diff --git a/nbs/docs/capabilities/01_overview.ipynb b/nbs/docs/capabilities/01_overview.ipynb
index 29b28bc00..12fe0f29e 100644
--- a/nbs/docs/capabilities/01_overview.ipynb
+++ b/nbs/docs/capabilities/01_overview.ipynb
@@ -25,7 +25,7 @@
"|`HINT` | `AutoHINT` | Any7 | Both7 | Both7 | F/H/S | \n",
"|`Informer` | `AutoInformer` | Transformer | Multivariate | Direct | F | \n",
"|`iTransformer` | `AutoiTransformer` | Transformer | Multivariate | Direct | - | \n",
- "|`KAN` | `AutoKAN` | KAN | Univariate | Direct | - | \n",
+ "|`KAN` | `AutoKAN` | KAN | Univariate | Direct | F/H/S | \n",
"|`LSTM` | `AutoLSTM` | RNN | Univariate | Recursive | F/H/S | \n",
"|`MLP` | `AutoMLP` | MLP | Univariate | Direct | F/H/S | \n",
"|`MLPMultivariate` | `AutoMLPMultivariate` | MLP | Multivariate | Direct | F/H/S | \n",
@@ -55,6 +55,11 @@
"6. **Exogenous**: Whether the model accepts exogenous variables. This can be exogenous variables that contain information about the past and future (F), about the past only (_historical_, H), or that contain static information (_static_, S).\n",
"7. __HINT__ is a modular framework that can combine any type of neural architecture with task-specialized mixture probability and advanced hierarchical reconciliation strategies."
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
}
],
"metadata": {},
diff --git a/nbs/models.timemixer.ipynb b/nbs/models.timemixer.ipynb
index bccb36adf..0aacd694c 100644
--- a/nbs/models.timemixer.ipynb
+++ b/nbs/models.timemixer.ipynb
@@ -35,7 +35,7 @@
"outputs": [],
"source": [
"#| export\n",
- "\n",
+ "import math\n",
"import numpy as np\n",
"\n",
"import torch\n",
@@ -243,13 +243,13 @@
" [\n",
" nn.Sequential(\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** i),\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** i)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
" ),\n",
" nn.GELU(),\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
" ),\n",
"\n",
" )\n",
@@ -287,13 +287,13 @@
" [\n",
" nn.Sequential(\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
- " seq_len // (down_sampling_window ** i),\n",
+ " math.ceil(seq_len / (down_sampling_window ** (i + 1))),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
" ),\n",
" nn.GELU(),\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** i),\n",
- " seq_len // (down_sampling_window ** i),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
" ),\n",
" )\n",
" for i in reversed(range(down_sampling_layers))\n",
@@ -573,7 +573,7 @@
" self.predict_layers = torch.nn.ModuleList(\n",
" [\n",
" torch.nn.Linear(\n",
- " self.input_size // (self.down_sampling_window ** i),\n",
+ " math.ceil(self.input_size // (self.down_sampling_window ** i)),\n",
" self.h,\n",
" )\n",
" for i in range(self.down_sampling_layers + 1)\n",
@@ -773,149 +773,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/timemixer.py#L329){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n",
- "\n",
- "### TimeMixer\n",
- "\n",
- "> TimeMixer (h, input_size, n_series, stat_exog_list=None,\n",
- "> hist_exog_list=None, futr_exog_list=None, d_model:int=32,\n",
- "> d_ff:int=32, dropout:float=0.1, e_layers:int=4, top_k:int=5,\n",
- "> decomp_method:str='moving_avg', moving_avg:int=25,\n",
- "> channel_independence:int=0, down_sampling_layers:int=1,\n",
- "> down_sampling_window:int=2, down_sampling_method:str='avg',\n",
- "> use_norm:bool=True, decoder_input_size_multiplier:float=0.5,\n",
- "> loss=MAE(), valid_loss=None, max_steps:int=1000,\n",
- "> learning_rate:float=0.001, num_lr_decays:int=-1,\n",
- "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n",
- "> batch_size:int=32, step_size:int=1,\n",
- "> scaler_type:str='identity', random_seed:int=1,\n",
- "> num_workers_loader:int=0, drop_last_loader:bool=False,\n",
- "> optimizer=None, optimizer_kwargs=None, lr_scheduler=None,\n",
- "> lr_scheduler_kwargs=None, **trainer_kwargs)\n",
- "\n",
- "TimeMixer\n",
- "**Parameters**
\n",
- "`h`: int, Forecast horizon.
\n",
- "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n",
- "`n_series`: int, number of time-series.
\n",
- "`futr_exog_list`: str list, future exogenous columns.
\n",
- "`hist_exog_list`: str list, historic exogenous columns.
\n",
- "`stat_exog_list`: str list, static exogenous columns.
\n",
- "`d_model`: int, dimension of the model.
\n",
- "`d_ff`: int, dimension of the fully-connected network.
\n",
- "`dropout`: float, dropout rate.
\n",
- "`e_layers`: int, number of encoder layers.
\n",
- "`top_k`: int, number of selected frequencies.
\n",
- "`decomp_method`: str, method of series decomposition [moving_avg, dft_decomp].
\n",
- "`moving_avg`: int, window size of moving average.
\n",
- "`channel_independence`: int, 0: channel dependence, 1: channel independence.
\n",
- "`down_sampling_layers`: int, number of downsampling layers.
\n",
- "`down_sampling_window`: int, size of downsampling window.
\n",
- "`down_sampling_method`: str, down sampling method [avg, max, conv].
\n",
- "`use_norm`: bool, whether to normalize or not.
\n",
- " `decoder_input_size_multiplier`: float = 0.5.
\n",
- "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`max_steps`: int=1000, maximum number of training steps.
\n",
- "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n",
- "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n",
- "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n",
- "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n",
- "`batch_size`: int=32, number of different series in each batch.
\n",
- "`step_size`: int=1, step size between each window of temporal data.
\n",
- "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n",
- "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n",
- "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n",
- "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n",
- "`alias`: str, optional, Custom name of the model.
\n",
- "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n",
- "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n",
- "`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).
\n",
- "`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.
\n",
- "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n",
- "\n",
- "**References**
\n",
- "[Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou.\"TimeMixer: Decomposable Multiscale Mixing For Time Series Forecasting\"](https://openreview.net/pdf?id=7oLshfEIC2)"
- ],
- "text/plain": [
- "---\n",
- "\n",
- "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/timemixer.py#L329){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n",
- "\n",
- "### TimeMixer\n",
- "\n",
- "> TimeMixer (h, input_size, n_series, stat_exog_list=None,\n",
- "> hist_exog_list=None, futr_exog_list=None, d_model:int=32,\n",
- "> d_ff:int=32, dropout:float=0.1, e_layers:int=4, top_k:int=5,\n",
- "> decomp_method:str='moving_avg', moving_avg:int=25,\n",
- "> channel_independence:int=0, down_sampling_layers:int=1,\n",
- "> down_sampling_window:int=2, down_sampling_method:str='avg',\n",
- "> use_norm:bool=True, decoder_input_size_multiplier:float=0.5,\n",
- "> loss=MAE(), valid_loss=None, max_steps:int=1000,\n",
- "> learning_rate:float=0.001, num_lr_decays:int=-1,\n",
- "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n",
- "> batch_size:int=32, step_size:int=1,\n",
- "> scaler_type:str='identity', random_seed:int=1,\n",
- "> num_workers_loader:int=0, drop_last_loader:bool=False,\n",
- "> optimizer=None, optimizer_kwargs=None, lr_scheduler=None,\n",
- "> lr_scheduler_kwargs=None, **trainer_kwargs)\n",
- "\n",
- "TimeMixer\n",
- "**Parameters**
\n",
- "`h`: int, Forecast horizon.
\n",
- "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n",
- "`n_series`: int, number of time-series.
\n",
- "`futr_exog_list`: str list, future exogenous columns.
\n",
- "`hist_exog_list`: str list, historic exogenous columns.
\n",
- "`stat_exog_list`: str list, static exogenous columns.
\n",
- "`d_model`: int, dimension of the model.
\n",
- "`d_ff`: int, dimension of the fully-connected network.
\n",
- "`dropout`: float, dropout rate.
\n",
- "`e_layers`: int, number of encoder layers.
\n",
- "`top_k`: int, number of selected frequencies.
\n",
- "`decomp_method`: str, method of series decomposition [moving_avg, dft_decomp].
\n",
- "`moving_avg`: int, window size of moving average.
\n",
- "`channel_independence`: int, 0: channel dependence, 1: channel independence.
\n",
- "`down_sampling_layers`: int, number of downsampling layers.
\n",
- "`down_sampling_window`: int, size of downsampling window.
\n",
- "`down_sampling_method`: str, down sampling method [avg, max, conv].
\n",
- "`use_norm`: bool, whether to normalize or not.
\n",
- " `decoder_input_size_multiplier`: float = 0.5.
\n",
- "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`max_steps`: int=1000, maximum number of training steps.
\n",
- "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n",
- "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n",
- "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n",
- "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n",
- "`batch_size`: int=32, number of different series in each batch.
\n",
- "`step_size`: int=1, step size between each window of temporal data.
\n",
- "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n",
- "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n",
- "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n",
- "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n",
- "`alias`: str, optional, Custom name of the model.
\n",
- "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n",
- "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n",
- "`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).
\n",
- "`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.
\n",
- "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n",
- "\n",
- "**References**
\n",
- "[Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou.\"TimeMixer: Decomposable Multiscale Mixing For Time Series Forecasting\"](https://openreview.net/pdf?id=7oLshfEIC2)"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer)"
]
@@ -924,71 +782,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "### TimeMixer.fit\n",
- "\n",
- "> TimeMixer.fit (dataset, val_size=0, test_size=0, random_seed=None,\n",
- "> distributed_config=None)\n",
- "\n",
- "Fit.\n",
- "\n",
- "The `fit` method, optimizes the neural network's weights using the\n",
- "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n",
- "and the `loss` function as defined during the initialization.\n",
- "Within `fit` we use a PyTorch Lightning `Trainer` that\n",
- "inherits the initialization's `self.trainer_kwargs`, to customize\n",
- "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n",
- "\n",
- "The method is designed to be compatible with SKLearn-like classes\n",
- "and in particular to be compatible with the StatsForecast library.\n",
- "\n",
- "By default the `model` is not saving training checkpoints to protect\n",
- "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`val_size`: int, validation size for temporal cross-validation.
\n",
- "`test_size`: int, test size for temporal cross-validation.
"
- ],
- "text/plain": [
- "---\n",
- "\n",
- "### TimeMixer.fit\n",
- "\n",
- "> TimeMixer.fit (dataset, val_size=0, test_size=0, random_seed=None,\n",
- "> distributed_config=None)\n",
- "\n",
- "Fit.\n",
- "\n",
- "The `fit` method, optimizes the neural network's weights using the\n",
- "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n",
- "and the `loss` function as defined during the initialization.\n",
- "Within `fit` we use a PyTorch Lightning `Trainer` that\n",
- "inherits the initialization's `self.trainer_kwargs`, to customize\n",
- "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n",
- "\n",
- "The method is designed to be compatible with SKLearn-like classes\n",
- "and in particular to be compatible with the StatsForecast library.\n",
- "\n",
- "By default the `model` is not saving training checkpoints to protect\n",
- "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`val_size`: int, validation size for temporal cross-validation.
\n",
- "`test_size`: int, test size for temporal cross-validation.
"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer.fit, name='TimeMixer.fit')"
]
@@ -997,51 +791,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "### TimeMixer.predict\n",
- "\n",
- "> TimeMixer.predict (dataset, test_size=None, step_size=1,\n",
- "> random_seed=None, **data_module_kwargs)\n",
- "\n",
- "Predict.\n",
- "\n",
- "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`test_size`: int=None, test size for temporal cross-validation.
\n",
- "`step_size`: int=1, Step size between each window.
\n",
- "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)."
- ],
- "text/plain": [
- "---\n",
- "\n",
- "### TimeMixer.predict\n",
- "\n",
- "> TimeMixer.predict (dataset, test_size=None, step_size=1,\n",
- "> random_seed=None, **data_module_kwargs)\n",
- "\n",
- "Predict.\n",
- "\n",
- "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`test_size`: int=None, test size for temporal cross-validation.
\n",
- "`step_size`: int=1, Step size between each window.
\n",
- "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)."
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer.predict, name='TimeMixer.predict')"
]
@@ -1057,1508 +807,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Seed set to 1\n",
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "\n",
- " | Name | Type | Params\n",
- "----------------------------------------------------------\n",
- "0 | loss | MAE | 0 \n",
- "1 | valid_loss | MAE | 0 \n",
- "2 | padder | ConstantPad1d | 0 \n",
- "3 | scaler | TemporalNorm | 0 \n",
- "4 | pdm_blocks | ModuleList | 14.2 K\n",
- "5 | preprocess | SeriesDecomp | 0 \n",
- "6 | enc_embedding | DataEmbedding_wo_pos | 2.5 K \n",
- "7 | normalize_layers | ModuleList | 8 \n",
- "8 | predict_layers | ModuleList | 456 \n",
- "9 | projection_layer | Linear | 33 \n",
- "----------------------------------------------------------\n",
- "14.8 K Trainable params\n",
- "2.4 K Non-trainable params\n",
- "17.2 K Total params\n",
- "0.069 Total estimated model params size (MB)\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9649c190a0e944a39e40f30fb182c4d7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Sanity Checking: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "832f28d45a374fe7bac748717a21b512",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Training: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ffbff0d9df0244638c76f7b88793206f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "940d974d12084ffa8f661d5fed0ef964",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4e26d7588dbe4505972bc5fd27c5ade7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "aaed084010a54bd29b2f720452309247",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "aaefa690fef449c5b4fb3c0d5136b9fe",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a22046abeccb460283ac25fc50d0851b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c6ecc2b0a71e4cb5a87bf718e829a94a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "deddf032745f40d2aa7c664aeb1e3990",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f98db41508d94529934eab9fcd823d70",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c35fc844b71e4e09a2bb5d040b7d96d1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "37adcc0b97e04f4c92f228a08b29c5cd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "91a7d674e0674d6b9ece4e4258cd8ae5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "218c4a0e6ac04d80bc1601014ef7b463",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8f2358a2ede040d1b3e339200ebd2f78",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f17c651fd3f646b0b1f89dac1649bd49",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "97af6a68385c477188fa2abed7ee787b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eecf483ff75c46bc9ce209bd0df8d972",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "abb0ab9be3ad4059a16da346bbfc5905",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d22fe888ee604031b19406b440448ed2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5dc201dc57a64e768b1f2c021d0249dd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d0e1d49d9ba44091ae5763400a3d0b45",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a4a84b1b7041453f9c61e71309da11a4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "831b9efca201441b94e159ff91152911",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "51956696aaad4358b2046485efed79e8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "94b540a6d7b44a01a20970a72c0b328e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b4d9b6d7ba72437993306a575bf6a1f7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7723b0e84b894bae93bef56e4a3b6574",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f0b4e83f7c6e487f90309c57c51ca5c0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "71fc6df934484816b5fecc6a978fa493",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3975f3ef04454f689597a3833767a7e4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "46702c57d7ce403abcd6a47817016a63",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6eec827a4d634cd5a42b406c4f655495",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3addbf0f92814b92a6b43d4880e2f489",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "06456b77b6854e8590a012cb1352ca84",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1cb0f9fb54434653885b5df1048a9671",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "70b926e897514805bfec2f4e19f181f3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d1ede73f03184674b4b78fda0c88c920",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4804d7f4767a4757809d95f922d9f382",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "34964c4ec1f74c9188d58caba5479370",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f37e39d3f6e34e41888c78a3a3bf5a60",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "84c93d0ba06d488ead2a12c0b148cb66",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d9fd457968f848b9b5e6557bfbd53a09",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "86bad1d76b5b4f54b65cf84cb230129d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "60e0fbb19c6c4125900d21ed6f16e11a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "609513cb63974f05a6f015777f243fac",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6143348083e846409e480d598920014e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5484e118d5a44a248db009a727fd19ab",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9f01f6f851ba4eb6b13a413f285d2d56",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d07e61df9b64d4480eaf96d3b5c6a92",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2eabd683252746eb80b0ad5436601dc1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "921a51161b2d4cce99cfc1f0a05646a6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d7fbfe83b4b463a85a1f6ec45761ae1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3ee41756d8fa4a7e95b1d7f8ca442f77",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6c6cee96c679480480fde1a694f65211",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "940af45773a549b09b2be1e5ea9a5bb6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8ba1811e1b884becb8ddc5a98e66d956",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fb49ef385e3c4a2db17efa4a17c1d082",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8d13f077498642dc8ac9ce46e62403e1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7c134ba83306448f9d1ce79c124cb50c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "cb906be9e3644f559a27177de2e1711b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d23db16f69b440aeb39a92229a8ce1b7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "22af69f0ad3048b4aa8c6c292e449648",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "96cc30db14104d3eb8bcdd2bd46abd30",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "efc973d237e749babaaa527852b30165",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "81c28622b036402baa49f3e8a49e6d1b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "23e045adffb24c2280961e23ce3d7f9e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8e616b3855124e46bafe7ef685fc6494",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "075b20f9ab374aba9803f45cc04baeda",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d450cd5fa784409d802f4d095da598ca",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "99bdcbd980784737b468a2f146c4b5a2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "20d4b9785ae141b6aae64b671ac7d740",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b7b6065b2d554e3e861a3d5f1ad9e86d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4eae6b1f619d457f9474173d5ba1606d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3b91e051e7144aed8c53d10a70b19dd0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "592b662cb51147d3bb47fc2ee04c38c5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c13b064c06214d83acafbedb1561b8a3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0c23e8ec653b4f1d8f4acf876f230e4b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b15ba28202ac40f1a3555a2574b4ac45",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1b9a2ca1b60140c5892960fa5e904bda",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d97ec9f7dc4242718de176202603968b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8353625f1d284974a1c731a240baaf29",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d18301fb72eb47898db83ea7f7614d43",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b0940dfa1dae4f898381f8b5e0025f43",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "34e7664ebf494208a34af5ed79660a5c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "97a3238f4a5d4b7c85f2febfca8e02b4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fa2d7ce8e03d48c1b8e291c146958a95",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "675fb00ed5634543b32970c1fa581206",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "251d5963572f4923be72ffecb2576c52",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7b854e098c9349cbbf35cf80c70017b9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d7a4dec9ed44451b43ddf23eabf3891",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ee2ab61084804420b2fd5e44a041c033",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3c13bd141daa4d858777266409ea17f7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "032a09df693f422aa8fd8d00168bd6a2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2672056961c44431b94c7502a88e765b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8e80b3beba054736bf0f93ac98a78cbd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a69504e378e14918a8eaeea50ecbb0ed",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8c8a16545afd408184b516c360e568d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d30d7fbe7a5244cf961801889da62376",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1758290ed3704fe6a70b033113b2c7af",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d14c9d54c9434bec85cd626dff872ede",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_steps=500` reached.\n",
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "38a50bb6ad8342598d527c6f7510a1d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Predicting: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/neuralforecast/core.py:210: FutureWarning: In a future version the predictions will have the id as a column. You can set the `NIXTLA_ID_AS_COL` environment variable to adopt the new behavior and to suppress this warning.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAKHCAYAAAB0L5wRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZf7+8XvSCwklhDRI6EivoiK9oyBFsYtdV1dZ7F9Xd8XVH1aQXTuuBV1sqICiIB0pIh2khk4qISEkJCH9/P4YzpCQzkwymfB+XVeuTM4855xnWtBz5/N5LIZhGAIAAAAAAAAAAECNcHP2BAAAAAAAAAAAAC4lhDMAAAAAAAAAAAA1iHAGAAAAAAAAAACgBhHOAAAAAAAAAAAA1CDCGQAAAAAAAAAAgBpEOAMAAAAAAAAAAFCDCGcAAAAAAAAAAABqEOEMAAAAAAAAAABADSKcAQAAAAAAAAAAqEGEMwAAAKjzVq1aJYvFIovFoqlTpzp7OgAAAACASxzhDAAAAFzCjBkzbAGLxWLR119/7ewpFZvPhV/16tVTZGSkRo8erXfffVfp6enOni5QoaNHj5b7vi7ta9y4cc6eNiowdepUTZ06VZ999pmzpwIAAIBzCGcAAADgEj755JNiP3/88cdOmknlZGZmKiYmRj///LMeeeQRtW3bVr/++quzpwXgEvTiiy/qxRdfJJwBAACoRTycPQEAAACgIhs2bNDu3buLbVu+fLmOHj2q5s2bV7j/wIEDZRhGNc3Oat68ecV+PnPmjLZv367PP/9cycnJOnHihMaOHavVq1friiuuqNa5AI4QHBysWbNmVTguLCysBmYDAAAA1C0Wo7r/LxUAAACw0/3336///ve/kqS7775bn376qSTpn//8p1588UWnzctisdhul/Wf1SkpKRo1apQ2bdokSbryyiv1+++/18j8gKo6evSoWrRoIUmKiorS0aNHnTshOIT5u2rAgAFatWqVcycDAAAASbQ1AwAAQC2XmZmpb775RpLUokUL/fvf/1a9evUkSZ9++qkKCwudOb0KBQUFafbs2bafN2zYoOPHjztxRgAAAAAAZyOcAQAAQK327bff6syZM5KkO+64QwEBAbr++uslSTExMVq6dGmFx1i1apVt8fKpU6eWOqZ58+ayWCy2Nmk5OTl69913NXDgQIWFhcnd3b1SLdRK0759e7Vp08b2859//mm7nZ2drQULFmjy5Mnq06ePgoOD5enpqYCAALVp00Z33HFHpR6jJKWnp2v69OkaNGiQQkJC5OXlpcDAQLVq1Up9+vTR448/rsWLFys3N7fU/RMTE/Xiiy/q6quvVuPGjeXp6akGDRqobdu26t+/v5577jmtWrWqwkBs+/bt+tvf/qauXbuqUaNG8vb2Vnh4uK699lp98sknys/PL3d/87UaOHCg7Tn6z3/+o6uuukpBQUHy9fVVq1at9OCDD+rw4cOVem4yMzM1bdo09ezZU/Xr11dAQIA6deqk5557TgkJCZKku+66y3buiipG0tLSNH36dA0dOlTh4eHy9vZWo0aN1LNnTz377LOKi4srd//SzjV//nxNmDBBUVFR8vb2LnUea9as0T333KP27dsrICBAXl5eCg0NVefOnTV+/Hi9++67OnLkSKWek+qWk5Oj999/XyNHjiz2HHXv3l1PP/10hfMs7XN74MABPfHEE+rYsaMaNGhQ5mc6OztbH374oUaPHq1mzZrJx8dH9evXV6dOnTR58mRFR0dX+nEkJyfr1Vdf1ZAhQ2yPw8/PT23atNHEiRP18ccfKz09vdR9o6OjNWPGDI0fP15t2rRRvXr15OXlpSZNmqh///56+eWXlZycXKl5XMxrbz5/ptWrV9u2Ff1iLRoAAAAnMAAAAIBa7OqrrzYkGZKMgwcPGoZhGCtWrLBtmzhxYoXHWLlypW38Cy+8UOqYqKgoQ5IRFRVlHDlyxOjUqZNtH/MrKiqq2D5F76tInz59bGPnzJlj296iRYsS5ynta+zYscaZM2fKPP7mzZuN0NDQSh1r06ZNJfb/5ZdfjICAgErtf/LkyVLnkJ2dbdxzzz2GxWIpd/+OHTsahw4dKvOxmOMGDBhgHD582OjcuXOZx/L39zeWLVtW7nO/d+9e2+tb2ldwcLDx22+/GXfeeadt25EjR8o83rfffms0atSo3Mfo4+NjfPbZZ2Ueo+i59u/fb1x//fWlHsecR0FBgfHggw9W6vW59tpry30+ynPkyJEy3+9VsWXLlnKfc0mGl5eX8cYbb5R5jAs/t1988YXh6+tb4jgXfqZXrVplRERElHtud3d3Y9q0aRU+jrffftvw9/ev8Dm/6667Suw7e/bsSr1egYGBxsKFC8ucgz2vfWX2kWR8+umnFT4XAAAAcCwPAQAAALXU/v37tW7dOklS37591apVK0nSwIED1bx5cx09elQLFixQcnKyGjdu7JBz5uTkaMKECdq1a5euvPJK3XDDDWrWrJlOnz5drOKlqpKSkmy3GzRoYLudlZWlBg0aaPDgwerevbuioqLk5+en9PR07dy5U998840SEhK0YMEC3XPPPfr2229LHDsrK0vjxo1TYmKiJKlnz54aP368IiIi5O/vr9TUVO3du1crV67Ujh07SuwfHx+vG2+8URkZGZKs61Jce+21Cg0Nlbe3t5KTk7Vr1y4tX768zIqD/Px8jRw50raeRUhIiG6++WZ169ZN/v7+iouL07x58/Tbb79p9+7d6t+/v7Zt26bg4OAyn7P09HRde+212rt3r4YPH67Ro0crNDRUiYmJ+vzzz7V582ZlZmbqlltu0b59+9SoUaMSxzh58qQGDx5sq46JjIzUPffco3bt2ikjI0NLlizRd999pwkTJqhr165lzsX00Ucf6cEHH5RhGPLw8NDo0aM1ePBghYaGKjMzU+vWrdOcOXN09uxZ3XXXXfLy8tItt9xS7jGnTJmiRYsWKSoqSpMmTdJll12m3Nxcbdy4Ud7e3pKkd955Rx9++KEkKSAgQDfccIN69uyp4OBg5ebmKjY2Vps3b9ayZcsqfAzVbdeuXRowYIDt/dSuXTvdcccdat26tdLS0vTLL79owYIFys3N1VNPPaWcnBw999xz5R5z/fr1+n//7//JYrHozjvvVL9+/VSvXj0dPnxYTZs2tY1btGiRxo4dq7y8PFksFg0dOlQjRoxQ06ZNlZubq82bN+vzzz/X6dOn9fe//12S9Oyzz5Z6zv/7v//Ta6+9Zvu5b9++Gj16tKKiolRYWKjjx49r3bp1Wrp0aalrTmVlZclisahr167q37+/LrvsMtt7NDY2VsuWLdPixYuVnp6u66+/XuvXr1ePHj1KHMee137evHmSpPHjx0uSOnbsqJdffrnEuNLOCwAAgGrm7HQIAAAAKMtTTz1l+8vujz76qNh9//jHP2z3vfXWW+UepyqVM+bXq6++WuH8io4vz549e4qNPX78uO2+X375xcjNzS1z38zMTGP8+PG