-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathocrd-tool.json
69 lines (69 loc) · 2.27 KB
/
ocrd-tool.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
{
"git_url": "https://github.com/OCR-D/ocrd_keraslm",
"version": "0.4.3",
"tools": {
"ocrd-keraslm-rate": {
"executable": "ocrd-keraslm-rate",
"categories": [
"Text recognition and optimization"
],
"steps": [
"recognition/text-recognition"
],
"description": "Rate elements of the text with a character-level LSTM language model in Keras",
"input_file_grp": [
"OCR-D-OCR-TESS",
"OCR-D-OCR-KRAK",
"OCR-D-OCR-OCRO",
"OCR-D-OCR-CALA",
"OCR-D-OCR-ANY",
"OCR-D-COR-CIS",
"OCR-D-COR-ASV"
],
"output_file_grp": [
"OCR-D-COR-LM"
],
"parameters": {
"model_file": {
"type": "string",
"format": "uri",
"content-type": "application/x-hdf;subtype=bag",
"description": "path of h5py weight/config file for model trained with keraslm",
"required": true,
"cacheable": true
},
"textequiv_level": {
"type": "string",
"enum": ["region", "line", "word", "glyph"],
"default": "glyph",
"description": "PAGE XML hierarchy level to evaluate TextEquiv sequences on"
},
"alternative_decoding": {
"type": "boolean",
"description": "whether to process all TextEquiv alternatives, finding the best path via beam search, and delete each non-best alternative",
"default": true
},
"beam_width": {
"type": "number",
"format": "integer",
"description": "maximum number of best partial paths to consider during search with alternative_decoding",
"default": 10
},
"lm_weight": {
"type": "number",
"format": "float",
"description": "share of the LM scores over the input confidences",
"default": 0.5
}
},
"resources": [
{
"url": "https://github.com/OCR-D/ocrd_keraslm/releases/download/v0.4.3/model_dta_full.h5",
"name": "model_dta_full.h5",
"description": "character-level LM as stateful contiguous LSTM model (2 layers, 128 hidden nodes each, window length 256) trained on complete Deutsches Textarchiv",
"size": 1769684
}
]
}
}
}