-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
188 lines (150 loc) · 8.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import tensorflow as tf
import logging
def highway(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu, scope='Highway'):
"""
Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
with tf.variable_scope(scope):
for idx in range(num_layers):
g = f(tf.keras.layers.Dense(size)(input_))
t = tf.sigmoid(tf.keras.layers.Dense(size)(input_) + bias)
output = t * g + (1. - t) * input_
input_ = output
return output
def lstm_cell_with_dropout(rnn_size, dropout):
cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size, state_is_tuple=True, forget_bias=0.0, reuse=False)
if dropout is not None:
cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=1. - dropout)
return cell
def variable_summaries(var, verbose=False):
"""Attach summaries to a Tensor (for TensorBoard visualization)."""
name = var.name.replace(':', '_')
with tf.name_scope(f'summaries/{name}'):
histogram = tf.summary.histogram('histogram', var)
if verbose:
mean = tf.reduce_mean(var)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
return [
tf.summary.scalar('mean', mean),
tf.summary.scalar('stddev', stddev),
tf.summary.scalar('max', tf.reduce_max(var)),
tf.summary.scalar('min', tf.reduce_min(var)),
histogram
]
else:
return [histogram]
class CharCnnLstm(object):
VARIABLE_SCOPE = 'char_cnn_lstm'
def __init__(self, max_word_length, char_vocab_size, num_output_classes,
input_tensor=None, target_tensor=None, target_mask_tensor=None):
# self.max_words_in_sentence = max_words_in_sentence
self.max_word_length = max_word_length
self.char_vocab_size = char_vocab_size
self.num_output_classes = num_output_classes
self.embedding_size = 16
self.kernel_widths = [1, 2, 3, 4, 5, 6, 7]
self.kernel_features = [25 * w for w in self.kernel_widths]
self.num_highway_layers = 2
self.rnn_size = 650
if input_tensor is not None:
self.input = input_tensor
self.targets = target_tensor
self.target_mask = target_mask_tensor
else:
self.input = tf.placeholder(tf.int32, [None, None, self.max_word_length])
self.targets = tf.placeholder(tf.int32, [None, None], name='targets')
self.target_mask = tf.placeholder(tf.float32, [None, None], name='target_mask')
self.lstm_dropout = tf.placeholder(tf.float32)
self.loss = None
self.predictions = None
self.accuracy = None
self.learning_rate = None
self.global_step = None
self.global_norm = None
self.train_op = None
self._saver = None
self.loss_acc_summary = None
self.variable_summaries = None
def saver(self):
if not self._saver:
self._saver = tf.train.Saver()
return self._saver
def init_for_evaluation(self):
with tf.variable_scope(self.VARIABLE_SCOPE):
embeddings = tf.get_variable('char_embeddings',
[self.char_vocab_size, self.embedding_size],
initializer=tf.truncated_normal_initializer(stddev=0.1))
cnn_input = tf.nn.embedding_lookup(embeddings, self.input)
cnn_output = self._char_cnn(cnn_input)
# cnn_output.shape => [batch_size * max_words_in_sentence, sum(self.kernel_features)]
highway_output = highway(cnn_output, cnn_output.shape[-1], num_layers=self.num_highway_layers)
highway_output = tf.reshape(highway_output, [-1, tf.shape(self.input)[1], int(highway_output.shape[-1])])
rnn_output = self._lstm(highway_output)
# rnn_output.shape = [batch_size, max_words_in_sentence, rnn_size * 2]
logits = tf.keras.layers.Dense(self.num_output_classes, activation=None)(rnn_output)
self._loss(logits)
def init_for_training(self, learning_rate=0.01, max_grad_norm=5.0):
self.init_for_evaluation()
self.learning_rate = tf.Variable(learning_rate, name='learning_rate', trainable=False)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
tvars = tf.trainable_variables(self.VARIABLE_SCOPE)
grads, self.global_norm = tf.clip_by_global_norm(tf.gradients(self.loss, tvars), max_grad_norm)
optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step)
def save_model(self, session, path):
self.saver().save(session, path)
def restore_model(self, session, checkpoint):
self.saver().restore(session, checkpoint)
def restore_latest_or_init(self, session, model_dir):
latest_checkpoint = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint:
self.saver().restore(session, latest_checkpoint)
logging.info("model has been restored from: %s" % latest_checkpoint)
else:
session.run(tf.global_variables_initializer())
def init_summaries(self, verbose=False):
loss = tf.summary.scalar('loss', self.loss)
accuracy = tf.summary.scalar('accuracy', self.accuracy)
self.loss_acc_summary = tf.summary.merge([loss, accuracy])
var_summaries = []
for var in tf.trainable_variables(self.VARIABLE_SCOPE):
var_summaries.extend(variable_summaries(var, verbose))
self.variable_summaries = tf.summary.merge(var_summaries)
def _char_cnn(self, cnn_input):
with tf.variable_scope('char_cnn'):
cnn_input = tf.reshape(cnn_input, [-1, self.max_word_length, self.embedding_size])
cnn_output = []
for i, (kernel_width, number_of_features) in enumerate(zip(self.kernel_widths, self.kernel_features)):
reduced_size = self.max_word_length - kernel_width + 1
conv = tf.keras.layers.Conv1D(number_of_features, kernel_width, padding='valid')(cnn_input)
# conv.shape => [batch_size * max_words_in_sentence, reduced_size, number_of_features]
pool = tf.keras.layers.MaxPool1D(reduced_size, strides=1, padding='valid')(conv)
# pool.shape => [batch_size * max_words_in_sentence, 1, number_of_features]
cnn_output.append(tf.squeeze(pool, 1))
cnn_output = tf.concat(cnn_output, 1)
# cnn_output.shape => [batch_size * max_words_in_sentence, sum(self.kernel_features)]
return cnn_output
def _lstm(self, lstm_input):
with tf.variable_scope('lstm'):
fw_cell = lstm_cell_with_dropout(rnn_size=self.rnn_size, dropout=self.lstm_dropout)
bw_cell = lstm_cell_with_dropout(rnn_size=self.rnn_size, dropout=self.lstm_dropout)
outputs, _ = tf.nn.bidirectional_dynamic_rnn(fw_cell, bw_cell, lstm_input, dtype=tf.float32)
return tf.concat(outputs, 2)
def _loss(self, logits):
with tf.name_scope('loss'):
self.loss = tf.reduce_mean(
tf.multiply(self.target_mask,
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=self.targets)))
self.predictions = tf.argmax(logits, 2)
with tf.name_scope('accuracy'):
correct_predictions = tf.logical_and(
tf.not_equal(tf.cast(self.targets, tf.int64), 0),
tf.equal(tf.cast(self.targets, tf.int64), self.predictions)
)
nb_of_non_pad_values = tf.reduce_sum(tf.cast(tf.not_equal(tf.cast(self.targets, tf.int64), 0), tf.float32))
nb_of_correct_predictions = tf.reduce_sum(tf.cast(correct_predictions, tf.float32))
self.accuracy = nb_of_correct_predictions / nb_of_non_pad_values