1WsD9lx/yxR97yJ07bYpVwsXzGfNJwsnJGWEYgxTo+ubfbm8fEIQ3t+fnF8f85Oe/RFUari+ueen+S6TZzYjRVhTjuh6L1YKdvSHXl1eEYYfRzhZvf+4B8+ma+XzJzs6Qdsdjd69L09wkL+mqoN32CB4eEkYhk/GK0XaHOHKJwiF1U2LbNicvZljS4ur8Aku4dDo9ZrMptuXiOh5Xl7Ob6U29Lp5vI6TFbL6m0/XwAx80OK5LWRqytGIwiGl3NZPxzcSlbi8iWSekSU5dD5lPhzx55PHe+wvAxrZAWjZnJxP+8//Xf8mto0O+8PaPsE4KlssZ73zhR/nmN36T85PnuP7NBuRSZNRNg+P4CEArjUCjqRFCYf9+b4A2GCSW5bC1t8ed+3fo9HwG/Ra/9Wvf5M4f/ZyyHXK3caJYWG1g+ulG48bGD98mAdjY2NjYoCrrV+06PxK6aVmi3o1brX7/cMtxeyFDP2S1LBlud7DcTybwpAXGJDTKpqkaXNfDj9rUSuPYgiCOqKuGs5NTvveDx0yWc4wR3HvpTcJoh+liiu/HSDfCjZZ8/HzO/+fvf4M/++d+jG7PwXUsOr2IKAooy5JuP0BKgWPbOK6kURXdfkxdg2UZWu0A33eoG8Vy2VDkMwaDNpYl6PYiricJdV2jaoW2DForfN8hTSumkymtVoQQmjDwUFoBkixpmF2nDIctri+XdHstTCMo84qqapjPK07PpsxXa9rdIUWVsXPQod+XLCYrVvOKZx+dk6U1Vd3wxptv8NFHHxH6EYF/c2hVTU270+bw8Ij1MuPyYsyde4c8eO2QZ08u6HW6VHlD3LPY2uljGsPp84wf+fFX6G3FzMYJWVbi2i5hbLO712FylbBc5qxWCa++vodj2xR5A1IxGG6B0UyvE8rmZinX+GpMp91jNl0AsFrNSdOSwWDA3sGAjx6dEPgeWkGyTihVRVbW9PsxUQRZWiKlxCCxbYs4DjDcNNvqGh6//4zx9Zjz8yuSZEWn07lpwrU9+v1tLi9PKMsSITS2uPkcZy/Oubz4+zx8+BpC+kzGK8IwJlln6LpkXRYooz55AyBuvpYqMVqBkLRbbdANZVlggOFon05vxJ0HdwliH8cR/J2/+V/Sb/Vot72mKdKkLNU3ps3y6lMMw42NPzSbBGBjY2NjA6lRolF3fUvsS2FGqk69Ismw4xg3kuwf9vBCgyUUi/mSqizIszXzaUZVaHZveeweHVAWFcY0SEtSlUsevfeCy4sLGqOIoh5b27eZzjOqpsa2bMJ2j6gzpFhN+e1vfJs79/f5yZ94SBz5pFSEYYyUgt4wAkDpiuGoRZIUbO92WSwyHEeSJgUYibAEWmlWixzPcwlDhzDwCEMH32+hK81g1EbVMJssMSiCICZJawaDiDyrOX5xTLfbYbQ9ZLGY4fk2Wml6/RhbWMyvExA2V+cTFoslShl2dra5+3DEgwd9LEuQrCvG1ynrdUIYtbl79z6zxYqd3X3qUnN1ec5bX3iN2XJJEIWUZcPz5+d4ns3ewTZFWTMY9liME7b3usQDj8BzePbolL29HY7uDHACh8WsJI4i4pbD4dEAaQmMSPjwvY957a0jlNI8+uA5w1Gb+w/28EOL2Tjh/HzGOkmoa8VgMGAymbC3t8OjD58TRx637x7QNIqiLLj90pBW1GY2SRBSE3g+o2Gb7sDHoFnMCxzXxfM80nVJU2uU0ghZsc5KGiGoTYPtONS14OpyilKKRjcIYcAohCXRGkB/MrnHQWvNuz/4Pnv7h+zu7bFcTmm0wHNstKkxxiClhcAQ+AFKOUghGI128WyPyfQKIQ0IzfbuEftHh0jbpdVq87Vf+xXe/egRf+6P/1GENk1dqCVS/MZXv/qfZJ9qIG5s/CHZJAAbGxsbGwDfFbb11DT1vcBvb3tB6OZZBcsMtx3SKE2zLtHaxvNc6iIjXeVEXohrNxilKYqbxU9VmeOFHrPZnMl0RakywDAY7KCwybIFRlUgHRptCAObyfqS9XrCL/3SP+btt4/Y2+9xdrJGG82du3u4nsBxJQO/z+XFnK1WjBcI7ERgjGQ2zXAciyJrCEKPBw92WKxyhIR2x2c6W9NqBUytNVWjOD29QlUwnYyRUuIXHoKI5fpmpvxslhBEMeAwnSZYlk2aV2hlULWmbkrm8xRjBH4geOvztxntxFgWLBYZZa64uJiwuzdEaZvFeoUf2kRBl+Nnx2ituDgfc+f+HdI0I44j2m2HdtdH1RXnp2uyrMLzLe6/tUuWV1yeLXj80QtGwyGzccpor0uRpGilaPfaZEVNmpbMZgWHRyPq2nBxtuTHfvIhQWgzuUrIM8nZ+YyPn56yvT1kf3eXi8sr+v0uL55f0Wp1iGKX2XLB9k4f13GpqobFIuPs7JpuN8BoQ5ZkxF2Huq5xXAfXc3FdSRiEGGGznCf0h222diXvfOkeUlr87tcf8/Wvf4er8zF5kpGsxjSqQgqB7QagaxrVIBA3iQEWjmNxfnbCYjnj7p0HRHHE5cUZUli4to3AYEuXVtwjiloMhiN003B9dUWvv0VZ5niBw87eDnlZcGe/z/Mnj/nO976HjeBgd4Ar9WIt+F4q3c3t/8ZnxiYB2NjY2NiA0e3revz+d9yq+VmMFQs3xPFt1mmNXOR0pEEZwcnxHC9wCXwHz7aplcb1JY3KKbIUzw/ww4Cmrnn86JyPn55SqU8aMO2Auq7QOkfoGktKpBTURYpuCgSC09Mr0kwTxhFFqYnikP4gpN326fYjxtcJRd5g24JW20Nrw3pZ0mrF+JHL6fMZ0obDwxbddcjV5ZKo5bC332E2Kxhu9VgvUpq64dbtIR/6LmVRYEzDarUmbrdJkpw49hFIBoM2y2VCkVdMxwUHhwFZsaYsG5Q2dLoddg52Obo7JMsKikyzXBfY0iaKQqpSMr9eErVc7t6+x3vff44fBhg8Dm7vEAQuRVZR1zd9DeuloqlLsqxEG8X91/ZxPMHk6ZIyrXjjjZcZDCOMgW/8xgcsZhm7uwNWi5L1OqMVh7i2RX9vm9UyQwqLxx9eEgQBliWYTRd885sf4HkhlmVTqZSDWzvUtaKua7zg5i2LH8LuQY/J5ZrpJOHyYkG6zmi1Y6qmRhsHVUO7HWE5AjAEvk0UhziuRxw7rJcZZSlZVivmizWOZ/EjP/FFzk8mvHj2BPsc6rrBwqbMK9b54maMpzYompuxnggcyyJPE37w7u+xv3+Lg9t3uL64xHdcorBFrzdACMnW9j7GKC4mN9uSo2iI64fcf3iHWil2tvqkqxm//I9+ibRI6QVdfMenyeuuLuqtyDGv/+Iv/uJv//zP/7z6dINxY+OHb5MAbGxsbGxgzy7u1EXzcpqsPM/28GwL6cXUacNkVuJGAdKB+aKg1bicPr+m14todSLabky/PcANAtJiTSRjhIFOq0W730e+uDnIFfmCJlvQ5Gscx8V2JNKSrOZjsnKJtGx+5md+mvsP7lDXhsWy5NbdEXcfbBO1HCxHooUmiG2CwMOxbUbbPaQ1p9uL8AIfaTkspisENq3YYuFbWI6F6zsU+ZJ0VVHkOVlaUdeK+w9vM7lMEEIznS3Y2tqhFbdoVEGWlwwGEY5r4fkR82nCaDtESPB8j14/wgjBg1cOsWwIY4eiVAhp0TQNtuPx4vgSL7B4/eEDTl9MePW1e/S3fVpRwLPnl2RZhetZqFrS6/ncf2WPOI5YLpd4ns1gK+bF8wmjQZfwwGa03WKdlFxfzfA9mwcP96lrRZrmDLdaSNslbGmkFCxXa5aLhLsv7SJkRbIuOH5+xcHeLaStuH13yP6tPhena2zLxbYH1FWF42n2Dnb43neeMr5coZXEtiTDUR/LtojaIULYnDyfE8QWu/sdbNuiLgtmsxQhLTqdENuVrFclq1WNUh5GG5IkIytLvDDi1dfeoS4bXnz8hKqY3sz1RwBgDBjT3Mz01yCFwAAnx88JohavPHyd0G+RpSWDwRZB7BGENt12izRZk2cJcbuNF0coKRhs9QiCkL/7i/+QyWKOFIJep0dvtMPpWdpJZumf8VvOQVH+1t/9a/+nv/iPkiY+++pXv1p9mjG5sfHDtEkANjY2Njagyd+xm/oV14t21knF8sU53b1d4naX6bLgve9fs73fwvN9zs5mdDohGsnzZ2Pk8QI/HPOFH32V3cMtLOmgdc2D1454881XefHsmIvrNXm6Yjk7R9cVAkGezLCkwFQJRkOr1eVf//l/icODLs+enSFkw5vvvMTu3gDbcUnSNbfvHLCzneI5Do7rUCkNEkajHtPZgm6/RZ6XaDRV02DbNlobMJoodEkXDVlWMZ8veP7UYjBsUzcLpCWwLY/5fMZwq0OaWriuxLIMQtYMR0NWixSQhO0Yx7FolCZq2WztBBS55upyjh9GtNoucWiTLJYYAztbI54/vSIIYvzYYp3W1E1Dtk6ZL3MOb28z6IQIYbAsRdySdLsdzk4WPHt0yTqp6XQdej2f8WRNbxTzYw9f4ep0xvnJkmdPL9ja7THc6nBxcclg2OPZ40sm4zU7u0PyXPH+e88wWtDr9VjM57z9zm1efW2P6bSgLDUX02suzq7Y3Rvw4OUDvvOtj5DS5uhwm0ePXuD5PlvbQxANeVowuSpptUMC4zIbF4SRR13XuL6NG0BZKlzXotXzMdJmPFlxdb3kyZMrvECwvbPDar5iOhsTxTGNamiMoKoLlK7BNNSquckEuGnstYSD7QgEBmMEjudzMBihEewd9dk7jGlyyXe+0xDHnZstwSj2dkZoKn7rN3+TF8cvcKXEkoIHrxwxvN3l+YeKSVJ13cL8ZE/VQatv3e/61df/xt/4G//NL/zCL9SfdmhubPwwbBKAjY2NjQ20zaVt0dJCOsPdXdJMMx+nhAR4vsv4as3zJzXttkfTaC6v17Rij1bkE8U+nueSrRYsZwLp2NiOQ6fb5Y/82EO+8VvfYbG8pshz1skUz40RGFSdgrTQVc3n3vwcf/xP/zRvvvUyTZNTlhXvfPFltraH+H6INjDyA1bzKU4U4gcOy3WKETajrS3KIgNcEA3bu220UURakqU1GIUtbZpKIS0BBsAwGU8x2kJakjAMWa1SZrOMl+532T/sfrI1VuB5PkIYwtgnjByU0Qih6A0i2j2PLC0xRlKVgnZb4vs2adJQViW7e0OKoqA/6LOcrygKyTotOLq9zStv3OHqaoWQNr/3e484Ox3z0oNDbt/dRdU1vu+yXhboxrD3cIfhdsyt2xaNgqdPznj2eExdNoShj6obHn9wgmosLJMjDRzd2caSLlop7r10i7JU1GXF7n4frS1ePF8xvl5ycjJnMZtx69Yu+wcD6qamP+izXie8eHHBYNhha2fI6cmY9TqjURWD/pDZbEmjcg5ubaGUJvA9/NhGWpJ2N6DT6+H7EWlacLuq2T+b0uu1WCwLHn/4EXlaY7SFEZqiKrEdC89rU9cVWZ4hMSANQto3s/2FhWcF7O7v0447rBdzmqrg5Tdus7Ub4TgO1+drPNelWC0YX55z+94R44srfvUf/yrn58fYDiAkvt3i9TdeRQgLZVwmqxopdDBbF2/v6Vbd7yFV9fQa+M1PNTA3Nn5INgnAxsbGxmfcV/7t//Ut06QvF5Wahp5nySDAtiWxETSW5Oo8IVlXaJOi6pjFMmW9KnF9SacfMxx2CCKHrFGsc8Xd+wfY0qOpa37iy69RZX+G//g/zHjy8WOKLMOxbTRQVhm+2ybw2/z0T7/D//R/9rNUZUOWF7zy8ivEcQeMxLIEVbGmyFakqyWrZcre/g6+18ILu9iuizIT2o5kPp3gBS5pUrKzPWI5W5Guc3q9LstuxmJek2XFTfOqHaMUuM7NlKB7L+3T6UaMtmN292McWzIZZ7iujR86SCkIYhsMZElF3PaxLEGaloShy2jUIklyzs+XGG3hBR7zVYpjS1aLJdeXc06Oz0EKTNXQ7rWQlsb3JYdHh/S3tuh2AmzLpso0ja05OOwSBA6GAqV8rs9nnJ7MaLUCHryyR1mWlHlDVSlePD9je7vLy6+NEGKL8VVCkTVcX66QlotSOcNhn9UqJ000J8fP+fDDx/heRLfbYjhqMRi2yMuSJE2xbY+t3RG2I3hxfEmeVbQ7IUE4oCwaqsqwXhk+eO+EwaBLFLtsyZi4HVKVNeskIStKmsbgOZK794YMBhEXlzM+94UDxhcZz55dk6xSsjxnNrtmmc6om5txnsZoLNtBChuEAdPQjgN6UYc6zZBNiYtDvxNjSagaBZYkTVfkyZput83x8XM+/rUPyYoM17Zu3gS1Bjx88Ba7O9tkyxJLWFRVyXg2oWmK+PTi6ovtWHR39gbyL/1v/s3xX/t//GePPu0Y3dj4Z22TAGxsbGx8hv21v/i/iMqqels19StC6QfrZengrNBhxM7dLcraMJmVKA3LxZoibwjjCNepoZEUaUPZ1mRFyeVlxuNH57z3/efcfWmHL/6RB4RBj5/7Uz/C7tGQv/uL/4jf/trvMp5eY4RCIOkM2/zxP/aT/Mk/+SXqMiPPFHGrTxiGCCGpipS6qtFNhTaKre0dfL9gtc65fe82jh+hlGG1WuK6Lke377JYTWi1bVSV0+2FzCYZUtRsb8csphUCheM4bO9t0+5GCEq2tzvUTcPD13Zod0OKPKPTjpCuTdh2cD2HMiswaBxXEkQB0+madtuj2wuoK4vJZEqyarAdn9V6TZY1rNYppyenXJ2dfHKLLQHBhx+8z9b2kJfu38YLIpbLlFY7pg48JukKg+HsLGM5iDi806fj+SwXOddXSyzLQRvNbLxEKU2aVJy8GLOz3+aV12+BqMnSEs/1efHsguOTK1xHcPelfYwGzw356IOPmc1vauH39ncYDjrUjeb50zFlVbG102WZVdRNg+3adLsxgV8zG0/59re+g+/H9PtDeoOYrZ0BQhqMsVCNhetaWBZIc/Osfc8BCVfXY8q8Iggsilxj2Yr+MKbTDXH8t7i8mDC5umA6PSdNl6R5BvpmpKwQAiklURhTlRmqLrAtSbu1x8X5nLu9HQb9mN/99R9wdfwMx3O4uL5gurhGqRrXkaAlluPTH+zwxR95m/miJFkuKSpB2IkI8pTVsiBZV62yUHeMkIUS7vjP//k//x/+9b/+15NPO1Y3Nv5Z2iQAGxsbG591UnSMboTRpht6gUMDZQbj65sSm7LMiVshloSLizEg8b2I+WJKkq9ZLea89rkHWG0P1/VJVzW/+1vPmVyvuXV7wP6tPV554z7/+7u3+bk/9i/xzd95j+vLKxbrMV9851X+9J/6McJQUDWS4c4OvhegdUVdNVjSplE1XtDCD1soBUeDA7KiImz1kJbFOkkZjXapKoVtS4wwSAl5InAdD9dOiQIPSc1oK+LNz93jg/fPiDs+XghHR/uMtlogYWu7S6fTJU0XYDSjLYdOt0IrxdqFsqww2lBVBY4l0UpwdZZzfj6nqiTJsuBy/Iznpy+YLxfM51OyLKXRCjBIJI51s0n3xeVz3v3wXcIgwPN8Dnb2efmVO7x0/xZaCKLY4+Jkiu0IVkuLvb0+g2GH5apC0xC3I1pxRJpljLZ6NE3D08dXfPToCVXZ0Gp1cT2f+/dvsbvfYTbNePb0AqM0/UEXKR0aXRJHAappuDxfEUQhUHJ+rGi1Yg5uDZhNE66vL1ktcvJszTtf+hxVBY5jcev2NleXU4pCkfslRZHTNF16A4/BqI3UkJQli1lGUdaEkU9e5Jy8WJKsaoRt8e1vfYfrqwtCPybLcnwvIgxa+OmCqixomgZtbpbNaa1I1gtA0Qpb5FlFRwh8z0EiMI1FlqVUSUZZNzfLxSwbrcFxPLZ37vLmW6/S6/g8eXrN+GLNKk0Yz84xTUmZZlgWRH4YlXmwi7I/50nvHvC9TzFCNzb+mdskABsbGxufYX/p//q3s6/82//Wd5XSbwgIjZTMFmvi3QApLM4u1izmBVJKXNthf38XpRq8wKIz2qMsa549ec75+ZQf/anP8f67x7z62i3WqxYnL64pMsP11Zq6gcO79/jxn3mHL//Mj1KVFXk+pywX9DodXCfE9TtoNFqVICzCIKCSEiEFcdRHWhaW7WKQeLFBSuem9jzQ1JVNGHoYU+O6NyUdVVGwtbVNFDgk6wV+4DLY8ji8fQvHFShtg9VwcGuL/aMRCAvLsrAsF7spcCwbx22wihStGqoqxxJQFDWqEWhl8ej9c66vMoqiplQ5Hz99yun5Gat0iUF/8pQFnwy3QaMpVQWfDJrMq4z5+mbKzeX1FcenL3j04S3u3LvDnbs7CN1QZjXb2z1mk5TFYs1rbz5ga7uDlDZCgKGgyCueP53w5MMpRWoBFr4f0GpHSKn58L1jBDa+e1NOo5SmMQXr1YqXXz5iNltS1TX3b3Xp9SOaSmE7FlXVAIbPff5l0uSmdCqMXfzAY73MuL5asFyU5HmGajT9QRuBJEt8Jtc5ipveia1Ri9t3t1isc9ZnM+4/3Kbb87m8SHDtL3B+fM7l+RV5lqG0YrGcUZQJUv7+VCCNFBZVVeFaEttxkNIiqzKCKKSubxq+DRb1J0vGpHXz7LWGVmtAq73Fg5fv84UvvML4Ysl8knB5fUGeJ1TFmtXqGlVXGCFIbN/2fccfJumg1Wn/6Fe+8pUPNlOBNv5FskkANjY2Nj7bjNJa6FpvO7bX7e9t0XZ8jOOSNwYpbLq9iCgKmFzPcT0fS3osk5RBK6bVafPaW/d478MTat3w5/6Nn+XicsrdV4+IOxGrxYyd3SHHL66xXZtbt28jbQ8/cLCdDi06OJaDEAKNwTQlRhXk2QK8CD9oIW0bIxR5niFtD8fxaFQNwsK2XFzHQgqBVgrQGKWI45tJPel6jh9I8rJGWoLDO12MNvzET3W5ur7Cdh38yCJu9zHGRmkFRmOMi+V4KF1iORVKKYSxybOMyTjl7GTOxfmCyfWK+WLJYr3k/PqYZbL85LGKTz7MJ0/5n3zkv//nn/wqBApIq4STq5zxfMYHHz/m7TdeZW+0z4cfPGW9znjniy/x0oM9kjTj+MWK3igmitocP72krhRZWuIHHreOdvEDh7ppePL4OYvZkk6nx/b2EGNgvcjIi5wsTekPuqxWKatlikFycTpnNlmhVMOto10QAstyGF/NEJZmMIzY2e0zm+WkSU5V1bTbEbbtML5esFisaXd8IEIpTXcrZmuri+sJqqbCcQS3j7YJXJvxJOXibIFRmsUqZbZMqWvFYjUhzeafJE0CISSBHwISy7ZxHBuMYJWmdLaHeLHNaKeN40Gn18d2Q/I0wbYFEknY6tEd7rK/f5vX37jN+HLK5Cpne2tAkieMPzqhyJa4jo+yJGVVo40SyXrtJ8na7xbdh+nMPQQ+/uGH48bGH45NArCxsbHxGfYX/sJf8Kx6+UUh5NHu/p7vd7voyMYNApA21+Nzqkpj2yVaSZSoGGz38EOH5bJAGI0fOfzcH3+HRpV4ocNPfPlnWK3WHB7dYbWYcHVxwdZeTK/XQwJKFSh1s+jJmIZKVxijqMqUYr3AsSVK5czH5wRhj7jVphYSpcHWCoFBmxqQCNsmTRMc26aqC7Sq0apCNw6uG9L4FVXacOvwDpUqUUajtUBpw8s7g5skwg0RMgCjsIQFRuEHLTQNVVVijMCSDnlecT3Oefp4zqP3PybPcs7Oz5gsZ6zzNdqom0VWmE/GV4p/4kmbf+rZ/34aYIxBfHLYbYwiKRKSYs2vfG3Knf27vP7q68xnCR99dMn1ZMVoK6LVDpiPU0xjsbXVZT5NmI8zwtAljh2ytKEqDUVekGUFcavh+PiUuqxJshWL1ZLAjXBdl7OzGUWRk2cpy8WCnd0hW9tDXjwfUxQVQRATBA7DQYRtS97/wQl1BXWtEAKqOkephrjl0x90sW2J68Lu4QjpCHSjEJ5DnubYjkUUeYzHc84uUnqjLqNtiR8HtLp9puMpz56BRpEXOY1q8FwbIQV1XeF5HnEUg7CIYodX3rpHfxjSjh2UdqiaGse1kZnGwsWyPaKoS6c1YG+vT6sV8oNHx0jbpS5LXC+iPzygyGOydImuwHcsJAKEsJI07Wf5utPuR//0f+DGxj/HNgnAxsbGxmdYv9831tViV0qvtZivTS+K8eKIi9M1fhgy2op5/nyMH8YMtwdcn0+ZzhK0UTx87RZXkzFRK+Tw9j7g8vzjM0ajO+zsHlI3NaOtQ27feY0sXYGp0KbBoLAth6bOMfrmJjoMAsp0Tbpa4PsOnu8S+AFVkTKvctrdEbbjsZiN6XX7JOkCaTk4loNtS4oixbYtbMejUArDzRsBzwtBq5vSHhXhej5NoyirklbnZoOs49yMNi2bHLQGI0BodFPjuRarZcJ0OqMsFE8fT/nedz7i7Pzk5vZ4fo3SzR88z5tG30+SAD75vfn9s6P45KB/0w1gjP6DvyOEuPm6Rt9MvEFQ65rHJ49YpSveePVzcAJK7zGbpBwcdhmNYk6fXRO1Anq9FnfueVyeT6gqg+MIvKCm1XY5OHjAeLwkSxVCWNh2gO839HoDoiiirgx1VeP7IQKb2XTNcpmwmC2wHZfhaIBjO5y9OKMoGw5u7WKEJghdDrdiVKOpSs3VxYo0SVktG8bjOY8fX+CGPsOtNoOBTxQ4IB2ep2vStELYLllRIAy8OH5BmiYYUzEcjoiCiDRdMluM8dyAqqwZjLa5//JDuq02nb7HrTs7TGYJR7cGBIHH+UWGVhWr1QIpLRzbx3FDwiDizTfucfelLV48m6CMjRSQpjll1mC0oGkaLNumF/apipzVai7yMreNbizfFuOu503/0IJyY+MPwSYB2NjY2PiM+mt/8S9Gyfz6nmV7d9zYGYZxLEttiH2HzqDNt3/vOcNhn4ODEe9/cMKDV2/x8I0jPnp0Qn844M7LA14OjqgV2F7A7s5ttrb3Wa9nRGEHL4gQgO/GBH7IZHZCowy+Z1HlGUJXpOs5F+dnbG3v4LkOruehtKKsFBjodHsI6d18LiHoDfrURUaRrWl1etR1RWMUgR+QpWuEbaFRVHWG68aUVYHSCo1G2i6W4xCEXXytsW2PmxrxCtu1MNKhzHPqssTokrrOuDi5ZDHPuL5KOP54wnd+7yMuLk+5nJyTVxna6P/BU/0nb/4Nxkgc20MKSaMrpDFYtkvYvUtdleTpBNsGR7oo1WBMRdMUNyVHQqAFXM4uWHxzwc5wn2Sd8PrLD5hcZbRin939AcbYTK4T8jyjLAyzac71eIrSOWA4fnGM67SJWyF5WmBbFq7jkuclVV0ShW0QEm0MRleUacVyucT3AvzQYzCIkZZNtjIMRj1aHR/daIzQzKZr5rM1vV6XTjckzWuWs4JOJ2R7t81op0WRK54+mqKVJs0a1klNUdZkWcne0QhLSj589wXLxZTVcgoYorBNXuR021tsjXbxHI9ev8Xe3h62Da+8totBsx92AI024LgB8+kSjEFaDrbrEQQRt45ucfvOkKKsmM1THC/EqBpHSoosIUuWLBcTimqNZVnYUiClwXbQnU448zyHpqpiYMnGxr8gNgnAxsbGxmdUVdextOQ9pWShhNTacoUlbV48m9Lqtrn70gEfPTrl/sN9fuwn3+DRe8f02iF37mxRKUOru83tO/cJ2300Amk5DLeGbHNIWdef1OU3zJbnpMkM17WRGMp8zXoxpS5S1ssFri1ZL6Zktk1T13R7La7H1/iuTxS3aBqD40Voc5MUaG2Iohhp+ThuhKpTqqZBo7C0xpaCoqzxfUkQtklVRVWWuJZEG4ll+wgBQtzUkteqoqlytFYoVVAUK7J0wdmzC772ax9wfrHk4uqKdFWwXE4Zz8/Jy+wPbvn/SUKIm+p/IbGckFZnm3bc4friYxqTY2EDHvHWAxy/iyNLymyBaWrqck2VLSmLJapI0aahbAoMiqLKeXHxjOniitlsys7WkCQ5pNtvUdc1e7sjPN9jOpkxmy9YrRZUpWI2nTC5vsL3fdrdHp1Oh3a7xd7+LstlSrcXs1wkOI6F41jkeUlRpISBS3/Y4+VX7rB7MCRLK5aei7QMWVqiak2aFbiuR+B3uDhfMJutcF2fuBXi+TZC2qRpg+86HN4e0OtFrNclbtAiSdfUVYHnB3z7W8/YHm3jWS6O8FAqISty6rrkzTfe5mB/j9PTE97+wkus1iWtXoRwLI6fjtnajVkuFVE3okxzzl48RwqFbTtI6TDa3uXtd15Ba3jxdE5TC+JAUpaSqiqRUt68EapLalWBsBFaIKRF5Hply3Myx7VPRy+/fP2HHqAbGz9EmwRgY2Nj4zPk//mX/lKr6oZHf/6vfPXdv/If/AdXX/nKV/4bcX32wPd9z7Vd4cceg4MuZ5crqqrm5dcPub5ccLfb5U/+az+BMg1xp0WjJVEnxot7+GEH1/FuSlqMQCOwHSjznNXqgixd4bmSukpYLeY4tqTMVxit6PY6VGXBOlnjGZ8sy+gN+3T7W3heiDY2AgMojK7wHI9SA9LFmJteANf1ULVCOC5pukQIizCIqesC27ZRTUMYxmDZOI6PEBZaFUipQIOFplYlRbJGUrOej/m9bz3mH/69X+f99x+xzjOU1lhSonRNUWf/I0d/PplVL5BYuF5M2N4laA+pixVN02BLDyFdaulSCY3tC+Koy/aog+1arFcJi+mYMl2higxVZaxWY+oqoTEl2mjW2Zpvvft7BI6HIzz63T5HR7d4+cFDtKnwAw8pDaPRgMU8YzabIWyJsTRCaALfp6wKptOMnZ09+v0eWhtefeMOjm3z6NEJVdljf3+EkIIoDrEsm/VqwXvvPUbpmv5wSCsO2dru0zSGxTLl6mqBVhopKzxPYtkOk8kCZxEQxi57hy2kC3tHLVrtNq43YL0u+c63nhNEHuk6pyhLbMvBcTqUtebO7UNefe1lVJ3xzjv3GQxaDHfbBJFDux9yz93H9QR+ZONZPl/75V9hfH2KbdvY0iaKAh6+cgc/EDRlQ7rOkUIgJbTbwc2uCWlRNxWGiixdoJsCC0Enjpvtfm8Wx+FJ5Lu/9gu/8Av1H3Kobmz8UG0SgI2NjY3PkJMwTPfRvb/17/3lz/8b/4e/+m1AV7r5cDabnvS13smaiJ2ez/7tNvN5w/bOkC/+yCt88N4TVumSB6+9SdRtEbUGuG6IbkArhREN0rKpmpJVMsXoirrMaKoCYRrWyzV1XVAWCWndYNsSy7IpywppS2zXJYxjhG0hLJ/BaAfXCzCqoSyyT8pbVpS2jx+EKKNw7IA8S24qblRNWaZEYQvVGLJkSVWVhGGAFAKlGnw/QkpJVWY0usCYBqE1WhfU5ZrLFydcX874+u885tf+8e/y5NkzyjKhMg0gkH9Q2//7E37+/+U/v1/HL4SF78eErW38Vh+EZrW8wrIENj5Oq0sQ7+F5bdq+x3p8wZPnP2C0s82dh2/Rat2mzHJWixVltsTyQrJkQra+plYVyigapdCuR9zrE8ZtFsmax8+eEAUxcdxhvV5RVQVlWbJ3sMPR7UNOjk+YL+YIXKQlMKZhsVwQxj4vPdhHSE1VKNrtEMsOyYuCsqyoS8HTR1fUpuCnf+5LjLYikBaXZ3OSteLi9IrlYklZFty5e0CrFVJXGssSKF3j+ZLRVgthCepGkOUNYWQwRhDFET/x5bdIkpTnz6/54N0u5ydjZpMlrVabfr9Pnt00dh8cDmh0ReD67B70AY2QFq1WzHpZ8A/+wW/wrd/5HlBi2zaWdInbEa++dsT1eM3V6YqyqOl0A3zPvlmglmVYlqTf7ZPnK0ydYxyJRDPs95K9ve2ncb//gYs7/hRCdWPjh2qTAGxsbGx8hnz1q1/VX/nKV37nnqX/V3/n3/+q9+1HL9a+0l+0pNNzvADp+6TrhtBSrOcL8iQhaj3k1bce4votxuMxBkHodxD2TVOrkIK8KnBcj7xckWdzpL6Z559nKVm6Jl0vP6mttsjTgih0uBxPsByH7d0B3d4IKR1qZajqikgIqjLDtlxsx8FzPXzfI1ktydI1VV0Qxi1s26YuGzzHpi5r1tWcVruDFCCMIs8SbNvBDSRCWghhUdYrmibDMg3ZesF8Nub8eMpvfe09ppOcr3/je5yPTyiaHPMH0zwN2ph/oqnXABIJgMGxHSzbwZibUighJKrJMarCkQbb92mqhrKBwAlZzy/wtE/k21iyYTk55dIPObj3kHDQwQiBH3pYjovtBDi2z2x6jO3Y3L//Kj/+41/i6GiEYwuSdUG6zCjSAqMERhvmdY2QEmMERV7i+wEvvTTCdW0Obm3TbofMZiuaCibjJb1eCEJw7+E2vu8SBA5VrZheremNQqKWR9zyUabGlQ37hy2a2nDvpe5Nec2zCUJaNEqxmKeEccRg1GHvoIcfeJyfzzk7niGE4Oz5nCIvWS4rnn18yWQ6JY4thsMud+9v8/DV2yznKbPrJUo3dNoR3b5Pq+8Qt0KEarg4nyOkS7Jo+NX/7lv86i99naZegFAgwHZdXn3lVepKM75YslysiVsxW1tDfN8hSQrMqiRZLzg/O6XIFuimAWq6nXazt9077w27H3qB/3iYF7NPLWA3Nn5INgnAxsbGxmfMV7/61eY/+spX/tZe2/o/Ptjfvrx4fvmTceTdEY6N37K5nmQsVjWjQZf1MuH46SnvfPnHGG7fZkfD5dkxk/ElewcBCBuMjWU7KFUhTI0tYJ0uGI9nPHl8TOgb6kpxsD/CthXCkiAdRjtb2JYH3NRsV1WN57qk64TAv9mOq4UEA/PlFa24j+24rJYTjNKUWcFisWR7bxu73SGIOzRNTZqnGNUQxRF5Wd3UdyNxwxpMSl2lLGYTzl+ckK/XPP/4mnffu+Ljj094+uIxq/WSBo2wLAQCoS30zZaCP5jcA2BJG4HEsg1x3EYIi6apEULg2AZTZ9RljrRspGODKMjKFLW6Jl9NmK49Hvz0H6dIpmSzC9bzC06fCdq9bRojqeuGpjY0RmOk4JXXPseX3nmDH/3xhxwcDpBCI4zCNBarecaTR1ck65osLzBGABYvnp3gOALXuyl96nTahKHPYp5zeTEnjluUy4qmKWl3WtSVjSZnuc45eT6jqfTN/gUp6fcDHr66RysO0dqQrBKM1mgFYegxGa+ZzlKkkNh2Tq8JULXG+HB4tM3WbsNqnVMXJa7jcH5+RV6UdDt9qkLx3neO8T+4pLc1wvVd+v0W/WFAFHk4vkEIyXpZcfpizm997ftUecM6XTK+usaSJQ0Gx27juB6vvPqQ23du8eG7J6yWaxAKxwHb0rgOOLagKjLGk2vmqxk0Gb5r0WkN2e13ilboz5Qx88aYqjef/w87vTc2/rm3SQA2NjY2PoP+t1/9avJ3/vpX/qPtg8F/phtzJ5vlRtsCO/J55XCHi7M5SZawfzRikaS8+93v8/rnXbb2jnjwypvUdY3S4No2TdMgjCbPxlT5mo+fnvLd7zxiPFnR67l42x1Wy4x3py9otz3ilkPrTpvlcsXF6SkH+0MmkxnGWHiuhesKnj55xtbWEMsRtOIucdSlKDOKIgMEjmOzXicYo7k4P6epaoI4/qRsSFJUNcY41GWJlFA3imQ1ZzmboVTBbJLw3vfO+d53PqIoSp4+e8F0NiMvSsKwR6NrEGBhEwYhYRxz994Rja65urji/OKMxTpF6RpLWmB52I4HVoXlONiuS5WnIG426jrWTS9CVYzRTU47bhOHEePra2xp44dthBOwnM1ZLFLa7RGulAzbHodvPOCLP/qQVx7eJg4clEpupvgkBVma4jgORlb4sWQ2q1ksF1yNLxiPL9FK0Wq1aUUtFvM5772fIi2L/d0jRqMhVVXS7cVYtiAIXHr9CDCkWUW740LjMdOCy8sLyiKjLGosywZtIW2LbtfDtuXN92BsiqzBsgVhE3J1vsIYTX+r4eD2gMPb21hWQFEqkiQlHnY5ur/F1cmSJx9dUdYVjm0xv5rS6cbotofr2hzd7RKFHot5zumLKf/ol36bq4tLyirHlj6uK9GmxnZ8pO2wtT3inS+9yWQ85/pqhmUbXNfH81z80KHXD+gPQlzPoahvdkNInWOjkaoyvuNUvutJS3OLuv6dn/+v/qtNArDxL5xNArCxsbHxGfU///Nfffrvf+Uv/zsPHhz817PpSrqRzdbRPkWZ8frn7zCbJFRNyZtfeA1tHFzHoqlrGlvh+iECgWoa0A1ZMkY3CR+++4i///e+zuVlzvZ+h6OjPmlSMBjFhF5AluQUheHF8RjVNLhuwOnZAjewuL7Mmc/XfO7tQ4xSNGpCrxexmK0YDoc4roXtWCznOevFza2uqg1BFLBcLmiamqYZY4B2t8N6tSRLMry4TdBuUaQFy9mKjx69QGuf58cTzi9XYHIC3+HenTvkucJzfVqtgMn1mDffeMDDVw7o78Rs7Q9wHMHsOuf502ve/eBjvvv9d7meXCGEg7Qj2nGfuqlB2iAsjDYIYTDGUNc1RisiP6DV6eOHHRbXV2gM0o6xbZe9nT69bosHD27x9hfus7PbpdP1aXVCTANNVbFeNdRVTVWXtDttmlojqDFakGclURCxu71HWRTkZUapKrLZFShN3ZQoZbBtl04vxg1CsqzC9zySdcX56Ql1U/DglQPe/sJdyqJmcu3xxucOqMqKyWTF8fMJs+mK/rCDFB0sS5AXc+bzFWEYARbLZU7gW5THY/KiQWtFus5pdyLcwGMw7LN/a4uLsysuT6d88Ufv8fSjfX7wex8zmazp93vcu7NPEEMyT8mXObNZxn/7X/8qT548wbbBc3yEpUjzFCFdgqDNzu4uR0cHPHn0gtl0jtbgSOdmt4TnUFUNdd3Q7UUEvgPKolitMDphp99ne2tbR6FXGmgapXxRKcn/2Ba3jY1/zm0SgI2NjY3PsA/eP5ml6/Qbb3/xzT+bNjXXl1e4vs/p+SlZUtHrR1huSLe7xSpNCVSD0YqqqrAtmyJfo+scP/S4eD7hl//BN5kdj4n8FovLFd/49ZR7L+1zdbqiKSsMAiMl/WEHIW62yU7HGUFsIyxJUQqMCanrBQGQJBntdovZ/JpOp4MQFnmecX66wpIWmoYgLOgPYiDDcSRlVWElFkYphOUQtbdx/JCqNHT6PVbr55wenyOMzR/7V75Eu+MyG2ccv5jQjlzabYcocglCyYNX96ialOH2EG1L2u0ut+8IXnlzxJ/6s59nPvvTvPveUx5/fMbHT6ZMJynT2RS0QdoBqq5paoUtPISw6Xf36Y128KMu0nIIHYcgDjjcH/LgpX1efu0O+wc9hsMetm1R1TVN06C1oa4LqqrED0KMp3AdyWqxIllXrJcJWhkODnt0OjEvXricX1wyXy5o6vJmWZk2uJ6P51ok6YrjFyf4fgvHkuwfHqCNQdqKu3e2EQiuzuc4gYXnezSV5vjFJWnS4PseR3e28TyXMPYoi5JWO8Dzb0rB0A6XF1OKsiZutcmynOXco2lqFvM1rudw/OycuNfFNDbvv/ccxwWExZ27txmNMuJWQJalaG3TlC6+7/Gb//i7PHv6DESFEA4aQZrnCAHdbvzJ4f8IKQVPnj5DK43r2riujWUJfN/BcVyStCDLKpK1YtgbsuyPSJeGMluZ3NNZFI2WrmcvLUuuhGVNPuUQ3dj4odgkABsbGxufLQIw//5XvtJ1nPS2xP5SU4nhyfMT8/ZPfV40KJqywY9rylIx3Brhh12i1pCwNUArsG0HIR2MVkjr5la6KWv+27/3q8yPrxnYGkmOsn3mkyU/mC1o6obFIqFSDTiS3b1d5vMVtu1wcOuAq7FinazxA4uj29t4jmK1GtNuhRR5TRhZhH4JQmI0HBxu8ezpGWHs0hu0sG2LLK/pODHpek0Qxni+j7QjpOPSaEOr06Mscpq6Jooc5tMF15eay3NJp+tz67CFKyT37nUYDGKCjsTvRKDbgMZvtyjynEXaUFYN11enpFkFWvMjf+QhP/dHO3huSFFWTK4T6qpitVqyXmY47s1SLdd1sX2XsB1SVw372yP6/TZ+5NKOY2zHp65TtFJUdUVZFjRVie24eK5HslrTVCVlkdFUFckqoaqaT2r+4fxszmyak2Yp/V6PLFtTNz55mdA0DVXTEIQRURSTZCnrJMW1fYK4RX8Yc3A0ot8PyJKKslSo2iZPM0ajLoe3drBtyfX1jMl4yXJRIIXE9T2qskZKl+U8o9226Q8CbMcmzyuqVYMRkr2jW2ztdDH69xuXCyxL8Oqrd3j/3Rc8fXSOKis6nYBur4vlSOL2zbK23/36x1xd3Szq0rUFRmIJiR9F9PoDdnd2cV2f89MzEFDXNRiNIz08x8Z1LFqxS7dvE8UR0+uCxXxOWZQMBl182dCOBO3YqW1HXGLbj2zHPQmUevppBuvGxg/LJgHY2NjY+Az5v/27/+7W3HXXJUVbVOZtSfVTEuth1Ark9dUZe/ceIiKb7PyC4ajFaGeHTu8AhIcxDa7noBqDFgWqyhFAGLp87ze+y9PvPsbTNbIpadI1xrIJjGGeJEjXo+VIpO9zOZvx+N33KbXCSIu8KIk6XXzHo8oMv/Hr79EKbX7iJ19iOl6DAVsEfHB6xmg74uxkhhcEbO0N8P2bg29TaYw2HL+4QivYO4pwwxbSckmyBNsOsIIA1/EJfJ8gsJGiYX5dUJcVUitu3Yop0or5PKWoct44vE+twHMEedIwnY55+nTCu98749mzS5brFKNBSovb94e0Oh6Hh3sc3Npm2OsCNY5d8dorh4x2t+h0ujdjROXN9CTX8TFGo5Wi0ZpVMsEog+u6rFcJmIamqcizAozElhamETiepEYzvV7SVIZuv0VOwdaOT38UsZpnlLkmzSo+frbFR0+fM74a40hJXuSEYRshJNfTC4yqCLwQYSmKIuXqss9oq0+3G9w0aMsE25JYtqDdDVkvcw5ubdNqtSlShdIaP7QYXxU0RuI6LqCJ45gkzRHCIm7Z9AcxeV5w8uKKqBVSZJpWq0PcMWhV8+prewy7MU8enVJkNUXRMGiHxLHLyemKk5MxR3ceIixDnmdsb2/j+T55UbG/s0eSzDk5fgZKYTs2xoDEYIzCtiVxHOL6km7fwwsshPAoig5pekloHLrhDqGnjWNViXDllR24S8tzfvur//F/spkAtPEvpE0CsLGxsfEZ8r/7q3/1+v/+l//yVi1tkTfVt01RPOi140DVhuuzGddX3+LowQPavQ51XdAoaJRCWgohDMooLOGgmwqhahCKfLbkG7/8XShy6mIJtaJRJY7lYiHpexaWJxBSINB0dnvM0pKrZYqybObzCZPZmGF/QCvuIK2IJK149weXdFoWjuuSpzVZmqKNoTvocn15s3n21q3+J42+PnlZ8uzjJVWecXBvj6g7QGubOAg4v7ggOryNH/aYL1POX1xzeDRisTzh/kuH9HsBXujhRyFVU/Dy/SOqUnF+seTxR9dkWcl7PzjHsh3OLs6Igi77eweUZU6WlHz03glFmRMET4n8gCxb4Tget+4egSWJw4D9/R5B7HHv4T0W8xlCNPieS7fdoygLVukC24HAd3FsiaqhqRWL5ZpsVSGM5Ox4RhA7dHo3de3LWc5iniNtge+7CGlumo4dh1LVtLs97t2WlKuS1XrKajm5eaNgO9RFged7tNoDVGORZxWX5zMuzidsjbbZPRhy624Xo2oWiyVCSq7HKemzCaOtDoskQ1rgxh5+HJCuKpKspKhK/MDHaI0fWGztdNCiwfc8+sMIadl0uzZh7CNFw3SS0e35FFlGtxeR2Q1V1XD8dIa4vc0Pvv2E9z/8Lm+98QW2RiMmkzFSQLJeIaTk+PhjsmRFWaSURY7jhURhjJASxE0PhlKaLFWsVwpp2biepD8IyPa6LCYLXK3xbK1VVRVImUvXmTq+PP6043Vj44dlkwBsbGxsfIYIIQxw9Z/+ta/8tKDzxXpt/YzrWN3VsiBvJFiC93/wa9x+5R4PXjni+PiMV9tDhJAYoW+23drcNLYKgZSaF49PePboBXVZUOYZ0ihAUygFgO1Y6KLCAEYrBJJAC2KpSGqDlDZIw9X5McsgpNUbsLuzQ5oU2MLjB9+7pNWSfOGLd9FaMxr1OX5+je87TMZrdna7VI3m4iQhKRTbox5lXqCbhtlsTlEpDg4OqOqS3mCLP/FnfoJH737Mu995zM7+FtPZglu3tzg9ueal+/sYE/Lee1dICybjkg8+vKKsaopcMR6f4jgWloTZZAwGfD+g3x2wXM4Bw3q9IlnP0Rgs18d2PJIgZDlZUjUNv/FrPyAKQqo6JwwimlKB0HRHMZ1eSF2W+J5LmZdkWUO31yIMXJbzBMuyqCqF1g6dbkiv20YI8CMPx7VQlWG5zFitCnzPpc4mnB6fIN0G27PZ2tnHGLCFfTPmVNzsCsiqhHK6Jg7bOI7LZDKl1fMpi5hOJ8BzJQLJw1cDFouULGvwIxchYHy9pikNYRDgeR3qpsIPHHrdiEZVTCcpZaVI1tf0+gGjUYuo7dOoirqCF09nJKuCbj+iP4rp9g2LaYlqJGenK84vJszXU377G79CHIRgDI5l43kBlm1RFSWIm0VtlmUhpAAMUt6UCpVlQ5HXVKVmPl2hVEh/EOIHklbXI3B7NKuEKltXyhIGRUeVTZ+S5tOL1I2NH65NArCxsbHxGSQcd7I9DP6k6ruvpauS2fWarBCE3YjR9oDzk3P6gx53XjpiOrtka2sPiUB8MgtfG0GlG3xL0lSGk5NnxK6H1NCoGq3qm8VZUuDYLajBGIUQoI3Gt1x2u31mScZVukYGLXAC6qpiNrnGc1x2tyOEMCTLlOGgQ68XkhcZ0/kax3cZ7bbp9Ya02y1Ozo45PNqm06kYX1xSVmCMYGt7n1rBfDbDcz3m4wmddpfd/T0evfuC1TTBKIv1MgcNl5dz4pZPr9+m1Yl58vQRtuOitWGeJWwNd9AKHFsSxS3QBsexyPOconBZLCYEYUCn2yMIPFxHopqaxeyK4+WaVquF5br4tkNTKM6uz7Btie04aKMwGnzX4/hsxsXZNU2t2d7ps7vXJwgdWh2XrZ0W7a7P+fGSxTxjtBMTly7rdcne3pBu3yXNcyxbc+/eHrZweHF6QbNlmFyPqStNki5ZpwuUUlR1TNMoXEtiSedm0ZswlFnF9GrNerEiCDz2D/u0Io8o8pgvUuLYxXUdlguH2STj8vySxTyl2x1Q6wJVj3Bciyj08AOF6zgIo8E0OLYkSwsuzxbMpznPnl5xdXXN3u4ei+kUVRu6wz5aGcqyxBhDVpc0qsK1LDzHpVYlUlrYloNn+0hp4Tgejm0jEDSqIk0Vjm2RpRlVUaEjn6bSLOcZUkji0KNWhtyWKCF13ihjCykwzW7je68DX/u0Y3Vj44dhkwBsbGxsfAb9L/+dv/Le3/ob/+dfubXXeWWw143bu12axmddGJCSL93eZ7CzRX+0i217pHmGLQWOK7FsD8uysaVA1RW7t7bAbnj+4pyXbh+SFjV1nWOMJvB8VFOjlUbrGs8NsKyb22ffsfC6bcIo4Hg2x0iLJCvxPQdV5EzHGStnTXfkce/lXZIkZ/9wh8rA9v4OUdgmjmLG02sevvoWQkrOT0/xI4vh9j5YPk7UInQjLMclWy/xfI80zUiTFdk6pdsNuL6ekVc1B7e3sD2Hbjfi6mLJfFXRG7ZI0pI0TdnZ32HY7zO+moJlE0UBy/mCZJ1wfHKM59g0dcX4ao60bOKojePmNI0hiCK2d7c5PzvHsWwC16FRDdKG+w/u3GxTLkscR7B31ObWvQ5v1Lc5fX7N2emEvCx558fu4riSVtvD8ywwNot5yXSSMxjEzIuC85MJg2FI4Nn0bm+zmt80Eh+fnZAsMoIwwPUMq/WcrEhwbQ+la+q6JA4G7O8egbQII5c0SfngvQV7+0N8X3F+uqTbjUmSnFY7RpuG0XaLh6/sc/x8ikGxWleMZ1PKPKfKFVHsE0YOvu9zfvGETqfNwa0dzNMpWztddne61GXF4WEPx7a5OJ/guR6Wp2mMZnw5ocxSAsdF2hZGNUhAa4Vt2zi2g225eK6P7wdobbCERCuF41qEYUgQBHiOg2oUTX3zZsBzHbRW+J5AZeD6HlI20nZRpVaJdJ2pdKg/7Tjd2Phh2SQAGxsbG59NplH88nqR/qv9UWdra3vI2eWCkxfXjK9TknXO2+0Wfl4SeDa+H1CXBQYJCKQUWEgaYxjujfi3/sK/yf/lL/97ZFVBrUpq1VBUOY5tU9clGINGo4zCFjau42BZFqHrEeoAW0gukpSqcgiDENuyaOoKpKDTGXB+viBrO+zu7yAti053RKvTI0/XdHsDwnYP24lx/QH3Hgh8P8J2XLI8ochz3CDEdhxcx2ExucZzHWzbYbFMOLizR3+7y96tHhfnK548vqYqavYOBqxVQhx7tOIDlvOUq6s5WZpi24IsWTCbzCirCt/30aomSxMaVbO1NWA43KGqStI04cGD+2RphlEGKSWeFzC7vCRJFqyTOY7j8vprr9NpxWTrkt4wIAxdXnvrgP39LSbjGXmW43ktnn40IU0L2l2HwShmvV5zfZWwWqUYY0A6lHVFXa1RlSLNMh48eIn1qmS+TJgvl4RhzM7gFq1Wl+X65sC+Ws348KPvsbW1S5l3sKQkDAMapVkulyTrGmNsev02xgiKXPH133jCe98/Y3evT5EroqiFbSW8/uodyrohzyrCyMdxLB4+vIcXWBgEq1XDb/7j7yPRDAY9gjjAsSFwbcqypr/VQRsYDAekqznduE9ZZmBLDAopBbZlIYXAd31c28WW1s1iamOwpIe0JEYLyqLGtnP8IkCuJH7gYNuaMHJoNLiejaxtIieya1uGhapayvEWjSUbPpma9SnH6sbGP3ObBGBjY2PjMypN6ueRaa5UVlRuO3c7vQG3b0tMM6MdtQlcD0FJUWkcfGwnwJI+UljUdYHWBlt61Gjuv/mQ3Xsvkc0nWFqhdE1RlzTGoI0AI6iVptEFomzwtIXvSxpt8B2HURwR+AGu7ZKohq29Ed1eRLfX5sWzK15+9ZA4alEWKX5rwGB4SK1AyYYwiAnjPrbtE0Y9tNZYlo1uDE5T01QFRlooLXFcH2FJ1mnDv/rzf4Lx5ArLgTCQqFqjgfF4hS0sZpMFi1lGUdSs5hPanRZB7FIXDnVdMptN8TyP3mBAURTMpmNc1yP22sRxh3WacHFxRuiHPP3oCXGrxWhryOnpGU2jabXaxHFIGPrkeck3v/lNbCnpdkcc3t4hil1cR9Dt9rh9d0BVFnz0/hqtDctFxvOPC9qdEM+zSNZLdnZjdg+61A1oHVCXhvl8Td3YJOuSj5885vziCoXCGEE7jnFdG8fxcF0PTENZ5kxnV5RhhQD0uGG5HOIFIVEc43kOYWyTpzVx5PDK64dMpwvOTid0OjEvvbRLsi5odWJ8XSOtAte1cGwbKWyuLid0BwH3Hgy5dTTg2ZNz5tMllxc3i8S0NmAE86mk1YlxHIvBaAfLdplMzqjKkqrO0EYhsJDCxpIWBg0otL7pBRBCfLKETdA0DXme42cZtm1TpA2eLYlDn7jlIaOG0pNML2YmTctUW6yEw7Vru+NPOUQ3Nn5oNgnAxsbGxmeUZayW9MVlHLvrJNeDx989IW9sWsMWZ1cTomdPefDqA/zAQ+DgOD6eG6J1Q92UN3sAHBckLFYJWVHjCBsjDHldUTaKutEoR9OoiqJRXK7mXCZrjOXSD9rc3z6kH0UEjocvbXqBTZ7UXF2O2T/aJi0qhjsdkIpuP6Y/GNLbvod0I1qOT7s7RCtQWlNVOUJIbMtBGIElwfPbuH6Ma9uk6ZJ1NscJIn7sp36Eoqi4df+AIs+5vDglrQuOXtrBciTX50vyTNHpxcgkoyptNBV5mqJMw3K5wPM9hoMBSkNZVnQ6HWzbwrJcpHRxHfjCF9/BtVyquqHX67Jer/B9H9UYzs+e0e60sR0JaLI0QUqbTlegtKQ/7FEVJaenE9K0jVINy3nBZDrG9z1c1ycvUnZ2YoSA68s13W6EtODyYkWVw/PjSwbDLrdu77OYl8StFqs0pVGaNEu4uL7A9z3iuMN8domUNloJHMchCmLWyQoE9Pt9wjDEYEiXFZ4niVoulmPR7UdkSc7jj65QjaFsSq4+mrB/MGLYj8nyDNcVuJ4Aq8vp2TVXl3OGoy5pkjGdrjCmod1pY1keVV6Q5wWpgDCOGGwNuXf/LtdXB0yup6TrBVrXIAWWlFjCQukaKUA1NxN/HEdiWRbmkz4Uy7ZRjUagbxrRhaAqKqChaRSO59Le6tpx5G9nefGwUCZrGqOA559ulG5s/HBsEoCNjY2NzyjH9aTri7blChxlcC3JRx9NqFD8yE+8xmhnQKMaGgNR0CIOIhplqKqMpspBSFzpoFROkqX0+n1WZxnacPPv1M2NulKKRmnG6xVP5xNyrYGcWbak1g2vHdy9qd1GEPoulilYr2quLmZoGnZ3ejx59ILPf/4u0+Wa3p5NrWqElEhjgbmp0/j9m1+MQaubQ55lCYyxMUbi+zHCljRNSVWk+IGFMQ1aNdRlyXQyZ7lYAQpbWuRlycXVkvlkSZGWBJGH6zlIWf9Bbfl6vaYsa6I4ptOJ0caQrDP2D/v0R33KvOTs5IxWu8352RmLxRwpbMqyxPNcet0eSMl4fkWr1aHbHWCAyWTOerWm2+ngug6Cm2k24/GEJK1YrdKbZyZtJhPY29umKjTJOufw1pBGwcnZNUpJ0lxzfDoljALa3YbxbEqSrnFdlyDwmS2uCfwAjUCrGqMV63RFVmRIJFVVYYwiSdZs73SIWx6qNtSVIc8bTk8n7B0OGWz3OX52Tbcf4rkBeVIQBQ6e42LZNklScHh7yP2HferSMBkv6bQiirzk9771PYwR9HpbaK3p9XtIYTG+njAYDlBK3SwmazSdTh/LEqRpRl7kCAcsy0EKQVnlKKUIpCQIAlzXxbJsLNsCS1CrhqqqqGsXrSVa3/zMCECrRqRpXguNLQwWkumnGZ8bGz9MmwRgY2Nj4zNKyywtUqdysUBYeF5DO4ZnL5b87m+/R9x2ud/q43khtuWhNVRVTlkVuK6PtF2kkCTrNUWZMtoaUc9XpMWcRhnq5mYMqNGGsm6YZwm51n9wSEfA8fwCheHuziGelKhCMJleME6WTOfXREGLrydrDo/ucHax5Md/6lUcr4PleBgDYGF9Mv6xUQ0Ig2VJjDForcGAlAKlGooyJc8TXC+gqms820XiMJ9dkyzXnL245re/9gGeC8NBhzC0aJqGNJvhOj5C3JSZVGWB1jWTyRrVKKJWm7Ismc+nVFWNkIbnL57w4ljgOREAk8kVrhuws7NLlq1odEar1WW+WJDlOZ7nEHghTVMynlzT743wvJD1IkF/UppjWTZBEOK5LmHYJsvWhFEENJSFQinFhx9MeO/dF7z8+h737h/y/e+dUOUFcTvCEh5+WDCeTBhPTul1R9R1g2oayrKi2xnhOg7L5ZysmrE9OqApK7RqGI66bG0PmM9WFHlB4IVk0xyNwPE8JtMlO3tdZlOP8eWSg/0t/MDQ1ALQqKJkucioH18QRy6vvrHPvQdDFrOC0XaHn/mjX+S9H5zwg+98jOe7lGXF9fU1fuBTFAXG3Ow3ENKwXM0RCKKohTIaS0oc26ZpaoRVglLkeU7TNPi+j+f5RHGEZdtIy8bzXPzAuSkb0ha+ZyO1IWuUrutmbQSPGsv5WlybzQSgjX9hbRKAjY2Njc+oUg51Xq8qKy98advcrLVV+IEDUqMtjR2EeF4Hy3KolcJws6nWtm3quqaoErSpiFserXaIsG34pFFYA3wy9lN98nHD3HRVftJaeTa/YpatsQRUqqaqGwyaRbrAkwH9zoh792/T7sYo41A3CqUrLMu6mQwDmE8O/krfHIQBjNE3M+9tC4FNGLQJwxZNU+E6NsZoxtdnjK9n9Acdbt9TnByP2d3tc+fuiPU65fTFmO2tIfn/j70/j7Y1vQt63+/7vH0z+9V3u6+9q+9SlY6QxECACKEX5eARUQFBPXoFm6uAUWw4cFBQRFA4wlGvKEGFBAhpqKRIW0n1u6p27X6vdvbd2zfPc/+YdTz3nzvO+cdUIPMzxhp7jDV2M9da8zf283ufX5OkXLt6k7bTAGAeTpBK0Kh3MIzFtBnPc+h2e4zGJ8RxSFEUVBWsrW2ws3WKoBaQZRmt9iobW9vkaYoajKjVm4ThjEazie85NJsNbt25Q69/gtA1NDQc2yMIahRlgSZ00iwhK2KuPf8q589dQmg57U6DJC0xdMH1K12ODsasr69h2jquY+O1XdqdGmH0AE99tmQ+H2GaNrbp4bk1TMNGViW6YZDEEZPxgO2tHVY76/SOJmxstNneXaV7NCFOcmZRQhhmmKZBnlckUUaR54RRyHBssao3GA3HrKzWcVyLoFbR7gTkWcnhwYRKZjRbAcl+xvUbR0RRSXutRZ7GFJlibW0V3w8wTINGq8ZsOmFmmSSJoihzpPQI/Doai83KVVUhNB1FTqUUQpZkry09q6qKPC9wXRuhSYRQmObiPS9fm/Zfb3rCt4zmeBS641IlX6w4XFp6PSwTgKWlpaUvUw8/eOkb19Zb70xmE2c26pGpQ2r1jDQ2kUJHx2altYvv+iDVokRk8didsqqQZUFVZUhVYdsCy9YpZUEpK6RS//3QrxQIIXAMC4NFiZD6/xmsolDEWQSApgmE0BCYGAh8u8ne1hnOX9ihs7pCvdVECEGaJDiWi65VSF1QFeVrNwtQVSWGYSwWQQFSKsqyJC8SpCwxTAtNM0mzIY1GmwsX76bM59RbDTxfZ9gPORlOGA9iDN3FsjVWtzpkZcz167exrRr11gaWtVg0devGdUzTpNPpAIosW5SZ5EWOYweE4ZSrN17BMHTKIsO2fZrtFbY2dvGCOmE8pdc/ZjYbYVkm8/mEslQoJWg2myRJxHH/kOo4Jy8K/KDG1sYWnuuzsbHHLIzJ84w7+0cYusHpM5ucOXeJly/fZjwZ0267zCc2N68P0ITk4qUzBH6NgzvHTMZTojQhSRM83yPPMuIUbNtCAVEcYZkjYsPiM58KuXjvadbXO6Rphe7odFZ0Br3J4vubldT9OtqmjmmbzKMcx7WxHYFSOVmWIwTs7jUQQsdxFv/Gw4/usXNqlRvXhzzx0c/TPRlTrwVIKZnNZiRxTFmuU6sHnDt7Ftu5i7Jc3Hr0B6PFzP+8QNMWP2/HcRcLwZT6v5aDsdhE7XoWpmOgvfb+U5UkL0pkXlAkeVVk+TRXqmfq5s3/5Z/9bPZFC8alpS+yZQKwtLS09GXq5StXPlzmm9+4s7Ozs3PqPBcfhls3D/nUk89RypKz5y8upsPAok5aSDQWh+w8i0jjCUk6pqxShBDMwgnD0RATtai7FgZ5UeI5JjqChusTpAlRmSOVQqChazqGMNE0jUpWi0ZjMyBwfRzT46GHH+TNX/kg9z92no2tXQzdRwiDes1BFzpCF2hCp6oqKrmo51dKkeUphm6i6wZCCAzTQEoL3XKRqiLPM/K8QIgSNwgYD0Ki+RTD1Dg6HDCZJQSex/hkSrc/pLPZ4NHHL7FzZofAtxj2Z4zHIfGs5NaNG0hZopQkSWICv0a9ViOKQgzTIkkSbMdF101WOpukSUo0n3Irz5ESwnDKdDplroFlWUgpsS2b6WxMloVITeB5dQxdZzIdEccx165dxbEdLl56gCgMGQznrLRX6feOmM+npKnEskxuXLvDJ4/26ays0F5Zp9Xq4Dghiopev09VlpimQZorxpMxlmUhhEGeFCTlkKyMaTYb1GpNjk9OqF5QRGcqNKFh2zaz6RzPdVBIoijFtgxOn9uk0fQ52h+RZSlCF8hKo15v0jsJqQcelp2jazXSOMMyC1baHkoKbp85TZ6axPEEXRP4fkBl28hKISuJ7ZnYnoErLLLebHG7VJaURbEoAdJ47WMxDcgwTUzLwvYsvMDGDSxqDQfPNZBlAZlEFhV5miqUzKWsYk1hmzqP/sQP//Crf/Mnf3L+Oofp0tL/EMsEYGlpaenLlK2nZ/LZYe3k+iHH1y38ziarG6f5zj/3rei6i+X4KE1QSYmqFEWVIaVEypKyjMizOWWeoxuCoO6xsdlZbGo1DAzDRNMATUepRTmOZZo0nToqDcmqElSFpTu062usdLaJipQoDjl/9gz33HeG1bUNLt5/iov3nyOor2A7DXTTIksTpF6glIZpWliWixA6QmhkVUWep5imgVzcWSClwtR0HNtb3FxUFYZuEPgt5uEYyaKO/M7NY+bzmHrDR0rFjSuHjHoziiKh02ly82oXN3DoHo54+nPPcnBwCGhURUXQ6tDv9/A8n/G4j1QaSZoSTwcoqfBrDWzbpts/ptlYIZpHzI4PsWyLosiwDJs0TxmPRnj2om/AcV0qWWJZDq1mhyzLWeu4oEmGwxOiZM7Lrz7P+fP30OseUWQJnfYaCsHVa68uSl9KSa0W4Hk1srxAISkySSU1VtZW6Z706J50KVVGnmUUMsN361img7AAzeTqjSskWwXNWhvdMOn1RmxvrZKli59BnhWE85RKKnq9GbMwYnO7QSOoMxlnFDJA0xR5lmDbFkdHY1BwsD9nc6eGLBVCzxe3CobGZNJnNhuw2l5HGAZRHC2mD0UhfuDTai8mIo1GM5QE13UpdEGShCgF5ms7JtRrPSAS9drnNTQkGmCaOgWgqQpZlRi6rlVlVek600JyKOF6T0r5/z96lpb+cFsmAEtLS0tfhn7iJ364ZqDeZunVKdc29bIsGXdvsr9/g8baeS7e+xZ0UyBfO0DnRUqRR0iZU5UpeZ4gdAPfqwEVpSZptDxyWaDKElku/pwQBkoY5DIjyReTgQxhYesercYqrlunXvO5dM/daLZJpXIefeQuWus+d917kaC5hjBspAJhmOiawNAN4jjEsT2SOKaSFbZtA4snvlJWKCURmkBKhVISTbFo4hUaaAohTISuYVkWUT5nPJ2QJDlVDq5js3nfOs12QPewh6Z0NM2g2bRxXZtPf+EW80mCzCVZmYOmmM5m1OtN7r3vIg88+m5mYcwzn3uZGzcOOel2CaMZaZYiK8nNW1d47VhKGidUVY5j+limhWmYhFnELJ1j6w71Wp0sSymKHNM0mU4X24xdr0FQb6GAcB7j1wKOD+6Q5TnN5gppkjCdjVhf3SDwmyRJQme1Tr3uo4mCIKixuWMjhLl4gl4tbgLiJCLLM8oyJ8sLWs0GhimwHAuhL361HJNeb8KZc3vo0YxWs0alZYzHIa1OkzSNuXPrhE4rpdVuILSK1U6AaZjcutkjDENc16dedxj2QyajlLX1OqZtsne6jVIP0O9OyVNFmqeUVcp4FNGoddB1g+l4hus6NOo10jTDMHTMeoDruAx6x2RpjFIK07RwHRfXchYftoNAUOQVlVSYroXSCwzdoZCRSmbpKJHVS7nl/PqP/vTPPvP6RujS0v9YywRgaWlp6cvMv/yX/7i13ax/f6tpvqvmGx2BotIqhDTw7YDO+i6WGyBVRVGmlFVFWeRUVYlUBWWRoaoKQxdUZU6ehkzHPepNF8t3OL59G9+2yKUiTAtAEGY5kyQiygsCv81Kc527777Exu4ma9t1Tl/YoLnSwnYsOittispgdXOHSilsK0ApjUoqKqkwTIsgaIJaNCQXZU6eCwzDQNM0TMOkKArKYtHQapomsqzIihSoQFOoSlJVFZqmowuLeqPGmfPbpGFCfzAgjmN2T69z5twapq6RZ5LROOTVl46ppMLxPNbtXYKgTiVLXNdiNB6RJRlVpRF4Pg8+cC9VZpOEJXeOryB0jU5zHde2UVIhBZRpsVh+JcBzg8UBN5ygGRqWsCnLnDAOmYYTdE1fzLcXFoEXEIcpEsV0MkDoGo63mNYURRFlldKoNxYlPjWL/kmXJE2pN2zuuecccZpTKZ3VtTbHJ4fMh3OmRUxR5liOA5pGpSrSIkYrdaxwwsW7LtHuNKi3fQbdCdLMWd9pc+PaESvrHe669xTdox6WtUXveISsDPrdKY5nM+xFWIZBISUnxxGtNjiuiZYZqCqnKIbUWy6ObbK62kGWNjdv3mI+m3Lx4l2E04jZNCbLElzXwvMdHMdmNpsjK0mepaRpRFWVmKa56P/QFsvnbKUwdB1DN/A8B9+z0XUQSpEmBVmYYFYqFqZ+W2j6saVby/GfS3/kLROApaWlpS8z3W469XVxoCqCMnFMw9DBMKm1Vuhs302tcwpN6ChZgQRUiRCLJ/qaVKBKDK2izDOicEoUzpCyYu/UOhfvvsjVV64jNUVeSeZFQS4roiRinqY4Tps3vekrOH16mze85SK7F7YxHYOyrGi0V/G8Jlklado+luWT5uFrTb0ujm0t5v9rYBiLvoI0S3BsD6kUWZYuEgDdwDAMlKah6wKUoshzknSOboBCW1wEaAIl5WsfitksZD6b0253ODrqcuPaHbpHY3ZPbZHnBYPeiFvXDxmPB7iuzfrqBrVagygKKfIM27IYjyKe/exVgkaNspBcuLiLGxgknwqZz8fIqsQ0LTRNEGcxVVGhYVCWJYZhYjseRVlSlTmyLNCFSaveQaGQUsPQNfIsZT6foGSF63lMZlPQFGsrm/hBjSSOCeczpOej+4sn+A88cC+abvDKK9dJo5g3vu1BLKekSAvO7F3gSD+ikClllaEhKMqCPEsIwxkVBePJiFu3rtFsPYzjaTz2lnNcv3HMcDTF1D32bw1QVcmZM1vM5ylFXidLKiwEUkpKqbOyUiOaJ9z34CmiMCFLS1zPQdMrmm0bx7XpnoTcuDpjMplimQ7ttstwEIEmMW2TZtPHsmxmYUycpPi+j6HrhLMpeZ5RVRIhNAzDxnEcDENgOTa2a2EYi54RKUEqDV0H0xSkWSZn0XyQV3K/sv3rud86er1jdGnpf7RlArC0tLT0ZeZ973uf/LV/+1Nle7Whu4YuijQnzXPCMCKoFF6lIVWOlCUgQAmkAjSBQiKrjDyeEocTppMJcZrQ7rSYhXNOn92j0VlhPutRKklWSqRSTJIIx2tz//2P8PZ3PcTO6TY7F3bRdBvLCcjSjDTJcf3FnHZd6JR5jmk4CGFi6IKizFFIylKii4pCghAs+hJeK/lQSi4O9koBijzPFw3MOpimgaKESgIalUoJoylVmZJmEZZrsOI00CrF6koDJWF1pcnJ8ZTLLxyAynnwoTN0Vh7A812qAm7fPCEMC6bTGfNZTLstmM102httmhs2q6sBdz+0xfpmi0987HkOj29imBWtZpO8KnAsH9M2SZOQ/qiH5wdoSqLrOpZpogsD2/GwHQ8lNZqNBmgVk+kYhSCvUupCJ5xNSOMQJNTrbXaCs4TzKWhweHjA4ZHi0r338JXvfAs3rh1w69aI1fUWaZohhEat7tHtTRmMu8iqwnN9qqogTSOKquD0qbPEScRsFqIdCrpHU8Bi3E0YD2fEUUQ4mnN0a8jO6TaWZfPqlZt02m10zUB3Svr9CUIJsjhj79Qqs1lIGM5ZWa2jGzp+3WbHsojmYJiKwWBEHMW4rsuZc9tYjk73eEKWVbQ7ddIkYjKZg1TouoYfNJCloqqqRYKo65imiWmaaDpouoaUUOQVSSjJdIWNjut5mlbJlot4MKUci7B78mM/9mNPvO9971v2ACz9kbVMAJaWlpa+jPzyz/+zC0HNfcy2jUeF4dp+p6HpukFWKCrdxXZqIDSEZqCbJiiFpilQGlWVoSoJVUmWJKhKUavXEZaOUhLP8zl3fouzZy7w1BdOqLSCtEpJipJcSb76bW/jq975ZvbON/BbPllRYuk2umlRdwKUlETRFC9oUCkTTegYmkGeZWiWjm4alFWBEBpFkYGSJGmE69bQdQslJaZuohsGUqlFg7Kuk+eLKUUIgVYJoCLNF7X3tmVRagpdN3Fsm6osSNOSF188ZDia43s24Szlvvv3WN+oM50kHB+NiMIDygJms4g0zuh02gSBT/fkiKJogFrn/MUd1tfrOLbDxnqHc+d2efGlV3n688/RO56hKsWlS/ehoXF0fIe8eC3pEhqB38SxPYoswTRMNta2QROYpmDn9A5FUZEmGftHh+gaTEYjDu5cBS3BLlLu2ruL2ayO63ucPrvDdDxjPsuYTRIu3X2BPMuZDWM812U+jzFtj2ZzHdOyOTi4znjcxXF8fK9BnMSE8xDXrjGZztAEmIaL0HOUBqZt4Soo8oyDwxOSrKDdbtOod+j3ZliWzvbeCuvrNSbjjNFwyu3bXXZ2OmiaSzjL8XyLwTBi1AsxDUGnGVCvOYzGY/JckhcVtmtiWjpVWSGUYn2tDQLytGQ2jZjPFJquY2nite3OCqUUmi6olAUKLF3D1BWWITB1HZmW5ElOVZWl1FQm0VwhxJtq6XwMLPsAlv7IWiYAS0tLS18GfvVXf3XNdbWHfNt6oN2qvaHmOfc7jrGrhE5RVFi2hXDc1w7/2uIJvCqpqgK01/4SJRcH5CxF0zUMy0IIQVFJBv0hw2HCzesj8qLE0E3yMiMrYsqq4oEH3sCb3vIwe+fb2J7GysoGEkGhJHmWUWlg2waqKsnTCGF7oHSKssRzfRQSXdPRdKhkSVIsmj91TVBkCZWxqPdXlcQCDMNCmYsRoBqCOJlRyfy/jwk1TBvH8dE0SUqIkgZJnHLjaperr/TorLicO7dGninOntlEE4oXn7uOrATrGw32zq7iOCYAveOIk6Mxjm1x6dJd3Lxxh353ykc++Hm2tzZxbItollGvO9x/3wVOnz7LJ598msvPvcCg16fTXqdVWwdRUVaSKJziB3UajTZ5klEUKbop6KysYJg603nI6VMbVLIgVwXNWgNdKDrtFlkm6aw0abbqbO5skRUlldI4c2GXLE0X03rKinA2Z//WESvrKzSaTbKkoNGokWcreG7A7dtXkVJiGjqaVpFlKc3GCnme4fkW49EMXTdxXRfX89EQhLMZVdUgTTKiOKZeq2MYBifHXXrHU1BQa9hsbLUwDQPEYmeDrmtEcYXtCRzXJcpyDAMc18Yw2iT5YjGcEIq9vRXSqGT/9jF5UWNlrc7Kmo3nGcRxBijKPCHPKoRhYJg2pmXjOC6OZeDZOq5nIMsKWZZYhqA0RFrmcqSqYiw1O8or7fNlo3b19YrVpaUvhmUCsLS0tPRlYGVlZdrtdj+nl3J/EEe+qnlvqWqeafs+luchLBfhBNhuDU0IyqqgrHIqWS3GflYZVRaRhFOKPEMAYRwRRTFRnBGHKSeHU+7cGSGEQa1WJxnPAZu9U2e5+76HWd1u0FwJyIuM0WjEytoW4XSIKiscO6DAxLYswnDKfDqiXm/hBA3m4QTLttCExDZ9lIRa0CRJ5uRZgiYUJjZFaeA6HvNwgm1Zi6+jLHG9ANetUZY2cTxmNhvTbHYQurnoL7Bc9s5cYGW1hWO7eA5sbrVBCZ5/5g6T0ZQslzz48EXOnltnOp1z48YRs2lBUZRITWG5FllWMRp1KaqK6fGQ6WxCb3/IW9/2RnRTYzLPwI6otwK+8Tu+gje+5R4++qHPcnTQo6wy8iJGR6ILE1kpBIIgqNNsb9Hs+Oye2sA0NZJUAhXbu2ucOrfGbBzSate474EdXnnpiMk4oxbUqTUMvJrDtSvH3J4f02o3kErHtAzWtlpMpmOuvPIqtVqNzkoH13cIZ0OqvKDVXKGsUuI4xjRd0jTl9p1rrKyu4dg+juvQP5nh+QWWZWBZOv3+Ca1Wm+29TcJZSFmmdFYa+DWTsiiZTCJMy8TxTMqqxHF9PE8HFONpTniSInTQdIGJwrZ1DNtBJBmgk8cJlBWu63P63DqOb1JvuLiOTla3mUclg2PBrMzQLQvLtvE8h8CzsW0T09CRVUWVaVCV5EVBmuVlNJ0NKlkeaJaxj9BetUTw6R953/vC1zVgl5b+B1smAEtLS0tfBt7znvfk73//+x/oNIOvkkX6NmkYRmXYSMsiUwWyjPFFDV23qaqSIk+pqgo0kDKlKlOKPCTPQoRQ5GlBmqZUlcQ2TEqjYnOjTb8XcWh4OFaAQGNjfYfz5+7F93zSOOXocECj5YHKmE56mKaJZVnE8RTTtEhTgaUbZFnKeNgnkArTskmSjDRJqNcUrlsjzyp0w8bzm6TpjKoqcVxvcWMhU4b9EyzbxXY8skxgWQGO7S2WRCkN07AxDQvbdKlkQRwN6XZ7TGdTzl04hWGavHJ5n5de3EeqkjJTHNzsc/m5GygUqxsNHMciSwXRLML3TUpTMZtKnMDBsE3Gkyk3blxndXOV9c0Nam2X1a06mqZotBx2T13grvt2eeXFmxwd9HnhueucHBziBz6mbWO5Jo16g2azzub2CqZhoCqFKnNsx8ZxLBptB90QpGHJdBhjmSaTcRfbEIzHBRI4d2GDOMpeG+dpousa7ZU6X7HxBoRmMugNyPMc07IIgjpRkjAfjBiPR9i2i9AMOu1V6rUGVQHD/pjVtQ2EroijkKq0KQuTqoCb129ycniC5zvs7m4zmU7Y3l0hmhcYpoZpg64vJjnduH7CyppHo1mjKApsS1Cr2xyfTJmPC2xHY+d0B7+mU+WQmDpxnKNURaPpYXsmnudQZAXzSY7AQOgC07DRtBJN09EEGLaGoYNjm8iqIg4zVBJBmVdllsyrqpiUmtbVNPMwNpzfft9PLJd/Lf3Rt0wAlpaWlr4MKKX44Af/q2lalq/p0jE0FSTzuTg5OESKlPbWNvXGJmWZkOYxVbnY9iqlpCozsjSkiOcUeUYSh4RhiONaVFIxmUVMRhGyErRbNc5d2KHb3SfwOjRaLTTAMhQy17j2ygnbu23O3bWNQGM6nbHlNzFMk7LMObpzSJHlrG9v01ldQ8kSyw6oygpZKYb9Q1bXt7GtAL3S0RwP3VyUkwh0iipb3FyUGXGegiwpigy9rqPbHo7jY2gmmljsOFCyJC8SSlnR6axRZjk3rt/m1o0ugWfyznc/gOdZTCcR1185oigLNndWuXTPOtNZxHw2wLEtVKVhCA0pNXr9Hv3+CUWWYzs+SZITBA5RmGIYgp3dDpa1KFlpdzze/q7HODka8rZ3vIFrV/Y5PpqS5RXbuy08zyFNE4SQDIdjDF3QXmmwf2vE7ZtDgoaNEJJGw6eoMlodj7e87T56xz3OXDjFrVvHZJkkqAfEccjKap2TkwkvvdjDNC0Mw2Q0GnL11it4bkCj0SJJEhr1JlmSk+YRui4YT2Lq9QYbqyvEScZwOMCyLObzOSKKWF1dQYjFBKY4CplOJwyHQzQBk8kmzXqb46MunbU6GxurhPMI0xJ0uyFC2LiuRVnkxEmKaVtUpKS5II5z6jUDzVQYlqRuuXS7Mwpp4xVw/dU+GjoCwXAwZTadIYTCdR1s28H1bBzXRNcBVaE0haYW64KzopA6lKZpommaWaJNU5Lx6x2rS0tfDMsEYGlpaenLgKZp/Nf/9J+Gw2L45M0XXnKnh4cPICVuo8befac521nH8pqgBLZVQxmSvIyoygxZ5iArhIAsy5hO5/iBj2ObKKlhWDm1to/vOhi2S7cb4jguthVQFIuJPKbQmQxDkrigzErm04iVNQdDaCTJHA0T32+wvaMzHY/RgDCcY7ouo16Gbiy2/iZJyMF+yNbWeXyviVQS3wuoKoVhGCSpICNEFzaVyjk52qfZWcVxPXTTxDIdLNtBCI28KFBCENTaCGGCLDk5HnFwq8vWWhvDgHAecfPGEbW6w+7pDSqpsB3FeBLSbPk8+vg5rl894uhgzHya02q1sF2XeqPGtSuvcnJyiERhOTZvefsD9HszJuOUBx/eQ1Zw42qPRsujKAviRGIHDm//6l163RGObVOre5RlxWg4ZWWlBkojnIecOtcmzyom44TpMCeeTbnngR38usGwN8dxfSaTmLvv3aXfjRgNQwxDpypL7r5/l6tXDnnuqVvEcUi91SFKQwb9LroQFEVFEs8JajXKyaIHRGglN2/dwDBszp45h5SS+TxidWWFMIpJk4yyLInTiEazDojXyocM5pOIcBJTFjlH+zGmbrKzt0rFYgFZnkNZZOzutTFsmI4z+idjwnlGHPmgSTzHwrR1Wis1HN8gjnOChk69uUaeVcSRJElK0iRBoRC6iWEYeJ6NY+m41qJfRNMUQpMoXWCaelZlZTcrq+vKsg5LZXzmJ37iF6avc6guLX1RLBOApaWlpT/ivvd7v9d8FDi88lw8jfIzWl4+ELR8f+vUNjuXzrF19hJ+a40KSVHEZFm6GK0oAFmiqhIlJXmeUVQSv17HsW3SOCKJEzQkhqHTG8S89HKXeZih64tGYiEWJSeObVHmJZ22TzSP+MKnRpy9sIlft/FcH2FbSE3g1GsYtoUQOpouUEoyGfbRNI1mZw2lFFWVce3q8+ztngchcLwaGouGYcMw8bwmpulSFjGO38CwbNIsBy1CsJhYVBY5mlpMjRG6gWlYeG6dRx59EM+2ePLDT3P1lTuEcYxl65w+t82li6dQVUVRasSpIjmcY5uwvdvm9Nl17twecLQ/YxbFKGHSaLUpi4IkmnHl5VcZTUa87R2Poqmc575wk7XNGpZjsH97SJrlnL+wi24qJBlUcPmZAyajkLPn16g3HUbhFIlOECye+tfqNo63aGqdjRM+/rFnuO/Bs2zvNcnynDSRzGcZnRULwwy4fWOGEJCkXQKnxqV7zlCVOa++cpML5+9hPp9z0j2kkjmj0QDP8wmCJkVRYZoGrutRFAWj8YhOu42UJVmWIWXFfJ7jOC6u63J8fMT62hZCMyjygtWVDQzdoChSgprPxXtOk+UhgevTblnMpjP8uss8jLFLnVbL5d57T3P1lQMObo9oNBzW12tYtsHx/hDPM+m0fRqrAfWai5JwdDgijTOKLKCqSjQhsRyB0MG2dRxbR5MVlApZFOiqqvSyjEuq48LQr+m6+QUH7+nXO1aXlr5YlgnA0tLS0h9R/+s/+DvnbM1+u2Xr99q22SnC2V6n453f3Nnc3Tp3BmHYJHHB/s1r2Mf7mK6LG9Rw/BpKF5RlTlFk5EUKUmIYJoEfgFDISuLV6pRSYzjuM5ukHB/OEUpDoGHoNo5tE4V9bGcXxzVp1Ux83yKOJXEYU1UKIXSEEFiWhS4WS6MM0ybJMizDxBACw9SZjMeLcZN+QBpFVGlC9+Q6pmvh5x1sp4FEYhkWtuNiux5C76Ckem2IkU5VFuR5ilI54XTE0cFtXM+jubKG59fRhIETNNk6vcrpuzbQdZMkTfCDAMdRlEVBq+3hBBbd/oyj21OKNKFSkr3zKwSBT1mVhPMpRV7QabUYDU4Qps54fMJw1KVMKh58+BIray2O96esb7c4e36d6TTh2qu32Tu1QRymmJZFo+kx6qc89ekrvPGtF5CajqSilCUyL0mTDNNUPPDwHrNpQhhGdA9nlKXkocfO8PRnrzKfRTiOz8pajSSRzCcxruvh13ROujkCjUt3n2c2jWm3OwgdTrpHNJstwihkPp+i6zpJWiBVSbu5wnAwXNTZ6yZJ+lqvCJBnMUVRsLq6ge3YrK6uEkcx09mc9bVVgqCDVCVRlNJqB+zf7mKYBqdOrxEnGVItjiTzWUw4W2xyllWJJjSKosL1LdZWO4SzjJOTkOE0ZWunzupqndaKRxwWRLOU0XCGa1s4jrXYnKxp6LqO0DSqPKUsM7I0isosuVUY2g0M76rS9Ct//af/afK6BevS0hfZMgFYWlpa+iPo7/7lv/zwrSvHPyQL7d7N3VVnZ6+zsrq353q27+RJxrNPvUSaJRiGjuvatFdXuXDPfdTqbZI8QwFKKlSl0HUdhaSQ1WLBllQITRDHEUkcUxSKNClZafoMyoTJeMo8mhHFM9A0er0TdHEeQ9dQVYWsSi7evcbmThOlQb87xA0yOmur6LpBkhXUm21MxyWJQoJGB910AEVVFGRxTO/kGHfu0VppoCOoigLNUCQV1IIOFQLH8dGNxahOpSoMy0ArNbIsJ4xnICo8z8Z1fCzTRTcMDMulXaW84a0au2cHdI+7DE7myLyi1xtzcHhErd7AcRwG3Qlr6wF7pzv4DZssLxFGTiln3Lx1B5krpCyYzyfYto1l21x99TLTyYQzZ85x/yNniMKU2SzF8wS7ex2Oj3rouonvm9z70BauZ3LnluTZp6/w9nc9Tq3tECcJs7HE0BU3rh4zHM5501svsnumyWQgmU1jRqOYrZ0VXn7hCKUMPE+yselhGToH+0M2RZOz59b55BMvUBQVvuchdEFRFETxHE0pbMumLCs0qSFlxWQyIE1SWq1V+r0ee6fPYZs50+mYoiyoNet4NZ9SSgQ6aZpiWAZruxv0T06wnVVsy+Hm9R7jocPm1gqHByOuXjmhvdpidjKkVndptR2cwKTZajOb9YmTnPMXV7FMjTs3ukgpqDcc6g2X6SgkjhJqtYCiUOimoNkMFn0AtomugawUSZSiS4nMYvIsygXlVGoMpNLmuibCtLZ++XUN2KWlL7JlArC0tLT0R8xf/FN/6ht6Byd/pb2x+cb7Hru/trK1gqErrr10h88+8xK1wGTjVAtNCILGKvc+9BCr6yuE0ZjB4ADHq6PpBqoq0FRFnkYURUJVlqA0lJJEYUyRp1iGgSwUZVIRZ5JBd47n+1iOSaUybMul2WwzGkdYmk0QWAhDx7Ak8zCiKMCyTSYHhyRpxNb2LjU/IEsiLMfF9QMqyyKod5BVhVQl/ZMBUkoa9TplpsjiiGgeoguopKJIY7x6C8u2KLMcXehIqTBMgak7BEEL51RAtDJmHk5Is5RKKQzDpJIlZSmopMOFS/dy7/0PkMRTsiwhSTJMQ9A/7jPoTzCMkpdfPCRNSrzAxPZ0zl/Y4/SZU7zy8j7Xr97gxtXr6JogTeLXlmbZzGZjXnnpJWbhjLe+4352zqwRRQkagrvv26PfHZEmJb3+mHOXVtk9U+f5L9T4+O8/xzu++gFs30IXBVmZ0m63uHnzgDAseOChHeo16J5MePozV9neWcHxDNIkI08LdENDCHBMi+7RnI0twYW795jPUqbjCKUk589fIIoixpMhli4wDEVVSUwhsG0b1/WxHRtJRb/fpVlv0VnpMBqO6PX61JtNgqCGrBSOp6ObMBp2WV1vMuwPWF1dw/MMylJy89YRnU4b1zHxawZ+0CSaZ+i6ju0YOEGOaQmqStIbhDQCj5pXQ0oJUlLkJUHdR7JIesJZhCwllq1j2+DoAtsx0DWFVoIqC1RZlEKVwyLPb5WauCF1646mqVvAcuvv0peVZQKwtLS09EfIP/zhv/zORjP40dbqysOjWaU/8fufJQkVjz5ylsAWrHV8ElXhdNZ5/C1vZn1rnSybMx4cMhn2sV2PwK+TFyllnpBEM6qyoChzhCbI0oSyLCmKRTJQFjmWoWHZOvNpimGaVOWMcD5lHk2pZEG322NnZwPTrYG2+I8nTSqEWTCZzvD8xWz/cDpnVhsjDIO8yIhDHcPysG2PeTijFjSwnYC9s5KbKqXWalNJDdu2iOYho2GfsqjwfZ9oPgIFntugqHKkVOhGQF4VaCVYpkOzuUW9vkZVFWR5TJ7HzOd9Lj//Ch/8jU9w++o+6+tN6m2H9fU1Tp/b5fzde+yc3WXn3CnKPOP0XSe8+PwNesdDooM5t29MsS0NTde5+9LdnDl1ii889TS3b18ny2KSLKPuNXAdmE/nPPXpVwjnCZ3VOkmU02jV2Npe4/Cgh1Ims1mKrsPqRpOsKMiyDHQWW3FNgV0ryeUK/W7MU5+5Rq3usr3VplbzuHa1y12XdqjKDNPSCecJaVpwfNAjTBJOul1WV1fJ8xLdFISzmFpQZ3NjD8fx6feOUKrA91wMw6YoCjw/wHV8siwlimZomoZfr9NeXyWoBYxGY6J5SJqlrG2ssr65OPCH8wI/aCClZHNvk6JIkUpD06AooXcUEtRMGk2bNC6YjhK6xxM0KoKgRjjLGA8jHNvEsSzcwEK3dZReLXoiai7RNGPcC7Ftm0bdBllSFQVIhcoztCKTWRaPlKqulpr+IqZ5IExjplvWlR953/vK1zt2l5a+mLT/+9+ytLS0tPSl7jd+5Z/eHTjGd0+n8z9x+85g91OffUl/9eoJQri0Gps89OhZzt3V4cxd57nr3odZ31unLHIGvROuv3Kd29duoFTKI296kPbKOnE6J0sWYz+zLEcXBkITi5KfqkTTBFWWk6cl3aMRg0FG9zhiMplz/cYrXLn2LHmRIjTB2vp5Hnr4TZw9tcq5U3VUJTFtg5XtJoZhEEcFw+GERjugs9ak0WqRpAmm7lCr1xFWgO36CN3ENDx0oZhNutieSyVBVRlCKg5v32J//5C777mE4zskSYLQBIZpEAQ1DMtFmDU8r46Ghi4WzcZlmVOWOZUsiOYDnvzox+gdDFClIs1Kbt88YNSPsGyNBx7ew/ZMstykvRqwvbdJp9OmKFMObg54+cWbdA/7FHmO41oURUYcpRwcHnJwfJv5PKR8bQOtrgs67S1qjSZnzpxBNzSUVvGmt96D59pIBeE8Jk4rHMtkPIiwHR3DMJiMY9zAorHiMhtkvPLiAXun2gz6E+aThFa7QVEUlFVBZ6VJNI8Ruo5SGkID27XIi5LxIGIym7C61qFeazAaTJnN5/T7PebzMbPZkCgKMa1FM7fnNdjbPYfleASeQ384wK+1cV0T27QZ9rpkWUYUxaysruHXatQaPrW6i65JxqMZ01nI7u4GrmPjuBZHR2OiWUZQd9jeaeJ5Ovu3ZswmCWm6mF509/1nqLfNxRSkWUGSJGzt1ems1UDCsDdnNirpHQ1RUtGsu/ieQEeh8hJRFuTRJJaqvImuXi41/ZpmuC+VpvXZ9/30z736esfv0tIX2zIBWFpaWvpDSimlfeJDv/KYLMr/ef/W4TfsXztYu3XtwOqPE607S7UwrLC9Jrtn9njHV72Rd3/Du9g+s02ZlRzcus4rL17m6HCfPElB6dQbLg89djfCNMiLhDxLqcoSzwtQSpFEMVVRICXkRUaR5YyHGSf7U0aDlNEw4vDoNs+9+Fnm8QjbMBez5i0Hy2lz7uzdvOXNlzh9qk2RVazvNAjqDlkmSeKcVrtOVqQ0Wk36JyNODibsnd2gtdZhdeM0lutS5BmapmPbHmhQlgV5NscQgjQKiaMIx3UxTAMlJUUaMTgZ0usO6Ky1OH3+PF5jHd30sQwbTVv0N5RlSlkUoErCSZcXn32eGzeOueuuM6ysNYmikls3Dzg5GZCEOfPxiEG/i0KjVm9w7sI25y/usbG9zvFhj6efukwaF9Q8j8HRiPFkzmQ+Zh7PGY76jIa9176XJbVGh057G9/ziJOYi5dOs76+TpGX7Jxa4aQ3pdmsIcuSk+MJZVGRJwWtjoflWejo+IFNmia0Oy0uP3eDQXeGHzRBVOiGwrMtDg/6uJ676P2wTYSusb21hlSC46MeSZyytrbGYDig3+sSxxFpGjOdD7Eta7E12XDY2Nil0eywsb6KV/M4OuhSZCWVLBkPhxiGQNM0NM1A6Ca7p7bZ3d0gL1LyvFiUkM0zOisNWh2H4ShFUxqB75KkEWvrAdNxxeGdIbWGiyEUszBjZT1gZ7tNFObEUYofmNSaDkHNQ2gao96cJCxJkxxDA9/RMATIIkMmqSrieU8X8gXNET2pm7cy3fuVv/e//dxVTUO93rG8tPTFtkwAlpaWlv6Q+YVf+AWzYeb3+6b6U9PJ5Ouf+fyL5166fMvcWtvGslwG85T97oisynjvt30jf+q7v5W9vQ3GoxnXrl7j8rOXKbIpssqxXYc4zcnSipWVgNW1Jk5g4/kOSmq02ysoJLPZhKqqiOYR8TwCpYjDgts3xiSRZDKccXLc5dkXPktveETg19CkRNMU8yTG99t4QYN77nmIt/+xh9nccHFcC9s20TSBUhqNpk8cp6DryLLi9vUT8rLk3ofuwvU9DN3G0HUs18GrNRHCRFUVVZVjWS5SlUhZInQTWZUgK6L5hGsvv0KnucHB0SF7Z7fZ2NlF0y1A0GpuooSJrusUeUFRRghykvmYD//Ox3npmVfZWK3jNTw293bYO3sKw3QQVcXh4SHXr97k1qv7jHszDMtgZWuFC/duc/7CDrdun/DcZ68x78dUZcE8mpPkGZoQHB8fcnR0m7JavGbdMKnVWqRpTFok3Hv3G1BVRZaFbG5vUBaK02c2uH37hOFgQsNvkucpZ86fRRiCja06hmnQOxmzsdHh6iv79HsTdGGiVMX6WoeyWFS5SEBYgsOjI9KwYHWtg+979Ho9NE0nSzOUVBRlxtXrl5nHU3yvhqnrGMJka+s0nl+n3mqxutFEVZIbrx7QbLVRVU6/32U+m1KUJb5Xww9qrG+ucPc9exwc9MiSgmaziRs4aEIRBA5JVFDkORfv2eLqlQOmkxyJwPddTENDlhIJrG/6OLb+2sZfQVVV5EVJLXCYTxOmoxRdg8A10JVC1zUoC5LptCiT+LrU1SeFYz2jmWavKOwPve+f//PZ6xnLS0uvl2UCsLS0tPSHzH/6hV9ofOGZp37wxksvfodKso0kSVfHSaF5tTWqymJ9b497Hr2Hr/3Gr+LsXWfpnhxzcOsK80GPq1eOCTwXKxCEUUqVS9KipNGpcfrUNu1OHcs2mc1Ctrb3kDInDCcUeUZZlERRQjQLiWcZ40HMsJ8yHsaMhkOuXnuVg6MbaEJhmS4KMHQdKSWSinkYcemex3n4DQ+xteNz/swKZV5SSUmtEdBo1hmPpvh1D9M2MITGaDjDr9UQukH/ZFGWs7rZxg18NrdOLZqTK6jVmkgF6BplWWLqBlJWKFUw7nfxvQae3+aVl55lbaOFFzSIoxlFLtk+dQ+m7VAUOXmRYAgNTUFVxpzsX+fo1jWytGAepyhdYuoBQbDK6voWgR8wHY/odgecnAw4PDgiS3MaTZdH33gJpSSf+J3nicOM0WjAcf+YSlU4js98PmUwOCIOp6R5juPUqNUadAeH2LbH+bMXOTk6JM4iWo0OrVabZqPNwcFtfK9Op9VhdWMVKQSz+YzHHrvE9StHaJqOaViLGf2VQkmFLgSmZTAcjVEKTNugvdLi5OiY0XBMrRZgWjbDfp/5fM7pM2dotzvcuHWVZ194iqLM0BAYukGntcb25mm29s5iWoJG02M6Dun3RxRZhmPaNJsNDg73ydKCVqfDeDRic6vN2XOncRyLgzsnuIHL3tk1ojDDFALXtalkQeDXuHx5nzjN2N1dJ40SVAVRVmBbgtNnO5iL4U44rkESZ9iWQ1WVlGlJOovwHAMdDaoKipx4MpllafqS9Oxf18z6v966L0u+7/t+sXg943hp6fW0TACWlpaW/pD59m//dr1ZFX/j6Na1HyjTcsfz2/QGEW6rwbu+6et59ze/m+3tDQ4PjvnUE5/mzrWbrK0F7JxaZTyboiudJEqptTzQDNqr62zvbeG6FlGccHzY4/y5c4xGJyitwDQ0VCWJo4jxaApKMexFjHoRg17MdJJydHzM8ck+RZEiNAPH87EsmzgMSZI5YTRFN008v4nj1zlz9gKPPHqKTtul0bDxPIc8L8jyitNndyiRBG5Avz/Cr7nousnVl6+TxzntToO0yNnY2qSz0iDLc1ZXt8jygqDeJIxC2u01iqKkLDNMXSMvStrtTeL5jMPDV7Ftk7LKObzT4+XnD3jzVz7C1m4H0/bJ0oQsm6MLQe/4kCKZgarQbYeyVIyGE2zL5/bNQ46PBrTX1tneO82Zs7vUgoDb+z1eefEad27c5u77diCXfOR3n6IqK4oqZxpNMCwDVSlkVZAkMcN+nyieoRsmCo0omtFurVKrNxiPRyRpQr1W49Kle0mTlH53iKkLvJrLhUv3oRAEroFl2Qz6E6J5TBjPkGUBSoCm4wce9aBOnmdM5jOEttiuPBz26A2OabdWaDVWyKsCQ9fptFdJkpwXLn+ek8E+oGjUGiRJhiEM9k6d48Jd91IUFWgVlmVyfOcQlEDTFk/py7LCC0xa7TqD/gQ0wV0Xd9ncbLF/Z0BQ89g53SaapwgElqOTxDllaXByMiWOEgLfBaHwfIs8Xbw209RxXJN6wyAIbKoKsjRDV4oiztCVhioyRJ6RxVGVpsmdQui/rwL/J/7Jz/2bZc3/0pe95RSgpaWlpT9k7tnb64xv37i/5tbqJ7MBdsPla7/rPbzn29/D2s4ar750lf/wS7/O1Zevkc0z2u0mhiboHd/gzIUVSk0SxpLds1ucu3gO09IRQufosMfxcY+HH3uEj/7eJyjiAY+84S400yZJU+azGUpW6LqBLCuqEqSEOEkopaRea6BpTWwnwHY9KlktSoXikEatSRTHjAdHWOEUx3T4dFZw/vw6jz92ivk8QlYS3RBEYYSwDEq7wnJtHN/DsmzWt1bpnwwoqxTfdegdHRDPpkg0dE0jjhPSOMQNArI8QSEWU4lUiek4RFFEs71KUsQk8y7RJGZje51wVPIb/+53ufv+Hc5f2mZje4WyKNFMiyyLuXOti2fZpEWflfUWK50W168fYmom99x9hjArmPRu89nDfTAszpw5xVf+sccR734r49EQzzWZJwWfffI5apZHEPjMwjmGLYjSBMt2CYImo2Gf8XiILCWB28AwHapSYegWll4ShzHPPfcMZ89ewrAMijzmzp0eSVpy/q6LaMphOp2jKtA1gSxKomiO6bgEfoOyrOj2etTrAZsbG1RSMp3NOHv2Ausbm5wcd0nSlHqjznQ64aWXnyVJMsoixxQmUkmKosSxLZCSyajPycEdTp29QJREFFmJ7/scHN0hqDdp11dI44QozKk1TC7efYHROGQwSPGDCsd16femZGnO2mYLw9RJ4oKVNZ9hP8b3LTRNcXI8wA980qREU+C6oORiIpVje1BTWL6JJgTRNEITAtswKYuMaD5Dk1VsGiIsNTG2jKL3esfv0tKXgmUCsLS0tPSHiFJKe99f/L5vzePk7Qir/vZv+Ca+6bu/i7P33M2Vy1f4F//oX/Hh3/pd2o0NVlebmIHC9U2ytGI2TdDUmL0L27z7PW9DN3UUCk0Jnv3Ci6AJ3vmud/Bbv/Ehnv7ki9x118Zi5rpSFGWJbpoITafIClAgdIECNDQCzydwvcXG306LeZTS7fZxHA/HcVCyxLFtpCxxLYd+9xZRNCeLR2ysr2AYkp3dJlJm7N85or3aBqUQmkEWp9iWTWe1iULiuRZCwGSkc7w/YjQICXwb2zUYDY7QxgY7e+dI0gTDNPHrdYq8wHUESR5Tb20gZUlLA6ngK77mjTRW2/zBx/6AW1dvc/6udc7fcwav3mZ94xT9gzGf/sTzKAXNVp1a06Pe8EmSFFUp0jQiSXJMyyGNR3zh9iGfFxZSCVa3Vjh/7wW+7lu+lvseuZdnPvs8x7dOsE2beTxnvVFnNp8yGo1w/TqT6YQ4m6FpgnxaIJGgNKgkhmGQpDEvXXmGdnMFx/LZWN9hPpvQOzpkc3uXsiipXiuB0jRBrdFe/BoEtFebjCdjpuM5RVnSXu1w4dIZVFVgDBWOvYfQBVUhcWyPdqPD0eEdbk9HCF1HIBCattirgMA2bYo8xbYFQb3DdDJDEzXW1DZKGriOy+7uBnGSkqUVSVoQhSFVBdeu7uMFJhfOn+L4aMid/SGNho+uazRKl63dDlHSZTaraDXrTMZzTMNaNKBnJbW6xLJMblzrkWVt2hsermvh12yySFGpCt3U0XUhsywfV7p2qFvmBMOxXu8YXlr6UrBMAJaWlpb+EPmR7/+z56P+5Fvb61ub3/HXvpO3fNW7OLizzz/78Z/i8594muFgBFIjLyOyIqBebzLsz+j1pzz0xvv56q96G65nMhoO2D19isFwwuc/80nuue8Sj7zpUT7wXz/EJz/2Odr1BvWGTZoVlKpAN0wcF5IwIk0zNKEhdNAF6LqOIXSEbtJZbbC502HYny22+kYxWZKgC+j1jjF0A01TFGlKVA6YWYInn3iaTqeOaZ1la7uOXcFsFKJrGkJoZHmO53lUssRxHbzAo6wKdCuh2fFJ04zRaExQ96nXfQ4OukxGIe21BpZj47ouWZJClVNVkmZ7E7++SprO0KuSwfCEBx+7xNpah6c/+Slmown7N28xm13h5pUxskqhFCgUCugdTzg5GGMYGuEsZWunTaMVkOYpXmCQxBVlWRKHCTdeHvH8s89x7uIZ1jZWefAN9/FVX/8OBsMRLz7zKs987jJxJJG5ZDafgALd0InTOaayyYqCQpYITUAGEokGpGmEa7msrWxiWRZpnNI/6WG7Dlmace7cKbZ2VwGFbuqvLduyWU8CuoczBoMZWZJxeLCY9b+xukZmVMzCiHkYUuYlSZxQKcXm5g7H3QOKPAU0KikxdRuFjus1ybMS0xIURYTrBGxuXeDg9hHd4xPm8wln7zqF7VQcHQ5RVUFRFrheG8MwefWV22xudWiu1Tk6HJPGJWUlscwpnufhWBmj6QxZSuZxhG4I4kQRxQa+59BpN5hPCgytQO9oCF1hWRZUFZopcet1JTWSqlAnmmldfd//9q+WNwBLSywTgKWlpaU/TDRdF3/2jV/3rje965u+WVNWwL/9pV/hA7/2m7x6+SVAsbK6jue7FEWGrRv0ugOCTo1v/hNfx6nTu1x+9gpb2y1OnzvL0089w2Aw4q1f+VZ2z6zz8Y8+yRc+9Szt1mK2+v6dEcKG9c0a7XaLrCxRaAjdQBgFlqVTa3ikucJxbdzAob3mYTiSZsdDaoI4jKgFAaPxgFqjhR4vpu00ah3KskCWkuM7t7h1IwNdo7P+OEovCGcJQhcUZY7rBWjaYmOwpgl0oZPECbphsLbZpJAFpmvi+g5ZlZOlGvs39nEcQRJHNOotiiwnnI+pNTKUrGitbDM3fIpqiiU0bly5zPnzD1L/mq/mEx/9II2Wz+65PYr4Fr/33z6GjobuKCbzOo7tEU4TLN0kimbMxhPOXDxFs+PiONZi6dY0RwiBaYBbOiSzCXOj4hd/7YM0V2s89MaHeOwtb+BNb32YF595mSc+8iSXn59RlSWyUghhoGk6liEoC4nSFKDQ0BCahoZGJQtmszGGsHAdjziek+UJtmnx8ksvcPrULo1WE8/3Wd+so5tgmDAeGWRFSiV1bNsgz0o+/7lncB3vv/cgFGVJlIbM4xm25bDW2aY7uP1a4mdQyhyhaYDk8PiEXXuDU2fPcPWVm4wGQ9rtOvXmNkdHPW7fOqbTWSEvUkxDkGUFcRRjWj5BLeDwsIvvm/iuiUBnNIipBR7dkx7xPMa1XDzfoVIlx8djhG6gCZ00LYnimI21BvE8JU8THEfH1MFQEi3PpFDVTJjWbcMUL0jPfPJ1jt+lpS8ZyybgpaWlpT8Efux7v9d797d/y185feH0D/tra+0nP/EZfvmf/xLPPvV5PMej1VphMp0yHB2zsbGFIXzOnz/Lu77hHdx9/yU+9+QzdHtjvunbv5Yin/OpJz5HY6XG29/1DqQhuXb5Kl/4g2c5ORiTpSW1us/Kmk9r1WV9y6fR9ChLSZ7n6LpOGCaEs4zZNCVO1aIp0zHwahaGqZPFiitXuvSPpty+cQ1kgWnZ5HlGlqXYpsNk2scyXfIiJ8lSLt3/EGsbbc6e38IPbGqBhWloRGFJ0DAJai6gsbLWRlFRlhKBQtddSpmhGxqO7TEbF7z6wku012p4vkN7tYOGYjYLqTXqCF3n7PnHsEyd8egQTVPE0yknh7d54NF30DvpcfnZT6EMyZlzF7jy3C0+9dHP0O4EuIEDwqLXnZDMFyMnbc+j3vZod3xMU6coJNNRyHQS4XoeigrDgp2dNV54+hr93oj5fI5bCzhz4TTnLp3m0r0X6Q3GfPz3P8Mnn/gsJ0cnFNkcqUpKUaGkBDQkCqEJTMOgyktqfoOa65MXBa1WkyIvcR0HTRP4QYNGc4U0yxZP/zfabG2voRD0un0mwwgdgaYriqxgNJqS5YtDdZyE5HmMVJBnGWgSdEWZ54BGWZTYtsvZM3exsraNbpgITcMydaqq4OjomPZqi1Nn9hY/36QgCVPmk5AkjvCCANux2T21QjTLGA3ndDoB7dWA8TgDNJQGRVow7I0Ioylb25sIzSZNMxzXRqDQ9JJW3aPTDtCUpExz6r6JSS7j+ey4qOSrBfp/sHTnt/7Oz/5s9/WN4qWlLx3LBGBpaWnpS9ijYP7iEx/9hp27zv2N5tr6Gy+/eIUP/Pp/5cknnuJkf58knpIXOZrQsW2bOE4pgW/81m/mT3zXn+DO7QP+4OOf5y1f8QgPPngvz7/4HK9cvsqpvW2+8qvfRr9/zGQw4TNPPoPnGtiWSRQVTEYR/f4I24V3v+cRDEOjkhXNdg2lJFlSkKYZSVKQ5grTNDBMHdvWsG2H/Tsj9m9N6Z1MiWYhruUynYzJi5jJZIJpGEwnAwzTBASBXyMuMuZhwqV77mFlrcO586vcd/8W+3eGBDULy9TRLYGmCdorDVAa0TxkdWMD0zLJs4JGewOk5Orl5zBtC8NQyEox7M+JwpyNzSZe3cJ2N7nn4TcQhz0oCwyhc/v6C5R5xb0PvZNXr7zCEx/8MLZn89hXPkI0zbj63EvYjiCJc467A+aTBNuy8Go2umGR5QmWreM4Lp7n0DsZIqX1WmKiY1oaV67cBCmYTufICkzT4s7REV7g8OCj9/Hw448QtBo88/kX+diHPs6rL71CGs+RlCgUQmgUssQ2LXRNpyorPM9ffD7Lafg1hDCxbRvPqxMEdVqtVebRjKxI2N7ZxnIcdAMsYZAnJfMoZjwcUpYlEo12u81sFrJ/cHOxzVkXzMMxWZbRbLaRFRRFgmU51Lw2a2ubbGxuEUURhm1w9vwOxwddDvdPuHD3WSzH5vatfQzNQhaKXu8YPwiw3YALd2+wd3qVl148pCo01tY9kkQjSXIqWeHYBgKNk8M+k8mcdqtJrV7DsgxMQ8MLFomHYyp8zySfZ8g8wxD5rCjTZ3IlPlWa2r/4yZ/75aPXO5aXlr6ULBOApaWlpS9BSintd379V+6/68GH37e5e/a98/lcfOD9H+TDH/g9ukd9dCGYRzOmsylpFqOUIowTHnrkYf78D3wvzVaL//Tv/wuW6/Jdf/ZPsn/7Dr/zwY+zu9vi4t3nue/Bh3n+vMQ3agABAABJREFU2efZ2mrzyU98Cse08AObQT9k//YJ+3dOyMqKP/mn30Wr6ZElEUHDRtNNHEunyEvKsgQUZbkoT0Fo2I5FkUvGo5jucczNa11MzSSJY4q8ZDTqYdsWcRQxn0/wgxpZGjMeD3C9BkpVSGWiWw5v+cr7efzN9xKHIbaj02h5JIlkMprSbNVYW+9wfNTjrrvPYlomcVywtXeRKBxxfOdlLNvB0AVRmNI/njLuTemdDLn73jNgOTzwxjeTJSPWVpsooTEfD+jevI4V1Lj34Xfw0Q/+AR/9zd/Gcg2+5lu+ljNntvjI73yE7p0jmvUaCoVUEt0S1Js+jmsymySkScV0GtJs1LEck9k0Ik1zRv0Z1159FceyiOcJ8zTE8erUanXmsylJlFKhWNle47GvfIxL99/NZDDhid/7FJ/+9Oc46d7E0Q0MXaeSCt/z0XWdsihwbJs8y1CvTWPyHJ8sK9ANjVZrlfbKKlmeU1UVjWYb2zIZjYa02itIqUAplKzIq4IgCLBMixdfvEyvd0ReJJSyJEnmlFLRaLSp15rkWUbTq7O7exrL8ciLgjQraXVaNFs+49GQ4WDMSmcdz/N56fJL1IKATqfJzVvX8L0WnfUWj7zxPEHN4+hgSFFIskxSpIphf4JSknarCQomkyloYOgmrmvjexaKCs8z2NzwsS2deBwzG0VlmiZ/YLniC5pgpLn6r/yjf/oLh69vRC8tfWlZ9gAsLS0tfQn6tz/3c+sPvPWhvxXUO1//8d/+CE997BMcH4/RKoFEEYUzkixkOhuTphFBs8Ff+Mvfx3ve824++N9+l89/+lm+87u/k4v3XuT/+KV/x+3rXU6d2eSxNz/C6fMX+e3f/B0ef+wenn3qZbRKw64L4jhhPk3IQvC9Ou/9+odptgKe/fxVdnfapGnO5nbztc29FYahoesC01zMAjIsA8MUFJZGGOZYps7e7irXXj3ANEwm4zFVUeA2G6AE9UaDNMmZTWfohqAsUkzTIs9idEth2T7PPHUHPzBZ365z6d4dLj9/HcexSZMEXRcUhWQyntJo1gAd1/aYT/po6KCgrMD1HLa2daosZ9J3uPbSIUHTQdOew6vrvPz0i9x132lMXQOhMxudcOWFz/C17/0aegeH/OZ//HWuv3yFP/Fd38q7//jX8eHf/gjHN+6wudui0XbQdZ16w0VoAssSjIcR4wE8/4VXabR82it12u0aqtTJ0pI7t2+gJNi2QxrF5GlCo7GCECZxEjE+mvDffvUDfND+be5/9G7e9TVv5lu+42v5+Mc/xe/85u/QO+piGoskTDgGAh1ZVCglKVRFnEaUZY6GIA0TkjQhr0oct4au64z7fXb2Njl77hSWYyCEzmQUUxYSW6tAk2xs12ivPMYnnvgsh4e3KPMcIcAUBmE0Zx7NWGmvkVc5w+GArZ1dNtbXufbqDSgr4jhm7/RpppOU3kmfeiNn79QpRsMR4/GY7e0dJqM5VVbxhU9f4Q2P38Xudoej4xlFlpPFEb5nUxUVg96ANMtZW1uj2z2hKCS1modGHdd1oJJkqURTCr9moyo1lTrXpaF9tEiSz9aTjfj1juelpS81ywRgaWlp6UuQv7YWDg6Oy0++/3cmV56/2S50g0mccXR8xGQ2QJYV8zAkyVIef/vb+P6//BfpHR7zd/76j3LvA/fyvp/6O7z68jX+wd/6RwhNZ2tvm2/4lq9mdXOD//Tvfp3HHr/I9Wu3GA2GrKx6tFoBvZMpOgIl4bE3X2Brp8kH/ssX8GwN0+qwd7qDG3jIqsI0DaSUKKWoXhsVKoSOVApY7AfwazpKQWejgaELDAFTSyOOYjzfpywLdKHTaa2SZh55XmBbJrqRcvbuu3j6qcvIHDa2O7z1Hd9C/2SMISTCFIBACDBMg/1bJ6jditbKJrZhMur3MQwTIWA+j+msrFAkMzqbdYSAgxtDPNfihWde5PGvfJj/8u9+m69575vYO7eJY7rMRxndo+dJEos/+T1/ioPb+1x77lme+OATTOOc93zrN/DpjzzBrRvX0IQiCBxG/QjL0rFdC0PPqQcue3sbTMYzbl07wK/XSeMC3/PwPJf+oEecRrTbHbI0ZiqH+PUaKytr5HlJIEuSJONzTzzDR377o2yf2+Ybv+Ub+Mmf+cd86g8+x2/859/g6GgfM4vwHR9dWJimhVZWKAlREuLaHs1mG6UUk/GIi5tb7O3u0Dvpc3v/mEYj5szZHVY36+iG4s6tIWWxWLh15eVr7Oxu8/hjj/IFXXBn/wZ5IaiqCsOwqGRJr3+C77rYtsNkPMWreVy47xxXX7qNGGpUhWRja4XLz15BVpKNnW3anRXC2ZQ0LTEMk/k8olYLuPHqALQhuqmDphPGCUIDyop2u05vMCRNQjzXZl7GGIZBkRcEvs3qqk+rYeB7BrpQcy8wPuaHzvuniXzlR/7Fvxi9roG8tPQlapkALC0tLX2J+Zmf+Rm799LT3zyYzR4gKZrbWyvi1mBOGIbMZiOSLCFPUtyazw/8je/nvgfu45d/8Ve5fW2fH/zrf5EzZ3b45X/1Kxzc6NPprNDaavOdf/YbqeKCf/9Lv8ajb70LTUluvHqLlZZPGhd0szkohReYPPTmU1y6f5PPfvI6RSrZvbBFvRngBh6VVBiGsTj4VxUKDYXAtgWV1BbbX4uUZt0iqFnM5wPqjRrTSYjruUxnBVvbq8hKp9froQmFYZlk0wIlFdiCM2fPMemNuHPjKpbl8+ib7kEIwbNPX+PcuVXyMsOwdDShI5TOsDvDsk02ds8zHU945fI1Hnn0LipSLEPg2i5TFWM4Aq/lsLpTR1USw6hoBB6r7SaXP38NpZXcc98ZJqMIx7b5whMfxzQ9vvsv/Tn+9U/+M2xTo4z7PPu5T/DOr3sXL7+4xo2rL1OVUMmS/Tsjykziew5FWRKnCZ31OucvbTEZx3zhqZdJkgRN0wmCgOz/LNlpNUnSnCxbjNn0gzqVlLQ6qziuh92z6N3s85M//k/ZPbPDN3zzH+fH/smP8Aef/BQffP8HmAzG6FoD27LQhUQBtuMtxnVaNq5bxwtqICWua7F7ehOv5jEcTDg+HBLFKbW6w/buCoP+hOFgjKY0nn36VXzfYWtzl1q9zo1b14jCKYZuIoFao4OmFMfdA2bzCXGZcv9DD7J9ap3DO0cM+xOarRatdouiWHx9nutQq9UZDgc4joVh2uRFRZoW+IHNdDZjdW2F85c2UFLj4GaP6zfuLMqeCsnqygqGYeE4Fq5tEAQmvrcoS9M1iayquULvlVTP/sg//EfHr3MoLy19yRKv9wtYWlpaWvq//NiP/ViQ7V/782I6/fOkxcVSOMYkK9Ftm6oqybKMcB7z0Jse4n/9F/+YLE75S9/9g+RZyo//zN9nPov4uz/0D7n6/G0s06S12eE7vuebuXOnx3/4t7/FSqvO1toKn/z9F/AdF9sUi0bQWUqSSEzf4Pw927z4/AHPfvYV8jim34s4Pp7Q7U2YzxPiJCEvCxSLufSWbSIMA8uyMQwT27II6jZlVlDzDWxTo0or0iThgQcexHZshK5jWzb1WkC9HuD5AY1Ok7P33MV0PqV7eIwpdNyaxVf+sTfx/v/4EY7uzOj15pQFZFmF7TgIoVGVi5p7w3QZDSYc3Ogyn8SUZclsPF9MnglzZCkQQtBecdEMSaNlU6Y55y9ewBQ64SSlKHMc32X/1oh8nvNf/t1/ptLgm/70t9PZbrKyEVBlE578+Ee49OBDPPLmt6DbJprQ2N3rsLnVIgxDsqwAITg+HpFnBaYpULIkTuaUZfVaHbuHZTk4jkuj0cDzPDQN8jwjnM+ZDcfYhsHuqR3Onr7AvWfuYXoy4qf/0U/z43/3H1ALAv7m3/t/8zXvfQ8pBb1Jn7QsCdOINM+xTBs0ge83iKKENMkYDacMR2N0A1qtOtPJlGF3yuGtAbNRhGM51IIavu+zvra+SNT6XSaTGbbl4Xt1HNcBTcNxHDy3jmE4pFnCsN9j/8YBnZUOm3tbKKGRFRnrG2usr2/gBwFlUVAVGb5rkSQhSkls00QXgjTL8Byf2zePyLKKPM/Y3u1wz33nsW0blEYYR2i6hh/YtFoe7bYPmkTXIEmK7mxWXonDrKtJUX+9Y3lp6UvZ8gZgaWlp6UuIEYYdAx40hXV+WuHsTzKk6zIc9+mPx/iNOn/ur30Pe2dO8/M/80u8+MwL/IW/9Of4ine+nV/9N7/G5598Ctf18AOX7Qtr/Nkf+BY+95kX+cgHnsI0DL7uG8/zwrMvY+iK9Q0X19HonURESY5Xc3jowYtMJyGf+4NXKEuF4/ooAZohSJIcTZqLUY+yQEqJrgs0BRrGf78ZsHyfNEnwXJPUthiWKVmasLvdJkszhsMZ7XYDoYNhWtiGTlCPOX32FN3+kCwt2dre5PDohG/7jvfywovP8eTH/oB2q4Vu3M/6RpPdsxtIaVKUGZoOjuvSbrV58frzOLrNrRv7nL93h/07IzQR0O9N0GSG6YJtGJiWTa1mMI+mdDZbXHn2GqY3JU4UYVgwnyTkecZkMub/86//d/7K3/qrDPpHuHpGY8VhNJnzwjNPct/Db0bTK65ffpGjGydommBzu8OdG31kKhESDm6PGE2G9IdHdHtHSFnRqq+hqNB1nTiKsG2XJEup1ZuUlUTKgv54gG3bdFZWqDc8xlXJ9sYeGorJ0YBf+ul/xdl77uJdX/c1PPLGR/no736ML3z6M6iywjBNiqogL3KEruG7HrPZlN6JjWlZmKaJ7dqsrLVJ0oRas4ljOwxHQ9I0pdPpUBQFrucy6AvGkzGu45NlKbP5BCE0otmcqsrxvAY1f4OqrJhNZswmMVub61imzosvvIiQivXNHbQiQ6BwHZNCpdx970UO9o8XjcNmDU3TmU5CijynzBRlJZmnc1zPZvvUBqNBhFQSUNi2jucLhF6i6xZomrQ863JSySfKSv37/9fffd+N1zuWl5a+lC1vAJaWlpa+RCilNFOW7yavHrfq3qrmexi+hZKK2TTk4ccf5B/89N9jNkv4q3/+bxJOE37+V36e0+cu8KM/9GO88JlnsW2L2WzOqYs7fM8P/s986Hc/w8d+5ylsy+BNb79EmIV4vs6Zcy2yPEdDp7PaoNnxePRN57FtwbVXjrjr4hnuf/giugH9Xo/RIKN7nNLtjhiNxkynIUUhURI0tRhnqWkCoS/GdC4aYjXSJEfXKs6eW6WzVifLU06fWQetoqwKNA0MXVCrBUTziHgyx3N8TC/gDW99mEv3nua33v8h8mTM4fEN9veHPPmxZ6jX21x/9ZAslwjD5Nz5s9iWw0n3GN2ErJTU66tMJwnzMMQ0Ne7c6DEZRcwmKf3ulKqUmAZs7K7hNlxMwyKJSvbObVGWBasbbc6c20OGCU996rM8+uav4PLlA8b9hHa7SZHMeOWFp9jYPMvF+x/i1IU1PM9mNo2pNz1s2yAOMybjCdPJhLLIF8u9LJuyKvA8H8+ro+smSZqglFr0QdgW9Wad9c0NlIIoigFFUFv0X9SDNu3mCq16k8Nrt/n5n/pZ3v9r/5mveMdb+As/+P1s7e2SxAlpmjIPJ/R7Rxg6NOoNFCBQRPMZg26fLE/YO7WJXzfQzIx63UcIQa/XZzwes39nn3k4o6wydF0ghEZZFqRpjCYEnlujyFPSNMF2HHRdcHhwxHgypdVocGbvNLNwyosvPMPtW1cJoynX79ziqNtlMgsJgiZKKTQBrXaTjY0Oa6strl15FdMwsF2HwWDOcBii6zqmYSCEIEsz6g0fzzexHB0pVS/L1MtSclTqLJt+l5b+byxvAJaWlpa+RPz03/ubb9Rk8TWG49w1TgozyivW1lqM5gnf9t1/nI3dLX7xn/0ST37s43z9t72XP/O9f4YPfeDD/P7vPslk0KXutUlzyeNvfyN/8a/9BT76oU/xyjO3sAyTBx8/zZlzGwy6B9iWIEtKdHSyRCFVjl/zKcqK25cPWV2toxs6l5+7ydGdYxzfZr6SYZiCZrNGs9XEMA3KIscwdISho5REEwLdMCjznCIvyLKCZtPBMQVJliF0ietYrK036HXH+F7A2nqLIoPhcEKaZgR1HyU1dMfkO77rvXzgv36YIioBDcswOTq4Q62uoZTi9z74GTY3N6i3PPbOnKffHTHojbBdg87qGkJ48FpSYpkCJTRM3cQ0BXFYEM+nbG6usrXXZuvcCrqCUX/MG9/2Zs7d3yeezPA8g7KqePm5Z7h43z08/pXv4sO/+X7OX9qi1ba59uJ1JqOYt779XVRlRZ4+Q15Ijo7HKEMnLebEUUhZFjQbLRzHo1ZvUOaLRWauG2BYBrZjE0YRSZQgpc3G5jpFXmAaFkWRk6Qxpmlz6vQZrl17FS2RmIaJbStMw+bOC1f5+Ss/w5vf8Q7+9J/7bl56/iWe+L2PMB710ZQAqfCDOnpREPirrDdX6Xa7xGHCyy++yt6ZDU6d3WQ8iMjzOvN5SJ7lrK6u8sqrl4niKZblkeUJhi6QQmc0HbDa3sC2bITQCMMZ66vrIEzGgwl1z8Ov1zh96iLdkyPSbMZkKtBNG1VKbt+6xcbqDhqCbneE0E0mgxGmZeLaHndu7rO6sU6aFuRJitAEvmfRbvvUaiZFkVE3PDQlidK8V6A/7dzY+j/+yi9+X/F6x/LS0pe6ZQKwtLS09DpTSmk/9bd+6G3VPP/ueVi8LbJ0VzdNCqnj+y7f/M1fx+UXXuLv//CPMx5M+Zs/+jd48PFH+Cfv+wluX7tDu96h3egQpQWPvu1xvv+v/nk+9rtP0r11RM0CUbN4+A3nuXHlOu2mjVKCcb9PrRZwfDihsepx6sIm11894eRwRhQm5KkiClOEIdCFTp7lzKY5Z861sSyBUhLTMtF1HalpFGWJY9toaIuVADq4vo0qS/JkUbLhBy7hJCSOUwLfZeVUHdC5daPL1uYqk+kMqRSWZ/POr3sjh4d9Xnn2Ouurq9TrNbI0Yzw+4au++b18/gvPcOvVW8xHOe/4+sexXZeXnnmZcXeCH1j4QZMkKxFC4fsW8zDG8U0kEs1QNFc8ylRSSoUwHVqdBkKVCFPj5GTA3Y/exyc/8gkCw1kszFEVv/+h3+Xb/qfv4s7tK1x9/hXuvmeDZJ7y1BPPMu6GvPM976a1eY4ku4EYRPS7A2rNNYpKopcFtZpJWSlcN6AoKuIoopAVOia+H+A6HrEbM49CxuMRa6trhGFEkiQ4rk0Sx/ROTljpdIjjiCwJKYscITRc10UqyZO/93s8//SzvOe97+F7/tL38pu/9n6O7+zj2AFoAiMr2M9ygsDDcRxM08YwDG5cPWY0nPLwI5ewbRt7YNHrDimrkvW1Da5fn4Cs0LXFpKeyLLEMnel0yNrKBnme0mytcHR8RKu9gaY5jMdTojhibaOD7ztkaUZv0CcJI7IsIksjlBKsdDao1QOmoxlVBbPBFCklfq3OaDhb9LLU6iTxDF1As+7TXvMIAhPL0tEUZZxWx3klL/8vy8P/0tL/I8sSoKWlpaXX2Y//0A/uZXHyffN5+e4oNdbiVGc4K9m4cJq3fd27+MiHPskv/8tfx6+1+Ymf+wc0Oh3++g/8EFeef4Xa/7kMCsGjb3uUv/AD382HP/D79O8cIyqoNx2+5o+/EVlEBC7IvGQ2mWNaBkZgsLbbZPvUOgf7PV554TZPf+Zl8ljhuRaaVuG4Nn7Nw7J0Tp/dxAssKgm6roNSZFlGluUITVuMBZUSwzKxXRddCKqqRDeh3QkYDqb4vk2zabGzVwdR4PkaZRVTa9js7W2g6yY7Z9bYOtXhEx97ika9Qb3VpN5o4Fg2G9ubPPrww3z8w58gnk3I8ikX7tlDSnj18jUMoXF8NMPza4RhiKYWryFLSqpSI4krorBEaaCZiigpMMwAzRDU2j6OYzHsd1nf6rCxu85kGmEYJoYu6B8d8elPfJK3vf2ryUuD7mDO5ukWlaq48syr/If//T+ytbNLo72DLASe5VKpnHZ7jVZ7Hdup4Tg+Qtfxax6aLmi16/iBRxzFpGmK7Th4rotSitFohJQVhi4os5LVlVV0Q2M47LO2tkG71aZZb+I4Hpqho6FRc+tMhn1+5Zd+id//8O/xx7/tvbzlq99JGEdEYfRaGY9ASihLiWEYaIbO3feepaxyPvPJF8mzkqLMSJKY+WxGHKU0GysYholpmNT8OrowkBWUZcE8nJIXKWWR02i1sW2bqoLJOKTeaJBkCV5Qo15vsrmxg+/XMSwXTTdQmkZeFmhImo36YoOxX6PZ7qDpGqahoyqJbhg0GnVW1joIy0QJsD1BkhfysB9+bhqp/4xZf/H1juWlpT8slgnA0tLS0utEKbSf/bG/fcnT7e9ME+1Ns7jansQpkyjirV/3FTz4+EN85Lee4ODaEY99xaP82E/8KE8//RL/8O/8fSa9PlWZcXxyQH9wwhve+ijf8/1/ho9/5Eny6ZDtjRqdTZ/Td23RaFgcXjsACZrQF09yDYv5KMVxDF545gafeuJlbl07QEnFeDCmSBWO69JqN1nbXMUNHIK6i+faaBpo2mKRvAYgK4qioCxLlFLo+qLO3TBN/MDF802qKiWLSyzTIEnSRblMUlGrWZw5u7UoiakyLEfyhjfey6c+8QWaNYf2agPXdqnVajiey1e9551MTiZkkwo0g7Pnt6jV6kwGEU9/7lksV2cyC/GDGif7A473p4xGITevHTPshgy6MfNJjiEEtuPTH4wxLY0sl6SlRqtTI57N6B73uXj/BYRhcvvmkDQpaTU8Xn7+GZKi4G1f9cd4+XKXybxi79wGUZYwGYz4lX/zHzl76QK7Z88jCw3HqJFlBZ4f4NcCbHuxMMy2XZQGtbrH6lqber3OZDJmMhnhOi5IiMKINErI05T5bMpoNGR1dZ2g3kAXgma9SSNo0q53aPpNdMMkLVIsy8YydF74/NP821/6Vda2N3nv//RezLrDSfeAPFtMO6rVPUxbx7Z1bt28zdb2Hhs7m9y+c4QsNbIspT/oYpqCSirSNMM0TTQEpmFiGDpllZHlCbVamyRZ3EbohsIwBJPpjOF4QnulQyELptGUJEtx3Dqe16RRW6EZNPFtF1MXhOGcSircwMN0LHR98V5Z3DhkCH3xnjMNjU5rMcHKMY3Kc92eVGoQhuHy6f/S0v9DywRgaWlp6XXyU3/7r7xhPJr+7W7v/8ven8danuZ3nef7+T2/fTn73W/skZGRe2Zl7eWCapcNxmVsKDA0+9IMbqCZ1ox7Zhi1RMndPeqhRyMkmoa2MVMGe7BdtjHglSkvZdeSVZlVuS+xR9wbdz/7+e3rM3+cbP4GiSSVrfP6K6RQSOfeOI/0+z6/7/f7yf7aaFpeWEQppu/yx/7iD+G4AT/3xV/j1lsPee4Tz/D5P/05/tlP/hQ////5OSQNgopG1dBInnj+Kf7Kj/x5Xv3mS/h2xua2g9MWXL6+xpPPnOP+nbtUZc1klHF2HBMvGo4O5qRxyf1bxzy4PSRLS9xWwNbuFu12gGbAYLPD+s46eZHT6boELZcwStENE6FpVFVDVdUURUmRZTT1Mo1WEwJdN3FcB2kY6IZEouPaEssCy9JotS3aHYs0zbEdidSh1XX5/s9/hpdefJnZ0ZS1QUArsAkCB9e2WdvZ5JOf/hAvvfAiW5sbSK3h2Y89TZpXPHxwyNnh0fJ2vR3Q629w58Y+J0dT5tOM2XjG3Zt7VFnFq9+5QZkr8rzCtm1OTw6wbZ9bbx2hhKTTa/HW63eANpZnU6ual7/9gMk0Iw5jvvzrv84zH32KzXPb3Hj1iKbRaA3aCCAPY37qx3+aT3/vR3jsw08QpwW24xLHKfN5tLx9V4q6rpYrLx/skUQRYRRimSZlkZPGMY5h0u10aPe6bO9eoN3p0jQ1WVbgex2EJjAMg0F/DV3XkZok8Fq4josmQAodS7eIx0N+6Z//LPfv7fNDf/aH+NAnP8JiMSWaTxienuG7Ns8/f41nnr9OXtS0ux2ClseDvftYtsv6xgZVU9HptkjSmKau0HWJEALV1PheQFkUpEmCbds0dc14OCRJQzzPpK5qRsMZtmOxub1BrXKKLMF3PDzbR5cSzzMpy5q6EjSNoiwrirwEBYZpoukamhS0AhvPM9EtgWXpOLaN60q50TMHG32n9/bbb9fv95leWfmgWM0ArKysrLwP/l8/+qNeXRV/MFxkT5yNi8vjWczFRy7yw3/hB3nz9Vu89I03qJqGz/3J76HbC/gf/+7/xN1bd6nrhAZFUeVUteBDH3+O/+OP/i1++9/+Nl1f4PoWTaXIyortnQGLyYzFLEVKg4aaaB5TFRqOb9Ae+Lz6xh5NBUoJtnYHGOjMxxF1o2h3fOI0Zmu3gy41Xn7hBls769BI6rrA963l8K/Q0HQDBSgBjarRECB0DMtE0DBLYvy2iWrAtk2iqERKyNIcyzDwAo0PfeIJptMF99/ep9/rkKYZlqnTODVlCc89d400SpiOE0zHYOfiDtvnz2GbDm/deJ2qrhCGoDtoowvF/t4edV2ShDlCKdIkYjqZES9SXnvpFjsXL3LuSoeXX3obU+rUheL+nQm61nByOOP6Ezlx3IBmokm4c+uMwVqHNDnm2996ne/5I9/DP/gf/yFSUximgWEamNSMR3N++sd/lj/3I3+OSsFr33gZ17PJi4TJfMH6Rp+mhqAVoFRNXtTLUDWlyJKE+XREq9XC89p0+gPKquLSlcsURc5iEZLEOW0/oFaKoNWl3RswGp0wn03REKzZGzQNzOYTtGJOU5S8/LsvMD4847N/+FNcu3aJr/3ON4ijlNPjKZomePy5i5y/sMlbbzyg2/UInnmMO7cfoGod0/QwLcmjjz7O8PiULA8pqwpdmliGg6l7ZHkEKJZBZm3KpsEUijxJmIxGnJ4Idna26fUGDKtT4niO57VocqincwbrfUxNJ00y8jTD912UUlRNQ1lWJHFOaEi6Aw8v0BGywpAGTSmomzLQdNQv/MIvrAqAlZV/T6s3ACsrKyvvA3+gr01H88+cHs0eaxqNx597hM//+R/gy7/5Vf71v/gNhK7x5/76DxNFIf/Df/v3uHPjHcosJA5nJHlMU2s885Hn+b/+d/8N/+oXfoOz/VPabYdonpOHFVK3qWvBnXeOoBYkSYplaWhCEsYpvV7A17/yCrNpSJblIGpmoxDTkFy4usa5SwGDdYte32M8XHDn5gFCGeRpzdnxhEG/h+042LaN49goWLYBZRlZnFDmGZom0A2NWjUIKWh3PbI8x/Z02l0XoQkQAk0InvvI45i65PDOQ1ptn/FwBkqhaGi1Xby2zzPPPcqLX38Z3/MIWg4f/fRzFEVB2/V487W3sQMHpcGVRy4SLebMJ1Ns1yBLc/KsRBOwmM3p9/rcu73HzbdvoZsNZycTbr29h9B1RsMFk1HK8CTi1W+/xfUnrnDn7gMMw+bk6Iy7d/eIFwm/9StfZvv8Dk899yzRvKAqFU2j3r2pDlhM5nzpZ36R7/uBP8i1Jy8zGk545NFLDNZaVEVBkqWYlont2GiajpQ6RZbRaQU4rkP57qrNxXRGOJtz453XWcwWdNtd2h0PpViu+QzneK7D4088wfbOLltbWwSeh21Kdrd3uHrxSXa3r+K4ksVwwq/+wm/wcO8Bf/xP/WE++dlnEabi6HDCC7/7FovRgqefOU+tFIeHQ7Y2Nwg8F01oHB4cggLPD/D9ZWZAVafkZYptOQRBB0O3qKoCITSSOCaJM9IkRdckru0wm82ghvXBBpqAosioVU2UZBwfn2A7Jk5go1RFkaWYtoHrLr9frbaHYRkIXWDbJr7rIkWDRlMpZKRqNfh7f+//ErzPx3pl5QNjVQCsrKys/Cf0pS99Sf73//Xf+NPxOP0L1PLaZB65567v8rk/+Uf45Z/9db7xlVfYvLrFX/hbf5KXX/42/+wf/XPmZ0NMqVMWy35oic3Vp5/l//bf/7d87Xde5vD+GVtbfZpakS4Ux6cLLlxe56UX3mY+y0jTCqEE09OUIqu4fHWbd97c4+ThAs+20YVBnTZoaORFielIfN9jf2/K4f4M17fY3F6jagRIxaXLW0CNrhuYlrW8qc1L8jgjnkeUWUZTV9RlTl03CCFxPZM0yUFpuL6F6SgMU5LGFd2NLt21DrfeuIFlamxsdpaDzXmBlIKmqXn6o1fRNI3jvVNavofr2Dz17OM4lkM0mbIYR7iOjWUaXHnkMscHJzR5TbvtIaVGlmcYlkSTEmlKWu0OUbSgqlPiecJ0nBFlKQcHE/KyYT5b8J1vvczmzoBW1yHLMxCK6WTKYhZydnjCV3/363z/n/h+hC5RtUJVDZ7n4gYOjm8xOzrlX/3iL/JD//n3c/HaRW7fvMfO1hpJkqEpRVmmnDu/jaYpmqZClxpRFNHrrNFprREEbaIoxHMc1vsD5tMJ49Ep7U6LrXNbrG+sMZuO2Htwj3bX4NHrF6ibirwosWyLyWRIEoa0Wl36/U2krmNoOje/8w6//Ztfp73W4bs/9zy7lwekecUrrzzg4GDERz52lSef2WU2mzAeDynLHE0I9vYeoOkalmXiuQGBN6CuGuo6pyxzqqYABVKAqhRJGGFInSRJaJoGTQmqsmQ+nZHGGeF0SpkleJZBmVWMRyPabZet3XWKqiYME/K8XO79z3Ns18T3TTQFcZhj6DqmJQ+aRn27qfQvJ4mbv9/ne2Xlg2JVAKysrKz8J/KFL3zB3H/lm3+0KZrP7d87+0tpml/87h/4NJ/9gU/zUz/xc9x8Z58Pf9eT/B/+1p/jl3/23/DL/99fZTI/pRY10rDZ2DzPzu51Lj/+JH/nf/g7fP33v829tx7w9FMXaPWWt8ZJlHH+0U3CMMLSJaYjkSaoWidNKmzX4XQ45eHBCN2QlGVDVVV4noPvmXiezWSY8M2v3mI4nPHIY1v0ei2mkwhUhWtJJpMZhmkidUGWp2RpRjyPiRcxWZq92wqkqBuFagSO4yJ1SZ6XOK6BaiRKgdcy2NxpcfXaBR7ef4BqStDUco1nYAIKaUiUBtefvMw7r97AsgykLljb7tPqttnc6PHKS69iSw3XsnBMnfMXt7l94zaWrqNrFVJCp90CKrzAxfFMLMdgfaNPXVYc7Z2RRhFSChaTOePTCVLC6eExt2/d5+Pf9SxRtCBo+fh+QNU0WKbBN37nBVr9gCc//CTxIiKLM4qqpK4KyqxASp3JwZAv/cwv8lf+5l9isL7F+DRCaA1nJ8cUWcX+/iGmaSJ1A7/VwnF9xuMRRZnitwO2drfJq4JWp8PVa+eJ4jlpEjOdTJBScvnyRRQNX//9b7OYR3zmD36Kc+e2qBtw/QChVcympzimz+baBtvbO6zvnCOe57zwW69z//YpTzx/hY/+Z4+yfXGNo6M5t985pdPp8NxHnuCpDz3OoN/F9wJc1yFOQjShEXgtTNPE93x03SLPM6azIUKTZEWB5wc4jk1ZVbieT101jMdj4iRkY3OTdqdDWeXE0ZyiTOl1OoTzmP37h5RlyflL2+i6tpw1UA261BGaWn5HHQNdNNR12TR1c5hX6mv/5f/577z+Yz/2Y8X7fMRXVj4wVgXAysrKyn8ifhVtzcfTzx0dTj7x8DS8dOXDTxnPfuoj/PRP/BIH98/4ns99mh/4/B/mJ//RT/Od33uVluWhNwZpmi0fOi2Pzto6/9X//b/km199ka/8m9/HsXW2dz1aXZPZJEezNHq9Nu+88hDRNLi+gS4NqroGKblz74jf/52XOHi4h9AaijQmSyPKogCliJMMocGV69tcu36es5MpRbaM+7UdEyEFQctf3tAXJU1RkUYJdbVsv9Z0jbwoKPOSKi8xpIFpGNSqwXIMvJZDmiRomqTdDXj6+ce4c/se4Syk1wuWGQKaxvZ2H8s0SBcRl6+eR1MNi+kUzzOxTZ1HH78CQqEbJnffeQfbkriGxHU9AtflcG+fTruNITXqrMSQJoZu0jQF3Z6H69lceeoSeVaiKkUchyTTGNOQzGchhm7gWi4v/N63eOLZxwjabQxdx/UcbEfi2gaqLvjmCy/x2T/83SAEeZRRZiVlUaKaZUCXqRu88+03+NV/+Wv89f/TX8MMWujSwjJtFvMQQ9eIohghNbKyxHVdLl66gG6aZGmGaZmcu7hNWqQgJZeuXMB2DK5eO0+aRQRBh+vXH+P8uQvs3z/k7u277O7scP78RWzDoSorhCbI85RFOCfPK/ygy7mLF+kELd5++S5f+603GQ9Ttnb7PP2hSxie5Gg05/7BhBs37xNFIVcuX6bdDogXIapWCM0gCHpIoVOXJVLTKauCyfwEJSBJQrI8+3erYTU0WkGHuoE4Teh0ujiOiyYFujSp6hqpSwQao9Mpx4enmFLHcw26HQdNgm5oSF2jaWo831wOH2dVLCpuCSHU+3y8V1Y+UFYFwMrKysp/Av/vL3yhV+f598WL7MrRcH7xY9/3Se2RZx/nZ/7Jr3B8MOcH//Pv5cnnrvJP/pefZ3gS4/oebqfD9s5lzm/u4po2ZZPzV/7Wn+bhvYf87q9+lUG3x+Z6C9uTVEVFFGZcfGSbB7dPSBeKPK6pC0WelmhCY76IyfOSsoiRQpEWGUVZ0eu26HQDojgji2pcy8DWDQ7vntIUiqIo6HZdLEdS1oLFPGY2n1MrhWZILM/C8k0qpZjPMxbzhPl0TpokSKlRliWqaWh3PExTIg0NqWns7p4nSiKKPIFmuRnHcSxUDY5nsL4RoBsal67scOv1m/i+RVPVmJbk0tULSKlztL+PFA2WJdEEtNvrxLOEcDIHAbZtYToCtJpur0NZ5limhm2ZtNoOs1FEvx/Q67UJFyGGLqmqiqqu6PY6TE7npHHO088vA7J0qaNLSa1K2oHJ2y+9jN/ucPmxR8jSGKEpTFOnzHOqqqBqajRN8fJXX+KFr32dP/s3Ps/G9jaO42DbMJ+NCTwPU9dot9vMwgmNaPADjyLPkVJQVBnrGx10XSLf3a7keQ6PPXGJ2WJKkmRsbAy4cuUyqhYcHp6gmpput0e3s05TC+JkQZIk5HmOEArDMumt9bh4eZvZeMr9W0e8+I0bfO13X2c+igg8i0cf3ebS5V00wyIpE3Z2L+C4AYtoQZIm5HmBEoJGNHS6A3Z3rqBrJov5mDSZk2Yh08WIpi4pipw8z2maGiGhVhWa1FFKLGdQUAghiONlgVEXy7Axz7WwbQPbMQkXEUVegVoGz+maTKqSYSHoK6XE+33GV1Y+SFYFwMrKysp/Ao5tK8q6Nx6H1z79uT+gP/rUFb74j77EcDjlh//a59g8v87//Pe/yOxsgkFDXTUoNDTborW2zsa5Hf7mf/NfUJc5P/dPfont9TUef3abS490KOua4Wm4DJeyBLdvHlNUJWnWcHy4YG9vyGyaMp/MmAyHJFGKYVhsrq/TbntEUcR4PEFqEtuFyXjOG6/coy4aVA2WrmNIndk4Z+/OsnWl2+5gWya2beH7HlXTkKQpk2HMw3sThsdzNAF5kZIkKYZugQCpa0hd0u71iNOU05MjOl0Xw9JZPgRW+L5OXlYUdcGjzz1CHGfs3zmirhpsy8L1baSp0W63uPX2DdpdF9PQ8fot1ta3uXv7HlLTcHyduinQDR3HsyirHF3XaVSDYWqYQjA8mVM1FYHvITWBaUqgQZcSP3BouQEvf+sNPvrpp+mvdSjzCE2rlzv0TYN4OufV73yHT373pzBsjXgRURUVVVGSRnNc1yYrEjodn69++Wu8/eZb/PG//IOs7W4jhGTQG7CYz+i0fHTN4OLlR8iKijRNOTk5ZP/BfXRNZz5LsSwT29ZZzKeMRxPSuGB3dx3XMcjzjCzPaRT4joNjGWxtr9PpBfR6XUzLoaoLjk/2SZIply71cFsGlRI89tRlbAuyMKNKYTrMOL434fYbd4nnMYahAxrr22s8+aGn6A0GOI6J7dr0Buv4Xo+yrBBomNIkT0PCcIFCw/NbFFWOUjVSU6i6YjoZ0moHrK2tEwQBShVMJickyYIwnJHlMVWVo+tgmgLT0iiKlE43wLYkuiEQAiqlSpSai6Kyf+InfmK11XBl5T/AqgBYWVlZeY/9wy/8TX9x8vAvnD4c/dGPf/enNq4/cY0v/oN/yWQY82f+2g/iBQE/9Y//JSpVaKomi5cPXXm4YH5yyPHBQ777+z6B43j8g//nTxI4AesbA649ukOr71EWNWGYs3NhnXs3TggXOVGSMppOGI/mmLrD7Tv3SfOC05MhpuGSpiV379whTVN0Xccw5bvDnpKmAt/zKMuSOMqYjGIe3DlhMcvZ3ukzWPM5OztlNp2RxClVWaMpjSxumJzF5EmN47jMFglpklAVOU3T0DQKNA3H8/BbLQ72D6AR6LpGoxoUAqUUpq1jWQZlo7hy7So33rmDoRvMxnNsS7B7+QJVA6qBxeQUGuit+bT7Hls7m7z9xts0Wo3v2wQtnzROsQyTwdqAJE4xTcn27hpnD8fEi5iqKNE0hWVLTNOgejeZFmCw0eHo4QmGJbl0bRNL17Ftnf5Gn6JsqMqKF3/vG5y/uM3m7g7ZouD48ID5fMLZ2QlxuMA0TIqqwNZ0/u3P/f9YTBf8oR/6Q5i2h2WabGwMKIsaXdaMzk4JvGWbUFWWnJ0cc/f2A1zPYTiaoekGg7U1FouMs6MZhw9OqcuSZJGgmuVWpTAMmU1naFLw5JPXuXT5PL1eH103KIqc1197na/8ztfodm1sF+7eOaIddLh8aRPHlYTRlDzPsA2feJ5x9PCQu7du8s4bN8jzFE0Hx7ExTROBoNPuoVRDGE6xXBvL9vE8n35vQFnWNI0iTfN33wRBEqacHY9RjQ5quZlK15cFIECWppRlQZk3jEcxs3FCmTfQNEipMEyBaRlI3cyQ5jup5n/lR37kR1YhYCsr/wFWBcDKysrKe0uo0rw+Oj753ic+/vRzO4+e17/4j3+BKM74K3/7TxNnKT/747+ML20s00QaFm4roGpKptMhw7MTPvHZ57n22CP80//lZ7l08SrPfuwxdnZb5HlGtEixdIt2N6BUNeEsxbYMLMdEKcloOObuvTs4rkeeF9iWTqfr0+112d7aYXdnjf6gTb/fw/FMHtzbYzgcEYUhUhMELZu8KrA8m2tPrtNbbzGaRNhOm1a7R7c3wLQsdEPDdgw6gwDbs7lz64TRaUS0yKiqmqapUEBVN/QHa5wcn0KjkFKjapYtKULT0A0D9e4mmd3z58mThGQR4ng6RVqi6ZLdR87j+1327z7AkBqW7WDZko3dDSzH4vjwFKUL0jSjP2iDqkmzCNe16bR71HXNxnabB/f2KLIcIQSu62LoGqZp4LoWeRqTpQmtroVtabz16k12r2zjdVp4XkBZFsxnC9Ik597NexweHPChTzxPVTdMp1Om0wlN3fDg3n00pTE6HpFGMUVS8vP/5Ofp9Tp88jOfYrbIcX0Tx5ds7QyIowk3brxDWZWsb2wAiul4SBRGDAY9oijBsA3aPRfbM3Bci3ARLVewljl5WaCEJM1Kbt64zd7eIf3+gGefe5qNjU1c10MIxenxhC//xou4js3169sMh0ecng7p9nq0Wy3KPAPZ0Ov36HV6qKognIzJwoJet8/p2TFJHFJVGZPpGXW1TIIuypxudwDAfDFla3MT03Lw/BZV3ZCmCbPZhOn0lNlsyHw+IwwjRCPQNJ1Op0+n08PzAlzPpq4rqqqk3fFxHQtVC8oC8lxRN6RF0xz/6I/+aPq+nvCVlQ+gVQGwsrKy8h5SSnFyMn7s2U88/ez2tQv2T/2vv8hiFvKX//YfI01j/vXP/AYmGuLdMCnXd0izmCxOaRrFZ//oZ/ijf+L7+Md//yfJw4QLlze4cHFAt+fgejbTUcytWyfsXNng6HCINMAJdEajBVIXbGytMRqP2du7x5uvvcrx6SHD0TH9fgvL0gnDkqJcDgjbro8X+KxvrjFY76MbJlII+r2ATs8hTXMUDecubDJY7xB0WghNo1E1hqHT1IpwlnNyMCdPa1Aas3FKntXkWUESp8sd+dMF88kM1TToUqMoGkxTR7cktm+CANOzOH9pi1defBOBREiBJk38Xh/NELiOzf7du9DoGLagLGF75wJZnqO0mnbgEMUJSVpgOAZ1tZxBsGwT03bJygKERasdUFYVSRITBAFVVaFLnflsxGh4BELgey533rlPp9dm88IaRVUzOpmTRhlZklJXBS99/UWe+PB1agosy2EwWKfX7VFVDQ0aRVkQJzFFlbKYzvjp//WneP5Tz3Ht6WscHc7QpYmQGk8+8wxNXXJ6vL9cCdpfw3N9Dh4cEi7muI5FGmd0uy0Gmx2koeO1WxjvtuRURQmiYX19gO/7jM5GvPjNlxiPh2ztbNLudNnYOI9lWxR5xte/8gr3bx9w9coFqqrkrTdvEM4STNMhSzN836Td8el01wmjkCSc47su21vbCFWzu7NDEPigFFLTGI1POBvto5uSNI45OtpHt3SkqTNY20BoksBvEccRSRYyWOtj2yaNqpcDw6pGGgLLWRax7ZaD75ioqmE8XBDOC/K0Js8U4SJpG7rYfL/P+MrKB9GqAFhZWVl5Dwkh1Ic/9eSz565d2v5nP/7LjM4W/NX/6s+xmIX8i5/4RTzLRKmKNI5Jkxjb0jl/fhtdN7hw7RI/+MM/xBf/4ZdIpiXPPfcUFy72sR1JVTUc3B8yHeZohsH4LOLezRGaZlDXEPguZVnz8OERuzsXaWpYW99gY2Obfm+DNMpYWxvQ6bp4rolt6ZiGxLFtZrM5jm+iWzrTaUg4S6HUaPkO3b5Dq+2i65KyKCnKElgOctquhRdYSKlR5DXDowVFUZNXFXFcIjWLLMm5c2OfMquRukZRVsynKXXNcgOQ0BA6XL1+mdHphHC+XM9ZVwrTkly4eg7VwPDslHg+RwN0KUDTuHjxIvPZEJoa1zER6GR5Rn+tjUAu99e3TExTsH93iKoF/X6LS5e2aOqawHcRWo3nmlRFRjRbMDmdowtBPE64e2OP609dYzELKcsSz3cpixTb0XjnjXfQbR3DMYkXEY5rods2/cEaVZVjOzZhFFJVBbZl8PDefX7pZ36Bz33++9BNiwe391nMFtiWw87mOVASqZlEYYSmgWFIbrx5k5PDIaOTOQ8fDKFZzkyUeU5ZLDtgDEdwNjxlPp+zsb7J1vYurXabt9+8wYN7D9ja2qbf3yDwu6RJiAAW84Ib7xyxu73DM09fZjw5JUkSTN1A6DXnr2zxxNOPcfHSZbI8ZXh6iqmb+F6b2WzBYLDO9u4F1jfPsdbfJApDRqMTiiIhXsw4eviA2eSMxXxKUWYsFnN8vw0Izs6GAGhSYpommibRpYHUNMoip65LDNMgSytUs1wvW1U1KIVANDTi6j/+B//dM+/T8V5Z+cBaFQArKysr76Hf/c1/fnX73ObnfuVnfk2Lxgl/8W/+CWbhlJ/74r+mKUrKqkQagjzPGI9Oef3Vb/Odl76D1dL5L/7Wn+DLv/EVju6P6W2so9sGjmvgt22kKUmihr29Mzp9j8OHZ9QFDE8WCDQG/TZlWQI6s9mcOI7wPB/H9rAtF02zODkdYts6GoLpcEqZZQgFAoGUkrquSaIc39VpeQaG1mAZOmWRM51MicKQIi9o6gbbNtAN0E3w2y6O4yClQZlrjIcpcZShasXd2wckaQFCkKQFi1nJYpYxm0akaUWalDiBy9rGGrffeYDQNAxLpyxrDNeit9Gj3erw1ivvUKQFmglCatgtj7XNNYanh+RJgoaiqhrKssZ2TDQpKcuKwbqP1DUmZ3OqIiPPCgZrHWzHJo4TBCVJHCJ1Sbc3II4yHu4dk6cZb718i3MXzuF4zjLFGIjjiFYnIIpnvPP2XZ742HOcDYecnY3IixqhGei6SV3X2LZNkiSMJ2Na7RbffuE7vPiNb/FH/9T3UjYNhw9HNCVkeUxeptRNTuAF7O8/IEkXtFo+h/uHHOw/4PTohMODMYZukGYJh0eHRHHIud1zXLp0kdl8xPHxIVIKtnd2CII281nIjRvvMJsNCYIWg8EmUbSgKHKEgOOzMV7X5+Offo40LxiN56hGo9N1OHepw6OPn8PzA5I0oyhqZuGM8eSMg8M9FospnXaL7c1zbK5voQlBmiUAWKaJ0ASKZjlbUhVE0QLLsOh1e3iev9ywpMvl90aTSE3Ddx1oNOazGE2D9S2f3mDZLuUHBq22dVajvSSVOQZWW4BWVv4DrAqAlZWVlffQYhJ+/Mu/9HvrBw9n/Im/+oOA4F/8k39JYPv4QUCW5URRSpbnVKphNp0xX4z5U3/++3jztZvcffsBVx49x/UntukOTObThHiR0VSKxSKm03exTYPx8QLHNGlqsGzJeDRFQ9LttJgtRqRFzGQ6pm5K/JaLE9h4rYAoTpjNYk5PhywWc4QulkmsRUayyNCQqIbl/IBtMTyacf/2EdEiIc9SdAm2ZSA1HU3TMB0dIRuSLCaJC+7fHTM8TKhyyfHRjCQB3TDI85LZKCOalyRhyXycs5jn5EXNzrkL7N07JA4z4rBEAHleIkwb27PRtYrD+/fJsoKiguksZ/vCefIiJ5xPEEJRVDXUFU1RU+QNtmdRFiV+y0PTdLI0xXMdatVgWFBVGVEcU+QVcVyAZhJ0O2RZwvBsRN0UnB2PWIznPPr0FcIopswKDNMGNPrdDi9/61We/eiH6a2vk6UlaZIRpxmW7dLp9+itD3D8gDCKiaKEC+cv8Pu/9TXcls3H/rOP0SCYzuaYpsnR2Qn7hw9QCPr9Nc7OTtGkpNvroukaZVUwn4bsPzxhEYYITXDz5g1u3bhPv9/nqWeeJMsTHjy4S6Mqzl3YpdvroGmCk9MDHh7cRYmaK49eQRiSOMtB07l3/wxp2lx+5AKGLnnztZvcv3XCbJwilM3zH36K85d3EFKQJSlnwxNOTh/yYO8mx8cPGY5PGY5PsSwbx/Zw3y06pdQJo4gkjvE8DyEEi3DBZDrENE2CoIWUEiEEjmPjOA40Csd1cFyb3sCn03NwXZtW28e0BJZtn9a1uPnX/+u/c8D/NkG8srLy72VVAKysrKy8R378x/+6cef1t3eO9075nj/+WeyWw8//1K/SlDUKge062LaBRC3TY/MCTRr82b/yeUzT5Mu/8g02N/s8+dQu5zYDdrYCLAOSacn0LCUMS7Z3exzsjUnDhtFwjGEqet0OaVoxnyeUVUld10hNw/NcyrJksYhwHItHrp/DDzxsx8DzfObzAk3TMHSd6WjGw719xsMRp8czNCE5PZ5zcH/KfJywmM3QYLmBJo7J04K6UmhC4LcMLl3boNFqojiiLmuODxfcvXlGnuZURUk8z4nmOfNxRJZUTMcZeVrj+Q6OZfHmq3dJooqyqInCjKwo6K75DNba3Llxj/loSl0r4ihnfBpz6dJVHu4/JE0SLNtBaOC6BuFswXS8QBOgFBRlSVVWVHmDJjWCwMV2JKBh6gbRIseQJlLotFsBnuMiNY3pZMJiMuLN197kkeuXMQyJahQXz+8yHc1QlcbJg326nTabu9tIqTObjLBME03XMV2PdreHH7QwDIPFYkGW5fR66/zmv/kan/ne7yLoBsynCzyvzfbmRdI0ZTIfs719Ec8JGA6HIDV0w0ZIHa9lkxU5ujTQdYt2a8DZ2SGnZycoTM5fuEyel9y7cwupNVx/7Dr93jqGYXA2PGRv/z77D/fY2u7T8h0O9x5QxRl7dw8ZjybUdUFTV5wcnHJ6NOLg4TF7eyd0W322Nra49shjrA02SZKIOIu4s3+Tw5N7qKZCNQ1Cg8ViQV1XrK31WV9bIy9SpBQ4tsugP8BxXKJ4QZYtMyMsyyTLUibjKVGc0qicdtvEcSSoBiGWeRF5UVCWWceUOO/3OV9Z+SBaFQArKysr75FitrVGTe+zn/8ea+vKZX7yf/45qqzEdhyyNGE0HDKdzjgbnTEej5iMhjzzqSd57EMf4Z/++C9jmw5NqYgXOV7HxmnbmLZBUTaEYc7azjLA6/D+hEZVBEGAY9mcHJ+B0KjqiihM8Jxlwm4UheimgaYJmqoinM8JFylB22f34iYXLm+hCbh7a5/JcA6qYhHOMQzJ6HTB8HiKoQsCz14GTu2NOT4YksYFi0VKXVWggevraLqG13K5dn0HIWtuvnOf+TQhWpRMxylnp3Omw5AkzIjCmDiKKcqS8xfPcePNu4STlDhMaMqCyThCkxaPPHaNPKl58zvvIDAoy4r5LKYRks2tTW69cxNVq2UAmG/R32hT14o8rgjnyfJzzlKKPKOuSlRTk2U5SVxTFTWqrrFMG9d1yPOcLElpt1vYroOuSc6OD7l38wGmqbG20Ue3zGXBJHVGZ0OKuGExXfDhT34I3ZQopRidjrBNC1UrlIJWu8Pm9jZK1ITRAhrFYrzg5Zff5M/81R9Gtx2aRmHrkpYXkCQL0jSh3emxCCeUZYHvB9RVhWoUrVZAksToUsP1PDzf5+DggOlkgmmaPPLINcpSsb9/QJrmbG/v0O2u4bo+RZ4xOjvh977yO5yNTtCkxt07d5mPZmxtDsiLjMHaOrP5guOjM0zDQgqD2XiB67lsbK1zbucS3c4GpmGDgjSNyYsUlKKuC2zHplEN+w8eIJRgfW0H0/QAyPIcx3YoipL5YkFRLPv9+/0OmqZQAjRhohoN09RoGoWiQTclaBZZVm5A/n3/9J/+P9be56O+svKBsyoAVlZWVt4ji9m0fvzDT+9sXr7s/Isv/muyuCBOM+q6oqGhaWriKCLLE9Ik4/Jjl/lTf+GH+ekv/iJkGi03oNtzMSyN6Sjm8OGEe7dHy4fxyQzXs1hMcjQNWoGDQDGbJoyGM6azMXmRUjclioZ2u0e328exHTRtObR7//YRmpRUlKAtN/I0qqGqCpI0AiFptdrwv/Vvt2xs1+DhgzF3bow5O4nJ85pFGCKlRprWaEJD143lJpotn1bHZDHP0IRGHIXcuX2Pu7cOGJ4tlp9zHjEdzairGrflohC89uJtyqImiWPiKCGcR1iuy8WrV3jz9ZtEsxhNSKbTGUVWs3Vhm6Io2b99sEyJLSqqXKGbJqZtUdcVhqEznUw4OxqiaTqWbZCECfNJxOg0Jsty6qbBtJfDzzs72xwfnhBFcxzPot0d0FQl+3f2uPn2LZ7+yBPLlqGieHcoVaMuSx4+2OeRx64TtDusb2xguw7T6RTXcZZrW6OIbr/Lhz76IZIkIgkXbG51ef3ldzBdi0//oe+i3R2wvr2ObftUecFoeIIftHFtl+l4iGUadLpdprMQ1wu4dPUqcZygVMO1R69T1w37e/cpyxypmfT6A07PTnnzjdeI4jlrG1v0BusopWiqZRH0xtuvkhQxrU6Pvb0jXvzma1iGT16U6LZFHGWMx3PKoqARahn0VVc88dhVnnn6ozz1+EfY6G/h2B5lXRCm03f3/4c0dU0raDGbTanrEk0TIBSaplGWFZpYJkM7jotAEM5D2q0WrcAFpVCqwfVN2h0HIXUqJcirhryklcXp4+ms+IhazQCsrPwHWRUAKysrK++RC488sj7Y2X38d/7tN8X0ZIJl6XgtH920sGwby7SQmqSuFd31Nn/tb/55fuXnfo2TW/fRZYXj2ssd9bbEdTSaRDAbFZycLnBtG0vTefP1+ximiW2brG+1QKsYjSacnBxycvqQ0fiUuq4Bjbpulpt2NA3Xs3Fdl3ARs5inJGFBWdRUVU0YLiiKFKGB5dicnJySZgnTScb9u2fkWcV8mqDJBtPSME2TOM4p8pp2x8N2dCzPxPF0ppOMNK1paJjNJ0wnY8ajMadHJyRpynA4Ikly0jRn61yP3/7NbzE6i5hOZ0RxwmQ25+h4zObuLkJKXv72a6hGMY8WKAV1rXjksavcuXWXydmI8WhGuIgZD0OE0JCmiRCQpyV10zAZT5lNIvxWQJoXFFnJ8cEQqemEYUJWJJiWyebOOoO1HnEcs7bWA2Bze4c6L/nqb3+bc5fW2Tw3ACnpdFpoCAyp8fD+Pv21HoZto2mSVrtNv9fn7OQEgaAqC9I0ww8CnvnQs9x78JBXvv0WgWXyr37hV/nEH3iG/tYa6xvn2d6+gOcEFEVGmqa0Wj2KPCZLEuq6oj/oMJmMMU2DVrtFnmUkScaHPvQhHNvmcP+UMJrTbrXY3tyhKDJu3HyT27ffxnZd+r0BAg3bkhRlwq07bzKejrBsk/FozI2bt5jPF0ip01CT5zFZllHkJWlScPOdO7zxxltURU633eOpJ55mrbdBLxjQ8fp0vC4tr7NsQZMGrVabPC8oy3L5fyMlruug6zq27aFLMKSg12vjeiaOLTENgWVqNFWJEIpW18O0DfKsJJzk1uws68Xj5In/6e/9Pf/9Pe0rKx8sqwJgZWVl5T3SG3Tst156dbB3+wEYcjl8mkTkVUldViRJQlHmOL7LX/4bf4b7d/Z45Rsv47vuu6suz0jTmrRokIbObLpcCel6DpanU9YNRV6RxAWz2YI4TinrHE3XkLqOUjVK1e8+YDmsra3jeT6dTpuqLMmLhP7Ap9dr4TgWdVMt04BRJPEC27aWCb0K5rOYsq7Iy4Jbt+5i2xq6aTOf10RhjSZ1rl3fotf3sD2Tbs9DkwJkzdp2i8H6gP7aGpZhUZcFdZ0wmZ+RJHPCaEowsDl4cMwLv/cd8ixifHZKGi4Ynp6SFCnXn3mMb/3+dxgeDqmKgqquMEwDdMGVqxe4+cYtFDVJnFBkBXlaUJQ5tmUg0CiLEsMwCfwOh/snIDQM26BpSrI4RJcSTWioRpGkMUHbpdNv43o+lmXSGbQYbOzgeAGn+yfcv32ba09dRWgag60+RZWhW5BFEUHbodvrLMdShULXBYO1ProuCVyXZJHy+iu3mExC1jb6PNy/x9tvvMPejT1e+P0X+QN/6OPkhaLX7bGxcx7DtCjzkl5vDddt0SgYDU8QFASBwa2bb9PpdOj0uoSLkNPTIc9/7Dm6ax5SaoRhyNbWFmuDNVp+myLLuPn260TRAt0wKcsK13JBwf29GxydPSArYqSEJA6hadjcWMMwJePZmPlsSpoktDod4iQniVNAYAc23/v938Pa2ga6dJHSwLYd1td2lu07qmF39zytoItt20gpKcuaXq+PZZhoaMRxQl4UVKqmqBoQCi8wcBydpoG6KhGqwTANhKbpVcH66Czk4OCgeH9P+8rKB8uqAFhZWVl5D3zhC1/Q9l5++XtUON707OUAY9U06KaBqkryPCUvc7Iq57v/yCdxnRa/8xtfY2Nji/76gMGgT7fXIS9Lwjhnb29EkldMpyFFmXHxkR1GoxhTt/EDCz9wOTmZMR7FWKbNWn8d12lRV4pGKVrtgPF4SJ6lZFlCXddMxguiKMY0FUm+YD4LGZ5OiOMIQzeomxpN05C6hu1Y6IbiYP8h/UEfzdQ4OhohWPZnX7jUR5NQFCW6oeF7Jqahsb7Rod22sGwNKTUMQ0ephqquMXST+XxGVEzYvrTJr//K7yE1jXCxIFxMWCzGNGXJxlaPoO3z27/+e/imy3weoguJhqTV8mm3A+7fvI2UAg1BVRSopkFKbZlXkC9DqhzXZjDoUGQZ4+EZNBWgaFRJGM7RhCQIAjqdgDiOiZOEJIq4feMW/Z5PoxTdtR5t3+elb7zKYDMACQ2K7fPbTKZTqrpG6jo727t0+x38wKGmwnYNbEvQbjvUdQ5lxeHeHlKTdDs9hsMzJsen/Nov/ia2a/Dkc4+ghIkXtNjZPY9SYrmydLABAjrdHvfvPWDQH6AJjb29BziOjeu5FEXF3sMDnnz2Gu2+g+cH5EXBlauP0Aq6tIMOnaBNUeRYpkHb79Lyu7iWi2tbhOGM0eSE2WxImoacnu5zfHSIoVu4ts3R4UNmiwlSCkzDIM9TGlURLXIWYcTnPv99OG2XOA+pqhJYpkBHUYSgxLIkmiZxHRcpJaBwXBNNCqqqIo4zppOILC8Io4LFoqRSNVVZkUYFVBq6FDQoFMoSTX3VCKv19/fEr6x8sKwKgJWVlZX3gF0vnmIef1olmeHYDq7rotHgWjaD/hpCGCymcx576iLPfvxZfvonf440zqmb5UOsbVv019v013xM06CpddKkxNANdFPn9HjMyf4JeZ5SlSn9tTatjkujCuaLGWEUEgQter01LNOi3TG5cHEHTWrESUyWl5iWwYN7x9y9dcR0FDEejcmzFNt26A3WsSybqiqX+/G1htHpiI21bU5Phuw/OGJtvUNe5NiWRRwlVHWBYWh0Wi2EAl1KTEPiezbtwMV1PHTDx/HauK5PFE2Is5APf+KjvPPWbc6OzlB1zmw2QihBoxqyKuGjn3iWvVv3GB6cUmY1xydnVGXFbDTlwsUdJqMJ88kYiY5AQ2i8O7egKOuKMIpQCkzLpNVx6Pd71GXKYj7C83w03UApRVHmVHVJq+1gmgbxIqYpS/KkYDKaUBUZLd+l2+8wPQ1RdYUX2KRxjlAabb/H7TdvkSwKgm4AUlGXKb1+B4SgKGpqpbG1s4Htmui6QZFV9Hp9NE0wD6ecHhzzm7/y23zyM8/jtVt4XoDUTc5f3EI3FIZukmcJgddia+Mcd+4+ZPfcBZqm4eDgIXESE8ULqAV79w+4cHGLnfMDkjQjTTOuPfoI7U6LVquL4wTUdYNSy3kUz3GxDY/N3jaO6ZJmKYhlQtvJ6TGHRwfo0uTChUtIXRLFEY7jIITg6OE+45MTXvv227z88pt8/x/7bta2N0nShGgRopoKBIynMxrVoEsdTVuGfy2LABBCW76tskzWBz1816LTdggCHdPQ0YQknKVMJgvKvMBve0K39DzO8nkp9Oz9PO8rKx80qwJgZWVl5T1gy2be1AXTYcTp6Zg8ydE1naqqmM2nzGdTOusen/uT38cv/PN/zWIaIiVITWEYBn7g0e47tPsmSlTklaJulv37vZ5PuijRdYuNjQGO4xEuYizLptvtYFuSLF1wenpKU9fYlsn21gZbW2vsntvk0UevsrE+YG1tjcuXL2AZFoPeGrZpkaYJmi4J2m0a1eB5Lq3A4/TkdNn7nWWUlaLKGl7/zm0ms5S8yoCGpgHTtIgWGZNxhEJguRpCa9A0Dds2CVoBtm2RZyWq0nju+afZ2Oxz4/Vb9NsdUMuf3zDksmXk4jp/4Hs+xVf/7ddosozJ5IzFYkye5YRhxFMfforXvvMGWZxTNiVFXWO7HpomaRrQdZ26qanqCk1qIEA3DfqDPkIILNei1e4gdY26LrFNgzzPqeqUza0utVB0B32Oj4YkUbx8c6A1GI1BOAy5eG2Tk5NDdN2i1WqjSji4f4jjmxRpRlXUjEYj2m0Px7WRusCybdbW1+n1BxRljuf79PvrFE1FUoS89LVXOTs548nnroHQsV2XTq/NuQu7GLZJVcNwNKQ76LG+vk4UJ6yvb1DkBVWZ4/su77zzBuEs5Y1X7hAENttba0zGU05Pzrh27RF2zp2j11+jrmuiZEEUTYniCKnpSN3kyuVH0XWD6WxIlITohk6SLDg82qNuSjY3trBdm0o1dHpdHM8hzxOoa47vT/jOC6/xsU8+x86lHaJ4QVUVGIaJado0ajkAbJomZVkwmUyYTCZEUYyu63ieQxJHlEWFokKhsB0bw5TY9rJYU40gS3JR5MWuVOKKaNLz7/eZX1n5IFkVACsrKyvvAdfwcpQKJlFCGKfEWbRsvWlqqiKn0Sr+9F/9PF/9yjd55+W3cGydOFpwdPiA46NjyioHAXFYA7C+6eG1BFWTYhomaZajaJiHIbN5SBTlnJ2OicIE03AwDBdNgqKi1/c4OjplNp+zttFCaA1ZlhJHCYZhUNcNN95+izic4lg2DaBJiee5pEmCQGLqDrPpnMODIzrtFkmScXQ4psgajo9SHuxFxGnN2emMxSLCso13H9bAtE38tsNgvUWrZWNbBq12mytXH+FTn/gIh/dPGARddra2kYaFbupIS+A4Dj/0wz/AfBLy+itvgCzJigzH0gjDGVbLYfvcDi9+4wWiNCJNMtKkoMwz6rKizCvyIkfXdYRQCBSqgboG22nhB22k1JBag6Eb2LbFbLpAopOGKZ2uT7fr4/k2rZaHbenkaY7j2NRNxevfeZPHHr+IISsm4xMsR6e/vsYsnOMHNqfHUwzHZjGLmQxnaAg0Tcf1LVpdj1Y3YG2jw+HDfdqtDrbjkeYZNA0//zO/xDMffYxG1CxmC85O5qSpQug6juuSZhlHR0fvFlY2Ukh2d8+/27aU0O8OeOftN8mynNdevsl8FuH5HlEccef2XTa3N9nZ2WZ7+zztVg9N0ymKjLopmcxOGU9Oabc7GLqD1HXSPCEvEqJ4wsHhA27ffIcsjYCS4fAM27TZ2TlPr9ND12E2Tnj1pRs8/fTjfPS7PkRRFeRpQjgdU+UFTVOTZSm2bWOaJp7roWmCcLEgiRNsx8ayJIM1j6Bl4Xk6tq1h2ZJOx6auS4pcUdXS1aV1VdXl9ff1wK+sfMCsCoCVlZWV90AyH39mkaTbi6JBGQaN0KgbULVCGCbf/8N/mMUi4xtf/g6+51E3NY1qMC0Lz2/h+T6m1DClzugoYnK8YNDrsLnZpakKsiRFNeB6Nu2OT5blxHFIuJhRVRVJGlE3DVle8vDhEXFUcnYy5+RoQpbkxItsmca6WKAahWM5pEmGbuiouqLIU5qqIUtyJqMRSRwxm07I84S9B3sMJyOuXDtPNE+4feOU2SRnMorRDQ3XNTEMQdNUy8HXrkl3zcZ0dLyWx/b5XTZ3trn+zCUarSGcxGysr+N4Lr1Bn06vi2G5PPXhJ/nQx5/mW199Eaqc7qBFlkTomiRJpjz3yec4PTjh4Z27VE1CkeQki4wsSSiyjCTKqEuWbSa6gWoqmqpC1wRN3SxbYKoCz7NwXAvbMhEojo9P6HR6727xWe7c39wc0Oq08DyP8XjMuctbDI+GzCcj/uBnPwpVSbyYY9iSLMvw/A5CSOI4YX2wxnwaUaQwG4cs5u8OCvdd1tb6WIbGYjLm/NYFdOlQlDn3bu1zd+8eT37kKRZhwt7eAfsP9ohmCzRNZ3t7FxQMT0fkSU6WZSgU21s7VKWiKpdbMd+58SZSk8RJSLiYoxoIw4i9ew8YrA/wWy6B38Z1WvheB01otIM2URyR5ymtVh/f7tBp9wGNPM+oqwJFzf17d7h1402iaMzB4QMePtwjzhJM2yJNY6JZyJd//XdRdcVnPvNxBmtdpG7iOT6e46LqGl1K2u02pmXh2A6WaZOlOUIpOh2b9U2XVscgTyvKvMGyLAzDQjUSTWoIHTWaTN0oip/6whf+kv3+nvqVlQ8O/f3+ACsrKyv/eyQtIy1qLR8uYibTlKrW0A2DOM149LmrrG30+cm//0Vs0yPLI+q6wffa2JaDYUqgYTGPEEjKoubG2w9pVMXu7jZ6pXAdE+FIyjLHth0sy6bTbqOqmjTLkFIjTkI0O6CuauqqwjAcDvZPEYh3d7ELWi2P6XyKqes4tkOeFti+jet6pEnGbDalyNPlLTqCeLEATbJ76TKj0YyizGi1WiSJgyZaHB1H9PomQWCjGyaGWZOlijQqljfkuksclphOiyvXtnntO3cxbYtW4FPk1XKIWOh4gz7Pf9fTzKZTHtx8wPrGBroQ1EXOMtlA8LFPfYpvfO1F8jSmEQ15njIajQjDEIW2DIwSAtO2aJqKulakWYVuashcYBkGhi7x2z5Jvkxidl2L07NT/MBH6hpKaVRVBZoCXaEZGmdnJ3Q6Hp12wPH+GRce2WXn3AYHD4/oeRskYchg7UmkqTEfL9h+vEelHBaLBWmWEEUhAo3N3R6JKLh6/So33r5F23JZX9ukQSDQ+a1f+30+9/nvRchlQXY2irAMG8v1OT09ZXt3nXa7xd0794mjBM9z6Xa6+H5AlpV0u5vs7d/ihW99hScefxbDtKCo0KXB4cNDsjzh8SceRZfLLfpxnNBUDaDTa7uUVYEQIHVJWZf4Xot5XSPE8u6w2+0zX0xJ0hgaMA1rmSGRNJimTZVnqCrn2y+8yoUrl/nIJz7E6emUs8MxnVaLuqqYTMbUdY3jOEgpEUIiDQtp6EipgRJYhk5RQKMaiqJA1wVB4CBlSVm19aNDW0/iqDfaE48DL7+f535l5YNi9QZgZWVl5T3gWu1XPNcadX0PwzQRmiIKF9hdi498/Gn+xT/7eSbjMybjYxaLGVmeUxYNum6xttbFNHTqUmM+y5hMln+v6mXIVV4W9NdarG977Oz2aZqSs5Njjo+OMQ0bQzexTIfNjS0uXLjAs88+zYWLG7TbzrLXXZXkeYFh6BR5ieM41E1NELTxW208L8D3fQaDDrouKPJl2JjvOjRVQeB7VGlOFkZIoVGXiuFJzM13TkiTAssyME0TgaCuQDUalmXQ6Tq0Ojatrs3Tz50nClOqQrG5tYFtm+j6sp3FD1p87JOPErRNjveGxIuEditAVTVoUKuGnXMX2Vhb4/UXX6JpCqAhjkMW8xlZllAWGYv5sp1E1wFVU+Y5URhSlRVVVVMVJWmavzsroIFq0DUN2zQ5PjrEMQ3qskQ0kCU53U6Lqi7YXNtk//4hRV5x+52HBN02buBgWRZnxyNcx8bQFf1uB63ROD4ZMtjo0WgF89mYOAwp85rx2ZRwHiINm3MXLlJTc/HSRQKvhW2b3H37HnEYcu7KJmVVYpg2i3hOWWWUZckrL7/CO++8w/b2FoZpcHJ6xnA4RhMaUTynURWPXH0c227x2huvcDo8QUqJJiVN0zAeTnjxm99kc2eN8+d3sE0TN3CBirouAUUUzYmTBUWe0TQ17VYXISRCwGIxJfDauLaP63oUZUoUzlBKLW/qLRvXbdPrDAinEd/4vW/juw5PPnuBrEyYz+YEQQvHsUmTGNU0tHs+jm8ghKIoa9Kkoa4BGlzXIPAd6qqmrHLmi4g0qYSpW6Yu5Ulpmm+8n2d+ZeWDZPUGYGVlZeU9EBtlLRukp1tI3SCbLZCW4nN/8nv52u98k5MHR/h+gGkYOE4L3/dpasV8NuXO7YoL5y8hdIEQApQCBbo00ITJYpbQ6brolmR8EhPOY5IkoygKRpMhZVEidYkuTfI8YzyZ0O/1abUCpKFTljXRIsH1XKJFuAxnKioM38ZzbTSpMZ2MkbrG9u42um7SNA22K5GmjVLLzyRRNFnFfDHD3Q1QFXiuy+F+jGkk9Hom7baPtJe36EmTIqRifTsgaBvcvRXS6baoy5J5lFLXNYZps3Oxz87uOgcPhkSTkDROkRuwmE8xLIc6zviu7/40D27f5uHdO2g60NTkaYyhW2iiJs1i6ndXgVadgCzOsSyToiiJihgqRZKk5HWJlHK5MlQYhIsYXeocHR5wYWeXIivQDZO6atA0ied75GmO57mMRmPG0zlH+wdsXdrkwZ0TRF2zmIyBhjicUZU5cSxJ4pSNrTUmowlNXXN2csx58zyzSYzluvhBm8kkJM0yHnnsMnfu3IGp4ttff5VPf88n+dpXXkTTBY5nEi4mOLaHAN5++y2Oj465cuVRyrLidHjCdDZCN3XiWYxt23S6fWzbIVwsSJMM32vhBz6LxZxsVvPC117h8uVLdHt94iTG63tMJxOyd98klVWKlCZ1o0jTFMfxiOI5aRpTVQ2dTo+yTBBCvBv2laHrBlI3MSwT3/GosoIqz3jj5TfYvbTL409dJJxlHD0cUufgugGGadDUik7H4tz5Dkop4iTHsiW2LYnCDE2TgIZtG7QCl2SeiHan08nzrDOdTldpwCsr/55WBcDKysrKe6Go1nRTZ5GMSeMEVM2n/tCnOHiwz7e++nVUXS9DjczlQ3peLB/MGtWQpRlxErG+sY4QGlVZU2QlnudhWZK61onCDLfxyPMa3bDwWwG2Y1FWFUkcYVkG2zvbzKZzwjDDtkvmUUI4D6nr5dDrdDKhyHLqsqIqCkDhejZKKcLFcnWm1EuKuqCuakQl8fwOtVJIqZEmGUo1eIGP0EravR6HBzMWs4StLY+NjTUs2yTNEjRdYDkWlqVYX29zcjTHcW1qo2E6LlCAbljYvsmlRzZ447WHdAY+D+6d4Xnu8n21As9pY0ibj376Y/z0T/wUZVXgmBZ1tdzpLyTUeYXKE5RS6LpkdDqhKEvqSlEUBQgwpKSqKySSs9MRlmmia5IsLdANQZaW3Lr9ABDYjk3f7lIUFZZlU2Q5nU6HOIpQdcHL33yLD3/meaQtCZRDNJth2jqGIYmiKVkdIzRBp9NjMBgwm4xp+x6LWUia5oRpSqfdwXFcHh4+oLUW0O33UEXDG6/c4A989qM8/8nn+ObvfoMgWBaKSjXUTY3rOSzCGa+8+hKDwQDHNQkXc8qwwrIswiSkzHNarQ6maWMYkrxIsW0Px/GYTE8ZjyOGo0PW13do+QOiMMJxPIJ2mzCcE08SNC2jFfRx222SNGTQ3yQvcsJwznw+xNAtHMfH1B3qKiUJZximjem4VMpESA2UhhAahw/OGJ/O6PcDds/3ybOSNKmQusBxlpkRZV7it0ykrpHEKVJzUMB0EmGaEr/tYpgaDTmz6UxD8UzbMteBg/fv0K+sfHCsCoCVlZWV94CBQSWFNAwDoQTXn3+Mbifg5774b2gHAyq3xLZs8jxH0wSGZeH7AYN+H8936fZa1I1gPg2ZjKfUdU1XCuI4wTAleVKRRjOKslpuTkkiFosZpmHgBwFQkyYLgsCiURZCV9i6yXxaURQ1QghM06QuKhA1uuOQJjGWbWGYJk0Dhm5QFDlZkiKUQmmwCOe0O10MXcexLYKgg2ZIds6vMZlEZFlDf+DSXWthWh4np+Nl8BMamgC3ZYIQSB2Cls1svHygsz2bsqi5fG2TOMo4ORpy/sI6k7Mplm6RpQ3SNMmTkGvPPAEI3n7zLayWh6wVQtewHIcGRQPoAjShqMqC6WSC7TqEYYguDZAC09QRurbc/1+UZGlKXZUgxDK9VxqMhmdUTUVeZVyurqALnf5an7JqsE2BYVjoUudkf0oaZniWQ1bkSCmpVc7O+S2OHh5QFwVFmBAjieI54+mIoiq4du0J4jTh6OFDhmfHbG7u4jo+N9+8g99uEc7HqLrhK7/1At/16U9x5/UHLOZnIJatSq7jUjcVWFDVDcenJ5iWgZQSXTfIigJDN3E9n3k4pakbDGnS7a0t16yKhq3t80TRnNPhKcenx6RpgZQa+TxBlwZlnWEakkU0o6orLpy7jGV1GE2mGJaJZdokaUVeZJiGRd2UGLpGVTYIpWjKhjIrKfIMTVPoEmxb0lQFD+4dcnR4xtb2Ohuby6RkpSpc10QItfxe2AbzWUpZ1uiGQKBhOwZlUVPXDaZhMZ8tkrJJf9ew29P3+divrHxgrAqAlZWVlfeAoardMK18pMfF622uf/gRfu1nv4xWC5SoKcuUPCvwPA/TtNA1A4FAGjqtjk+3HzAZR5imQbvbJglThqMh/X6PTq9HVVWMx8v03tHwlMV8hNAUfitAzzRczyNJCtI0Y3tnCyV0NN1ke/ccZVaQ5jl5llM3zXLAV9MwpfbuGtGSusyp8pyGCsPUicIIwzSoqpyD/XsEQYfz567guCZlpWhqsdzfbwrabQvfNfn2iw8IAoOtbZ8iLwgCl36vR5LEaFJRNxWGpRNIQaME/W2DoGXx2ov32L2wydnZjLoCzTYoqxqhGeRVzCe++9O89vJr6LVA1x00S6AasGyfmgYhNCQaAkFRFqAEhmlQNw11XWNaNkIIdH35O9elTqUUaRGhacsB6ZbfYjIZEiURk+kUKXSqouRqcw2JzqIKUY1Cmjq29Dh7MGZ9s8ObD2+zeXmb2WRBUVfs7u5weHgETU0Wh8xnU+I4Zu/hHmVds7l1Add2mC+mPHhwB9t0ly1XVcPp6RFVWSBeEXz448+ztrWJ1DRmsxOmszGe28K1AsJ6hmlomJbFbDEjrwo03aDleGgI8qKk012nqSvmsynj8ZAojuitrVFUFb7fRilJWRTUdUpViWWh1EBdlFiOj+0EpOmCvf3btNtr0DTMpxNaQbAMeNMNtHd/55a93PWvSwPXcdGkxGm3ltuDGkW4mKNJg7Is0YRiOgpJwoLNnS5XH9tmsOaAaohmKVle0NSCLK1wpaTIKxzXROqComg4PZojlVYJTR7+9M/8TPx+n/uVlQ+K1RDwysrKyntACG2tVpqMiozHPnaFt16+SRoW+IFPUVRUpcI0DYqiYDo9YzY/Yb6YcnY2YjqJmI4T8nR5I20YkqDlE7RaVHXDeDynqqFpGspyuVMdAVlesphHxEnK4eExD/bvMVuEDIcLkrhgfDbi4cOHnJweE4UhhtTRpSQvCpRQy2087Ta1qomTGMPW8dsB61sbdPsDWu0+m5u77OxeoN3pE8cphpQIpTg+OKUqa9otGwn89m98h4N7p8hGZ3gSoRpJu+dSUzGbp8RJCRJs30QzJN0NmwtX+0zHEVUluHh1l8kkYW1tA9txqRUYhs3F69e4/vh1Xvz6S9hugN/q0uqu4QUdPL+FbXu4ToDQdMq6oSiLZSJwVVHXNQqFaeg0VYOuG7iuh23bGIaBZdnYlk1dgyYNDMPE910sy2S2WJAWOffv3yFNY07PTiiqDKkLVF2QhDmbF9dIiojZZEhdNuzd38d2PIKgS5ylJFlMkqcoISgbxctvvMKde7dxAx/btjB0narICOcTNKFz6fKjSNPgzs0b3Lv7gIvXz+P4AesbF7DsgCSLKOsYXTewTAsN2FzfoR10oKmIkog0z9A0wcHRIXWj8FotiqpgPp+wd/8O0FBVNXG0IE0jNKGT5ilhtkBaOp7XocxTUBWakGRpxmw6pFYFrmuQZjGO4+B5LUzLxXZ9dNum3etj2BZlVVJXFdEipqoUnW4Hy7YoqwzbttBNE00Kumsdyrph7+4x80mEY0vWttoMNtps7gZ4LQshludgsUhJkwLVNMRxwtl4OBGm9IVYjQCsrPz7WhUAKysrK++BpqmkY+vOUx+5wsGdQ9761g2gIcsydCkxTZ2qzmmaCsOwaLUGWJaz7O2ua+IoJYpSonCZjmrZNlIKPN9Z7pePUkzTxLYtLNvCcR1sxyavCrI8o93psrW5Q6/XRQhIk5RwEdJUNaZp4boepmmg6ZKqqRmNTjg4uMvR4T3icAqiIQ5DTk9OEcDm5gZROGM6GaPrJrbtYVoWVV3juMsVoXVR0RQVr710j8W0ZGNjnTjOME0d2zWQ0uT0aMHh/pQkrDBMA91scFsG5y4N0NCIo5zNcz0836HMwXJdlNDQNBNh2Hzqs5/h9OiM+SSmt75Jq9sDoSN0E2mY6IZJ2SgQ2rKdh+W6U6UaDGP58zZCkFclQkqkaWBYFpblYNkujusjNIkCXNenKko83wFVg6gYTc84GR0TJRGnw1OmszFRHHF6dIKmSy49fo6zyZgwXjCfz7h95xaaBMMylw/jQoASrA02QMH9e7eZjs+o8gJV1wgpsGydJFowPDvl/LlLdNsdXn7xZc5d2mQ4PML1XLa2dmi3B2RpjqEvB7uF0AgXEwLHY727AUpRFDlxEqFLGA1PmEzGaLqGbhlIqbG3d4/RdER3sIZhW4wmZzR1SZKl7B/tsUjnKKFQVY0UGo7rUjc1aRohlY5tupR5iS4ElmmgCQ1LtymLisBr0W63qOuCuqnI85zRaIpA4toBhmHR6XRY2xggDYlpOaAMzo5jHj6IeOfNQ85O5lRVTa/vg4RG1LQ6LrohKPMS07aRuunXVeX/3b/7F1c5ACsr/55WLUArKysr74EyywYbW51eaHg8/MotLp47z/HwlDiNmUcjDGmiCZ1ut4dlG5RFhSYFuqGRpSlFVqJJyfb2AMfRSLMGqTtoEppaoWka8/mcKI7J0oQsz/7d/v+6yjk9PqTdbqOamp2dNoZhYZkm88WcplkOxyIbpC6xbIuikETRnDRN0JD4gU/TKNI8ZT4fc/HiVVrtDmmS4Tge7XYLP3DJ8gKFhu861HXDvdsnCCEZbK1T6QrDMymqEsfVieOMG2+dkoQlG1vLB3whIeh4SENneDSjrhXb51pMp3NQDZqUSMNAlRlW2+G5j3yIX/7ZX8SxHRqlKMsChIZuLnMWkjRdrqnUNKBESh2lFFIaqAayLMM0bcqqwjUc6gY03cDS9He30FTYdoamaUjbxtAtTNNCI6KoclqtgCyLqOqGOIkpq4pOq8NoOmLr8i6djU3SWnL48IjR2ZAiTwmTkMHaGkopqrJCCg2p6Qy6A6JozvD0ENfxUQj8VoeqrvE9l9PjPXRN0Wn3GB6dYLkm7W7Ards3uHTxEt3OAF2zSLKIwaDPfD5G1RWz6RjXa+P7LfI4ARqqusI2lz9PmqXopoHUNAxD5/TsmPliTrfbodvtUmYF7XaPRTgnzRJM3cKQBo0q/t18QVPVmJaL53jEcUSeZ5iWTVPXWIaFahRVWWLbFnVdYVkmdV1RFhmoZXGlGwaGoeP6Np2eQ1M1NHWDEIrpNEShGJ0mxPMSx4/Y2GmjmxqaajBMA9uBpq5xHEsXmigmk5Z6v8/9ysoHxaoAWFlZWXkPeC3Dbm207F/9+ZdIkhqhF2R5iqDCsT1Qy4RaTYM8KzBNk6LIqeuKpm6Qmon97n7+drtFUSwosoqirCjLAsM00DSNpm7QNA3HcWm1uwwGPeqqZD4LKcqSyXRKVTX4fkBdQ5pnWIYBKIKWD0pQZDm+GwACz29R1zVNXVFVOZ7v43kBeV7heD5e0MexTFpdm04/YDaNScKCMivIi5KyqvACG9c3MKRBlmTsnutjuyZvvXXKIirp93ySuGIezrl4uYcQGtNxRJbkWJZFb9Dj/p2HmKZGUSikoWF5Fh/9gx9jNplw9+aD5Z561dDUClBoms7yT8viqK4qpDShzhGapKpqUALP8SiynKKqcByXum6wTIOyqjBNm6Ys6XQ6FEVGXdesrW9S5QWWYRNlEYauk8QhRZHSNLAIQxrVIDXJG6/e4MpTz9Lf3OXseEw4X6BEjTQsjo+O6PZ6CCkpsoy6yQiCFkI1FEVOURXouiSJIjTDwbJcNrZ2CGcTKmqKpmQ0GfL4h58jjV7h4OEBrVaA6wU0qiZJIh577Elu373NYjElDKeYtoPve2RFQVXl5HmGRNIKfOZRRNUo+r0+vttiNh+RLGb4bhfbNkiTmMANcGyPNA1JsxShCbIso99fx3cDiqKgrEta7TaabqIbBpomqFQNmkZV5MRxhfbuvxOaoMwzmqbCcSyktCjLkiRMCHwL37cwDI2irNANHcNQWIZOVTbkac3wNKLVtRGqwXUkRZFi2hIhlKFpxnpd1waQv68Hf2XlA2JVAKysrKz8R/aFL3zBXdvQd996fV8/PZmRN4qiKjAMjTDMKYplqFJVF0RRRLe7BqWirita7Q6eF9BuBezsrqNLQRLl+N6y3SZNSwQOYRRRFjmqqaibkurdwKrFbI5umpiWhaZJ2mttNGlgWgaablBPljmzWZISLcJlp4wGCA3bdEjSBENaNJokL3OkNAjDCKUagpbHI9e2mM8WgEDXodW2SKIUoSmapsbzlv30qhEkYULvQgtd19nfH5ElBefOdZicLDjYn3Dh0Q1OzzLMeYYUDbohcTo20oQ8LbAsC92scdBppM2HP/kcv/KlX4VG4AcBZZ5TVtVy139T06hlMYRuYFo2WZpSJQ0oAIESUFQlRZETtNoUZYkpBEJoyzWghkRJiUAgBGgoCtMgEjGOptFqt5hNZ7iOjyYlRbEcpk7iBMs0uXf7Hp3NCzz5sUe4/Z3hclONXqGiCMd2uHP/3rJXXylAkMQxne6A6WSI1CS6bqGURlmmxIs5Quj0eutMZ2c0WcPDmwc8+eHneeObtzENg7PTh3h+SqfdJ4oiTk5OuX79WY6Ojzg6uENVFlRVhaHr6FJDQ6NRDVVZ0fEDkjghTRNM02Ktt05ZlqimIs1zLMcmyzPyIsd3fFJRIESNY1tURYHTd+j3B0wmY4qyou0GFEWG0mCepsuBdqmhGoVtO+iGie8HROGULCtwfR/L8WgaRdU0xFGO5cDadg/DNCmKirqsUE1FK3BI05yyrkmTDNuyiJOcJFHLAjSPTwxPfHttbS17Xw/+ysoHyGoGYGVlZeU/sqtXe/rwYFY/fOewcgMH25SgarIspagK8jL/d7fVjuNQlSWtoMX62ua7QUdQlg1ZkpNnKSdHY44OpxR5hQCKssQwDNbX1ml3eui6TZyETGZnCKDT6tHt9vACB8sxqOqck9MzsqJgbWOD3sYa0jSX23I0fXkzW1fESYxSFWkaUpU5qhG4ns+FixdwvRatoItpCPrdFhLB0f6IOCwxDRMpa8o8YjqZMZ+F5GlOu2NhGIIozMljhWtY3Hv7gAe3jwl8l9FZxnSaQSOoUo29+zM0aRBFGULouL6BaUkaGq4+8QjhLGbv7kNMx1iGkUmJ5/ssc8mWPf7tTodur4dlWTRKYLkOluMiDROERlGW79781+RFSVFU5EW5bCOSEqkLpBTYto357mpWy7ZodzsEfgvdWK6+bHkdXNvDdz00oFE1ZV6wf+8eQdsjTTLqRtE0UNU1YRIhEJyMzpjFCSCIk5g0L1hf3wElQRi02j00AaiCokipUVi2gy7g7ZffAFXSqJSySNk9d56yrlmEIaZlEscx4/GY8xeucOWRp+n11hFooBS26WJbHp7rU+YFRZ7hOhaOZSGUoiwrhNBQKLrd/nJI3TAwdI00SzGkjuf4dFt9XNtjMh6jSY3rj1+nO2hTVSVZlhIuZqAqTFNSVSVpmpKlGVVZsJhPcRwPw7TRpYPnBjieg6Eb6LpECJOz05jT4wlVmWNZOk0tWMxypCZpBQ6ea+E4BklUEsclKPADOzMsa+/HfuzHqvfrzK+sfNCs3gCsrKys/Ef0pS99Sb71wgv6gCxaW2uXudEYYz0jL0uKMkfTJLbt0PJbCDTKssJ2bCbTCZom6Pb72LaF67gkSYVlC6oGiipHr81lkFOWI3WdLC+xLJt2p4NSFYv5hOl0Qlk2OJ5DlqfLXvpGw3YcVFkTh+EyNEs15FmBbVvYlosuJbBMetVpqKsax/FQjWBrexvHsQjDjOHZnCxZBnfVFUzHI5QGjqnhei6zeY5pSlotF9PRMGxQQjEdl5wdTYjCFNP2WSQ17Z5Dv+uRRiW333qIMCRPuw4HD8douo6tK4QuqTXJcx95mt/+1a9gSI1CVJRJCZqgKEuyLMO2baSUgKAochSCTreLEII8L6mrAqFJLLEMOovjBNOyKUVNYwuyosSydKSuo5sNQkCepbiuQ14W+L5PnqZ0Om2SJAHVUKsGaZiYhk1WpJimRhxP0FHUStEotWzvatmopkYpheu6TMKQpm5wHYu9/Qdsb53HcwOyIiNO57ieR101NE1D09RYdsDGpsciiZhNI9a3utx6/W2KMmNzc5dwPuPs7AhN08irnI3tDbygTZmtEwQBo/ExWboM//L9Foau0zQVTaNoajBti6aukdKgaZZviLqdNsPhKUHQwrBNkiRCKIGuLwtH0zSIwmXv/7nzF3FMh/v37nJ2dkwchzRNvRwWdyzSJCZJI4KgDUh63T67F9bQdMF8pui0PGxXkiYFlmug0FhEJUVeIxQ0SrBYZOixpNU2cH0HIQWua+B5Nod7RU8J/Pf35K+sfLCsCoCVlZWV/4gevvCCGYfzHyzK6BHf9kVezinLGqUElungOiWT6Zj5fI5ju5imBSy3qnieTxpnxGaMgHc3qJhIXdIUCXleowmb/qCDEoI8KzgbzkiSDNdrAxq2peN6HkIz8IM2hm4wHg1J04TppAB0LNPCNA1cz6OpaxaLkKpMKfKEMl8OEntBF8t26fUGuI5Dp2ejS0Gr45HEKWWhSNOKokjICwXGclWnGzi0uy08V8d1TOKoYTYOOT1c0FQNUZxQxzFrGxskacL+g5holiCwaPVMxqMF9+6csb3VodN1yacJTz73NEUYMTw8xHYsZCHJTNCkRrQIkdLAMm2EplPVFZqu41kOTV3TNA1S18lzQV03qEZRFiVe0EbK5YOsoqGqlm9dpK7RoCFUg9A0DNNc5hsYxrINqt2iaRoMXS5nMFRDkRcYpYHUdBzLokxzdM3AsW0oK+qiWLatpCmB55PnFXGRAjWNqHh4vMfuxi6mpRPFIVIY9HprSE0nikJc16PbGdDqbVBVgrWtDns3TYSqmQyP8NwW7VaH47N9XOVy8+3X+cgnPkU4PWGxCOm0u8yUoGkgikIcx8E0PcJFiKIhTVKUarAshalbNHWJabpsrG8Txws0IfC9FtAgpcQ0baqmwjEMqlJx7/YDLlzc5pnnH+PuHZfDg0PyNEN6BgqB1E0c18K2HVzPZef8Gheu9BA6nBwuKJKCNAVdM4hnKZ2+iy4MLNNAGg2WZVFVNRqKbtejUg2WYXP33l1uvHmrFAZvu657+n6e+5WVD5pVAbCysrLyH9GP/v2/n37hb/9IlCXyyv5o6qQlWK4Fi4a6qlAoDEOjrivyIqVRNXFSY9kOQdCl3x3gtzzKsmA2m+G6LlGUMJ/OaJSgrAu6/R5Bq4Vp2DiuR1VWCA1a7RaqhjyrQBRoAnzXpdtr42Q2SgFINCGpqhxdl+i2hW7qhLMS1SgMQ6dB4AUB29tbOI6FUiWnJynRImM8GRNHKUXRUFWCOF4wHI3wPB+v1WawPkDXDU6Oxzy4m7K1s0Ucl1R5wmw8Is0z1na2iZMYy3bJswrftrm/d8TGlauMRgl1JbFcE8PWafc6PPXs43z1t7+KLgSNIdDQsJ2AJFne0EspqcqaIs3QpFi2zEhJXdfoUhKGIZblUFc1RVHieiaWZaHUMhdgPp0hNIEuJUITCBSGBF03QAh0Q0eI/z97f/KrW5bm52HP6na/v/Z0t40+IjMyszoWS7RlmjYFS4AHhgfmfyAY8EADcyJ4YBRzrIltwQ0naiDJgFiAObBlyCYlShQlURZZRWZlRlZ2EXHb05+v2/3aay0P9lVpSgIBBAL4nvHFveec7yzc913rfZ+fQApNOZtP2kslQQAIKg4kWUISp8SzOftNg1YJp2dnNK2k7xwISZ5l9H1HmcTsW0ecZLjO0w4Db2/esJytyJKMqj6QlzOcHVFSsNvcYkxEHGXUh5rHT5+Spj9naA9EUULd7JiVCx6fv0dV7dje3/Lzn/6E73/6ff7kTyo2m3v6vkUpSJKS7XbDarFmNptRVXviJMXaATeO6GRqQrq+Iy9K8rxAK421Iz44un7Sz8ZRzP39Lc4NhCCo6h1vL684OV3z7Okzbm9vGW2gyGeTcSnPWaxmLFdzkizl9nbPk+enfPL986kx3Fl2mwOHbcf1qz1RJDFJhEkkq/VICKAjhbVT1ldbD0SRoWvakM3NZXF+/tW3eOyPHPnOcWwAjhw5cuQbZr1Iry3hvrMyCOfEaC0COc2h2xo3erSOkVK+8/6PzMsljx89RklIYkOSJGwfNtzdPhDHCVGS0A89Mkju7u7I8pLeD9R1TQie5nCg7SuKbEZZzpEawLPb7ojTmL4fscM4zbfHCUpIgh+x1iGFpCgXpEmGtT1N3wMCpZmSfgdLXfXYsUdHCVlWkGaSq6tbnPeTzUhpzs/PMUZw+eYaN3oeXSxYLzP2D2/ZPmwYnSeKDPd3D2TzOW13S7Pbsb29Z34y5+LpKT/54y8pi5zFMsH5wGc/+gF1XXF7+5Y4M0incJHHe4isQQpF3/f0Q4dAYUxEW9fT168km6bB++nmf78/sFiusHbA2h4p4fLtK5q6JstK7DASpylxFKGyiCAlQgmixDAMPV3bk2U5aT4nBEuZxIx9D3iSOEUqw/rRIw6bA7HRzGYL8C2LMuP2/pYsS/He0VtLGkUsFyeYQwRiS9f3BALOO6Io+vPPqmtbpDBstw/MMsfm6o5nzz7FRBF2kCiTkEqDsxYBzGZzdrstd9dveVvM+eCTT7l6+4b99o7rm1dTbkNSorUmS0uSJGe33zGfrdBKYe3A2ekFdV0R3EhvB0ScURQFVVMRxzFVfWBWLMmznHGM0DpCKslhu2H7cE9kIkxkyIuCJE1ZFzlJlpKkmsU6Y77MqKqWl1/dEOeak5MFjpHlecnp4yXVrqHe9TRVT9+CEpLFKqGuO1ohwEvqw8DPv3hJcDipdPQtHvcjR76THBuAI0eOHPmGCdI5a2tvlEBLhQ2Ox4+fcn13xaEKWDeQ5QXBQ1XvWC3PiKOUqqp4/OgMpTS7fUUUa6KopK4brLUIIUnihNC22K6bXPh+nMZQbMtud8tuc8/Z2eMpCXfoESrgXSCKUozSdI3Fdj1pPHnXpdFE0eRq11GEiWKQDQjB7e0dQnhs79DacH5xzu3NHmstbWsJITAMlqIoKecLxtFzd7shy1Pe++ic1TrjfrOlrlucG6jqAwHIi4Lr119x+fZroijik4++zw//4ue0XYuShnIW07UDi9WaJ8/f5x//V/8VRZ7QyRFfdYQRBIIkiXl42DP0Dm1SEIKm6wmjn+b8qz3W9nRdx+GwY7Ve8fb1V9hhQEioqh1Ns0crjceTFTlqnCxAkdEoqWjbflq8Hgacd3ghUFFE8BAnMZ2SSK3QUqGjhPXZkpu7DZGKefb8Gb/pW5arFaOfloRnRcm+rpDOkcYpkUkxUUzT7pHCk2YJm812+jxUjJAGJdW0ZGwHqu2BNE+Ii4KH27ekaUZezHi4v6MoFjTNAa0lRivuH64QkWaxWvP06XP6P+5p6gdG29APMUJAOZuzXq6pq4okLyZhEpInT97jcNhjbUfXdYTgyZLinTqkpap3f65Rdb6nyAtOTk65u7sljbPJQiU0WZGSzHI+/OyM2SzGaEHbdbz38QllkbK5a/mzn77h6bMF+01NU41oFaZl9lWC95KmHYhqiQ8BaSTVfuT6zZ6rt29CnPAzE83+46urq/rbO/FHjnz3ODYAR44cOfINEkIQ/6f/3f/mo8RERopBOD/gcNT7A7e3l9NMtRR0XTMFVgmmfAARWC5nZEXGw/2Woe8xRuH9pIwMLuCBMs8w2lAfKh7u7hjdiNYarQ1ZVuJGT11XCAHOTarRR4+eE0UxfdezWC6QUqFQpGkKStJ1HUPf45wjTVKev/eEJDNERqK15PZmz35XMzpHXe2omg47gJSSp0+fcn11zW53YBhGTk4XRFHMOFqECCgVMVpH0+wYB4cPgTe7L9nXO/J8xiff/xFPP7jg2dMVTevIUs1imRGC4cnTD9ju7un6HXmeEPw01jTYka4ZqQ7Ta4pSkig2CCHQSuKtY7d9oO9qDocDdX0gzzOqw479fkcIDikFwzAFWyVJQZlP+xJuHFBSMI6K1mvsKFFSYEcJ0hB8wLsRrQVZFjOOA94JIBBnCciRoWnICsOzDx6z2T4wn80Z+p76cMCOA3GcUjU1hPFdmJciTwsQgcF2zGZzlFJ0bYNQCiEESih0pGmrhgCcPT7n7Ze/5OHhnrNHOUIExtETxwldv0dJzWG749mzpzR9i7WKTz78nK+//iVJoghOYMeBw35HkmTEaYQPARMleDey2+2Ik4i+b2jaPc4PZOmcJEmZz+b0vUVrgzaGqq7Z7vYU5YKnzz5g87AlyWasTlbEaczqvGC2iHj2/hoRJFobqkPL/tCyrw5ESvOrn17yB3/5I3a7luvXFaP1VLseHUE5jxlHz9A5tk3P7e2Odl8T6yikmfjp7//gB/+vf/3f+Dfct3vyjxz5bnFsAI4cOXLkG+Rv/I2/IZYgoyjq4ggvpZUBuL27pmsrILyz//ScnjxhVi7R2vD4yWMePT3BGMPmASQSNzgGaxFKURQZ4t3SaVmWNE0HeGzdMVqQMuLJkw/o2pa6qrG2QypIo+nPKhNhtMb2A0mWE0UxPni8dfhxqp2KPENHhv3+gBApQwdtZ6mqPU3dMtic4D1v31wSmZgiz2kaQZxE1F3DydljEIHdZscHi6fEcczOHRhGSwga61viJCLyCR+eX/Dx9z5jsV5z/mwBMrC93/L8vTMi45Em4vn7z/jiZ/8tWRYxiIAdBAGFHT0AWZ4hpZmc/VJgB89h3zD2A1JptJnyEJRSBAJd12CMATRSKoxJSdOUJJ5SafuhJ00zEAKpJxuNtZ6gBQFJ27YkSUYIvEsaBu88sTYEGTBpzGAdSgnavidf5jx97xmHhwNZltH3A857tFLEUcZgB4yeGrHIGBbrFS9efkUcJRgT0etpt2Eq0BOkVERJRlNZZvMUYyKEhO3DHUYp+m5HnGTk2YK2bUjTguvLWz77/Pv85le/IYlTFoslbVeRZBlJkrLdbdnt7lms1qRpTte1hCCQUrDZ3mN0RJZmdF2LTwaGIXCopgajbVuWyyXPnj3j9vaefnCsz845OT/Be0FelESR5HQ9o28HmtqyWmUoafjo4zPquuFrrthevWa7afn7f+dn/Oj33idJNPu+AwFZFtMcAnkxjaI9PNR89ZuXvHn5S0bfudMnJ6t//Ouff++v/bW/9sd/9Ed/dGwCjhz5Z+TYABw5cuTIN8iPf/xj/3/+w7/+KzfWGztYH3ovvRspijlpEnOoduwP0yuAVIpx9CSJIS9S+mFks6mw1oEE7wJ5kSGlpGoqxnHEec/eDoAEIaZF1uAYR8d20+O9o24O9ENDbBLKcoGJYuzgKN4FMnnvGUdLXmYIoajrir4fiOMI7Yd340aeNIkQwjNf5dNY0qYBIfnoo8/Y7/YEH3AuoIzhBx99zv3dlru7PU+fXRCCY3tfc3+3JQjJcrVEHBy3D9eMFtbqjHEcaOuGy1cdjx6dMj8pSFKPEoof/YXf5VBvcUNLFGlsPyLlVOj74FBa4/uGrFBEJqJtBtrGkqQGkUSMg0NJRRwnjONIVe+RShPCtOgs392sJ0mCQEEA9W7ZN4kTIpPi/IhUgmGwdH1PZCIQim4YsQ6QHc7B6EaSLKGcp1gbIEj2u4rFyYyiLLm/2TKfr6iqFmNigg8MduBkNqfr7WQGGjvmixnPeR87eGbzBXW1Y/uwpSiXxGlMXpY4EdBSU5YFaTaj7Q/ERjFajzGaopjxsLlFK0VZLugGy9Xbez54/yO+/PI3QKA57JECZvMlSZLhx5ZXr76ckqTXFxRJMRmWqgMA89kpdrimOhxI0oQin9G2HVJCddhTljmffvoh292AiTWr0wVFESMlHLY9d7db5usZD3cHghup9g7n3vD4yZKzs5JIPyF4x0/+0Sv+9E9e8+jJinIWMzpL0wx4B/vdiPMK5zSIiM5Zmn4fqjf9j2Sa/qvvffDB3wT++Fs8+keOfKc4NgBHjhw58g3yN//m/9rYr4cfVIfuUd12Ko4NHYHFfMV+t6Pv7qYbZKFQUuH8VLw3dY+UmuAhigxaaaI4ZrSWtq3JkoRyXmJH/+6Wv6Fte4bBQgiT8nIYcc4jBSRRglKGutqyXp8SJxld2zGLE2azGcYYmrZmt9tMgU1dRdsdWC5PyPMZtg/8+pdf0NmKNM1J4wVpmoCA+/srhn5EioiA5uLJOa9evGV3v+f9j5+S5hFV15GLmCzLOewqNpsHHu7viaOE1XwFMqI9BPCWT7/3jLJMaNoeoxVJNufx03P+9E/+G7RU+NEhARMZum5Kth26ATdCmmriWDPawGwGSmdT0WgDaWao9oZDdaAsZxCm1F/xLotBaYVWmqaqCQQQAiFhvphz2NckaQReTgpKpRFCsdvtsXbEOYsdPVpr+m5ExiCFIkkkQcT0w4GhdyRFhFTTq8VqtZ4+LwT7ww5lInIzLR37NiBRPHr8hNGPeK9YrOZYO7JYzdBRQT6LUbEmjI4nTx/z5PlHDF3D3c0VJ4+WbDYbimKGVILLN6/QRnE6X9APPYMdWa/O2e/uWCwX7PY70qxmPp+zfbimKEoO+w37/Z6PP/qMIpmxXp/w5u0LQgicPrrgxde/QUrJ2flTnr+34PWb1+AFXTtyODQ8e/4IpzTFMuXR0xnzMqXvBva7nofbmqapGO1AWZS8+vKemzc74kgy9J5HT1cYbXj54oGb25qz05IkTmibBoIABG/f3LLZ7Hl4uKFqa1Ri9sv18kWUJK+MNTff8tE/cuQ7xTEJ+MiRI0e+IUJA7H7F79dV9S9orR7N56UYbE9dNUip6PqeJMmYzeZEUUzT1CRxTBRFUwHvPCIINg9b7u7uqKo9Vb1n9I7BOi4vb9hsHuj6bhoNCpJZOSNOUuaLNfPFCVKpdyMcGqk0Smn6tqWpa5wPdF3P4XDg7u6Wru2oq5pxdJRlSV6UKKUYbM3u8EBR5KyX56xXZ6xPV7R9y939FXW1pywLothQzOY83O1o2obT8zXVfsvubkukIpSRtG2NtSNDPxKZmO3Dhuur14x2YLd74OJR/s5/36GkZr8f+e3f/z2u37xm6Bo622HHEaUVRutpNrzq8AR0JEjTiKH3SOVJ0ikobX2SMl/F6FgTpRGL5YL1+oyiyJBSEccRs3nOajXHGInSgmG0jONIbGIO+3rSfirN6DxKT7P/1lr6bsCOFg+0XY8PgsGOCKk5VBYTa5SSmLhgGD06FuRlRtt2nJ6fkuYZUkmyvEAnKWkxI4jJGHSoDgz9yGI158l7S8pVzvMPP0RHMYt1RlrEnD+aI5Vgdb4gneV8/qMfcPH0Gc5Jnj57HyElFxdPOXv0hKZpePzolCfPntD0PXVT4wVYF5BKUVVblJScXzyjb3viyKBF4ObyNePQcXp+xnvvfYwdHXle8vnnP8Ij2O92ZHnKb/3eb5PP15w9eYaJC3o3cnI+YzZLyLKY00enLM9OePz8lB/+7nMePzth6CS7XcNHn12w29XTK5J1/PxPp4yH1emMLE9pG8vmoSFKFXFqyPIIpeHNmxfcbd4w+IZddVggVfXee+/9P/+Dv/0fvP62z/+RI98lji8AR44cOfIN8Tf+xh+qXN7+cOjq533Tp73TIY4jERnH4XBAKUmaZWy3d9ONcxDcP9wyn48IGaibBv8uAVYKgR0cAcFgO4J3VFWFVJI8LxhHx+im239rLUVe0g0D6/UpAijKEik1fT+ACwQCkYkxJmIYLM4HmmaPUkwBWRjKMse5kaIoydICN3qcdxij2e637xaXA2lSsNsdmC/naAPBGc7WJdvdw3RDfLKgbXps8KxPC968fMXV9Qu64cBiseZ73/shbT8glWS/b0EpYq057Cp+9Pt/gSiKeHnzFilAKI1EEpwniBEkZEXG6Cx5HtNWPXYYMZGm7TqWq5zqMC3yFuU0597VHW0zNU2eQDkrmc0Ktpstfd/TdhVCmHday5G26zg5PQEp8AHatkVJiR176mqPD4EoilFa03YtAY/3AesD/eCIs5hx01HVHeVpSj4vubl+oO4GVBShA0hjWJ6cMPQjbpxeFAZr8d6z3zU8evaE0TmE0OjakBSSKErouoH5sqRYxshYcr/d86Pf+yG//rOvKIoMO4zUVcvFxXP2+3vevH3L5z/6Ef1gGYcBuklB61yFHRr2hy1FseD07GJa1JYWN1pevPyK75czzs4eoVTE/f0tTx494bNPf8Rms+H6+oHns4w/+B/9kPv7PUVZEoJAK0gzRRRN+QvrkxVvX19T79tp+b3vaR467OD5/IdPefvqlounC7pu4IufvmJ1MuPxkwX9u+C6fJbQDwO7XcdyvWC+mPGwfY3SCjmGoKTqlFL9t332jxz5rnFsAI4cOXLkG+LHP/7x+H/43//1L0fTVFkhm/3NLjStEKOfrDNCgh89WTYjjmOk1Bhj8A4OhxpQFFlOIOC9QxlBnheU8/N3qbrNdPvt4e72AR88VXVgHEc221suLp5ih4GHhzv6fuSd05GsyCdNpTZYa3FuJIRJlSmEpixT8jwlTTM2uz193/+5s/7+5paq3dM2FbPZkrKY0Q3dtATrBYdtTZ5n3N7dUJQzkjhhs93w3senvP/pBT/5R7+maSuev/eMR48vWC5O2e0q6mYgKROefXJO1wz84mdv+MFvf8gHHzznl1/8hGFocUBm3r2OANLAcjmFhw1WUx8mN39RZvTdQFGmNHVPXQ1kWQzBYQeH8yNZntAPOaXWpGnMZrNjt9ljtEHrBBMZotiweTiglMIk079rh4EQAkjoupbRucnBby12HEEIIq3RxmCtp7eO3o7TfkPj6VuBjiLSLKXrLHGSYIIgEEiSGEQgz0r2uwNV1ZFlGfk8Y7dt+N4PHtE2b0mLBd5ZZouI1y82XON5/tk5n/3gfb764pK6a/jgsycoFYFz/Nmf/gYVGc7OLxi6kTevr7i4OOXX2w1SKvJiTp7lk9rUgRCgdYwxGVE05Zs1bcOLr77kd37v97l4ekFaFNxe33GyXvPRp5+y2VXc3zdcPDnhD/4H36OqGrwP027Lu3wLicRZz3w+56tfXSKDIjaG9ZOCh/ua2nQ8+eCUtul59N6a5jCyua0oy5j5KqWpRrwTlEXK/VXD7fWW/WGDcwO4kUipLsuSK+/97bd36o8c+W5ybACOHDly5BtksINIU/PWDeoTpRPR24ZAmFJ3jcZ7jUAw9ANxIrAD9MN06661om4OeBeIk4T1rKBtO37+s5cYo2nbqRiNoxgTxSRpipCKrm3p+4br61uSOCLLcrquYxxHvA/kZcZivUCrmP1uB94z2gGlI4QQCDUVfLe3V2iTcFe3775mGIae4B0mMtR1TVUdEIopXCsELs4fcTjsWS6XOAd11VAuIj789DFf/uoN2/uOslxQZBn4mJ/+5FfMZzMW8wWzs5Jf//IVMijee/+Mf+Ff/ItsN3e0TcXoLLPFDCUEh7YiMgpjDCGeFo/b1tL3PcvVHMdIJDXBCaqDRRmwo8V2U/Lv6fmMatcSmQhpNMM4cnd/Cy4wm5XY/fQ93t1eE0Lg/OwxdrDYYWAcB7IsmTIVpKKYLRAh0A8dxsQkUU5epnhgHB0hCOqqQxlFQE67ElIwX8/Z3u7/PFPAGIM2ksPDAaMNcZ6iTU3X9kSpQY+w3becP17wcNtyfV9zelpwel5wd1/hBs96XRB9/xGHuic2mt2h5YP3z+nagdvbHdokJLniUFVsNjs++vR9vvrykgD0fUWaFQQk2sREsaPra4xOWK9O8cFyefWW+4d7fvh73yfNc8r5DE+gKAsW53OCF3Sdx4WRs0clxkTc322ZzTKUlNRVRZzEnJ6dcXp2x1e/fENRpNzf7zm/WHN7vWWzaXn+4RngQQXSOOXq9QGp5KQh7SyLVcFqWbC5qVBSMfQdkhDyIrvP0/T+d37nd5p/79/7977dg3/kyHeM4w7AkSNHjnyDyDi81Gn6K+fFfrB+ss3ANHYzuimUy0QoJRmGHjsOzOcznLPc3l6z2dxjxwHnHA/3O5pqCvyKTMpyuaYsSnRkGN2IGx2RNkSxRmuFHTo223sOVU1AUJQlJ6dnSGE47Btub2+4v7/h9u6SwfY0TUVVVygpOD1bcXJyxqzM0QrcOAVfVdWBru+ITEScxMznC2b5HO8DIQwcqh2zckFdVXhvcb7j/OyEl1/d0fcO70eKvEDpmOvbK56+d8bqtMRozfWrPcJLHj0958kHz4gSzS9+/jPqpmG1WqGVZH+oEFIglAIhCUz5Bj44illKnCmyPCYr0mksKFPIIBl7h/ee84sZSaJAQFFmxHH8biwK5vMFTTcQEFSHA3VdsVwuphvwpsPakSzPMEYz9BYTJeR5zjD0xHGCiRJkZAhSYf1IkkR0jaOqOgICbRTOjhgjyGcZzo/0XcdgB/q+Z7ADs9ls0oPaESlgd9ixr2q0inj51Q19Y4kjSX1ouHr7QJHHZJmm2jaEAG0zsFxmuGEkjSNubne8/8mK1ckcL0DHmuXJknZwtEPg/NE5WmuSOEMIQZoWlOWcWblivXpMUc4YvWB1+ojf+Qu/Tzs4hIbT8xnP3jvn/NGa5WnOxdOSj79/ipSOEGA2LyjLjCfPHtO0HUJ4lqsZh0NFXR343ucfEILksG+JjeHm6gGjDd4G/tv/8ucoEXj6/poxeOI4ZnvXTjpW6WiaATc60khT5jNO1+fkcUKRxYcsSfq3b98ea5kjR/45Ob4AHDly5Mg3yRi31rbxvmqS7aEVo1OM4zgtlQqNlA5lDDqE6UY7wNBbpITlYkGeF9OYjnc0TY1zjqY+YEzMarUiKzKauqXpapzzGB3RDx1CwGw+AwJCSEBitEHJSW3pxpGubYiMwvbQHmrSrKTrK9q2AjdnGHruN3fstluk0tPtrh/J0hwhDMYIQvCYKOP99z4lzQ0Xj065vnxAKfPn4zi31zseRYr9viEvMoIfcd7x4cdP6LoRpKJvHUkKZ2cz6nrHs2d/kX/4D/4R49Dx2fce0/UtQz8QvCcvS0IIBOexUpCkBoSg7yxaT3P6rnNkWcLQWnwYiRKNVAITR7R1y2yest91+N4y9B2n5+fTz973aBOj7cj5+YI0zdhXFVJPszBpnnN7c/Mui6FkGBoGO1AuFkgTI9XUlAig6wZ2+w4hpnErCHRdy3y5oGksQUqEVswXS+ww0A+WKI7pDnuUzJDS40eLG3r2dw3e97xpBpancxaLOdtNQ5JmpEnK/c2G+SpDKEGaGrbjSBCaqqoxyvHo6Yqm6qmqPVFSsN8lVPXA6emc08dn1PuWODJYO6KimNwYBjeyWhTkZc52e+D9T55y/vyEICRnFwsO+4p1PO1JSA3zRUyeP6G3PVIopAqkxnB+ccZ+/4B1nuViwasXb1msZnzw8RP+7n/037JcxHz86WNub3esT2d0Tcbf/7tf8Du/9zHrRym7u47gNHVjKRea+9uGy9d31PuKx4/OkaHDdQfB4FItgvhWz/uRI99Rjg3AkSNHjnyDCG8/HNrug0PdzQ9dR+enQlArzegcSivatmEcBmyvCAjiOCWEwGAdounJ83Sy93RTAee9p24O1E2Fepf6q5R8N8MPeT4FNUVRQt/1OD9ix5EmBLQ2JHFCCA4lA97DrDzBO0ucRBgN15dvuXzzCo9kGAaEnJSbUZRwsX5Mns/ZbO64vn6NMTHlfEWcxZTlKW/fPiDQCD2Spwl2GDk9Tdnvaup9R1kYBucoZwVvr65Is5TD4Y7FYsbp+Sm/+vnX/MG/+Fu8fvWG2+tb/uIffEY/tHR9jyAwm5cYY2ibhraddg+0MdBZlAIpAkpHjKMH7/BBEeWaoR8ZR8f+0JFEEUlucMGjG4mJzxBKsdseKOcZfdOjtCTLMpyf0nStc+RFhrUDCEUxzwHo+gFlNHlZYp1HK4G106x61x/wCMoixzk37VIUCUPvsKPj9GyNEHJaug4BO44keY4dRqJoahIRoKRk6Dv6rqWtp5C3oespyoTLt/csljOq/YiJJOXMcPVmRznP2B8q1iczXr284dPPC7LCoPSSuhnw3uOs5/p6w6PHK5IsZRhGnpzOefHyitOzE7J5hBslJ+clq7M11lseP11SzgusHcjzFG2m16KHhz0hwGKVEFzGaC1JWiClRGaCwIJxsMhcMJvPuLq8xjt474M1X/3qFUmc0vWW7eaaTz59yt1txa9+cUM5i1icJIxW8rCpiNIZ64s5D/c1r1+8oev32G5Kdvb45dgNq2/3xB858t3k+Gx25MiRI98gWvJaG31QUoyJMTTVjr5vCQLyIicAVbWlqrd0XQ3BY4eerm0RIWAizf4wFfvWDrRthRCS1XpNOSuJzJR8a0zMcrFCaTmZVZqarm2wwzROoqWizEtiY2ibCikgilJMlOKAdmi4u7/Eezs58uXUWFw8esxsviDPS5aLNVpHvH7zFW/evkSrBO8FbV2hheD+dkeiSrqq4fzRCVGssdayP9RoJfj0s2ecnZ+xXM65frvBdpbddsvz5xckacwXP/uS9z96zu//D3+Xumv47PMndG1D01iMMazXC5SSNE3DfrdF4EFMBbdSgjgxJElCcGHam4gNUSTxLiCCJNjAYhEzW8UoLfBCEGWa2TwmiRV5kZBlhsW8oJyVSK1BSpRRSCWIIoP3Aa01UknqtmUYLGVREkWGMI4IBH3XUdcHiiJluShwbsT7EZB0bU/TWZarhMfPFiSZRGoJImAHOy0DpwldPxCALE+JkohymdO0LaP1jIObTEcqJjExh11DZBL22wGpIobecXe7p1zMOFQVkUl4+fUdowMTa4oi4nQ9Y+havB2oDy2n5wvSXJLPEj757IK+b/j448d8+skJy3lCkQkePZoRGcWjixnnFwuiWLJc5ixWCWcXa5LYQAjUdYOQkiTJsNYhpaKcFVNuBJKT8xWPH13QNT0vfvOGi0endLbHxIbdzvL28oEPPzln6HuGPrDZNIzOkiYRh82AHx2fff8Zn33/Q/KkwPYtTbVl6BsvpfBF2x5fAY4c+efk2AAcOXLkyDdIkqpGaGm10s67EWd7xqFDCkHwjqY5IBAUxYz16SkmioiimDTLkEphtKEsZ5T5jMVqyXy+ZBwHLt++YrO9Z7ff0DQVECYfvfcoKTEmpq5qmqbGunEai3EjUkqKYkZRLMiyEoEERnQkETJw83BF3dVorYhiQ1Uf0Erz+OIJQz9wfX1J1/bMijlxbAjeI4XksK/IsoztfkMUK5p9y/Z+R10dyLKIxWrBOHrevLrmy1+/5mFzx+b+ATuM/OLPvuLLr17z7MNT/hf/q/8ZL75+y/11Rb1v6bqO+bxktZzTdj11VTP0Pd55gg9IEdBGYSJDksToKGJ0nsUiI44kWkqUnMZy4tSQJBo/eobeEseGJE0wkSaKFXlhmM/z6eY9CEIISCVQWrGY5xRFQhxH7xKIwShFlhfMFyvu7x8YR0fb9hz2e9YnC+IkpreWfrRESfSuGfOUeUSaTF9LEkf40ROCJy8yYqMQZsockFIjlGK2LJES8rJARxHWOZbrObdXtwgHfnAY7VjMM169uCNJY+7v96RpSj947GjpG8fmbvp9iCJBOY8xkSbPU4oy5nCoePr8lL7tePJ4xfvvnzJax/njBU/fX3FynlMWCRJB13UYo0nTiK5pkSJifbIkz1PyLCUvM7bbAwKJlJL9viJ4S9O2CKGwQ08xy3j/w2e8995T7m4OVPseN3iiSLA7DAQpyfKYt6+uiKKYm9sHhPQYI9neNUgx8tEnzyjKYgqBC5Y0jTdRZLZVmoZv+dgfOfKd4zgCdOTIkSPfINaK3DufDUMXCzxKCbphwDlLV1u8c+9ueksICu9H7NCitUArhbXD5N83I7PFnHK2xNoBsQ84bxlDS93UaKMgKEIIZFlOmuYIGpq6wTlPFIEdB0LQZFmMNpokiRmGlrbtcd4hhCSLUxDTHL33nmGYbt9fvPqazcMDduwxJkYICATyIieOM4qiYLO5QwqNGwVXl1f0Q0+aZgRv2G47iizC2pG6bai7jg8++ID1yYqyiDl7b833fvcTXry84r/4T/8pi3nOvFDksxLEyOHQ0zQNcRzTtgO9DYx+JDcJ2ohJxTlYHu72FHmM0YJhCFPj4z1BOOI0ZugDIBFIIj01Pd4LeutI45SH+x1dN9K2LafnS6q6JVIR80VEUkTUTUucRCglMFohpWSwjjhKUUrh/MijJ+es1ksuL++xw8BsUdC1A6NzzOYFzoXpVUMH+sEzjpbV6QoIVPuGQ1WR5yUMgSzNSNKYw75BCknbNMRpjEAQPFxf3zBbzAhegoe26dhvWgSC3WaP94KqbtFKgBL4EHNxbiBIlNYkWcz6tODq+oGhH1itMzbbA/NlSdd1IANCSaJUI0QgeI8QkqJIqPZ7XFBs7iuevjen60dMVHJ2uuDr+iUvXrzh+XsXDENH18Jh1xGpLUIEvJDs2waTaj76+Alff3XNfrNnfT7jbtNxf3dgPs+5ud6z2e7Jizk2eJYLQxRpokhz6C3lYsHy5IL72w43youhG06Lojg2AEeO/HNybACOHDly5BvEeZ4IyLMsC2fnMdu+p3MNzjuKogDhaNuWcRxBS6TwDK5n6C2D7WnbltlsidGK+/ubSb152HE43OHD+O6WVVNXFXk+I44nlec4Wpz35EUBTG73NM/xbnoh6PsBrRQheKIoQZuSsW8BzziODNbS2R4pA4fDAeccZTnHhykhd7ffsFguiZOYyES8ffuak7ML8qxgu92TpQVJkiGV4HDYMl+c07UV+92OJIl5/8P36LqeN1+/oK16Ht2ds1yV/Od/5+d4r7HpiHOOcQjstw193zFfzGibjqrqGEfHYpESxTHBecbR0TQ9aWJIE0NVjRwOkz1JCEWeR3g3KUOttdjBkaTRO7XpSBhhu99zf/uAMjHLVYHRilhHCDGSFwUexWgdaZIhBahM0A4WwnTT7f2IkFDO5lxf3rJ/OJDECV01MLiB9ckCkByqnsUixroRh2N5OiMyhv2m4v72HpNEaKOIIs1iMccOA4ddRVt33Fxf44NHSRBC8fCwQUea2yvJ5mHHfFby6sU1jHD5aosyivk8p61bbN9R5jGH/UCaxVw8XqKMIskMZ+cLhtaSncTgA26wpImmKFL2+woRNHEsp+9bS6SQeGcY6dnudqyaNUII9ocDUgVOz9a8fHHDbrfFmJjIpFT7Hj9YHj874X57QGk4HCpef7lhvZ7R9QNJHIM/YHuHGx1FGXFztSMyMfksY3QSOTreXm6IopjZrGCxWNIebhHSo7Xs+AHjt3nmjxz5LnJsAI4cOXLkm8SHWEqZmsiE9qEK1nqhdYRSGq01Shqcq3B+JE5Tum4y5GijkVJyenKGiSKccwQvUNJgtCHLCkKAOM6IkylETAhJ17X0/YAx+l14l8c5h1QKZ6dFVCUgTnK6vp+SZ51HKU8UJwgCWjsO9R11UzPYFucCeV4ihMAOgcViRZ6XdF1D27Z4J7h4/IiiWHA4dMRxghSSvrcE2fGDHz5jt+l4/fqWR48fIaTlF7/4gtubO5z1PHp2yl/8S3+Vv/+f/oTDduTjz57w+PkKYwL7bQchMJtn3N/tCB5G65nNS9IsxnsP+GkPQCqUFmw2Nff3LXFq0FoTPATnQEiQHh88Wisg4INkaB37TcPl5RXr0xPyIiNJDc56+r4jK2JMnHB9uUFJRfIuHUuqGL+rEQjqemripJHsNnvu7+9RQhK8x/YjaR4jpKSuW8p5QpLEVE03jR+ZiNvrB+ptjbOe1VlJnEYoIdhvdygt2N5vGQdL1zb0Xctvfv0bLs4fIwUEF7h8c42j5/TiCVma0B46mronTjRRrMnzmO2mIY4m4xJiYLZMqXYt65MZeluxD5Ku7zg5ndHUA0oJ7GCZFQV3tzvSJKPvLXXdkiQxq3XJduu5utzx5uVblquCzfaBzUNPmuacrAse7racXVwg5EBRxLz8+oY4z/FecnvzwMXFmu1Nz83tHWfn5+z2DcUsxnaOat9ycjLtizRVTZRKHp3P0DKgljGbTcv24YHrqzc0zYEoU3uTRNXtf/T1Crj6lk/+kSPfKY4NwJEjR458Q/zhH/6hlOEwt84n3jltTEyelfh2QOsI7z3GRJTlAudGlDQslifsdw80TUWsDEiB9yCkIkkUbVvR9DV2GCc7zWjRPqIoctI0Y7vdcjhsCWEqXgEikxBHKSF4ZmVMOcvRxnA4VIyjZXQD3aHCOUcSx7hxZFdt6brpRSAEQV1XZHnG8+fPMTrhzZuvEUJi+4HV4hxEzGADUWRo6z2jlQxjy1/6y7/Fr/7sDaODZx+cU+8rXn39goe7B5bLkkfPnvA//lf+EiZNObs455OPY+5utvyTf/QlWRERRZq8jFiuGpTWVIeO07OCNI0Y+o44Teg7i1SSKJJsHhr2244k1SRJhHPTmBVh0qNmeYw2I33riWNDU3ds7ytevbgkSmPyMqEoIkbnqBsLUrA+W1DVLUM3sFoVhDBiYkPbDQgRiOOYqqoYBkssU7qhx42WLJsRRTFj8GgTEVxAR4o4Mly/3VDVHUkW05uR5tAjPBCmMbEQAnXV8PrlK4QAN3qEFGijub25IQCRjrF2MkMN/Qgy4KzncKh4/OSUQ90htEJqQwiB2XyGlIEoFrRNS1bMuKk3EDyn5yVRLKl2A8oIdBQwcUzbj6R5QlFGBBHQJqJpLXJTEUJgdbLAWs9+vyfLprGy4MEOIwGHUgLvBGlSUJQpeW749c9f8Mln71HvauoDfPy9p3zxpz1IwehHjImwrqfbdUgjWZ3MOexbhs6ited0neGZXnPAI4VHCIcx0aCkJAhhvsVjf+TId5JjA3DkyJEj3xA/AH2JO0EIkSSxS7UdjQhGIRntSJImKKWQCIQyeOcZ+o5h6P5cAenclAqcZCl929E0EUpKvNREOsb7Ea0NxkRorZnN5u/2CAbsME6aUGUwWtP1HUIYhmFk6C3OjsRJjGtGIh1hCTRtj7XvbvGloqn3aK0p8jmr1ZKhb/n66y9RSpFmGUIoxtGiRwcm0FQVzgVUBH/hL/yIn//sJWVeMp/PuLvZst9tUVHCX/xLf8D67JQnH57ywcfP+If/xZ9yf3XHT69uSOKM05M1wTkCAqkU+/1Addhw8WjBk6fnNG2N95Lq0GKMxGhF3zgEklmZkqSG0fl34VER+23LfJlhIkFzsIy959BVWBe4f9iS5inL5YL1KqfvRsbOIWEK0PKW7UNFPk+IU402kw2oaSGO4ymnYRzx3iGFoG5rhFDv0ms1RgqiKMKLQBRL7q7vuXp7zWy5YLFYcH+3wY+Bar8nThOGzlHdbrm7vqap//vGbPQOAIGg61vqpiIEiOIErR1tN7zbAUnpu4Gz8xnD6CGAAqqqY3mSY60jJsY5S6QNr7+849MfnLKYpYTRY3uHlBI3TsrTpu7wIRBpTZpJ+n7kq19fsVpmJLFmscpo247N5oDSgpOTNXEc8/CwIYoi4jgCYRBS4EcwRlMdKsoyZ7PZTHsS85y2azm/WHJ3vyeKNbdXWxSC9ekKE0ckiaKuHbbfo6Wm6R1xUrJanbG5e8NoRyGVePN/+bf/7df/13/n3/k2j/6RI985jg3AkSNHjnxD/AxYC1mb2DwMTb93Y+e08MbZliBhsZrTNDU6MlPB5Ua6dsQYjdFT2qxSksVyNjn+iSnLGX3X07YNnoCJE2w/cHtzjVaKYRgYx4EkTViv17gxYKIYO07udx8cBE0IoHVE13UoZfBeoNUIaISM8EOgOWypmgNaS4zRvHi5o+9roigCqUHAcnnGfLFEqWhaWh4H8tmMT3/wAVfXN0Rxxvr0hLcvrpBKo5OITz/+kDjO2NZ7fv/JGX/v7/433F4eePJozdP3zonjDC96louCrrO8fXOHUhFPn655+t6Su7sHggsI5VmfrJDScdhVuDGQpgnBWwIOKQNCarYPLVkeEUeKl19vGHrHapkSvODu1QNZkZFlKeU8RinDaDuiOAJlSTPD0Ftms4I0ixAykBeauuohCIoy4bBvwAtEEIxjjw8jeV6go5SkSEhzTd8FIqPQBr749VeUsynMq2072rpDK43UZiqcb+9pqgo79CRpQtu2BAICgTHT+JGJIxCSKIlQJmY2j/H3B5TRLGcZ1lriRDFPc0brcMNI34/EscIHz/5gWSxzAp6b65Z8UWGMIMtinPPYMeCdIy80XW3RkaCuO4pZ+m6vo2e5KnHO0/Y9q2XB4dCRpjFN27JYLriIU64urxhci9AFUTT9zNMsoeta9vuWx4+W3NxumS1K9i+u3jV0GmFBetg87NBJRJpNtqb724rVskBlkq5pKRY5UqesTh4TXDvHuid//a//q0vg4Vs+/keOfKc4akCPHDly5Bvixz/+sfVe/jx4f+1svzGSIYkj0jgiUoaHhw3OT2MVznuGYUAqiRsdu+0WZQxCKA6Hmq7rGMeREAJKaeIkZTab4f006iOFYBgGImNIooTROm5ubjhUe7quYRwn8xDv/ChK6clkYyYTjjEaHWmcHxlsz+3tJU1zQEmJVJr9YU/Xd8zmCzwQgidJExaLEm0kzrlJGWoiPv38faQUNHvPcr7g7ctpcVWawMc/+BjnA3/8j/4p3//8fS7fXHH1akuWZdStZ7fr8cIRxTFffPElL19ckRcpSZqSz2Jev97y4usbPI48T6iriqaqaauecfBoPXn1lVboKKLtHdoItIbL1w8YrXj63gykpG4cUWR4+vSUJDXMFimHqiWKIuxoieIIpSDLNUn67uelBVpJvA9IJVEKksigtCJNEvBgZMRyPefkYsbZxZyu7ckLw3KV8vbFJVrHnD+6oG176kNNnhd4H8iygmGwDMNA8IE0y4nimCROiKOENM3QJiLLi3e3/oYsK8nLhPlqSV6m5GXEbJWQz1JWpwWr04Qkkew2NVkWEaRhtswQYgqOUxqqpubutuFh03J1fWAYLftDSz84sjQBPCbS1HWPFILZrOTsYs5+15LlKUZGpHGKFAohNN47rq8fyPKc84tzql01qWNnOTqamsm+9Tzc1fzZF69RaGbLgvl8zs3bB9p6slKNbiQ4aHYNYXT40ZGkBiEGlHQ8fjLn+ftrfvBbH7NanyOhrPf736k3+yff5rk/cuS7yPEF4MiRI0e+OcJGFn8yF+0HxSx70jX2t+MO0jTj0I6MdprLbtuWECxVtSdNM3wQpHnGYrGgaztm5RyjDV07kKc5TV2z3T0gWvnu5WAy98znCwgQfKAbeqIooJSi71usHafC1lqsHdFa03U1w9ASguNQTcV71zccqu30ihDFzOZrur4ljjKWyzVNU9G/U4NW1YEvv/wNaVyyWp+jdMRv/c5nzGYx//Af/FNO1ufUhwNBBh49f8x8nXN388Av//SX/N7vf4+m2vL/+A//Y06Wj8jSjGqomc0zdrsD3nuePbsAL7m7b5kvBW9fb9k+dLz/4SlDH3j59R3LdQZecX9Xc3paIpWf7sqFABmII4mXCUPfsVyVZHnEbtfQNANSB84ezWm7aRG22lVEcUq1q1FGkySSOFFY67CDR8pAGhuG1uMdIEZC0ICY9g1GT9c51qsVZ+czilnMm5cPKKkRUnN9fWC/bTk5O2VwI4N1ZElC3w9EsUEEGMeeWTmnEhVZntA0NUmcTi82xjBai4kilDQEIC9zykWOMXB2sWC2SskKA8KTZYYkjaj3A5tNxfN5jDHQ9Y7ZLKbadfStQClBUzfMFkvcOEKAcbQoKbBuoJynGGNI4w6JAA/Pn674zS/fcvV2w4efPOP1i0tOT1fc3Nzz5Pmar766YrlckWYJ9a7jcrwkzTXLVcHV2w2EQBYnvPrNHX6AkwuHTjw60vTdyECPVIK6ahEB/GhRkeHZe2tms5K2Hnjx9T1KKrb3e7I8IXv2zAgR/ordtf/Tv/bX/toXf/RHf+S+3eN/5Mh3h2MDcOTIkSPfIP8T4KeR6WzbeTt60fcDTdvQdY5yvkQw3aZ7D1k6hX8VRUldVRyqmtN1Tj/0IDx+DO/0kBFZluHeGX60kQglaLoWNzjiJCLPM/q+xw4DPgSUkmhtUFKT5wVKScqyYL97YPNwSxynxGnKoTrgRoiiaQdgv99ioojZrCAET91UKC1QUiGEIksLZrM1UZLx0SdPyArN3/s7/zVZktLUB5q+4dmHz1idL9nc3vHlT79CSYXUCX/7P/w7xCrh9GTNy1cvODk7YbE6IU1TlqsMPzpurg+cXeRIqfj61ztC6PnVn71AqZhn763Zbwcu3+55/t6CcpEyWguAiQzODeRZghvdNFbkPHYcaKqBONaMo2O0HoXB24C1HoSj6UYulgXlXBC8oq5GtIYkMfgQGJ3HeU+Wxdzd1BipJzWnkWQ65eLpnMUqZ/vQovS0VH11eccwTKm4JooQSLRWCAlKSYwx75SvM4SUSKVI8hikIksTuq4nerd7cDjsiaIYEBRFynyeIYKnKCLyZUKRR8SJRknJbtsRgiBOI9IsJommGf5xDAQPgx0pZhlZPi2UF3lMlqV//j1qrfAOhjBwdr5itFNSdRwr8iyhb0eyLKOc5wRGVus5AsGjx2d8+eULnj97hFSSw0PNdjuQZQlpqnCDo5xlFGWK0YbDtqOYx1TNNbO8ZLvZIKVGSsEwjqQhJoljum5EKsFnP3zCYr3nP/s7f8L27prt/Vtury9Znyy2xXpxHP85cuSfk2MDcOTIkSPfIH9id6e49vPm0DwbbIjafkAgJpe61PT9gJKaSEcYpRlsTxB6cuhLQdM25GVJHBs6P3Bze4uUkjQrqKsDIgSGoSeEwGhH0iQjiiP2uy2EyVDjJo0Q1lqyLMf5kabt8d7R9RapY5LY0A1TAWqMoqoPdF2L8w4fAvv9gaZp3o37gJIgxfT3lqs1H336mMUs5u/93X/IrJyUoVdXV6zP1qRxyvb+gV//2dc0TcNv/cEntLbh8aPHnF+ccn//wPe//xEff+99ilk8ueQNjCMs1wl9Zfnpz19SVx1aerzXnJwl3N003Nze8+EnF6xOCkY3IoUgyhJcAD9CmimaOrDdVhgVsdu2xMm0CG2tJ9ISpSX7Q4WQhjevbymKhNnCkKeSzUOLCI7lqmQYRrreobUiSQxD5xgGRzpPSbKEKI7QRpCVCX3XE7zE2gEQdG1LGAVBSoIUSCmJpJjSiJPpNr/voVzmGKNp6ghlQEdqWhQ3GqPfLeQKQZGn2MGxWGWkqWG0I9pIilmM0Yq0UOzvB37x07e899E5F4+XzBcFw+jI8pjXLx5oa8v6pCSbGdIiJksM4BEI0iRmu2uI4phxHOh7x2Ku6dqaKJ12G9anC25vd3RdR1kWtHVLnAIByizhZdtz9faWOEt48eXltL9w5snymIf6AEaQlAmhDxy2PSdnp8SxZrfd0ncDUnryWYmONEEqhJI8ebqinCc0bcf7H5zx0cdP+c+++jV9U5MYQ1DiQRfxP/mjf/94+3/kyD8Pxx2AI0eOHPkGiYwOYQxJECIHjNby3SJuQGlNOZsRxykBqJuGcRzp+w7nR6LITGYZKdEmwvuAVhprLYfDnrZradsWoyOyd/PiQ9+z225IopSiWCB1hA8C7ydlYl3v2e+39H1D2zYE7yiKqWCXQgKBruve7RrIP/flj25kuVwRmZjIJBAmDePgRhw1Qg78//7LnzJ20FQNN3cPzOZzYpVy9fKaL3/+FePgefLhOZ9+7z3uLq/pu5G72wfWJ3NOTpZIKTlUA6t1iZRQ73tefbnhJ3/8NQwOIwaqpiKJFfW+4pc//4oiN5xfzKjqGolEyanYtn2HQNI2I23TI4l4/fJhukmPI6RSrE9T4kwxWEtWxDRVT/Dw9PmC9TIhMoZxCKxOMkwk6bqBEDzBAwhGOxL8CMKxPMko5oaTs5wijxDod3agacTGWUfTdGitpuZPTbf35SyjmMWUZQRAmiqSRJDnEecXc9brgtnMsFzlOOfpusnBb4yhnGcUi4QoE5jEIFRAELCDZWg9L7964ObyARECq3VMnGqqesC7ERECRhmKUrFYJMwKxWqVoKRnsBZBYBxHxnFq8pwDFQmUkgQXSJKc1dkJCBh6iwgBwrsXFa3ph455mfL2zc27FxjD2xf3PNx2CC25unpAC4HRmhAUeMfN1ZbHTx4z2vHdwvrUKJ2en3B6sSJJNdeXN2zvau7e7nnx5RV5VvD+B8+YzUucd/Rtvz48NJ9/S8f9yJHvLMcXgCNHjhz5BrG2uXBuzPrOxsM46jhOkPU0UrJczvEhEAIkScTQt+z2W9I0J4ojhr7HGMPQDzzcb9FKsVqt2O231NUOoyWCqWjf7jYYFZHEMT44hAhYOxCnCcZEU+EWwNoBKSVd1+HcpK7c7u6nPIBxpLcdo7c4Ny1dSgWRMUjx7hbbe5qm4eTkjLPzxwgduDg54e5yj2C6re66jtVqQfCw3+/o2gYpBbP5gu99/yP+87/7D/n5n37BcrWmaxOcdRTFCoenKFJumo6XX97RN443r16w3d6y399Szkp+63f/gHrfs909sDxZslzO+OpXN3z82Tm3NweMMWQZJElK21pCkPS94+F+z/o0Z7HIadue80czuq7jsHfkRcIwOPq+5dPvPWJ9kuN8oOtHVKSIc8Nh32AiQ/AjWkuqTQMC7OjQRpFmmiiSZEmMHydvv/eBJJYMdlrqRQiKsiCOosmwU2rKmcZEKW9fbUhiQ5bHAOjIkWUxzaHn7HTBYdfw+ssdTV1zcnqKD57l6QITS+LEoESgqUeCl9SHmiiK+epXr/EOQnDMFwVX1zsWyxltbd+9IpmpkShiklSxWJS07UjTdqyWM0ob2O8bPvjwgqq+JklT2sQSvKdre8rZnLRI3yVKg3MeFwJCaIoiojn03FztSdMCZRRlmVBtauJE4QiMYyDLNftdjUkz2sExSzVRmhCCw3mPlJKhH1gsS548WzErI2wzQJDc3hxoOwdCUzU1GMbdvjp/9fr1//Jf+9f+tb/3b/6b/+btt3v6jxz57nB8AThy5MiRb5DBuloiWh1FTmlD14/4IBByMueMoyUvMrSRtG1LHMUopWmbmnFoGfqWu7trquoAcnLiSynfLeFW7HYbqromiWKSOCVJcpI4o+5qrO2ww/guDdgTRTHL+ZIiy0mShMViTlnmpGlKlmVk2TQ+5P1UDAsBxqRkeUmSFiyXZ5TlivlshUDg3cCiLLFtjxwlfdtQVRtmiyXD4NlutlT1jtFZkjzn8XuPqbYNL756QxQpbm/f0PcNy+UCO1iuX91z/XrDq9/cIpzn1YvfcHt7xTj2/Oi3f5e//Ff+Jepdy93tjiRJGa3n5dc3zBc5b19tuLvtaRrLaBXbTcPQO+7vDtjBcf54uk2vm55ykTCM9l1qsSaKFMNgef+jE1YnMX3X0/WOQ9UjjcDaEZhsSVme0NQtQ++mBkFKTCxIUs1qmZIkkm6YFK390CNUwI2BECTayKlY9pN9Z7XOiRON1mBHz+pkhhunhe68jHDeUcwipILr63se7u+QgBSCJIsJYkqMHrqpYdNaUVcDfTc1mHVVUR8a7m523FxX7Hc9JlLUVc84BtJMIZRgHB0g8UhMbDhZz5FSYCJJU7dEWrNaFTgPaZ4hjaLreuIk5umzJwx2REcGpCTSiu12jzYGZSBNDDeXW9I8xsQaRthc1yRpzpurDcvTOdnM4AR4AspIPJMJabQ91XbH9m7Dy6/ecn25p+8si3XB4iQnKzIe7jZ0jaVrB4QQtQ34ly9e/ZWv/+yL//nf+lt/S33Lx//Ike8MxwbgyJEjR75B/vV/42/+WifRl+D2wY0W53DjiFaaqqqmWX8h2O22RElEUZaTlaWtqOo9XdvgRksIjvHd6E/TNggBSRSTpQVlXhJHMVFsQASsnQo6pTSR0pMRhymAKY4TQJClOUmSkaY5WZYzOs9m90Db1oBDKoknIKVECsk4WKqqBiQBT2978nxGve9o6pbLq7ccDgcWyxNCgL6rITi0iijnC04fn5PPc778zdcE52j6hqAkWTFn9PBnP/8l+4eaw74hTgwPmx1JWvL5D3/EX/1X/mWevf8JX331hoftnvlyRpzGhBAoy5zL1w+8ebmlPvTs9x0P25qq7vnqy2uCd2SFxg6eh82BYhYRPFTbAeGnW/CmtcSxoZgljM5jXcCHQF31GKNw1pMmEUoKQLK5bzHG0LeW2SxDAEZPutAokpSzBCEEUayITYoQktEOeDvixyk9OC8ilFYorWkay2KZYhKF84EApKkhiiWLdcrD5sDmoQUJJjYMdiDLEyRysvIExWHXsFhk3FxvuLupuL2qEMHRtTuu3my4v2nRUiOCJ800UgjiJCIyCu+mhmm/q5FSgPSUZYKzA0oKdvuGs/MzqkONUYY0iYnjiN12y/nFGXEyBdoN/YBz0Pc9zgfWJ2d87wcfcXuzQQqIYkhiQ1sNdK1nu+nZbWrOzuZEUWA1L2n2Bz746ClKa8bBUR324D1GR1y92XJ7XfPiq1tev7mfzExBc3t5xWp+xsnyoj07P/v56Ef9cPfwr/ztP/q//8G3de6PHPmucWwAjhw5cuSbJSDUW0loInyfaslqViCCR8tAFAmyPCGJY4L3tF1L17cYE5EkOWlREsUZShp22w23d9fc39/wsLmjaStG22H7luqwp2lq2qbBuREpFVGSYpLJH6+URAjJMFqarqPrW8ZxREpNEiUoKYkjjdYCOwy40SGEREqBHSxKKtI0Zhh7tElYr8+5v7vj5vaG29stSkYsFiuiKCbPUiIToaRCSRidI8ljDvs9r1+/Yhgadvs965MnlPMFL17+htPzNbNVwen5jGFsaLqOYl5w8mhNlCVcvb3E256TkxVCCkIYiSLN3fWGV19e4oYeArS1Y7cZuLqqmM1yBBEPtz3DYEmzlHEM1NVAWw+EIOjbyRqUpAqtNVJOxffmocUODi0VUWT+vImq9h3j6KbiPoqIYk1wYrIzJQYTGwgCqTzn5zO8s7RVS3iXEiwEJKkmLxPGccS5EYDZLCUyGiFAazGFwRmJ9x4tJQrJbDYjBEFeRMSpRApIYokfA95P2Qf1viZ4zea+412UNH1jGW3AWYcInvk8JYoEtutREoJ32GGkPjTMygwTxwThMdqQpQnjaJFKoZVhc79FCoVSgr5vp9edNOWwP1AUBdtNzXxRMvQOhGK1muM6y+G+I3iJThTew9CPNFXL1eWGvps+AyH9tHtiFMUyJSsLkjwjSRPOLhacPZrhCMR5SttJvvjpS+5vb0giQVVvcaGvHj959E/P1utfSSlcGP2TP/zDPzzWNUeO/DNwPChHjhw58o3jLmfL/GWWibsiVWSxxnYDUoAxkvu7W9q2Z7QDh92GtjkgREDIqWBsu4amaxFKoZTGKMU4DPRdjRsHBjsglSJNCmazOVIqtDYIIVFGo5QijqebaCEEPniarsaOIwJF3w5oIYl0zNBbgpAEOf13MLoRO1qcH7F2YDZfsj45o94feHi4ZTbLWa9PaNuOpu3QWtP3PV3XEMeTxjLNM5Ik4je//pLgBZvdA0+fvk+Rl/zyN7/m/PE5zvdY1/Piq0t++cUb+m6gmMV4Z/mn//if8HB7S1FkbLZbrB3p2pa+ban3B5r6QJZnDIPlsJ9CrdI4pWsdV1c72nbEj5rDrmVzV7PbDDgPzgVCEERGEUWaODI4K+hqy2HXTT9/KTBGYQdL8ILtpmIxzxEeskxjraOuW5yDEBTOeUCQZ4bBjrz8+gpnIYpixrGnKHN0rJkvUwKBfpjGfay1JOmkLk1Tg5IS7zxSCPI0YhynkDdtBCfnS5QWLFYJ5SzDuRGtPU3dY60jyyOECPjgSdKcvMyAgBCCtp0CtooyQWtBHCvsOL34jHYkTTVJpN8tOnsGNxKnMdW+oijm7PYH+n7Ee0jSmBA8UioO+wofAnYc0SZlsVpxOFRAoCgKXv7mDucDr14/0HSWoXekWYS1gc2mZbSOzV2FUp626Xj/o+dEWYyJIrp+YBxHsiJifZJhYsGTJwUXFwveXr7l61e/oGpuGcbWihBkmqXbOIk3cVa+/vGPf+y/vXN/5Mh3h2MDcOTIkSPfMFFYvJHa3CSxPiRKhqHv0NqwXp9Os87DtHDbDwPg8O+KbWt79rsNITgWyzlRPC30RiYmigxZWmKijCTOiEz0zvCzQWtJ37fs9xv2uy11XdN3A8O7m/3IGIp8QVnMGYaBYbTY0RKAJM2w40jA40MgilKytCCKMlarU5bzJQ93lxwO95ydXqBUxKHao4xmtV69yyXQFEVJVR8AzeOnj6n3DSoommZHlpVolfLll1/y/MP3uX/YcHd9T7tvuXz9mmIWc36x4Bc//Rlvv36DbXqsHXj56jV5OWlMpRRUhwMPD3esT0+QMuL+tmF73+Os4/pyy5vXG0YbkEJwd7fn/rqhOji61jJah/fuz00+Uhju7/bsdx33ty33dxviWCEldF0PQlAdRrp6RClFwCOVwlrPaD14QddYmnogiqfF6Tdf39M2HYEerSRFWVDOcoIPREbTtZbIRIDARBE+OMp5SlpESCmp6gEhBYOdXgmGwbJYFsSxRirBcp1jx2nH4+R8hkCwWs0pZ9OYl1KaxXLJ6qQk+u8SeDtL2/QU84SsTIliwzAMxLEhzxOkFJRFhpKaNEvw3lFX7dTYCMF8vqBpWpQ2JGmBMdGUbRAnhBDI8hQlI7KsACQu9Hz+2+9zc/OAHyX7fYf3TC9KScZqOSOJNUoFDpuGN18+YGtPGid8/PH7lOWCNMk5bGv8APu7jr4ZqXY1FxdLPv/8e3z22W+hdETXDZkdbR5FUdd1fT42zetv7dAfOfId49gAHDly5Mg3TDMcTutdda5QsVY+aDl50vv2gG0tcZQg1KSGnGQxkqIoMMoggmA+m5NlBYvFgiIr0SYhz5ecnD5muTojTqYGIDYReBjf3Zimaf5u/EehtMIYTTd0dH3HYHsOhx2Haks3NNgwMtieuqnRUjEr5swWi3e7BRHPnz9nNivZbm+pqi1FWTBYy+gcSinSNGW/302aSymnIlEaFosF4yh4++qK2+u3NE3DxcUTRmd5//33uLu65OWLl7gRvvjipzgss1nJn/7pT3E4inmBdYGgLJ/94CO8cyzmBYftAy9f/Yb3PnnCJ599wHZ3YBw9SgWkCKSp4fx8QRxLqroDNM4HmsPAYd9QVS394NkfeoSQdG1P1wXaznJztyeOUuI4ou8sbhD0TeDm7YbdtmGwI8Zo2sbSd35KWB4s1bah2Q04K7h6s8FbgdGS/W6Ps5ZZWZKkmkePFgz9iFKaEKYGQhvFMDiSbBo3UpGk6y0uKDbbHm1i3OiZFQXaCJarjLxMCEjSPCbLppvy+XJ6CWmaHqMTynnJcl2Q5YY0UygFShvyWUyca07eJRZLJUhzQ9OMJFmJVGZ6QUgy9ruWJE6xtiXNImbzGWU5QyDxAdq25eTkDOc8s/n8nS510shu7yvm64zZqmC0jtksxTnBMPTU+4qzixlBSFbrBUp7lDBU+56u63n2wZqzxwtOHy349PPHnF9kPHo6B6FRRvPzL36Jsw377Yb3n7zPvFjYxXL5J2me/8YO/XIMIf62z/6RI98Vjg3AkSNHjnzDeD+etnVzsjtUcd21QWuNHTqSSLNaLpBSEAgYE6GNIU4S+q6j6RqiKIUwhXhppQgEtDFIrXDeIwR/rvD03iGkQUUx2kzjKCFMCcNTpsCkphzsiHeWfqgZXUc31NzeX7Pdb/BuZHQj95t7bm+vOBw2DH3L5eUrbu+vUVJQZCXBT3PvUkqknGQrRVHQti3X19eEACae6q+ubumairapee+9j2nqHmM0l9evubp8zawouL5+jdaCWbnkJ3/8T9jc3fLZp9+n7QZ04vnRb3/O/f0Go+BnP/ljbm4v+cv/0r/A9374OVfX92gF5xcFj58uePp8xnsfLEiy6ec/aU97gg8EN7LbdoBke1+jlUb+d3Ym52hqC0jSIsX7QNc5+mEaU3n75g6kRGoxjUmJaV8gNpqmsmy3ln3V09SeurbsDzucc8RxQtPW+GBBBAAOu47qML1sxPE06x/HEVGkSZIYO3riNKLrHIOdPjc7WoIUaCNJMz2pXYWnmCXYIWDtSJYZxsFjIoM0GmVgsUwoF4Y4gTSPKRc5XniK+WQSevRkRVYkRLHGRNMLU5ZF5FmC0qA01HWNkgrrLFKB1gYAa3uGvmOxWiK1QSG4urxkGFryvGSzqfEBPv38Oa/f3vC97z9HyoASCiEkD3cVi1WBJ2C0QhmJiRRXrzdcX97x9PmaPFfYwRGC4PS85NmzBWWRcnK64O2bK9puy8vXX9tiMfvl6vz8/33x+Pn/rZzNvmrq/V8+7gAcOfLPxvGgHDly5Mg3TDC6LRazh7zMuiTJaeqG0Y1T5qqErp+c/EVeEEUxVX3g5u4GpRVJmjCODhGgazvGcRoHiaIpoKtte7QyeB9wPhDFmtEN1HXF0LcIEZBKorSm7TqEEKRJOi19VhX39/fUVcW8LMmyDM9UuKdJQpFmFHmB94GmqbGDxdqpUFZa4caBrusQUpEkk/lGCEESJ8yKEucc88WCcejYbu54/t5HSCk4Oz/l4e6Gw2bDcnGCc566rjE65urtG3a7e37rd37A0/eWSGP5rd/+Pv/0T/6MoQ588bOfIJXhr/7L/zJxesJvfvGacRg4O1uyXKc8flby9PlyWq4NgqzQlGXGcpETJYrNriFONH07mZKkEuy2PVU1MPTTOE2WxXjn8SPUlWW/bbi5vENIyejGd8Yb9y6sbcpXqBvL9e2Ouh7Y7RpGH94lMIMbLWmW0TQ9zgnu7mruriu6qic4Td+/K361R2lYrjOcHYmUpu8a4lix321IkoiiTFB6GtNxzqMF2M7ycLsH51FS48eRPEvI8owsi0iziDQ1pGkM75aI60M/BcvphGJekmYRSkryLGJ0A24cEEJijCTPE9quxnk3LQz3HX3fk2U5Pni8szR1xdn5Y5x3CBzbzYY4UfS95+rNjtNHc4p5znbf8uH3HhEX6dTgtAN90/Hiy2vKRc4wDHgXmJcl1292fPWbK5QSEDxvXh741S+uaFvLz37yGiVT1utTsmxGmuebKE9+msxO3v77f/RHXy3Xq3+gpDr94osvjvlGR478M3BsAI4cOXLkG2bU3Zso0hul5OiDQ2mBiQz7Q8u+quj6gbIssaMjiXOatnpng4nouqmI79qWvu/R2hDpiOAV1g6kaYyJDVJJpFbU9YHDYYcUkiRNEUoxOoe1FmMMWincODJah5SKLEtI03ha4m0atFZ458mihEgndN2AUrBcLpiVxTuLTcYwDGgTkRcz0iSl6zr6rsePjuA9l1dvycuUfGb4+sWvOT97zEhgfb7m9u6KcbQ8evQEpeHy6g1ZlnJ59Yaqqnjvgw/54e/8Fpc3D5yerflP/r9/Hxx8+dUvsC7wyfc+5auX17x+dYlW8PjpnGKpefrhktNHCw71QJJFZLmZFl0jSFJJ8JJynpFkEXEaMfqR/aEjIHAW7DAtZVs7TtkAo6dtPG9f3XN/s0GKwDhahsFTNwNaaeJU01tL3wWcDVT1yO1thR38tAtRFvgQiOOEKEq5vdmx3TTc3+8ZrOfutsb2nv22wpgIYySj9Qz99DVIIbB9T9c3lIsSZCDNUqJIo4WkrR3jCNZ6tFY475ASytKwXJYsVgXGSKSURHFEnGiiSBCbiMO2AQ/1oX0XaBYRgqeu9tjRcaga1LvciThWNE1FmqY0dTP9PkVm2qVwnr5ryPIZaZEyjp67mwf2uxqC5PWrW9p25Ae//TFvL285u5jjvCXPUoJXGKHp6ophGFmuSrzz7LZ7zk4XZGmKD5rFOmN5YtgdOnrrWa7n/ON/9BPq6oASgkhrpYI0SdsGgGx58vdmi9lPy7I8jgEdOfLPwLEBOHLkyJFvmKFXTiDGJIo6KaS3/UA/DJTzhMWyYDYrKIsZaZLhXA8+kMYpJoomH78bqaoKOwxE76w+UxiYZuhb6uZA3dW0bcVge+IoYT4/IUlyRJi87G07ueu1MeRFzsXjR5ycnmFM+i5ALCaKYoZ+mG55xwHvPVJqnIObmxuGYSAvZqzWp5ydPZ4Si6OIuq7Ybu7Z73eMo6Wqd+hY8ennn/LTn/4EP1i0Tjh7dM79/Zbr60vOHz0BpXj75pL5YoYPjouLJ6xPVuRZyVe/vqNv4T/+j/4Os2xGFEc4Efjk0x9Q7VtmheHTj5/wwUdnrC/mfPDZmtVJzm53IDCSJjF2HMiyjDjRWDuSZor1SU6aKmCyzZRlCsEx2AYpJQ+3FXawRHFE143s9xVXV9eAmF5gBsd2U1PXPUmqMUZT1T0uBPre8nC7YbetGAaL0dM8f1YU+OBI0pj60FLvakbn2O8OWGu5ud6x21okgvow8vb1A0kyLdXaIbDf1wQpETrG+4CJYBwd3gceHmpCCCADHqaF3lQj1MjZ45KsSEiSCK0lygSiWDD2ltkiputGmrqnrgakUByqqRmyo0UoRRDg/EgInqKY4QPoKII/t1O1ZFnBflujpEDIQJQkeA911XI41Hz6+XtTdsEA1aFnuVpyezsV93Z0NE3DqxeXrJYlr15cUsxSVCSIEkPXe5SW+DDiQ2C5npFlKW9fb1ifZDx7ds7tzTV9WzGOgxi9W+6a7TOAf/ff/Xe3H3zvh/+ff+vf+rcO3+rhP3LkO8KxAThy5MiRb5hCSOnxXghq7+wQvEeIwMXjBctFxnxW0NYN+92WzfaOyESkaUbb1Ay2x7lpvn9K9B0Z7DCFbQ0DzjlCmEw3xuj/fuRHqXeJvh0CQZIkOOcm69A47Qb4IMmLGUJqnBsnM0uWT0WekHg/4lzPOFpm5YLROnbbe7bbe0LwBA+H7Y66mhoP8PT9QNM2/OC3Puf65oG2Gjg7OyPIkaHpuL++5YPnH1LkOW3bcXZ6QXWoEEIBgtl8xdcvXrDf3vOf/yd/lyJO+cEPP+duc8f7H7xPkhi0CXzw4TOqpiGbJTx5PkcbQXXoKWcJjy7mjKNltZ6DcOz3LdqYd+5+yTh4uqanLDKMFngfKMuCh4cN+33FbJ7RVj1vv77h/voBJacwtWEYEMB+19APAybS9L3lUDWE4HHO0dQ1fdvh7IhWCmsdRZ6/04g6Ii2o9jvyOKY5VAyt5er1PSI4Hu4P9K2nbaZ/5/LNjr6x3F7dkKU54+BIUoPWAakEm80BHSnafrIMEQRj74mNxmjN6UWJ1AJUQBtJZCKG3tF3I4KA1pLNww4/BrIsZbetptE0L4jjiDjWU+BZPwCa+XxKbE7zHOc81aEijjNGL2jqjnGc7EBFURAZTdt2LFYzLh6vqQ8DxmiklPStpZjHnD9aoI3i9nY3aWpRHA4tOorIiwwhFXXVUpQxSk762vOLEhk8v/7Fa1arBfOyoG0aoiS6Nkb33TA+/+/O3VEBeuTIPzvHBuDIkSNHvmF0EQ/ei9Z5PxgRxiKLWJY5MqjJmy5hdzjgw0gUxURxzGZ7T13v6PuWtq2REkII7Pd7QnC0bT2lAM9OWC5OSOOEvu8Y3y0LSynRerLwrNYr8jwjiiLSNJ0Wgp0nTVKcm26S4zhFGQnBI4NAK4NSmtFZvPfs91v2hy0gMSahaSp2uy3z5Yr5fIHWMYRAO1T87h/8HnEyo94PLOYr6rahq1s2d1tOT05Jsxw/epbzJX3fcrI6wTmHiTSHalKZvnjxK6QQfPq9z/jyxa/J85LT5SlVdcv3f/gRP/vZrwhy5OLJgt72ECSzecJiXtC1I3keQYDd5kBeGNJUIaWYbu/3DRDIinhqKJTmsG/w3nPx6ITBei4v72i6gcGOxHHMMHQYM1mBmqpBS0XfO/reYgeHtQ5jNEpLrB0QQlC3Lc47PJ44SWjajqxMaOqaJDHMZiWbhwYEBAltN7LbVuAFX395z9WbLfWhpetGijydshWSiCiO8M5THTrS2DB2lqJIQAiQgjF4ApL5PEYbGIdhSvZ1UxjZMIzcXlUwgjaG2+sHvBvwfqTa7YkihQ8jSaSItWbop9+B+XyJtYEsK9DG4OyIGy3z5Yy6qsA5nB04OV8itEBJxa9/9YYPPnnMoT7w7L1HBBzzZYIPnhA8JjF0g+X2ZkeWRVy+uSSJInSiKcsYLaGpW7qhJ04U54/nPHm2otr3/OrPXtB1PUpLr7TcGZPuJPrlt3zcjxz5TnJsAI4cOXLkG+Z/++P/41ZIcSOlbIVwg9GSRbni/mY7hXrZKdVWaU1kIoITxCahLBZ49y6RVwmqasvoRtq+I81y5vMVwLScKUBKjTYxUimUkoBnt9tzffX/Z+/PYnXNzvtO7LfGd/6mPZ6pTlWxqjiTkmjLQzsdxEDnwkBiJIDUCJBAuTKC3BgJ4HT3RSDwohO4lZuGETQgwEEctBO3BDfa7YYTOHHbbkmUrZEUyWKxhjOfs8+ev+md37VWLt6vysllOqLKor8fcECwwDq19/7OKj7PWv/hjBAGZvMcpSV1VdN1LddXl1Tllq5rKMstTdMQAGkUUgAEjI6QUoKAOEoIIeBcT1lumc0m2N3Q7oaGrmt48623UTrl8vUlBk8IA23XYdOYxdEBcZZxu1yyXK3YLFcUeQFhlDwJoXj05BOEFpTllnffeQ+lU66u1hzOj6nKjsXihD/8w/d5+PYp733xwWcFWZMiQyvDyxe3eOfpu8Dl5ZqD4xlHxwVxrBgGj40SDk8Kju9MsVZRbhtWyw1RpJnOCpwLrJcV3jO+imiFDwHvIfhA17bjoiQl19clwwBJYmmbFhEksbHUVYkU0DUNSgiatiNOMtq2RyhDWmRUdYNUBjf0aG2oy4HlTc36tmV92/HsyQVtPXB1vqSYFATvUJrxFUNbqrIb+wi8QyiQWmAjSZJEpHmM1GDsWHDWdwJrNN47bKx3PgPBMHiiSOPwmDgiiRO2ZT1+v24MLJIiYLUC4QDIsgxrI6IkQUcJZVWRTVKSLOHm5oaurUkzQ5aNRupyW7K83vD2O8e8fHnNw7ce0neO0+OMs1cXHBxMOb07pW4abBRDAO8GIgNRLDg6mY7eCK24vtpQ1R2nbx5x9+ERs3nOprzF4cokm15Lra8O8vzp53XO9+z508x+AdizZ8+enwBC87Qb2sb7YSjynKatUAL6dkAqjY0Mk8mMPJ8wnc64e/cNpFRENiK2muvLC6yNMMYSxwlxErPaLKnrLW1b433A2gilNE1Tc3t7xWazQWvNfL4gTwuur29ZLVdoo9Fak2UZIQSGvqftaoahx7kBN7jPGoCjKCaOY6yN0HqMKK2qkkkxwzm4vrygqbej5GZxhBsEt9e3DF1PXW4RgNGGMKZfYrQmjhMEAiklF2dnVFUJQvDo8UesVisG5zg+vUOcTvjgxz9GCHh19gITa1arii9/5R0WB1PSzHJyMmM+m2JNwrMnY1twmkWUVc39BwsWBxnOBbbbBo/j4CTi6OSQvvfYSANiTNZRBikUygjiyGC0xlqLNpphcGg9lnMpKdDa4D009ZiUE0cRBI9QgihN0EojCKRJwtAN+MHjXUAGyeZmTRqnLJdrQKCMwvWOq/NbNrdbyk3Hxesl29UWPwyEICiKnG25YTIpsJHCuUDfBuLYoIwiK1KCHOM6s8IQJ5I0G2NCiyJmcB7n/dgFYSVZnpAXloCjLBukhHJdMZlkY/pR8HS9wwcBAtI8wTs/Gr+VZhgGrLVEcURdVURak6Y5dd2xXm9QQpOlOUJ6pPR89OMXzCZTXj5/RZYZVqsOrS14wfe++yF3HxzT9hXXN5csDg7IspQiT4kiUFYRZ4r5IqOuen7jn77Ps8cXvPHmKb733L/7JlGUbW2SXiVp/MNf+dt/e/s5HvM9e/7Usl8A9uzZs+cnQPBqnefFZjrJ+q7vuLq9ZHAdN8st+TRBa0UxKZBKMZsvUMpgtMEow3q9JI4jRPC4YcAaS9NU9F1PFCUYY3G7pB/vR9mzkII4Hhtdu7bjZnmLCOxu2sfmWSEkSZwQEAQvGPpx+NdCIIRkMlnsmmo9IQQmk9kYrZkWFJMFBIlznrZtRgNx39M2NUWegYTBD9R1hY1iZAicHB5glAYvWCwO6bqWJE1J44yrm1eUzZrF4oA3Hr7N6/PXfO/7v0dVbambFhMJvvzVh/zct742fj3ec+/+AX3nIRg+/ugZs3nGbB7jfODwaEqaRbTNQD84pvOch28dMpvnrNYrssKSTyKEciSJoZga4kyhlBoNs1qhtCYQiLIYHRmMMYRd1GkIjnTXlJukY2nYMAxEiSVKIkCQTSc4PF3dEILDRJrV7ZKmriEI6qYhjgwheOqypu9a1usVy+XYxyCkJ51m9G6U9Cg1Lh/bsiIIQATiRLGYp+RJzGSakRcxUWwopgmD80ymGVLCEDye8RVDaQE4ktTQVh1GSaptzXxWEDxkSUEUW+I0wjmQQiC1wHlHP7TUVQk+kCYxkdFoKZFKMZ8vxmbl4DHWYmxEklqkDvz4g+fcvbvgh9//mMODgmePX3P3zTnL5TXPHp3x1lsPkVITkDRdh2fARpq7d6dEieH6puLhW3eZ5Ck/+t4jnj9+weA6zs+uMSZp0ix/keUH30Xsihb27Nnz/xP7BWDPnj17fgJoaZ1QqpRSDdtyi7EJq3VDlETYRDCZzlBKc3B4QJpn9G68ZSUMQKDrG9bra5zrkAjSqCBLC6Qcb9eFlGglESEAgjyfEkcJ2iiyyViaVEwy+qEfYxONGeVGjM2wcZyOQ5ux2CimyOckcUYIDucceZYz9ANaG7KioOtbetfS9R1ZPqUfem6XVxwfHyK8QgVJ37VU1Za0SHjw1hvc3N7Sdj2Lg0PquiOKM/LJlKvrMwKgVcR8vuDDjz8gimOU1LR9RwD+zM//LMMw8MEHH1KWDQ/ffMDzZ7e0bcf15TUHhxMWBwVN09FUPU3b4YPDGMVkEpFPLFk+Lk5pbimmEd57Do8mnN4dl4UQHHFsx+F/NF0ggDSNyWcZUkukNiRxgto1NwsRsJEc/RLDwHSekeYF27KhHzxKa5qmYnAdJtL0Q0/btUTW0DajWbjcbACPdwNVuaXvx8/YOUdVtXgv6DuH1gE3DDRNzzC0RJEejbpWoK0kijRKCYxVpGlEcGKXEARSSbQRCGVo6oF+CEipMZFEW0Hb9Qx+oO8Dbd0hhSfLErre4RxE1iKlAAb6fpSMIcEmFqU1Qkkm0wOUiii3Fd4LEAalJHmW8OijMc//7OUliVU8fXRBXTb83Dff5ebymu2mYjE/wIcBYyVJGtP3juvLJcenU04ezGmGli9//SEHizmPPrpEGY2NVVBGX2pr1ynsE3/27PlvyX4B2LNnz56fAHXbqaZqs7ZpVWwsdicjOTiaMAxhN7RZ5vMF200FQeC8p+1bhqHldnVF1zcoJYniGGPM6PmUY19AGqcoZRBqLOUyxuKDRypFcIHlzYbl7RZrRwlRABCf/gpobRAouq6nLCv6rmO7WXNze7UrgILIJrtb3p715gbn3RjPuUsnssZwc7Pi9mZJVVZsyy1aa6b5nO2mGbPtzfhSIBAUWU61XRMEtE3DnaO7LG+XZGlGlmZ0TYPwgQf373J0OOE7v/H7gOQv/dvf4uzsYkxDQoIQGAmr5Yabyy1l1TIpctzgUUoglWI6nSCFAi8ZBo8EDhYZk0nCtixpu9FImyQ72Yx3eODkdM5kmkAQoCWzg4Ikt0SRIQjIi4Qk1gy9B8KYz280QULfNIgANhoLuMLgx74GOS5H+NE0KwX44Oj7jmHoxwSn4KnKCtc7mqpGhIBWAj84usbhOo9gvNGXWuMGR2QVcWSIrKXvHEob6qal7wOB0SMsJDgXqKuWqmqxsSFNIyDg/fj3XJ7f0NQtSkfEcUxTl/jej7ItpUczdF3TtS1aW7wXDM4TcCwOFtR1SxxZisn4giBwaOF59uico6NDfuf3P+Dhu6f8wW//gM2q4cGDU/ww4Al43E6S1qGNoWkcH77/Etd6Xj695up8jTWaoXM8f/KKsloHlLtFCr/y7buf0/Hes+dPPfsFYM+ePXt+Agg4FIQ4iazMI0NiNWlm6buB1e2Go8MJR0czbq5XeB9QSqKVIgBt1+CGjqF3WDs27m7LDdvtesyF1xHWZmgVIRilPMMwjFIV72nqjuAZNexK0TQNfd8D4MPoHUAIvPdopUmiCG0kve+YzQ6YFHPiJCXgub4+5+r6NZNJht79XsH1lOUGH2C73VKWt3RdSQieo+M79K1nu9pgjCLNEqwxTKcTqmpDVW8QwOnJA7SNaNqa+XTBxeVrrq7P2GxuOTgq+Gf/9LcIPnD33h0+/vglddOTZxnrVUNV9ay3DX7wBC84OipAeIbej6ZmKamrhu22pe8Hjo8KDg8npGlMXTdorciyT2MvLReXt0gpuffggDg1tO2AVIGT0wWLwynaeJJEoyVMpgZwBOHJigwbGeLEjvIgN8phikmOAJqmJU0yCKMEy8YRUmsQAq00QcgxrtREBC8w2iCDp29bfHCkeUI3BLabFtAMg6csW6RQtM2Ac6CtgSCpqjERyijD0Pb4fhz8pQxoa1Bq9D6UVU+S5WRFjACS2LDZ1vS9pK5bZosCZRRt26G1QSmLVmMSUdeOL0AQSCJLVa8ppgVRlFLVNZFVZGnE5cWGJE/46MNnBB9wfkxj+ua3vsLl6xVPHr3g+vqS7eqWtqpo2oG+FfjgODieYFTE5dmKIon5J//oX/L73/mQtupo6g1tVzXeIxFqnQT96HM63nv2/KlnvwDs2bNnz08Ab/3LoNS1FpI4NuRJjNaB89fXFJOCLNdsyw4XWtIsI88L+n5AKYWNYqyJ0HrU85dlSdPUhDAuCsMwAKPuX0iBiSKElLtb5Z68KLBRxOAcXd/jgme1WnJ9c0PwnsE5lBr17gKITERVlhR5zmQyRQpJFMV0fUPXtWRphrUJ1kQUWYEbeggBay1Ns2W7vWG5uub45JQoSnh9/gzXVxweT5nOUqLIjNIZa0mThDwvsNby/OUTTk/vcX55zouzl2STCe995Ws8evSKjz96RpYWXF1fcXOzRe6+7+XNBu8ABG3tsZFEKk9d16RZjFER3gUCHmMlB4cTksQSxWaMukwMs3lOmhqcc6zXJbN5wb035kSRpGsgyxK0tmR5RFZolAKlwBhBkkb4AJFV5EVEYMBGljiK0VoDkul8ho4MAokQEqMNaZZikghl1PjZKTkWvwmF0RqlFSFAud0SgsNajdSG1bqmbAf6EGiHQNM6/ODp+wHE2GSslCRNE5zvUFoihKCuakQYpUpRHBEnMdrIsReg7Tg6PqB3jjSPaLqOthlYrzdoI4nTmKZrd68XmqbpEAgia3B9Q91sGPqWoesJDOgojLG1XpIXMW+9e8D9BwXVaskf/cv30QNsbkpubzYkacLdO/eIbUS53dA0Lbe3S8qyIU4inO+xVvPi2Q1GS9770kMuLs756KM/YrO9wjOs0yJ/lefpP/mP/87fWX5Ox3vPnj/17BeAPXv27PkJ0LV+6Np2UratNNYQvMNIhUYymyW7ZldH1/VIIfHOE9kELS1xnJGnExCwWt/SNDWRjcahvOswZtRn611yTd/1NE1J2zUMznG7vGW92aDU2DtQl6PESCsFn5laAxBQWlG1NRDo24bV7TXL20tWt1fUVT0mEEUx11fXlNWWrqtxbsDYiK5t8H3Dze0VB0cHNG3F5eVrIqt594tvkSTxaHANPfce3B1ThUxGnk25uDznzp17tE3D64szFosjjg7vI1Asb1ecHt1ludrQtI433rzDg4dHtE1PksR0Q89mM+AIHBwvCMKQpNnYQOvqcfg3BoKgrFvSPEZHCqkEaZoghOR2WTEMgcOjjMVi7EpQSrI4immaBrvT2BOgbXuMVhgjkFox+IE0i8hSjZSA8ERRhADiJCbNYuLEYKIxtSfKEpIioZiMTcpKa6RSxElMFBmsNUQ2AjzDMKCUJo5SqnVL2zjarsMHzzCMvzbrBu/HJt627dBG4N2AGzzO9WgrkRKkEjSNo64rfOgRSBSStm1R2jIMjN9P5yi3NcEH+m4gSTIQnq5tSaKUtm1Yrzfj61RTU27XLJdXdE3N9fklQzfQNg3BOdLUkGeGB28e8ld/4S+TTiQ//O4HlMuKo5MjotxyfnnBbDFnNp9BCOAE65uSm6sNm1VHP7QYY9hsOk5Op5zeORpjZ9uabVnZpu22X/3WX3zxOR7vPXv+1LNfAPbs2bPnJ0DfuMOybO8FaYohCHrvcT1EdozkrMqONJG4PkBwLA5mY0JOPiFLJigTjZp7I2nbCikFaZoRRaMkyJiIOE5wg8f7Ae96qmpLVVU450nTbPzf7wbONM1IkgwlFUPf0e8iHt3uRUAbxTD01PUW7wbAk6UpfggEL8jzDIGnLNdIKTFmzLRfr5fM5zOatqWua+JY8dWvfZG+81y8vsV7z5e++C43V1dEkeX4+Jiu78izguACL55/QhHHHM2OOJgdcnN5jdUSaSR1d8tXv/H2mN6DpOvGG/w0s9hI84V3H5JPCtpuNK5eXtxioxSj9Vj2tdlyeDzDpqPGX6jAMDiePb0A4Oi4IIoNUSSJY5gfRNjIUBQpp/cmKC1ZrUoE4ytOnFiE9ESxJk4lNlZorUkSg7ESaRRREtP2A1keU0xTlDFk0wxpJUkWEacxSZ6irSFOY6aLGcYapFYoq0nzHKXHheb87Jq+HTBKE1mN6x1uCJSbDgLgA34YU3vatieEUZuvtCTJYoxRuCHgBsiKnK5zhODJ84TNdkPbe7rOk8YRw1Cz3dZsNi1xnGKNpusalB4Tf66vb+g7RwiC5c2Sm6sb+q6mrrZcnJ3z4sVzXl+cEXBkWcJqteXgTsov/s//Ml/71hd4+uwlL5+/4OhoynQ+49Hjx5jIcnxyhHOOsqxJkoTb24bXrze03cCLl+cYGyPwFFmBNbFX2obtevvW7//jf3z4uR7wPXv+lLNfAPbs2bPnJ0A7dP266vRy26arsqF3nqZtsYlhtarRRoEI9H3PdDZjcI754oAkTXHBgRxnPIKjqTZkebq7tQchxkx95zzGjPGebduSxAlHh4fkWQYE+r4jBLDx2Das9KgjN3pMj0ni9LMCsRAE3eCxcU5WTInimLLc4JwjSwvSpEApTZZPSJIMgcK5gSAVIUi6uiXPE9577z0++vAxn3z8lKYuefjGPW6ub8Y0oXRM7ZlkU4zWXF+9Jo4TTJQwnc94/uop17cXTGZTVtWWn/35v8ByuYEgefb0NdpotmWFtZa33r6HG+Dp4zOaumV1u2E2yVBilDfd3q65c/eQ+SzBDwOSUWN/c7vBxobFQY5QYszyTyKiRJHlMd71FFPLZBqzKaudzl6BDESRBe93nglFsltE0sxiIoGxhrxIQAiUNru+AUGSmrGFOFHEqSHJE9I8I4oikizdZd9HREmKNIo4iVDG0A+OumxGMy8BoQSDg7JpaVtH3XQoIwki0LXQNB19H/AhkKQZQhhc37PdVgyDw/WBpumQSmAijQ+O68s1UgiSOGG9qnny6DV9WyGkoqkr6mZcKLXWrJZL8mICQtOUHVdXt/TDwHSacrCYsLqt+PjDMwiKPE+pty1pYvkf/7t/ib/yP/xLDI2n3jTcOTlksTjgyZOnXF5dE8WWrh/4+KMz4sTSd4xpSq3nd77zA66vrrhdXoWub67jNH6NkMWqrt/+HI/3nj1/6tkvAHv27Nnzx8wv//IvxW07/PnByXc2rdA3m4bL65uxcKntWC83xLEBDFGU4QaPMZq8SKmqLf0w0DQtsY3GNlkh2G7WNE2NlIIQerbbNSGAlAatDAcHp8znRwQgTmPSLBnVFS4gdvE/Qow391JqhNC0XUfbdrsFoiOyEX3XsdksaZot+aRgOp/Ru56mbmmbjrqqkFKRpik2isjznEmxIEkyTg7v8P7336faVrz99gPeefcBL19c0nYtxycHFEXC/bsPxn8+4J0DqXjw4CHPnj/m6vac07sn3N6ueOedL3N1dUteZFxdLkmilB+//xxlIg6OFlxfLXnx/IxyU5NnMcUsxsaC4OH12ZLJNGE6LQDo2orgBuqyJ/jA0eGE4D1SwGyaEkWS+WyCFJLpLEPKMRKzLXuUgDSJiNMxVlSKMYJVaU2aRUSxQmtBHBuSdPdCEI2RoXFimEwyhBDkWUKWGZLUMJtnZFlMkmqiWIESxJmlmKRE0dgrEAQUkynltsM7T9M5vPfUm4pq23yW6uMdY0Mwge16/LPSdT3DAHGSIsy4MPreg1A4J+gqR2QsfdPy6tk1Uiua2pEXCVcXt5RlS1PVOOe5vb5GEDBasdmskEIwmc1AStqq4eb1mucfX5PYlC+8c4e27Pnhd19Qr2v6xnHxcsVqVfIX//I3+Iv/vZ/hZnXL+eUVb731gDfffEiW5UgtSFJLEltePr3EyDHJSgTJelVSVSWDd62Ko+c2SZ+ryJ5v++bP//Iv/7L+/E75nj1/utkvAHv27Nnzx8zNzcRu6/6tTd1n29bTDgFlRp33dl0Sa0OWxpRlzWIxxXlHFEes1kuEEKNGW0ic5zOD72pXDtb3Lbe3VzjX431ASjneHEtDWVZIOf5rve16QvAIAZvtmtXqZmfENSg5SlekVph4bBtWUtI2NQRPlk6ZFMekScYwtCgFk2mOkIKua9hu158VkSkh8d6TpxNuLlcEpzg9vce2qvj4oxco5fjGz7xNMYmZzxfEccL4OtHjvOONu/cpVys2qyXvvP0uOE2RHfDs6VPWqxvWy4qrizU/+sEnZFnM4cGci7M1N9drklSRFYZ+6HDeI0TMo08udxIpSQiBuvQ458fGW+c5PJyiFESRIc/GF5D5fIK1kiSxCBGYLyZsNzWbVYMxmmKaMJnGTKYWrSVaCbSWJIkmzy3WaLSRFLMUHwJpFmEjBcIzP8yRQuKGnqIYXwFm84hialBakGQRSWrIckuaW5I0Ip9kOzOuJcvjnQ9hgCDYrioIYSxka8a23mFwxIlhta1G/bwy1FWJEANSCIKDumqxMZhI0fY9201JnhV0rcN5hwue2FqkhOvLNdW2RITAarkkeIcIAe88q/WSNI2YzSdoqzk8mdD1A7/zLz5iaCVf/cabmBhePF+xuh2XlcuLW/7wez/m7sMD/p2/8nMUs5inz58xmU3xwGw24e79Y6SRnN495Ob2hrzQ5FmMsZppsSDPp/V0MT9fHB5+MD88+GEUJ8P777+/n2H27Plvyf7w7NmzZ88fM3EcB5Surm42om47pJIUacb19Q3bVUkUy/H2PggmE4sbHH3viKKY+WKBNZq6XBPYRTga/Vn2fl2XxGmCMpogPB6PEIK+b1FK0bYtN7e3eO+Y5NmY6e7c2BqbZ1gbjSkxdcm2XBOcG9OHtCHNCubzI5IkY7NZcnFxRtc15HmOD44QHGW5xfuBqtrSte14K11vubh8zeB7Tu/dxQvYbjvm8wnf+Jkv8fL5DavbGuck23LDcnmLVJLT03skUcLt9SUnhydIqajqmvOLZ5yfPWO7qnj+5DU3VyvqduD0zjGffPiM73/3EX3v2WxrlLZcXZVIqXn16oreeeZHOVGcc/bqkrJaE8UWbRRpblFGAIxm4r4jikb9/mh6HUiSCIRjdVuRFymLwwnTWUSeRySJIc9ztIY4UlijSZOYOIkwVpJldkzhkeOCEQhoEyiKlBDAe8hyi7GKYhKhtEQpSBJLkhnS3BLno5xoMstxviPJNFFkxhz+ukdIiY0Mzo2xp3XV0DQNcWoIeNrWI/AMXcfgekSQ+H5gdV2htaQfHP3Q4wZPnGqywu6iaHuSWDGf51RVA0g22y3aSNzQIaQnjgzlZkXwHUlqxy4JFbjzYIHrHN/73Y+J44Q/9299A2U1Zy83vHh+hXOBclvzz//pH7Lalrz1zn2m8wXL1ZYkjTk/v8L5nsUiJ4oFxSTjk49e41xPtS0ZupY0jrvJbPJofrB4UeSzi/n84Dd/7dd+rf98T/qePX962S8Ae/bs2fPHzK/8yq9s3rj/xj9bHBw+KZvK123Ptqqpyga8J00N5bZmMklxw0AIoJRgMZ9zsDjatfTG2DgeC6V22n/nHFGcYG2M955h6CGAGxxKSfq+o65rsiwjiWNulku0tuRZgZKW7bYc5SRtQ12X5EmGFpI0jrHGYq1lcKMRuOtbht4RRQkhjOkwaZownU4BxsSXJMEHT9u2hCDwQeCcRxDo25p+CHz80RkX52vcEFitbrldLpnN5izmB7z58C1enZ1xeHTKnXv3qKuati+5uDxnNpnTtw3Xl+c8efoxX/rKQ549OWdzO3YczOdT1suBy9cNaZJhleH2uuT4dEGUJLx4eQlKcXg8G/0S3qOUpto24/fZO7RW2Eji/cDQB5QWIAJN7RBSMpklJCkkmSWOIow2aKMwVpOmliSJMUajtaSYJGR5jFSCKFJEVpEkETbSxInEGMUwONLMjr6AxLJYZGjF2EegFZNJQhIr0lSTF4YoipBSoJTE94H1uiJKIoQArQR11dC2LW3Xo7QkTSP6xuGcp2nGP1dlPcZ5+gASPcrBgmS7LamqLUluQEi6rsf5gcVBho3Gz9G5QBRHRMnodTBWYoymrlqytGA2n1JteybTnK984yE2cfzohx/Q9zXf+rPvcnovp2sHnnx4wVAF0sjy3d97zKPHl0wWc4IIrFcV1mZcXiwhwPq6pis9fdXw/h/9iLffvsO6ufSrzW0vg1RZln3PRtFv/d1f+7XfFUKEz/GY79nzp5q9fm7Pnj17fgIcHR39nv/S8LeFGKaXFzdfqJpOhgH6YYo2mrb3BDeghCaOLU09GiZ9gDjNyPqOPC3o+x4pJSE46qYkzSZ4PyAERNZSldUo55GaNE0pilH3vllvx3ZgD3VdsVqtMdrghgFjLEUxwfmBzWaL84E8HZuKfXBMiinGGJTWCDn+Na0Uq6albhuE8LRNRUAynS0okpS6aqnrDctbTZpGCCGJbERVdWR5RPBwfn5FFGVkWUGcKD788H1CgHt379G5UeN+dXnNl7/0dZbrWx4/fURkDf+TX/pF2ralaxsuVxu+8bPvcnZ2ydCBjTxHJye8/4OnYxpR3VOVNcUk5uTkgKos2W4qsiyl2nYkcQpA13fMFxOE9LhB0vfj4Nw1A2kS73LpFVFkmU4y4jhiGAa6viFNI5QeZUZtFwhiTAYydjfIz1IEnq4JBK1JtKcsHdpIQGBjg/eOLLJ4HFJofPBoLZgfFFR1QxxrssxSVT1CQAgCgUJpSQieKDaEMOC9wLmAc47FPKWueqRU1E07xr0ODiEENh5v9K1RYzOylKyWW9LUIKUkjhUhOCaTFGsVUo6ldMYoghZoYwDQeoxRbZqGPEvwi5TlcsXx8R3QgavzW67Orwho3vnSPdI85jf+6+9xdbFlW1YsjhZcX28QYsvp6RFlWbFabUFNePniljBaFUjTmBdPN3z04x/x83/uW+6HP/rRxzZN/9C/m/zmf/rtv9N8Tsd6z56fGvYvAHv27NnzE+B/+R/8B7fpNPvhu++9/dt37x6+MhovFGhraZueuqypqwGjFFGkEHjiRI057HHOdHZAlk3I0gLX9/R9y+B6QnAM/RgN6Z1DSUWe52MOvRBsNhvatiWOIkIINE1FXVVjkowE7z1G6TEjv6ow1pIkCXbXMaCUpm1bvA+4wVMU4xKyLStCEGglKbdrmqZlMp1zsDikLEvabszfR0DTtnRdy/J2iRRjsdbNzQ0nJ0csFhMePLjD67PXeCf4wttv0XUd6+WStq744rtf4uLijB9/8j7res0Xv/IVimLB5fkNVVkTRE/vNC9frhiGnqOTCWevbgFJ13coI5hMY46OJnRtze31EmsN3nnErpSt63om04woGjsU2qbHOQ/hU4NvIE0i8iJiMkuYTPMxW19LlJREkSVJIpTS9N1AFBnSzJDEmijSWKPIspg4jfBuICssxmgIAakFUim0VZhYEaURykKSGZCBYhaNhWZWkeQGG0vYfXbaSKQUDMNAFGuiRDMMQJBIYFrERFbifUBrhR8cQngQApto2u5fvRQN/YAQiqpq0AryNEZIkAom04zJNB8TjtIUsyuli+MUbSKm08XOUDxQFBPyPOb89RlxHKGtYrNs2a4qPvzgBZuy4Ws/9x4qEjR14NXTSwwK4QMvnr1kfjChmMa0VcPqtuLZsxd8/4/+COccSZxw9uIFv/c7vyO+8IW3v5ymuYvOIvc5H+09e34q2C8Ae/bs2fMTIjjXGs0Hbzw8+a037h6+jK2i3GzZLhu8Ezvzrx1vPcWYEFTvhvLZ7AClLMPg6doerTTWGPquJQSP9x4AExmarqWsSgDiOP5M7qKVggBdV9O2o5b/8PAQKRQhBNK4YJJNMMpSbpf0fY0xlsgmJHFGHCW8eP6Cpm6YzaYYo8eceWmZzY6ZFAuqqkdJS5oWTIoFTdvSdi1xFBNFMdNpxpPHzxHCcP/hEV/9+tucvbpEa82f+fmfZT5fcHV9xcFixtHRCavVildnTxAI3n7zSzx84z1evjhju9pyeX3BW194k8efvKSpB7Q1NK3ng/fPUFKzvN0wn+X0fUtZ1lye34KQZHmB94o0s/RDi9KKw6NDttsarTVCQJrFBOExeny5CD6QJprptEAbi5IWgQQkUkq0NoCi7z1Ka6yNRlO1VRgrEFqSFpbghnGQLgyD99hIYeNd7r8WzBcZNlLEiSVNY6QULA7SsexNKyazBBtLotSOaUOJwkYGISHLY+JkXASlBB2NUiRrFXlmURKkFAgVmC3GgV5pxsWl97ghkKb/SoYWR9HoX0gS4rSgmMzRJmYyOWAYBFpHZPmMtvfcvfsmbR+QOsLajKJI2W62nJ4esl631JVnOs949fKGtu148PCIh19YMAw9F68vCc4zm8958vg5i/mMvu1Y32zGorK65kff/wF9W+Fc65bLm49evHz1I6vF/+z2xYuDz+9E79nz08N+AdizZ8+enxD/3v/uP/pdodSHVonbxbS4nuQRiRb0dY8UMJ0mJKlEaUiShPWqIQTHbJqh1FgAtl7fjJIMBEppnBtQEvq+R0iFkBIpFUkS4/xA33ck8WhwLcuSYehRWmPsaDbebDeUTQVSoLSmdz1ls8V5TxynNHU16tyNGV8d+h6tDX3f4b0niVKyrEBpye3yirbZ0jQVwTu6viGfFGRZvstxr3n0+DEguPtgzle+/ibn59dU9Zavfu1LgOD5y+f8/M//HEmS0TQ155dn+AAnJ6d88xtf5+rqJevlNY8fPcaamMuLLQJYL68IfuC3f/P7DENP53refuc+5XZLcLBdlwghmc8LpFBYM95YDy5w5/4pZdkghEBrizZjJr5Uary1F462H5jOMtIsRUgNQtEPHVKDNmBjRRBgjMHsXgac60kSi1QK1PiakKYx3sFklqG0pK0H8tTQVB1GWyaFZTotEEBexERGk8aG2SzGWok2MD/ISFJFnOrRXxAphIAsi0kzjbHqs4bhfJIQJxJrJXEcEycJQgYWi5wi1xRFRBRpkkTj/DDGki5yAj1CKaI4w9qUOMnIihlCGorJfJST7boI4iyhqkvuP3iHq+slNoqRUpPnGTeXG95+9w3W6xIRFLGVfPj+S7abnvlBwb/93/8Z3v7iA3rXYWNBkeWcvbwmSQ3dUHN1eY3RhthCWd6gI3GzOD76YVRk/+dh6P4zbcV/9O/+1b/65ud6sPfs+SlgvwDs2bNnz0+IX/yFXxhbtqTyUob2eJauHpzOQmQEaaLJJxplNHGsmRYJbnA7eYhFCkkIA+DwYUApje8dVhv6rieEUfctBChACgUEZrMp3nvW6w1SKdI0GfP9+5bNZk0IgiiyBKD3HWVdjoViNmIYOrQxSKlou5rVasnhwTHGxgTCbmA2GGu5vR3z4ctyNTbCNjVI0ErRtB11U31mGH3jzTu89+X7fO8PP+Hy4op3v/iAqq65vFzyrT/7Laq64+b6mpvLC/A9RT7hG1/7OlfXl0gpefboOcvVFffuHeG7nlcvnnL3zgG/+9vfo2s6bKSx1rDdlqSJRe2G0dk8w5qYrm3ZliVd65jNJyRxwmq1ZjLN2FUk0HU9gvHGvNxWxLGmmKYkaYKUin4Yf+Zaa2xkxwIzo4isQYqAFhItJVFsgYDVCq0ENtJ07YAWMJ/lEAJaSQ4PpiyXW0Awn2ZoqVASolgjhCTPIqazAu8DxmpmsxytJXEWEWcWZdS4tEWWIo93XQMZWisWB3OM1XjnOTo6QkiBtYaT0wVpYckLg9WKJNYEP7A4mlFMMwgerSOUsmhjidMME6c0Xcf84BikZHA9WkqkDLRtw4M33uL8/HyUU7WONEvYbLbcvX/Ejz94weLoiNVyxeXrJe//0SuePn7Nw7cP+Zk/8y7VpqTalKggKDctb3/xHouTCa53bDa3NN26S5L0dVFMrmbT4g/+0//8H/4nBPEPlHD/i1/4hV+Yfm4He8+enwL2C8CePXv2/IT49V//dWcy/RtxnD1aLOaf3Llz8DxPVZlEDi2BIBBi4M7dnLZpSJIYbQVVWRKCp+8H2qbBO5BSo6TEO4cbevzQQwgENyAFDF1PGucEB03dMJ/PyYuCtu0oyw1d1xAnEVFk6LqOvm/pmho3DCTJmF9P8EBP3Ww5e/2ctqvZVCsQo+wnjnLSLKfrWpQev8662e6MrBKrDPW2REvF0eERzvd882fe5Y2HR/xX/8U/5+Wz17z7xfvMZgXr1ZbDoymb1Ypnj5/x+vUrJpMpR4tTvvn1b7G63dDVDRevz3nx/CV37p7iBnjx7AV4xatXl4RgaKqeOE5QxpIkmjQzpElMmqSEILm5XbJZl+MrgFVMJjnXV1e7gi6FlJrtpkYgxmhWDVU1cHwy/2z4J4ylZQKJMRZjLOP/fQrCLohGCoHSCqFGvb4SiijSeAAhEWIsC4sTS1XVHCwmZFnC1dWaIQxM5yltM5DEEUIEQggUWUJeFLjek2eayTTGh0AUj/n4AoHznjTPxj6IKEbs/rMoCpquIZ+kFHlBWdbkRc7h8SHGGpQdk4q0kggBi8WcKBoXRcRYHqa0IU1zXAigNWk2GxfNEMiLgrJakyQxSZTTlg3VdoOxgvOzG+LIEsWGDz54zrtffoNHnzyh2qz5+P1HvHxxjVCK07t3WBzOaNsOJWPaXvDNb32Nk7sHu69BvY7z4sM0z84CYgLwf/sH/9Xf19b+o1zzM5/Pqd6z56eD/QKwZ8+ePT9BNhQ3XvvfNdY+0lJeJpG+PZglg3A9Ugiy3NK1wy7yMTCdJBA8TV3Sdx3aaIyJxoIvAV3XIqVEEJBiLHEaQiBKErSxrDdb4ngcBLebDX0/4JwnjhOk1Nze3tB3LSI4lJAcHx/j3IAbBqTU1HVDCIE8L8Yh2sNmuWZ5e0sIDgnEcUqeTpnPjkiTAoIgzybjkqL17tXBcOfOEdZa/p//j+8wySfcv3+CG+CjD5/QNBXWSF6+eEGSGO7fe4A2hgdvvEldN2zLDc45PvzoQ+LEkiUHfPf3f8TF60vOz2+5vtmQTxNW65IQYLMpidOUbDplcXyMF5LBB+qqxlozZvanCVXV0A8t1mq8H6VUUggia4mTGIEijizHJzMCmgC0XUMIHmv1uABYi1CSAGMaUxyBUtjIEsUKT8CHgI0TEKNcyDkHjMlBURSz3ZacHM+QQF23xFmMjSJC8KS7jH039CxmOZHVY0HZPCdN7Ti4y0AcW5ASoRT5ZEoQgjTLCUAUxURxQtM0vPHwDYZ+YLnaUEwmHBwejr6HIiXNE5q6wUYxk9kcKdXYHOw9BInVCVk+pSpLYhOT2JiuaxmGgSSJWa5uOD094dXZLdoaXjy74Ktff4vf/s53OT6Z471DG8PiKGe5WbFZ1/zwux9RlhVOBlSccvLgAB9atIp48fyCr37jixTTSRBS9VEUVUmcvpgI8/1Pz9T/5df+8//GFPPvfD4nes+enw72C8CePXv2/AT59re/7f/Gf/gf/zcd4Ts2No+T2FwoMazbah2882zWHUpZpB4HvNlsjh8GXD9gjCZJc2yUEMcp3nukHG+tlVJ45zHKIKXGe09VlbsBTuGGcfBXWpPnE6yJ6Id+11SbYW1Cnmc0TUPfN8RxhPeSSbEgSTLSZCwFOzg4ASGp6jWr5RXDMKblpEmExOG9QyhFnGVEcTLq4q3BB8f52SW//3vf5/TOPU5P7tA1Pe9//wnX17e8+97bDJ1gPpvwxht3qZua6TJ0vroAAPoYSURBVHRKZC19W3F6esQPf/RHWGs5OLrD5eU1q9Wai6tz2q7i7v1DHn/8BGtitpuaNLGIEMjSCXXd4H3YdS7ECBmIk5jNtsb7gDUxfe8wRgKONNUQwGhJXTfcf3iCFwEpNX3vCD4AAZBEcQpy1ODjA0oKoljvknoEUWyItCGEMXFHKYmUfDZUhwBSQiDQdQ2zeTGmQlUd88WUgMDEEdoahBRI6ZhMx5eIKDJMJ5bIilF6pOQuDSqMRmVjiJMMIQ1SaYpiSt87kiTh8PiQuq5p6pr5bE6SZGitySfj68F6vSXNJmT55P+rdyIAkY2RCMpygzYGpTTr1QqJYrvZMISKYlHw4cfnLJctr16c8a0/82X+63/8OxSJ5cfvf8y777xFlqd4RrP7b//GHyAY062Ojhfcv3/CxdkZ/bblkx8/5t/67/68ny4mvu3agDG0mbf/n+fqV3/1V/clYHv2/P/BfgHYs2fPnj8BfEh+s/d82PX+si6bK6NUH9kxqccatXsNiNist3jv0VoxKaZEUUIUpwx+lAGFIIminMFBCGFseh0cIYRx2FQCqeQYo5gkRFHE4Hq6vqOqSibFjDjKmM8Occ7Ttg3eO/q+I01SbBSxXt2yXN6Mun8CeZ6TpDnT6RypAhJom5rNdoUPgaPjuxT5lKquUFqRpJazV2c8+vgps8kBAsXV1SVPnj7DB8dXv/Yu83nO4iDnrbfus16vefjG28RRws31LXdOjvnx939AHkfMpuNA+uLlU65X5wijuP/GCVW5pVw1CAICwe11zd17d3DOUa4rcB4lx8z8JE15fX6NNpa+H5BCYK2m6zu88wzDaNbtu4HJJKeYpjtz8Di8K6Xo2m6UDGmFd4Gh8/R9jzYKIXd5+R6slhAEWim0kERGY6RGfVro5Ud5j7WKoR+wZowI7bseHxxpkeMRSC2ReiwPi+MIYwyDH1+KtNZEcUTwHqUUUoBzA1pHu18GIRTWxkSRYXl7y50797Empm06vAvji43QpHHGdDpls9nSth15PkMITQiBwLBrgIb57GA0gjswOsVGCU1TU2Qzri5uOTkumE0L+sbz2//8R2w3JV/60tu8eHqBVobf+q3f4ctffYukGL+XxMScv1hiJLx4fkk/eBJrefzhB3z4w+/zW7/5W/z8X/jzh4vDY9F3w+vb2+H28z7De/b8NLFfAPbs2bPnT4B/71d+ZePj5B+Spn83aP3dvCjKrqkxSnB9udql5nREkcVE41BotCSJE4wxaK3oBkdWFCitkTLQdw1VvUFKiUSi1Bjv2bZj+2vbNGw2a/qhp65KBII4jjk8PKTvewbnqNuGpm+RUgCezXZNVVfMZ3MEgrOzFyyXV1ij8MHTtS1SKTySOC04Ob6HUZaq2hJCQAp4+vgJy9sbjFYEJ3n9+oKXL8+I4pjDoxl3752yWtaUm4aL60ve/MJbAGy2G7Is4/nzlwx9j0JQlyvK1S11taLrKt56+w1OTo/56McfgfCgPC9evKIqlwyh5+bqmuA6xgRUT2yTMXHHjIVrUo4Z+VVT03Xt2KJsLDqOSNKYPE8QPmBNRHCO4EGbiCDEqLv/VIrV1uOCJGEYIPiANoo4Seg7hxRiN+jL0UOhNMYohJAIodB6NAt0w0CaxQg1fm7WGKRQ+BDGG34bUdc1URoTkAghsZEmSWO8h2EIGK0RAZTUGBuR5cXu6zVoOyYcOe84ODyi63p615NmOd5LQlBMJlPSNGF5e4tUaiddEiAEgTC+PKmIJMto+w6hNWkxoe4GZGTJJzPOXq5474unlG3J5XXD//2//BccHM3ofSCfTEizhB//6Clf/8ZXWBxNAU3XOZI0IU40z56/YL1aM58vSKzl+uxi873f/+76/uHJXzZCHP36r//6Pv9/z54/RvYLwJ49e/b8CfE3/vd/6/1rO/8vglQfOedetGXbNWWDFAJpNc5Lbm/X9F1PPi1AwuHhwU5zPQ6xaZrRNRUhBHrXIoQiyVKiOKJpGqqqGn8/IcbbfTfgdjp3pRRVVVOVFZGN6LoWgscIQ3ABISWTfEqRTyiriuvrS9brJUPfcX19yfL2kqpcY4yiKKZ4H2ibjq5raLsGrTVt2+FCQNmIJC+omorb22uK6YzJdMHp/QXXV7fcXK3oGfjqN79O07Q0dUmkDdYo4ighTRMEgjydopREhMDd0xOKNOXF0xe4LrBtNnSd48mTRxweTbm9XNG1PV4EvNB4L3beicBsMSWEgTiOGdyAEhLvoGsHDo8WEAIIj3MO5wKb9Yq2qXHDpyVsDoTAu56uqWibBsHom3aDAzkWfElhkHJ8YXDOoZTCGLXrCrBorfE+IMTYJ9B33bjkKUPbtqzXa6wxo7RLyF28q8c5TxRF+OCx1mKtIU0TmroGRonRzo6M3hV3eQd5tiBJU+qmYjIpcA7qpkQqmM5ndEOHMTGTyZRhaGmbijRJUFLh+46hHT0hgx9Q2uL8gPcDQ+dI04KXL19ycLhgudxwc73l7Xfv0fQl5+dX/Jd//5+QRJZPPv4xic24vnjN00dPuffgHofHxzgfuFmuyYopi8MjEFCWa1xwQ1EU2+22+uCjR4+eCu//1//T/9H/4N/5HI/unj0/dewXgD179uz5E+USnSavejc80lKtRBDYyCKEo21rzl5ekGcZymgWh0d0fY+UCmsj7ty5w2azpB/Gv/ZpE2tsI5a3l2y3a5wbmE4Luq7DGEuajoVe2tixQTayKKnAB0LwRCYiiRKMiUAI6qam7SpW61u00Rwf3SPL50RxStd3dH3Dan1LWa6pqi0IR9Ns2ZZjWpA1FqMjFgdHzOYHBGA+nzKbZ0xmMdJErNctSRzz1rtv8PjHL3n5+CU3t9ccHR2TpimxjZBCMimmHC5O0EqTpTlxlPDk0WPWN0u6rkM4aDYrRJAkWUZdNrQNtG0gjmOkVITA+KqiQWuz07cHJIJqW3F4cozAMwzd2KysND4E6qpCabmL8Wx3EaiKrq4YulE6ZIwdpUEhELwbE3hMQpJEu89UjLGh1mIjg1IGY8zYxtsNaDkm6pSbLXmaYLWiqSrC4Ijt2OzsAyRpTt/3RJHZFZcJIBDFBiECXTt+1oTx1l4gUMpQNy1GR6TZZCyFE5qT0zuUm7EdOk3G9l/noCgOSPOUpinxziOFRCEZuhbvB6RWwFiS5vqWoW+xWnPzuuKDHzzhrbfucXF+jY009x4csC23rJdbnj95zunRAY8/+YjIWp588pgnjx4TWU1fN+Aky5s1201JbA1DVwcf+rW29nwyn752Wv7LbdN8z/fhb/zSL/zCtz7fs7tnz08P+wVgz549e/4ESatMdEMQINdai6UUeKUEeRpTlxUCByJgtKHvh3G404bpZDZKbJQiSROGoSOKYpIk4uzlE5a3l7iuJ4li+p2BOMsz8mJCnKa4EDDW0Pc9XdfjnCdLU5x3u1vvgdX6hpvbC4ZecOf0LebzY0DQdQ1dW7Mpl5TNBhd6pByNwIIwpgoJEASGruf09C5JnBHCaAg+OT3k3v1jpILNdc319Q0mCyyv1pw/O+fVszMWiwOUtVR1S11tMcpyeHBM2zVcXl5xcHjE+flrHj58wOB7tuWaSEsuXr3g3Xfe4cWza66XFc+fn5OlOVqPptu27ZB6d5PuPDaKUFqx3Y5Rq8ZqNpsVIXikUgit0ZFlMp3StT1t/enrxli65r1ncH5M3xESHzyCQN20aK1QWu1MvBHD4JBSYiKLjiw+BIZh1P0LIcc4Tq1p2h4hBcZopJBUVTVm/CcZ3kOejx0AIYxfv5AKKceytjRL2ZbluBSIgBRi1w8hEATariFJMoxJ8N5R5AVxHPHixRl935MmOXVTo60lS6eAomsblFLj96gVbTu+hMRxipAWY0b/QblZ8eUvvcujj15hTYw2McvbCqNjjNYEWpq2Zbtueeud+6xWGxaLI16/esX561fkaUK5XhNJwdCWPHvyiKGrB6H8JVosQyCaLRYfxEXxf3BC/B+VUuLzPr979vy0sF8A9uzZs+dPkLhpuhDYKquW2spzG6lWy4DrPGGQTCYFQowZ+wSPNZokjkjTmBDC7jZf0/Y9SZKzWi5Zb26RWqCtRmpNPwx03UDAjznvSJTQSKGQUqK0RJvRcwAQxDgodl2HlIr5wQHs7LVKj1nxwXuMTphOjvBOjIViNhlvsrXFmgilDJPpjHK7ZXV7S1NVRLElihMeffKMZtvx5NETnG9ZHB7w/NFLnr34hHyWc3J8Qt9UdDsj8WJxQJFP6IeBo+NDlqsb3nvvIcENnL18RZHGlNWG2eGC25trPvnxM549HqMo40jTtwPeQ5RGTKdTbm/XCDRKaoY+MDjHZJrTtWP/ghRybEw2BmvHMq++G9huK5TUwNi14P2oForjZDfgK0xkEUFAAEePshIfxhQdBONSYMzYEBwCxmicCxDARuOi0HefvvSMYTfeDVgbY2yEUhprIrq2Q2uNVGbnA5GkaYqSks1mO0aHurFMTggFeLwfRuN4nNMPA0JJDo+OccPA00fPKLIpbdvQthXFdDG2TfuBtm1RNkKq0cDctRV914GXrLcV+bTgZnUFquNr3/wy/+J3f4g0MZ98dM50WrA4OEZIixCBly8vmM4WHN2ZooTi9OQ+zsOmHuVozx495mCe0DY3rFZXTmm18QiPUNs0yb7z9/7+3/+j/+wf/sN/8H/6e3/v9z6fU7tnz08f+wVgz549e/4E+et/62+1Oor+OVZ930b6PAS/CsHTtQPOBSaTCdtNSVPVEALeOaJoHEBDEBirkGo0eBoT0bY1RmtiGxF9JhvxxIlhNsu4uDxntVnihhbnHF3f0TQNTVuTxGMUZNt3OOewWqOkYr1e0g0lSo9G2r7vqaqSyMZoZYhsgnOObbWkG1qiKGUxO8LalBCgrmq883R9jzaWx09fEILl9dk123LFV7/5ZZ58/Iqr15cUecE7771H3TYYpYiiiJPTezx88+2dpl7gvWNoa44Wh3z40aPRHxAkk0mOCIFXL5+jZUTfD9y5s6BrG+qqRinJZDqjadox5tMq1qsbNrcr0iTGxBalNEPnGIaxxRYEQ98xDN2Y/OlBBOjqHoJHKYEQYK3ddTKoz27kpVQI3FgIJkBJsYsXNQjEGE0qPB6HGwLOe6QYk5aquoEw+jQCDu/HGFKCwJixeVgiPlsUAgIhJdpYkiShqrcEPyb2aDW2IQ+Dw7keFxxRmoPUdF2LMTEP7j9gvVxxc3XFYr5gdXtD3w9ESQaA9w7XdwTn0Sai73ratqTvGrqqo617Tu++xdPnL7j7xozFQcEH7z+mqcfl4cEbJyRJQluViOB5/eqan/25n0FZDUKS5inBe6w1xHHE08fPKNIMqUXjEZ3SusyK/Emh9cvP77Tu2fPTy34B2LNnz54/Yf5X3/6bT7ww32uH/qXw/bNI0EkRMLHF+YAfPMEHXD+w3ZbkWUYIDoTHmPGWN7YxAsZb4KzARgn+04Uh1tx/45QQJEpZ0mTM/e922nUA58M4tAqJknIstgqSNM2J4xRjNGevniHwCCnJ8oI4jun6hm15TVWvqJsSrRVFkdM0Ld45wq4Ya6DH5jG9d0wmc9J5wXq75Of+7Nd5/vQlz548xyE4PLrL0PcgOkxiOTm9w4M37mOtZrVakiUZCs2Xv/Qlri42WD16FoSQ5FnB1c0N88M5k1nMnTsTqm1JVVVjZGYaEycp5bakmEzpuh7vxuhMbSOsjfAuUNctUo839OVmQ9dWKCVp24EQoKmr0bA7DOOiZM3oGfCOKLK7W3eJ2hmtpZBopRncGFEqhaDrOrRWWGvGFxU8IFBSkaYJBHZJTECAvu8IIeB3bWOjj8Ai8GilcG78M2JtgokTjFZU1QYhRx+A0mOa0GazhuAIBNKsoHcdbdeQFwV37p5wcf4Sm8RYm3D+6gXWWrwLJElCXW0RAqQYy+hc37JaXmGM5Mc/+gBrLKcnJzT1lsPDKZGJefn8Ba9fXzE7nFPMZ9x78ACpJWXZ8vLlFW+99wbKqF0J3eHYV+EdRhvK7ZYsS3DeS22iMi+mP/5P/q9/d/k5HdM9e36q2S8Ae/bs2fM5oEk+8IinJhKv81TXi2mG1nJMm/ESKQwuBOIkwXvP5dUF1hgiGyMQmJ0EJN5l/UspEEKQpAlZltC2HZcX1zvJyFg8FcUxkbUIBGmckSTpzlA65sh7PHXTUFUbbm6uUbuhNwRBmub0fUfXVYBASsNifoK1Ea9fv2C7uUaIga5taLuebDphMZ9x8/qcrl2zvHrGO1+4y+uXZ3zy/lOEC8TWQoCmadAywdiMg9MpJgpcXa0oiglHh8fcvXOfaTGj3Da8cf8+IoA1Fq0tp3cO+cJbD7FW0LcdXdfT9QPOSZrac3NzS57n9F3P9fX1qK1PE6Q2WBuxvF3R9QNpltD3wzh09wHfK1arLUorvB+H/qYeX0o+TfLRRqHN2PIbRZa+71BSoqRASoEbPIFRDiQlgP+s0TlJIpwbb/rjeGx6FlIQ8Citdpn7A0oL+r5DKIlU8jOtv1ZyfBkZBqIoxmhDU5f4oRt9CUoRxTFtXdO3Dd4PRHGKVmZMP+oGju/coZhNOXv+gul0Sr1ZU682u5cMgQC6riF4RxTH9K5HatiUK4zRPHv6MVlmaLuOw6NjqnLDNCv44Xd/xJNHn3Awm1AUU2bzBX5w3F6tiVKFtmMC09APxFHM+flr+q7E+YHlauuMjWolZevCMEY47dmz54+d/QKwZ8+ePZ8Df/3b394EqX9krCltJJdxHEJexNjYMnhHP/QkaQIEnr94gXMeISTB+TF1JoTRYGpGzbgAhAhoLdFS8+r5BWL3r/hhGIfW2NqxMMpYiukMPGhtR1+AHBcK8DjX0rYl682K5fIGGxnquqJtS7z3RFHKfH4EQtI0DXEcQ/Dc3FzStS1KKx68cY/15orG3fLOV95klh+wWte8//0PkX5AK4PzgavrGzarFmMt73zpHtZqbi5qpDTM5gf0ruH+gyNevbxkvig4OT4iSxLe++IXmS2Oee/dd1neLrlzeoLSUBQZfQsEwZNPXtJ3HYGxvyCOIpI0BSFRylBuW7bbLdoakjQjeA/BE0Lg6vIW7x3BjwvQeOvugIDWhmFwRNZ+tngZM8Z2Sj36MEIIGKtI0wgIO2lW+PSTwkaGYejHsjElkGr8faQUKCmBgHMDcRIT/Lg4aGsJQtD1PcaOiUZVWSGVHuVC3tO3DcENhOCwUUwcJ1RlSXA9hIBW45+BEAYCMJ0vGJqWvqlI84Szl68QKtC0DXk2oe8a2nbLp03IQmjWqy3OO9q64fEnz2laR+e2TA8Tlusl0yzh+uya7XpLU7ccHh4xnU85OFjQV4H33ntIlEi6pmZ1c0NmIy7OX3J8fIwyUXS7XM+lkgOI/K/9tb+W/gkfzT17/o1gvwDs2bNnz+fAL//yLwslhRuGcCl1WGa5DodHKad3DhAy4MLAMDjqumK9XjMpZrRtS9e3SCHHAdOMmfNKKZz3CARaauqyRvidtEeMZt0xzacdlwGjaduWKE4wuwVAK4Ug4L2j7RqatkIqQZqmNHVNVW7wwSOlQStD19d0Xc0w9Gy3JVIbjNZsyzVpZujaLdeXV/zsz32T7//BD3nx7Ixnj55A6Al4mqGl957ZYs7h8QGzWUFb19xcrlivl0ymMdtqzb0Hd6i2HdPZnC9+6R2Wt0sW8yO0jnnrnTfpe8eDO/eRYuD4zpzZbBzkX7+6pChitAyU5ZZ+6JhOJ7Td8Nnt/8XZBUIIprMJUlmENDg3AOPPIIktPrixO6AfCN7TDQ5tok/n+DF6E8bbeS1xPqCUQWmD1gKlBUrInWTHj7fru0jRKBo9G0ruisEIo3dAyc+kXniPEB4fPFEco7UZ5UJCIoXalZEZtDEIRvMwwdO3LQE/NjRXW/q2huBG2ZK19EPD4FqSNMPGluvrC7J8xrbesl2vkQKMMcRRzGZ1Q1tumWRTltdL2rqn3JRcna/58QfP+Z3ffp8nj8/J8inKxrgg6HvPZr3FeQ/e8+abdxn6lvXNlq7teOsLd7hzb4EKjnK1ZugGPnr8CScnpzJL06xpmkxoVQH953RE9+z5qWa/AOzZs2fP50SH+mDwfEwQS2tpT05TTk4zTk4OGPqBrnUQBEVR7AbC8RWg7RqMVTRNg3OOEALOB7SJqOqaum4wRjEMHsJY6mq0JniBNpoQPHE8lkUV+YTYJgyuY1st2Za3ONcjhcLoBGsjttsVQoztuHGUorUmOE/X9tgoIs8zjNGU2y1FkXDn3hHnZ5e8+4W3+cPf+QFt2aCVZ7u9pWsahJAooTg+OuT49JgHbx5yeJTz+MOXXF7cMpnOQAi+8Y0vgrfcrlb83J97j5ubGyaTGZfLM45PJ0yKCCUsdbMlSRRFXlA3gQ9+9JjpNOXoaEpddayWFcba3cAOUawJYUDKwGwxwUTRZ0lHVkdUVbO7wbdj4k8S03QtNjZoE6G0HY3ZQiC0QRoLcvzv3nsECinH3H8YlzWFQCIIwe/agAVejFvEp7GtQgq8B4TEWIsPo18jBEFwIMRo/JYE2L02jPGrAmtj+t4xthwE3NAz9N3O62BYr5YE7wmMX6PWmrbp8CEQZxn90BOCJy9ybq+ukRKarsJGY3HaenVD13fkk5zLixWrZcPLl9cYFfH0kxc8+eicsxe3pGnGdDpDAuHTf07viSLN0XHBZr1mebNhs90gxMB7X3yDulrTtxVVs/Uvz56vZvlkVRTTq0ia9a/+6q/uF4A9e34C7BeAPXv27Pkc+Pa3v+3//W//zWedE/9l0/kfOu/boog5PM7IpxHaWpTROCCKU5quBaBuaoQURNZQlttRs+7HuFCCo65q2q7D7wZ/rTR5NsFGMVES4f0oH2qaCjf0NHWN82P3wNhWG2NtjFKG4APb7Zquq9HakqYToihmuy1xLjCdzXBDwJiIpqkRCu49eMhHHz4mOMeTR0+x1iJ84PzsNbFJWCzu7hYZiOOI2TRl6Cr+xXf+gPOLS45PF6QTwxe//CbltuX1qzO+9s13SLMMqwsuLq75ylff4b0v3eXsxSvqtiSdJtgoolw3/OC7P6ZvB+IoY7suWd5U1NuOLIto24YkiTBa0NRbkiwhSlLiOKGuNxglqKoGgty9rMjdK8vY2hvZiNgauq4ezdpe0A+OaBfVGbxHeI93gYAYpUAIyqbF7XoGhmEYF4Wdxl4KSd87vBO7FWHsF4DdvhJ2H6T4VJUvQIydAEJKRHAMXU1kLd4L2rbf/XzHJugA5PmUvuupy4o0SSnLCqXGpCIRYDpdYHeLnbGWpm3ZbErqumJ5e0OWTnj+/DUffvQRk+mcpulIY0vfDpy9vMDX8PEPHnP+/ILQ93g/AJIkSZAStBHc3tYcHh9wcFRwfbGiqQaqynN5teG9r76DzVNAea3VUlv1/fl8+lhK6Xc/hj179vwxoz/vL2DPnj17/k1GLvxFvZY/bPvworB6lk8D9x4uqNpAuW2I4oSubTBG07YdMKC1oa5ahr5HCkAo/ODp2gqjU2QSoY0mL3KqqsSamKppaJpyjJkMnuAd3g9jik9WUNbQdu0uKQiS2JKmMWVZYm1EINB1LXVbUuQZWls26zVSKvq+Z7le8o1vfpXV6pq23lIcHlBX48ArgmKxOGYYOgbniLKUBw8fMgyOVy/P+OjDH9B2nq9+7RtoZbCp4Xaz5kcffMQX3n7AfDHj9aslL1+8opjEfONnvszN9YquHTg5mROnKa9fXxKZmNVti7WSjz98RhwrLi/XfPWrD6irkrLsSNKYYRg9AUkakxUT/BBomxaJYFuWZNmYEAQBG9mdzyEZb/QDOO/QSo/Sq8GNnQC9o+sGtJSkxjJ4TxSnODdeYEul6F2PUBqlLSEMCAHeB4beU4eWySRFKY8ABhdIjOVfaY0+9XlIQhjbe8XOfzD0NY1w2MgyDD1NWxLZiLquIUiKrEArRV1uMNYQJwl1syGEQACU1mTFDKU0k+mUvu/YbErmZs7zp6/4+te/wXK5pakHFrMpp3emrK9LXOe4PFuzvr3m+vKGLM8ICNI4xxdj7Onh4WJMnLKw3lbEWULeCmKt2WwrLs6vubr6hLe+8DY2S9XyZlls6yY9CDgRhx8ymg/27Nnzx8z+BWDPnj17Pkf6C2uNFnnow01Xt0OeWQ6OE+7fn5FnEWmc7Ia+0ZwKkqZu6Np+bGtlTNHxzhG8Q8hxMEzSGKkVaZYhlNoZP8cWKyU0So1ykvn8kDTJIUDbVPR9jQ9jOovzDmMMfddR1RV123BychelLH03YExMmua0Xc+d07vc3mx4+ugRJ4cLlrcrmqYjjmKElDRtD0ikUiwOjlkuVzx78gk/+N73CN7w7rtfZD474PpyxXbZ8uyTc06OTzk6nqGU5PWrK45O5rz7pTfxHrZVx4M3j0hMTBwZju/MEcrT1B1l2WMixaOPL+g7QRCe6+uauu6xxrBdl9goHl9FbMx6vWHoBtbLNXFkSZIxVQeh8B6E1pjYEoCm/bRPYfRoCDG+Aqy3FUgL0mDjaBcRmo5lZFYTWUvX9FhtUErSdR3GaEIYi8W6rkPInRlYCgIBJccEodF8u3sFEAKlR7nRMDiU0QQhqOuxD0II6NqKrqmItKFtK7blBkRgW62pmw3FpMD7UW7UdS3SGPJiRtU0FPmEg6MjQgBJwvXVhs1mw+nJPX7wvcd88MNHRLHk5nZDnhfji1BZU1Ul6/Ua7wM2jZjMc6bzKeW25OBwyuJwyhAEs4Oc9WZN8DC4Ae88m3XJ7/3u76Klcg8evjGrqvrrN1c3D45ktvzcDuaePT/l7BeAPXv27Pkc+ff/5t9ceWnqqhrO61V71m27kCYxk4nlcFGQJBFplo0mX+kZ+p66aej6sbW3H9xozlUS7z0I0FohpEdrQZzYcfDfiU6sNQgJSlrSZELXOdq2G+Mk4xitLVEU0fY1q9WSuq6RynKwOObw4IS6aqmrFmtjFosFSimsjRBobq5umc8WvHh2xtANWKPHl4muJTCm0hSTOduyJC9yuq4my3Lu3BmbYT/65GN8GFjdrsmyjAcPD3n73RPq7RYt4fBgAUHQNDVpYpgUGY6BN9484MH9Y5bXa6yRvP3eIa9frbm9qYhiwc11RV154jil6zxV3Y3fqxlfLzarNUJA3/XESYyUCucHlPz0ln9ASknTdRgbjzGgzuOCx4cx4UcKQRRZtDG4oUOpscAr+IBREqHE7nMSBOdpqwajzdjWbBTG6F3JWgyI8Zbfj5n/WmuEULtyMIndpQ9JoZDKAoq2GT/Dru0JTtA1HUkcowjU9RohPFpL8A43DKRpRvADUoy9CMoY+q6lbioWB4dkeUGSZmgT8erVC9586x6JyfnR917y6vkt/dDT9RXd0JBkOcV8wXR+gLaW2UFGnBtmhwU2jXnx8pKqbDHKELzi7XdPefHynNP7R5gkkOQR2oj28vzV1Wq5vJ3NZkUc2beumuXR53w89+z5qWW/AOzZs2fP58ym9v9s1fiPlrebHw5t52xkODgpuPNgynSWU0wmRHGMEAoXxsHz01vivu+RSqGNYegHECCVxgdI8xStx4HfOccwjI2+VbVFiMBmu6KqNlirmUwmaGUwxtC2NVW5xvvR5Ku1ASHYbNa76EpDFMXUdU3X9uRZznazIo4s27IEKRn6AWMtzo9Li7EWZSwYzb37d1mvl9RtS5xmoB1X1xccHx+SZjGTScbhUcH9hzPOX99y9uqG+w/uoCPB3QcH3L13xGya0w0Db713SpIr6rrm6mpLZBVGKW6uV+R5hAzQd4FyW5OkmtvbW7I8GQuohp6b6wuaqsQPjsE74iQev2bnaNoGpTRKauIoG+VJkcV1Y+Ou0aNPIi8K8iJBijGxx/kerRU+OLwflwQ/DFirQIJQcmwFRiAlSDEWug1uQOixpExrvesJcMCnEaEaHwKjLUBirEGIXR9APzAMPcE7+ran68aFII5jXD9QbbcYrem7ga7rxuXMj2Vifd8hpSCKYy6vLtBRzGJxRBCB+/fv0fc9g2v4Mz//JV69uGZ923J8csDzZxdoE6ONJstz0jzGRhpj4Qvv3iWfZLz9xVOEhBdPzrk6u6YuW4bBc3p3ws3NNSenR9RNFQ7mBxdHJyefxIn9vlDi/5Vk6e+FoL/6S7/0S/HnfT737PlpZO8B2LNnz57Pmbe/8ej9T7739j/pE/3Fvh+aWJHPDnIGF3jw5gzxXOEdXHbnYytvktI2DVqPsZVGG/q+pxsGtLYIqWibHinGYrExXcbhfY9SkjgxdF1L31d439M0gZubawKOyCYIIXZyFE1TN0RRTNe2RPGoh4+imKZtkdKQpgltVROcox16tDWYOEZIRfCOoeuI4ogojpFGcXp6RLm+4emTj8mzHKTk5nrDnTt3CB5c8GjVcu/uXZZXNY8+fsXxyYLpPGZxnDKb5txcb3A4Th8umE5SvPe8urxmcD3HdybcXmzRwuEHh3MZbdvSNGMakBCOokhom5rgBTfX12RZShBgI4O1iroeqKuGaB7TO0+cT8cmLxEQSlE3NVFs0UqPMaAhYI2hDbuiryAI8FnUJ2HM4Dd6bB4WQjIMHUE4kAJl5C71qSOWCmX0rlFY4FxAhPCZabdre5QUaDuak733hODHduLdIB+Co6pqpBTkeYZSiqZtEVVJnEBAoLVESk3T9ti6xmhDGqdcX9/Q1j355JDb2wsOjxY4P5qBH7w54/TujGfPrumdw0TxaAjOC+LII3XPZDbj/PxqXOIWOfceHnBzueHZtqRcbRnalu2mJk0V83lOOwjefOuL4eXLR/W946MPJ9PFx2k++a0GfvOvDIEfvvfm3gOwZ89PgP0LwJ49e/Z8zvziL/66S2P9tHPiR3XDq6HtwzB4sjxlfpQxX6Tkk5gkiZkvFgilP8uT77qewQ0458Z8+yhiu1pTbta4vmM2KRDB4YaOtm1pu5bgPd551C6qMgSIogSjI5Q0CKkxJkbriChJCGLUqG8327FJ1nukkFir6fqa3nW7hltBP/SUdU2eFWP2PR5jFbNFQZJG9F3Nj97/Id57usFT1hWz2Yyy2rLaLHHOcffuXT764CVXlyVHJwuOT+ccHU+IjGZ5s2EYBt5485g3HhzgfcAPksvzJXkRcXQ8Z3ADVdmSFRmrdc/FxYosT9hsSkLQ1HXDalXSNg5jYpQ2DMGTZCkIaJoOay3FJKPrO+LY7r4PS1uPP78kTXBuwJqx0GsYeqQYS7yCD3jn6HaSIu89ysR4r9BRRnBj8dqY66PQShFHEd45mqqi70bj8KfeDR8GBjcWmvVd/5n3wDm3exmQSAmDG3sGYIwPdc7R9z1qtyxUZYlkDBXq+540Tce/V8B6dYtSkiSO6ZoGZROECKSZxdqxN6HrGv7if+fLPHhjQd940jgniWO0EhyfTDg6OsBozVtv3mO77qmqgQ9/9IJ79484PplTNxXbTcPQdVycXfIH//J3eH32lNO7x0ymUymlXM1PDn/j7a985Td+/dd/3f3ir/+6+/a3v+0/v5O5Z89PL/sFYM+ePXv+NeCv/2//w098L/7R1W33ncur7VOBAOkJwTE9iDg8SnjrzQckaYLWBhvFSCXHZt/dABvFEU3TstluCUCW51RlRdd1o5Z/dzvtPQihSbMJcRwhpEcQdibSMLbe+mH3ajBQ19td94ChaWu00mijWa5u6fsW5x3SSNIiw0YJhwfHDDvd/GQyRSnNcjmaRr//ve/hHMRJTmRjpJDc3F4hFdy/f5fpfM6rlzdYk+B6R9+15EXEdlPjvSRKJQ+/cIeDowWuh5vLNcvbFYuDKad3D2jqjqurJdkkR+mIy8slSRKR5YY4NhgjaFuHkgapxsH5U0Outoam6WjrjjxPGYYe17fU2xVu6GCXr58kMSF42q5FSBi6BgYHbpT89P2w+1QDAU/bdiilGLwnz4vdUpEihKKte4bBI8WY8tO13VhGJkApcK6n79vx5+zGEjUf3M4Qzs5EPEqEggcp9WgY3oXn1E1FFEWjHKt3BAJRZHfSIo+SAucattslt8sbiknOMLQgAhJF19coPb5mSKM4ujvny19/wGyW0TYVx8cZDx8ekaaaN988Is/HBeTgcMbh0ZTl9Ybf+c53mR3MePjOCdvtkuB7CB3WKC4vX/LD97/XPXjj4SzJMqUE1/uhf8+enzz7BWDPnj17/jWh9/Jx27TfCS4MTTkO7FFkMHqUhQxDT5rGGKPxwdH13Xib7x2u7wnOsV4tkXJs8K3LDjcInAOkpCzL3UAYkyQpUki6rsV7TxxnIMKYAuQdWmq871gurwkB8jwfb5OVIssyLq8uGPpR3nN8eozUY/HYdHowSpC6hqapuF3e0vUwW5zwwfvvU9c1i4NjFvND+q6jqUu0tnz9G19nNj/g7OU5bd9yfbPi6uqWr33jzVEjLzSDc0wOZsSZpWsbXjy7pql7jo5zDo5yfHBcnC8RUpOlCTe3K+JEszhMiRNNFEUMQ0/b9tjYIgjUdY1QiiKfsbpZs15tx4QjK2mbCkkgBEfbNBil6JoaBLRtwzD0dH2PVIbeefq+xw0DbTuWnWkd4RyYKEYphbEaKQXOD9jYoIRk6B195wlyjATt+4HgxjIxJRXD0O9u+z348Nny4f0wSrWEgCAYeodAjlGk2hDHEUoJhBg9BtpYtmU7msad28l/up2ECLTW1NX4Z05rSd82GBtRVSVaK5zvsZEhSWNO7x5y940Zb7x5SFP3vP3ePWwkqdYlf/7PvUcUG9qmxvuWb/zsewz9wKPHTzi5c8zd+yc0bUNkJevNkvl8jutc9/Lly3Ml5NtN288/73O4Z8+/CewXgD179uz514T/zbe/fW6MWetA3TdNsEYzKVKMVQxuQCpF1za0bUXXj3GUdjfU4h3lZk3fjTe2TdsilKLr+zGzXgh8GAjBsVrd0jQN/TDshno9DpRIlLJYE6N1jBCSJE6ZTKY0TYNSiulkxvnFGQKYTmeEAM+fv8APHmMs3nuqbUlVVdRNizKGYj7j4tUZTbnl/oP7LA4WrFdL2q4iiizf+Nmv0nvH88cvcMMAQdO5kj/3l75E0znOzlZUdYdSkskkYxg8y+uScrvlzXfukBY5TdtSlR3eSebz6S5ZxvDGm0dorcas/qGj3LbESQI4ym1F23qmsyl11bJdV6yWNW3bI6XAGos1Y+Sph10MZ0AbjdbjMK+1RZvos9IvrQ1Ky1GihaDvBmwU4dyo4x+GdlxotMJG0WjolePf+2mkqJASrTTBid2wLndJQJIA2N0N/jB0uGFAG8vgBkw0Go/DrjogiPEivet6kjil7zw3V0v8Lk42uDC+KnhI4gwfPGW5BTxVeYuNLFZblJKjTGoIIKCYFNy5d8Abbx4zn+ZcX73m3S/dp24a1uuGd790l6GDi9cbvBCc3ruDawPPPjnjjbfuMZlPWa03tH3JoyefdJNJMUyK/PeFlH8w9P3x53T89uz5N4r9ArBnz549//oQtvB716v2j6ra3XoPNonIJpZJESMlnJ9fMgxjdGOcJMidTrwsV5TVGvCslkuEgKapSLOEtm2om5K+b2jbBqkEgx8YXM90ukBKgRCSxfwEpQ3Oe5RWICRRFFFutwAYY9lut2htmE5ntG3D9fUlcRxTNy1d19K1DcPQIYGimGDjlGq1ZLO65s6DO0xnU16+eMZqdUMUJ9x54yHDAM8enXF+dsbQOdzQ82f/wlepmo6PP7wmjiKkcmRFTFk2bDZblssN88MJR0czVrdrktggg0IrwdGdhGHoOTnJKSaa2XxsLx46j9EKowTbdcnZq2smkwwlBRevL3ADrJYVJjIUkwJtI7wXuMGRxAldPyCNQipJ23Y4F7AmwjuPjSKSPEdr+5lhV6kx4kcKQT+0aD2+Ygx9N5a4mQhlDGmeEEUpUgusHc2/EOiHlmEY5T5i91lIqVHKMgxjElTbdRhrCUhsHJMVOUobpDEobem6AefGpSVJYla3a7S0KAFKCKQI9F1HCJ4ostRly3azpdpesV5eY2xMQKCUIs8L6qZlW1ZkRYqO4OAoJYlirq5umB0seP7ihig2BFlzeXHNxx8+YnqQMQwd/2/2/jRm0yy978N+Z7n3Z33XWrp6m5nWcJVEyTBtQUls2B8dIx9CBAYCCHHAQPaXyEaAhDJgKAgcQIkjJ0IQaSKRsilKghgkUSIHUiJZsUJTMkVyOBzO3mvt7/as93bus+XD/XIkA0aESJ6pSeb+AY3qRlVXv/VUH9R1nfNfjvsjX/3tr5FngrreMQydS9JkU7fNszTLsmqx/NV8of/TN3kAJyZ+WJgWgImJiYkfIJzTz7Z1/N8fDsOHh0OHl5DmCdU8Iy0U5+cPWC5PWa5OEfexkD4ErLOE4DgeD6RJRt/2uMHh7WgQDt4TQiQvCnpjGGyPUgJrHd5Fzk4fYO0AwaFUBDyCcRBNEo2SCmsHhJJolVA3Nb0xLJentG2DDwOISAzufjmpsNayvXnNYbfhyfsPePK5d9ntj3R1S1HNWK3PKIs5Lz57zdWLlwitUVrz+NGK/jjwna+/JE81u33No8eP0OmYdy+QFFXG5z54l2NtSPOCPE8QyvP47RWzWUaSSi4fzjk/X5BnKX3bk6Yp5SwnBM9h19MbR1Fm1IeGvusxvWE2y3j46BylJL0ZAJBqHL7bpifLK5TSWOtJkhQfPdb2SK3I8goQOOdG9X8cB2+lE/reUBTFvXGX0SgcPGmuSVJFmhYkaUaWpwg1xoUOgyHR6l4CNMZ6CiHGFxsfUEKNy0eakd9/XXlWolWGYPQEeOdx3hFDoKwynHf0fYdOFFFA8JG2bYiAD9DUDfvdjq5taZo9UgsGYzF9T5aNHpLd4cB+d8DZyHI94+zshBgUxvRoBUPvef8Lb7HdbHn99BUvP3nKg8cnZFXCyaLi29/4OlIFlxX5bV4U2yzPX8tEfyqE/ujP//lf3rzB4zcx8UPDtABMTExM/ADxJ/7Enxh2ff9rIYiPtE6QOkWnGeW8YHk6p1zknF2eU1VLhBSkeY5QCUqNZVxlOUclYx7/4BzGDvSmJwrJcnWCdQ5n7egZCOPwenryYNSiu/67rbRDbyjzGVk6pt2EEO6lQqOsRIpR5tK2B9I05/z8ksVigQuWKEBINXoJkoSH77zF5774e7h5fUu9q6lmc568/TaPHz9gd3vD9fVL/L0WPctSotD8+q99g8V8lKWcPjhB5xIzWGbzEmcj6/UclUrKWYGUOc4Lzi6WvPXuA5qm5913L7m4WHB+ccJ+XzOfF8yXKUWVYYbx13PxYM1uV7O5PeBtACIPH52gtcCFSJIkRDGaq511EAVlMUcpjUSQJAnOG6zrkWKUT+kkxdnhu4N3URT35WBj6pL3gSzPyYtibP+NHm8NUirUfYSr1ClCjlGs6r7dV2tN33fjC44cG5WVkGipkCjKohzLwaQgxjj+3CJ+N060Ny1VlaG1om7qMfY0zQkB2q4lImmbHhiXghfPX7PdbBlMR55leOeojwdO1iuc8bSNRQTJs6e3PHjrgstHJwxm4Pb1ke984xnBSX7/T/0YXWexBl4/2+D6SDWbsTqdYe0wzGbLq/l8+Wy5Wj4tZ9Un6wcPnr/Bozcx8UPFtABMTExM/IBRSvkgzdW7SaHJi5KsSMkKjdSR2SqnmOcEIciynCQtUFKhkxSZJuRVxfF4xDp3LwdRxAh5nnPc7wjOItXYCxBjJE0zfAijabdrydKcvKgoqzkxjsbWRGfjsOssUkKIY7dAjJ6ziwsuHzxESs1+t6XvOogeazusG3j7vXd4+533+ezDV9y8uEFpxRd+4gtcPjzn+bOXPHv2lGHoqOs9gzGszua8vrohzXJciGRlwsXDNUKBIGFz13C33VEuFmTZbEy40ZLBBt597wnNsWaxmnNyMePkYk3T9QzWcf7wjPXpGpVokkxTzBLOz2d0dU+SSBCQJJo0TXHuvr8gVd9t/w3BkeWSyGi2JToEgaaux5v4yL0pF6wxtO2RYRiz+GO4lwo5j2TsVxDqPutfSQZnUYm4LwnToxdDarRORsOvdyiV3Kc4BUKwBO8RSiATCMKT5CmJThESdDrKlmIM6EQzDD2uN2NvgI/Uhz1usCidEhhjQYeuJ0s1SiXs9zXOBT7+8Bk3VzdY19H3DfvdAR885xdLrl7e4L3j7HTOV3/7mzx4dMJ7Hzyibjpub/b82q9+E5Eo3nr3c+RVxVtPHnL14jV//1d/lfXJKfPlSZwtlpuzy/Ovr9Zn387y4ma/30/dRBMT3yemBWBiYmLiBwwNT6pZWV08uCTLCpTSZHlKmWfMqwKtNEmakOUz7OAQSmG9RydjUZcxo8Rjt9vTG8tqtRpTIeNYKhW8IwZL2xzwziKJSCJlXpAmGYlUtG2NMT1Jko5LgvckSUKRV8xmc8qy4sHlY2bVmrZp2G83eBcQUtL3AzHCe+9/jpP1mmeffMrN62vyvORHfuIDTk9O+OZXP+Sw2ZIlKYfDln7oePTkAUoJXr9+zWy5xLjAwyenRO9oa8PdbcN2W3N+ec7q9BytMzabHU1z4PFbZwQ8bdtwfrYeYy99ZLvZ8eTtRyzXSwJQFDlCRvIyxVpLlicIESiqhPMH69E8LUaNvxARrVPSLIco7gfwMREo+ECqE1Qcm4eDtQgRCc6PMaswav8HP5qpi4zONBRlQYigVEKWFyQ6JbqAs8NYFpakJOnY6qykwg+e4ALeufuvq4cQSJSCMEa3KqnuU4c0xLGDQERGQzWBvu1w1iKUJM1ymn3LYAxRBGIU5FnJYbfDWcNgDW3XkWcVfet59eKK/a7h+bM7lNS8enUNMnB5ecpXv/xtBIGqLPidL39IUWgePFrjbaBvWr7ym98kzxTeBbabLfOloqk3fP1rX/NZXu6SNH+9WJ09my/Xf61ozN/4+Z//+eMbPXgTEz9ETAvAxMTExA8YSaaq08vTdbVYo7Qmy1JMPxCiJy80IQZ0kozttFKMt/9K4Zyn7zuEANP1eBchjkZRH8YiK+ssZuhp2gPD0JMmKVk2GlfHKFBB33dIAbP5nKIoCASSNCPPS4piRpYXnJ1fkqY5tzevGfqBPK/Ii4q8mHP58C3e+9zvIYTIs6fPub26oSoLzh6conTG17/yDYiePK8wZtSfv/XkbfIi47e//DuUxZK27/nRn3iHED3eRm5e7dFKU1YJFw/O8c7x+tVzDrsaqSVPnrzNq9c3rE9XzBc5eZZg2oHFYsHFgwtMP6B1irMOIRSr1YJIoJqPGfmLZUmaKsDfS24UIQqWyxUIifVhbFkWCV3fU82XCKHGiEzrAI8dLHawKKlIkgQhJN4FQohE3Nj+yzjkK60BcZ/2AzHc/+UcWkqEgOAcdjB458dyLgHNscX7wGB62qYh+DjKsiLE6CBG/ODxzo0yJOsQUdJ1HYPpOTs/ZegHTHuk745keU6aZGOJ22DvfSIpTd2QJpoXzzYoqWmbgaefXXF2sqJrLWZoefudh/zaf/5Vbl/X1DvLR994ydnpnLeenOCs5bhtePn8BVoKjvsDg4GHD99GSfkyyeTLYjZ7mmXFX/sLf/kvf+dLf/2vt2/00E1M/JAxLQATExMTP2AUZVYuV+t5klVoneB9RCrJbF6gEk2UkXJR4oVAJenY+OrsP2wIxv/DNB4hcdbdD50K68bSJyElSV6S5DMGF8emWiQ+eoSSJNloGN0f9igh0ErQ9y1SwGK+4Pr1K/b7DcvFCSfrM3SSkiQlp6fnrNYLBtfTNi2pTlifnJCXM9rGsLndY7pxED42O0KInJ894q3Hb/OV3/oKWV6hc8U7718iJMQgefb0jqTIKBeKy4cXzKqKut7TNT1N0/P48UNuN1eURUJZZHR9zTAMNL3h4sHlfcSmxNlARLGYr8iLAqVHCc5iOSdJUqz1yHvvQhRjyk5ejGVlfW9I0/EziUjKaklrelSq8YwyGu8sSPCMTwDeOWLwY0uzSghR4NxYFhZ9ZDCW4AN5keNDvB/iue/wEvcyqzGBx7oxqSc4h3UWnSSjKVhKfBgLvrq2xdoe7svCkjRhsGNzcNv2dG3Paj2nnOf0psdbh9IRpGC2KKiPHXe3B7I0RarIfJYTbeTVsxvee+8hr19c0zU9q/mcZ0+vkVpyenHO1776HZ5/esU3fucp3/7GC3ozcPF4TQyOq5db7q5v6ZuWzd0NEhXeefudY57n35nNZ8/f++IXP3ujh21i4oeUaQGYmJiY+AHiZ3/2Z5NqVf70bLVeyKjwv5vVnyjyMsNay8nZEkHEdKN5tG6PKKXQOgG4lwG1GFPTNAekVCQqxZgBM3T44AkxUmQFInKfNS/ul4dImebY3mDNQFVW98OzZVZVKC149eoZ88Wc9foMEBjTM5tVzKoZXddgTUe937NeLQkxYIYBYwyzaoZpGop0vInPkoR5teKD3/MB169f4gbHbFaxXC9wLtA2llcvt8wWBQ/fXrFYF+S55vrmJW1dc3u74cnbY2y8MS3LVUWMEW+hrQfKsmSxWnGsjygt6PqGWTVjNpvjXUDqlKyoxmXHWawdyLIcqROcj5RVifdjitLvGmFjtJRVRjWfk2YlWV6RZjnG9EQCaZ7d5/Q7uq4lSTSRgJSaGCVEsMYymGH0CpgenafEODYwq2Q0Ag9muO8UGFOARmNvj07GRUynCTJR98lACgBrB4zpcNFTVAUxRpwNSK3oe4uUYw/B6eUJIAjWIYAQHWmakqQpbdPftxI70gxOTmd855uv6JueWVXw7W98RIzwxR/7HF/72oe89c4lb719ycvnV1xfbfjs0+fcXB1YLOf35mnD7fVrZPAUWU7fd3shElvkC5WXZf3s2bPizZy0iYkfbqYFYGJiYuIHiHVV/ehitfj9RVlKez+UCiFI0xQfAvNFSaIku/0BqSVJmqJVRlWtiDFircEYg9CCpjnQ9z1ZmjAMAyF4RtlJMt5qD4b9cUPT7AlhvP1Ok/y+B0BTlhXeO4hwcXpJ9IHr6ysuLy9J05S7uxusM5xenhEj7A8bqirH+YG3334LZy2mG1ACrGmIwSIiuBBYLJakWc7J5RnGtDx7+ilSSBbrOa+urnj96prDvqWc5ySZJFiPQrLZbOnqjv3+yHxWMZsXNE1NWcxJkoz9roGoaeqGLMswpiMGT9+PMaAhjjfezgW8i8wXC6SQJDoFKcjzFCUFWVaQ5yXODfRtTZFn+OhBSGazBQBZXpCmOTFC9J4QLGmaURQVAkGw4++fv/dnxOAZbDcWsA0WHwJCyzElKHh0mpFmGVKN8asxBNI0ITI2+UYYvz4BSoIgEonI+9eHEMZoUhECeZ6PyU1aorUizVNCiPR9Q6IV1gZ601HvjyAEg/V0jWG9nlMfOoL31O2Y6OSd52tf+YxHj0746Nsv+fbXXyKV5sHlOb/6//wNzi7POLtYUh8O7DY7dpsjd3cHzh+c4GyLMy277TWJkrYsSwPc5UX+KtfZ/ng8TtKfiYk3wLQATExMTPwAEWN0s8XsTKUKH4ZxKE/T++8NROBw7EmzjPPLc3x0pEWJEJIQPE1do1WCiOONd9MecM7hvRtvmXWKUpqmrTns7zCmwXmDMR3Bj3pxpVLyNBslRBLKsqLpenyMPLh4QN8ZNne3lOWMspxT1zVNW7NcV5xfLnn48JJXL1/y/PlzrHXUzZHVeomSgiIvqKoKqQWzxZz1esXzp89BKM4uLths7jjcbcjvC7sO+44sSxmMZ3PX0daOrhlQMmG2KOj7nrzIybKM+h+ZJdNM33shRgOsFKOUJknGoBkfAkmiyTJ9n2wUqKqKCJjekOU5WqW0bYuQEWstIYBWGu88bVej5PhHqFIKfR+R6pwjy8vx5l2K8fcsRsZq3kBb15i+I3JvEjaONC1I05TBDuOwrzRCKrwPVPexrmlWolQCiPv4zggBRIy07QHvB4ZhACLqd5uKlaIsc7y35LlGKhh6g1RgeosQmt1ui+0th12HEAm2tyQ6MJulJCrh+mrH2cWK3/i1r3F7d0CKhP/4//CfcHPVYXo4bg1f+fVv8MEX30GnCqk0u7stH3/jQ5pjjRCe/f4m9ra9jtr92uJ0+auL9fo7SZLdxKhu1uv1NIdMTLwBpoM3MTEx8QPE5eX6R5fr1UOExHtHosd4RyklRVFSHy2RyOpkjvcRIVOSLMf50WyaZtnYGKsUw2Dw3jLYAevtGCuJpOsNEcFgDV3fEqMnRIdQgYC/H5QLEjkOgeBBRk5O1rRtw253YLW6oCgrpI4sl3M+9/m3+cIH73Hc1/zWb36F7d2Wqipo2gPL1ZLzi0uCA2cNfVcTiZydnXPY1QihyYsZs8WSum5IlCYMKS+f3fLo0TlX1zsG47HWkaajIVUpQRQBqcYb9P1hj7UD1SxH63HYT7Ua/50kRwDOja8cdrD0TctsNmPU2o8tx4vl+Iqik4Q8L2jbnrbtyPOcw+FIluV4FxlMT/DjsF3XDUJKohj1+jGO/QE+jO3AzjmyNLsvVYPo3bg4iFGyM/QGrTKKsgIixoyLFkhiEMj7UrWymKN0Ql5U9zIhjfeBVGvq4x64jxBVKbP5kjQrxoK0ckaSZ6RFRpZn9L1j6Ad8iHStRSARoWe/2bBYzthtarpmIEsLgjecns5RWvDO+w/46//Hv8352Yq26/ibf+1v4m3g1atrnn78lLu7DT/2e3+U1ekK5wxD1/Dxt76BwDG4PiS5/nBxcfJ31g8u/8bibPV3ikX5f/7SL/7Cr3zpS1+yb+akTUz8cDMtABMTExM/QLjQb5JkvOlVerwJ7kyPVIrDocN6y9n5Yiz0cp48L5BKobMUlWQUswVJntP1Hd5HZrMFZ5cXzOcLlNY4b4l4vLdj020c02e8DwzW4sO4dCipxxQbH3F+vB3fbu6om5rFcjVGWaaK+WrOk3ceIwR85ctf41vf+Igyn5NmGTdXV1w+uODs7Jyb61v2+y3GGNI858njJ9R1S6IzhJDMFxVpIun6lrIqqZsD73/ugk8+/oz9rhn19Sk09ZG8UAgZKIsSb6HvekQM2KEny1KEivf9B5HBDKRpikAymB7Tt3RNTZoopBR0XUcUEqkVxICSkjTLAIHzjmo2p+/HW32lJKZrcMNAojO6rkNrTaI1wzD+dxACKcZxXycJAUjS9L5cbYAgAUGSSgZrscPo8SBKTGdItCZNM5JklCtZdy/bShNihDQZ+wDGHzP2M+j7BJ/lao3WGWk6pjHl2YyqmrNYrEiSlKoscUNkc9MSrKdvLfVxoOsHqipnu9mRFyX1YeDm5sAweAQRazo+9/knXF484P/1d36VH/3xd/nwG9/h08++w8O3TmjbI9/59jMynbCYl5yczYlxwPRH9octIkl8WhZ3s2r2HZllf/ut99//5T/7C7/w9Td5ziYmftiZSjcmJiYmfoC4uLw8X8xXCyJIleJCT5ZlbDc7emOZzXNMH/FekJcJ3hs4CnSaI4TEWsNgerz3VNWc5P4mOM1yYowIxhvqECJaQ4iRpusQQpBnOXmeI5MEQiTGQJLmJGnKfrtDxMhyvqQoC9IsYzavyLKUr3z5K9SHBu/h9OQBXX/gcDzwuXffJ81y6rrGmI4sT/Ahsl6vESJyul6w2x7QWvH4rYd89NFHpEoSfeDktOLq6sD1ZsdP/+Ef5XCoSbMlSaZZr6txMWpaBBqlJNfXt+R5itaKrm3IihLvA3mRIVSk248FZYfdhlRntE1LOSvRaQZR3mvsJdZ6fvduTMjAYrGi6wx5kdN1LSE4pFBEH4k+kBQa7z1CKJwfZUJVVY7Lm5IMbUeSpLRth/ej7yBNPM6Py5dQCmsHQgwIFAh1LzuSaJVyOBxI8gypJN4HIpE0GV+EpB4lN0VZ0fY9VTmnN44QIQRBlhYICSFE2rYnTXMEkuubI4kGJSPWR5KkY7Vc8tFHVygp2NwdONYdy9WcTz98xelJxcff+YSzizV91/PhNz/m8194j29949v81B/4SYr0ffa7hv12R9c1eNshlKNuj6RaU5TVIGR6t1is/+6f/YVf+PSNHrCJiQlgegGYmJiY+IHhZ3/2Z5NHTx7/9Gy9zp1zBO/RiWQYPKa3FNl4C7yvW3yENEtx3t/HhI6xkKatsaa/v40GJNSH45iB7z0IRZnP0Wos9/LB4bwlSVOEUPgQGYaBzvQIrdCJxhiD0ookzZjN1xTFDO7Lwz769kd0tWG/2xKCRyUCay2np+d0/cCLl8/Z7+7I85S8LNFJSte1lPMKT6Q1htOLM+xgEWjStKCaLSiKOcfa8MUvvs3mriEvUoKPzBYzhJS0dY9pDSJabl5fgQ/jINz1WOvGr3voSbSiPbYc9jURiXejIVhqhRmG+/IsyNIcbz3eh1FKI8a/lFRE74jB4Z1F6fEGfjAGaweIo7+iKEra+gAEAJI0R8oUrRIG0yOJzOYFECF4cAEIlFU2LgMEZKKJMdAcD8T7pmalNMEHlBg/f6k01kLXDuPfO09WzMmyAoEaTcBSkKYZSo/GYe8hSXKcFyxOVgx+YHCe/a4jWPjoW6+4ut6QFwnHfYuIklfP73j94o67mzu+/tVPeP1iy8sXrxHaEWNAKk2qJM8/e0GaJBSpZr/d0B1rdtcbsjQjy3Lqw55MS7Ncrz+O//w//+JNna2JiYn/ItMCMDExMfEDwo9/7vKnl2fr/5YXo0xkNIkOmN4Q472ZNIJEIgHTWY7HDoHAuwGixzuL9/4+HlLQN91Y1JUVLOYnFPk4QDtnUUqipKYsZwghQIxNvsYYAIQQo7Qlz0jSjPl6hfeRzWaLdQO77ZaubXn9+jlJpnjy5CGbzTUxBozpODYHjvWB07MTZtWC+tjjg+DkbImxFhfABUeeFVxfbzk9PaXIK7KyQucZl4/O6DqHiIFHj1f4EFksZhx2LcdDjfOWwfaEEFmdVFhr2B8bylk53sYTiSGy3x9IdIKxljTP6AeD1ooiz4kx4MM41PZ9Q4ye4/EwJvsgCGFcCvq+RQiB6QasdQQC3ntC5D6LP+Lc6J9wzpOkKUolGGM4Hrf0fYMQiixPMP0wln5FyPIc5wZCcKRZhpKKtmtom5phMFRVhXMRIcaEpiQpRpmRUkipUTpD3ntErHUU+ZiqKXVKFAKtU7rWAIIQHdWsoizHHy+k4nhsGCz81m98TPBgrcO0niLJ+c1f+x3WJzO+8c1vcjgcubneo3VBNavQWvK5z32Ow/5AphWH/S27uxuGtiHNFLfXr8mzLC7XJ43W+turRfVs+7f+Vnhjh2tiYuK/wLQATExMTPyAsDxflmVRrGUYr+6t63F2wFlzb+yNSCUIHmazHO8dSmoQY5a/s/fDv3cgx0bf27sbVCLRaUJRzO5bXWuUkkihybIMrTXeO3Sq8N4wDP39QiDHV4EhkCQp3jm2u2vAkiUFu82B7eaGrMh4773P8fz5ZxwOew6HA847OtNx+eASJROePX1Jmqa89eSc3lnmi4Ku6zg5O8V7z3w2Zz5fkuSat98/Z7PbUtdHDoeGH//Jt9luW9ZnC26vdmw3NScnJ0QC1kakVug0pWl7yrxAADF68qJgcANZphAqkqQapRTG9FRVSfAOYzq8H5clISRd12KHAa0kdrB0bcfhsMd7zzAYnPPEGHDeUVYzlEpJkpSuG6U+RBgGQ5Lo8VudoNWY16+EGk23UhMixChIdMowjGVhMQRCjARvcUM/djb4sU8gAAiQSiLlGP8q7g3QY7Lp6Hnw3uHcP0x8kkKTJCnN4Ui8lyj1jSVNElanBQFLWw88/2zLr/+9r1HmBU+fXjEYi5Ip3/rWJ/zYT/wId3e3SAH7zYHdbs/6ZEE1H7sgPn36CUWlef3qU47HW15dfVYvlrNrKcNvXz56+GtPPvf+316tz/4fv/zLv+zf6AGbmJj4LtMCMDExMfGDgTy7eOtfrRbLedvX9EPLMJj7QTYjhMBgI7tdg9SMA2SARKvvZr4jJIEw3u5LiTE9UoFMJcWsIM3zMcoySUmSnLJcoJRmGFqSVDEYR9t26GQ0xHZdh5CSoirJ04z6WKOUIksy9psDXdshBZydXXLYHzgej9ihY7Fck+clWgm61nB3tyXLU05OKj788Fss1wuO+xocrOYLhqHj/GJN3bR8/vPv8tlHz8lTSV5kPHxygnWO3a4nTRI+++Q1FxenJGmCkpquG0hTjTGWGCJVmeCdI00ztJYc6yNZniIkZFmCMQNlUYxDvB3/nTTLcc7TtQY7jIZnY8bW46ZpCSGOpmgUzg0kWUqapmitx9cX75EC8iz/R15fJMfjntm8IgRGKZEU3G0bVJKSZAlZkY5Ga+eRSpNkGVLIMcJTRGzfYYeecL90KJ2S5iUqGWNhvXNjf4MQYypQiLTNWMTmhw47dIRgKfKM2+sNu21DkuQcd4GXn27ZvD7QN4Hm2NMejnz87U/48JvPMb3n44+f0nc929savObdd98HJLvdFjc4vvX1DxERlvMFfdsjAKUlx+N2s1gvv5GVs195//d88H86f/z4T61OLn7hz/5H/9Ek/5mY+AFiWgAmJiYmfgD4n/47/6PPLU/mfzgqTSQCY8SlB/reglCEMKbB9INjt28RUlGWJT44fPBjgZQYZT0xRLI0GwddZ0nShERryqKiqhZkWY5SAjP0ICIhBLSWVOU4HO/rHVKKUZaiEw71qKHPsgrrAnVzIEbP2cVDTtYntG0HKE5OH7JYLHDO0nXdmKyTKHQi+PCjj5gv1lRFxetXt5ydLxlsg9KQ5jlvPblguzkigZPTE26vDjx8tOaTT19z+eCcZ8+uefvdB5ydzbHWIJXEeUtR5vRdx8l6gTE9Ok1Ikoyu7YCI0JokH+U1BMZSNTfKfpIkQSBpuw6lBDpJqGYznPXE4KnrmrzIEUoipCRNMoKPpGlB23bfHeCzPMOHwGD7MfHHGJQch/m6qcdEoCjwLjBbzIlEtJLjS4wEYiTRCqUleVGAFCgtCd4T8WidIGT6XbmP9xYIBB8I3qG0IoQwvooMY9Rq04ym3L5rSFLFqxd3JGlgta7G3H8k201DBPq+pT4eubp+gUo8gUjX9RzrPa9ev6SqUqSQlOVsjBEdHN/8+u8QvcMaw/b2jkcPH0eZps8WJ+e/fvH4rf/LyVuXX/qrf+2v/19/4S/9pY/f3MmamJj4L2NaACYmJiZ+AJgv1yflbPmWRJEoiZKC4B2EQJIlzGYzkkShtaJvPVJKqnkJ9zf9ZjCjjEeMA6TWKVpp7DDQ7I9YY0mzDKE0Uqj74qkWKUEIhTUW0/ejkXjoSNOUPK+wg8VZS56XpGlGWVbsd3doLVmfnjNfrO+z8gvOTi9YLlYcDntub26Yz5cERl35bnegnM25vDxjc7vn9PSUJNVs7jacnl3S9Y66tXSm4+zBKZ98cs3Z5YrBDSTJGBWaporz8wUuOISISCk4PV1hTM98Pn4+PgqEStA6oa4b5vMFOtEoKema+v7Tllg3tvOGEOi7FtN1hBAoqhKdJrRdi7UWIWC5XBC8RwgYbKDpDDFKQgxjWZpSCDmWgXk/+gDqw/F+AYtoKUmSdFwIlMDZUWLlvaPvW5J0LCOTckwBStKcgEQqDSKiE4l3DuLY/Ku0xg6WVCf33oUW27eAQycSpRXWdbj7RWB/2JJlmuefbnjx9AVvv3fC9c01d7c7hGCUHDlDohWHw4GiyJBSUFYFVVmy2+55+fI1s3lBlmZjw3NTs9/e8vGH3yRVkeNh77u+s6fnF2J1cvKrj94/+2tf+tIvvXqDR2piYuL/A9MCMDExMfEDwAc/+vk/tFgulyEGQpQ4F3GDg+DQSmCGgabtMGaUmCwWOdYOo2zFeuaLJUVR3jf9JnjvqJsDg+k4HmuCj+RFwcnJGavVCTFEpFAEH/F+lGYnSYZ1cSzmyiqatiVJFHme0rYNs9mc7fYOrRWL+YKu6TCdIc2ye/Np5NXrp5i+42S9pq5r2rYFBD4E1ssVh21P13QgHMb2PHz0CGssMQSa45EPfuxdDnvDyUnJxcMF+32LlJK225PnCUkisYNBCIFWCiUkaaK/m8GfpQlKjDf6xoxfW1d3uGFM6wHJ8diRJAlKZyAkxnSYtsdZT5bndG1HcA7nDLN5iXeOru0QwH6/Z76YoVRClqVYP5DohLbpEELRHFsSnbDd7lBKYp0dtftSEAkgPGboCN5iuo6+PZJoNSY56QQp9BglOpujdUpAIqTgsNtgTUNwgSyfkWUzhNQIKTBdQ9ccwXtM16GlQgpBezzSHI9EF6gPPaYJfO03P6MsEqqq4PZmR9u0tE3Ng4cXtG3Lcd/gjBtfhNKM88uHEAP1vubu5oblYsl6vcYHg5KR7fYqNt3R61zdGm+/qhE5zs/+g//gL+zf4HGamJj4xzAtABMTExNvmD/+b//b75ycr/57aZ6KEAaCHwjOEmzA+UjXGfa7I84KiIGTkxlaaobeIaVgNluT6Pw+az5izEDb1jg3lqzawZBkiqzIcN5jzACMN/9lOSPPCrIsu/ccBIpigfOeNE2YzeZcXV0xm88xg8GYnvOzc25vbnHOkSQa7zxt01HXR1aLOctFRV0fcYPl9HRN3zfM5xVSRp4/+wyIaKUwfcB0jr4zHLY7Hj1acdx0DG3H5dkJ1y8P3L7asZxlEB2n53Oss0glCcGRpCmRSJIm6EQjlRpbdmPgeDiwWq1GA651OGtRKmMYBmL06FThgiUER9+1ODewWM7p+47meCCEQF4UlEXBYb9nNpvR95Y0TSjLkmFoMX2PlGNS0vZuh79vYxZCjIVdRLxzJFmKtaNMJxIZekfwkaY2mM7hrUcKiZIJWZajdYJSo+TL+4AUkro+0jYNg+mI3pHn+fh98ndfcyzWWg67PUPfE1wky5Mx0ShAdJLBOD798I6Xz3dcPlyxud3jDfSdY7lakxUFpm/55JNPmc3G15/VYs2sqrBdy/72mm9/5+vj5KAUxgw+SZNDb82HRVHdrE/W387ms//7YIef/u//zM+s39yJmpiY+McxLQATExMTb5jP//g7/8J8dfKBsWCHnmGoMV2N8wMhxjFBRo0SmO/KeuoaKfSY/HI/4BrToRKJcwPOjbfkgxlABFYnBctVRX4fEzlYQ1nO718LxhbgEBx5plACRJRkScazZ09ZrZfMFnMQkcvLSzabLQjBbDGnqEqGYcC5wOnJOWW1oG5aYoQHDx+SJClZlrJeLfnNL/8mRZUzGEtTDxwPhq7vMWYgKyWz+Zznn77i9GzF85evGUzPO+9cjAk5cWzujV7StQNFURJFBBEpioIYx2jMYbA0TYO3jtmsomlamqZDaMXtXcPgLfNFhbdjYk700NYD1XyGzhNs3xGcRUhQKqXvBwQRJQWDMSwWFVF49ts7vLP0fYtz/ejaCBYpBUoJ1qdrDsc93luCc2w2W7RWZGmKsxHvBM6PUaPWGczQ471FSIEQY0RokmaIe29ABBBj3OvxsMV7iw+RiEDpFJWkOG8RInK87yPo+n70bxwP+AA+ePbHmhev7khzzfp0zdXr10iVUs0XPHz4CJ3k1PWB7faOqszY7w+cnl2M0arBcf36M771jd8MQhKKouzLefnx6cX5by9Pz//6fLl8fnr54G8UZfUVI9yTN3ikJiYm/jFMC8DExMTEG2axWvxEVmSJcwMxAkKT5CVZUaKlHAdCAtZZmtYAkjzPMaZDxICSgnv/LzpJ8X4YDaHBY91AWZZU85yiStFpinOeIq8A6HuDlGPZlEDjbMCYnkQnOGuZzSuevP2E7eaWEAKHY81gHVpr0izjWLcgBMvV4n65kCyWaz7/hQ84Pz9nt9mgpeD586c8fPAI01kG19GblsP+ligc5Szlgy++z4fffs6Tdy7ouo7dZs9ylRGD4pMPb8nTEtM7bu8OdL1DJmNqkdYJaZqgpKTvDMfjuHysT5Ykieb1yw2mtwy9oz62FEVJkmpAMAyBwQRCCMyXC0xnsNaR5AlZkaH12NIr76U8WabIioS+bem7DiUkXTO2AycqYocBKSHgaZqGKARJmkKIWGOQQrJcL5FC4KwjzzTeeoL39E1L1zbj60/w9y8Ao6bfOU+iE7yzSATBW3wYE4BEjPgQyPMCnYypRH1r6HpD2xiC8/S9wQwDZZGhFHz20TVNbQBP2zW8fP4CawbefvsJj996m7woefH8M4IfqPd37O5uQUCRZeRaO2/728G0v7NYLb+1Wp+088XienV6+rfWJ+f/m0SprywePPr5pNIv41hFNzEx8QOIftNfwMTExMQPM3/0X/uj64vLB38wyTJcZ1AqJeqAGTqcHQjBkiSKNNPkRU5Reawfdf1SCKy3QKTvO2JkjKu8H7siASU1i8WS+uhQWpIWGfOTNUNbs99vmFUzNtsbYvQIpcaSKanGnHmpePzWW3z00cc4C0VRkef5eDutJYf9jvliyXy9oGlqlJRkRYKQgvX6hE8//Zj5YkkUcH55zmF/YL+veevtR3z00YesVkukSHj4+IzrV1tOVmu6tubZ09c8fvIO3imef3ZFoiSmbQjzhGef3fK5Dx7RNg7wlLMFg/U4a/B2IEnGboM0zbi73tEcj5yerdjcNlycr8kygUTR2x6kZnDDqOkXguPhSJHnZFlKbwxZmuGdRSeawQ5kSYqQkr7rybKU4b5QzA0DVVViB0ea5jgbaZuO9emSPCs4bnajn0NI5H3EpxCBokzZ9YYYwAaHMS2Qj4VvgHeBLM+xg2U2m9H1DT44lE5IkgQzGITgflHp0VIR7mVBXTtQljMO+y0hjMvDMFiqakZzbMizQHdfMFfvD7x4+pz1yZrPf+E9vv47Ld71PH/2GYkS7LY78iLHmc7leblNy/Q769Oz3ynmi6eEoCIsE6UOf+6Xfun5P/r/9i98f4/SxMTE/xdMC8DExMTEG+Sf+W/8yI+v1+ufiGGMmQyDw/T9aEK149AWA2NWvBDYfsD1/r6oS+Csp26OuOhRSUrbd4Q4RojaYWA+WyMRXL+4Jiky5vOK5ljQHWvmsyW3t6+I0eODR7iAFJq8LFFaU1YlNze3OBcpiooYIyF4rLO0nWFelpyfrbi9u8V7T1nOERJm8xm77Z6qnCEQCBmRBI6HHadn5zR1y/6w44Mvfh5iindQHw1aS54/e0E1m1GVOYddQwyWdDGDGHj9Yoc1nvZg0Flkfbagv/czSAQxBvI8QWtFdJ7jfs9sViKUopqlrNcVw9BjgwMgS1P2hyOLeTWaleP4udreYroeozVKjIZsqQIgcDZgB8tiVnI81mid0bcdaV4yOItOUu5utkghyNIc6zwBiDAWjGmNShQykYj7zgZrPT7CMHQopcduBmvQaYazDqU0UkqyPB9/rXJ8mUi0xjqLUgrvPUmSgBR4ZwmDIy+S+6biwGyZgvR0TYvWkhdPb9AqIU0KlD5w2O1pjjWPn1zw9rtv8/f+3lOyJEXqkpvjjlko+1mWbYMSN4uTs68uz86+VuT5Uevs73Yx3qUhpG/mBE1MTPyTMEmAJiYmJt4g5WrxLyZlsbbOEZzF9A3BDRACgxnjJg91S9sZggss5jMW85L5rMD7gbZtcK5HEsmyMbFGRDmaYREoqXCm4/b1c0xbo1RECsFysaJpaswwoHVKokvSLKcoZ6R5hhk6ILC5uyNRY1PwYlFRVjlSglaa9ckJt3c3bDZ3ZGmGEII8z/DOoaRkVlYkWjOvKvqmJU8L3n7nHa6urnnn/bfRaUZT1zz99BkgeP3qFXZwLBdzdrstRQ5FUaKUpipzPvnoJVWZ8/LZDbNZRVv3xAAhBIwZy7eUThBK0PYNZZkihCLGwGpVYkxP21qUHiVAWmuUEuRFTtsaQggkiaauW7qux1k7+gtCIIZIjB7nBrx3hBABgVQaoTTOBwTQdwbbGdIsxXpHcKPESCrFYAwCQZIlAPStJU01WknwEeKYyJRl+VgmFsefM3iPkHy3rThJEvq+Gz0RwY9xsQiGYVxsjscjUgr6ziOFwtuICJ71akaMnt1uhxSS46EjS0uKLMVbQ3Pc8dtf/i2KQvHk7fe4ut1w6FpOzh+Eq90uOCUPJNmNDYEoZJA6+40/9xf/4ie/9Eu/dPjSX/7Lt2/i/ExMTPyTMS0AExMTE2+IP/qv/dH1Yrn6fTrLCcFiTIP3HeAwpsd5j7MWIqRZgpSB4C27bctHHz6lrRtE8PjBMA77GilHCU+UCpSgt4ZXVy9p24Y8T1mfrpktZlzfXtF1DWmaUFVzTk7OWSxWCBk4HDZA4Pr6CikEIO8HfE3fDZTFjLKcsTscubm5pchKYogIIolKOB4O5FmOSjSL5QwpQKc5733+R7BeIGTgR3/si9THlpfPn1NkCc8++wSB4PRkTZIkzGZjys1gLI/eXvDixTVVkbG7rREImkPNbnNARDju9veyJwkonA9oremNp21blosZzgeM8aMqXUS8j/RdT16kSCVGozAK58L9UjRKmYhxvDVPFImWaBVItcb5SFZW+BBI85y+t+RZhbejJGsxn+GsHeM01djtEHyP7S0gKPKCrjVkSU7wbmz1dREp5NjuCwQ/EEPEBk9nxp4CIQDB+OvrOkSA4Nyo9e86siy7jxwFlWjSRJEpjQTyPGe1mnN3d8vlgzWDbTgetqS64HC4xQ4du+0Vf/8/+xXeevwWq9N1vL659Uon/WK18je7XR6k7Bw4a70f4JM3cW4mJib+6ZkWgImJiYk3xMl75eLs/OzHtcy+W/QklMQ6h5RQljmzxZz5vCBLND6M0ZF1bfCe+8bagbo+4GNgvpiRJjk6TYGAEmCGjrrrAEEIHm89g7Gcn59zenpBnpUoleCcpWlrhsFCFCQqwTr3XXOp0gl1faSqSrIsA0ZJS1GUWG+5295RVmM7rg+eLEuQQlCUBTpLOX/wkOV6Sdu2vP32I9bLksNuj5KKp59+gvOG1WrNYrUixlH/vtt0zBZjYdbVqz1aaw6HmhgjVy92BKdomx4pJVKNN/J2sORJwWHf0rRHHj68YLc9IiUoCVoohr4jz1IG15MkCoAQIz4GrHcM1iP16IeIQTAMfmxcjhHTW6x1SCURwiPkaLZOEolOJJFw/+1oSj7sxhhOoRQxQgievhvIioz5skDIiLUR0w9IQAjo+x47OJzxY5xnonF9B96PWn4zkOiU4BwQ7n/PIl3bYXpDVZbUh4Y0HY3agzMMg2O3q6mqDCUku92Ox29dsNtf03V7hAhsd9cIJXj2/Dm/9ZV/wOffez+u5vN9tP13zk/ONlkxE/umWUYpbZKmL40x/Rs6OhMTE/+UTAvAxMTExJtB/tRP/bP/8snp5bvOdsToGIaO5lgTxnxIYoS+GxN95FgBAEIQwkBe5Ji+p+0aqvn8Pt3HIhWjiTREhBhjRbVilLI4OGwPrJZLZtUcYwa6vuN43LPd3Y2mVpUwmy/pzUBVztFphpRjDn2ajvn0QkCRp/RdyzAYdrstbz95gneBY33g7SePGIYBIQWzWc5qPWMxrwjOU+UpP/rj77O5OSJ9oD3eErzn/OyUNBubeQkBN0SqKufiwQnXL/doEtxgSbRCS0lztHjvGezYWtzUY1GXkoLD/sBh33NycoJUYkxH0preGCKBJMnQiSRNEsqipO8HpByjPqUANzjKPCVLE8wwSoYiEWsdpjMoIXDe4b1HAMYYlAhY0xKcRWtJfTziTGC/aSAqrAkkSU5WppjBEpwkL8t7Db+mH4b7QrbR6+GdJwZo6walBG1zRIqxc2AwHd4aiGO52XjfP6YBHQ8NeZ7TtZ7uaHA2ImTCsfYcjjX7XcODywd89ukrTk/XxNhzPG7GkjQRaNoanSo++/SjuLl9Hc5PF7vlsvqwKvK/99ajBy8Wi8U+TfNDVOrZL//yL/s3eoImJib+iZkWgImJiYk3wL/1b/3Rxyfn838jK6V2zuC9RWtFosds/77v2Gy2tF373Yz7GMGHwPJkSVmMGfcISZKV+DBGTw6DgRCIPt6nyUQSLRiTgizOR5QWDNbRm56AH/PwY0AI8d3b9zQvyIuKGANd3yClYLVa4b1nuVhR1y15XmCM4Ud+9McAwWZz4PLyHB+hbjpmVUKWK9IkA+FIU8nDxyvyvKBvLUN3JFGS8/MLqtmcGAN2MAymp8gTTi8W7HeGrh1z+ce9xqMSRd22JEnC5u7AqxdbtErpWkOiJVev7ri4OCVJUpq2Jk3VqIUPgaJKUUmC9x4lFRJB33QkSiBFpGs6YgikWYoQKW3XsT5ZEgEpJSEIdDK+gCyWK6zz2MGOvoDfHcajoms7nLPE6LE2UOQ5Qih0miABKSDLivFlABiGseHZDQZnx3ZhNzj6rkMrRdt2DM6hlMKYjhAdIUZscGRFjtKavMjoup4YLUpqNrcNzdHinEfEwPWrO+r9kVlVkIqMw+2e9997m75vR9/AvZk4huCrstht7m4+zbL0MJtV9btPHv+tB+dn/9H5ydmuyqub9Xr97Td2eCYmJv6pmRaAiYmJiTfAj3/xCz918ej889aNkpLgxzx4cR+dLqUgLxKKIiPGyDA4un7AOs/x0FA3NW3fMVssSNOMWTUDGKMh742p3nucHYg+jEM+EakkzkfSLEUnmizL6QczTqRCEImkeYYQYypNXR9pmoaz0xNMZ0iSDGMs88WK+WLF48dvM1jP7tAQCWRZyeZ2T54nY+GWd2w3R8oyR2rPYrlgc3OgazqyomB9fobOU6rZjGB77DCQlxXLs5LAOLzWdYeQkrpumM1zXry85uzylP2uZXM7EAI477CDYXt3xBhPkkX6rh2H+0TR9f0Yb5qkSAHee0JwdF1HUzckaUaeZVjjqaoZeVkw2EDbdVSzgmAD0QeKKkdKifcR58ekpnBv3PUhkGYJcTQaEHEUlQICZZUgBIggSLTCuQGlUrzzCCmxLiCExNkB03dUVcngDYMf8DFQViV925JIRd+Oi164f5UAiVaKokhJkpTbm5osS3j22Q3HumVzV9O3A6Y9srm7IUsVq2XF089ecfHgLaKSmMHQ9z1SSJcqfVjMF68Wy+WHQvBJmqYLKeW3/8BP//Sfe3B5/qdny9mnf/ZLX+re2OGZmJj4p2ZaACYmJia+z/y7/+N/84PP/54v/PHZfD7v24YQHDF6QojjTbNSZFlOkZdIqQgB+t6hdU4MEtN5xgQaRVGUOOfo2pbBGNKsIM0rdDJGRg7DmDNvWgMh4swAPo6m0KzAu0ieFSiVEGMkSVO893RtS304IKXgrcePsday2d5hrSMKWKzmPHh0SdcbuqZjv98yX8wRRLpm4HS9Go2zUiJwJImmyGeY1jJ0A0oI8rIiy0uKPKVINFrAoqqYLzLyLMcZi2kGlIwkSuJ9QIqI7wOzQtPVDWWRkGSC477j6vme66sDq/WC2+sDzbElSUYJU9d1QERKxWCH+8K0SN8bhIyj4VdAXfesztYIKTkeR79Bmkj6tkMKcS/DMURvaQ8N+MhgHDEqBusQShKiQapA0zQIIdEJRAHWDfRdw2K5QmfFWPglR4N18B5ChBCo63GZ0qlCSIGUkuV6hZQKESFRGmssmUoRLmL7DqXGRCKi4ObqiHeedt9x2NQcDi1RCB48uuRYN7RdRwgGZw2HQ8v7n/vC+HWHYNM83xbz+VVWFS9Ozk+/dXJ29veLav4bQuu3AP7yL//yr/2Vv/JX/mMxJptOTEz8/yjTAjAxMTHx/UX9+O/7sX/j4vGDnzoc9hhzYBharLM4bxkGQ9d11HVH31sEYjTdCnDBEWLA+zFdRqAYzJgS5J0jyVLmyzVZOUcnGYKxRVgkCToraDrDdjPGeiIVeVFRVTOEgLY9UJYVy8WarmuwbmA2X3J29hDvBE3dk2UFRVkwX1c8eOuEzgwEIvvdhuAtaZJyOLSkmWZfHzk7nXP1ekNZ5STpaJAdhgGlJEEGkiwl0QmrxQytFNWsYrbIWa0qjseW4DRda3nw8IRjW1NWGV3TUxQZbV0jBUgRkAief3zD/q4bDcxa8uLTW2B87dht93g7MK8KBmuRWuH8AATs4BFI8jylPhqsDyxWS6yx9E3NfDbDO4f3YXxJMA7rPNF76kONHSxtMzCYAEKPaZ44yipFoEdpVyIRUjGYHoTAi4izDjtYVKIBz3I5vpY0TUf0AWJAa4lQEucCIgqEEATGdB+tFAKBUpK+b7HDgBKaalFireDu5oDWks31EWEVV6/uqBYzFqsZd7cb3DBguh2HzQ2JTLg4O4tFUXRS6lpn6X69Xn2al+X1YrF6dbJa/cU0SX7761//evJmj87ExMR/VUxFYBMTExPfR/53f/p/8Yff+8Ln/zuDbVTTjLGNQoqxjMuPOnDvPV1jODYtznryMkdIRZIqpJJIqdnvrzGmo6n3LJejrt55h5QaxNgQe+8Fputq+rJFJTlJntIPbhxUQ6TvW+r6yIOHjzg/e8jmbk+ic4pCUZULYhA0fUuW5VTVnMWqRKaCGCN5lnJ5ccYn+x2nZ2ccDke0Ujx99hF/6A//QdrOcn174McfXeDt2GuQJQmD8wz9QJlrnBLMFgsOu4G0TFmdzLm92ZMWCWbwzOZj/OgwWJarBfvWslgLfBSk2Zih39eeq1d7FvOK+arg6Wd3RBcJNnD16pYHj5cEL0AyZvlbDzEQQmSwA/K+M+Hmekc1r8bb/bojhkhVZYQgQHicCxy2LeeXJYMZ04lW6xX7vUGIiDMBJUZ5UJbNGewW6zxSCbQUdPfNwYJA39ZEIM8ygnMsZvkoz3IR5xxKSbSSKBEJgwUlKMsMpEBJib43JiMi1g4oNUqOpBRoJbl73eH9mNSUpjmH/YE8S3n86Ixvfv1DFrOCpt1hXcfJ6QVVOSOG2EctPk3zYqtVWs/KaqdS8bWf/6W/9NmbPjcTExP/1TK9AExMTEx8n/gzf+ZP/nP/7B/6qZ9fnJxe1s0RZw1CjoOkdw5nDIf9kaurLa9e7bl6dWR3bOgHgxlGI+x8XjBfVFSzOd4FpNJEFFEkrE/PWawWYzOsc8QISimkBDs0tO2eLEkpi4IiL8iLkrJc8N57X2A+P+NY95yeru/1/wPWGer6iBBiLP9KBWme0LcGpRTnlyv6vuX84gJjDMb0/NZv/yZCwvn5GR9/dEWaFRRFzm7bYs2YiX88HLHWQlSAIM1TQhxYLEqIkqbpKPICACHHjH4/eKKLCCRZmqIU9P1AmibcvN6RpgmzRYaWgu1dQ16l3G2OCBQCNcZ3Do5Ej/GcANY6kkSRZRnXrzf0faCaF1jb0TY1QkCSakw/Fpvtdw19a9BKczz0dO0Yk1oWGc4N9J1D6wQ3eKqiomt6lJAoFH3bMphx2VBSQnC4vqeqSkLwpFqSJAprPYj72/4QydKUrulo23YsA7tPNEKAUoIQAt5F+t7Rdy1d3RG8Z7c7MphAkgrM0CAj7O82KBKktByPO+bzFTe3VxwPdzhrwmI+88vl4tXF5cXXZuvFK6XTj//CL/3VL7/BIzMxMfE9YloAJiYmJr4P/K/+5//u+z/5kz/xvzx7/Oi9Y33k9vp2HNSDp+87hs7QdS1d27G53XGse4YhIITCWthtem5f1+y2DVWV8rkPHvO5D94j0SlpkvHg4QPOH1yyWp+QJAURcZ/uMxqIox/wQ4e3Dq1GI6qxnsdvvUeiS7rGUOQZV9evaLsGKeF43BNFwAVP37WslnOuX15xerqgKFNiiJjecfnkFGcDm80dvel557332W4bbm52SAmbbc319Y4YBcdjy263I0lTnBMgJXmhyYoUOwS2t0fKvMDZMfFGa0n0niLP8d6TZinRw3Hbcjz0hCAQ2jNf5lw+WHB3s0OrSFJIolas1jP61mKGgA8R5wNda5BC422EIDD9wH57ZD7PyPMEMwwMg6WalZTVgq7vGMzA3c2exXIGQnHY1oioR3+F6YnRk2aaNFUopQlhbG52g8dZcM5jBotzgTQtMH2PswMIiVACnWiSLCFN1Oij6BqsG9uN265jMA5rLfG+9dc5dy+nUgghubs9YDqLH6Dd96xXJU3dIJXEuwBOcPP6FbvNhscPHnA87sbPVylu714botsF3CFPk2I2W7w8W5z+J7fH499h0vpPTPz/JZMEaGJiYuL7wMPHj/9rZ48e/HO9cWxurtBSgZD09wVPxIAUkiTRzOYFXX9kvsxRSvH80w2vnu847Ft2uy3RO04vLtEqY7U64Xjc49wpu50lBsahWEgQEec9Xd+xi1DNJUgFUiC15MGjB+zutoQYqWYFTXMgRHcfQ2rIsxyhBEop1ssl11e36EQRoycvcm5f7Xj3vUe44NFas9ttWCwWJDpnszny/MWn/NQf+AN88uFLEAKlFbe3G7p+QCU5rTuwXlcIJcYBtw8IImVVkOc5oW2IfozYPL9cUdeWolRkaconH15z9nBG23WUZY6zgSTTtLeB2TKhqkpMvydiv/sCEHzgsK8ZjON4bDHdQJ6VmH5Aa836tEQAzliG3pKcpvTG0fc9IowpQHmu6VvDcd9xfnnG7dUWOwxIUZGmEqUhTROsdbhg6cyADwHvQUmN95HgA+6+Q6A3HQJBZIxh9d7hhgHnBqSQRCFQCuwwtv26GJFSY+2AlAo3+PHloDP0MWJaR/CgE8FymWIHh06grrcE3/Ptb3+N9955n6osaOpdmM+Xbd0fak+8zZTeCeTce7f/c3/pL/3Gmz4zExMT3zumF4CJiYmJ7z3iwVsP/+WiXIi2PhCDY7GYE7wnUZo0SVAqGYu2tKI3FiEFeaFpjobXz/fUx5YsTamqCqkUx+2BF8+e0bXHUePfNZRFQQSyMiGKCMj7aM/AsW1AJEgtmC0L1qczXHAgYFaVHOs9h3qP6Q1SSZJk/FqEFORlTl0fuLm5oVrMEFISPeRFxunZgq42aJ0yX6xJdEJVpvzWb36Ztmm5vTnw8vVLnB/Y7xtevHhF2zTs7u64u9lwdrbguDniejsWaYWA1hHnLEWZ0bUD83mJD46iTMmThKefvMIHx2I5I3jL0I+Z/tttO/64KmVoDe2hRykJKnLcdwQXMN1A8JL9vgYJPniOx3GJKIuMwViGfhyuo49YY3DOctjX5EWC947dpifNM6SG25sdkogS8bs+DqUkprdINCJKpIg4N5CXKc729F2N947B3g/1NhIiKPW7rwHJvRE4MgyGNE0IPjKYgfpY453lsDvSHFqO+2ZcnobA/m4g1RrvPPXREJFjB4AIdN2BED29OfLy9TNMb0IIoSuqqs+Kaid18irJ88/SLH2RKGXe9IGZmJj43jItABMTExPfY/7Mn/6TP33x4PJfMkOLNTVCQtN1zBdztB7bdZUU9z/ao7VgeVKyPJ1h3YAQkbzIWZ5UvPvuW5yfX/Dw0SWzWYlAYpqaj7/zda5fXtHsjjSHA1onSCHHu2Xr0FrjouPxuyesTrOxFMxFpNYM3uOtJU9Slos189mcEDxaK7yzRAKdGSjKkt4Yqqpg6C1pKu5Td8bhvypnLJdz+r7l7u6KCPS9oW53ZJnieDxwe3dD2xnutrdopcjTjOef3eJdoDfDd1uG7WCRQhMiCD3enhep5MXTK7Z3Pacna4beIRAcjx0RT9/1pIlECsnN7R6dZiRpQn3o8CGik7FJ93hoMcaSZSlNMyCVJC81UqlRp680Skti8AymIVhwLpKmenyxEZ75KuN4ONL2PTpLUcn4x+l4mx851jX1sR+H9+gJzhGcxVsHcTT5Oj8uDNY6jLH3un5JnudYF1BaYb3F2jimKInxZcYYg7WB+tDhBstx1yOi5umn11hr8TZw2HXcbQ5IJYkxYkxH1zXkWcLxuCXJ9NAN/V5KzLychSzNdnlRPssW828Xed6+scMyMTHxfWFaACYmJia+t+jHTx7+6+ksuTgc7uiaI13XU81mEEcTZ0TgvMWYI03Tc9wbFsuKw75hv+1x1pGmmrJMiXFgvV7hvB2XB6FRRA6bG3Z3V+w2rzlub/DWgBzbgH0IpGXOT/7Bn+T84QWHg0UoTZKmJFmBTgsWqzPyvAIJm80GKQVN05ImmueffcL19Su6rkeJlHo/sN82JDph6B3r9YyySHHO8uDBAz777BnWD3TmSNcf8N4SETx9+pT9fkPT97SmJy9zdruG27s9N3d3dJ0liMhgA03d0HU9IUaKqsC7wHHXcXu1Y3VSIXUkuMBhb5gvSqwd+xO8i7SNIXqBSgSDtey2LbNZfp8mFDCdHWUzboziDMF9t3+h7wdiiPcpSpEYAkpqEp1hncf70RAdg6NtDVJIQgSpRqmO9wFjxjhXpSTOOaQa05iyJMc0FmccMQhiiKPmX4Rx2egHEp2OC0E34KzDDYHtZodU4N3Y/1Afj2glaeoxMvR4aCnKhK4Z+Ozja4TwbO9u6OoDh82GWV6iVYrpO6yz0bnBIXBZnu57O7xIEh3SNI1Jlh3yvPhoSPJ/8KYPzcTExPeWaQGYmJiY+B7yzjvv6MV69UWpNLZtubu9wXlHWZb4GPDBM5iepmkwxnN329A2PUUiOW5btnctXefomo6hdxgD3jtCHJeGw3GDCwNCeOr9LaY7YkxL3x1xzo2pOVnFkydfYLE4pTsYUqXoe0NRZMzmOUVRkOicY33g5uY1MBqHrR14/vRT+r6hLAuKokAEye3rA8FBDIEk0VSzhCSBi4sH5PmScG8bLfOCpt4yny2xNrLZ3uC8oW72GOvwRF68uqUzhpu7W+q6QStFczAcdy3eBmZVSVcbrl/vqXcdiZLMqgpvxwz/trYkSow360FgjSPYiOst0Y2lZArJal3RtZa+9ehEIITiuO8wxmEHj/cw2Ijzo2wmRJBaEIgEAgFB0/Ykqca58fMfjCUvUuww4H3AOYcZPCJoTGtJEslu1+K8pR8sOsmIURJ8uG8WjmityBKJlpLjoSNGKIqMJFE0h4Y8TQnD2BTtfURGiWkHbO847FoGF9jc1bjgyPOE73zzOWmactjd8PrZx7x+/oLd5sjJ+hKt0zgMndGpPvZ9N+RlHlSi9kHwqU60zbL0mCblb/ziL/7i3Rs9NBMTE99zJhPwxMTExPeQP/JH/sjby9XJ+6bvaZojSZpSzud4IsFZpBiz6a0duLqqORx6PvjiW9SHjutXR7rWkucpXWt4/WrDYjHDmI6h91gTWMxPqI8bhFAEoCgq3NDj3YAUASEkRTUjy2c09YBpDyyqnNksBwnHncPbgbrekejRj+CDpWtbhBT0XUOeFtTNkSQ/Mpt3PLg4RUmB6QOrBwpjIqdnC6SUFEXOarYmT0suzi/Y7TacL8/ZbY9Ya4gx0JsjGRUhBDbbHU3dsN3cURYVddOAi3THjvxtjfOB559ckecp+8OevMhompq8yhmMZb6qOBx6pJDstw0yUTgfCVGMS0IXiCGAjHS9Y7drefBwRdsOoxymNmSpJnpojy1KQtt2KKXvk3fGW3chJTGMpWzOeYSMRAJKw2Asznns4NHaEoOgbwfmVcZm02KHMEqq0tGDgRBjc69QaJWQpAl9Z2n3LXIFAkmaa5yPFFoiVUQgKNKcQ1vjHePN/95SFAPWeJ4/vWO+zHh99QIpA2We8urVHXe7O8pyju0d5xcP3bHZdkLKo/U+Vuio06xOi+IqK8tDmulv/Pm/+Bc/fMNHZmJi4vvA9AIwMTEx8T3kxz54/M+kWXLZtUeKsiAvZywXS6LzyBgJ3tI1LddXe7abmstHC7JMsts1SKnJ85IQ7mUlxmKtxfRjJKRSEqUUxIiSmixLMcOAGXpiHCNE83LOcn2Gc55Xr15yqGtkKkkzhekNzjmOhwYhwQ4WISTWDxhv2Gxv6E1HP3QY01AWOfOqwAwG5/0oj1FjIddsnnF2seTBwxlpkvDowTuUxZxqvqIoK5JEIaJE6wStNKlO8M6x3W4QYizaOrZ76rrlUNcM3lE3A598/BmHfUuiNXXbgVIM1hKiZ3AOqRVNbelay2DA20hTDwgpkRJCiMxXJd4H+ranKMfbdQ2IGHBDIEkV6l7/DwEpRu+DdxFvI9FHorekqaI+1sQYUUqQKI2IAiIc9i0hRLwbP5dRWuTxziOchBBp246iSun7gSRL8AFCAKXTe/mSpW97dpsDhPtiOOuxQ+CwaxiGgcEYghMc6zEG9bjv8Tbw8beeYo3F9Ec++vDrCAFaK4a+4fbmebjbvDTBD+b84mGvEl0rpfYRGoSw3gcVEE1Z5N9+0+dlYmLi+8P0AjAxMTHxPWS1Wv1emQbZ7vZE71msT8Z4TjsgRSR4hx3GwXO+zLi4mHH9eoszIGVkvko57C1ZniARDGbADZ7eDOR5Tr3fIKUkr2Zk2aiVd36MnpQiIctKetMTt6/H+Egz8LkPHjM0A0VWYJqBLE3ZblqSTLHfHjHDQG8MWZIRosNYw4MH7zCbLbm+u+V0vWYYLO9//gydaopU0BwdeSGJQDmb8SDJiARkosmzFG8NWapIdIJQGiVTsiylro8sH67I0oT9foNz73A8tkQX+PSzF/TDwHqxZrtrabuB+RKyRGN6SzUvR528DTgT8MGR2jGdZznP8Q5U5qkWBab19J1hVhU0h44sG6M0y0KP5WBti5TjUH88dmgt7wfuQIwBxPh5WufQiUTECB5sZ1FK09Y9ZSWwWiEkFEXCdlNjB4dSmugjXd2RFWr0FggIwdO0HUqCc+PPE6Oga3sEK7SUGDNQHzu6JuLtFq0F222LNQPXL29JlccNgtuXt5RaM69Knn72CYSAkiIkWgy77Y2ZLRZ91w3bLEt7IZfROtckWbpJUm1a48rURil9Opl/JyZ+SJgWgImJiYnvITLTYhhauqYGqVikBW27x/mBGAJaj0VOIBj6wH7T0h7vb/mHSJ4LsmRJ13Q0tUFLwfFQY4MnBAcxglDMFiuEkBjTgHcQPFJretuye7VFIKmqJf/S7/u9EOJYrBV6Qgy8unrBerXi5u4Vg/XMZgsS3SKRBATn5+cURcWzF085XZ/Q954iVyxWGS4YNDnW9qxOKo57x3I5YyUl290BpSHPMvbbGxazOXmeYV1EJxlt05GohESlZElOxNK1PVmScn33gt70lPMFQsF2u6Npa8ywRmhJVVXo+1v76AKCgHcBEw2zeUYMgSgVZZWOZVebmizX4CNtM/YlqDQhz8fUnuDBu8AQHLu7mvXJAtNb+t6TpmJ8DVB+/L2KAq01g22RfURnCcRILCK2t2MpWJ6yXC65uTowDJboA94ODAjSLCOEQJanY3JRmhBjQGqBUGCdxwwBnWb0XcNgAl3bst83XFwucHZgvzG4YWBzfUeeVURvefb0U8qiIISBY7N1Suk2zYtWaXWHEpssy1qVqDrVZee9z3Sa3uZ5uVVmyNM8ff5f/1f+ld3/9hd/8U0fmYmJie8D0wIwMTEx8T3ij/3rf+ykb/ZPZJjjrCVJM7RMiN6NOfBmIE003kVMF9nfdSxmCctlhTE1wQfKKuXqVU2aalwe2N5tGfoOpRXOgrUD8+Wa5fqUvj4iYyB4TyTS9C11349yGKF5/4Mfx3nJfJaiRML13Q7nDU/eecz27pZj3XJ6coH3ls4dSdKEqpxjbWC/e8aDR2+zWp1xONQ8evI2TWdYL2fs7mqSNCFJNWbouHiwZLdtyNOEVEvMYOj7gZPTBwgih6ZhNluw3WyoyopEK5TMKIsUM/TkWUrfdwglKYtLnHOjB0EnxBhxNuCdp2s6dJIAAfDYYaCcl+RFxm7bcHK6INUJphklQrNFSd8O4MAOEXRABkHwkqrKuLvdo6Wgay0nZ+PQ79yA1hl2CJS5RGlB1zqKQmEHR1EkNI0lTRkLwRIxxqo6T0SQ5GMuf4wQoiMEjfAOLxQSR3PsiVVx7x9IyIsUN3h2myN5ntEeHd4Irp7foZPI7m7D5eUJr168Is00m7stWdrR9TX7/ZYnT95CJ6oPwe+yLO2kVn2SFa+zsvw0L7Iuz/KtzvLbGKNQWl1JnXx1BnRe7n7mZ37Gv+EjMzEx8X1iWgAmJiYmvkc8fGfx37y9vv1cNdPcXd3x8MkKZwfcMGbCO2NpDzX7/cD1ywOvn99xsspRuWdz01OWGYmSVEVK347yleOhpmn2eCuR1uKcY75ekSQpd/WBYegIAayLdIPFRxAhcro+Ic/mpJkmRnjx6obTswrbWz6+vuLlq9esl2fEYNnvj1TljDTNSZIcBLz79vsU5Zznn33KfLmgqjIUmrub0T+wXGV4H8lzhZISsQ+sTxbs9w3b7Z6iqFiuV2zvNqRZRppoEp2QpRV5UVJWM7y3aKXpe0OSaISAPE/ZbrYoqUZpk/eoENlsdpyfL2mbAa3GKE4zDCijMWZgu21Zrmd0R8swDBAc3lqGwWN6yyJTxCEwOMFsmQKC4MARyNIU0w6oBJwNqFKgpcB5P97W+4AbwLuIiBLbG/IsRUqJHSzOBXSiMM4wm+cM1hGjhxhHn0DwyBAgwGAcxFHSExPIcoUSmmbfoYXm7rrmeOy5evkCP/TMljPE/TKx3WyYVyVdZ/DBcWw20bkHlOV8b+NwleRZm6bZISurV3lVfZZn+aGs8q+oKv2drJHDH/5Xh+ZnfuaXp6F/YuKHkGkBmJiYmPge4Z1rtne1sv2zsN328tETiQs91lmCj9R1Q1MPfPzJHdcv9/z9X/3POTn9F8jKgq98+av8vt//EwwmstnW7A8tMQS87SFEnB+ww9hSe6JPcdbgvcWHgI+BKMAGjxCRZVWRpgmmP5JpzcvP7nj8zinD4NjcbWmOO87Wpwymp2sblsvlvUSlQiCQUrC52yJ2DbPFmifvvoVA8vLZjtPLCiWhmOXs7mpOThZ8/OEVaZYQo7w3zCpOTkfvg9KKIi+J3iGlQCmFUAqdJbjWffeWP0kKyrKk63vsYFgt11y93t8bonucHVDqjM3tjtVqho8C7yPWOHabmhgig/F0jcH7gJAaa8M4cCNw1hMt6FSSZQltM5Blmq4x5LnCDgbiWEgmiFjrSbMxYWiM/BxLv4wZEASSROFdIPhxaRBCMAyWLEvou7GIzPmAwhECCBdQSjL0huBSBJJuMPgYsC7y8sUd551nt++4u7plt7+j3u9Ydkvq9sj6ZE1T75HRkiYlEuEEsdntNjIvip0mfZYV+b7Iy30xn32aZrMdiWxWIvsH//6X/mID8Kd/6Q0fkImJiTfGtABMTExMfI8osvLv3lxv/tsv2v1PdL2T735wy/xEY/oB17f0reXupqPeOfrOcre94df/wVfIdMpXf+u3SHXC6uyMzbYl+oA1LX3b3BuHLcPQcjjuyIuMspzjvcO6MclncJYQA4lSDMbQqRYVBZ9++ILHTy64uz7w+vWW4Czr5Ql3dxuM6YlE2rYhywqE0CAlbXNkPl9SlHOqxYq67vn4o1ecrNa0ref0QU7T9Sgt2Gxq7m4PPH7rlK4d8C6Q5wVSaYzpgEhZlhx2e7TSYzSmHJOEuiagtERYSNMMpTRNfURphZSSSMQYg0pSijznsG84HhrKqsA6S993aKXp2o6yyjnsa2IsGGygrQ0hQt8ZqrKgax0hWGarYjRWW4tS4KyjKHP6biBGyWAsMTJGe3Z2TAUKgbYdGAYQ0pBl4wtCU3fEoAg+Yq0juEhZFjR1h1Zq7AgOYXy10OK7S0N7NGitCMEipGS/a9huO7rGj7f73rK5u2K73xDiwN32FoXAWcOhtjFNrPPemWpWXbnohiIrb6py8TTJ8uskK/rZYvE1FeSXfZ6bf//P//nmTZ+LiYmJN8+0AExMTEx8j/gf/vE/fvU/+7mf+5Ovn7967+OPn//+R0/W6uwsw9Q7+sazeXXguLFEY7HGIqTgP/t7v8KqLJFKYI1h6C1aCIw1mLaha9oxOzI4vDPs9ncgBOerc6wdRpOqFBg3ttvGCAhFnpVE57FDg+kthATvA+v1CR/d3aB1SjUraRpYrU9YLlZImaCTlK4Yl4vDbkvfd/iTJQ8fPqJ3LbHTvJ2fsNvUvPXWKb/5ax8xX85QiWKwASEVs3nFbnfA9B1JqhEiIqVEJ2MbMVKQZznX7SvEqaAoMtr6iHcBGwyzckbXtUgladuWk7OKPCvYbvcgJUmaUjcNfd9T5CXHumY2L2nbnjRL2W8bIqCage12T57ndE2PD571+Yz2MBCCJ8axXdjbceAf/xkSpWiOHUmqEGKgKBPqw7i0eQ95OS4H9dEgUCglEEKMRWnK03eOyEBeKrTW7Lc9aaIJ3pCkCdu70eOBAK0Dt9cb6kPDdd2TFRn1YQ9EmrYmVYpI5OnTQFmUoa0bTxm9j64tZ9V1UhSvirxoq/Xp7+gkqRXio8XZgy//qT/1p7o3exomJiZ+kJgWgImJiYnvIf/Ov/fv/fq/+d/9I3+qysT/5G//3/7TL15eVHq+Kri9bdjtW/rOs9vuOGz3Yyuw62n6wHy+5vLhQ/rBYbqGvm1w1qGTBG97gnMYYxi8pTc9XdcSg8d5R2d6nHcIKfAhIlFUecVyMefsYkGWFWS54t2zC559ekWa5iwXc9qu4+LBW2Rpys3VNUJYvBsvjEMMpHlGUqQ8fvttbm9umC/nSBu5fXXg0Tsn3N41qCSlnOWYYbw5z4uUutkilaU3RxbLNSEEpIKiKkjTFCUVQz+WlllryIoEH8cc/HBvls5zBQisHYgRmrbFe49OUnrT07QtUiuOzZ5IoGkNaZDM3Jzd9kA1L7i967HW0fU9x6ZDSYGIgvY44MO9UTdImmOPUJ4QBCGMMaDWBtI0oe8GlJYcj4bgI8FrrAs4Gxi6iPM9RZ4SI6Sppj529P39opAbihJM53EW9tues/MZx7pFSEUIEWsDu23N9vYGiNzeDRRZirUWnabsmwNlnsSb29f+wfmDQWtVd6apZ/NKBCVeVfPF17Mkk3lZ/GpQxbf+wn/4H/Zv9ABMTEz8QDItABMTExPfYx7/yAd/s++Pv+/jb2/LX/k7v3H+oz/2+Wp3NLJrDfttzW5zYL/bcKyPSCVIdEpVLum7gcF5DocDWgl8sAjAO4ezA3V7ZHCW43FPiiQQaExPbRoiEREFIkJZzSiLks3dhv3+yOVbcHp2wuaup206zs5PMV2PFAOm67m9enWfJCTIsgIQrNYrRKKpZguur3aYrufm6ooPvvhFDsbw3jzlow+vyZOEGBzHvWE2y7m92dB3/b38RaDVmL+vkEitkUpAjJi+ZbaY0fc9i/VyvJEnUJYLmuZImuZkaYF1A/XxCGIcztdlQd8a7OBRUnE47MmLgqZtUUnFbrunro9EAm3XkaYlL19co1VKmir2u462Hg2/EYVA0bUdi0VBPxiSVI9RniYghcMYj5ADwYHpBnpjkSpSVik+RLrG4i0oJQDoe4sxA0TNdtugEoExHvpAUw8kSUeaJbx4fosUihgixjiurq94cHHO6xefcXFxTj8Mo4TJeS+s6IssbQdvurxatUHxoU5SobOkL+er54mSX0/K9jtf+tJfnYb/iYmJ/1KmBWBiYmLie8zP/dzP3f3cH/sf/K/r3Sa5ef3sp3/l+upHzk4fz3vjZNc27A9HXl09pxvG23YXPHW945OPvsPlxQNUcCghEc5i+p62b9gcNhz6IxEwfuD1/hoYb+ojIMQoQ9E6wdqBpy8+IZEZjx4/wpoDV696tEwJ3tMPo/Y8z3Our18j0KRZTrUoOT09BZHQNjXWOfa3G5ruiDeW2XJJOc94+N45L18cOO571itF33mKoiTNJbvDgUxXvH71iqIoyPN8bDHWyVgUpgR9N6CTBBE9x7bFu4hSmq7rmC2WhLrG2IEszzjc7AFJAKSWrFZrNtsd3tkxZtM5BmMAQV1D33VjO/KdpShzXr16yf+bvT+P2TXND/rO77Xd+/0s73q2OrV1dbfdtoNZIgZNJMgwE4SUUTQRPRmZ2AQCIXgyCCxmRjN/tCzNhiJPGFmgpAXG7W4WuzPARIqYCQTwEGAwdINxr1VdXcvZ3+1Z7/1a5o/n2BiC7W47+LSp6yOdP85bp97zqH636r1/1/Vb8ixnPl8wDJKnT7b0Q898VhL8hBCCzWaLFAKQhODZbye6ZmDsLW03MPYGOwXafcfkHEI4lFJ0bc84OLabltm8AiHZbQbcZPHiMNv/1p1jxnHDZtUxTZ6mGajrAjs49vsV282asqgIQbBeXWFUYHXzDOcmZ631eZHtEm32OjU7mSSNNNKWVf00r+Zf8VP/keD98KP/5V/+uy/mSY+i6NcK8aI/QBRF0QfF/+V///3HX/ziV//9xw+e/q+uL9dv9DYsunEUnXVsux2jmyAIUqORQqKk4WRxxLyeMY6HcZbWTax3a3Z9gw/hn/n+Qhzq1v/p7yHRGhUESZJRlQtmZcnYD9y+8xJ37txHSknfD+jE0LUdV5cXZFnK8mTJ4viIq6trmm2DUZq+61DysCG3WsyZnyy4c/8Y7zyXT/fge+7drVmvBm7dO6bbjWxWLQLJl77wZc7Pl9x/9S7vvP0+CoM2CiEl+12DnToIE8NkmS+O2dys2Ww33Lp9m7bdY61nvphz8fQJUkCSZkiTMJ8dMXQ9zlu8t0zTYQfCfDGnbzuMSdhstyxmRwxjx7OLp+RFzenpGWmSYq3FGMXRcoFSir7vmUZLVVUEJGkuqeuS1fUOay2T5XmzsGPoB7q+5/RsyXI54+ZmjTEJQ2/RRnFytuD6ck0/THgfKIuc1z9ywm7T8fW3Lum6nuXxAik9V083dO31YfdDVmHtjvfe/xomMWw3V04nyb4dbJ/l+U4nqkmM2S7m86dFUQ5VVb03Oz7/76wfLl3X/TZK82Of+cxfvvjVfr6jKPq1I94ARFEU/Sr5P/zf/uT1H/kjf+S/SLJ8l5ZP/6dvvvXOb1k3m9P9OGUB0FKhjPbDOEpEgDDQPm0wl5oAh/GeIeCD/xd+/599+RcIhBReCZwUwmZp6oqs0F2/z4ySvHT7JWbzOf3YUxUl83nFdrfHOctsNmNxNMOkmkcPHmGUoUgzmqbBO0+WJCgtGZ1jmGBzPTF0PavrLa++cYubbUfbdiRJwsObFbOq4vrygnqWkxU50+RomoaTozP6YWCa7GF+/jSRaEEIkn4c2bUN2mg2uy2pNiAC290ek+VsVldk3rPMSzbrFWmS0Lft4UhLSJTSrG6uCc6hpcFNE8PYcXX9jLbdYZ2lrkoIjkePH3J6ek4IgrJMubrcUBQJ/TiitcYMghAE+6an73ukUHR9zzB2GJ2wWq1IUoOzgt2uoZ6BnQJXVxeUVc5kHZPzrC6vUOfnPHxwzWxW0fcNzbYhLyRpnjP0LcJbLp+8T1FUZEWKCw4VdFBKDVKIfZYmfZ6nV8WsepqYZFeUxXWRl5s0y7++HYa/9tnPftZ97/f+rqeZS9Sv2kMdRdGvSTEBiKIo+lX0n/1n/1n3Ez/xEz/6d/7Wf/25NC//3aurq990vVofd8NUj/1QF1U1rna7et80c2OSoe3acvT2nznZ//mklB4IIQQpECBCSJKkLfPsJkuzTZYkXVHkK2w4PjXFdwpkut5scEIzW0hGNzDZEYHAO0c1q/FO8OzxFep5vf44DgzDSJKmz7f6dlSLJUZrht7x7OkFEthctVxcPuPOnSWPH16zXbfsVjdIqcjLnKPjYy4vrmmbnuJeSts1TNOIMRrrLNqkOP98FwCBcbIkJsVNFmstq+2as7NTRhtQDsZxZOp7umaLSVKm4VBapLViu7lBS0ldLRiGnn2zxbqBfmjwwdH1HW3b0jQ7hJRolTGOA+M0sL9YURQF1k7MZjO0TFmvDlOM6lnN5dUzpqlHycMtTd+P9N0N1h5uaBKTsVqvWF2vWa821NWM7eoGCeyairt3FUoplID9pkEJg1KBrhsIwnJ18wC1MQEl7NA3oSgrO4z9kGX59WJ59HY9nz3WRnVKmS7Pik1a5V/5zI/9BQfwYz/22Ue/ek9zFEW/VsUEIIqi6FfZxz/+cQf84//dH/gD72zOz74NqU82281vVFJtri5vvssJMXvn3fc+VOTldLG6OW+a3Vwnpttt9yfGmN56mwbvZWqSbZKaDkQA0EqMCOkWs/n7x8ujd4qqeFgW1dtJkuS73e47V5c3brPefthaO68Wc1mWGafnZ6xuNmx3a45PTzFJynaz5uTohGGcaJo9AD44ttsV3k2kecHy9JhpGtit9/jJkmYJz548ph1bsvw+773ziCI/jOc8mh+z223ZbnY8fPCENMuRSrDdbZFS47xlshZGyWq9op7NSLOMm8srFrMl1k6HWv6+o20a8qwg0YbLi0uyTDOOA4UE5z3BCXxvny9FAzMNrDc3CBnQRjHZCSR0/Zahs4xjR9sEtpsMITTGSNbrG7IkZXV1hTEJzq3YbbcoKRmGjs36gjwruFqtqMoZc3vMfrdFKUnTOhbzGdM48t7775CYFCECzo+sV8/Ixx4RDrsRTKZRQrLfbMFPJCbBGMNq3SHVaKuq2jrvQ5olHiH29XLx3vHJ8deyIr9QSTIEL9okM2/de/XD//gFPs5RFP0aFHsAoiiKvgX8wB/83WcuK9T28fq4n6Z/UxqTPX38+CN5Wfc31zdnWkl/vV6djEO/XC6Xn3/27OIjR/PZSiVq5YOQWZbuvQu6rKqbsqouqkX1OSmTn/n0pz99/Yf+0B+qLi8f/4Yn7zz+/XYMvz1LZ2fL5ZKzuyfeWpSUh4qRcZhomobEGJqmxTtP33aMY0/XdTg30XUdp2fnLE5OkEIxDZb9do2UkrZvOTpZkmYpTx49oygTklSBg8mOdF3H+mbHvTt3STPF219/m5PjU9Ik5fLqGUYbnl084403PgJ43nvvfc5Oz5BCcHnxjMH2SCkpy9nzJWFbnBspioJpsmRZSpoUTOOEnTombwkEnHUEZxFSsmt2hBCo6yVCaPb7NfPZDO8Fi/kJIXjcNFIWFav1NcujE5IkpR8GjNYYpXjy7NFhmtHzxWt377xKPwx45zBao5RinAb6rqOua3wIaCnp+4Ysy6nqOVleoJWi23dMU0fXbtAS9vs116tLK2RoZ/PFdUBskzRt0zRf5WX1tdnx0XtZUV5qlfxDlefvffKTn2xf7JMbRdGvRTEBiKIo+hbzAz/wA+U43hTDanoNpapJyifdavWbTZ6/fXV5+eGT5ekX+t5eZrl4vc7zn/a5894XXratBFBCuD/56U9f//zv+ft+3+87unn09P+8We3+x1Kl9+vZItdKqdliJodx5OZ6w9B2LJdLBnuY4Y8PeOdQSuKc4+r6knEaOTu/w6yuefjwEVmS0nctOk1I8wwlD1N0hmFgs73iO7/rY3zlK1/h5Zdf5Z2vv02iDIvFMT5Y3nv/HV66d5/JOna7DVmSst1sODk5pShynj59SpKklGXBNPRcry8ZxpHFbInWhnHsCd4hBHjvyLKcPC+Z+gmwtF2Det5QPY0D3jtGZ3HThDEpSV6w222ZVSXjOFHXRxhl0ErhvcX7Q69Fmuaon9vkG+iHjnGckFrivKeuFozjiLee5dExm/WaPM/YNztmsxkhBKQ4lP1IKUiThLqeIZVhGAa26wua3RXeWhCepmu3QolVUZWrLM+fpHnxMMnytqxmD0yWvQP6C5/+8R9/81f9wYyi6F8ZsQQoiqLoW8wP/dAPNUADXP7s1z7xiU985Qd/8Ac98JM/749+7Rv9nvfu3VsP+/2nlZLv79v+X7u5efbr+q4/mb5uyyKbZ8vlktu3z9jtOorssKDLucN23JvViu12zbNnDzk9vUWe5Tx4+Ig0SdBG4ztLXtRkRc5+u6dttlyvLsjygnfefZftbstmu2OaHDLAerNCJYZdu6HtO1brDUJ4nHcgBf04kuYZwzgilWa93TIrS5AKj6frOtLU4/yEFJIQAkoprD18XiE8bdcyTSNJmiHkz45DBaMF+IAgILxDS4m3jiQxDF1DUh5uA0IQCKXwzuLciFIZ1lkIAYEkzzKarmE+XxC8g+BwziKFQGuF956iKEmTFKUOS76qqkYphbMTcPgM3juyNGF3M9INLR4/JFmyUyq5TNLsJs2Kx/Vi+Y4pynWSpF9Oy/nf+eQnPzn9D/awRVH0gRRvAKIoij5A/vD3fd/iuht/69WzZ79rvWp+qzHFaZ5nKk0zud83JGlCnmZstxusnRDS0Pcdl5ePMYngY9/+3ey2Hf3QM44jbddytJxxfusWF1dX9G3PenXJzfaSW7fv8+DBO2RZTpJk5FlO3zYQQKeGZ1dPWS6OGfoRCBiTQPBobbhz5w5fe/Or1OWMfd8yryo2uw3dsCfTCRKFSRTTNKKVoigqvPMYrRHB0w8twXtm8yMQh6FKbbvD47DT8/dnH5DqcA6mjEEEqKo5RmdYO+KCRytNCB5jDFrrw9fdYcRqCP75ojSAQN+NHB0dM9kBISRaGcrqUJKU5TlpmhFcYBh60iQ5bGsWgs31E/abS9q+cQ6/FYZ1UdTvV/Ojd+eLxdeT2fwrKtGf+7Ef+/GvA//ibvAoiqJvgnzRHyCKoij61fP/+NSn1kkl/lGSplOeZUbgps1m5R88fC/keQrA5c01XdehlMaOEyA4OT7jox/5Dp4+fcI7777Jk8fv0DQbZnVNmhU8u7jg6tkznB1xIVBXS6TUjFNH4DC+VGvNMA0MdqRtW7K8ZrPbEnCM00hiDN5bdvsN1jlGN7Fpts//nQkfPFmaMVpLb0es80zW0Q8DXd+ilGAau+dL0CRSKpRUGJWgtUbpw++1Nggh8ECSZAihSHSKlOrnfo1TjxSglAQCzk0oJRFCUeQViUmpqhlZWpCYjMX8mNlsTlHkFEXOyfEJRVGwWMypqgopFEWWkyYGpSTWOYwx7PcbnB3xzhJC6NIsXaVpfm2ydJNX1eOiWrxZ6/xv/diP/fjbxJf/KIr+BxJLgKIoij5g/N5+V57q1M/MX76+2vy6ROffvVieCutg6AZEkFTzBZvVmqIoEd6SmIIHDx5wdXWBNgllWVLXCyZrefrsMdPYY56P0rR2ZL44YbfboKQkOI/JNNY6xulQtuPxBCHphx6Jx4eADxbnPNtmDyHghWdylvA8KUhMQtcNyOfLyLTWlGVF1+4ZhgElJKnSgEAIEEI+34b8fM+ASXDOI7A458iyDOcOE3mkMkh5+PPDcGh81lozDANZliEEKJUAE0lmSEyBtY4szQlCUBbFoQdCa7RV5EVOXpVorVgslwzjgNSe+azEYVndbJg6QZZotlcNnuCUwSKCLev5++V8+WY9m72VLo7+6n/+yU9uXvQzE0XRv1riDUAURdEHjCjD/+/o3vH/tq6qr1Z5mRZF3thpaPfbjc/SBAHsdw31bIbUhxPwq8sLVqtrhr5hGjrwnma3pd1v2W3WDH1Pnudoow8vzCi22xXOO/KswAdPmqZ47xBSMI3D81p4cM7jrKXvR9I0xwXHMHSEAPJ5Q+40DYfRns6h9eEUve0bpFJkaY6WmnE83D5M04hSigAoZZ6X7xiSJEerBCEEUkq00kBAmwQpBFIqhqFnnDqEhGkakAIgoJQmzwuUNgQEZT0nBHEomSpy0jylqmtMklDPF0zeUhQZQimUEuRZihSKYANaaoo0J3jLs6cP6foGcRjhOkIYkyzfFNXsUpr0i5+ML/9RFP1LEBOAKIqiD5g/+2c/e1kU9kYGkS2O6r9aLs0PmWT8KyE0l5vNFdPUI4Bxmhj6nuA8zk4IIcjziuXyhGnytN2eptuhlaSua/qxo+16lNSM45a22aGVwSQZKIkyCUJKBGDtiJYCrRSJ1BAC49Aj5WGj8TiMGKkxWhG8PzTuOofAg7PMqhk+hMNegDQjNSnGJHjvCQS892hlSJIUKRKMycnSEm0MHo8yhgCHU38pnzfqOkLwWDsikAQgSIE0Gp0k+AB4njdIh0OpkYQ8z0gS8zzxAWMS5rMabQR5nlGUCcZIJuvYNwNSarSWbJsV/bCnG1rfT9NNUS/eL6rFU+dcaodulnl5/YvFMYqi6JcrJgBRFEUfQD/0Q59pxu/Rf/z+cv5/Oj85+dTxyeK/TTL9lX7onRAwjT1j11OXFXa0eA9GZ5ye3WKyE+vtNS4c6tjPzs8xyeF0X0uJCIK+7cizkuXiBO89R8sl69UVw9Bj3YQ2CcE7lADxc3X2I3YckMDQDxA8dhpBCkY34UIg0QpnLRLBrKgOs/dNilSGJDEobVDG4LzHJNnhxF8qTJIhlSY8f8kP3h9Gdwpx+CwcypO8CMDhNgCpDs3BQqGUwXmLUhJjDFIp8qIkMYfNw1prhPSkqcGOIyZRKKPpx4FpssxmNUWR0Y8DTdvgA3jr2GxWoOmDFDukuMpns68naXplErNOtb78JcIYRVH0yxJ7AKIoij6gPvvxzzqg+cT3fZ+7HnxQITu7dX6iAoK2bSmKAhB4bxESXrr3EpvNir5vuXP7Ds4Fjo5OaJsG5wLb3aGh1RiDc47l/IiqXtINLSIIvHNkSUYIHikUznryNCMIQaI1IoAxmmVZMk0DuUkY3XToI5ACO1mKLEUqQQiBeTVnu7khhMByuWS3XWOMxovn033EYfynJSCUPjTbBo8IHMZxEkjSBEFgHAcQYEyK8IeSnyQrSNP8cIthDqVDVV1j1GFjb5ok2KnHJBofLHme48aGpmvJipQyS1Cl4ebqhq4d0DIhMznNtGdsG2SALM3CNNmmnqV7bXSTJmZXzo/e00n5t48+9KH9i35Goij6V1NMAKIoij7gHvTTvxcm/7uTxGxD8NskLWaT80zeQ3BY5zg5OWG32yGF5OWXX6dteoo8o+snnBN4exjBiRRYG5gvjgg4dvsNZZWz3ezQUpAmBuc8JjO0+z2pSfDeYUyGD4EweY4XR4Sg8FpB5xE6AW2QSIq8JEk0SqcoaZAChqGhLiuKrGQYu0PDLpLUpCijsZP9uclAPhySAWM0HkmW1TTtFmcnsrQkUQYvJ5QyFEVNkiQkSco0TWRZilaKaXJkpSR4z3bbUM9r0lQBEmUUCIEbJ/JU03U9Z2fHbFZ79ruW0Xqkh8tnT9jtrujGySpjdklWPZwtj79Uz4/fVYn6mWacfub53ocoiqL/wcUEIIqi6INO+P+mms8eqlz+5sfvX1TDOH4soAghkOU5J+e3GIcek0i6pmG/7zk+OSFLEgY70XU9Y69wTPi+49VXXub999/l6uaSO3deJgRFURY0uwlvJ8p8hkkMuTmcpA/D8HxBlsOYQ318Wcxomi0EjxxH0tSQpxXee8qqJM8rmqYBciYOjb9FUeHxhw3BHGrxnQ+HlVvhUNojpEInhslOJEmOs45xHEjTFGVShNBInZAX5WHb8DQxXyyh7cjSHAR4bzFao5SkzzOUVJRlgfeQFSlSCiSese8QIbDdblHaoBNN223Zra7phpbd0GKFxAbhpsAgtRml1O/96J/78X/wgp+IKIr+FRcTgCiKog+4H/mLf/HxJz7xias3/8k/+deroiyHQaKTQ8NuUVVM04QUAuss89mcrMjpx4HtbsswjKR5gQtAEHzoldfouhYlBC+/9DKvv/5hurZntbrBJhnVrXucnt5ivdkgwuHW4Ga1Is8zjDJM4/i8sbZGa03St3jvGMee2XyGQAEBow3z2YK+b9kFz2RHCglJepg4NLkJF8AHkELg/WHSUGJSxq5HYMjSnN1+jTEpRbEgy3KmYcKYlDTPSdOEYXcYO1oUFUIcphKlqcQHx2JegbBIKQgB0lTR9z1ZnoCHaQAXPPv9gJ06pnFg7Fr2+w2bZsckdBjHYcx14sfJpe1g87T09kU/D1EU/asvJgBRFEURl+++eySlVkGINi2SUM8WYhwnpAxUVUHfKwKeMstZb7YMdkQIxWJ+xGQtZVnwxhuvgRc8ePiQ1179MHfvHaOk4tk0cOfsBCHPCAjsFDg+MqxvLtE6wRhNXdUooelkQ14UzOdHdF1DkiQcHx/x7OIJVT1H65S22T2fSJSRJJr5fMF6fc0wjSRJhnUJaurx3qOUYpoOjbgBgdYJ3nmqcob3jsm21OUJWmcURU3j9yTSAAIQZFl2WAYmJYiAUodFYsMwoI3k6GjOMAwMw0BdLyhKT9f0jN3Ift/iPEiV4IVCp5Kriydc3zxjch3WhlEqtUfKKU2zbZFn1yoV6xf8KERR9AEQE4AoiqIPqD/yR/7I0Xa7Pf8zf+bPfLl17tvx/LqynJ2UdY31ghAEZZEQhMQHSBKDnywBSIxGJhkmMdxaLqmrkr4fWa323Lt7h+XRYQnWZr3jzp1brG62eG+xLoCYqMuKrmmQ8jCKsypLpNTMljNC8BydzBmGnMtnA6dnxyhlGMaBLC+Y1xXX1zeHptyqput67t15mfVmRdt1GJOidUpelkh5qNm31mG0YpomlErIspzdbkuaVkipSdPDCFGlFcYo+q4lTXOUMkgl6bsRpTRCeNJUoZOc/a5luawBxzh6VqstZVnQOsduv2foHS4EQnCHLcduIs1S+mlk2zTkZdEkeXqTl/kjkySrIJXVXse6/yiK/qWLY0CjKIo+gL7/+7//zjAMo+vcd/ye/+X3/BvO+7uTc2813f69cRjE8aJmMS+o6+Jwyr6oDmU6JmG5mJNlOfU859atY+azkqHvkcJzelpxfn7MODj2+4bz20v2zY7ZIkPqQ/PtcrkgCMfp2Qnb3YbF/Ii260gyTV2X1LMUpQLHx3OOT44QMnDn7ilZmpIoQ5FlHC0WJElCmmbM53MAzk/PuXXrNlJIkqTAqBRnA0JIpJQEBNNkyZKS6XljcFUsn4/5lLTtnjQ5TPsZpokkTVBKobRCKnEYM6oUzluOj+eIcNhpIOUhaVivNwghmbyjms2ZrKcsK7RWDH3DZnPDOFmqeobSxg0u2KqqHty+ffunZ/P5Yy31NFmbvdgnI4qiD4KYAERRFH0A7ff7mz/1p/5U00zNXxoJr1gbaofVWrtpfXO9v748nKZvNg1KSvIsQSlJliekScrJyYIPfegl6llJ2044FwBN3zn2+z3lLOH2SwvyUvPRb3+ZxWKJQFJWBVmecu+lUxbLHKUkd+/dYrc7nJ5neUZqDG5yCALL+ZLVzZbFMuf09AglBd4dxn5WZYm1lqqqyMsCaTR1XbM4Wh7GeQqJ84cafSklIQS0TlBaY60DFFIqsrxAqsOPw7wsCUGSJjlFXpDlBVmecHyyJMsT5osSITRKQlEkOOdJTEqSaoSQrFYbZrM50+QoypJxGsmzhCRNWDdbHj95SLvfh7qqNkVerIOQo0nTNi+Ky6IofupDIfz0C30woij6QIglQFEURR9An/rUp3qA5XJ51zf+bzbj5t/d79q63W2VEqmfH1UcndTsNwNSa5SRWAtNM2C05+7dM/ZtQ995fIDNZo/WGoKkKA+z9bOiJM80dnIkiaMsMhZHFfUsQxvNu+++y3d+50dZrTbcvn2LJEnI85R2P2GMYrttSYzGmJLttmdxlFGWKU8e35ArODqq2W4anBsoy4SusyRJ8nwnQIeQCuk9QSqc84BAacN+tybLcrz3TJNlvjimbXcYo7HOkaQ52qSHfgLbo/VhxKcRkqrO6LqBzaZhNs+xw0iRGYIVFHlJ105U1eGzXbstQw/TYBm6kW6/Z9esSJOk90G0VV09nYJPr65Xr1X1/Kuf+vN//nMv9qmIouiDIiYAURRFH2C+72un1Hdbz5MQwm8RmLPF8SLTWoXri53I8wKce36SnZMVNYtZwtBZrp82tF3LNHkkkn4aMMagVEZZZgTn6PaOoZ9Y3dxwdFRTLzL6vqdpd+R5iUkKtGl5/fWX2TcDdZ0AJWkqCdseIQSLZU2z71kuc7RW3L5zRNP0BCQnZ0s22y1JavAB7GRJTMZsPmcaHVJqnLdYO2GMOczwz3OU0oQQEFIhhGC3bzg+WtK1LUVRY4zGeUcQDqUk0xTw3qJkwdFxyZPHVxRFihAwDCPaaPIixXtB0zQ4J5BKs9lcgQ+0zQ6CRwjhXfC7gOxtsBzPT98t6tkDh10L8bPjSqMoiv7liiVAURRFH2B/+sd+7IsO96Ybp980DuMsLwvZd637wj/5MsPYk88UMpFkeUaeC4pM0Q+ed957ws1qizGKJFEURcZyOePeSycsj0qa/cB+1dE1LdrAy6/dIq80zX5gu+m5uWoo8pphmnj9jdcBx2xekuYZSaZYHi0oSkNZpWS5oGt79s2IMZKyyCiyFCUUwzhwenpCanKqIkEqSdsN1PM5JlFIGbD2kAB459AmpShrhNDkRcl8vsB5R1mUOOcZ+h6lBAhJ34+EAIGAFAGB52a14vR8RponWBdI0pTJj3gcUkq0kVjrWa/3rDd7kjRhu1mx3lwx2hEbsELp3XyxeCCkmpbzxfuv3nn9z2qd/bX48h9F0a+WmABEURR9wGVZ9lUl1bYo8vLB++/uvvSFN/3R8Uzcv38HIRQekBqcC7hJsF13KGXIyxyBQUpNNSs4PTsGIRiGnrxIUeYwNrNterabHm0Uz55ds1k3zOcLTCK5c+cUrQPjaDEJBKCcpZhUkBeG2TxFSzg+WXBz2aGkJzCSpilFkaKUpu07ispQlPmhFl8G2r4nLyt8gGHogIDSCWmSo6Qmy/JDP4DSBA/GpEipUVrj/aHPoNm3TOOIsxYpgSCwLnBxseH07IimadjtRoI39J0geIkximHw5HnNMI6AoJpVXK6ueXT1jB7Gxnt0mmwWy+N307L82v9s3Dz57Gc/617oQxBF0QdKTACiKIo+4IZhWAYR7Hq7eUubZP+hb3vDL0/P2G47wgSLeUaaagQC7x34gJGa5bxivshZLEpCGBmngb6bcFYyjRMhgEeRJgWp0Vw8WZNow/n5kiyVvPLqKfv9CjuNSKXICwPBUlc53jmWyxl5YQgEFssCrQO7bc/x8RznDwvDlvMCIwRd12PShMW8QkmFmzx2POzU8v5wOi+lRAqJEJIkSQCB1oY0TYHD5uDE5ECg61qapmGz2WKdx46B/a5n6AKXT/esbzZM48R6vWW1bkB4drsdBEgzw+rmGiUETy+e8PjiIV6DF9jBWjs5pzf7Zjmr66dVnv/0x+PLfxRFv8piD0AURdEHnDHGFmX+laIuZVnWH60XZ+bpVYdbaupZhh3BTh7vA84GhrFjeVThPYzjhPUTJycVXTORJhohBcEFnBRMU0+aCup6xhsffonLix3aBI6OS955+yHHJ0cQJF07EUJAaY/wYK0lKVIOP6YCEKjnCXbydJ3j7HzO5dUOETSzKqPpLW3TIYSmrmbsdj3OToBHKf28kVeglGScJhACrQ99AMYc/rn3h5sIrS3b7RrvPFIpVtcbvNOsblaE4Dg9PePpky15mjFOA4vlHKMlzgbef/eCxdEM7wN921CWGY8e37DersmLogmCjUqSVidJb5Lk84uzs6+/0OBHUfSBFG8AoiiKPuD+9J/+0w+DlP/fup7PQ2BYXa2um3Y96tSHEAQQ0IlhcoF2HKnqEudgs20JUnD7zgnjENisena7lq7tMYlhPi84Pq25d/8cLxy7fYvJBCFo3vzKI46O55hE44OnqnKmwaGUoml6xsGCDEjtqWclk7Oc3znGWo9zlq4bOT6u6YYenSTUVY5E0LUTSinSNCUEzzhOpOmh3EdrhfMTSoF6PhY0yzKSJMEkhybeoW8Yx4F+6OmHHmstX/va+9zcrLi8uuDxkwc8fvSEYehYrW8IXtJ1E00zsVrv2e5bnjy9BuTh7x8GFvMjsiyfummcdJo282r2ZDmfv5/k+Rd++Id/eHjR8Y+i6IMnJgBRFEURxpuTVBqnpd727WadGe2nMRHb3Yh3jq7pEAFSrdltep48ukQAU+94+nDD9U2LE4J2GBidZ7tvaPc9+13LxbMNSgpMAkkiefL4mrqqIGj2256+7ymKhKZpSHSCQOJtQARJXWUslhlaC46OCubLDCnBTo7gA/NFQdf1ODehzWHc5zhYsjxnGh3BC5Ln9f3GJHh/KPWREoQQJGnKOI0kJqHIC+p6jpCKsqgIweHcwHp1TdPs8SEwjiP7Zk8/DEyTpchy/DjSNT1TNzJ2DeubS/p2x77Z0jUNzrlw6/hsdXp0fBHAJ3m6Sct8JYSYv+i4R1H0wRRLgKIoiiKcdu+ZPP0H+ZSZJElfsRb39tff8ucnR+LbP/ySKAvoe0BqpICT0yMC4P3EZr0DeZjIU+UpVVkymyd0+w5lAke3K7SStE3P46dbklSDlJRVynBjCfYwcef0fEGaKOxosRM0uxGTCKQSNLuWm6s9i6OSrhnQRrHddCyPCvJC0XcBgUBrxTi1CARJkjBNI1JKfPCHjb1JglCCJMtROmMYJtqu4/R4SZ4VjPMJH0BrTV3WDEPHNI503Y48zfA2R0qoq5qyqkjTlNpUbHcNJklBBNr9jtQoxqHl2eUT0rywWsrp/PTs0a5vxizLbqqielAUxVdfdNyjKPpgijcAURRFEZ/61Kf6JE/+zmJRvZkl6qea7dXXcO3w2uu3RFGnlFXJbHZokD2/fYRUh1P41bohySSLo4IPfeSMu/dPmC8KhsHj0SyWM7bbHV/50vs8ePcCow1XFzu22xYQXDxdMwyem5st57dOsNbStSPWBepFQtcOCGEwyvDmF9+nKBOG0ZEmBiUFbTOR5CnKSHwQSCVRUtG2LUlqMInGOsuhF0AwjT1SBLI0/bnpPgIYpxGTKm7dOuHoaMZyMaesSo5PTrh79yXGcWA+n7NcHlOWJUJAmiTkZUaQ4HEgA6dnZ5ycnNC1LV23x/pxGqb+yhTZJfjd/Tv3vnDn1q0vFkXxYBzH5sVGPYqiD6p4AxBFURQB8Gf+zJ959gd/7+/9ySHtj5fnx6/ev//Ktz98uAqPH6zF/XtnWDuSZSnTFEjTFDt11LOaECzlPKWsS54+2jKOh/n/RWFo2x2EwPmtI2azggfvX5LlgpdfucVXv/J1kjSlrAxCGMbBMQ6B3W4grwyJMYy9QxtxaKZ9v2W7aihKQ9cNFGVKP9hDyU+pGadDOX3gMPt/Gnu893RdQ13Xh10A3jGf1XRdQwiWPKvpWsnQjwhAGyhNAgRmsxypJPN5zXa3YpomTk7P8G7COcvTp084PjomSwqmYWC/WR++h4TJTkhtgtZmU83Lt7O6eFDk+bOsyFZVtfiiMOLvfOYzn4nTf6IoeiFiAhBFURT9HK/1AymSZZHnH/3pz/3jVd+O8+Pz28l8VomT45JhcOybkd1ux3q9Z7vf8Mprd6nqmtX1nt16T9M07PcDt28fsTitmSbLNMDF0x1FkXF0XOCtZb8d+c3/xmv07UTfj/R9h1QCISTWjmzWI+2+4+S0Aim4+9ItLp/tuf/qCc72oCV+8IyjIJGgE4l1IzYEnHeMw8gwdoQQcC6QJOL5+E9DP+wwJsUHidQKpTTOB5Z1jjGaabAsFzNcmHjWdtx/6TWurq5w1tH3HUpJuq5jtVpzcqyx1tL3HcGObLdXbPb7cHRyOpydnr9XzKs387p8P8+KmyzLviYT+blPf/rT8fQ/iqIXJiYAURRF0c8RQiyNkdPl1dVfF97+hqJI/Di2s92+zaoql5P3XG92XF1sGMaeo9MjVJLzU3/3S8ggGMeOspC8/Mopi3lFVaVIkWGtwySKtu3YbjumyZHlCfN5ztBN5IVGa7AaZouC+ZGhayzOQd87TGaY6znrdcN2N1HUCV0zUM9ytpueafQofdgZ0DR7grf/dImXgHHoMUahdYJ1DikPP/6ccwQCR0cLQnCEcBh3mqQJJhFkJkOqgJSSIq9wbmK/2+PchFSSYWjZbG4oi5q+3bLe3dB22+CxbTc2j07Pzt5fHB8/zsrsWarTf/KZH//xv/uCQxxFURQTgCiKouifEk0zpVny+cW8ukqkKreb/X7oupebtjvd7nqpUoM2msW8YhoNi1nN177yFmmSUs4WnJ4fsZjlzBcVBMd6tT0s4EJxs1qxWu1om4b7L9/h/itH9EOH1gqpFWWZstv21HPD+a05Tx419K2laQbSVLJrJ2ZFiXeOEATTCCE4slxhJwj+sC9gGAbsOOCcQwgBAryzjGNPPSuQUpMkBu8l0zRQ5AXzxRxvJxKTEACtDwvDhNAURck07g83A+NAlqY07YQIAUXAjiM+mVBS4oMjEMYkS9ezef1ulmVPpFCd0em1yrLPv+j4RlEUQWwCjqIoin6e//wzn7nwzn3RaN0rzReqqtpUeba9uny6bdomWHcoW1cSjo4WXF3eUJUFQkj63tI0Iw8fXfH40SUXFyua1jOMHp0o7ty9xSuv3WG+mHF0vOD81iljD957hsGhTUZRJpyeVeRFwsP3npIk5rBYLMA0WWTCYYlXokhyxTBZlFEIKZBCwfP6+812A3h8cDhvkVpirQUEQ9+jlCFJEpRSnJ+fHpqKtcKHQAiQJAapBV03kGU5SgmUBiFAaYUg4MYBLcEoSbNb0TUbpBQ2z/NVnmXXRV48LWfV0zRL1ij19U996lP9i4xtFEXRz4oJQBRFUfTP+OSnPvUVIeWjLC+NSeXXJtd+wU3D/uHDR1PXdBitKWcll1c3XF+tePT4GeM4kmWCy8vHPHrylC99+R0ePLhktAP90HF5ecnDB+/zD37q87gwcnJaIKRlu2nxQTB2lt12x2yRMV8meOcZhpGsMAQHzgoQElRg13SApJprpBAoqdGJIBAQQaGVxE4D1o+H2n7rGMeByU4IAc66w9bfoSdJDGWZ0vc9Qkh22xbnJsbRYpKAlB5rLUVRspjPSFJNliSUeUGapoflYlPH5eUjmmblJjdcl3Xx/tHR4s2iLh4nJt1nef7lP//n/3w8/Y+i6FtGLAGKoiiK/vvS9KelDafDOH44UakQGV01W7giz2maPVdXG7abHV5MnJweM6/nfO2tt/HeMlsumNU1SZbSdQNDb7HDgNKOoip47bWXubrcU8+PMCbl5qphtjA0uxEhJGPpafeB0/NjVALtzuJtYL8bODk/otlNXD7Zcvf+kizzdE1PURrsFPDhULrjvWWz3nDn7msQAvv9Gqk01k7Y0ZMQmCZLXqSHbb79yHJZc/nwmqI4BQ67AMpK4H0geI/WGcvlgrHrqauKse8Y+5Z26AnBYf2wLmez9+ZHJ18o6uphmmSrJFGXQbmnQHixAY2iKPqn4g1AFEVR9N/zIz/yI+8VefLf1NV8m2a5SLM8KClD1/QYnaClZDarOD8+RSJ4++23adod4zTR7RvafcP15Yq+m+j7Fu8tt+6c8Vv+jX+dyXnySjNNgstnW0DgneTmukUpzdALvvSFByyWNV1r8QGGyeFwjKOlmqVMk6DZT8zmGeNo0VohpCeIgLcefMBOA1or0jxj3zR0fcduv2W730AIpGmCD4Lrqy3jMJEXEmsd1nrAYW3AWYGz7nkj8UhVlyijyNKEuioRQtC1HdbZPsmzi6yq3itn9Xv1rH5UFNXnToX+S5/+9I9/+UXHM4qi6OeLNwBRFEXRv9BV0zw+qYv/Nwq2q114+vRhNnSnLy2Pljr4wH67YbV6yna3YbKePC/w3iJkQdN2ZFnK06cPmYaBD73xCkfLY7xzHB0XLGYlD967ZrvtuP/yGbtdy+pmy52XZkipeP/BNcuTBQ/ee0aaFlR1RlkbdtuBk7MK5zybdYtWOXWdYZ2nKBKG/ho3HZqEpTIIqRHB4/2hIbhp93gXCCIgtQYE221DWSUkqaEoU6x1hOe9AMM0UVY5u801UgratiF4z37foKRESoG1AxD2UumboigutVITQl433v/dH/3sZ+Os/yiKvuXEG4AoiqLoX+izn/2sC0rt8zz9alllnyszfTENo+2HgSTPCD7QDwNZXnByco4QAmM0q9UNF5dPuby+ZJosH/3oG3z4jTfY71qGZkKh+NLPPODrX39G0wx0/UA/jCRpwdAHvv61J1xcruh7S/CB7bplv2uY1zVKwjiOzOc53nm61qKNRKlAVabM65Su32P9hJCHcqAgBADDMDKNI0pL5PNf0zSS54a27ehaR1ZkhACgEIBzloAnzQwhQGoMSgiMMggkbdfS9K1PimyTl9VKCjUgpSOo5rPx5T+Kom9R8QYgiqIo+gWN8FgJ8R1pljRShQd9375SVrezrMjo2z3PLgzjNJIXmtPTO1g30ux33D075/T8nDzPqIqEZxdrun5kso6/9/c+x3xxRNM2zGYljx8r1pstZVVweVHwhS98jV3b8s671zx58IjXX3+dzbojuBtu35lhtERpyWxREIJDaoFJFAHPbFZgEoV1njQrGcYBpTVZUSOFIs0KtDFYFxB2QglFmhcMg2Wzbjk+XvD08QaCYxwD0wC77Z6qqNhurjFaIpXGywGjEwQwjB1yRBxlx7u0yDdJkjVCqasXHbsoiqJfSEwAoiiKol/Qj/zIj+x/z+/5Pf9ESGmF4tUkk/vjk/rceYd1E3du30VnGWmWE4Jju92Q5SVZWbNa79iu97w/tBA8dTXjwYMtUuVInbBaPaJpWjabDmMM0+R58M5Ps95eszg55tmzGx48fEpZ1hRlwXrX4B50fNvH7qMUVLMEO1nSTEMQyCCRUlGUFUJKsqyk6zsWyyPKesY0OpQ2IDXDOBJwnJ2e0XQtUmusDYAnzxV2ErRNh1IGYwJdNxCCZxwdSmmSLKPZ7Rknh9Ta+wBCpfvZ7OipSJIrlLIvOnZRFEW/kJgARFEURb+Y8KM/+qNv/Uf/wX9g6tn83xQhS/a73iGEuv/yfZrtnourG9brNZvNCucmqqrG+0DbNCznR9RljTFQFSWJSWi7nqGfmNVHZFlO2+65unpGCApCoG021Is5dhrJ05LLqzUnQnF6OmO9bhjGibRQjN2E95AmipvLPXlaIIVCBEGVl4dRn+OIEAIpNUEGggA3Wdzk6JzFeU/TNkihuLnx5IVkPs/oGsc4DEzTiDEJWmq0Mkgl8c6SaUme5tzcXIHU3Wxx/M7i6ORtWRSft9Z+6TOf+lTzogMXRVH0C4k9AFEURdEvKYHLIimbtu8uLp9d9VoqyiLHOU9wDtu3YC2JUkgCN1cXdO2OzeaK3W5NUWQcnRyRFRkmVUghWC4X7Jsdj5++z/XNM4axYZh6ENC1h8lBQki0SfFekJqU2bxGCEmSaooyRSdg3UiapQQRUFqQFwU6yZA6wVrLOE5Mk4Mg2ay37LZ7xnFitVqx2Wx59uyKvh/YNz1Pn94wjJ5+GFEywXtJP0wM44C1lt1uizYJ1jn2Tcs0WUBO+Wz+MCvL93/n7/ydn//MZz4TX/6jKPqWFm8AoiiKol9SWRS+m/aPskx+tdnuji+eqmxxtFTOW5LEMJ/PSdOcQOD65opxGtFKcvvObc7Pz9Bas97sQQjSNCOYwPvvv8d6vYYgmM+XDMPI0dEpSmqsHciyhCFPWCzmnBzNmM0ykiwlSQzOWbQWVCbH2RGpHVJIdKIo6hqpU6QAuxtpmh3WWrIsZ7u5Yhon0kwzjD3vvfcuWiXstnukFPRDitY5Yz+QJgbnwbkJITzOjljnWK3WKK1JsxwpJXivpskxeX/5xS9+UX3f932fiVt/oyj6VhYTgCiKouiXNGVZz37fGCXfE3Kc7/fb8vT06PTOnVO2m5bNeo9RIzfrG7IspywqTk6OuHXrNt5b8I5ESabBIqVkt9+R5TnzANPYMw57ZsWc4+NzELDfbEmTlDc+8ipIRVkb0kJwelaS5wYtA2mq2e16sjzFaMd+P+G9I8kMRhuGvmUaR0AghMDaCectfd+wXV3hAuzYs5wfoZUhz1Ls5FjdbOjahuOjY/qhw1pHlhqEAK1yxrGn7QbqquTV119h8t2QGTXm6O7JkyehbVv/ouMVRVH0i4kJQBRFUfRL+qEf+qHm937v9z4Omle9DM9kCIOzlnpWIRF459gGx2RHvJ+oqpI0Sw99Ad6RmQwpFM55+nEEKRASTKJJszmr64ksL+n7nqPTGbfOXmGxKLhzt0YoAcGTpYqT0wolBcEDAoo8YxwnpISyzNhtG5QQlHXNdr8FIbDWHm4ngqMq5zgHJskpdEKSZxhlSJOEerbATiOTm7DW0/UjznuGcSQxCWmaMgwDaVIQwkjX93TNGiGkKMtyFKk6+e2//bf7j3/843H8ZxRF39JiAhBFURR9Q3SW/XdpCH5RL/4X6+v95vL62cnte8fZNDq01oQASZJRJgVaay4urkgSxXxWExJJP45YN7HZbCmrnM1mzenJOUopNqs1nsN4z5PjIzKTUdeGo6Mck2oEgqGbkEi0lnStRUqB1IHCZGw2e7SW5FmKdyMeQVFWDONA33ecnt0GQAiJSTNSk6KV5uzWLYJzeDyL5RxjFJvVBuccPjiyvKCezXHWIqQiTTRPnz6jqGru3D2m2yVcPH2o3DgmwnuzWq0kEBOAKIq+pcUEIIqiKPqGfPKTn2x/4id+4m/+tf/qvz7pmu54MZu9Mo49JhXoVJPmGbdv30FKWK1WFFnKfDFnNqsZxwnrLH3fUdcljx8/wPuAtZ5hmMiKnLPzU55dPUMJhbeQmMOPKG8nTk5rrqfpeS1/QZpC1/b44KnrhKoqaZuRgKcsE4ZhIC9Khr7DB8/x2SnDMCCURDV7loslSZpS1RXBe6RSzOYFRZaRJJp76R3afcd+16G1IXjP6mZNPSs4v31CEIoQQGtDXpRBCDGJEPK///f//inw+MVGKoqi6BcXpwBFURRF37CPf/zj7pOf/tSPn58ff6Htu13fDRyflVSzjLxI0Vrig6Oscm7fvsViXuM9CKHQSiNQXDy74OryGe1+D0AIHqGg63vmiyWT9eS5xiQaKSVpZg5Tf+qMJMlomp4sM2RFytB7um4gSRQIh0kki0VJWWR451kujtEmQWmN1IpqVpFk2WE7sArkZYbJDDo5lCet1mukFIzjgEkTggist1uatsVaR9MOlGXF6fnR84Vilr7r0nEc54MdU5z7tj/wB/5A8YLDFEVR9IuKCUAURVH0Tflf/77fe3uylmls//Z2u22cFSjlWSwqslxztJwzn82ZrGe7a8jyFG0U2+2O9WbDMIxU9YKXXnoZgqcoM+pqgVCKNEnZbVvywmDtgNIKIQQgqGc5CI9zjnG0pKkhSRRSKqSANEnQOlAUCbO6wgdPlmcIKem7EecCQUiyomDfNngXUM9/CqaJYRh70jTl8uKGrhnZrrZY6xAKAoHl8Zx7985QSpJoydFxyWw+Q5tU4/1CB/EEpX4KmF5kfKIoin4psQQoiqIo+qZMWjd5Fv6hPCpfDj70dhzL87MFF08bjJI0u45hHHHWMl/McNYemmfTHOct2+2KqpzRtg3GGIQUXF7ecHZ+QrVckiiJzqCsE6o6Y7vtaNuJsjJMO/dzG3mDEBRlBsA4TUipSRKL1pIkTUFKnAgIKVlvtiilyDJDnmV0bctqtWGxOCLLUhCQmEPpUN+PJEnC0dEMqQTbbYdWirJMyDNNXRe0TU+WKBbLGbPZSTL2m5d2+/2H/p8/8RN/VQgRpwBFUfQtLd4ARFEURd+UBG4rpe5pnXRN276z33eE4BDCoaRhGEbafYMAgg+0+5bgAkmi2W032MkhpWS7XZHnBU8eP6Ke5dy7e4tX7h+TZYLz8yV5kaKMwCSa1bpDaUOa5kyjQEnDOFikVDhnSZKUYZpQMiHLNVIFfIB+tGiT4exE22wJwTH0PUZrrHVcX62Z3GHhmBSaPMtZHs0xaYo2CbNZzt17C+pZxmxR0I+W1arFeU8Qgtkyo+lb2Q/2tp2mj/z+7/3eD73o+ERRFP1SYgIQRVEUfVMSuAom/H0r5f8rzYqf2e37p/1gycsUbTRgqesKrRSbzYa+H9htNqxursmLkldfe5Xr6wuKomb7fCLQ/VdeZnlSoXVgMS+ZzzR5phA4ijxltx3omhEhA0MvmKxDCk3T9DgrmCZLcIHdrqMoE5JEkCjF5uYGN420+x0311esrm/o+4Gu65DA+mbNdrVju96xXW8Zh4k0M4Tg2bctLoDWmsVRhjaHGwcXAjo1CCPJyoRXX7vF9epZ0ux3CzeOH/6J3/W71IuOURRF0S8mJgBRFEXRN+X//slPXj252n4xkyZXmgtj5Ho2LzG5pKg15+dn5EVON/RM44SdJqxzlGVJWRY8evSAxGSkSYE2ku/+9d+FtxNFZkAIjs9KgnQcnRV4BNMEfWvZbQ9Lubq+x+Ox3tJ3FpMYCIIsSwkh4Kzj7HhBCJ6ub7i+ekLb7piGgdXNimG0OBdIM42dRlJj0FrRdyPr1YrjoyNOTuekqWK3aQ67C3qL0po81yyXOWmuOblVUtQJt+/c5yNvfCzt993d7X7zsb9eFG+86BhFURT9YmIPQBRFUfRN+/aLC7FanDzNs7xJ09SNkyPNDFkxQYBd0+LsYT9A0zTMF3NcEFw+u2JWz5nPl0xTx7d9+2sYLXn5pROEdCyOa7IcjMlodhNppmn7lmpW0PUjZVkQCGijafcd1gq8CwgpMIlAKYEQgfk84/h0xnq7w2mDEJKqnKGThLOzc5rtFucGFicLdCpJ84S+HzE6cHl5xfmtJcv5nN22OzT9phohBG1ncVMgrw0ISZoXNF1L27RpopNMKykIfWwCjqLoW1pMAKIoiqJv2g/+5E9afvIn/8F//Hv+46d9P76Kn14t6rJotpZ9u8f5wGw5x44TCIHWhm6347VX7nF8suDy8op6dkRiFHmeM5uljEPPyXGOUoHHDy5JM8Odu3OUEJgUnIdxtDT7ESU0m3WPQNA0ijQLZFlOmh5q+00CL798yrNnO6ytSBKNlAqtJWmW0OwCRVmTFyXOWSAcGnrnGaubLX0f0NqRZjnrVctsYWiakaaxECRBTUyTQ2tJWdQYk4lpGk+a7f61rK5OgbdfdIyiKIp+IbEEKIqiKPplO3v57BHBfzlP05CYQJ4rZlXB2fmCW7dP0UlCPasYx57jkxn37p8fbgTmS/KsBGC+SPBOcHw6BxF48O6WyyctxghubnY45wnW46fAzVXLzUXDbtPRtYFxklxdtIxjwNoRk2i01mSppkgzyrx4vvBrRlmVCCnompb1ekdVl1hn2a4Hxt6x2ewZh4mqqtk1LQFJ1w84Dw/e2/P+uze03URWKu69suTsfEFA8PTJFe3QM/Tujh3dS2EMcQpQFEXf0mICEEVRFP2yPXnyJBNSZ23reh8k5Tzl/O6M+TJlsh3nt084PltwdueY07MTHj+6IEkSlkcF9dxQ1znaSNq2BRFYrTo224HlcUkICikU1kLfjdSLhMlZnl2seOedG64udzx5tObtr13QtQ4pBVIFgg+YRFJkCcfLEiUlbdtgrWUcJy4untK3e8ZxwgfBODmePblkaEfe+dpjnj5e8fDhEy6ebnjw7jUXl2uywuC9wxjBy6/NuXNvTl3lpJnh9NYRWV7Sj6No9k092fG7P/GJT8Qb9iiKvmXF/0FFURRFv2y1yj42ON/umu6tpSiOA4EgQGnI85y+n3Bu5ORkxvpmT1nkHB/XZLlkGCzBa9rdRN87trsJkxiy0tCPI9kk0Drn+mLL0UlOOU959qxntAHrAs4F7AR5kTONFiEF0guEkmxu9hRFwfFRzeMna9qhYxh6hq7l6uox3nvefPMrnBzfYr/b0O53nJ/fpu8daXpIRt786nsoqfF4xsny8stnvPTaES+9cgtjBHb0vP/OBYiUs/N7+NGpQHOn3e6/c/XkyR3g/RcdnyiKon+RmABEURRFv3zBvDeJ/V90k/92O7rfnCSCqRdImTCODVIJTk6XNJsRrQUnxwusDXinkAqadsJ5iQvQNAOLVFMtCnbbgSTLCBKur3fcfmlO8BKB4O7dE7JMUxQVm5uBu/driuJwSyCQhCAAzeXljv2uZ7/fIQ1sVhua3Ybdds18ueTRw3fRQuP8BBrW+zXLoxOyLOXkZElZ5gDU85Lj04KqNmR5gnMTBIEIgqOTOV/5maesV2uGcY/WQQzd8G3vvv32/+bj//a//V9+26//9T/1gz/4g7EkKIqibykxAYiiKIp+2X7oP/+hiz/4u//gmc38zBgVTCLFoB0IOL+zJC8Stus9KhEsZzO8hXHqmJznZrXh5KSgqheMduTW3QW7fQ9ScnpWcH6+YLeZkImkqErWq8P3OX+pxkhNmknGwbJYFtipZxzAewtBEDzcrDqeXO3QmUFJUFJQ1zOSTJMXM85u3aXvWs5O7mOSlMVywfHpDCECi0VNPU8RAoQIVDNDnifgPe2+RUpxSDQE3H5pxpf/8TX73YoklZPQtfMifDQE8fu/9uUvj8DnX3ScoiiKfr6YAERRFEW/IlsvpnvLPKnnhej7nsmOFIVBG8HX37pCCkU1M2ipQDrKekbbWe7PzqlnmqtnW2bHFR7Pfjdw+86SspRM48h61XB6eoS1gfW6o55VSCWxg0VrwzhZvPdkWcI0ANIx9CNKCax3SK2pqoq6rjBGI5VgPp/T9QNVXWOnkbqeIwSkWUJR5ICn60b6fkSKQJJqunYkzyfSVKG0IAQPSMbRUc8y7ty7w5urS9V1+6KalWut1DoQGNv2e//9f+ffST/9V/7K33vBYYqiKPo5MQGIoiiKfkXyfBRtM17vti1JJimKnHEIPHt8jdGKss6ZLxKchbJUOO8RWuAmz8MHG/IiRSeK6+uOqiq5vt7iXE6729MPE8po2nbCTgKtEqZ+ZLftSdKMthO0rSNZaHywBA+TFQQpmC0rmiHw6OEKKHjp5Vdo9g3lrESnDucm5kdLpsGDd3Tdln6cEBKkEBitMFowjg7dSDahIy8T5suMNFW0XYdUBp0pPvwdL/P00VOxWU9hGMeiXMwfVmX1NYLIvFK/7T/8D7/nwZ/+03/u4YuOVRRFEcQEIIqiKPoV2m63m2VZvydl8Eli5DQ4ggvUdc2QtGSFZrW2VLXBBUHbBDYbS9dOECQ600gEeabYrvYEATvleP/dS9746MtcXa0wpudrbz5ltLDbdAxdzzAErm/WPHys6YaC5TxBCAshEFDMFilBJGybhqZvQSpubtY0+w6pNUJL2ouWRKcUZY4PsN81FHlKWhiKQmO0xlmHcx6lDiVHq6sGkxx6GEwKIXiOzmZ85GNv8Ll/cH3cD+7VEMIXi2X91r/1O4e/8Tf+q/RYJrP2RccpiqLoZ8UEIIqiKPoV+exnP+v+rz/4fzTVrJBaS9ZT4Oam58nDDUopdLKjnyS7/cjNsy3OOXSasFyUXF2u0Lng7u0FwzSw2ux5/Y07XDzbkuYVV1drxt7z5uP3eOvNh/igaPYtU99zfLrk5nrDclmSJ5qqkBSpQkiPnTzGaIS0zGYLEAFCoB4dQnrqugIEXTdgdEKWGBazEuccRguSRGCMQklFcB6Lw3uBkIJp8ggkRiv6acJkimA8H/2uV5j8lH/5p790Z73evoxQv+Wv//XzL3zyM5958qJjFEVR9PPFBCCKoij6Ffmjf/SPnnSDfWOcfJhcEOM4keQJ1bzAjmCdY7ft2O8Hhn5EBMH8SDKMA1mRc3y8YLKez/2D9/jIR+9zdblnvw2UNQgvkQK+/MV3sdZzc9HSNnsuLp4xWYkShjLNmdcZiZEoI9BGsrlsmbzA+8NugL4fmS/mCCRVlaC15smjC7p2ZNIjUjjcNBGER5U5zkmE9UjjyXLDMAiGfiKEw44B5xxaSBCHcaDGSHQBb3zH67RNN3/y6NG/1XXTyW7V/C0gJgBRFH1LiQlAFEVR9CvSb/rFLM+SvDCi70eOT2Y8fbYlyRTDYOkHR9d0bHdbiqLATwJjUpxVLI8LVjcDb37lMcHlvPP2NSFYyqokS3Ka/cjQeSarUEoyuQGPZTarmYaRs1tHID1FFcgygRACgcA72GwnJufQxuDaHu8d7b5HAk+fPmCzXpNnGVVdst3s8N6TFyneOYwxVFWGsxNaKaRUCCEwRuOcxQFKKRIDaWHw3tN1gdm85PU37ov15W5h3f6+HfyHgZ98wSGKoij6Z8QEIIqiKPoVGRh2y+Naaynx1jMNjvk8w/tA10+06x1BHMpyNqsNVV3TtnukLNntPBJNmuTkC816s+Olu6esV3ve+vKGalaw3uw4PT1FKUmWa9LkcJKvRWC+LJjPE/I8IdESpECqCe8F223HZrsDKVksKnbbHVeXl6xvJFdXl0gRMFqx3W4x2qCUoNlPDP1ACIFdnnJ+6xSZSvp+RGtF2/Z0/YRSCoQgzVMgEELATzB0HcvjmjSXPHv3QpZ18sp/8p/8J7Mf/uEf3r7oOEVRFP2smABEURRFvyJKqfT27dnHpFQMgyPPU8ZxwmjBfJFQ1rd59mTLYlHQd46yVty7f0S7n0AoVtc7PvThM7ydeO1Dx+x3HZuNRyUpaa44SSrKArQKLJcVPkwED7MqIUkkd+7VeGcRWqGfJwnjODFNjpOTJW07QhDUszk35pqLp89QSqAU1HXFdrMmUQIlU6z35HmJ9yPDZLm62nD79glCKsbJkmcJ82WFkB4IZJlCG4W1Dms9/fPk4PU37rO6vDib+vHW1DSvf8/3fM/bf+7P/bmYBERR9C0hJgBRFEXRr8jHPvzKx49OF69eX9+gUmi6jv1uwCSK46Lk8mLHrfMCZ2G16rj/6jEmgfm84vGjG15745iiUOx3A82+I0kT5vOK+UKyXbccHdf4mT/U3csEpIcgWBxl2LFHKUWeG5yfEFKhpKSeG/Zv7nGTZ3IjWpeEEEizhLwo8N7ivSWvSooqY7/bI5Sirkrabsc4DKRZTnCBaRxACpw9NACnwVGkmrIwJEYiRCBPEwSK9aZBiMD9+7d48LXTrB322nmfCyGOgZgARFH0LUG+6A8QRVEU/dr1/d///XdObs/+PY9HqMMOAKk0LgjGyTGNgVmdcf/+klmdcXq7xIWBQGCYWorSkCQpFxc70jyjmmUI6clyjXcT02TZ71qyXFJXOWM3kCSSaZroOstkBetVg9YSCFhrGTpHWRxq+K11SGmw1rLb7jk+PQUBdhzJ0oxpnNBJxuL4iJOzE2bzObP5DOscQ9MTnMVayzR5EIGyPpT89O1E1w/0vaXrJpyzSBUoyxQpPFJBNSt113VjtVx+Bbh4waGKoij6OfEGIIqiKPplu31+8juKKnvDEzAmoe87pnGkrjOMUXRtx727x+y2PcM0UVc5JgmURcHlsz37bcf65pKsyNhtD/X3eWF4+GDN1996wEv37rDfd8xmNX3T8+ZbD/mOf+0+aZZzcbknNQaTJOz2HVmqkELinSd4Tz0rCKGHACZRJIlBSs3prWMev9dx+9YtnAhIITi9dcrl5Q3KC4IPKKFJ0oQgwJiMotY8e7pmtxUsjiokHmsdSiq0FDgHfT/ivUcbQ3AgtRRaquZP/Ik/cRNCeNGhiqIo+jnxBiCKoij6ZZuc25okkdZZPBNpmnB6PGdW5TgXWMwXrNct+7ajrBKMhrosCH5CKUgSTT1LWRwlXDxdo6Th+mJPXWe8/Mo5s2WO84KLZzv2zchqveG9dy+5vm6xFqYxsN3u2W0HJhsQSLJMYcwhEdCJ4fT2nNksZ1anSBV46eW7jG5i02x56ZXbnJzNETiM1NhhYhws292WzW6HB8ZxQErJbFbRtY6hm0gSibMgCBgjEHDYcCwk4zQxuYmT01NMmhW///f//vmLjlMURdHPF28AoiiKol+2o0X1hjGmDEJDAqvVjr6xTJMjzTIuL28oioKz0wUXT25IjERrQVFVrDcdH/22W/TDyM3NjvPbC/zkKCvDSy8fsbrOMCZlGif225Zbd+bMZhXbdQ9o8lxRHkmmIdC1I0pJqANCBrIsJUk1ow14H9BKo7VkMVPkeUJdV89n+mdkOVw+vWG33VHmFTerFq0VBIGzFp1qtpuWNEvoh45x0EgUszrDGIEMEDgkASBIkgQlBInJEU4f3749DC82SlEURf+smABEURRFvyx/7I/9sbqeV785TTPh8dhxoiwLpOgJPtB1PYvljOAFNzcteVHg/Ih3gaEbefn+GZv1huuLhqwsyPLA+mrk9Q+fIoJkNk+5c/cEJeDJoxtOz0rgHtNkyXKDEoH79+fstj3GKPrWYowG55FCsFwWOD8wjRDUSJ5lFIUmeCjLktl8zjCMFGWBEIqj4yOuLq7Y7XeHF3oRGIYJZx1KayCwPCpJE0WaGoRwCDTaKLwPKGkOZUFCIiR0Q8/N5uaVt79Q/3rg777gcEVRFP2cmABEURRF37T/9Af+0/JabX6bg0KlAiaH0gLXOggCrSRGGbp2ou8n2nZCK0mSQppJloua6+trJis5Oq4wiWKyjuxOTd8NhOBJ04Ltds98kdA2CfNlwun5OUPfUc8KJmspkhSTSLbrDq0V42BJE4OdGopMURQJjx5dc+t8ibUBBOSV5tatY5zTSAkP3lvhpkPy0PUjSaKpqgUSMCZht+2o6xKVG2bH5eE/gBQYYwBHkiYMwwhCAeC8JThw3rFt9+XN+ubf/P7v//6v/sk/+SevX1jAoiiKfp6YAERRFEXftCt9pa8fXH/+Y9/1mtImp+8G7OQYx4nNpmfoR7RO2W5HLi82gKEoDfO5Ic1L1uuG3c5irSDNQXko8gTv4OmjLVmuCc6y2YwUhWJxXIIAgSfPUgSCsjAE6ymKBGs9RarY7UZ2+xaQBO9Yr3bYySOlxDtHXZckCQih2O0G8npCSWi6Ae8tR0cn9FODFBqJJssMWh8SB6FAaRAIxnGiqnKkONwUaK3oh0MPgHMOPwb8GDhaLFfD5I5XTy6/G/jrLzhsURRFQGwCjqIoin4Z/vgf/+Ob8mRZzub5R7U2SKURSmF0Al4xdIZ/9I/e56d+6mvsWwcSxnHCeckXf+Z93nrrhsePt1xebdnvAjfXDW4MXD3dEIJEa8XV1R5rwduAnSB4CQG63tKPE207MPQWpQSzWUKaKpJMAB7cYWa/c4KzWwuUgYDEeYsQh9P7zWbDZr2naXtAYkeP9575fMZsXpOmmizXHJ/OWRzlVFVKCIHEaOzkUEqjtUJrTZomBOeYRosSijB5us3Oz4rqC3fu3v0rIkxfedExi6Io+lnxBiCKoij6pv3ET/yE+uJbX/kN+bw6HoNApwWZDzS7jr6feOfdJ4yD49atOVmRgRTUdcHF0x37fYeQgo997DZKS5482nJ2Zuj7nrYLCOnYrC3eBnbrgVQlCClwztJ3jmeXe155/TZd26B8IEkFQ+/IUoUxiizVNGNgmiwmMXjvGQZQCoSQSK1puo7NZs3Z2RlBgtbmcKpfpygZyDKNKAxpekgasjxB6cPtg5Ga4Ceafc/ZWY0QghAgyxOmwTFMFpDkWdbIJPzVT/+Fv/CTLzpeURRFP19MAKIoiqJv2uf/5udny4+c/Ka8rJRWGcJoptFSzituvyq5dX/JNFrGfuLpRcN2PfHO158yjYGyzpDKcXm1odlZiiJlnODRwy277cRimXPn1oy333qX01tztluN0h4hJYt5QZ4FusZSlQWryy2zecZ6tePsvEQIjxAepSVFkbF79zHOBpRMOb89I00MY+948vgCrQ1d15GToZRCSEdZ5RSFQkiPJ5Aag50mxmEieEldp+SpRJsCKUAqRQgB7zxSgtaCgMY6j3Ny43Cfe9GxiqIo+ufFBCCKoij6pqVn6fkbH37lt+ZFroauxzqLTlKW+Tnzpcc7y+rqipura2aVZrvp2e/6w6KsxKNNwuVlwztvPWVW52y2W7rW8sqr9+mGjqvLhmdPdxTzkvV2Rbffc/feEe1+RtOObLcD3/Xdtwh4bq73dK2lb0dMIkiThL4dkQJsP/Deew84OT7lpfsz7GhpG0vXWdIsxVnHbtccGn9nBSFYQHByWjO6ESMlWmm8l/SdpWsnEinwHrLCELxHSsW22ZPoBKktaaLZPt1wvbp+tzw5Wb/oWEVRFP3zYgIQRVEUfVN+4Ac+cZZk+j9KUvVRby3eO4I/NMdOk4Xg0UqTlyW3jEHIp5zblKmvWa333Ll3wqP3LvmHn/8iiTFsN5ph7NHK8PjRE6ZpIDDS7BuKuWG72rDfbNmuG9K8xCQpXdOwmKfUlUEphdIDeIkIh+Y2rQ37zYp23/Ds4bskWtCPL+GDYL9raHZ7jo6PkErivSfgCUHQDRYpBWkiYJD03YgqE7p24ORsjh0GxPPG3922o6oL+n7Ae8Fu15Imh/0Bu91AO+yeLYtz8aLjFUVR9M+LCUAURVH0TdntnqzmJ6++b5IsSGUwOoAfmCZL33dM48SsrjBZipSSs1t3eellxce+c2DsJ978yiPeeavjO/+1D5HnCeM0kKQZX/qZd2ibPW2zYrV6wvzolNXVBV/4J/+IulzQ7TqUUeRlSVHM+cm/8UV+47/+Oou54eysxlvHOEKz75hGQZYoHr3/DsGNGJUwtJ6ry4bPf+4LpEmCMQnTNOFdYD6fk2cJRZaQJoahnzg5ybm+Dgy9AxGYuh4lA0omtG1LCIHdrsNOFoSgHyzGKLrtxM/84y9ZJ2xzpHUcthFF0becmABEURRF37BPfOITSddNv/7W3aPfMV9UefAgpGCcRvquI88LyrJkmkaChaKsyTJH3zcgJV3fsjzO+K3/k4/hHCTGIJTg8tmaupqxXu+4enbFS9Ntyqrk4uKCxeIYGQQwMvSWfmiQBJ48XJOkmpfuLbn/8jFSeIbWIoJEaYHRgskOlLMl57dvIxF8/auPePTgkjt375HmOQJB1+6ZzSqcDxSFJs9Smmbk6CilLBMm25EmGq0kAU/TDjgnEEIwDhPj6MF70jSBoHj3a+/z6NG7T+69fv7ekNrkRccsiqLonxcTgCiKougbNo7JvF7q//nxafHdUnqsHfHeAhxKcYxGAGmaMU0T290G7y3jOBJ8ICtLyrpmHAb6bmK7aejaCWMShumGJEv4db/p20iN5t13HqJ1wuuvf4hUgxtHlBJMPrC6WePGkWbf0/eC68uGNJV0m4G0SJjNc9p24mhxTjVfUFY1XdPy9a+9RZakZFlBYg6Th7I8ZxgnkiQ5vNSPA7N5Stc7htGSFgnNtiURkiw3WGuZxgmpFEZrNjc7pFKkKdhJ8+TBhSvr7B8VVfGu3fmYAERR9C0nJgBRFEXRN2wcb9rz8py6qpZ28nhvEQKkgCRN0FozDgNSCJSSpGmCc5IQAvt9S3CBvEgYrWO9abCTJcsSemdR0jCOgcubPZePVzT7NUfHNaP1LJcls7xGK4lH8Or9U7brDhccCInSGmc92miUFEgZ6NoWKQ87Cq4vL7m8eML65pLT83t4Z6nKBUIElNJM44TWkmn01FXG6qbB2pQsFyxmGbiAnRzeg3fgPRit2W1alD7U/RthePTeJTerizdvvXTrHyZZ8Q8/+elPv/+iYxZFUfTPiwlAFEVR9A0TInn9aLn8LVVVahEESkqC9yRJilAKAuA8q82Ko6MjqnLGbrslMTCfK4J3GKMRQmKtp+t6/GS5c2+B85ZnFy2XN3vasaNte1770Ms8frrh2eUGc2cB40hiFLduVSg1cXp2wvVlQ1mlbNctyEA1zzk+L5hd7njy5