2fdesWVNizNy5c233P/HEE+XOZffu3UZSUlKxbW+88YZt/7fffrvc/f/44w/j7NmzJbb/3//9n+0Yt9xyi5GRkVHq/u+8845t3G233VbqmKLPlYeHh/Htt9+WGJOfn2+MGTPGNu7NN98s9ViTJk2yjRk8eHCp81q4cKHh5eVVasVKUTt27DC8vb0NSUazZs2M7du3l3rOffv2GU2bNjUkGQEBAUZKSkqJMUUrZyQZ48aNK/V5NXXs2NGQZDRq1Mg4duxYmeOys7ONDRs2lHl/ReytnCksLDS6dOliO8add95Z6vv7hx9+MDw9PW1VLJs3by4xpujnVpLRpEkTY8eOHWWeOz4+3lbRVL9+fWP58uVljjPn6O7ubuzdu7fEmPnz59vO6+/vb/zwww9lnjclJcVYuXJlie27du0yDhw4UOZ+hmEYy5YtM/z8/AxJxpAhQ0od44jX3nwsAwYMKHc+AAAAqDmEMwAAAKiV8vLyjJCQEEOytog6ffp0sfsPHjxou+DYqVOnco9V1XBm7NixlZpjZcKZU6dOGVdccYVt3JVXXlmpYxeVlpZma6103333lbj/lVdesR1/9+7dVT5+0ZZJmZmZVd7/xIkTho+PjyHJ6NWrl5Gfn1/u+Ntuu812YTw2NrbE/UWf13/84x9lHmf//v22caVd2E5MTLQFAPXr1zdOnDhR5rGef/75CsMZMyRzd3c3tm7dWu5jXLp0ablBX9FwJiIiotyWdYZh2EKhyrTxs0fRcKYyXxde7F+4cGGxz2VeXl6Z53rxxRdtY2+88cYS918YzsybN6/cuT/22GO2sQsWLCh37L59+wx3d3dDkvGXv/yl2H2FhYW2QESS8fXXX5d7LHsVDZpL+zw44rUnnAEAAKh93AQAAADUQj/99JNOnDghSRo3bpzq169f7P5WrVqpb9++kqxtlDZu3Oiwc0+ePLnK+8yfP7/Y1//+9z899dRTuuyyy/THH39Ikry8vDRjxowqHzswMFCdO3eWJG3YsKHE/f7+/rbbW7ZsqfLx7d3/m2++UXZ2tiTpySeflLu7e7njJ02aJEkqKCjQ8uXLyxzn5uamv/3tb2Xe37ZtWzVr1kyStHv37hL3//zzz8rLy5Mk3XbbbWrSpEmZx3r00Ufl4VF21+fTp09rwYIFkqRhw4ape/fuZY6VpKFDhyo8PFyS9Ouvv5Y79p577lG9evXKHWO+Rn/++adyc3PLHetM33//ve32k08+We5zOmXKFPn5+Umyft7N16o0kZGRGjt2bJn3G4ahL774QpK1jdp1111X7jzbtWun3r17Syr5+mzdutX2furevbtuuummco9lr6uvvtp2u7zPd21/7QEAAFA1rDkDAACAWunjjz+23b7zzjtLHXPXXXdp7dq1kqRPPvnEdrHVHu7u7urTp0+V9zPXdChLcHCwPvvsM1111VUl7ktNTdWcOXO0ePFi7dq1SykpKcrMzCx1HYvY2NgS24YOHSqLxSLDMPTQQw/pwIEDuvnmm9WhQ4dKzX348OG20GjChAl65plndP3116tFixaV2v+3334r9ljmz59f7vi4uDjb7T179pQ5rl27dgoKCir3WBEREYqJiVFqamqJ+zZt2mS7PWjQoHKP06RJE3Xo0EE7d+4s9f5169apsLBQknXdj4oeoyRb4FLeY5Skfv36VXis4cOH6+uvv9a+ffs0ZMgQPfbYYxo+fHiFoY49goODNWvWrHLHXLjWU9FwYcSIEeXuGxgYqD59+mjZsmU6e/asduzYoV69epU6tm/fvrJYLGUea8+ePUpOTpYkhYaGVur1MUPEI0eOKDs7Wz4+PpKkNWvW2MaMGzeuwuNUZO3atfrqq6+0ceNGHT58WGfOnCkziCrt8+2M1x4AAADVj3AGAAAAtU58fLwWL14sSQoLC9OwYcNKHXfjjTdq8uTJysrK0ldffaUZM2bY/hL/YgUFBdku0trD19dXQUFB6ty5s0aNGqU77rhDDRo0KDFuwYIFuvfee5WSklKp46anp5fY1r59ez3//PN66aWXlJmZqZdeekkvvfSSmjRpor59+6p///4aOXKk2rVrV+oxR4wYoUmTJunzzz9XcnKynnrqKT311FOKjIzU1VdfrQEDBuiaa66xValc6OjRo7bbDz30UKUeh+nUqVNl3nfhhf/SeHt7S5JycnJK3BcfH2+73apVqwqP1apVqzLDmaKPce7cuZo7d26FxzOV9xglFVvQviyvvfaa1q5dq9jYWK1du1Zr166Vh4eHunXrpn79+mngwIEaPny4Q967Jj8/vyqHEwkJCZKsAVZoaGiF49u1a2dbyL7o63Whip6joq/P6tWrtXr16krM9rxTp07ZKp1iYmJs2ysbcJYmIyNDd9xxR6WCIlNpn29nvPYAAACofoQzAAAAqHU+++wzFRQUSLK2oyqrTVZAQIDGjx+vOXPmKD09Xd99952tZdbF8vX1vaj9Sqtyqcjvv/+uG264Qfn5+ZKkLl26aOjQoWrdurUaNmwob29vW7XA888/r927d9uqNy70r3/9S71799arr76qdevWSZKSkpL0ww8/6IcffpBkbZ80ffp0XXHFFSX2nz17toYMGaK33npL27dvlyQdP35cx48f11dffSWLxaJRo0ZpxowZJUKe06dPV/mxm8pr0+TmZl8X5szMTNvtyoR25Y2x5zGW165Lqtx7LjIyUtu2bdO0adP0+eefKyUlRfn5+dq8ebM2b96st956S4GBgfrb3/6m5557zhZa1bQzZ85IKt4qrzxFqz/MfUtT0XNkz+sjFX8fFg1I7KlOuemmm/TLL79Isj4f1157rbp3767w8HD5+fnZWr7t2rVL//jHPyTJ9nuvKFd57QEAAFA1hDMAAACoVQzD0CeffGL7+c0339Sbb75ZqX0//vhju8OZmvTPf/7TFsy8++67evjhh8sc+//+3/+r8HijR4/W6NGjdeLECa1Zs0a///67Vq9era1bt8owDK1bt079+vXTL7/8oqFDh5bYf9KkSZo0aZKOHz9u23/lypXas2ePDMPQL7/8ojVr1mjdunW2NXCk4hewU1NTS60QcoaiAUFWVlaF44uGORcq+hhnzpxZ7lo41aVx48aaMWOG3njjDW3ZskXr16/XunXrtGLFCp06dUrp6el66aWXtG7dOi1dutTucOtiBAQE6PTp0+U+l0VlZGQU2/diFX19pkyZorfeeuuijxUYGGi7XXR+VbFu3TpbMNO5c2ctWbKkzEoiT0/PCo/nCq89AAAAqob/YgMAAECtsnr1ah06dOii9v3tt9904MABB8+oeuTl5WnVqlWSpJ49e5YbzEjF2zZVJCQkRDfccIOmT5+uzZs36+jRo7rhhhts533sscfK3T8yMlK33Xab3nnnHe3evVu7d+/WgAEDJFmrG/7+978XG1+05ZS5kHptYLapklSp99Thw4fLvK/oY9y1a5d9E7OTu7u7evfurSlTpmju3Lk6ceKEvv32W9WvX1+StGLFCs2bN88pcwsLC5NkfZ8kJiZWOD46Otp2u+jrVVWOfH2KHqui9YLKsmTJEtvtadOmldvi7ciRI5U+bm1+7QEAAFA1VM4AAACgVvn4449tt8ePH68uXbpUuM/GjRu1aNEiSdInn3yiV155pdrm5yjJycm2qpnWrVuXO3bjxo22xc4vRmRkpL788kutXr1aJ0+e1K5du3T69OlKV7h06NBBP/zwg4KDg1VYWFhswXRJGjhwoBYuXChJ+uGHH3T11Vdf9Fwd6fLLL9cHH3wgSVq5cqUtoCpNUlJSucHSgAEDZLFYZBiGFi5cqNzcXHl5eTl8zhfDw8NDEydOVFxcnC14W7Nmja6//voan8uVV16pvXv3SpJ+/fVX3XnnnWWOPXPmjNavXy/J2rasa9euF33ebt26qUGDBjp9+rTWrFmj5OTkSq1ZVJr+/fvbbs+fP1///Oc/q3yMosFURZ9vs8LmYlT2tTffuxfTfhEAAADVg8oZAAAA1BppaWn6/vvvJVn/Qvy9997T1KlTK/yaOXOm7RizZ88udd2G2qZoy62DBw+WO/aFF16w+3yenp6KiIiw/WwGQ5XVqFEjW7unC9dQufnmm23rXHzwwQcVPp6acu2119paRs2ZM0cnT54sc+zbb79d7vumcePGuvbaayVZL7xPnz7dsZN1gBYtWthuV/X1dZSiAdj06dPLnce///1vW/uz6667rlLtvcri7u6u22+/XZKUk5Oj55577qKP1aNHD3Xs2FGStG3bNn3zzTdVPkZlP9/r16/X4sWLqz7JC1T02ptt3yrbbg4AAADVj3AGAAAAtcaXX36ps2fPSpKGDx9ebiugotq2basrr7xSkpSQkGDXX6LXlMDAQLVt21aStGXLFn333XclxhQUFOixxx6r8OLtf/7zH82dO7fYouYXWrNmjXbu3CnJ2rapaFXBiy++qF9//VWFhYVl7v/ll1/aFl3v3r17sfsiIiJsf7WflZWlESNGaNu2beXOedeuXfrLX/5S7hh7hYSE6JZbbpFkDf5uvvnmUi9O//zzz3r99dcrPN7LL79sC6Gef/55/fvf/y63EiEtLU0zZ87UsmXLLvIRWCUkJOiJJ54otzVbXl6eZs2aZfu5W7dudp3zYo0aNcpWAfPnn3/qgQceKBHmSdKPP/6ol156SZI1WHn66aftPvff//53NWrUSJI0a9YsPfPMM6We23T27Fl9+umn+vrrr4ttt1gsevnll20/33vvvZo/f36Zx0lNTbW1KDRdfvnlttsvvviisrOzS+y3c+dOTZw4sdz3kKNeezO82bdvn+13LAAAAJyLtmYAAACoNYq2NJs0aVKV9p00aZI2bNhgO86YMWMcOrfqMGXKFNtaMzfeeKNuuukmDRgwQA0bNtTBgwc1Z84c7d27V506dZK3t7e2bNlS6nG2bt2q2bNnq379+hoxYoR69Oihpk2bysPDQ0lJSVq5cqUWLlxoC18uXDNm5cqVmjp1qpo0aaIRI0aoW7duCgsLk8ViUUJCghYtWlQsYLhwf8kaXOzYsUOLFi3S4cOH1atXL40cOVKDBw9WRESELBaLUlJStGvXLq1atUp79+6Vu7u7re1YdXnzzTe1dOlSJSQkaMWKFerQoYPuueceXXbZZcrIyNCSJUs0d+5cNWrUSN26ddPy5cslqdQF1bt27ar//ve/uvPOO1VYWKgpU6bovffe0/jx49W+fXv5+/vrzJkzOnTokDZu3KjVq1crNzdXX3zxhV2PIScnRzNmzNCMGTPUs2dP9evXTx06dFCDBg2UkZGhQ4cO6auvvrKtmdOyZUvdfPPNdp3zYlksFs2ZM0dXXnmlMjIy9Omnn+r333/XpEmT1LJlS6Wnp2vRokXF1kV58cUX1aNHD7vPHRYWprlz5+raa69Vdna2Xn/9dc2ZM0cTJ05Uly5dFBAQoMzMTB07dkybN2/W8uXLlZWVZQuJiho3bpyeeOIJTZ8+XZmZmRo/frz69u2r0aNHKyoqSoZhKCYmRr///rsWL16sm266SQMHDrTtP2HCBEVGRur48ePavHmz2rVrp/vuu0+tW7dWVlaWVq9era+//lp5eXm68847NXv27FIfk6Ne+6FDh2rnzp3KzMzUmDFjNGnSJAUHB8tisUiSOnfuXKyyDgAAADXAAAAAAGqB7du3G5IMSUb9+vWNs2fPVmn/U6dOGd7e3oYkw8PDw0hMTLTdt3LlStuxX3jhhVL3j4qKMiQZUVFRlT6necyL/c/qwsJC45577il2nAu/OnfubBw+fNgYMGBAmee6++67yz2G+eXp6Wm8/PLLJfYfNGhQpfb39/c3PvnkkzIfT15envHUU08Znp6elTpeWc+1ef+AAQMqfA7Le15Me/bsMSIjI8ucR1BQkLFq1Srjtttus207depUmcdbsmSJ0bRp00o9Rm9vb2PRokUljnHnnXfaxhw5cqTcx3j06NFKnUuS0alTJ+PgwYMVPm9lOXLkSIWvT2Vs3rzZ9pkq68vLy8t47bXXyjxGZT63pdm6datx2WWXVer5cnd3Nz766KMyj/Xmm28aPj4+FR7n7rvvLvU5aNy4cbnnfvXVV8t9nI567ePi4oyQkJAy9/30008r/fwCAADAMaicAQAAQK1QtGpm4sSJ8vHxqdL+DRs21JgxY/Tdd98pPz9fs2fPdkirpOpksVj08ccf69prr9WsWbO0efNmpaenKygoSO3atdPEiRN17733VvhcfPDBB7rrrru0cuVKrV27Vvv379fJkyeVn5+vwMBAtWnTRgMHDtS9996rNm3alNh/4cKFWrt2rVauXKn169fr4MGDSk5OlmEYatCggS677DINHTpU9913n8LDw8uch4eHh15//XU98sgj+uSTT7RixQodOHBAp06dkpubm4KCgtS2bVtdccUVGjFiRLGF16tT+/bttWfPHv373//Wd999p4MHD8owDDVr1kxjxozR5MmTFRERoVdffdX2OMz1dUozbNgwW8XCzz//rM2bN+vkyZPKzs5WQECAmjdvrq5du2rw4MEaM2aMGjRoYNf8o6KidPz4ca1cuVIrV67U1q1bdfz4cZ05c0ZeXl4KDQ1V9+7ddf311+vGG2+Uh4fz/zevZ8+e2r9/vz7++GMtWLBAO3fuVEpKivz9/RUVFaVhw4bp4YcfLrZWiqN0795du3fv1rx587RgwQJt2LBBJ06cUGZmpurVq6dmzZqpc+fOGjRokMaMGVNu+8QnnnhCt956q2bNmqUlS5bowIEDSk1NlZeXlyIiItSjRw+NGjWq2Fo7RZ+DnTt3avr06Vq4cKGOHTsmDw8PhYeHa9CgQXrggQfUo0ePEi3RinLUax8eHq6tW7dq+vTpWrZsmY4cOaKMjIxyW6oBAACgelkM/msMAAAAwCWusLBQoaGhOnnypLp27art27c7e0oAAAAA6rCSjZQBAAAA4BLzzTff6OTJk5KkQYMGOXk2AAAAAOo6whkAAAAAddqGDRuUnZ1d5v1r167VX//6V0mSm5ubHnjggZqaGgAAAIBLlPObEQMAAABANXr11Vf122+/adSoUerVq5dt3Zy4uDgtW7ZMixcvtq298fTTT6t9+/bOnC4AAACASwBrzgAAAACo08aNG6cFCxaUO8ZiseiJJ57Qa6+9Jjc3GgwAAAAAqF6EMwAAAADqtIMHD+rHH3/U0qVLdejQIaWkpCg9PV0BAQGKjIzUgAED9MADD6hjx47OnioAAACASwThDAAAAAAAAAAAQA1izRk7FBYWKj4+XgEBAbJYLM6eDgAAAAAAAAAAcCLDMHTmzBmFh4eX2zKZcMYO8fHxatasmbOnAQAAAAAAAAAAapGYmBg1bdq0zPsJZ+wQEBAgyfokBwYGOnk2wMXLy8vTkiVLNHz4cHl6ejp7OgDKwecVcC18ZgHXwecVcC18ZgHXwecVl5r09HQ1a9bMlh+UhXDGDmYrs8DAQMIZuLS8vDz5+fkpMDCQfySBWo7PK+Ba+MwCroPPK+Ba+MwCroPPKy5VFS2FUnbDMwAAAAAAAAAAADgc4QwAAAAAAAAAAEANIpwBAAAAAAAAAACoQYQzAAAAAAAAAAAANYhwBgAAAAAAAAAAoAYRzgAAAAAAAAAAANQgD2dP4FKUl5engoICZ08DdYC7u7s8PT2dPQ0AAAAAAAAAQBUQztSg9PR0JScnKycnx9lTQR3i7e2txo0bKzAw0NlTAQAAAAAAAABUAuFMDUlPT1dcXJzq1aunxo0by9PTUxaLxdnTggszDEN5eXlKS0tTXFycJBHQAAAAAAAAAIALIJypIcnJyapXr56aNm1KKAOH8fX1VUBAgGJjY5WcnEw4AwAAAAAAAAAuwM3ZE7gU5OXlKScnR/Xr1yeYgcNZLBbVr19fOTk5ysvLc/Z0AAAAAAAAAAAVIJypAQUFBZLEwu2oNuZ7y3yvAQAAAAAAAABqL8KZGkTVDKoL7y0AAAAAAAAAcB2EMwAAAAAAAAAAADWIcAYAAAAAAAAAAKAGEc4AAAAAAAAAAADUIMIZ1DiLxVKlr+bNmzt7ygAAAAAAAAAAOIyHsyeAS8+dd95ZYtvatWt16NAhde3aVd26dSt2X+PGjWtoZgAAAAAAAAAAVD/CGdS4zz77rMS2u+66S4cOHdK4ceM0derUGp8TAAAAAAAAAAA1hbZmAAAAAAAAAAAANYhwBrXaqlWrZLFYdNdddykxMVH33XefmjZtKg8PD82cOVOSNHDgQFksFh09erTE/kePHpXFYtHAgQNLPf5PP/2kESNGKCgoSD4+Pmrbtq3+8Y9/KCMjo/oeFAAAAAAAAABIys+XYmOl33+X5s6VZsyQHn9cmjhR6tNHoslQ3UVbM7iEkydP6vLLL1d+fr769u2r7Oxs+fn52XXMJ554QjNmzJCPj4969+6txo0ba8uWLXr55Ze1aNEirV69Wv7+/g56BAAAAAAAAAAudYYhPfectHKlNZSJj5cKC8se//vv0rPPSt7eNTdH1AzCmVrAMAxlZWU5exqV5ufnJ4vFUqPn/OWXXzR+/Hh9+eWX8vHxsft43377rWbMmKHu3bvrhx9+UPPmzSVJeXl5euSRRzRr1ixNnTpVb7zxht3nAgAAAAAAAABJ2r9feuWV4ts8PKSICKlpU6lZs/Pfn3xSysuTEhOlqCjnzBfVh3CmFsjKylK9evWcPY1Ky8jIqPGKEm9vb7399tsOCWYkadq0aZKkr776yhbMSJKnp6f+/e9/68cff9R///tfvfbaa3Jzo/sfAAAAAAAAAPsdPmz93rq1NGeONYRp0kRydy859s03pZgYKSGBcKYu4qozXEKPHj0UERHhkGMlJSVpx44dat++vdq1a1fifh8fH/Xq1UunT5/WgQMHHHJOAAAAAAAAADCXze7YUerdWwoLKz2Ykaz3SdZwBnUPlTO1gJ+fn0stQG/vWi8XIzIy0mHHOnbsmCRp7969FbZnS05OLjXAAQAAAAAAAICqMsOZIs18yhQebv1OOFM3Ec7UAhaLhYXnK3Cx7cwKS1lNq6CgQJIUFham4cOHl7t/UFDQRZ0XAAAAAAAAAC5khjMtWlQ8lsqZuo1wBi7Py8tLkkqtPoqJiSmxrWnTppKk0NBQffbZZ9U6NwAAAAAAAAAwVaVyhnCmbmPNGbi8sHO/paKjo0vct2TJkhLbmjZtqnbt2mnnzp06cuRItc8PAAAAAAAAACTCGZxHOAOXN2DAAEnS9OnTlZWVZdu+bNkyzZw5s9R9nn/+eRUUFOj666/Xrl27Stx/6NAhffLJJ9UyXwAAAAAAAACXnsxM6eRJ6+2oqIrHE87UbYQzcHm33HKL2rVrp/Xr16t9+/a64YYbdMUVV2jEiBF6+OGHS93n9ttv19NPP61t27apW7duuvzyy3XjjTdq5MiRat++vVq3bq3//Oc/NfxIAAAAAAAAANRVx45ZvzdoYP2qCOFM3UY4A5fn6+ur5cuX65ZbbtGZM2f0yy+/qLCwUN98843++te/lrnfa6+9puXLl+u6665TbGys5s+fr23btsnPz09PPfUUlTMAAAAAAAAAHKYqLc2k8+HMiRNSfn51zAjO5OHsCQCS9Nlnn+mzzz4rsX3gwIEyDKPC/SMiIvTll1+Wel95+w8ePFiDBw+u9DwBAAAAAAAA4GJUNZxp0kRyc5MKC6WkJCk8vLpmBmegcgYAAAAAAAAAgGpW1XDG3d0a0Ei0NquLCGcAAAAAAAAAAKhmR45Yv1c2nJHOV8sQztQ9hDMAAAAAAAAAAFSzqlbOSOfXnSGcqXsIZwAAAAAAAAAAqGaEMyiKcAYAAAAAAAAAgGqUkSElJ1tvR0VVfj/CmbqLcAYAAAAAAAAAgGp07Jj1e4MG1q/KIpypuwhnAAAAAAAAAACoRhfT0kwinKnLCGcAAAAAAAAAAKhG9oYz8fGOnA1qA8IZAAAAAAAAAACqUdFw5tVXX9Wnn35aqf3McCYxUSosrJapwUk8nD0BAAAAAAAAAADqMjOc8fM7oWeffVaSFB4erhEjRpS7X2io9Xt+vpSSIgUHV+MkUaOonAEAAAAAAAAAoBqZ4YybW4xt2913361Tp06Vu5+Xl9S4sfU2687ULYQzAAAAAAAAAABUIzOcyc8/aNuWkJCghx56SIZhlLuv2dqMcKZuIZwBAAAAAAAAAKCaZGRIycnW25mZuyVJAwYMkIeHh7799lt99dVX5e5POFM3Ec4AZbjrrrtksVi0atWqYtubN28ui8XinEkBAAAAAAAAcCnHjlm/N2woxcfvlSSNHz9e//jHPyRJf/3rXxUTE1PW7oQzdRThDAAAAAAAAAAA1cRsada8uXTkyBFJUosWLfT3v/9dvXv31unTp3X33XersLCw1P0JZ+omwhmgipYvX669e/c6exoAAAAAAAAAXEDRcObouR+aN28uDw8PffHFF/L19dXy5cv1zjvvlLo/4UzdRDgDVFGrVq102WWXOXsaAAAAAAAAAFyAGc6Eh+fo1KlTkqyVM5LUtm1bTZ8+XZL0zDPPlPpH4WY4Ex9f7VNFDSKcgdMcPXpUFotFAwcOVGZmph5//HE1a9ZMvr6+6tGjh3766Sfb2Llz56p3797y9/dXSEiIJk+erLNnz5Y4ZkZGhv71r3+pc+fO8vPzU2BgoAYMGKD58+eXOY/vv/9evXv3lq+vr0JCQjRp0iTFl/Obrqw1Z37++Wfdc889at++vQIDA+Xv76+uXbtq2rRpysnJKTH+s88+k8Vi0dSpU3X8+HHdeuutCg4Olq+vr3r16lXs8QMAAAAAAABwTec6mcnfP1mSFBQUpICAANv9f/nLXzRy5EhlZ2fr9ttvV25ubrH9qZypmwhn4HS5ubkaMmSIvvjiC3Xr1k1XXnmlduzYofHjx2vZsmV66623dOutt8rDw0PDhw9XQUGB3n77bd13333FjnPixAldccUVeuGFF5Samqphw4bpiiuu0JYtWzR+/Hi9+uqrJc79zjvv6IYbbtDWrVvVp08fDRw4UMuWLdOVV16plJSUKj2Oe++9V3PnzlX9+vU1cuRI9evXTzExMXruued0zTXXqKCgoNT9jh49qssvv1zr1q1T37591b17d23ZskXjxo3TkiVLqjQHAAAAAAAAALWLWTnj4REryfrH30VZLBZ9/PHHatSokbZu3aqXXnqp2P3h4dbvCQmSYVTzZFFjCGfgdL///rt8fX0VHR2tn376SStXrtTHH3+sgoICPfTQQ3r55Ze1YsUKrV+/XvPmzdPOnTvVpEkTffnllzp8+LDtOHfffbf27Nmjp59+WkeOHNGCBQu0dOlS7dy5U61atdLzzz+vnTt32sYfPXpUTz75pLy9vbVs2TItX75c33zzjQ4ePKjLLrtMCxcurNLj+OCDD5SYmKgNGzbo22+/1eLFi3Xs2DGNHj1aK1as0Jw5c0rdb/bs2brpppt06NAhzZs3T+vXr9fMmTNVWFiol19++eKeVAAAAAAAAAC1ghnO5OUdkHS+pVlR4eHh+uCDDyRJ06ZN04YNG2z3mZUz2dlSWlq1ThU1iHCmFjAMKTPTdb4cnc66u7vro48+UsOGDW3bJk2apODgYB08eFCPPPKI+vXrZ7svPDxct912myTpt99+kyRt375dixYtUp8+ffTqq6/K09PTNr5ly5aaPn26CgoK9N///te2/ZNPPlFOTo4mTZqkgQMH2rb7+fnp7bffLrV1WXnGjRsnf3//YtsCAgL01ltvSZIWLFhQ6n7m/Dw8PGzb/vrXv6phw4basGFDiTJGAAAAAAAAAK7hzBnJbNBz5swuSSUrZ0wTJ07UbbfdpsLCQt1xxx3KzMyUJPn6SvXrW8fQ2qzu8Kh4CKpbVpZUr56zZ1F5GRnSBRmEXZo3b67WrVsX2+bm5qaoqCidPHlSw4YNK7FPq1atJEkJ534bLV26VJI0duzYUkOVvn37SpI2bdpk27Z27VpJ0o033lhifLt27dS9e3dt3bq1So/lwIED+uWXX3Tw4EFlZmaqsLBQxrk068CBA6XuM3DgwGJhkiR5eHioZcuW2rJli1JSUhRmxuMAAAAAAAAAXMaxY9bvDRtK8fF7JZVeOWN65513tHr1ah08eFBPPvmk3n//fUnW6pm0NGs40759tU8bNYBwBk4XERFR6nazCqW0+837cnJyJFlblEnSM888o2eeeabMcyUnJ9tux8fHS5IiIyNLHRsZGVnpcMYwDD355JN66623bGHMhc6cOVPq9qZNm5a6vd65xM58jAAAAAAAAABci9nSrHlz6ciRI5LKD2caNGigzz77TEOHDtUHH3ygMWPG6JprrlFYmLRvH5UzdQnhTC3g52etRnEVfn6OPV5F7cMq016soKBAktSvXz+1bNmyzHGNGze23TZDlKq2LyvNN998oxkzZqhp06aaOXOmrrrqKgUHB8vT01O5ubny9vYuM7RxxPkBAAAAAAAA1D7nwxlDy5YdPXe7ebn7DBkyRFOmTNHMmTP10EMP6ejRowoLs15DJJypOwhnagGLxbFtwi5FZvXJDTfcoMmTJ1dqn/DwcEVHR+vYsWNq06ZNifuPHz9e6fPPmzdPkvT+++9r9OjRxe47fPhwpY8DAAAAAAAAoO4ww5mQkGxbZ52KwhlJeumllzRz5kwdP35cp0+fVliYdb1uwpm6w83ZE7hYcXFxuv322xUUFCQ/Pz9169ZNW7Zssd1vGIamTp2q8PBw+fr6auDAgdq9e3exY+Tk5OjRRx9V48aN5e/vr+uuu06xsbE1/VDgAEOHDpUkzZ8/v9L7mOvQzJ07t8R90dHR2r59e6WPlZqaKklq1qxZifu+/fbbSh8HAAAAAAAAQN1hhjP+/iclSaGhofL19a1wv3r16ikoKEiSFBsbK3NJasKZusMlw5nU1FRdffXV8vT01KJFi7Rnzx5Nnz5dDRo0sI15/fXXNWPGDL3zzjvatGmTQkNDNWzYsGLrfkyZMkXz5s3T119/rbVr1yojI0OjR4+2tciC67jyyis1ZMgQrVy5Uo899pgyLugTV1hYqCVLlmjt2rW2bXfffbe8vLz0+eefa82aNbbtZ8+e1d/+9jcVFhZW+vxt27aVJM2aNatY+7I1a9bojTfeuNiHBQAAAAAAAMCFmeGMu3uMpMpVzZjMbkGxsbEKD7duO7eMNuoAlwxnXnvtNTVr1kyffvqpevfurebNm2vIkCFq1aqVJGvVzMyZM/Xcc89pwoQJ6tSpk2bPnq2srCx9+eWXkqS0tDR9/PHHmj59uoYOHaru3bvrf//7n/78808tW7bMmQ8PF2nOnDnq0qWLZs6cqaioKA0ZMkQ333yz+vXrp9DQUI0YMUKbN2+2jW/ZsqVee+01ZWdna9CgQRo6dKhuvvlmtW7dWrt27SrRnqw8kydPlr+/v9577z116tRJt9xyi/r3768BAwboL3/5S3U8XAAAAAAAAAC1nBnO5OUdkCS1aNGi0vsWDWeonKl7XHLNmR9//FEjRozQxIkTtXr1akVEROjhhx/W/fffL0k6cuSIEhMTNXz4cNs+3t7eGjBggNavX68HH3xQW7ZsUV5eXrEx4eHh6tSpk9avX68RI0aUOG9OTo5ycnJsP6enp0uS8vLylJeXV+Z88/LyZBiGCgsLq1SNUdcVfS7Ke15Ke97Mn83nVZKCg4O1fv16ffjhh/r222+1adMm5ebmKiwsTN26ddPYsWM1ceLEYseaPHmywsLC9MYbb2jt2rUKCAjQsGHD9Nprr+n5558v8/wXzrl169b6448/9H//93/auHGjfvzxR7Vr107vv/++7r//fr355ptlPuaij6Gyj7+0MYZhKC8vT+7u7uWOLY35/i3vfQygduDzCrgWPrOA6+DzCrgWPrOA67iUP69nzkgpKZ6SpNOnd0iSIiMjK/1chJ8rlzl27JiuuipPkqcSEgzl5eVXy3zhGJV9fS1G0R5MLsLHx0eS9Pjjj2vixInauHGjpkyZog8//FCTJk3S+vXrdfXVVysuLs72BpakBx54QMeOHdOvv/6qL7/8UnfffXexsEWShg8frhYtWujDDz8scd6pU6fqxRdfLLH9yy+/lJ+fX5nz9fDwUGhoqJo1ayYvL6+LfdhAmXJzcxUTE6PExETl5/PLGQAAAAAAAHC2Y8cC9Le/DVa9erlq2/Yqbd26VQ8//HCxgoHyzJ07V3PmzNGQIUN0772P6dZbr5Ukff31Qvn4sDRHbZWVlaVbb71VaWlpCgwMLHOcS1bOFBYWqlevXpo2bZokqXv37tq9e7fef/99TZo0yTbOYrEU288wjBLbLlTemGeffVaPP/647ef09HQ1a9ZMw4cPL/dJzs7OVkxMjOrVq2cLlgBHys7Olq+vr/r3739R77G8vDwtXbpUw4YNk6enZzXMEICj8HkFXAufWcB18HkFXAufWcB1XMqf159/tl5nbt3aU5mZmZKkMWPGaMiQIZXaPzk5WXPmzJGbm5uuv364/PwMZWVZ1KXLCLVuXW3Thp3MjlsVcclwJiwsTB06dCi2rX379vr+++8lSaGhoZKkxMREhZnN+CQlJSUpJCTENiY3N1epqalq2LBhsTF9+vQp9bze3t7y9vYusd3T07PcXywFBQWyWCxyc3OTm5tLLvODWs7NzU0Wi6XC92JF7N0fQM3h8wq4Fj6zgOvg8wq4Fj6zgOu4FD+vsbHW7y1aSIsWHZMktWnTptLPQ/PmzSVJcXFx8vLyVFiYdOiQlJzsqfbtq2PGcITKvr4umRRcffXV2r9/f7Ft0dHRioqKkmRdVCk0NFRLly613Z+bm6vVq1fbgpeePXvK09Oz2JiEhATt2rWrzHAGAAAAAAAAAIDKOHrU+j04OEvZ2dmyWCxq1qxZpfdv2rSpJCn2XMpj1iEkJDhylnAWl6yceeyxx9SnTx9NmzZNN954ozZu3KhZs2Zp1qxZkqztzKZMmaJp06apTZs2atOmjaZNmyY/Pz/deuutkqT69evr3nvv1RNPPKGgoCA1atRITz75pDp37qyhQ4c68+EBAAAAAAAAAFycGc74+ydJsoYtVVmTPCIiQpK1TVZ6errCwqxLaxDO1A0uGc5cfvnlmjdvnp599ln961//UosWLTRz5kzddttttjFPP/20zp49q4cfflipqam64oortGTJEgUEBNjGvPXWW/Lw8NCNN96os2fPasiQIfrss8/k7u7ujIcFAAAAAAAAAKgjjhyxfndzOy7pfJuyyqpXr54aNGig06dPKy4ujnCmjnHJcEaSRo8erdGjR5d5v8Vi0dSpUzV16tQyx/j4+Ojtt9/W22+/XQ0zBAAAAAAAAABcqszKmdzcaEnW5TiqqmnTpjp9+rRiY2MVHm5daCY+3lEzhDO55JozAAAAAAAAAADUVunp0qlT5u0/JV18OCNZ151hzZm6hXCmBhmG4ewpoI7ivQUAAAAAAADUHseOWb83aiTFxe2VVPW2ZhLhTF1GOFMDzDVs8vLynDwT1FXme4v1kgAAAAAAAADnM1uaNW8uHTm3+AyVMyiKcKYGeHp6ytvbW2lpaVQ4wOEMw1BaWpq8vb3l6enp7OkAAAAAAAAAlzwznImKMnT8+HFJjgtnTp2ScnIcMUs4k4ezJ3CpaNy4seLi4hQbG6v69evL09NTFovF2dOCCzMMQ3l5eUpLS1NGRoYiIiKcPSUAAAAAAAAAOh/ONG6coby8PHl4eFzU9bui4UyjRpKXl5SbKyUmSlFRDpwwahzhTA0JDAyUJCUnJysuLs7Js0Fd4u3trYiICNt7DAAAAAAAAIBzmeGMn1+SJCkyMvKiliQoGs5YLFJoqHT8uLW1GeGMayOcqUGBgYEKDAxUXl6eCgoKnD0d1AHu7u60MgMAAAAAAABqGTOcsViOSbq4lmbS+XDm1KlTysrKUliYny2cgWsjnHECT09PLqgDAAAAAAAAQB1lhjM5OfslSc2bN7+o4wQGBqpevXrKyMhQbGyswsPbSiKcqQvcnD0BAAAAAAAAAADqivR06dQp6+20tJ2SLr5yxmKxFGttFhZm3R4fb/c04WSEMwAAAAAAAAAAOMgxayczNWokxcXtlXTxlTOSSg1nqJxxfYQzAAAAAAAAAAA4iNnSrHlz6ciRI5IuvnJGIpypqwhnAAAAAAAAAABwEDOciYwsVGxsrCTCGZREOAMAAAAAAAAAgIOY4UxQULoKCwvl7e2tkJCQiz4e4UzdRDgDAAAAAAAAAICDmOGMr2+SJOt6M25uF38pvrRwJilJys+3Z5ZwNsIZAAAAAAAAAAAc5NwyM5KOSrKvpZlUPJwJDpbc3CTDsAY0cF2EMwAAAAAAAAAAOIhZOZOTs1+StXLGHmY4c/LkSeXlZcvskEZrM9dGOAMAAAAAAAAAgAOkpUmpqebtHZLsr5xp1KiRfHx8JEnx8fEKD7duJ5xxbYQzAAAAAAAAAAA4wLFj1u9BQVJs7F5J9oczFoul1HVn4uPtOiycjHAGAAAAAAAAAAAHMFuaNW8uHTm3+Iy9bc0klRrOUDnj2ghnAAAAAAAAAABwADOcadasQAnn0hN7K2ckwpm6iHAGAAAAAAAAAAAHMMOZhg3TJEn16tVTUFCQ3cclnKl7CGcAAAAAAAAAAHAAM5zx9T0hydrSzGKx2H1cwpm6h3AGAAAAAAAAAAAHMMMZybrejCNamkmEM3UR4QwAAAAAAAAAAA5ghjNnz+6TZK2ccYTSwpnERKmw0CGHhxMQzgAAAAAAAAAAYKe0NCk11Xr79OkdkhxfOZOYmKigoDxJUn6+lJLikMPDCQhnAAAAAAAAAACw07Fj1u9BQVJs7F5JjgtngoOD5enpKcMwlJycoOBg63Zam7kuwhkAAAAAAAAAAOxktjRr3lw6cuTIudvNHXJsNze3Ulubxcc75PBwAsIZAAAAAAAAAADsZIYzTZvmKzk5WZLjKmesxy0ZzlA547oIZwAAAAAAAAAAsJMZzjRocFqS1LBhQ9WvX99hxyecqVsIZwAAAAAAAADARW3fvl1TpkxRAlfpnc4MZ3x8EiU5rqWZiXCmbvFw9gQAAAAAAAAAAFX3xx9/aPjw4UpPT1ejRo30z3/+09lTuqSZ4YxhWNebcWRLM6l4ONOvn3Ub4YzronIGAAAAAAAAAFzM77//rmHDhik9PV2SdNRMBuA0R6yZjM6e3SupesMZKmdcH+EMAAAAAAAAALiQ9evXa8SIETpz5owaNmwoSYqJiXHyrC5tp09bvyQpNXW7JNqaoXyEMwAAAAAAAADgItauXWsLZgYNGqTZs2dLsl6wh/OY2VijRlJsbPVWzsTHxyskpECSNZwxDIeeBjWEcAYAAAAAAAAAXMCaNWs0cuRIZWRkaPDgwVq4cKHatWsnyVo5Y3CV3mnMCpbw8PMt5hxdORMSEiJ3d3cVFBTIze2EJCk7W0pLc+hpUEMIZwAAAAAAAACgllu9erVGjRqlzMxMDR06VD/99JP8/Pxs1RSZmZlK4yq905jhTHBwnk6f62/m6HDG3d1d4eHhkqTk5Fg1aGDdHh/v0NOghhDOAAAAAAAAAEAttmrVKl1zzTXKzMzU8OHD9eOPP8rPz0+S5Ofnp6CgIEmsO+NMiYnW735+ZyRJTZo0kb+/v8PPw7ozdQfhDAAAAAAAAADUUitWrNA111yjrKwsjRw5UgsWLJCvr2+xMeYFe8IZ5zHDGU/PZEmOr5oxEc7UHYQzAAAAAAAAAFALLV++XKNHj9bZs2c1atQozZs3Tz4+PiXGNWvWTJL1gj2cwwxICgutPcZatGhRLechnKk7CGcAAAAAAAAAoJZZv369LZi59tprywxmJCpnagOzciY7+6gkwhlUjHAGAAAAAAAAAGqZt956S9nZ2Ro1apS+//57eXt7lznWrJwhnHEeM5xJT98vibZmqBjhDAAAAAAAAADUMvv3Wy/yP/LII+UGMxJtzWoDMyBJTt4lqWYqZ8LDi58broVwBgAAAAAAAABqkcLCQh08eFCS1KZNmwrH09bMubKypPR06+34+K2Sqj+ciYuLU0hIoSTCGVdFOAMAAAAAAAAAtUh8fLzOnj0rDw+PSrXHKlo5YxhGNc8OFzpxwvrdx8dQVla8LBaLIiMjq+VcYWFhslgsys3NlY9PqiTCGVdFOAMAAAAAAAAAtUh0dLQka/WFp6dnheMjIiIkSVlZWUpNTa3WuaEkMxxp2DBXkhQeHl5hK7qL5enpqdDQUElSfr61UurMGSkjo1pOh2pEOAMAAAAAAAAAtciBAwckVa6lmST5+vqqcePGkmht5gyJidbv9eqdkaRKVTvZw2xtlpp6XP7+1m1Uz7gewhkAAAAAAAAAqEXMcKZt27aV3qdoazPULDMY8fJKkVR9682YzHAmNjZWYWHF5wDXQTgDAAAAAAAAALWI2dasspUz0vkL9lTO1DyzcsYwrDcIZ1AZhDMAAAAAAAAAUItUta2ZROWMM5nhTE7OMUk119aMcMa1Ec4AAAAAAAAAQC1RUFCgQ4cOSbq4tmZUztQ8Mxg5c8Za8UTlDCqDcAYAAAAAAAAAaoljx44pLy9P3t7etsClMmhr5jxm5cypU3sk1Vw4ExMTo/Bw6zbCGddDOAMAAAAAAAAAtYTZ0qx169Zyc6v85VvamjmPGc7k5x+Xu7u7LTypLsUrZ4xzt6v1lKgGhDMAAAAAAAAAUEtER1tbY1VlvRmpeDWFYRgOnxdKV1gonThh/pSo5s2by8PDo1rPGX6uXCY7O1sNG6ZLko4dq9ZTohoQzgAAAAAAAABALWFWzlxsOJOdna2UlBSHzwulS0mR8vPNn5LUsWPHaj+nj4+PgoODJUkeHnGSpJgYa1AE10E4AwAAAAAAAAC1hBnOtG3btkr7eXt7q0mTJpJobVaTzJZmPj5nJOWpU6dONXJeM4zLzT0qd3cpL491Z1wN4QwAAAAAAAAA1BIX29ZMKt7aDDXDDETc3JIkqUYqZ6Tzr3VCQozMJW5obeZaCGcAAAAAAAAAoBbIzc3V0aNHJV1cONOsWTNJVM7UJLNyJjf3uCTVeOVMbGysoqKs2whnXAvhDAAAAAAAAADUAkeOHFFhYaH8/f0VFhZW5f2pnKl5ZuVMfn6M3N3d1a5duxo5b9Fwpnlz67ZzuR5cBOEMAAAAAAAAANQCRVuaWSyWKu9vVs4QztQcs3JGSlSbNm3k7e1dI+elcsb1Ec4AAAAAAAAAQC1w4MABSRfX0kyirZkznA9nEmqspZlEOFMXEM4AAAAAAAAAQC1ghjNt27a9qP1pa1bzzLZmUqI6duxYY+ctWiUVGWlIIpxxNXaHM1lZWcrKyirz/rffflv9+vVT+/btdc0112jhwoX2nhIAAAAAAAAA6pyibc0uRtHKGcMwHDYvlK1oW7OarJyJiIiQJGVmZiooKEOSNZzhZXcddoUzP/30kwICAhQeHq4zZ86UuP+ee+7RlClTtH79eu3fv1+//vqrxo4dq9dff92e0wIAAAAAAABAnWNvW7Pw8HBJUk5OjpKTkx02L5QtMdFMQ2q2rZmfn58aNWokSbJYrJVSWVlSSkqNTQF2siuc+fXXX2UYhsaNG6eAgIBi961du1afffaZJOsbpXv37vLx8ZFhGHr++ee1e/due04NAAAAAAAAAHXG2bNnbe3ILratmbe3t0JCQiTR2qwmnD0rpaVZJEmenqfUunXrGj2/2cYuKSlGYWHWbUeP1ugUYAe7wpkNGzbIYrFo0KBBJe6bNWuWJGtau3fvXm3ZskX79u1Ts2bNVFBQoA8//NCeUwMAAAAAAABAnXHw4EFJUoMGDRQUFHTRxyna2gzV63xLs2xddlmYPDw8avT8ZjgTGxurqCjrNtadcR12hTNJSUmSSi+zW7x4sSwWix599FHbm6RZs2Z69NFHZRiGVq9ebc+pAQAAAAAAAKDOMFuatW3bVhaL5aKPY16LpXKm+p0PZxLUqVPHGj8/4YxrsyucOXnypCSpXr16xbbv2bPH1tPwuuuuK3Zfr169JElHqa8CAAAAAAAAAEn2rzdjonKm5iQkmLcSa3S9GRPhjGuzK5xxd3eXJJ06darY9jVr1kiSgoODddlllxW7r2HDhpKk7Oxse04NAAAAAAAAAHVGdHS0JMeFM1TOVL/zlTOEM6g6u8KZiIgISdL27duLbf/5559lsVjUr1+/EvukpaVJkho3bmzPqQEAAAAAAACgzija1swetDWrOXFxheduJahjR+e2NWve3LqNhlWuw65wpl+/fjIMQ++8846tjdmmTZu0ePFiSdKIESNK7LN3715JUmhoqD2nBgAAAAAAAIA6g7ZmrufAgTOSJA+PFLVo0aLGz0/ljGuzK5x5+OGH5ebmpiNHjqhly5bq1auXBgwYoPz8fDVs2FA33XRTiX1WrFghi8Wibt262XNqAAAAAAAAAKgT0tPTlXiuR5a94UzRC/aFhYUVjIY9Dh/OkiSFh1vk5mbXpfaLYr7Wp0+fVlBQxrnbUnp6jU8FF8Gud0yPHj30xhtvyGKxKCMjQ1u3blV2drY8PT310UcfKSAgoNj4tLQ0/fzzz5KkYcOG2XNqAAAAAAAAAKgTDh48KElq0qSJ6tevb9exIiIiZLFYlJubq5MnTzpieihDQoIhSWrdup5Tzh8QEKDAwEBJUlpanBo1sm6nesY1eNh7gMcee0xDhw7Vd999p8TERIWFhemWW25Ru3btSoxdtWqVLr/8cknS0KFD7T01AAAAAAAAALg8R7U0kyRPT0+FhoYqISFBsbGxCgkJsfuYKF1qqrckqVMn562v3rRpU+3Zs+dca7N2OnXKGs507uy0KaGS7A5nJKlz587qXIlXe+zYsRo7dqwjTgkAAAAAAAAAdUJ0dLQkx4QzkvWCfUJCgmJiYtSzZ0+HHBPFFRZKZ89aq1Z69Ypw2jyKhjPNm0vbtklHjzptOqgCu9qa3XPPPbrnnns0d+5cR80HAAAAAAAAAC4pZuVM27ZtHXK8Zs2aSbKuO4PqkZCQK8lTktSnT2unzaPoGkNRUdZttDVzDXZVzsyePVuSdNNNNzlkMgAAAAAAAABwqXFkWzPp/AX7mJgYhxwPJf3xxzFJbWSxpKhly6ZOm0fRcMZcaYRwxjXYVTkTHBwsSfQtBAAAAAAAAICL5Oi2ZmblDOFM9dmyJU6S5ONzWhaLxWnzMF/rQ4cOUTnjYuwKZzp06CBJOsarDQAAAAAAAABVlpKSolOnTkmSWrd2THss2ppVv127UiRJjRrlOHUevXr1kiT98ccfatq0QBLhjKuwK5y5/fbbZRiGrb0ZAAAAAAAAgNppzpw5uummm5SZmensqaAIs6VZRESE/P39HXJM2ppVv0OHMiRJYWHOq5qRpM6dOyswMFDp6enKzNwjSTpxQjp71qnTQiXYFc7cfffdGjJkiBYsWKAXX3xRhmE4al4AAAAAAAAAHGTp0qWaNGmSvv32W/3888/Ong6KMMOZtm3bOuyYZuVMXFycCgsLHXZcnBcXZ31eW7b0c+o83N3d1adPH0nSzp2rVK+edfvx406cFCrFrnBmzZo1evLJJ9W5c2f961//UocOHTR16lT98MMPWrlypX777bdyvy7W1KlTZbFYin2Fhoba7jcMQ1OnTlV4eLh8fX01cOBA7d69u9gxcnJy9Oijj6px48by9/fXddddR5kfAAAAAAAA6pyjR4/q5ptvtl2k5xpY7WKGM45ab0aSwsLCZLFYlJeXp6SkJIcdF1Znz57V6dM+kqT27Rs6eTZSv379JEnr1q1l3RkX4mHPzgMHDiy22FF0dLReeumlSu1rsViUn59/0efu2LGjli1bZvvZ3d3ddvv111/XjBkz9Nlnn6lt27Z6+eWXNWzYMO3fv18BAQGSpClTpuinn37S119/raCgID3xxBMaPXq0tmzZUuxYAAAAAAAAgKs6e/asJkyYYFvTRLJWU6D2iI6OluTYcMbT01NhYWGKj49XTExMsT9sh/327dsnyfqctm0b4NzJSOrbt68kazFF9+6Gdu+2EM64ALsqZyRrlcrFftnDw8NDoaGhtq/g4GDbfGbOnKnnnntOEyZMUKdOnTR79mxlZWXpyy+/lCSlpaXp448/1vTp0zV06FB1795d//vf//Tnn38WC3wAAAAAAAAAV2UYhh588EFt27ZNwcHBeuyxxyQRztQ21dHWTDrf2oxKKcfbtWuXpDBJzl9zRpIuv/xyeXp6KiEhQQ0bpkuicsYV2FU5s3LlSkfNo8oOHDig8PBweXt764orrtC0adPUsmVLHTlyRImJiRo+fLhtrLe3twYMGKD169frwQcf1JYtW5SXl1dsTHh4uDp16qT169drxIgRpZ4zJydHOTk5tp/T061v9Ly8POXl5VXTIwWqn/n+5X0M1H58XgHXwmcWcB18XgHXwme2ct577z198cUXcnd315dffqkTJ05Isl6s57mrHQzDsIUzzZs3d+jrEh4eLsna1s6Zr3dd/Lzu2LFD0hhJUlBQnpz90Dw8PNSrVy/9/vvvys6OlnS5jhwpVF5egXMndomq7HvdrnBmwIAB9ux+0a644gp9/vnnatu2rU6cOKGXX35Zffr00e7du5WYmChJCgkJKbZPSEiIjp2LCxMTE+Xl5aWGDRuWGGPuX5pXXnlFL774YontS5YskZ+fcxd+Ahxh6dKlzp4CgEri8wq4Fj6zgOvg8wq4Fj6zZdu9e7f++c9/SpLuvPNOZWZmKiYmRpJ08OBB/fLLL86cHs5JTU3VmTNn5ObmpujoaB05csRhxzaXlPjtt9/UsmVLhx33YtWlz+vKlRskNZAk/fnnEh05cvHLdziK2bouOnqJpMu1bVuqfvllrXMndYnKysqq1Di7whlnGTVqlO12586dddVVV6lVq1aaPXu2rrzySkkqthaOZE2hL9x2oYrGPPvss3r88cdtP6enp6tZs2YaPny4AgMDL+ahALVCXl6eli5dqmHDhsnT09PZ0wFQDj6vgGvhMwu4Dj6vgGvhM1u+uLg4PfjggyooKNBNN92k999/XxaLRR06dNCzzz6r1NRUjRo1qsJrZah+a9daL55HRUVp7NixDj32/v379dNPP8nLy0vXXHONQ49dFXXx8/rww29Ikjw9CzRx4nDVho+SYRiaN2+e0tJ2SpIyMho59XW/lJkdtyrikuHMhfz9/dW5c2cdOHBA48aNk2StjgkLC7ONSUpKslXThIaGKjc3V6mpqcWqZ5KSktSnT58yz+Pt7S1vb+8S2z09PevMLxZc2ngvA66DzyvgWvjMAq6DzyvgWvjMlpSTk6NbbrlFJ06cUJcuXfTxxx/Ly8tLkjUAkKTc3FylpaXZ1nCG85iVMm3atHH4e7l58+aSrGFdbfic1JXP65kzZxQfb20XFhYmeXnVjsfUv39/SdLx479JkuLiLJI8VQeecpdT2fe5m6NOmJ6erk8++UT333+/xowZoyFDhtjaiJni4+O1Z88eHT582FGnlWT9R2fv3r0KCwtTixYtFBoaWqxMLjc3V6tXr7YFLz179pSnp2exMQkJCdq1a1e54QwAAAAAAABQm02ZMkUbNmxQgwYN9MMPP8jf3992n5eXly2QiYuLc9YUUUR0dLQkazjjaM2aNZNkXWMIjrNnzx5J1hZi4eHuzp1MEY0aNVLHjh0lnZCHR4EKCyU+5rWbQypn3n33XT333HM6c+aMpPPtwTIzM4uNW716tW677Tb5+PgoNjZWjRo1uqjzPfnkkxozZowiIyOVlJSkl19+Wenp6brzzjtlsVg0ZcoUTZs2TW3atFGbNm00bdo0+fn56dZbb5Uk1a9fX/fee6+eeOIJBQUFqVGjRnryySfVuXNnDR061L4nAwAAAAAAAHCCTz75RB988IEsFou++uortWrVqsSYiIgInTx5UnFxcerWrVvNTxLFHDhwQJLUtm1bhx+7adOmkqxBXEFBgdzda0+Q4Mp27dolydqx6dwyL7VGv379tHv3btWrd0qnTwfr2DHpXAEVaiG7K2emTp2qyZMnKz09XV5eXurZs2eZY2+66SaFhYUpJydH33///UWfMzY2VrfccovatWunCRMmyMvLSxs2bLCVZj799NOaMmWKHn74YfXq1UtxcXFasmSJAgICbMd46623NG7cON144426+uqr5efnp59++olfUgAAAAAAAHA5mzZt0kMPPSRJeumllzRy5MhSxxW9YA/nM8OZ6qicCQsLk5ubm/Lz83XixAmHH/9StXv3bpmVM0VW1agV+vbtK0kqLLS2y7ugsRVqGbvCmW3btumll16SJN1+++1KTEzUxo0byz6Zm5smTpwowzCKtRSrqq+//lrx8fHKzc1VXFycvv/+e3Xo0MF2v8Vi0dSpU5WQkKDs7GytXr1anTp1KnYMHx8fvf3220pJSVFWVpZ++uknW6kfAAAAAAAA4CqSkpI0YcIE5ebmauzYsXr22WfLHBsRESGJcKY2KCwsrNZwxsPDQ+Hh4ZJobeZItb1yRpLOnNklSTp61ImTQYXsCmfefvttGYahq666Sp9//rnq169f4T5XXXWVJOnPP/+059QAAAAAAAAAJP31r39VbGys2rVrp88//1xubmVf8jPDGS7WO19cXJyys7Pl4eGh5tXUe8qslIqJiamW41+KrOGMNZWpbeFMZGSkmjVrJsOgcsYV2BXOrF69WhaLRY888kil9zF/0ZDOAwAAAAAAAPYpLCzUr7/+Kkn67LPPFBgYWO54KmdqD7NqpmXLlvLwcMjS4CWYnYII4xzj1KlTSkhIUG1tayaZrc2sqQzhTO1mVzhjfSNK7dq1q/Q+3t7ekqScnBx7Tg0AAAAAAABc8g4cOKAzZ87Ix8dHvXr1qnA84UztER0dLal6WpqZqJxxLOt6M5K7u/V5rW2VM5LZ2oxwxhXYFc54eXlJkvLy8iq9jxnoNGjQwJ5TAwAAAAAAAJe8rVu3SpK6du1aqeoL82I94YzzmZUzbdu2rbZzmJUzhDOOYQ1nLCosDJZUO8OZopUzx48bKix07nxQNrvCGfOXuZkYVsaSJUskSa1bt7bn1AAAAAAAAMAlb8uWLZKknj17Vmq8WTmTmpqqrKysapsXKmaGM9VZOUNbM8eyrjfTSIZhDUJDQpw7n9J07NhR9etnSipQbq5FiYnOnhHKYlc4M3jwYBmGoU8//bRS4w8fPqyPP/5YFotFw4YNs+fUAAAAAAAAwCWvquFM/fr15efnJ4nqGWcz25pVZ+UMbc0cyxrOWBeaCQqSzjWWqlXc3NzUt+8VkqyBHK3Nai+7wplHHnlEHh4eWrdunaZOnVru2M2bN2v48OHKyMiQt7e3HnzwQXtODQAAAAAAAFzSCgsLbW3NKhvOWCwW1p2pBfLz83X48GFJNVM5Ex8fr4KCgmo7z6XAMIxz4Yy1l1lYmHPnU56irc0IZ2ovu8KZtm3b6h//+IcMw9BLL72kK664Qq+//rrt/sWLF+u1117TkCFDdMUVV+jIkSOyWCx69dVXFVab370AAAAAAABALXf48GGlp6fL29tbHTp0qPR+rDvjfMePH1deXp58fHxsr0d1CA0Nlbu7uwoKCpRIfyu7JCUlKSUlRWblTG1cb8bUr18/meHM0aOGcyeDMlW8SlgF/vGPfygvL0/Tpk3Tpk2btHnzZlksFknSU089ZRtnGIYsFov++c9/avLkyfaeFgAAAAAAALikmS3NunTpIk9Pz0rvR+WM85ktzVq3bi03N7v+fr5c7u7uCg8PV0xMjGJiYmyvParOWjUjBQV1UkpK7Q5nevXqJXf3NSookP78M01SA2dPCaVwyCf/X//6lzZs2KAJEybI19dXhmEU+/L09NSoUaO0Zs0avfDCC444JQAAAAAAAHBJq2pLMxPhjPMdOHBAUvW2NDOZrc1iY2Or/Vx12e7duyVJDRq0k1S725p5e3urRQvrpf8//zzj5NmgLHZXzph69eql7777Tvn5+dqzZ4+SkpJUUFCgoKAgdezYUb6+vo46FQAAAAAAAHDJMytnevToUaX9zHCGi/XOU5PhjNk2LSYmptrP5WpOn5YyMqTKdJYzK2e8vVtIqt2VM5LUq1djHTwoxcRUX2UW7OOwcMZ2QA8PdenSxdGHBQAAAAAAAHCOYRhUzrgws61Z27Ztq/1cZuUM4UxxGRlSr15SQoK0b5907mkqk1k5I4VIqv3hzODBrfT111JaWgMZhnRuJRLUIsRmAAAAAAAAgIs5evSoUlNT5enpqU6dOlVpX7OSgnDGeZxROUOlVHH/+Id06JCUlSXNn1/+WMMwbJUzZ8/Wl1S725pJ0pgxXSVJhuGvvXtPOHk2KA3hDAAAAAAAAOBizJZmnTt3lpeXV5X2NStnEhISVFBQ4PC5oXy5ubk6evSopJpdc4bKmfM2b5b+85/zPy9YUP742NhYpaeny8PDQ6dOeUuq/ZUzoaEN5OGRLEn6+eddTp4NSmNXW7N77rmnyvtYLBb5+Piofv36atOmja688kq1b9/enmkAAAAAAAAAlxQznKlqSzNJCgkJkZubmwoKCpSUlKSw2l4CUMccPnxYhYWFqlevnkJr4Aq/Gc5QOWOVny/df79UWCgNGCCtXm39On1aatCg9H3MlmatWnXS/v3W/mCu8LFp1ChDSUmNtXr1UT31lLNngwvZFc589tlnsjigWV2vXr00Y8YMXX311XYfCwAAAAAAAKjrLna9Gcm6ZnRoaKji4+MVGxtLOFPDirY0c8S11YqYbc3i4+OVn58vDw+HL0PuUmbOlLZvlxo2lL79Vho0SNqzR1q0SLrlltL3MVuatWrVR/v3S97eUv36NTbli9aihZuSkqQdO9KcPRWUwq62ZpGRkYqMjFTjxo1lGIbty8vLSyEhIQoJCZGXl5dtuyQ1btxYTZs2VWBgoG37pk2bNGDAAM2ZM8chDwoAAAAAAACoqwzDsKtyRjrf2ox1Z2pedHS0pJppaSZZK6U8PDxUWFiohISEGjlnbXX0qPTCC9bbb74pNWkijR1r/fnHH8vez6ycCQvrIcna0qwGcjW7de/eUJIUG+uuM2fOOHk2uJBd4czRo0c1b948BQQEyMvLS4899pi2bdumzMxMxcfHKz4+XpmZmdq2bZumTJkiT09P1atXT/PmzVNqaqpiYmL02muvKSAgQIWFhbrvvvvofQgAAAAAAACU4/jx40pJSZGHh4c6dep0UccwqykIZ2qeWTnTtm3bGjmfu7u7wsPDJV3arc0MQ3roISkrSxo4ULr7buv2666zfl+0SMrNLblfXl6eNm7cKElq1KiDJNdoaSZJnToFnLsVqQ0bNjh1LijJrnDmxIkTuuaaa5SYmKiVK1dq+vTp6tq1q9zczh/Wzc1NXbt21YwZM7Ry5UolJibqmmuuUUJCgiIiIvTUU09p1apV8vX1VW5urt555x27HxQAAAAAAABQV5ktzTp16iQfH5+LOgaVM86zc+dOSarRdbjNdWcu5T+M/+YbafFiyctL+uCD85UvvXtLISFSWpr022/F98nLy9PNN9+sPXv2yNvbWw0aWF+zGlgqyCGiomy3tHbtWmdOBaWwK5yZPn26EhMT9fjjj+uqq66qcPxVV12lxx9/XElJSXrjjTds27t376577rlHhmFo6dKl9kwJAAAAAAAAqNPsbWkmEc44S15enrZt2ybJug53TTHDmUu1ciY1Vfrb36y3n39eatfu/H1ubtKYMdbbRVub5ebm6sYbb9QPP/wgLy8v/fDDD8rObiDJNcOZNWvWOHMqKIVd4cyCBQtksVg0YsSISu8zcuRISdLPP/9cbPuoUaMkWVulAQAAAAAAACidGc706NHjoo9hhjOX6sV6Z9mzZ4+ys7NVv359tW7dusbOa7axu1QrZ55+WkpKktq3l555puT9ZmuzBQus7c9yc3M1ceJEzZ8/X97e3lqwYMG5DlLWca7S1ux8OBOk33/fpby8PGdOBxewK5wxf3l7e3tXeh9z7IW/+M2+h1lZWfZMCQAAAAAAABfJMAwdP35cCxcutAUAqF0Mw6ByxoVt2rRJkvW1K7o0RHW7lNua/fab9N//Wm/PmmVta3ahoUMlX1/p+HFp8+Zc3XDDDfrxxx9twYxZcJCQYB3vKpUzgYFSw4aGJCk7u4mtJSJqBw97dvbz81N2drY2b95c6TI88xeQn59fse05OTmSpIYNG9ozJQAAAAAAAFRCRkaGdu3apZ07dxb7SktLkyR5eXnp+PHjCgkJcfJMUVRcXJxOnjwpd3d3denS5aKPY1ZSEM7ULPPa6OWXX16j571U25rl5EgPPGC9/cADUt++pY/z9ZWGD7dWztx++7eKjv5JPj4+WrBggYYPH24bZ1bOuEo4I0lRURalpkrmujNXXHGFs6eEc+yKZ3v27CnDMPTKK68oJSWlwvHJycl69dVXZbFYSoQ5+/fvlyQ1adLEnikBAAAAAACgDHPnztX111+vNm3aKDAwUFdddZUefPBBvfvuu1qzZo3S0tLk4eEhT09P5ebm2tbGQO1hVs106NBBvr6+F30cs3ImIyND6enpDpkbKuascOZSbWv26qvS/v1SSIj1dnlGjbK2/IqOvky+vr766aefigUzklyurZlUfN2ZtWvXOnMquIBd4czDDz8syZq4Xnnllfr5559lGEaJcYZhaOHChbrqqqtsvwD++te/FhuzePHiUkMbAAAAAAAA2C89PV233XabfvjhBx08eFCGYSg0NFTDhw/Xk08+qc8//1w7duxQZmamxo8fL0natWuXk2eNC5ltiexpaSZJ/v7+ql+/viSqZ2pKdna2/vzzT0nOq5xJSEi4ZNYd2bdPmjbNevs//5HKa9iUnZ2tb765Q1KhpF769NOlGjp0aLExhYWuWjlju6W1a9eWev0ezmFXW7PrrrtODzzwgGbNmqXDhw/ruuuuU1BQkLp162argElKStL27duLVdY8+OCDGj16tO3nxMREzZ8/X4ZhaNSoUfZMCQAAAAAAAKX47bfflJeXp2bNmunTTz9V586dy+xg0rFjR0nS7t27a3KKqARHrDdjioiIUFpamuLi4tS+fXu7j4fybd++Xfn5+WrSpIktLKkpTZo0kaenp/Ly8pSQkKDIyMgaPX9NKyy0tjHLzZWuuUaaOLHssWfPntW4ceO0cuUSubn9TYWFV+nUqatLjDt1SsrPt952pW6PZjjj5tZSycnJ2r9/vy677DLnTgqS7AxnJOmDDz5QVFSUXnrpJWVnZys5OVnLly8vNsZM47y9vfXCCy/o//7v/4rdHxgYqL1790o6X1IJAAAAAAAAx1mxYoUkadSoURoyZEi5Yzt16iSJypnayAxnevToYfexIiIitGfPnktuHRJnKdrSzGKx1Oi53dzcFBUVpYMHDyo6OrrOhzOffy6tWSP5+UnvvSeV9XRnZWVp7NixWrZsmfz8/HTHHSH68EPpxx+lhx4qPtasmgkKkry8qnf+jmSGM/7+HXXmjLRmzRrCmVrCrrZmpmeffVaHDx/WK6+8oqFDhyokJEReXl7y8vJSSEiIhgwZomnTpunw4cMlghlJ8vPzU1RUlKKiouThYXdeBAAAAAAAgAuY4czgwYMrHGuGM3v27FFhYWG1zguVl5CQoMTERLm5ualbt252H89ch4S2ZjVj8+bNkuS0ZR3M94zZGq8u+/pr6/e//71oW6+SJk2apGXLlsnf31+LFi3SlCktJUkrVkhnzhQfm5Bg/e5KLc0kqXlz63fDsFZrrVmzxnmTQTEOS0JCQ0P1zDPP6JlnnnHUIQEAAAAAAOAAycnJ2rFjhyRp4MCBFY5v1aqVvL29lZWVpaNHj6ply5bVPENUhlk10759e/n5+dl9PLODDeFMzShaOeMMPXv21HfffWd7H9VVhiGZD3H48LLHnTp1Sj/88IMk6ZdfflH//v1lGFKbNtKBA9Kvv0o33HB+vFk5ExZWTROvJmY4lZERIMlbO3fudOp8cJ5DKmcAAAAAAABQe61atUqStSImpBKLJbi7u9vWIKG1We3hyPVmJMKZmnTmzBnt27dPkvPCGbMVXl2vnImJkZKTJQ8PqXPnssetXr1ahmGoffv26t+/vyRr+7OxY633//hj8fGuWjkTFGRt72bVTNHR0VRE1hKEMwAAAAAAAHVcVVqamTp27ChJ2r17d7XMCVVnXlR3xHozEuFMTdqyZYsMw1BkZKSaNGnilDmYod7BgweVlpbmlDnUhHPd49Spk+TjU/a4lStXSir5e/G666zff/5Zys8/v92snHG1cMZiOV894+7eSmfPnmWdqVrC4Qu8pKen68yZMyooKKhwbF1feAoAAAAAAKA2uJhwxlx3hsqZ2qO6Kme4UFv9nN3STJKCgoIUFRWlY8eOaevWrRo0aJDT5lKdzJZmFX1MzN+LFz4PffpYq01SUqR166QBA6zbXbWtmWQNZ/bulYKDeykx8VdFR0dzbb4WcEjlzNKlSzV+/Hg1btxYDRs2VGRkpFq0aFHuF71KAQAAAAAAql9cXJz2798vNzc3DTCvMlYC4UztcuLECcXFxclisdgWdrdX06ZNJUlJSUnKy8tzyDFRutoQzkjng7263NqsMuHMiRMnbFWBF67D5e4ujR5tvb1gwfntrtrWTJKaN7d+Dwy09nnbv3+/8yYDG7vDmcmTJ2vkyJH68ccfderUKRmGUekvAAAAAAAAVC+zdU+PHj3UoEGDSu9ntjXbt2+f8ov29oFTmBfT27Vrp3r16jnkmI0bN5anp6cMw1CCeeUZ1WLzuV5bvXr1cuo8zJZ4ZhVWXWMYlQtnzHW4unbtqqCgoBL3F113xryM7eqVM5Lk4dFaEuFMbWFXW7Mvv/xS77zzjiTJx8dH48aNU8+ePdWoUSO5ubGcDQAAAAAAgLNdTEszSYqKipK/v78yMzN18OBBXXbZZdUxPVSSo1uaSZKbm5vCw8N17NgxxcXF0eaomiQnJ+vIkSOSHPv6XQzz/HU1nImJkZKTJQ8PqUuXsseZoXVZrd2GDZO8vaVDh6ztwDp0cN01Z6Tz4Ux+frgkKTo62omzgcmucObDDz+UJDVr1kwrVqxQq1atHDIpAAAAAAAA2M8wDC1fvlxS1cMZNzc3dejQQZs2bdLu3bsJZ5ysOsIZybrujBnOoHqYVTNt27atUvVadTArZ6Kjo5Wenq7AwECnzsfRzMypUyfJx6fscWY4U9bvxXr1pCFDpF9+sbY2a9FCOn3aep8rhzPp6Q0lOaZyZvVqafNmadQoa3iFqrOrvGXnzp2yWCx64YUXCGYAAAAAAABqmSNHjuj48ePy8PBQ3759q7w/687UHmZbM/PiuqNERERIkmJjYx16XJxXW9abkaQmTZrY1hravn27cydTDSrT0iwuLk7R0dFyc3NT//79yxxXtLXZiRPW297ekpPztYtihjMnT3pLctexY8d09uxZu445Z4705JPSxx/bP79LlV3hjLlQWPfu3R0yGQAAAAAAADiO2dLsyiuvlL+/f5X3J5ypHZKTk3X8+HFJjr8OZ16op3Km+tSmcEaq263NKhPOmFUzPXv2VP369cscN3q09fsff0hmjhUaKlksDphoDQsLkzw9pYICiwIDO8gwDB08eNCuY65ebf0+cKD987tU2RXONG/eXJKUkZHhiLkAAAAAAADAgS52vRlTx44dJUm7d+922JxQdeZF9LZt2zq8DZVZOUM4Uz0Mw6i14YxZjVVXGIa1zZZUfjhj/l4sa70ZU3i41Lu39bgffWTd5ootzSTJzU0yl5QKD79Kkn3rziQkSNHR1qCqXz9HzPDSZFc4M2HCBEmy9S4FAAAAAABA7WAYht3hjFk5Ex0drZycHIfNDVVTXevNSIQz1S0+Pl6JiYlyd3dXt27dnD0dSedb49W1ypmYGCk5WfLwkLp0KXucWTlTUTgjSdddZ/2+aJH1e1iYvbN0HrO1WVCQtfrOnnVnzKqZbt1cs81bbWFXOPPEE08oMjJSM2fO1L59+xw1JwAAAAAAANhp7969OnHihHx8fHTllVde1DHCw8NVv359FRQUOGQBaVyc6lpvRiKcqW5m1UzHjh3l5+fn5NlYmSHfvn376lRHJDNr6thR8vEpfcyRI0d09OjRSq/DZYYzhmH97qqVM9L5cMbH5zJJ9oUzq1ZZvw8YYOekLnF2hTP169fX4sWLFRISoquvvlrvvfeeUlNTHTU3AAAAAAAAXCSzaqZv377y9va+qGNYLBZb9QytzZynJipnYmNjZZhXoOEwta2lmSSFhoYqPDxchmFou7mYSh1QlfVmevfurXr16lV4zE6dpBYtzv9cF8IZw7D2N7OnrRnrzTiGhz07t2zZUpKUlZWl1NRUPfroo5o8ebIaN25cYRJssVh06NAhe04PAAAAAACAMtjb0szUqVMnrVu3Trt27XLEtFBFKSkpOnr0qCSpe/fuDj9+eHi4JCknJ0enTp1SUFCQw89xKauN4YxkDfri4+O1devWSlWQuILKhDNV/b1osVirZ/79b+vPrtzW7Nzy8UpLayLJWjljGIYsFkuVjpOYKO3bx3ozjmBXOGP+w2AyDEOGYSgpKanCfav6ogMAAAAAAKByCgoKtOpc3xl7w5mOHTtKonLGWbZt2yZJatWqlRpUw+IOPj4+aty4sZKTkxUXF0c440CGYWjzuRXqa1s406NHD/300091Zt0ZwzgfzvTqVdYYo0rrzZjGjj0fzrhy5cxVV1m///mnv6R6Sk1NVXJysoKDg6t0nN9+s37v0kVq1Mixc7zU2BXO3HnnnY6aBwAAAAAAABxkx44dSk1NVUBAgN2tsMy2ZlTOOEd1tjQzRURE2MKZLuWtpI4qOXTokFJTU+Xl5WX7HNUW5vuproQzsbHSyZOSh4c1NCjNgQMHFB8fLy8vL11lJhWV0LevNYQ4dep89YkratPG2qLtyBGLgoNv1MmTnyg6OrrK4QzrzTiOXeHMp59+6qh5AAAAAAAAwEHM1j0DBgyQh4ddl39sF5UPHz6srKysWrOo+aWipsKZHTt2KC4urtrOcSkyq2a6desmLy8vJ8+mOPP9tHfv3jrxuT73VKtjR8nHp/Qx5u/FPn36yNfXt9LH9vSU5s+3tvJy5ezSYpFGjZLee0/y9h4r6RPt379fV199dZWOw3ozjuPm7AkAAAAAAADAsZYvXy7J/pZmkhQcHKzg4GAZhqG9e/fafTxUzdatWyVZ21BVl4iICElSbGxstZ3jUlRb15uRpLCwMIWEhKiwsFA7duxw9nTsVpn1Zi6mpZmpXz/p/vsvZma1y8iR1u/p6X0kWdedqYqkJGnPHutt1puxH+EMAAAAAABAHZKbm6s1a9ZIckw4I9HazFlOnz6tQ4cOSarecKZp06aSROWMg9XmcMZisdSp1mYVhTNF15tx1O9FVzRokLUSKD29saQ2io6OrtL+5noznTtLjRs7fn6XGoeGM9nZ2Vq3bp2+//57ffHFF0pPT3fk4QEAAAAAAFCBTZs2KTMzU0FBQercubNDjtmxY0dJhDM1zayaadGihRpV48rbZuUM4YzjFBQU2F6/2hjOSOdbm5nzdFWGUXE4s3v3bp08eVJ+fn7q3bt3zU2ulqlXr2jFy8gqV86w3oxjOSSciYmJ0Z133qkGDRqof//+uvHGG3XXXXeVKIX8+OOP1bt3bw0bNkyGYTji1AAAAAAAACjCXFdh0KBBcnNzzN/lmpUzu3fvdsjxUDnmRfPqXG9GIpypDnv37lVmZqbq1aundu3aOXs6pTKrsVy9ciY2Vjp5UnJ3L3tNGPP34tVXX13r1v+paaNGmbdG6uDBg8rPz6/0vqw341h2/wu9ceNGde/eXf/73/+Um5srwzDKDF6uu+467dy5UytWrNCSJUvsPTUAAAAAAAAuYF6EdGTrHtqaOYd50bw6W5pJhDPVwWxp1qNHD7m7uzt5NqUzQ7/du3fr7NmzTp7NxTOzpY4dJV/f0sfQ0uw8c90ZaaDy8tx17NixSu2XnCyZ/wT0718tU7vk2BXOpKWlaezYsTp16pRCQ0P13nvv6c8//yxzfHBwsEadi+Z+/vlne04NAAAAAACAC5w9e1br16+X5NiLkGZbs5iYGNrY16Bt27ZJqrlwJiUlxaUv0tcmmzdvllR7W5pJ1rWGgoODVVBQUO413drODGd69Sr9/oKCAq0+V/IxaNCgGppV7dWxo2T9yPtJ6l/p1mbmejMdO0rBwdU1u0uLXeHM22+/rRMnTqhx48b6/fff9Ze//MX2j3VZzJZmGzdutOfUAAAAAAAAuMD69euVm5ur8PBwtW3b1mHHbdCgge0CPq3NakZeXp4OHTokSRVeb7NXw4YN5Xuu5CA+Pr5az3WpMCtnanM4Y7FYbNUzrtzarKL1Znbs2KHU1FQFBARUe4tAV2CxFK2eqfy6M+Z6M7Q0cxy7wpmffvpJFotFjz/+uCIjIyu1j/mPifmPCwAAAAAAABzDbGk2ZMgQWSwWhx7bvKZDa7OacfToUeXn58vPz0/h4eHVei6LxUJrMwfKzc3Vjh07JNXucEZy/XVnDEM6V6RUZjhjtjTr37+/PDw8amhmtVvRdWeio6MrtY+53syAAdbvn3zyiYYNG6ZvvvnG4fO7VNgVzhw4cECS9Y1dWQ0aNJAkSmABAAAAAAAcrDrWmzGZ685QOVMzzAumbdq0kZub3ctGV4hwxnF27typ3NxcBQUFqUWLFs6eTrnMSpKtW7c6eSYXJzZWOnlScneXunQpfYz5e5GWZucNGSK5uRVKaq/t209XOD4lRdq503rbDGd+/vlnLVu2zJYRoOrs+s1u9qD09/ev9D4ZGRmSJB8fH3tODQAAAAAAgCLS09NtrZSq4yKkGc5QOVMzzHCmXbt2NXI+whnHMT+HvXr1cngFm6OZ4cyuXbuUk5Pj5NlUnVnw07GjdK4zXzF5eXn67dxiKdURWruqBg2kzp2t1+n37o2qcPyaNdbv7dtLTZpY1/ExK5KGDh1aXdOs8+wKZ4LPrfwTExNT6X3MErmwsDB7Tg0AAAAAAIAi1qxZo4KCArVq1UpRURVfbKsq2prVLDOcceTaQeUhnHGcouFMbRcZGalGjRopLy9Pf/75p7OnU2UVrTezZcsWZWRkqGHDhuratWvNTcwFjB7tKUlKS7vSVlBRlgvXm9m2bZtSU1MVGBjoEu/z2squcKZ3796SpEWLFlVqfEFBgWbNmiWLxaK+ffvac2oAAAAAAAAUUZ0tzSSpQ4cOkqQTJ04oOTm5Ws6B88xFumsqnGnatKkkKTY2tkbOV5dtPrcISm1fb0ayrjdkVs+44rozFYUzZnXHwIEDa6Q9oCuZMMEsNRqi3bvLb0124Xozy5Ytk2R9XlnH5+LZ9Y685ZZbZBiGPvnkE23btq3csYWFhfrLX/6iPXv2SJJuv/12e04NAAAAAACAIqo7nKlXr56aN28uiXVnagKVM64pMzPT9vlwhXBGct11Zwyj8uEM682U1K2b5Ol5SlKAfvrpVJnjUlOlHTust81wZvny5ZJoaWYvu8KZ66+/Xn369FFOTo6GDBmid999V0lJSbb7LRaLTpw4oS+++EK9evXSJ598IovFopEjR2qgWQMFAAAAAAAAu6SkpGj79u2SqvcipLnuDOFM9crIyLCFJG3atKmRcxLOOMa2bdtUWFio8PBwhYeHO3s6ldKjRw9Jrlc5ExcnJSVJ7u5SaR3LcnJytHbtWkmEM6Vxc5OiovZJklau9C5z3Jo11iCsXTspNFTKzs62Pa9DhgypkbnWVXbXcs2fP1+XXXaZTp8+rcmTJyssLMy20FWPHj0UHh6uu+66Szt27JBhGOrUqZPmzJlj98QBAAAAAABgtercggAdO3ZUSEhItZ3HDGdYd6Z6HTx4UJLUuHFjNWrUqEbOaYYz8fHxKiwsrJFz1kXmejOuUjUjna+c+fPPP5Wbm+vk2VTeue5x6thR8vUtef/GjRt19uxZBQcH29bMQnGXX54iSdqzp1mZYy5cb2b9+vXKzs5WWFiY2rdvX70TrOPsDmcaN26szZs3669//au8vb1lGIbtKycnx3bbw8NDDzzwgNavX68GDRo4YOoAAAAAAACQqr+lmcm8wEk4U71quqWZJIWGhspisSg/P18nT56ssfPWNa4YzrRo0UINGzZUbm6uS1XFVdTSzPy9OGjQIFsxAYobNcpDUqFOn45SfHzpY8pab2bo0KE8r3ZyyGo9fn5+evvttzV16lT9+uuv2rx5s5KSklRQUKCgoCB1795do0aNcplSPgAAAAAAAFdSU+FM0bZmhmFwYa6amOFMu3btauycnp6eCg0NVUJCgmJjY6u1AqsuM8OZXr16OXkmlWexWNSjRw8tX75cW7ZsUffu3Z09pUqp7Hoz1f170ZVdfnkLSZskXaFFiwzde2/x3+mnT0vmUvMXhjO0NLOfQ8IZU1BQkG699VbdeuutjjwsAAAAAAAAypCamqp9+6zrBvTv379az3XZZZfJzc1Np06dUmJiosLCwqr1fJeq/fv3S6rZyhnJ2tosISFBcXFxtlZXqLzU1FRbSzpXCmckFQtn7rvvPmdPp0KGUX44c/bsWf3++++SWG+mPC1btpTF8poM4wrNn5+te+8t3h9u7Vrrc92mjRQebn2Pm2sTEc7Yz+62ZgAAAAAAAHCevXv3SpKaNm1a7euT+Pj4qHXr1pJobVadnNHWTDq/7kxcXFyNnreuMC9at2zZUkFBQU6eTdWYYdzWrVudPJPKiYuTkpIkd3epa9eS969fv165ubkKDw9XmzZtan6CLsLLy0sRETslSatWeSg/v/j9F643s2rVKhUWFqpdu3Zq2rRpjc2zrqr2cCYnJ0fLly/XN998o40bN1b36QAAAAAAAC4pZjhTUwszF21tBsczDINwxkV9/vnnkqS+ffs6eSZVZ4YzO3bsUF5enpNnUzGzaqZDB8nXt+T9RVs90n6xfF265Eg6pYwMT114+f7C9WaWL18uybreDOxnVzhz7NgxPf3003r66ad1+vTpEvdv2LBBrVq10vDhw3Xrrbfqqquu0uWXX67jx4/bc1oAAAAAAACcU9PhTMeOHSVROVNdkpOTdfr0aVksFrVq1apGz004c/GOHz+ur776SpL06KOPOnk2VdeyZUsFBgYqJydHe/bsccocsrOzKx0MldfSrLCw0PZaDB8+3FHTq7Muu6yNpCWSpEWLzm9PS5PMQqoL15shnHEMu8KZefPm6c0339SKFSvUoEGDYvedOXNG48aNU0JCggzDsH1t2bJF1157rfIvrJECAAAAAABAlVE5U7eYVTORkZHyLa0koBqZbYpiY2Nr9Lx1wVtvvaX8/HwNHjzY5dabkSQ3Nzf16NFDknNamx04cECtW7dWx44dlZOTU+H48sKZ5cuX68iRI6pfv76uv/56B8+07mnXrp2kxZKkxYvPb1+3TioslFq1kpo2tf5e2L9/v9zc3DTQ7HMGu9gVzixdulQWi0Xjxo0rcd+sWbOUlJQkSZo8ebIWLFighx9+WJK0Z88ezZ49255TAwAAAAAAQM4LZ3bt2iXDMGrknJcSZ7U0k6icuVinTp3SRx99JEl6+umnnTybi2e2NjPXzqkpsbGxGjZsmOLi4nTgwAEtWLCg3PGGIW3ebL1dWg5mvha33Xab/Pz8HD3dOsf6u+ZXSdbn9dwl/RLrzZgtzXr16lWiUAMXx65w5vDhw5LOf3CL+vbbb2WxWDR+/HjNnDlTY8aM0TvvvKOJEyfKMAx999139pwaAAAAAADgknf27FkdPXpUUs2FM23atJGnp6cyMjJoXV8N9u/fL8n8a/aaRThzcd5//31lZmaqa9euLt1Gy6ycqclwJiUlRSNGjNCxY8fk7u4uyfpH/+WJi7MGCO7uUteuxe9LSkrS/PnzJUkPPPBAdUy5zrH+rkmUtE2StHSpdfuF682YLc2GDBlSsxOsw+wKZ8zKmJCQkGLb09PTbeVvd999d7H7br75ZknWxaUAAAAAAEDt9OWXX2qV+WezqLX2798vwzDUqFEjBQcH18g5PT09bcEBrc0crzZUzqSnpysjI6PGz++Kzp49q//85z+SrFUzrrz4vPkH+Dt27KiRJSkyMjJ07bXXas+ePYqIiNCKFStksVi0fPlyHTx4sMz9zOyoQwfpws5/s2fPVl5eni6//HJ1vTC5QalCQ0MVEBAgs7XZokXSmTPnn+cBAyTDMGyVM6w34zh2hTNnzpyRJBUUFBTbvm7dOhUUFMjd3b1E/7lmzZpJspb7AQAAAACA2mfLli267bbbNGjQIE2ePFnZ2dnOnhLKULSlWU1eFO7YsaMka2szOJYzw5mAgAAFBgZKonqmsmbPnq2kpCRFRUVp4sSJzp6OXdq0aaN69erp7Nmz2rdvX7WeKycnRxMmTNAff/yhRo0aacmSJerfv79GjBghSfrvf/9b5r5lrTdjGIatpdn9999fLfOuiywWy7nfN9Zw5tdfpTVrpIICqWVLKTLS+m9NQkKCfHx81KdPH+dOuA6xK5ypX7++JCk+Pr7YdvMva7p27Sp/f/9S9/Xx8bHn1AAAAAAAoJosXLjQdvvtt99W7969qZCopWp6vRlT0XVn4DgFBQW2igFnhDPS+eqZ2NhYp5zflRQUFOjNN9+UJD3++OPy9PR08ozs4+bmpu7du0uq3tZmBQUFuuOOO7R06VL5+/tr0aJF6tChgyTpwQcflCR9+umnys3NLXX/ssKZ1atX68CBA6pXr56texMqx1oNuV7e3jlKTpZmzLBuv7ClWd++fbmu70B2hTPmP8Tz5s2zbSsoKLCtNzNo0KAS+5ip+4Wt0AAAAAAAQO2waNEiSdJdd92lJk2a6M8//1SvXr30/vvvswB8LePscIbQzrFiYmKUk5MjLy8vRUZGOmUOrDtTefPmzdOhQ4fUqFEj3Xvvvc6ejkOYrc2qK5wxDEMPPfSQ5s6dKy8vL82fP1+9e/eWJOXmStdee63CwsKUlJSkBQsWlLJ/2eGMWTVzyy23nGvThcqyhjP5Cg21Bu7nOpjJbIpFS7PqYVc4M378eBmGoS+++ELPPPOMFi5cqFtvvVXHjh2TJN14440l9tm8ebMkOe0fGAAAAAAAULaUlBRt3LhRkvTSSy9p586dGjFihLKzs/Xwww9rwoQJSklJcfIsYXJWOGO2NduzZ0+Jdve4eGZLs9atW9sWR69phDOVYxiGXn/9dUnSI488Umb3IFdjhjPmeuKO9txzz+mjjz6Sm5ubvvzyS9vF/sJCqVkzqW9fT0VFfSNptN5998sS+8fHSydOSG5uUtElZVJSUvTdd99Jkh544IFqmXtdZlbqeXgsL7Z9wAApPz/f1ilryJAhNT21Os2ucObBBx9U+/btZRiG3nzzTY0dO9b2IRgzZox69epVYp958+bJYrGUWIsGAAAAAAA435IlS2QYhjp37qymTZsqJCREv/zyi2bMmCFPT0/Nnz9fXbp00cqVK5091Utefn6+7WJ+TYczLVu2lI+Pj7Kzs3XkyJEaPXddtn//fknOa2kmEc5U1qpVq7Rp0yb5+vrqkUcecfZ0HMYMZ7Zt2+bw4PWtt97SK6+8Ikn68MMPdf3119vu27dPSkqSNm6UNmzoJ+knrV79vdq3z9Gjj0pz51pDmXN/968OHSQ/v/PH/uKLL5Sbm6tu3brZHgMqz1o5I6WmfmXb1ry5FBVlLbZIT09Xw4YNbW3v4Bh2hTPe3t5avny5JkyYIA8PDxmGIU9PT91xxx364osvSoz/7bfftGfPHknSsGHD7Dk1AAAAAACoBmZLs1GjRtm2ubm56bHHHtMff/yhdu3aKT4+XkOGDNHf//535eXlOWuql7zDhw8rLy9Pfn5+Nd6hxN3d3RYIse6M45hhm3mh1BmaNm0q6dIJZ9LT05WTk1Pl/cyqmXvuuUfBwcGOnpbTtG3bVv7+/srKyrKFhY6wfPlyPfPMM5KkV199Vffdd1+x+zt0kI4dk/73P+n++yV//xhJbtq3z1vvvCPdeKMUGipNmmQdX7QmwDAMW0uz+++/XxaLxWHzvlS0adNGknTq1Ha1a2cN5S5cb2bw4MFOq+irq+wKZyQpNDRU3333ndLT0xUXF6f09HTNnj271L5+zZo108qVK7VixQpdfvnl9p4aAAAAAAA4UGFhoRYvXixJGjlyZIn7u3fvri1btujee++VYRh65ZVX1LdvXx06dKimpwqdb2nWrl07ubnZfYmnysx1ZwhnHMcMZ2pD5UxsbKzT5lBT0tLS1Lx5c7Vt21b79u2r9H47d+7U4sWL5ebmpscff7waZ1jz3N3dbZUn69evd8gxFyxYoHfffVeS9NRTT9lCmgtFRkq33SbNmiV9/vkmSSEKDLxXDz9coK5dJYtFSk+3ju3T5/x+69ev1549e+Tr66vbbrvNIXO+1NSrV8/22b/mmhhZLOeDMDOcoaWZ4znsX25vb2+FhYXJy8urzDEtWrTQgAEDNGDAABJMAAAAAABqmW3btunkyZOqV6+err766lLH+Pv767///a++/fZbNWjQQBs3btS1114rwzBqeLZw1nozJjOc2b17t1POXxfVpnDmUqic2bRpk1JTU3X8+HH169ev0uusmFUzEydOVMuWLatzik7Rr18/SdKaNWvsPlZqaqruvPNOFRYW6q677tJrr71Wqf3GjBmjkBCL0tM/0eDB87V9u5ScLP34o/Tf/0