Ovku5LgXbi5uSLPKjH0HdMw0Oz3SC1J8wTvA+Pg6FvLOOz40hff4jf+pg9zujxF2EBZGvpO0GwHrPWHZWDWYacAImCk5uai4+2vvnOTlPovHd1b/kgI2cWLjlcURdG/SEwAoiiKom9Ynut8flx9JHiPD/b5VwOBgJIChCTLU7q94unDJ9y5f5+sKCB4vHOHaT9GU0qFEIE0NfjRMY6WepZQVJo7Ly14dl7yxX/8dcbBsbpZczFaTKr59m+/gwgBC9x5+YhUa5JE0DQWrSTTYBHSYv1EWRW0w45Hl19HSolWiQ8BFu4oYK1q93uRFAWIkSQ1uCmwXm25udmgpKEscqbJ0Y2ONFdMvaXrHG70iFwxjh6BPPQjPHvKO2+9M4xT+9O3Xj77//wX/8WPPXqRcYqiKPrFxAQgiqIo+oZVp9VrJtMnCIVE4r1lGDuE8LRdIDEZWgpC8CS5oWnWZEVBCAGBwCiDc55psuR5QWpSdpuW3b5jNq/xwTNZy9WV4UPf/hpDP/LK67chCLyDm/XInTs5xkBWpQgnUEwUwiCDYhotRZ6TZSnWbVBSYv2EQnkhcevmUqvL0GvlfZbW5ZwzKVwgM4a23XL57JKyrnn99ZdQSjDYCecOycvYBPqdY7NuSBODCw43eZr1mq+//WbrRfvf3v/Iq5/+7t9y9lM/+uMvOlJRFEW/sJgARFEURd8osahm/6M0y3QIIPCMU8d2fUNW5hiTsrq8pGla7r50j2WW471HKUXXt4fNuQSmcWTsJ5yyJEZydDwjBEvbNnSdRUpNligePrrBJJqyypnNEqbBUy8M9azk+KjGaImWirbZ0rUjznYsTnJMITk6XqLEJakS/rieXVRVebPZb892bbe8WD/N+qlti3TmjvdrMV+eiGeXjrZpMDrj9t3baCnodj1hShiGEZxAeM3N5ZaLZ1dICbvVNc1+7cZx/zirzT+699pLf2tRzv72H/7DPzy86EBFURT9YmICEEVRFH1Dfsfv+J66rqvvMEph7YQIkJiU2WJJ3/c4P5ElhrI6QWmN946h7xjHHu8DAonWknHs2G33JMagZwW7ZgDhOT6pSJPy+Vz+HJMKQoB5XRL8SFlmLJYFfnIoAcNkScqUol4gdYcEAo68TFFas9s0HB8tL87M/O8mWdotmtnpg8dPvmvftkebZl2v92uerZ6QJCkSxYde+Sgnx8dgoVn39JuWLDPYyTP0Aw8fvc/N1TPGqWezu6Hr9+HkaP7F1994/W+hxGhM8aXTV16Jdf9RFH3LiwlAFEVR9A35ju945bQsk1elkrjRMjlLKlKUNPTNmr5tkSpw5+497DTQ9hPjMOC8Zb/r2Kx7yjzl+KxGCYX30LYD7d7SNHuOj2ds19dUVc7yqOQ3HL9OcJBlCbvtjsePrmn2I3WdoYxBIRnGEZMkBKXIyhyPJy0y6tmSafLM8tL//9u7txjLsrM+4P+11r5fzq1OVXVXX+Zi2vaMIU4MRBYKD45iFEhkRUIzE6EIQSQPQjxFPOQlklXP5M3CSC0UaQiMYk8uOEEREQQrCQaMid3E0z3TM9Pd1V3XrnNOnbPP2dd1zcMZ8hLZ3XbGqTL6fi+lUpWq9v72Q9V/rW+vrzeO70W9/JZzLuz3B+8eHB3/6KIorkmlkk7JuGnLKPIjY6Q0TVWAGy3q5VzIToHBwlqgk6299/C2KsqZl8fRKgyDST5Iu8HG4L0wTSb5YPDQAj7Wg4jteT8rQgj5TigAEEIIeSqXrgx/LIjFNSkljDEIwxDOWVijUa0a1HWDa89so5MSTdNgPi3xcG8CLjjieD1dVyuJebEAAMRJCDiGatUifv98fcYYFosVUm0gBEeepTDGIowCxPF6srDSFr1eDGctpDSw1iBNUmjPhx/4sA4QYYjR5gaqqu0Ntvpu60eu/94Io3rnmePf335w6ScODvb/wfzs7AWpdbJcrTaatu0dnrznjK4LKdWIe9x1TQuPMx2GqYJwEkx6WS81ERdyY7Sx//yNG78Xp/FEOevgR//V47XZ3d015/uUCCHkySgAEEIIeSpCuBt+EAgwDjCACx9wQLlcomoqbGxuQvgejHWI4hTjbYGN7T6atgVzDIvZCkVRIwwFBoMeisUSTaMxGCRYLGq0rcJsUsEYg6vXPYSRj1W5QuCHiJMIV69fwunjKbRWqMoaxkhYC+R5Aq0ktNEQnKNedVgUBT76sWfgxSLuGpmPPjZqd1/e1QCOAfy7V175R7c2F5t/r67rG1LL8XJebBbL4mrVzpOmaWtjVMDB9M7lS3eCgDfLstgZ9LNqtDE6YNzjztmgLAv74o//+L/f29uzr732Wnvez4cQQp4WBQBCCCFP9NJLL4n+ML0huIBUHQI/hNUGXVujWpXgTEAIB0/4WJU1rAN6WQbHHBwYdKfhnEVTKURBjtWywWLeQnAPxgLTSY3paQUGByUdrAb6gxhNK7G5nWCEAXzPx2g0xLJYoViUGG/24HkejLFYrSp4noBlHMYYzOcF0jzC5taQr5bVxuorp9sA9v/qfr74xd+9xxi799nPfna8nBz/jeeefT6aPn783Nls9ndEIDQD74zS0XA8eidN4mJ+NrvhCV+HUVQ454xSyqVJFp6+/fbGa1/84v53KB0hhFw4FAAIIYQ80Yevf/h63k9+QioJZy0YHOpqieVyASkdnLWIAh+rZQljgd6gDz/wwAVHrzdEuSwQhh4AD4tihbbWeLh3jDxLUBQlOPcgW4XAFxCew/7eFPeVRt7L0TYazPnY2MoQhB76wx60nkFrjbbtYK2DYGI9WKxtwTmgWoVKWWxvb7blqpqEnvd/rdA753Dz5s0pgD96/3P+T//Jy18xxnr9bHhmrBUuDJde23qD0eag6zpYp3/M88Jv/f3PfOat3//yl39IrUefEULIDxQKAIQQQp4oGSUx5yJ31iGMYihjYQFEaYzT6RRaOUijwITAeDyC5/vwgwBGWSxXBZbFAk3VIIqBoZfjRC7gXIA0i6GVQ13WYAxgDChXDWS3bqXvZAPZBni0dwLHNjEY5rDGYVlU4IwhCNbvDiRhCGEZpHNQygEw6NoOw+GY9fvL4r2fPDnD57/zPTLGLIA73+bLEwB49dVX927evKn+1W//NgDc/YDKSwgh/1/x874AQgghF5+1dmytXQ/WMhrCE/B9D86uV9K10bDOYjAcwjkL2dVYFnMs53Oc7B+iWlboWokkjTEcpGhrjWJRo646MLfeQVgtaxijYGGwvZPj8pU+PF9gOlvBOQY4h6Zp4fvrtas0SxGEAcIoRJxnEJ6HNI3heRxKGTjL0DTK87xo9OLtF9kHUYebN2+qD+LnEELIeaIdAEIIIU/EOZ8yxsDeXzYyUkIpCWstfM+Hn3lI0wx1VcHzODxfYH5WoK5b5L0UaZri5OQUxmgweHh8dIYkCpH3YnS1weWrfYANcOXqBoQA4thDUyscPFrAOQdjNKwBOGNQSv2f6+CcIQgDaCPhBR6Yc/B7GYqihJQKkR8zZ50+Pj7+QAIAIYT8dUA7AIQQQp7INI0RjDFr1/+My269Ep+lPVhrkCQ+pOrQtDWqqkXTtkiyCP1BitHGAMYpJHGILItw7+4h7t65j+EoxvRxidWqwaKo4Qc+pFTwPIGm6hB4HDs7A/T6ERjjOJuWqKoWd9/ah9aA1gbOMQRBCM8L4RyDsQbWWsRxCMGAclUJY0x69/Jl6tUnhJD3UQAghBDyRHVZKqWN1EYDzsJYAyF8dJ1CtVwhz3M0lQJjDNoYCO4jz1LkWQptFDzuo60lqpXDnduPABiMNzOMN/tgjCPP+uAM2Ls/RddaDIYDdFJDBEB/kODy1Q1YZ2C1hmwcwiBYtwtZA9lJKKnAGQMX61OFwBh834ezRhsl848+eLB93jUkhJCLggIAIYSQJ1JSGiOtYcyh6xQY47DWYTlfYnM8Rtd2WC1LWKORZwk84UGr9WAv1Wns3TsCA0fT1FitKrz4wz+E8VYOxi2CgENJCThgMEhxNltCa4fNrU30+znC0MPmVg/Xnt1CEPrgwkHJDlmWwvc9hGEAMIe2beEYYB2DtQ5KGmgltbWGced6511DQgi5KCgAEEIIeSqy6VRbN1C6g7EOXdcBsPBjgST20e/FcMahbdZTgRljaOoGMA7j8RBxEmC5qrFzZQtXrm5gNilRLBqkeQxjgfm8QZKFCGKBs8UC09kCbdsiyzMwMORZAiF8JFmMMAnWL/qCgXGGIAjABIdSGoxbSCXR1BJHJyfKi8RDZObkvOtHCCEXBQUAQgghT9S2TBWLatk0DZSSULIGHMOyqNd/SDgDe/+jdYDwOLRU6CoJByAIAGMlulbiIx+7iqvPDBFGYv19SsHzAGsd5mcVpicVPC4g2w6yW6/oZ1mGKIoheICyrDHeGINzBs4FtDawxsITAs4xMMsAa9A1Cm3VNM4Zp1SSnmsBCSHkAqEAQAgh5ImUpybzs+JbsrHoGgvVGjw+nmE2L5EkETgDuOBQnYTgHNYYKKmRZhGMsZBKwWi7btnxPWitMd7sY7yV4kMf3kSahbhydYDhIIYfCJxNS3DBwQXAuIFUEtZpOHCUSwkpJaIoBucc1lgYrcEABD6HEAIcHs4mFRh4yQXrfGOC864hIYRcFBQACCGEPNHNmzdVVXQPilmty6LD4qzF9KSA7wXrc/kdoJUGB7AqljBKAwCSLMFgmCOOQtSlhOcJeB5HFIToWoOuVXDOoWkaSKmR90KkqUDdSMznNc6mJepqvevQNjWK+RKcR3AOUEoCAJSUUFLC6PXvN0qiWio8fO/ICY9PkjSeK2Pi86seIYRcLDQHgBBCyFOZTeYnUrlpkmeXhAeUVYvxdg/GWFijYbQFZx6clei6dn0KD9YtPgwRHj44xZVrI8SxB60ZurYCA0fbWGyMU/h+gDgOoXoGYWSQ5TGaSmJ6usRwxBDHPrQ26LoWcA6eJ6CNQZzEUEpBKw2lFJzjWJ21eLT3oGaB2gdnVdzv7593/Qgh5KKgAEAIIeSpVPXi4Ojw5KjXG/fDKI21tdjZ2YQxClXVwGqgqSskqQ/nLMI4hGAeFqs5ymWLy1dGGAxTCE/ANgpccAyHKYyx2NzuoViUmEwL9Po5otggTSIEvkBTK1SrEs4lODxcIM1CtHULN8jgnEUQxrDWQjAPUmloY3F8OEXb1mdRxBur9fTzn//86rzrRwghFwW1ABFCCHkqnoe7Fs2b3/zGf1/e+p9/au7evoN77+5DKwaj8f5pPD58zwdjHIwxODD0ez10bYvNrR7SNEG16tatPXWL8XaOtpMABNI0Ri/LAWcBrF8wdjBgwsLzfTDGsCoqcC6QZgkYE7CWQXAPzjC0rYJsJYySOD48Qae7QvhcSSmvfO5zL/nnXT9CCLkoKAAQQgh5Kh968cX742H+n5LUuz+dPGjfeffruHf/Lpp6PQCMMQdjDKqqgzMcxrj3e/dbVGWHplZomhbCd/ADhvFWBmM18l6AYlGBMQ5jJAbDDFobCE/A93yEgY8sj6EU0NQGzlgordY7DEJAdhJtK1HXNTgHVKvQtdIq3TWcBzIIw9M7d2DOu36EEHJRUAAghBDyVHZ3d+3Ozs6fPPvcc18JPFb2876L/D6O9mdo6vVxn1wIKKXRNh26pkFdrbD34AhaG/T7GYx2OJvWaFsFzgSscRhtZGAMaJq/mi+gEPg+uq5F20o4Y+AJQAhAqgZpxtF2LZqmQxAIdG0DxgCtJWSjMH1coyjKWd5LD5yzjgl364033qAAQAgh76MAQAgh5Kn92q//+tF4a+v1q9evfXVn59Lj04NH7ut/fAeTkxqLWYvjowJl2YJzjvlsgZOjCVZLjThJ0HQNmGBwjmE4ytHUEkZbOA3AOeR5hiCMkCQJ8n6CMAigNWABdI0EB4MxQF1rwAHlaoVVUWPv/jFmkzPIRmJ51uLhu8dutVrsjzZHd0eb23/e87Pj864bIYRcJBQACCGEfFd+87d+6/YPf/zjv9bvhW8+PninffPW1/HO7Uc4OSoxnVVoaovDwymcZWhahVZKFEWJrtVwxiFNQ/T7KTzfw2LeYDZdoesUjHEQ3rqNKI4i5L0MXDBYCzjmAAD9PIeU69BglMTJ0RTv3T7F6cEKi0mLx/tLvPXm27UIzH6c59/qbW7+2994/fX5OZeMEEIuFAoAhBBCvmuv/MIv/EWahn88HMaTsjjBW395C0cPZ9ASKBYdmAtQ1x2sE+hajSwLwWChtEGShmhbibZVsEYgiCP4YQBjNXzfQ1XVqGsFP/DBPUB4PrwwhIGF1gyytlCdgbWA1Rr1SmI50zh6WODPvvoNnM0nR0kv+Uo2Hv/uF77whfK8a0UIIRcNHQNKCCHku/apT31K//LP/dy/rlbV39SGi/nkaOfW1/6MPf/RFzDcGMMZh6b14QU+rLGIIx9ceKhWHYKQo2k04AQYtxgO4/XMAOfgeR44t6jKGsLjyLMcq1UJrSyC0IdWLWRlMZuUcM7BKWD6+Azv3b3nymKql9V8cu25nT8aX9v8Lzdv3qzPu06EEHIR0Q4AIYSQ78lvvP76/esfeu5fXn/22lfDGIeHB2/bW3/xpzg9OsHZ6Qqz0waHD2eoK4nlskO5bFGVNaxxUJ1BnARIUg5rHTzPR7EoUSxKWOsghIe6Xr8UzBjDclEhED6iwMPZdIGmcjjcW6ApFSaTffvNW/9DHxy/VThWPw7jYD/1En3e9SGEkIuKdgAIIYR8z67eePw1pS69YazTbdf83dns4aVvfqPF9es3sH3pKiw4wsTHeJxBa4a2sQgjha410LpGfxDAWYem7rBaSSzOzrB9uQff8wHnMJ8tYZ2DswyrokQcBfj6u+8hTCP00hS6A9IsrcOYl0kaT+I0OZVS9qSUtMBFCCHfBgUAQggh37Pd3f+mv/SlL/2H//jGv8m06hLhH7w4nZx86K3bczGfnWIw3EYY93A06mHn+gCzWY3eIEVZ1ahLCc4yOOvgXIv5tMF0UiPLE9RVjX4vAOMepFLwmcDkqMTx4Rke7b+HVTm113aeqTbGg6qp62o4Gk56WXac9npH40sbX44nk4fnXRtCCLmoKAAQQgj5f/Lyyy+bf/ZLv/QHDJBhEHza44ydzhZX7j+6ncSTh+jl2xCeQxi9ACUdJo8LFIsGqjWolxF8T0Abg7Lo4DGO+aRBXXaAtrAOsNrBKI67b99zd27fLvxAV1KeLWYLd8S98X4QCnb1mWvTMAiqJM2/9jOf+dmvvfzyy3TuPyGEfBvsvC+AEELIXw+fe+mlYF/g00cHB/9wNp9/4vjxZGe5Wo58L2FJsuF95CMf967sXELWT1ndGHAORAFDf5AhiDkevDvFoJfCOANPcAjm0EqHalW5k+Pjav/gwUqa1UEvDee9XrY/HPYf5b3Rbd/z7nmc687a+vqNG3u7u7v2vGtBCCEXGQUAQgghH6iff+mlK0o3P11X9Yf3Huz9ZFXLUd00fYYoGQ22ok/86N/2Oq1ZmiUwUsIPAviBhztv3sfWeAudrBFHMXzfubJt5aOHj4q2m76zsTF6yLjTURic5Xn+IEmS//yctfu7b7whz/ueCSHkBwkFAEIIIR88xvArv/iLO8fH+/94uSz/1sHB4QuL1XJrVanRR559oUqzXjAeb8aC+77R2hpr5P+686ZJ08wYa6zHRcu4bYpyzja3xt9MY3E8GA5PwjDsoiB4nEfRH3zhtddOzvs2CSHkBxEFAEIIId83//zVV/uT1eJThyeHn3609+iTq7rrp1FaeF5QJ3HG0ySPqrZ1Z4upX3Yl4jieJEl8FobhMk/zZjKdXd+5vPXmaDg8Zpy3eZL8eZhl92nAFyGEfO8oABBCCPm+cs6xn3/llZ9aLpY/07Ztbpl7FIZhaYyzjDGure6XVTWwDCwMk6LXy96Kougdz3hLLfTQKrUVZ9le5NzsN3/ndw7O+34IIeQHHQUAQggh33fOOfYvfvVXrxog/sQnP7l3+w//0CvznNnFIlxI+SNd2xaeEMo53z7/0efv7e7uUl8/IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCvjv/G4hj+Ujq//mNAAAAAElFTkSuQmCC\n" + }, + "metadata": {} } - ] -} \ No newline at end of file + ] + } + ] +} diff --git a/docs/readme/ru.md b/docs/readme/ru.md index c001adc..4dea7ea 100644 --- a/docs/readme/ru.md +++ b/docs/readme/ru.md @@ -25,13 +25,16 @@ ## πŸŽ† ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ: - ВысокоС качСство Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ изобраТСния +- Π Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ - ΠŸΠ°ΠΊΠ΅Ρ‚Π½Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ - ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° NVIDIA CUDA ΠΈ процСссорной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ - ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° FP16: быстрая ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° с Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠ΅ΠΌ памяти - Π›Π΅Π³ΠΊΠΎΠ΅ взаимодСйствиС ΠΈ запуск - 100% совмСстимоС с remove.bg API FastAPI HTTP API - УдаляСт Ρ„ΠΎΠ½ с волос +- АвтоматичСский Π²Ρ‹Π±ΠΎΡ€ Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для изобраТСния ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Ρ - ΠŸΡ€ΠΎΡΡ‚Π°Ρ интСграция с вашим ΠΊΠΎΠ΄ΠΎΠΌ +- МодСли Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½Ρ‹ Π½Π° [HuggingFace](https://huggingface.co/Carve) ## β›± ΠŸΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ сами Π½Π° [Google Colab](https://colab.research.google.com/github/OPHoperHPO/image-background-remove-tool/blob/master/docs/other/carvekit_try.ipynb) ## ⛓️ Как это Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚? @@ -40,6 +43,7 @@ 2. ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ„ΠΎΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ для обСспСчСния Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ качСства Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ изобраТСния 3. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ машинного обучСния убираСтся Ρ„ΠΎΠ½ Ρƒ изобраТСния 4. ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ постобработка изобраТСния для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ изобраТСния + ## πŸŽ“ Implemented Neural Networks: | НСйронныС сСти | ЦСлСвая ΠΎΠ±Π»Π°ΡΡ‚ΡŒ | Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ | |:--------------:|:--------------------------------------------:|:--------------------------------:| @@ -47,14 +51,35 @@ | U^2-net | **Волосы** (hairs, people, animals, objects) | 80% (mean F1-Score, DUTS-TE) | | BASNet | **ΠžΠ±Ρ‰ΠΈΠΉ** (people, objects) | 80% (mean F1-Score, DUTS-TE) | | DeepLabV3 | People, Animals, Cars, etc | 67.4% (mean IoU, COCO val2017) | -> Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ U2-Net для волос ΠΈ Tracer-B7 для ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. -## πŸ–ΌοΈ ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ постобработки ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ: -### πŸ” ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ: -* `none` - ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ. -> Они Π±ΡƒΠ΄ΡƒΡ‚ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Ρ‹ Π² Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ. + +### Recommended parameters for different models +| НСйронныС сСти | Π Π°Π·ΠΌΠ΅Ρ€ маски сСгмСнтации | ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Trimap (Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅, эрозия) | +|:--------------:|:------------------------:|:-------------------------------------:| +| `tracer_b7` | 640 | (30, 5) | +| `u2net` | 320 | (30, 5) | +| `basnet` | 320 | (30, 5) | +| `deeplabv3` | 1024 | (40, 20) | + +> ### Notes: +> 1. ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ качСство ΠΌΠΎΠΆΠ΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΎΡ‚ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ вашСго изобраТСния, Ρ‚ΠΈΠΏΠ° сцСны ΠΈΠ»ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. +> 2. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ U2-Net для волос ΠΈ Tracer-B7 для ΠΎΠ±Ρ‰ΠΈΡ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². \ +> Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ для ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ качСства! ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с использованиСм постобработки U2-Net ΠΈ FBA. + +## πŸ–ΌοΈ Image pre-processing and post-processing methods: +### πŸ” Preprocessing methods: +* `none` - No preprocessing methods used. +* [`autoscene`](https://huggingface.co/Carve/scene_classifier/) - АвтоматичСски опрСдСляСт Ρ‚ΠΈΠΏ сцСны с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ классификатора ΠΈ примСняСт ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ модСль. (По ΡƒΠΌΠΎΠ»Ρ‡Π°Π½ΠΈΡŽ) +* `auto` - ВыполняСт Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· изобраТСния ΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ опрСдСляСт Π»ΡƒΡ‡ΡˆΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ удалСния Ρ„ΠΎΠ½Π°. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ классификатор ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ классификатор сцСны вмСстС. +> ### Notes: +> 1. `AutoScene` ΠΈ `auto` ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ модСль ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΌ, Π±Π΅Π· увСдомлСния. +> Π˜Ρ‚Π°ΠΊ, Ссли Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ модСль, ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ всС постоянными ΠΈ Ρ‚. Π΄., Π²Π°ΠΌ слСдуСт сначала ΠΎΡ‚ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ автоматичСской ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ! +> 2. На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ для ΠΌΠ΅Ρ‚ΠΎΠ΄Π° `auto` Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ΡΡ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ², Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² настоящСС врСмя нСдостаточно для Ρ‚Π°ΠΊΠΎΠ³ΠΎ количСства Ρ‚ΠΈΠΏΠΎΠ² сцСн. +> Π’ Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ, ΠΊΠΎΠ³Π΄Π° Π±ΡƒΠ΄Π΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, Π°Π²Ρ‚ΠΎΠΏΠΎΠ΄Π±ΠΎΡ€ Π±ΡƒΠ΄Π΅Ρ‚ пСрСписан Π² Π»ΡƒΡ‡ΡˆΡƒΡŽ сторону. + ### βœ‚ ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ постобработки: * `none` - ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ постобработки Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ -* `fba` (ΠΏΠΎ ΡƒΠΌΠΎΠ»Ρ‡Π°Π½ΠΈΡŽ) - Π­Ρ‚ΠΎΡ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ изобраТСния ΠΏΡ€ΠΈ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ Ρ„ΠΎΠ½Π° с ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с волосами ΠΈ Ρ‚.Π΄. с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти FBA Matting. Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄Π°Π΅Ρ‚ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π² сочСтании с u2net Π±Π΅Π· ΠΊΠ°ΠΊΠΈΡ…-Π»ΠΈΠ±ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. +* `fba` - Π­Ρ‚ΠΎΡ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ изобраТСния ΠΏΡ€ΠΈ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ Ρ„ΠΎΠ½Π° с ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с волосами ΠΈ Ρ‚.Π΄. с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти FBA Matting. +* `cascade_fba` (default) - Π­Ρ‚ΠΎΡ‚ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ уточняСт маску сСгмСнтации с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти CascadePSP, Π° Π·Π°Ρ‚Π΅ΠΌ примСняСт Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ FBA. ## 🏷 Настройка для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° CPU: 1. `pip install carvekit --extra-index-url https://download.pytorch.org/whl/cpu` @@ -62,7 +87,7 @@ ## 🏷 Настройка для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° GPU: 1. Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ Ρƒ вас Π΅ΡΡ‚ΡŒ графичСский процСссор NVIDIA с 8 Π“Π‘ видСопамяти. -2. УстановитС `CUDA Toolkit ΠΈ Π’ΠΈΠ΄Π΅ΠΎ Π΄Ρ€Π°Π²Π΅Ρ€ для вашСй Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°Ρ€Ρ‚Ρ‹.` +2. УстановитС `CUDA Toolkit ΠΈ Π’ΠΈΠ΄Π΅ΠΎΠ΄Ρ€Π°ΠΉΠ²Π΅Ρ€ для вашСй Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°Ρ€Ρ‚Ρ‹.` 3. `pip install carvekit --extra-index-url https://download.pytorch.org/whl/cu113` > ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ вСрсии Python ΠΎΡ‚ 3.8 Π΄ΠΎ 3.10.4. @@ -73,12 +98,15 @@ import torch from carvekit.api.high import HiInterface # Check doc strings for more information -interface = HiInterface(object_type="hairs-like", # Can be "object" or "hairs-like". +interface = HiInterface(object_type="auto", # Can be "object" or "hairs-like" or "auto" batch_size_seg=5, + batch_size_pre=5, batch_size_matting=1, + batch_size_refine=1, device='cuda' if torch.cuda.is_available() else 'cpu', - seg_mask_size=640, + seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net matting_mask_size=2048, + refine_mask_size=900, trimap_prob_threshold=231, trimap_dilation=30, trimap_erosion_iters=5, @@ -89,33 +117,65 @@ cat_wo_bg.save('2.png') ``` - +### Аналог ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ `auto` ΠΈΠ· cli +``` python +from carvekit.api.autointerface import AutoInterface +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 + +scene_classifier = SceneClassifier(device="cpu", batch_size=1) +object_classifier = SimplifiedYoloV4(device="cpu", batch_size=1) + +interface = AutoInterface(scene_classifier=scene_classifier, + object_classifier=object_classifier, + segmentation_batch_size=1, + postprocessing_batch_size=1, + postprocessing_image_size=2048, + refining_batch_size=1, + refining_image_size=900, + segmentation_device="cpu", + fp16=False, + postprocessing_device="cpu") +images_without_background = interface(['./tests/data/cat.jpg']) +cat_wo_bg = images_without_background[0] +cat_wo_bg.save('2.png') +``` ### Если Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ провСсти Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ настройку ``` python import PIL.Image from carvekit.api.interface import Interface from carvekit.ml.wrap.fba_matting import FBAMatting +from carvekit.ml.wrap.scene_classifier import SceneClassifier +from carvekit.ml.wrap.cascadepsp import CascadePSP from carvekit.ml.wrap.tracer_b7 import TracerUniversalB7 -from carvekit.pipelines.postprocessing import MattingMethod -from carvekit.pipelines.preprocessing import PreprocessingStub +from carvekit.pipelines.postprocessing import CasMattingMethod +from carvekit.pipelines.preprocessing import AutoScene from carvekit.trimap.generator import TrimapGenerator # Check doc strings for more information seg_net = TracerUniversalB7(device='cpu', - batch_size=1) - + batch_size=1, fp16=False) +cascade_psp = CascadePSP(device='cpu', + batch_size=1, + input_tensor_size=900, + fp16=False, + processing_accelerate_image_size=2048, + global_step_only=False) fba = FBAMatting(device='cpu', input_tensor_size=2048, - batch_size=1) + batch_size=1, fp16=False) -trimap = TrimapGenerator() +trimap = TrimapGenerator(prob_threshold=231, kernel_size=30, erosion_iters=5) -preprocessing = PreprocessingStub() +scene_classifier = SceneClassifier(device='cpu', batch_size=5) +preprocessing = AutoScene(scene_classifier=scene_classifier) -postprocessing = MattingMethod(matting_module=fba, - trimap_generator=trimap, - device='cpu') +postprocessing = CasMattingMethod( + refining_module=cascade_psp, + matting_module=fba, + trimap_generator=trimap, + device='cpu') interface = Interface(pre_pipe=preprocessing, post_pipe=postprocessing, @@ -123,8 +183,7 @@ interface = Interface(pre_pipe=preprocessing, image = PIL.Image.open('tests/data/cat.jpg') cat_wo_bg = interface([image])[0] -cat_wo_bg.save('2.png') - +cat_wo_bg.save('2.png') ``` @@ -140,24 +199,27 @@ Usage: carvekit [OPTIONS] Options: -i ./2.jpg ΠŸΡƒΡ‚ΡŒ Π΄ΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΉΠ»Π° ΠΈΠ»ΠΈ Π΄ΠΈΡ€Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ [обязатСлСн] -o ./2.png ΠŸΡƒΡ‚ΡŒ для сохранСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ - --pre none ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ - --post fba ΠœΠ΅Ρ‚ΠΎΠ΄ постобработки - --net u2net НСйронная ΡΠ΅Ρ‚ΡŒ для сСгмСнтации + --pre autoscene ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ + --post cascade_fba ΠœΠ΅Ρ‚ΠΎΠ΄ постобработки + --net tracer_b7 НСйронная ΡΠ΅Ρ‚ΡŒ для сСгмСнтации --recursive Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ рСкурсивного поиска ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² ΠΏΠ°ΠΏΠΊΠ΅ --batch_size 10 Π Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹Ρ… Π² ΠžΠ—Π£ - + --batch_size_pre 5 Π Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ°ΠΊΠ΅Ρ‚Π° для списка ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒΡΡ + ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ --batch_size_seg 5 Π Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ сСгмСнтации --batch_size_mat 1 Π Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ матирования - --seg_mask_size 320 Π Π°Π·ΠΌΠ΅Ρ€ исходного изобраТСния для ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ + --batch_size_refine 1 Π Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ°ΠΊΠ΅Ρ‚Π° для списка ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΡƒΡ‚ΠΎΡ‡Π½ΡΡŽΡ‰Π΅ΠΉ ΡΠ΅Ρ‚ΡŒΡŽ + + --seg_mask_size 640 Π Π°Π·ΠΌΠ΅Ρ€ исходного изобраТСния для ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти --matting_mask_size 2048 Π Π°Π·ΠΌΠ΅Ρ€ исходного изобраТСния для ΠΌΠ°Ρ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти - + --refine_mask_size 900 Π Π°Π·ΠΌΠ΅Ρ€ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ изобраТСния для ΡƒΡ‚ΠΎΡ‡Π½ΡΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти. --trimap_dilation 30 Π Π°Π·ΠΌΠ΅Ρ€ радиуса смСщСния ΠΎΡ‚ маски ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π² пиксСлях ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ нСизвСстной области diff --git a/tests/test_autointerface.py b/tests/test_autointerface.py new file mode 100644 index 0000000..4663d68 --- /dev/null +++ b/tests/test_autointerface.py @@ -0,0 +1,42 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" +import warnings + +import torch + +from carvekit.api.autointerface import AutoInterface +from carvekit.api.interface import Interface + + +def test_init(scene_classifier_model, yoloV4): + scene_classifier = scene_classifier_model(False) + object_classifier = yoloV4(False) + devices = ["cpu", "cuda"] + + for device in devices: + if device == "cuda" and torch.cuda.is_available() is False: + warnings.warn("Cuda GPU is not available! Testing on cuda skipped!") + continue + inf = AutoInterface(scene_classifier, object_classifier) + del inf + + +def test_seg(image_pil, image_str, image_path, scene_classifier_model, yoloV4): + scene_classifier = scene_classifier_model(False) + scene_classifier.model.to("cpu") + scene_classifier.device = "cpu" + object_classifier = yoloV4(False) + object_classifier.to("cpu") + object_classifier.device = "cpu" + + interface = AutoInterface( + scene_classifier, + object_classifier, + segmentation_device="cuda" if torch.cuda.is_available() else "cpu", + postprocessing_device="cuda" if torch.cuda.is_available() else "cpu", + fp16=True, + ) + interface([image_pil, image_str, image_path]) diff --git a/tests/test_cascadepsp.py b/tests/test_cascadepsp.py new file mode 100644 index 0000000..c181155 --- /dev/null +++ b/tests/test_cascadepsp.py @@ -0,0 +1,91 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" + +import pytest +import torch +from PIL import Image + +from carvekit.ml.wrap.cascadepsp import CascadePSP +from carvekit.ml.wrap.fba_matting import FBAMatting +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 + + +def test_init(): + CascadePSP(load_pretrained=True) + CascadePSP(load_pretrained=False) + + +def test_preprocessing(cascadepsp, converted_pil_image, black_image_pil, image_mask): + cascadepsp_ = cascadepsp(fp16=False) + assert ( + isinstance( + cascadepsp_.data_preprocessing(converted_pil_image)[0], torch.FloatTensor + ) + is True + ) + assert ( + isinstance( + cascadepsp_.data_preprocessing(black_image_pil)[0], torch.FloatTensor + ) + is True + ) + assert ( + isinstance(cascadepsp_.data_preprocessing(image_mask)[0], torch.FloatTensor) + is True + ) + cascadepsp_ = cascadepsp(fp16=False, device_="cpu", batch_size=2) + assert ( + isinstance( + cascadepsp_.data_preprocessing(converted_pil_image)[0], torch.FloatTensor + ) + is True + ) + assert ( + isinstance( + cascadepsp_.data_preprocessing(black_image_pil)[0], torch.FloatTensor + ) + is True + ) + assert ( + isinstance(cascadepsp_.data_preprocessing(image_mask)[0], torch.FloatTensor) + is True + ) + + +def test_postprocessing(cascadepsp, converted_pil_image, black_image_pil): + cascadepsp = cascadepsp(False) + assert isinstance( + cascadepsp.data_postprocessing( + torch.ones((7, 320, 320), dtype=torch.float64), black_image_pil.convert("L") + ), + Image.Image, + ) + + +def test_seg(cascadepsp, image_pil, image_str, image_path, black_image_pil, image_mask): + cascadepsp = cascadepsp(False) + cascadepsp([image_pil], [image_mask]) + cascadepsp([image_pil, image_str, image_path], [image_mask, image_mask, image_mask]) + cascadepsp( + [Image.new("RGB", (512, 512)), Image.new("RGB", (512, 512))], + [Image.new("L", (512, 512)), Image.new("L", (512, 512))], + ) + with pytest.raises(ValueError): + cascadepsp([image_pil], [image_mask, image_mask]) + + +def test_seg_with_fp12( + cascadepsp, image_pil, image_str, image_path, black_image_pil, image_mask +): + cascadepsp = cascadepsp(True) + cascadepsp([image_pil], [image_mask]) + cascadepsp([image_pil, image_str, image_path], [image_mask, image_mask, image_mask]) + cascadepsp( + [Image.new("RGB", (512, 512)), Image.new("RGB", (512, 512))], + [Image.new("L", (512, 512)), Image.new("L", (512, 512))], + ) + with pytest.raises(ValueError): + cascadepsp([image_pil], [image_mask, image_mask]) diff --git a/tests/test_fba.py b/tests/test_fba.py index a36f69a..65ee225 100644 --- a/tests/test_fba.py +++ b/tests/test_fba.py @@ -41,12 +41,7 @@ def test_preprocessing(fba_model, converted_pil_image, black_image_pil, image_ma ) is True ) - fba_model = FBAMatting( - device="cuda" if torch.cuda.is_available() else "cpu", - input_tensor_size=1024, - batch_size=1, - load_pretrained=True, - ) + fba_model.batch_size = 2 assert ( isinstance( fba_model.data_preprocessing(converted_pil_image)[0], torch.FloatTensor diff --git a/tests/test_mask_utils.py b/tests/test_mask_utils.py index a979874..777c490 100644 --- a/tests/test_mask_utils.py +++ b/tests/test_mask_utils.py @@ -3,24 +3,9 @@ Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. License: Apache License 2.0 """ -import pytest import PIL.Image -from carvekit.utils.mask_utils import composite, apply_mask, extract_alpha_channel - -def test_composite(): - assert ( - isinstance( - composite( - PIL.Image.new("RGB", (512, 512)), - PIL.Image.new("RGB", (512, 512)), - PIL.Image.new("RGB", (512, 512)), - device="cpu", - ), - PIL.Image.Image, - ) - is True - ) +from carvekit.utils.mask_utils import apply_mask, extract_alpha_channel def test_apply_mask(): @@ -29,7 +14,6 @@ def test_apply_mask(): apply_mask( image=PIL.Image.new("RGB", (512, 512)), mask=PIL.Image.new("RGB", (512, 512)), - device="cpu", ), PIL.Image.Image, ) diff --git a/tests/test_models_utils.py b/tests/test_models_utils.py index 0f81409..7dfa85f 100644 --- a/tests/test_models_utils.py +++ b/tests/test_models_utils.py @@ -16,6 +16,7 @@ checkpoints_dir, downloader, tracer_b7_pretrained, + scene_classifier_pretrained, ) from carvekit.utils.models_utils import fix_seed, suppress_warnings @@ -70,3 +71,4 @@ def test_check_for_exists(): assert deeplab_pretrained().exists() assert basnet_pretrained().exists() assert tracer_b7_pretrained().exists() + assert scene_classifier_pretrained().exists() diff --git a/tests/test_scene_classifier.py b/tests/test_scene_classifier.py new file mode 100644 index 0000000..c0827b9 --- /dev/null +++ b/tests/test_scene_classifier.py @@ -0,0 +1,61 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" + +import torch + +from carvekit.ml.wrap.scene_classifier import SceneClassifier + + +def test_init(): + SceneClassifier() + + +def test_preprocessing(scene_classifier_model, converted_pil_image, black_image_pil): + scene_classifier_model = scene_classifier_model(False) + assert ( + isinstance( + scene_classifier_model.data_preprocessing(converted_pil_image), + torch.FloatTensor, + ) + is True + ) + assert ( + isinstance( + scene_classifier_model.data_preprocessing(black_image_pil), + torch.FloatTensor, + ) + is True + ) + + +def test_inf( + scene_classifier_model, + converted_pil_image, + image_pil, + image_str, + image_path, + black_image_pil, +): + scene_classifier_model = scene_classifier_model(False) + calc_result = scene_classifier_model( + [ + converted_pil_image, + black_image_pil, + image_pil, + image_str, + image_path, + black_image_pil, + ] + ) + assert calc_result[0][0][0] == "soft" + assert calc_result[1][0][0] == "hard" + + +def test_seg_with_fp16( + scene_classifier_model, image_pil, image_str, image_path, black_image_pil +): + scene_classifier_model = scene_classifier_model(True) + scene_classifier_model([image_pil, image_str, image_path, black_image_pil]) diff --git a/tests/test_yolov4.py b/tests/test_yolov4.py new file mode 100644 index 0000000..2b79493 --- /dev/null +++ b/tests/test_yolov4.py @@ -0,0 +1,59 @@ +""" +Source url: https://github.com/OPHoperHPO/image-background-remove-tool +Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. +License: Apache License 2.0 +""" + +import torch + +from carvekit.ml.wrap.yolov4 import SimplifiedYoloV4 + + +def test_init(): + SimplifiedYoloV4() + + +def test_preprocessing(yoloV4, converted_pil_image, black_image_pil): + yoloV4 = yoloV4(False) + assert ( + isinstance( + yoloV4.data_preprocessing(converted_pil_image), + torch.FloatTensor, + ) + is True + ) + assert ( + isinstance( + yoloV4.data_preprocessing(black_image_pil), + torch.FloatTensor, + ) + is True + ) + + +def test_inf( + yoloV4, + converted_pil_image, + image_pil, + image_str, + image_path, + black_image_pil, +): + yoloV4 = yoloV4(False) + calc_result = yoloV4( + [ + image_pil, + image_str, + image_path, + black_image_pil, + ] + ) + assert calc_result[0][0] == "animals" + assert calc_result[1][0] == "animals" + assert calc_result[2][0] == "animals" + assert len(calc_result[3]) == 0 + + +def test_seg_with_fp16(yoloV4, image_pil, image_str, image_path, black_image_pil): + yoloV4 = yoloV4(True) + yoloV4([image_pil, image_str, image_path, black_image_pil])