p33XV+rFk1c9NNN6l+/fp2z/lSZVbsde36m/LypMGDpczMTP3++++SZFsfCI5T839W4WCvvPKKLBaLpkyZYttmGIamTp2q8PBw+fr6auDAgSX+QyEnJ0ePPvqoGjduLH9/f1133XWXxF8EAAAAAABQFrOl2dChQ8v940vJelFy+/bt8vDw0P79+3Xs2LGamCKKcHY407FjR0nSn3/+6ZTz1zXZ2dm2z5EzwxmzrVliYqLOnj3rtHnUhKJVX8nJyRo4cKB+++23cvc5duyYvv76a0nS008/Xa3zcxZHhjMrV65UVlaWwsPD9d5771X6D/Y9PT11zz33SJJmzZolSWrUSBozRrr3XsnT0zru9OnT+vbbbyVJDzzwgN3zvZSZ4Ux09H6Z3cvWrl2r3NxcNWvWTK1bt3bi7Oomu8OZrKwsZWVllXn/22+/rX79+ql9+/a65pprtHDhQntPabNp0ybNmjVLXbp0Kbb99ddf14wZM/TOO+9o06ZNCg0N1bBhw3TmzBnbmClTpmjevHn6+uuvtXbtWmVkZGj06NEOX+gKAAAAAABXUdp6M+WJiopS165dJUl//PFHtc0LpXN2ONOtWzdJ0r59++r8RfyacOjQIRmGofr16zt1DZMmTZooLCzs/7N339FRld3fhz+TTiihl9CbtACh995BqgpILyqCgigIIhYUhUdRREGx/EBQpChIL4beew29d0INJJCQet4/8s4I0pLMTGYm+V5rZSmZc+57T5gTkrNn741hGKn+ujYnZwYPHkzdunUJDw+nWbNmLF269InnfPPNN8TFxdG4cWMqVqyYUqGmqBo1auDm5saZM2esrqBas2YNkPD9wsPDI0nnvvrqqwAEBQVx5syZxx7zxx9/EBkZSZkyZahevbpVsaZ15uTMg7OGVq9eDSS8aUOdsGzPquTM4sWLyZgxI/7+/g8lPsz69OnD4MGD2bJlC8eOHeOff/6hbdu2ltI/a9y9e5euXbvyyy+/kCVLFsvnDcNgwoQJjBw5kg4dOhAQEMD06dOJiIhg5syZQEI/ySlTpvD111/TuHFjKlSowIwZMwgODrb00BMRERERERFJS27dusW2bduAx8+beZJq1aoBSs6kNMMwLDMyHJWc8ff3J2fOnMTFxal6xgYebGnmyJugJpOJev9/Evj69esdFkdKML9ua9asyYoVK3j++ee5f/8+7dq1Y9asWY8cf/PmTUsLrdRaNQOQKVMmS/LV2uoZc3Lmv2+uT4zChQvTtGlT4N/WZQ8yDMNSVfPqq68qeWAlc8We+XsR/DtvRi3N7CNp6cr/+OeffzAMg3bt2pExY8aHHtu0aRPTpk3DZDLh6+trGawVGRnJBx98QKtWrSzlr8nxxhtv0KpVKxo3bsxnn31m+fyZM2cICQmxXLiQMA+nXr16bNmyhX79+rF7925iYmIeOsbf35+AgAC2bNlCs2bNHrtnVFQUUVFRlj+H/f8JVDExMcTExCT7uYg4mvn1q9exiPPT9SriWnTNirgOXa8JVTPx8fGUKlWKPHnyJPprYR4cvW3btjT99UtpFy9eJDw8HHd3dwoWLOiwr31gYCBBQUHs3LmTChUqpNi+qfGaPXz4MADFihVz+POqXbs2s2fPZt26dbz//vsOjcVe4uPjLWMQSpYsiYeHB3PmzOGVV15h1qxZdO3alZs3b9KvXz/LORMnTiQiIoLAwEDq1avn8L8ne6pVqxZ79uxh/fr1vPDCC8la48qVKxw5cgSTyUSZMmWS9fXq06cPQUFBTJ06lQ8++ABPcz8zEroqHThwAG9vbzp37pyq/z5Sgnl+0okTJ4iKiuLWrVvs27cPSGh1p69v4iX2a2VVcmbbtm2YTCYaNGjwyGPmrKW/vz9bt24lX758XLhwgdq1a3Px4kV++uknvvvuu2TtO3v2bPbs2cPOnTsfeSwkJASAXLlyPfT5XLlyWfp2hoSE4OXl9VDFjfkY8/mPM3bsWD755JNHPh8UFISvr2+Sn4eIs1m5cqWjQxCRRNL1KuJadM2KuI60fL1OnToVSHjn7LJlyxJ93v379wHYvXs3ixYtSnLbGkke8w2z3LlzO7QLiPnNugsXLrTMKklJqemaXbt2reX/k3IN2oNhGABs2bKFhQsXPnRDPLW4evUq9+7dw8PDgxMnTnD69GkgYZ7WnTt3WLZsGQMHDmTbtm28+OKLREdH88033wDQqFEjSxvI1CpdunRAwmsxKdWUDzJXXhUuXJiMGTMm63r18PAgc+bMXL16lU8//ZQaNWpYHvv+++8BqF69uqXyU5IvLi4ODw8P7t+/z/Tp0zl58iSGYVCgQAH27Nnj6PBcytPGwDzIqp+Yrl27BkDx4sUfeWzFihWYTCYGDhxo+cc5f/78DBw4kGHDhiW7LPLChQu89dZbBAUF4ePj88Tj/lvGZhjGM0vbnnXMiBEjeOeddyx/DgsLI3/+/DRt2pRMmTIl8hmIOJ+YmBhWrlxJkyZNUuUPXCKpia5XEdeia1bEdaT16zU+Pp7XX38dgP79+9OwYcMknTty5Ehu375Nvnz5Uu0MBmdjvpFcqVIlWrZs6bA4IiMjmTdvHjdv3kzROFLjNWseA9CqVSuH/p1Cwj2y0aNHc+3aNbJnz06tWrUcGo89LF68GIDSpUvTunXrhx5r1aoVn3zyCWPGjOGPP/4gV65cFCpUiLCwMAoVKsTo0aNTfSK6UqVKfPnll5w/f57q1auTNWvWJK+xcOFCAMvXN7nX66uvvsq4cePYu3cvo0ePBiA8PJyuXbsC8NFHH1GnTp0kryuPKl68OEeOHCFv3ryWwoh27do5/HuSqzF33HoWq76LXL9+HYAMGTI89PnDhw9z48YNTCYTbdq0eeixypUrA3D27Nlk7bl7926uXbtmKZuGhKzehg0bmDRpkmVgUUhICHny5LEcc+3aNUs1Te7cuYmOjiY0NPSh6plr165Rs2bNJ+7t7e2Nt7f3I5/39PRMNT8ISNqm17KI69D1KuJadM2KuI60er3u3buXkJAQ0qdPT/369ZP8NahatSpBQUHs2bPHMoNG7Ms8E6BMmTIOfc1WrVoV+HewekrHkpqu2RMnTgAJyQJneE5169Zl7ty5bN68mfr16zs6HJszz2wqV67cY7/en3/+OdmzZ+edd95h/PjxlmOGDBliqSpJzfLly0eJEiU4duwYO3bseCSBlRjr1q0DEiqN4uPjk3299uvXj3HjxrFy5UouXrxI4cKFmTt3Lvfu3aNEiRI0aNBA82ZspGTJkhw5coTTp09bqvlSUxI8pST26+VmzSbu7u5AwtDAB5kHReXIkYOSJUs+9Jg5GWIue06qRo0aERwczL59+ywflStXpmvXruzbt48iRYqQO3fuh8rkoqOjWb9+vSXxUqlSJTw9PR865sqVKxw8ePCpyRkRERERERGR1Mjcnqdhw4aPfVPis5gTMtu3b7dpXPJkR44cAaBUqVIOjaNw4cL4+fkRHR1tmZkiSRcaGmp5E/TjOtQ4gjkhY77BntqYE4oBAQFPPObtt99m6tSpuLm5ERMTQ7Zs2ejTp09Khehw5moU873epDhz5gxnzpzBw8PD6sqrokWL0rhxYwzDYMqUKQD88ssvQEJVjRIztlOiRAkgYdb8qVOncHd3p169eg6OKvWyKjmTN29e4N8+p2ZLly7FZDI9tpzszp07AGTPnj1Ze2bMmJGAgICHPtKnT0+2bNkICAjAZDIxePBgxowZw/z58zl48CC9evXC19eXLl26AODn50ffvn0ZMmQIq1evZu/evXTr1o2yZcvSuHHjZMUlIiIiIiIi4qpWrFgBQIsWLZJ1vpIzKc9ZkjMmk4kKFSoAaCaBFcxVM/7+/o90qHEU8w3ZLVu2pMpB4MHBwcDTkzMAvXv3Zu7cuRQsWJAxY8akqbnT1iRnzFUXVatWtcymska/fv2AhPloO3fuZNeuXXh6etKjRw+r15Z/Pffcc8C/c6+qVatmk78/eTyrkjN16tTBMAwmTZrEjRs3ANi5c6flh7pmzZo9co75h4fcuXNbs/VTDRs2jMGDBzNgwAAqV67MpUuXCAoKeuiF9M0339CuXTs6duxIrVq18PX1ZfHixZZqIBEREREREZG04Pbt22zZsgVIfnLG3Nrq6NGj3L5921ahyRPcunXLMgf4vx1LHME8Z0jJmeQzt+k33xh1BqVLlyZbtmxERESwa9cuR4djU9HR0Za2ZmXLln3m8e3bt+fs2bO89tpr9g7NqZiTM7t27Ur0gHOzNWvWACRphtnTtGnThpw5c3LlyhW6d+8OJPy95MiRwybrSwJz5YxhGAAqZLAzq5IzAwYMwM3NjTNnzlCkSBEqV65MvXr1iI2NJUuWLHTq1OmRc9asWYPJZCIwMNCarR+ybt06JkyYYPmzyWRi1KhRXLlyhfv377N+/fpHsuA+Pj5MnDiRmzdvEhERweLFi8mfP7/NYhIRERERERFxBatWrSIuLo6SJUtSqFChZK2RI0cOihQpAmAZICz2Y37ja/78+Z2iykLJGeuZZwg5U3LGzc2NunXrArB+/XoHR2Nbx48fJzY2lowZM+p+4FMUKlSIvHnzEhsbm6TKSMMwbJ6c8fLyonfv3sC/ycy0lixLCebkjJmSM/ZlVXKmYsWKjBs3DpPJxN27d9mzZw/379/H09OTX3755ZGSpzt37rB06VIgYZCQiIiIiIiIiDiWed5McqtmzNTaLOU4S0szM3NyZt++fcTFxTk4GtdkTs7898aoo5lbm6W25MyD82Y0r+TJHhxbkZTWZseOHePKlSt4e3tTo0YNm8XzyiuvWP6/SJEiNGjQwGZrS4Js2bKRNWtWAHx9fS3/tot9WJWcgYTBWHv37uXDDz/k1Vdf5aOPPuLAgQO0b9/+kWPXrVtHlSpVqFu3rrJuIiIiIiIiIg5mGIalNXnz5s2tWkvJmZTjbMmZ5557Dl9fXyIiIiyzUyRpnLFyBv5NzmzatInY2FgHR2M75uRMYlqapXXJSc6Yq2Zq1aqFj4+PzWIpVqyY5Q3/r732Gm5uVt/alscwJ4nr1auHl5eXg6NJ3TxssUjZsmUT9c2sbdu2tG3b1hZbioiIiIiIiIiVgoODuXz5Mr6+vpb2Rcn1YHLGMAy9G92OnC054+7uTvny5dm6dSt79uxxijk4rsQwDKdNzpQtW5bMmTNz+/Zt9u7dS5UqVRwdkk0EBwcDPDIGQR5lTs5s3bqV2NhYPDyefTvZ1i3NHjR9+nSWL19Ojx49bL62JKhevTpbt26lTZs2jg4l1VN6UURERERERCSNMrc0a9CggdXvbg4MDMTT05Pr169z9uxZG0QnT+JsyRnQ3BlrXL58mYiICNzd3SlcuLCjw3mIu7u75eZ8ampt9mBbM3m6MmXKkCVLFu7du8fevXufeXx8fDxr164F7JOcyZMnD3369ElUkkiS55NPPmHFihWa6ZMClJwRERERERERSaNsNW8GwMfHh8DAQECtzewpIiKCc+fOAUrOpBbm4eZFihTB09PTwdE8KrXNnbl37x6nT58GlJxJDDc3N2rVqgUkrrXZgQMHuHXrFhkyZKBy5cr2Dk/sIGPGjDRr1kxt41KAzVOMZ8+e5caNG0RGRmIYxlOPtbZkWkRERERERESSJywsjM2bNwPWz5sxq1atGjt37mT79u107tzZJmvKw44dO4ZhGGTLlo0cOXI4OhwLc3Jm7969amuXRM7a0szMnJzZuHEjcXFxuLu7Ozgi6xw6dAiAXLlyOdU15Mzq1KnDkiVL2LhxI++8885TjzW3NKtbt65TJhtFnIlNkjPHjh1jzJgxLFq0iLCwsESdYzKZUtUgMRERERERERFXsnr1amJjYylevDhFixa1yZrVqlVj0qRJqpyxI2dsaQZQunRpvLy8uH37NmfPnnW69lzOzJycMQ/hdjaBgYFkzJiRO3fucODAASpUqODokKxibmmWmPnZksDc2m7Tpk3PTL7ac96MSGpjdW3SggULqFixIjNmzODOnTsYhpHoDxERERERERFxDFu2NDOrWrUqkNDaKjo62mbryr+cNTnj5eVlaRGl1mZJ4+yVMx4eHqlq7ozmzSRdpUqVSJcuHTdu3ODo0aNPPC4mJsbyGlFyRuTZrErOXLhwgW7duhEZGYm/vz8TJkzg559/BhIqY1avXs3cuXN577338Pf3B6B27dqsWrXKkkUVERERERERkZRlGIZdkjPFixcnS5YsREVFceDAAZutK/9y1uQMaO5Mcjl7cgb+bW22bt06xwZiA8HBwYCSM0nh5eVFtWrVgKfPndm9ezd3794lS5YslC9fPqXCE3FZViVnvvvuOyIiIsiYMSPbt29n0KBB1KhRw/J4gwYN6NChA2PGjOHEiRN07tyZzZs3M2XKFMs3dRERERERERFJWYcOHeLixYv4+PjY9Pdzk8lkqZ5RazP7UHImdYmJibEMp3eF5MzGjRuJj493cDTWUVuz5DFXTz0tOWN+M36DBg00TF4kEay6SlatWoXJZGLAgAGWypgnSZcuHTNmzKBChQrMnj2befPmWbO1iIiIiIiIiCTTihUrAKhfvz7p0qWz6drmd1crOWN7sbGxnDhxAnD+5Iza2SfOmTNniIuLw9fX95n31hypYsWKpE+fnlu3blmSG67oxo0bhISEAAlzkiTxkpKcUUszkcSxKjlz9uxZAGrWrGn53IMDoWJjYx/ezM2NQYMGYRgGU6dOtWZrEREREREREUkme7Q0M1Nyxn5OnTpFTEwMvr6+5M+f39HhPKJs2bK4ublx7do1rly54uhwXMKxY8eAhKqZpw1ZdzRPT09q1aoFuPbcGXNiqXDhwmTIkMHB0biWGjVq4O7uzrlz57hw4cIjj9+/f5/NmzcDSs6IJJZVyZl79+4BPPQDga+vr+X/79y588g5ZcqUAWD//v3WbC0iIiIiIiIiyRAeHm5557M9kjPmtmbHjx8nNDTU5uunZeaWZiVLlnTKlkG+vr6Wih61NkscV5g3Y2ZubZYakjNqaZZ0GTJkoEKFCsDjq2e2bt3K/fv3yZ07NyVLlkzp8ERcklX/kvv5+QEJmVGzbNmyWf7/1KlTj5wTFhYGJJQRioiIiIiIiEjKWrNmDTExMRQtWpTixYvbfP3s2bNTtGhRAHbs2GHz9dMyZ543Y6a5M0ljTs6UKFHCwZE8mzk5s2HDBpdtWxccHAxAQECAgyNxTXXr1gUen5x5sKWZM1eBiTgTq5Iz5n84zIPLADJmzEjBggUBCAoKeuScVatWAZA5c2ZrthYRERERERGRZDC3NGvevLnd9lBrM/tQcib1caXKmSpVqpAuXTquX79ueS26GnPljJIzyfO0uTOaNyOSdFYlZ2rUqAHAtm3bHvr8888/j2EYjBs3znJhAsydO5cJEyZgMpksfSpFREREREREJGUYhsGKFSsA+7Q0M1Nyxj5cKTmzd+9eB0fiGlwpOePl5WW5F+iKrc0Mw1BbMyvVrl0bgEOHDnHz5k3L58PDwy2VkkrOiCSeVcmZli1bYhgGf//9N3FxcZbPv/vuu/j6+nL37l2aNGlCjhw5yJQpE506dSIyMhI3Nzfeffddq4MXERERERERkcQ7fvw4586dw9vbmwYNGthtnweTM67a/sjZGIbB0aNHAedOzgQGBgJw/vx5tbR/hrt373L58mUAu7QYtAdXnjtz4cIFwsLC8PDwcIlkmDPKnj275fvPpk2bLJ/ftGkTsbGxFCpUiMKFCzsqPBGXY1Vypn79+nz88cf07t2bS5cuWT5foEAB/vrrL/z8/DAMg5s3b3L37l0Mw8Db25tffvmF6tWrWx28iIiIiIiIiCTezp07gYT2RL6+vnbbJzAwEC8vL27evPlQK3RJvosXL3L37l08PDwoVqyYo8N5okyZMlniU/XM05mrZnLkyEGWLFkcHE3iPJiccbXEq7lqpkSJEnh5eTk4Gtf1uNZmamkmkjwe1pxsMpn4+OOPH/tYixYtOHnyJH/99ReHDh0iNjaW4sWL07FjR/LmzWvNtiIiIiIiIiKSDOab5RUqVLDrPt7e3gQGBrJjxw62b99O0aJF7bpfWmBuaVasWDE8PT0dHM3TVaxYkZMnT7Jnzx6aNGni6HCcliu1NDOrVq0a3t7ehISEcOLECZeKXS3NbKNOnTr8/PPPSs6I2IBVyZlnyZo1K/369bPnFiIiIiIiIiKSSOYh7fZOzkDCTVxzcqZLly523y+1c4V5M2YVK1bkzz//tLze5PFcMTnj4+ND9erVWb9+PevXr3ep2IODgwEICAhwcCSuzVw5s2fPHu7du0dUVJQl8W/PdpkiqVGS25pdvXqVYcOGUbZsWTJlykT69OkpXrw4r732muUHBRERERERERFxLoZhsG/fPiDlkjOQMHdGrOdqyRlQW7NnMSdnSpQo4eBIksbc2mzdunWODSSJzJUzSs5Yp2DBguTPn5/Y2Fi2bdtmaXFXsmRJ/P39HR2eiEtJUnJm27ZtlClThq+//prDhw9z9+5dIiMjOX36NFOmTCEwMJCZM2faK1YRERERERERSaazZ89y+/ZtPD09KV26tN33Mydn9u7dS3R0tN33S+1cKTljTv6dOHGCsLAwB0fjvFyxcgZcc+5MbGys5RpSWzPrPTh3Ri3NRJIv0cmZsLAwXnzxRW7duoVhGBiGQbZs2ciVKxeQ8A6cmJgY+vbtqwoaERERERERESdjrmIICAhIkWHYRYsWJVu2bERHR7N//36775fauVJyJnv27OTPnx/AUq0lDzMMw2WTM9WrV8fT05NLly5x+vRpR4eTKCdPniQqKgpfX18KFSrk6HBcnpIzIraR6OTM1KlTuXz5MiaTiXbt2nHy5EmuX7/OlStXuHLlCgMHDgQgOjqar7/+2m4Bi4iIiIiIiEjSmZMzKdHSDMBkMlG1alVArc2sdfPmTa5fvw5AyZIlHRxN4phbm2nuzONdu3aNO3fuYDKZKFq0qKPDSRJfX1/Ltb1+/XoHR5M45pZmZcqUwc0tyVMe5D/MyZlNmzZx+PBhAOrXr+/AiERcU6K/Gy1btgxIyI7PmzePIkWKWB7LmTMn3377Lb1798YwDMuxIiIiIiIikroZhsHt27cdHYYkQkonZ0BzZ2zFXDVToEAB0qdP7+BoEkfJmaczV80ULFgQHx8fB0eTdA+2NnMFwcHBgFqa2UqpUqXImjWrpWVlYGAg2bJlc3BUIq4n0cmZgwcPYjKZeOONNzCZTI895q233gLg6tWr3Lx50zYRioiIiIiIiNP68MMPyZ49O3/99ZejQ5FnUHLGdblSSzMzc3LG/LqTh7lqSzMzV0vOmCtnAgICHBxJ6uDm5kbt2rUtf1ZLM5HkSXRy5tatW8DTy2cf/CEhNDTUirBERERERETEFcydO5e4uDj69+/PtWvXHB2OPMG1a9csrcrLly+fYvuaWx+dOHHCcl9Bks4VkzPmJODhw4eJiIhwcDS2sXnzZptVCq5evRpw3eRMzZo1cXd359y5c5w7d87R4TyTOTmjyhnbMbc2AyVnRJIr0ckZc5na00otPT09HzleREREREREUqcbN25w7NgxIGEmhnkWqTgfc/VC8eLFyZAhQ4rtmzVrVooXLw7Ajh07Umzf1MYVkzP+/v7kzJmT+Ph4S0spV7ZmzRpq165NjRo1uHv3rlVrzZo1i1mzZmEymejcubONIkxZGTJkoHLlyoDzV89ERkZy8uRJQJUztlS3bl0A3N3dH0rUiEjiaQKWiIiIiIiIJMu2bdsAyJ49O+7u7vz5558sWLDAsUHJYzmipZmZWptZzxWTMyaTKVXNnVmyZAkAR48e5dVXX8UwjGStc/LkSV577TUAPvjgA2rVqmWzGFOao1qbGYbBlClT2LlzZ6KOP3LkCPHx8WTLlo1cuXLZObq0o0qVKnz44YdMnjyZTJkyOTocEZek5IyIiIiIiIgky5YtWwBo06YN7777LgD9+/dXm2snpOSM67p3756lbZQrJWeAVJWcWbt2reX/Z8+ezQ8//JDkNaKioujUqRN3796lbt26fPTRR7YMMcXVr18fSPnkzKxZs3jllVdo3rx5ov69ebCl2ZPmaEvSmUwmPv30U1599VVHhyLisjySesIHH3xA5syZrT7OZDIxZcqUpG4vIiIiIiIiTsKcnKlZsyZdu3Zl/vz5HDt2jCFDhjB16lQHRycPcobkzI4dOzAMQzdHk8jcOjB79uxkz57dwdEkjTk5Y379uapbt26xf/9+AIYPH84XX3zB22+/TZUqVSxzlRJj+PDh7Nmzh2zZsjFz5kw8PJJ8W86p1KpVCzc3N06dOsXly5fx9/e3+57x8fF8/vnnQMLfy5gxYxg3btxTzzG31VNLMxFxNkn+V2DhwoVPfdz8Q9azjgOUnBEREREREXFRMTExlhkiNWvWxMfHhylTplCnTh1+/fVXOnfuTNOmTR0cpQCEh4dz4sQJwDHJmXLlyuHl5cXNmzc5deoUxYoVS/EYXJkrtjQzM7/egoODiY6OxsvLy8ERJc+GDRswDIOSJUsyduxYTp48ybx583jppZcsyZZnWbhwId9++y0A06dPJ2/evPYO2+4yZcpEQEAABw4cYPv27bRv397uey5YsIDDhw/j5eVFdHQ03333HQMGDKBw4cJPPMdcOaPkjIg4myS1NTMMw2YfIiIiIiIi4rr2799PZGQkWbJkoUSJEkDCu6jffPNNAF577TWrh2aLbZjf8Z83b15y5MiR4vt7e3tbbtKnhdZm27ZtIyAggHHjxhEfH2/1eq6cnClcuDB+fn5ER0dz+PBhR4eTbOvWrQMS2niZTCamTp1K8eLFOX/+PN27d3/m3/P58+fp3bs3AO+88w6tWrWyd8gppnr16sC/M8jsyTAMS9XMu+++S+PGjYmOjmbEiBFPPe/BtmYiIs4k0cmZM2fO2PTj9OnT9nxeIiIiIiIiYkfmlmY1atTAze3fXy3HjBlDoUKFOHfu3DNvmEnKMLeUMreYcoS0NHfm119/5dChQwwbNoznn3+e69evJ3ut8+fPWwbRu2JyxmQypYq5M+Z5Mw0aNAASKkbmzp1LunTpWL58OWPGjHniuTExMbz88suEhoZSpUoVxo4dmyIxp5SUTM78888/7NmzB19fXwYPHsxXX32FyWRizpw5T9w/NDSUixcvAlCmTBm7xygikhSJTs4ULFjQ5h8iIiIiIiLimh6cN/OgDBky8PPPPwMwadIkNm3alOKxycMcOW/GzHwDd+vWrQ6LIaXs3r3b8v/Lly8nMDCQjRs3JmmNuLg4JkyYQOnSpdm/fz8+Pj60bNnS1qGmCFdPzty8eZMDBw4AUK9ePcvny5Urx+TJkwH46KOPWLVq1WPP//jjj9myZQuZMmVi9uzZLtva7UnM1/bOnTuJjY212z6GYfDZZ58B8Prrr5M9e3bKly9Pr169ABgyZMhjO/UcOnQIgPz58+Pn52e3+EREkiNJbc1ERERERERE4MnJGYAmTZrQp08fAPr27UtkZGSKxiYPM98Ud2Ryxvw62bdvHxEREQ6Lw96ioqIsN/IXLlxIyZIluXz5MvXr1+fzzz9PVJuzvXv3Ur16dd5++23u3btH7dq12b17N88995y9w7cL8+vOnCR0NevXrwegdOnS5MqV66HHevbsySuvvIJhGHTp0oVLly499PjKlSv53//+B8D//d//UaRIkZQJOgWVKFGCzJkzExkZSXBwsN322bBhA5s3b8bb25shQ4ZYPj969Gh8fX3ZsmUL8+bNe+Q8tTQTEWem5IyIiIiIiIgkyYULF7hw4QLu7u5UqVLlscd8/fXX5MmTh+PHj/PJJ5+kcIRiFhUVZXnnuCOTMwUKFMDf35/Y2Fh27drlsDjs7eDBg8TExJA1a1Zat27Nzp076dGjB/Hx8XzwwQc0b96cq1evPvbce/fuMXToUKpUqcKuXbvw8/Pj559/Zv369ZQuXTqFn4ntmCtn9u3bR1xcnIOjSboH5808znfffUdgYCDXr1+nU6dOxMTEABASEkK3bt0wDIN+/frx0ksvpVDEKcvNzc3SttCerc3MVTN9+vTB39/f8vm8efMydOhQAIYPH050dPRD55kTRgEBAXaLTUQkuZScERERERERkSQxt6YqX748GTJkeOwxmTNntrT8+eqrrx5q9SQp59ChQ8TGxpIlSxYKFCjgsDhMJpOlesZcdZUamRNPlSpVwmQykSFDBqZPn86vv/6Kr68vK1euJDAwkDVr1jx03vLlyylTpgxff/01cXFxdOzYkSNHjvDqq68+NNPJFT333HP4+voSERHB8ePHHR1Okv133sx/pUuXjrlz5+Ln58fmzZt57733iIuLo1u3bly7do2yZcvyzTffpGTIKc7ec2e2b9/OqlWr8PDwYNiwYY88/u6775I7d25Onz7NDz/88NBj5soZJWdExBm59r/wIiIiIiIikuKe1tLsQW3btqVTp07ExcXRp0+fR97RLPb34LwZk8nk0FjSUnKmcuXKD32+V69e7Ny5kzJlyhASEkLjxo0ZNWoUly9f5uWXX6Zly5acO3eOAgUKsGTJEubMmUOePHkc8RRszt3dncDAQMD15s5cv37dcnP/wXkz/1W0aFGmTZsGwPjx42nXrh2rV6/G19eXOXPmkC5dupQI12HsnZz5/PPPAejWrRuFChV65PEMGTIwevRoAD799FNu3boFJMypMVfOqK2ZiDgjJWdEREREREQkScyVM89KzgBMnDiRbNmyceDAAb744gt7hyb/8WByxtEeTM48bnB3amCuEKtUqdIjj5UuXZodO3bQp08fDMPgk08+oUCBAsyePRs3NzfefvttDh06RKtWrVI6bLsztzZzteSMed5MQEAAOXLkeOqx7dq1s7TXWrJkCQDff/89pUqVsm+QTqBq1aoAHD9+nJs3b9p07QMHDrB48WJMJhPvvffeE4/r3bs3AQEBhIaGWpI5V65cITQ0FDc3N0qWLGnTuEREbEHJGREREREREUm0yMhIyw3WxCRncuTIwXfffQckDG4+cuSIXeOThzlTcqZChQp4e3tz8+ZNTpw44ehwbO7+/fuWd+n/t3LGzNfXlylTpvD777+TPn164uLiqFChAjt27GD8+PFPbBPo6syvP/Pr0VU8a97Mf40ZM4Y6deoACVUePXv2tFNkziVr1qyUKFECgB07dth07TFjxgDQsWNHyx6P4+7uzldffQUkvCng1KlTlqqn4sWL4+PjY9O4RERsQckZERERERERSbRdu3YRGxuLv79/omeYvPzyy7Ro0YKYmBh+/vlnO0coZnFxcezfvx9wjuSMl5cXVapUAVJna7Pg4GBiY2PJnj37M6+Nbt26cfDgQf7++2927Njx2Eqb1MScrNqxYwcxMTEOjibxnjVv5r88PT1ZsWIFy5YtY+rUqQ5vJZiSzK3NzJWVtnDs2DH+/PNPAN5///1nHt+sWTOaNWtGTEwMI0aMUEszEXF6Ss6IiIiIiIhIoj04byaxNx5NJhOvvfYaAAsXLky1La2czcmTJ7l37x7p0qV76jvOU1JqnjtjnjdTqVKlRF0bhQoVon379nh4eNg7NIcLCAgga9as3Lt3z/J1cnbXrl3j8OHDANStWzfR5/n6+tKiRQs8PT3tFZpTssfcmf/9738YhkGbNm0oV65cos4ZN24cbm5u/PXXX/z2229AwutPRMQZKTkjIiIiIiIiifZgciYpmjRpgo+PD2fOnOHQoUP2CE3+w9xCqly5cri7uzs4mgRpITnzpJZmaZmbm5ulNZi5GsXZmVualStXjuzZszs2GBdgTs5s376d+Ph4q9c7e/Ysv//+OwAjR45M9Hlly5alT58+QMK8GlByRkScl5IzIiIiIiIikiiGYVhuqteoUSNJ56ZPn57GjRsDCdUzYn/ONG/GzPy6OXToELdv33ZsMDa2e/dugFTfoiy5zK3B1qxZ4+BIEiep82bSuoCAAHx9fQkLC+Po0aNWr/fll18SFxdHkyZNqFq1apLO/fTTT0mfPr3lz2prJiLOyqrkjC1LFUVERERERMS5nTx5khs3buDt7Z2sG/5t2rQBYNGiRbYOTR7DGZMzOXPmpFixYkDquqcQGRlpGT6uypnHa9iwIQCbN28mKirKwdE8W1LnzaR1Hh4elplS1l7bly9fZurUqUDSqmbM8uTJw7BhwwDw9vamaNGiVsUjImIvViVnatasSZkyZfj666+5du2arWISERERERERJ2SumqlcuTLe3t5JPr9169ZAwlDwy5cv2zQ2eZhhGE6ZnIHU2drswIEDxMXFkTNnTvLly+focJxSqVKlyJUrF/fv32f79u0psufFixf5448/uHnzZpLOCwkJ4ejRo5hMpiTNm0nrbDV35uuvvyYqKoratWsn++s/ZMgQOnXqxKeffuo0bR1FRP7L6rZmR48eZdiwYeTPn58OHTqwePFim/SWFBEREREREeeS3HkzZrlz56ZatWoALFmyxGZxyaMuXbrEjRs3cHd3d7qWPqkxOWOeN1OpUiVMJpODo3FOJpMpRVqbhYWFMW3aNBo1akSBAgXo1q0bPXr0SNIa5pZm5cuXJ2vWrHaIMnWyRXLmxo0b/Pjjj0BC1Uxyr6f06dMze/ZsSwWNiIgzsio58+233xIYGIhhGMTExLBw4ULatWtHvnz5GDFiBMePH7dVnCIiIiIiIuJg1iZn4N/WZpo7Y1/mqplSpUrh4+Pj4GgeZn79bN++ndjYWAdHYxvm5Ixamj2dOTljbhlmKzExMSxdupTOnTuTK1cuevfuzZo1azAMA4Bly5YRHByc6PU0byZ5zMn3gwcPEh4enqw1JkyYQEREBJUqVaJZs2a2DE9ExOlYlZwZOHAgu3fvZt++fQwcOJBs2bJhGAYhISF8+eWXlCpVitq1a/Prr79y7949W8UsIiIiIiIiKez27dscOnQI+Heoe3K0bdsWgNWrV3P37l2bxCaPctaWZgClS5cmU6ZM3L171zKnxdXt3r0bSKickSczJ2e2bt1KRESEVWsZhsHx48d5++23yZs3L88//zxz5szh/v37lChRgs8++4zTp0/TsWNHIKFVVmJp3kzy5MmTh4IFC2IYBjt37kzy+Xfu3GHSpEmAdVUzIiKuwuq2ZgDlypXj22+/5dKlS8ydO5dWrVrh5uaGYRhs3bqVV155hTx58vDKK6+wefNmW2wpIiIiIiIiKWj79u0YhkHRokXJlStXstcpXbo0RYoUISoqiqCgIBtGKA9y5uSMu7u75R32qaG1WUREhCVxqcqZpytWrBj58uUjJibGqr/706dPExgYyLBhw/j++++5fv06OXPm5K233mLnzp0cOXKEkSNHUrhwYYYOHQrAzJkzuXTp0jPXvnz5MsePH8dkMlGnTp1kx5hWWdPa7Ndff+XOnTuULl3aksgXEUnNbJKcMfP09LTMnblw4QJjx46lRIkSGIbB3bt3+fXXX6lbty6lSpVi3LhxXL161Zbbi4iIiIiIiJ3YoqUZJMydMN90W7RokdVxyeM5c3IG/n0dbd261cGRWG///v3Ex8eTO3du/P39HR2OU7PV3JnRo0dz5MgRvLy86Ny5M8uWLePSpUtMmDCBypUrP1RxUaVKFerVq0dMTAzffffdM9c2tzSrUKECWbJkSXaMaZW5sjKpyRnDMCyzZgYOHIibm01vWYqIOCW7fafLnTs3w4cP5/Dhw2zevJlXXnmFDBkyYBgGx44d47333iN//vy0a9eOFStW2CsMERERERERsQFbJWfg37kzS5YsSTUzR5zJzZs3OXfuHACBgYGODeYJzK+j1FA5Y543U6lSJbVhSoSGDRsCyZ87ExkZybx58wD4+OOP+e2332jRogUeHh5PPMdcPfPjjz8SFhb21PU1b8Y6D1bOmGf+JMbatWs5duwYGTJkoGvXrvYKT0TEqaRIGjo6OpqoqCji4uIsP6gYhkFsbCyLFy+mVatWVKhQIVkljyIiIiIiImJfcXFxbN++HbBNcqZ27dpkyZKFmzdvporKCWezb98+AIoUKULmzJkdGsuTVKtWDZPJxOnTpwkJCXF0OFYxJ2fU0ixxzJUzO3fuTNbQ+MWLFxMeHk7BggUpVapUos5p2bIlpUqVIiwsjF9++eWpx2rejHUCAwPx8vLi+vXrnDlzJtHnTZ48GYDu3buTMWNGe4UnIuJU7JacOX/+PKNHj6Zo0aI0bNiQGTNmEBERgZubm2VI2wcffEC+fPkwDIP9+/dTv359yw/8IiIiIiIi4hwOHTpEeHg4GTNmpEyZMlav5+HhQatWrQBYuHCh1evJw5y9pRmAn58fAQEBgOu3Ntu9ezeQUDkjz1awYEEKFy5MXFwcGzduTPL5f/zxBwCdOnVKdOsrNzc3hgwZAsCECROIiYl57HEXL17k5MmTuLm5ad5MMnl7e1OxYkUg8df25cuXWbBgAQD9+/e3V2giIk7HpsmZ+/fvM3PmTJo0aUKRIkUYNWoUZ86cwTAMChcuzGeffcb58+dZtGgRL730Ep9++ilnzpxhxowZZM+enejoaD766CNbhiQiIiIiIiJWMreeql69Ou7u7jZZ0zx3ZuHChUlqfSPP5grJGUgdrc3u3r3LkSNHACVnkiK5rc1u3rzJsmXLAOjSpUuSzu3WrRu5cuXi4sWLzJkz57HHmFuaVaxYET8/vyStL/96sLVZYvzf//0fsbGx1KpVi7Jly9ozNBERp2KT5Mz27dt5/fXXyZMnD927d2fNmjXEx8fj5eVFp06dWLlyJSdPnuT9998nT548Dwfg5kaXLl0YP3488O87TkRERERERMQ52HLejFmzZs3w8vLi5MmTHD161GbripIzKWnfvn3Ex8fj7++Pv7+/o8NxGeaWYWvWrEnSeX/99RexsbFUqFCB0qVLJ+lcb29vBg0aBMBXX3312KSwOTmjlmbWSUpyJjY2lp9//hmAAQMG2DUuERFnY1VyZty4cZQuXZqaNWvyyy+/cOfOHQzDoHTp0nzzzTdcunSJWbNm0ahRo2euVaVKFQBCQ0OtCUlERERERERszB7JmYwZM1rePb9o0SKbrZvWRUREcOzYMcB1kjO7du0iKirKwdEkj1qaJY85+bF3794k3QeaMWMGQLIHxr/++uukT5+e/fv3s2rVqkceN1fy1K9fP1nrSwJzcmbfvn1ERkY+9dglS5Zw6dIlcuTIwQsvvJAS4YmIOA2rkjPDhw/n2LFjGIaBr68vffr0YcuWLQQHB/PWW2+RNWvWRK/l4eFhTSgiIiIiIiJiB1evXuXUqVOYTCaqVatm07XbtGkDaO6MLR04cID4+Hhy5cr1SOcKZ1O0aFFy5MhBdHQ0e/bscXQ4ybJr1y4AKleu7OBIXIu/vz8lSpTAMAw2bNiQqHPOnDnD5s2bMZlMvPzyy8naN2vWrPTt2xdIeMPxg86fP8/p06dxd3endu3ayVpfEhQoUIDcuXMTGxv7zGt78uTJAPTp0wdvb++UCE9ExGlY3dascuXK/PTTT1y5coX/+7//s2THk6po0aLEx8cTFxdnbUgiIiIiIiJiI+aBzgEBATafwdC6dWsgofXN1atXbbp2WuUqLc0ATCaTy7c2U+VM8pkr5xLb2mzmzJmW86xpIff222/j7u7OypUr2b9/v+Xz5pZmlSpVIlOmTMleXxKu7cS0Njt58iRBQUGYTCb69euXUuGJiDgNq5Iz+/fvZ/v27bz66qtkyJDBVjGJiIiIiIiIk7BHSzOzfPnyUalSJQzDYMmSJTZfPy1ypeQMuPbcmfDwcMu8JCVnks7c2szcSuxpDMOwtDTr1q2bVfsWKlSIl156CUiYPWOmeTO2lZjkzE8//QRA8+bNKVy4cIrEJSLiTKxKzpQtW9ZWcYiIiIiIiIgTsmdyBqBt27aA5s7YiisnZx43oN2Z7d27F8MwyJcvH7lz53Z0OC7HPNclODiY69evP/XYvXv3cvToUXx8fOjQoYPVew8dOhSA2bNnc+HCBUDzZmztWcmZyMhIpk6dCkD//v1TLC4REWdidVszERERERERSZ2ioqIsMzVq1Khhlz3Mc2dWrlxJRESEXfZIK2JiYggODgZcJzlTqVIlPD09CQkJ4ezZs44OJ0nU0sw6OXLksLzp11y18iTmqpk2bdrYpOVYpUqVaNCgAbGxsXz77becPXuWs2fPat6MDVWuXBk3NzcuXrzIxYsXH3n8r7/+4tatWxQoUICWLVs6IEIREcfzSMxB58+ft8vmBQoUsMu6IiIiIiIiYr29e/cSFRVF9uzZKVasmF32KFeuHAULFuTcuXOsWrXKkqyRpDt69ChRUVFkzJiRIkWKODqcREmXLh0VK1Zk+/btbNmyxaVaG5kTl5UrV3ZwJK6rQYMGBAcHs2bNGkursf+Ki4tj1qxZgPUtzR40dOhQ1q5dy88//2y5P1WlShW17beR9OnTU65cOfbt28f27dvJly/fQ49PnjwZgNdeew13d3dHhCgi4nCJSs7Y44cjk8lEbGyszdcVERERERER23iwpZnJZLLLHiaTiTZt2jBx4kQWLlyo5IwVzC3NAgMDcXNznUYZNWvWtCRnunbt6uhwEs1cOaPkTPI1bNiQ77777qlzZ9asWUNISAhZs2alWbNmNtu7RYsWlC5dmsOHDzNy5EhA82ZsrXr16uzbt49t27bxwgsvWD5v/pyHhwd9+/Z1YIQiIo6VqJ/WDMOwy4eIiIiIiIg4L3vPmzEzz51ZvHgxcXFxdt0rNXO1eTNm5pZ55tebKwgLC+PYsWOA2ppZo27duphMJo4dO8bly5cfe4y5pVmnTp3w8vKy2d4mk8kye+bu3buA5s3Y2pPmzpirZl544QXNaxKRNC1RlTO//vqrveMQERERERERJ2IYRoolZ+rWrYufnx/Xr19n+/btdt8vNYqNjbXcAHXV5MyBAwe4e/euS7SV2rNnD5DQrj1HjhwOjsZ1ZcmShYoVK7J7927Wrl37SOVUREQEf//9N2DblmZmXbp0YeTIkVy5cgUPDw9q1apl8z3SMvO1vWvXLmJiYvD09CQsLIw//vgDgP79+zsyPBERh0tUcqZnz572jkNEREREREScyPnz5y03LO3dtsnT05OWLVsya9YsFi1alGaSM0ePHuX333+nYcOGNGjQIFmtyMLCwpgyZQoTJkywzIt1tTZb+fLlo0CBApw/f54dO3bQsGFDR4f0TOaWZqqasV6DBg2emJxZtGgRd+/epXDhwpYb/bbk7e3NoEGDGDFiBDVq1CB9+vQ23yMtK168OFmyZCE0NJT9+/dTuXJlfv/9d+7du0fp0qWpW7euo0MUEXEo12lCKyIiIiIiIinGXDVTsWJF0qVLZ/f9zLNmFi5caPe9nMXAgQMZM2YMjRs3plChQowcOZLjx48n6twLFy7w7rvvkj9/ft555x3Onz9Pjhw5+PLLLylTpoydI7c9c0LOVVqb7dq1C3C9RJgzMs95WbNmzSOPmSssunbtare5V0OGDOGbb77hp59+ssv6aZnJZHqotZlhGJaWZq+//rrd/k5FRFyFkjMiIiIiIiLyiJRqaWbWokULPDw8OHr0aKITFK7s3r17bNiwAYBMmTJx4cIFxowZQ4kSJahZsyY//fQTt2/ffuS8vXv30q1bN4oUKcJXX31FWFgYJUuW5JdffuH8+fO8++67LnnD09HJmb/++os2bdpw4MCBRB1vrpxRcsZ6derUwd3dnTNnznDu3DnL52/cuMGKFSsAHqmosSVPT08GDx5MqVKl7LZHWvZgcmbjxo0cOnQIX19fevTo4eDIREQcT8kZERERERERecSmTZuAlEvO+Pn5WYZxL1q0KEX2dKR169YRHR1NoUKFuHr1KnPmzKFly5a4ubmxdetWXn/9dXLnzk3nzp1Zvnw5y5Yto1GjRlSsWJE//viD2NhY6tevz+LFizl06BCvvPIKPj4+jn5ayWZ+nW3dupX4+PgU2zcuLo733nuPjh07snjxYtq3b094ePhTz7l9+zYnTpwA1NbMFjJmzEiVKlUAWLt2reXzf/75J7GxsVSqVImSJUs6Kjyx0oPJGXPVTJcuXfDz83NkWCIiTiFRM2cSY//+/WzcuJHTp08THh5OXFzcU483mUxMmTLFVtuLiIiIiIiIjdy5c4f9+/cDCe9qTylt27Zl1apVLFq0iKFDh6bYvo7wzz//ANCsWTN8fHzo2LEjHTt25MqVK/zxxx9MmzaNQ4cOMWfOHObMmWM5z93dnY4dOzJkyJBUlRgoV64cvr6+3L59m6NHj1K6dGm773n79m26dOnC8uXLgYQKptOnTzNw4ECmTZv2xPP27NkDQKFChciWLZvd40wLGjZsyLZt21izZg29evUCYMaMGQB069bNgZGJtapWrQrAqVOnLJVR/fv3d2RIIiJOw+rkzLFjx+jTpw/btm1L9DmGYSg5IyIiIiIi4qS2bNmCYRgUK1aM3Llzp9i+rVu3ZuDAgWzevJkbN26QPXv2FNs7pT2YnHlQnjx5GDp0KEOGDGHPnj1Mnz6dmTNnEh0dzauvvspbb71FgQIFHBGyXXl6elK1alXWrVvHli1b7J6cOXr0KG3btuX48eOkS5eOKVOmkC9fPurXr8/06dNp0aIFnTp1euy55pZmqSk55mgNGjRgzJgxrF27FsMwOH36NFu3bsXNzY3OnTs7OjyxQubMmSlVqhRHjhwhNjaWqlWrUrFiRUeHJSLiFKxqa3bp0iXq1q1rGeplGAbp06cnX758FChQ4IkfBQsWTJU/TIqIiIiIiKQGGzduBFK2agagYMGClCtXjvj4eMusidTo7NmzHD9+HHd3dxo2bPjYY0wmE5UqVeK7777j2rVr3Llzh6+//jpV/y6dUnNnlixZQrVq1Th+/Dj58+dn06ZNvPzyy9SpU4f3338fgH79+j00/+RBu3btAjRvxpZq1qyJl5cXFy9e5OTJk8ycOROAxo0bp2iCWOzD3NoMYMCAAQ6MRETEuViVnPn888+5fv06AK+88gpHjx4lLCyMc+fOcebMmWd+iIiIiIiIiPNxVHIGoFWrVgAsW7YsxfdOKeaqmRo1aiRq7oKbmxsmk8neYTmcvZMzhmEwZswY2rRpQ1hYGHXq1GHXrl0PvYv/o48+onr16ty5c4du3bo9tmW7kjO25+vra7mBv3btWktLs65duzoyLLER899tlixZ6Nixo4OjERFxHlYlZ1asWIHJZKJHjx78/PPPPPfcc7aKS0RERERERBzg/v377NixA3BscmbFihXExsam+P4p4UktzdI68w3cY8eOcePGDZuufe/ePTp37szIkSMxDIPXX3+dVatWkTNnzoeO8/T05I8//iBjxoxs2rSJMWPGPPR4aGgop0+fBlBrJhtr0KABABMmTLC0m2vfvr2DoxJb6Ny5My+++CKTJ08mXbp0jg5HRMRpWJWcuXz5MgA9evSwSTAiIiIiIiLiWDt27CA6OprcuXNTtGjRFN+/WrVqZMmShdDQULZv357i+9tbTEwMq1evBpSc+a9s2bJRsmRJgCTNtX2Wc+fOUbt2bf788088PDz48ccfmTx5Ml5eXo89vkiRInz//fcAfPLJJ2zdutXymHneTJEiRciaNavNYhQsLf6OHDkCQLt27ciYMaMjQxIbyZQpE3/99dcT5ziJiKRVViVnsmTJAiQM9xIRERERERHX92BLM0e00vLw8LAkLVJja7Pt27cTFhZG1qxZVXnxGLZubbZnzx4qV67Mvn37yJEjB2vWrKFfv37PPK9bt268/PLLxMXF0bVrV8LCwoB/kzOVKlWySXzyr2rVquHj42P5s1qaiYhIamdVcsbcX/X48eM2CUZEREREREQcy5HzZszMrc2WLl3qsBjsxdzSrEmTJri7uzs4GudTq1YtAEt1kbVGjBjBjRs3qFixIrt27Ur069pkMjF58mQKFizImTNnePPNNwHNm7Enb29vateuDUD27Nlp2rSpgyMSERGxL6uSM4MGDcIwDH7++WdbxSMiIiIiIiIOEhcXZ6lYcGRyplmzZphMJvbv38+lS5ccFoc9aN7M0zVv3hxIaK8XEhJi1VqhoaGsWbMGgNmzZ1OgQIEkne/n58cff/yBm5sbv//+O7NmzVJyxs7atWsHQO/evfH09HRsMCIiInZmVXKmSZMmDBs2jLVr19K/f39iYmJsFddTTZ48mXLlypEpUyYyZcpEjRo1WL58ueVxwzAYNWoU/v7+pEuXjvr163Po0KGH1oiKimLgwIFkz56d9OnT06ZNGy5evJgi8YuIiIiIpFWGYTg6BHmK/fv3Ex4eTqZMmShbtqzD4siRIwfVqlUDUldrsxs3blhu7qsq4PH8/f2pUqUKAIsXL7ZqraVLlxIbG0uZMmUoXrx4staoVasWH374IQD9+vXj7NmzAGpJZyf9+/dn48aNfP75544ORURExO48EnPQb7/99sTHSpcuTc2aNfn5559ZvHgxL774IiVLlsTX1/eZ6/bo0SPxkT4gX758/O9//6NYsWIATJ8+nbZt27J3717KlCnDl19+yfjx45k2bRrPPfccn332GU2aNOHYsWOWYXKDBw9m8eLFzJ49m2zZsjFkyBCef/55du/erdJyERERERE76N27N8uXL2fatGmWd8eLczG3NKtVq5bDfy9q2bIl27ZtY9myZbz66qsOjcVWVq1ahWEYBAQEkDdvXkeH47Tatm3Lzp07WbRokVV/9/Pnzwegffv2VsXzwQcfsHLlSktVWbFixTR7107c3Nwsrc1ERERSu0QlZ3r16pWoQZBXrlxh4sSJidrYZDIlOznTunXrh/78+eefM3nyZLZt20bp0qWZMGECI0eOpEOHDkBC8iZXrlzMnDmTfv36cefOHaZMmcLvv/9O48aNAZgxYwb58+dn1apVKi8XEREREbGx0NBQfv/9d+Li4mjVqhX/+9//GDp0qEMGzsuTOcO8GbNWrVrx0UcfsXLlSqKiovD29nZ0SFZTS7PEadOmDR988AGrVq3i3r17pE+fPslrREREsGLFCsD65IyHhwczZswgMDCQsLAwKlWqZNV6IiIiIpDI5Aw4b/uBuLg4/vrrL+7du0eNGjU4c+YMISEhD5WIe3t7U69ePbZs2UK/fv3YvXs3MTExDx3j7+9PQEAAW7ZseeIPylFRUURFRVn+HBYWBkBMTEyKtXQTsQfz61evYxHnp+tVxLXomv3XsmXLiIuLw8vLi+joaIYNG8aePXv46aefSJcunaPDExJ+5zMnZ2rUqOHw122ZMmXInTs3ISEhrF27lkaNGtl1P3tfr4ZhEBQUBECjRo0c/vV1ZiVKlKBw4cKcOXOG5cuX07Zt2ySvsWzZMiIiIihYsCABAQFWf73z5cvH1KlTee+99+jZs6f+/pyA/o0VcR26XiWtSexrPVHJmTNnzlgVjD0EBwdTo0YN7t+/T4YMGZg/fz6lS5e2lBnnypXroeNz5crFuXPnAAgJCcHLy4ssWbI8cszTBg6OHTuWTz755JHPBwUFJaqNm4izW7lypaNDEJFE0vUq4lp0zcL//d//AQmtqnLmzMmUKVOYPXs2O3bsYMSIEeTIkcPBEcqlS5e4du0anp6e3LhxwylmvZQpU4aQkBB++OGHh94oZ0/2ul7Pnj3L5cuX8fLy4u7du07x9XVmZcqU4cyZM0yePDlZg+F/+OEHAMqWLfvQjFpreHh48NVXXxEdHa2/Pyeif2NFXIeuV0krIiIiEnVcopIzBQsWtCoYeyhRogT79u3j9u3bzJs3j549e7J+/XrL4/9tj2AYxjNbJjzrmBEjRvDOO+9Y/hwWFkb+/Plp2rQpmTJlSuYzEXG8mJgYVq5cSZMmTZL1i4+IpBxdryKuRddsgri4OF555RUA3njjDerVq0fHjh3p3Lkzp0+fZuTIkcyZM4datWo5ONK07ddffwWgWrVqyapUsIf79++zevVqjh49SsuWLe26l72v1/HjxwPQoEED2rVrZ/P1UxtfX1+WLFnCgQMHaNasWZJmIMXExNC7d28gYd5s3bp17RWmOJD+jRVxHbpeJa0xd9x6lkS3NXM2Xl5eFCtWDIDKlSuzc+dOvv32W4YPHw4kVMfkyZPHcvy1a9cs1TS5c+cmOjqa0NDQh6pnrl27Rs2aNZ+4p7e392P7HHt6euobi6QKei2LuA5dryKuJa1fs3v27OHGjRv4+flRr149PD09adSoEbt27aJt27bs37+fpk2bMmnSJF577TVHh5tmmbsQ1K1b12lery1atMDDw4MTJ05w7tw5y++A9mSv63XVqlUANG/e3Gm+vs6sfv36ZM6cmRs3brBr164kDYnfsGEDoaGh5MiRg/r16ycpsSOuJ63/GyviSnS9SlqR2Ne5mzWbNGzYkEaNGlnahSXG5cuXLefZkmEYREVFUbhwYXLnzv1QmVx0dDTr16+3JF4qVaqEp6fnQ8dcuXKFgwcPPjU5IyIiIiIiSbd06VIAmjZt+tAvKgULFmTz5s107NiRmJgY+vXrR//+/YmOjnZUqGmaed6MM1UZZMqUiTp16gC4dBupiIgIy9f3STNO5WGenp60atUKgEWLFiXp3Pnz5wPQpk0bJWZERETEaVmVnFm3bh3r1q3j3r17iT4nMjLScl5yvf/++2zcuJGzZ88SHBzMyJEjWbduHV27dsVkMjF48GDGjBnD/PnzOXjwIL169cLX15cuXboA4OfnR9++fRkyZAirV69m7969dOvWjbJly9K4ceNkxyUiIiIiIo8yJ2ce15Yqffr0zJ49mzFjxmAymfjxxx9p3Lgx165dS+kw07TLly9z+vRp3NzcqFGjhqPDeYj5Br35deSK1q9fT1RUFPnz56dkyZKODsdltGnTBkhaciY+Pp4FCxYA0L59e3uEJSIiImITViVnHOXq1at0796dEiVK0KhRI7Zv386KFSto0qQJAMOGDWPw4MEMGDCAypUrc+nSJYKCgsiYMaNljW+++YZ27drRsWNHatWqha+vL4sXL9a7akREREREbOjKlSvs2bMHSGhR9Tgmk4kRI0awaNEiMmbMyMaNG6latSo3b95MyVDTNHNVR2BgoNPN0zQn9ZL6xkBn8s8//wAJVTPPmoUq/zK3gDt27BjHjh1L1Dm7du3i0qVLZMiQweYdO0RERERsKcWTM+Yfpn18fJK9xpQpUzh79ixRUVFcu3aNVatWWRIzkPDL3ahRo7hy5Qr3799n/fr1BAQEPLSGj48PEydO5ObNm0RERLB48WLy58+f7JhERERERORRy5cvB6BKlSqWGZBP8vzzz7Njxw4KFizIuXPnmDVrVkqEKPybnDG3EHMmJUuWpHDhwkRHR7N69WpHh5MsDyZnJPEyZcpEgwYNgMRXz/z9999AQlLPmvsOIiIiIvaW4skZ8y9n+fLlS+mtRUREREQkhT2tpdnjlCxZkoEDBwL/zo0Q+3Pm5IzJZLK8flxx7sz58+c5evQobm5uquRIBnNrs4ULFz7zWMMwLN831NJMREREnJ1HUg7u06fPYz//wQcfkDlz5qeeGxUVxalTp9i5cycmk4l69eolZWsREREREXEx0dHRrFy5Evh3bkhitGvXjqFDh7J+/Xpu3rxJtmzZ7BWiAKGhoQQHBwNQu3ZtB0fzeK1ateL7779n6dKlGIbhUq3BgoKCAKhWrRpZsmRxcDSup02bNrz55pts2bKF69evkyNHjicee+TIEY4fP46Xl1eiE8IiIiIijpKk5My0adMe+SHYMIxEvYPFfCxA1qxZGTFiRFK2FhERERERF7Np0ybCw8PJlSsXlSpVSvR5RYsWpWzZsgQHB7NkyRJ69uxpxyhl8+bNGIbBc88998zWc45Sv3590qVLx8WLFzl48CBly5Z1dEiJppZm1smfPz8VKlRg7969LFmyhN69ez/xWHPVTKNGjZxudpKIiIjIfyWprVmBAgUe+oCEEvM8efI88tiDHwULFqREiRI0aNCAkSNHcuDAAQoXLmyXJyQiIiIiIs7B3NKsRYsWuLklraOyuSWRWpvZnzO3NDNLly4dDRs2BP59XbmC2NhYVq1aBSg5Y422bdsCz547o5ZmIiIi4kqSVDlz9uzZh/5s/gUrKCiI0qVL2ywoERERERFxfUmdN/Og9u3b8+mnnxIUFERERAS+vr62Dk/+P1dIzkDC62jp0qUsW7aM9957z9HhJMrOnTu5ffs2WbJkoUqVKo4Ox2W1adOGUaNGERQURGRkJOnSpXvkmPPnz7N7925MJpNlTo2IiIiIM0va29f+o27dutStW5f06dPbKh4REREREUkFTp06xbFjx/Dw8KBp06ZJPr98+fIUKlSIyMhIS1sosb3IyEh27doFuEZyBmDLli2EhoY6OJrEMb92GzdujLu7u4OjcV2BgYHkz5+fiIgIVq9e/dhjFixYACTMTXLW9nwiIiIiD7IqObNu3TrWrl1LwYIFbRWPiIiIiIikAsuWLQMSbpT6+fkl+XyTyaTWZilg+/btxMTE4O/v7/StpwsVKkTp0qWJi4sjKCjIITGcPn2a1157jWHDhnH37t1nHq95M7bxYDXMk2be/v3334BamomIiIjrsCo5IyIiIiIi8jjWtDQza9euHQCLFy8mJibGFmHJfzzY0sxkMjk4mmczv55Seu7M9evXGTRoECVLluSXX35h3LhxlC9fng0bNjzxnNDQUHbs2AEoOWML5rkzixcvJj4+/qHHrl+/bnktKzkjIiIirsLmyZmwsDAuXbrE+fPnn/khIiIiIiKpz71791i3bh0ArVq1SvY6tWrVIkeOHNy+fZv169fbKDp5kKvMmzEzv56WL1/+yA16e7h37x6jR4+maNGiTJw4kZiYGBo3bkz+/Pk5ffo09evX5+233yYiIuKRc1etWkV8fDylS5cmX758do81tatXrx6ZMmXi6tWrlqSXmTlhExgYSKFChRwToIiIiEgS2SQ5s3LlStq3b0/27NnJkiULBQoUoHDhwk/9KFKkiC22FhERERERJ7NmzRqioqIoVKgQpUqVSvY67u7ullZG5nkSYjuxsbFs3boVcJ3kTK1atciUKRM3btywzMqxh5iYGH788UeKFSvGRx99RHh4OJUqVWLVqlWsXLmS4OBg+vbti2EYTJgwgQoVKli+lmZqaWZbXl5etGjRAoBFixY99Ji59aGqZkRERMSVWJ2cGTRoEM2bN2fRokXcunULwzAS/SEiIiIiIqmPueVUq1atrG6VZb7ZumDBghSplEhL9u3bx927d8mcOTMBAQGODidRPD09adq0KWCf1maGYfD3338TEBBA//79CQkJoUiRIsyePZsdO3bQqFEjAPz8/Pi///s/li5dir+/P8ePH6d27doMHz6c+/fvYxiGkjN2YE7WPpicCQ8PZ+XKlYCSMyIiIuJaPKw5eebMmUyaNAkAHx8f2rVrR6VKlciaNStubhpnIyIiIiKS1hiGYZN5M2aNGjUiQ4YMXLp0iV27dlG1alWr15QE5pZmtWrVcqnf31q2bMncuXNZtmwZn3zyic3W3bZtG8OHD+f48eMAZM+enY8++oh+/frh5eX1xFgOHjzIW2+9xe+//86XX37JkiVLeO+997h48SI+Pj7UrVvXZjGmdS1atMDDw4NDhw5x6tQpihYtyooVK4iKiqJo0aIuk2QUERERASuTMz/99BMA+fPnZ82aNRQtWtQmQYmIiIiIiGs6ePAgFy9eJF26dDRo0MDq9Xx8fGjZsiV//vkn8+fPV3LGhlxt3oyZubXVrl27CAkJIXfu3FaveenSJZo1a0ZkZCS+vr4MGTKEoUOHkilTpmeemyVLFn777TdeeOEFXnvtNQ4fPkyPHj0AqFu3LunSpbM6PkmQJUsW6taty5o1a1i0aBFvv/32Qy3NrK3UExEREUlJVr096sCBA5hMJj7++GMlZkRERERExFI107BhQ5vdlG7Xrh3w71wJsZ5hGGzatAlwveRM7ty5qVSpEgArVqywyZorVqwgMjKSAgUKcPToUT799NNEJWYe1LZtWw4dOkSnTp0sn1NLM9tr27YtAAsXLiQqKoolS5YAamkmIiIirseq5ExMTAwAFSpUsEkwIiIiIiLi2h6cN2MrLVu2xNPTk2PHjnH06FGbrZuWHTt2jOvXr+Pj40PlypUdHU6SmV9ftpo7Y55ZUqNGDasqcbJnz87s2bOZN28eAwYMoG/fvjaJT/7VunVrADZt2sTcuXMJDw8nd+7cVK9e3cGRiYiIiCSNVcmZQoUKAXD37l1bxCIiIiIiIi4sNDSULVu2ALaZN2Pm5+dnGcSu6hnbMLc0q1at2hPnqTgz8+srKCjI8qbB5IqPj2fVqlUABAYGWhsaAB06dOD777/Hz8/PJuvJvwoXLkzZsmWJi4tj6NChQEI1jSvNTRIREREBK5MzHTp0AGD16tU2CUZERERERFzXP//8Q3x8PGXKlKFgwYI2XdvcskjJGdtw1XkzZlWqVCFHjhyEhYWxefNmq9bau3cvN2/eJGPGjBQvXtxGEYo9mVubhYSEAP/emxARERFxJVYlZ4YMGUKBAgWYMGGC2guIiIiISIq6cuUKL774Ii+++CJxcXGODkewT0szs7Zt22Iymdi5cycXL160+fppjTk5U7duXQdHkjxubm40b94cgGXLllm1lrmlWf369fHw8LA6NrG/Nm3aWP7fz8+P+vXrOy4YERERkWSyKjnj5+fHihUryJUrF7Vq1eKHH34gNDTUVrGJiIiIiDzWkiVLKFeuHPPmzWPevHls3brV0SGleXFxcZbh7LZsaWaWK1cuatasCcCCBQtsvn5acvHiRc6ePYu7uzs1atRwdDjJZqu5M+bkTOPGja2OSVJGpUqV8Pf3B+D55593ydZ8IiIiIla9LahIkSIAREREEBoaysCBAxk0aBDZs2fH19f3qeeaTCZOnTplzfYiIiIiksbcv3+fYcOGMXHiRADc3d2Ji4tj4cKF1K5d28HRpW07d+7kxo0b+Pn5WZIottauXTs2b97M/PnzefPNN+2yhyuLiYnh1KlTXL58matXrxISEsLVq1cf+bh27RoAFSpUIEOGDA6OOvmaNm2Ku7s7hw8f5uzZs5aZqEkRERHBpk2bAGjUqBEnT560cZRiD25ubrzxxht8/PHHvP76644OR0RERCRZrErOnD179qE/G4aBYRiWH/afxmQyWbO1iIiIiKQxhw4d4uWXXyY4OBiAt99+m4oVK9K9e3cWLVrEuHHjHBxh2mauXmjWrBmenp522aN9+/a8++67rF+/nlu3bpE1a1a77OMK7ty5w/79+9m3b5/lvwcPHiQ6OjpR57u7u9O3b187R2lfWbJkoWbNmmzcuJFly5YxYMCAJK+xYcMGoqOjKVCgAMWLF1dyxoWMGDGC4cOH4+7u7uhQRERERJLFquRMz549bRWHiIiIiMhjGYbBjz/+yDvvvMP9+/fJmTMn06dPp3nz5oSFheHp6cnx48c5evQoJUuWdHS4aZY9582YFS1alLJlyxIcHMySJUvo0aOH3fZyNps2bWL16tXs27ePffv2PfJGObMMGTKQP39+cuXK9dSPnDlz4uPjk7JPwg5atmxpVXLG3NKsadOmegOhizGZTErMiIiIiEuzKjnz66+/2ioOEREREZFH3Lx5k1deecUyY6R58+ZMmzaNXLlyAZApUyYaNmzIP//8w6JFi5SccZDLly+zd+9eTCaTZUi7vbRv357g4GDmz5+fZpIzhw8fpm7duhiG8dDnCxQoQGBgIIGBgZQvX57AwEAKFSqEm5tVo0VdSqtWrRgxYgRr1qwhMjKSdOnSJel8c3KmSZMm9ghPREREROSJ0s5P7SIiIiLiUtasWUO5cuVYsGABXl5efPPNNyxdutSSmDFr06YNAAsXLnREmAIsX74cgCpVqpAzZ0677tW+fXsA/vnnHyIiIuy6l7OYM2cOhmFQpkwZvvnmG9asWcPNmzc5d+4cCxcu5JNPPqFDhw4UKVIkTSVmAAICAsiXLx+RkZGsW7cuSedeuXKF4OBgTCYTjRo1sk+AIiIiIiJPkLZ+chcRERERlzB69GgaN27M5cuXKVGiBNu2bWPw4MGPvfFsTs5s3bo1UbMPxfZSoqWZWfny5SlYsCCRkZH8888/dt/PGcybNw+A4cOHM3jwYBo0aJCm5+08yGQyWV535tdhYq1atQqAihUrki1bNpvHJiIiIiLyNDZPzly9epXVq1fz119/8ddff7F69WquXr1q621EREREJJXavHkzH330EYZh8Morr7B7924qVKjwxOPz5ctHxYoVMQyDJUuWpGCkAnDv3j1LkiQlkjMmk8lSPWNud5eaHT16lEOHDuHp6Unr1q0dHY5TatmyJZCQnPlv67enUUszEREREXEkmyRnDMPgp59+omzZsvj7+9O0aVM6d+5M586dadq0Kf7+/pQtW5aff/45ST8si4iIiEjaYhgGI0aMAKBv37788ssvpE+f/pnntW3bFoBFixbZNT551IIFC4iIiKBo0aJUrFgxRfY0J2cWL15MTExMiuzpKOaqmcaNG5M5c2bHBuOkGjZsiJeXF2fPnuXo0aOJOscwDEtypmnTpvYMT0RERETksaxOzoSGhlKnTh0GDBjA4cOHMQzjsR+HDx+mf//+1K1bl9u3b9sgdBERERFJbVasWMHGjRvx9vZm1KhRiT7P3NosKCgozcwhcRZ//PEHAN26dcNkMqXInrVq1SJHjhyEhoayYcOGFNnTUebOnQvACy+84OBInFeGDBmoX78+AMuWLUvUOQcPHiQkJARfX19q1qxpx+hERERERB7PquSMYRi0bduWLVu2YBgGWbNmpX///kybNo0VK1awfPlypk2bxoABA8iWLRuGYbBlyxbLOxtFRERERMzi4+MtVTNvvvkm+fLlS/S55cuXp0CBAkRGRrJ69Wp7hSj/cfXqVYKCggDo2rVriu3r7u5uScjNnz8/xfZNaadOnWLfvn24u7vrd6hneLC1WWKYq2bq1q2Lt7e33eISEREREXkSq5IzM2fOZNOmTZhMJrp27crp06f5/vvv6dGjB02bNqVZs2b06NGDSZMmcfr0abp3745hGGzatIlZs2bZ6jmIiIiISCrw559/sn//fjJlymRJ0iSWyWSy3KxfuHChPcKTx5gzZw5xcXFUrVqV4sWLp+jeD86diY+PT9G9U4q5pVn9+vXJnj27g6NxbuZ5Rxs3biQsLOyZx2vejIiIiIg4mtXJGYB69erx+++/kzFjxicemyFDBqZPn069evUwDIMZM2ZYs7WIiIiIpCIxMTF8+OGHAAwdOpRs2bIleQ1zZcHixYtT7c16Z/NgS7OU1qhRI/z8/Lh06RLr1q1L8f1Tgjk58+KLLzo4EudXrFgxihcvTmxsrCXx8iRRUVGsX78e0LwZEREREXEcq5Ize/bswWQy8eabbyb6nIEDBwKwd+9ea7YWERERkVTk119/5eTJk+TIkYPBgwcna426deuSKVMmrl27xvbt220boDzixIkT7NixA3d3dzp16pTi+/v4+Fj2nT59eorvb2/nz59nx44dmEwm2rVr5+hwXIK5euZZc2c2b95MZGQkefLkoUyZMikRmoiIiIjII6xKzty6dQuAwoULJ/oc87Hmc0VEREQkbYuMjOSTTz4BYOTIkU+txn4aLy8vy9yJRYsW2Sw+eTxz1UzTpk3JmTOnQ2Lo2bMnkFBhcvfuXYfEYC9///03ALVr1yZ37twOjsY1mK//ZcuWYRjGE48zV9Y0btwYk8mUIrGJiIiIiPyXVckZPz8/AC5fvpzoc8zHZsqUyZqtRURERCSVmDRpEpcvX6ZAgQK8/vrrVq2luTMp48E2xV27dnVYHDVq1KBYsWLcu3fPksxILebOnQuopVlS1K1bl/Tp0xMSEvLUTg2aNyMiIiIizsCq5ExAQACQ0IYisaZOnfrQuSIiIiKSdt25c4f//e9/AHzyySd4e3tbtV6LFi3w8PDgyJEjnDhxwhYhymPs2LGDU6dOkT59eoe23DKZTPTo0QOA3377zWFx2Nrly5fZsmULAB06dHBwNK7D29ubxo0bA09ubXbjxg327NkDYDlWRERERMQRrErOvPjiixiGwfz58xk1atRTS8cNw2DUqFHMnz8fk8nESy+9ZM3WIiIiIpIKfPXVV9y6dYtSpUrRvXt3q9fLnDkz9erVA9TazJ7MVTPt27cnffr0Do3F/LpZs2YNFy5ccGgstjJ//nwMw6B69erky5fP0eG4FPPcmaVLlz728dWrV2MYBmXLliVPnjwpGZqIiIiIyEOsSs68+uqrlCxZEsMwGD16NOXKlePrr79m06ZNnDhxgpMnT7Jp0ya+/vprypcvz+jRowEoWbIkr776qk2egIiIiIi4pqtXr/LNN98A8Nlnn+Hu7m6Tdc2tzZScsY+YmBhmz54NOLalmVmhQoWoV68ehmHw+++/Ozocm5g3bx4AL7zwgoMjcT0tWrQAYPv27dy4ceORx9XSTERERESchVXJGU9PT5YvX07hwoUxDIPDhw8zbNgw6tWrR8mSJSlRogT16tVj2LBhHDp0CMMwKFKkCMuXL8fDw8NWz0FEREREXNCYMWO4d+8eVapUoX379jZb15yc2bRpEzdv3rTZupJg5cqV3Lhxg5w5czpNW6iePXsCCa3NnlbN7wquX7/O+vXrASVnkiNfvnyUL18ewzBYsWLFQ48ZhqHkjIiIiIg4DauSMwAFCxbkwIEDDBkyBD8/PwzDeOyHn58fQ4cOZd++fRQoUMAWsYuIiIiIizp79iyTJ08GEpI0JpPJZmsXKlSIcuXKER8f/8TWRpJ85pZmnTt3dpo3XL344oukS5eOY8eOsWPHDkeHY5UFCxYQHx9PxYoVKVy4sKPDcUktW7YEHp07c/z4cc6fP4+Xlxd169Z1RGgiIiIiIhZWJ2cA0qdPz7hx4wgJCWHz5s389NNPjB07lrFjx/LTTz+xefNmQkJC+PLLL8mQIYMtthQRERERFzZq1ChiYmJo1KiRXaov2rZtC6i1ma2Fh4ezYMECALp16+bYYB6QMWNGOnToACRUz7gyc0uzF1980cGRuC7z3JkVK1YQGxtr+by5aqZ27dr4+vo6JDYRERERETObvtXNy8uLGjVqUKNGDVsuKyIiIiKpyOHDhy2zQcaMGWOXPdq0acPo0aNZsWIF9+/fx8fHxy77pDULFiwgMjKS4sWLU7lyZUeH85CePXvyxx9/MGvWLMaPH4+3t7ejQ0qy0NBQVq9eDailmTWqVatGlixZCA0NZfv27dSqVQvQvBkRERERcS42qZwREREREUmsDz74gPj4eNq3b0/VqlXtskelSpXw9/fn3r17rF271i57pEV//PEHkFA1Y8tWdLbQsGFD8ubNS2hoKEuWLHF0OMmyaNEiYmNjKVu2LM8995yjw3FZHh4eNG/eHMDS2jAmJsbyvUDJGRERERFxBkrOiIiIiEiK2bFjB/Pnz8fNzY3PPvvMbvuYTCbatGkDwMKFC+22T1oSEhJiqTzo0qWLg6N5lLu7u6XVmqu2Nps7dy6gqhlb+O/cme3btxMeHk62bNmoUKGCI0MTEREREQGS0NZsw4YNNt9cQxhFRERE0g7DMBgxYgQAPXr0oHTp0nbdr23btvz4448sXryYH374ATc3vS/JGrNnzyY+Pp7q1atTrFgxR4fzWD169OCLL75g2bJlXL9+nRw5cjg6pEQLCwsjKCgI0LwZW2jevDkmk4n9+/dz8eJFS2KxcePG+l4gIiIiIk4h0cmZ+vXr27R1gclkemg4o4iIiIi93Lt3j/fee48KFSrQp08fR4eTZv3www+sWbMGLy8vRo0aZff9GjRoQIYMGbh8+TK7d++mSpUqdt8zNXuwpZmzKl26NJUrV2bXrl3MnDmTt956y2Gx3Lp1i/fff5+aNWvSo0ePZx6/ZMkSoqOjKVGihN0Tl2lB9uzZqVatGtu2bWP58uWaNyMiIiIiTifJbxkyDMNmHyIiIiL2Fh0dzYsvvsikSZMYMGAA4eHhjg4pTdqxYwdvv/02AGPHjqVgwYJ239Pb29syd2LRokV23y81O3bsGLt27cLd3Z2OHTs6Opyn6tmzJ+DY1mbR0dF06NCBn376iZ49e/L+++8/8/efefPmAQlVM842z8dVtWrVCoCZM2eyY8cOQMkZEREREXEeia6cMUuXLh1t27alSZMmKgcXERERpxYfH0+vXr1YsWIFAFFRUSxbtoxOnTo5OLK05ebNm7z00kvExMTQoUMHS5ImJbRp04a5c+eycOFCRo8enWL7pjbmqpnmzZs7fauwzp07884777Bnzx4OHjxIQEBAiu5vGAavvfYa69evx8fHh/v37zN27FguX77ML7/8gqen5yPn3Lt3j+XLlwOaN2NLLVu25MMPP2TdunUAPPfccxQoUMCxQYmIiIiI/H+JTs5kzJiR8PBwIiMjmTNnDuvWraNLly50796d8uXL2zNGERERkSQzDIOBAwcya9YsPDw8qFu3LmvWrGHu3LlKzqSg+Ph4unXrxvnz5ylWrBhTp05N0aqAVq1a4e7uTnBwMGfOnKFw4cIptndqYRiGJTnTtWtXB0fzbNmzZ6dVq1YsWLCA3377jS+//DJF9x87dizTp0/H3d2dBQsWcOnSJV577TWmT5/OtWvX+Ouvv0ifPv1D5yxfvpzIyEiKFClCYGBgisabmgUGBpI7d25CQkIAVc2IiIiIiHNJdOnL1atXmTVrFi1btsTd3Z2QkBC++eYbKlasSPny5fnqq6+4fPmyPWMVERERSbRRo0bxww8/YDKZ+P333y03aJctW0ZERISDo0s7xowZw4oVK/Dx8WHevHn4+fml6P5Zs2aldu3agFqbJde2bds4ffo0GTJkoG3bto4OJ1HMrc1mzJiRonMu58yZw8iRIwGYOHEizZo1o0+fPixcuJB06dKxfPlyGjRowPXr1x86b+7cuUBC1YxamtmOm5sbLVu2tPy5adOmDoxGRERERORhiU7O+Pj40KlTJ5YsWcKlS5f45ptvqFChAoZhEBwczPDhwylYsCBNmjTh999/5969e/aMW0REROSJvvvuOz799FMAvv/+ezp37kzFihUpVKgQERER/PPPPw6O0PFiYmLYsGEDO3bs4Pz580RFRdl8j1WrVvHRRx8BMHnyZMqVK2fzPRLDnFAwz/SQpJkxYwYA7du3x9fX18HRJE7Lli3Jli0bV65cYdWqVSmy59atWy1Jobfffpv+/ftbHmvVqhVr1qwhW7Zs7Ny5k1q1anH69GkAIiMjWbp0KZAwb0Zsy5yccXd3p379+o4NRkRERETkAckaGpMjRw7eeustdu3axaFDhxg+fDj58uUjLi6O1atX06tXL3LlykX37t35559/njn8UkRERMRWZsyYwVtvvQXAp59+arlBajKZLLMcdJMexo8fT7169ahWrRoFCxbEx8eHrFmzUrp0aRo0aMDLL7/M22+/zRdffMGCBQuIi4tL0vqXLl2iS5cuGIZB37596dWrl32eSCK8+OKLuLu7s3HjRg4ePOiwOFJCfHw8S5cu5cqVKzZZLyYmhjlz5gDQrVs3m6yZEry8vHj55ZcB+O233+y+35kzZ2jbti1RUVG0bt2acePGPXJM9erV2bx5MwULFuTEiRPUrFmTvXv3EhQUxN27d8mfPz9VqlSxe6xpTatWrWjfvj0ffvghmTJlcnQ4IiIiIiIWyUrOPKhUqVKMHTuWc+fOsWbNGnr16kXGjBmJiIjgjz/+oGXLluTNm5fhw4fbIl4RERGRJ1qyZIklCfDWW2/xwQcfPPS4OTmzePFiu1SKuBJzgipr1qyWAeWhoaEcOXKEdevWMXv2bCZMmMB7771H+/btKV++PIsXL07Um25iYmLo1KkT169fp3z58kycONGuz+VZ8ufPT7t27QCYNGmSQ2Oxt/nz5/P8889TpkwZFi9ebPV6y5Yt4+bNm+TOnZuGDRvaIMKU06NHDyDha3Lnzh277XP79m2ef/55rl+/ToUKFZg5cybu7u6PPbZEiRJs2bKFcuXKcfXqVerVq8fnn38OqKWZvfj4+PD333/z8ccfOzoUEREREZGHWJ2ceVD9+vWZOnUqISEhzJw5kxYtWljm0zj6l3IRERFJ3TZu3MhLL71EXFwc3bt3Z/z48Y/c6KxWrRr+/v6EhYWlWKsjZ3Tjxg127doFQHBwMFFRUdy8eZNDhw6xZs0aZs6cyfjx4xk2bBjdu3cnS5YsHDp0iDZt2lCvXj22bt361PXfe+89Nm/eTKZMmZg7dy7p0qVLiaf1VAMHDgTg999/JzQ01MHR2M/KlSuBhERbmzZtGDJkCNHR0UleJyYmhnHjxlmqTzp37oyHh4dNY7W3ypUrU6pUKe7fv2+Z6WJrMTExdOzYkcOHD+Pv78/ixYvJkCHDU8/x9/dnw4YN1K9fn/DwcHbu3An8mzwWEREREZG0wabJGTOTyYSbmxsmk0nv/hIRERG727dvH88//zz379+ndevWTJkyBTe3R3/McXNzo0OHDkDabm22atUqDMOgbNmy+Pv7YzKZntjS7LfffuP06dMMHz4cHx8fNm7cSM2aNXnhhRc4duzYI2v//fffjB8/HoDp06dTrFixlH56j1W3bl3Kli1LREQEU6dOdXQ4drNp0yYA6tWrByS0r6tTpw5nzpxJ9Bo7d+6kSpUqDBs2jMjISBo0aMCHH35ol3jtyWQyWWbATJ8+3ebrG4bBm2++ycqVK/H19WXJkiXkzZs3Uef6+fmxYsUKXnrpJQDy5s1LzZo1bR6jiIiIiIg4L5smZ9avX88rr7xCrly5ePnll1m+fDkxMTHkyZOHQYMG2XIrEREREQBOnDhBs2bNCAsLo06dOsyZM8fSputxzAO3Fy5cSExMTEqF6VT++ecfAJo1a5ao4zNnzsz//vc/Tpw4QZ8+fXBzc+Pvv/+mTJkyvP7665b5JidOnKB3794ADB061NJKzBmYTCbLz6Pff/99kmfouIJbt25x6NAhAP766y8WLFhA5syZ2bFjBxUqVGD+/PlPPT88PJy33nqLatWqsX//frJly8a0adNYvXo1WbNmTYmnYHNdu3bFZDKxceNGTp8+bdO1x48fz88//4zJZGLWrFlUqFAhSed7e3sze/Zspk+fzqJFix6bUBYRERERkdTL6t8Ajhw5wvvvv0/BggVp2LAhv/76K2FhYaRLl44uXbrwzz//cOHCBf73v//ZIl4RERERi0uXLtGkSROuXbtGYGAgixcvfmYLrdq1a5MzZ05u3brFunXrUiZQJ2IYBkFBQUDikzNm+fLlY8qUKRw4cIA2bdoQFxfHTz/9RLFixfjggw948cUXCQsLo3bt2owZM8Ye4VulS5cuZMmShTNnzrBs2TJHh2NzmzdvBhLmmuTIkYO2bduyb98+qlevzp07d+jQoQODBg167LylRYsWUbp0ab777jsMw6B79+4cOXKEnj17unQlfL58+WjcuDGQ0NLOVhYsWMC7774LJCRp2rRpk6x13Nzc6NGjBxUrVrRZbCIiIiIi4hqSlZy5du0a3377LZUrVyYgIIAvvviCCxcuYDKZaNiwIdOnT+fq1av8/vvvNGnSRO8CExEREZu7desWzZo149y5cxQrVowVK1bg5+f3zPPc3d0tFR1psbXZwYMHuXz5MunSpaN27drJWqNMmTIsXLiQDRs2UKNGDSIiIvj88885cOAAOXPmfGb1kqP4+vryyiuvAKTKeYjmlmZ16tSxfK5gwYJs2LCBoUOHAgnPu1atWpw6dQqAy5cv8+KLL9K2bVsuXrxIkSJFCAoK4rfffiNHjhwp/yTsoEePHkBCa7P4+Hir1ztx4gRdunTBMAz69+/PW2+9ZfWaIiIiIiKS9iQ6a3L//n1mz55Nq1atyJcvH++88w579uzBMAzKlCnDF198wfnz51m5ciXdu3cnffr09oxbRERE0rC7d+/SsmVLDh06hL+/PytXriRXrlyJPt88eHv+/Pmpsr3V05hbmtWvXx8fHx+r1qpTpw6bN2/m77//pkSJEvj6+jJr1iz8/f1tEapdDBgwADc3N1auXMmRI0ccHY5Nbdy4EeCRpJunpyfjxo1jyZIlZMuWjd27d1OxYkXeffddSpUqxbx583B3d+e9994jODiYJk2aOCJ8u2nfvj2ZMmXizJkzrF692ur1xo8fT2RkJPXq1eO7775z6coiERERERFxnEQnZ3LmzEnXrl1ZsWIFsbGx5MqVi7fffps9e/Zw4MAB3n33Xaf+RVxERERSh6ioKF544QW2b99OlixZCAoKolChQklao0GDBmTJkoVr165Zqg3SiqTOm3kWk8lE+/btOXLkCNevX6dhw4Y2WddeChUqROvWrQGYNGmSg6OxncjISHbt2gU8mpwxa9WqFfv27aNWrVqEhYXx1VdfERYWRtWqVdmzZw9jx47F19c3JcNOEenTp7dUz/zwww9WrRUaGspvv/0GwKhRo/Dw8LA6PhERERERSZsS/dvE3bt3MZlM+Pj40KZNG5o2bYq7uzsHDhzgwIEDydrc/EuSiIiISGLExcXRo0cPgoKCSJ8+PcuWLaNMmTJJXsfT05O2bdsybdo05s2bR7169ewQrfOJiIiwVFfYKjljZjKZXObG/qBBg1i4cCHTp09nzJgxiWqH5+x27txJTEwMefLkoUiRIk88Ll++fKxbt45Ro0bx559/MmjQIPr374+7u3sKRpvy+vfvz6RJk1i0aBEXLlwgf/78yVrn119/JSIigoCAgDTzfUNEREREROwjyW/1un//Pn/++Sd//vmnVRubTCYlZ0RERCTRDMPgjTfe4M8//8TT05O///6b6tWrJ3u9F154gWnTpvH3338zYcKENDEjb/369URFRVGgQAFKlCjh6HAcpkGDBpQpU4ZDhw4xbdq0VDEz5MGWZs9qs+Xh4cFnn33GZ599lhKhOYXSpUtTv3591q1bxy+//MKnn36a5DXi4uL4/vvvgYQEn9qZiYiIiIiINZJ0F8IwDJt+iIiIiCTWBx98wE8//YTJZGLGjBk0bdrUqvWaNGlCxowZuXTpEjt27LBRlM7twZZmafnGsslk4s033wQSWpvZYki8o5nb8z2ppZkkVM8A/PLLL8TExCT5/OXLl3P69GmyZMlC165dbR2eiIiIiIikMYmunFm7dq094xARERF5ovHjxzNmzBgAJk+eTMeOHa1e09vbm9atWzNz5kzmzp1rVRWOq7D1vBlX1q1bN9577z1OnjzJihUraNmypaNDSra4uDi2bNkCQJ06dRwcjfNq164duXPnJiQkhAULFvDSSy8l6fyJEycC0LdvX5dp4SciIiIiIs4r0ckZ9VQWERERR5g+fTpDhgwB4PPPP6dfv342W/uFF15g5syZzJs3j3HjxqXqapLz589z9OhR3N3dadSokaPDcbgMGTLQp08fvvnmGyZOnOjSyZng4GDCwsLImDEj5cqVc3Q4TsvLy4tXX32V0aNH88MPPyQpOXP06FGCgoIwmUwMGDDAjlGKiIiIiEhakfqbq4uIiIjLWrhwIX379gXgnXfeYcSIETZdv3nz5vj6+nL27Fn27t1r07Wdjblqplq1amTOnNmxwTiJN954A5PJxIoVKzh+/Lijw0k2c0uzmjVr4u7u7uBonNurr76Km5sb69at4/Dhw4k+b9KkSQC0bt2awoUL2ys8ERERERFJQ5ScEREREae0bt06OnXqRFxcHL169eKrr76yeWWLr68vLVq0AGDevHk2XdvZqKXZo4oWLUqrVq0ALIPeXdHGjRsBzZtJjPz589OmTRsAfvzxx0SdExYWxvTp0wEYOHCg3WITEREREZG0RckZERERcTqXLl2iTZs2REVF0bZtW3755Re7tRx78cUXAZg7dy6GYdhlD0eLjY1l1apVgJIz/2W+2f7rr78SHh7u4GiSzjAMS+WMkjOJY25LNn36dO7evfvM46dNm8bdu3cpVaqUWgKKiIiIiIjNKDkjIiIiTmfOnDmEh4dToUIFZs+ejYdHosfkJVmrVq3w9vbm+PHjHDp0yG77ONKOHTu4c+cOWbNmpXLlyo4Ox6k0btyYEiVKEB4ebqmOcCVnzpzh8uXLeHp6UrVqVUeH4xIaNWpEsWLFCAsLY+bMmU89Nj4+nokTJwIJibzUPJdKRERERERSlpIzIiIi4nQWLlwIQK9evfDx8bHrXhkzZqRp06ZA6m1tZm5p1rhxY80k+Q83NzfefPNNIGGuSHx8vIMjShpz1UylSpXw9fV1cDSuwc3Njf79+wMwefLkp1bM/fPPP5w8eRI/Pz+6d++eUiGKiIiIiEgaoOSMiIiIOJWbN29abjibZ0PY2wsvvACk/uSMWpo9Xs+ePcmYMSPHjh2ztH9zFeZrpU6dOg6OxLWYE7/79u1j27ZtTzzOXDXTu3dvMmTIkFLhiYiIiIhIGqDkjIiIiDiVpUuXEh8fT7ly5ShUqFCK7NmmTRs8PDwIDg7m+PHjKbJnSrl16xY7d+4EsFQIycMyZsxI7969gX9vxruKjRs3Apo3k1RZs2alc+fOAPzwww+PPebEiRMsX74ck8nEG2+8kZLhiYiIiIhIGqDkjIiIiDiVRYsWAdC2bdsU2zNLliyWQd+prXpm1apVxMfHU6ZMGfLly+focJyW+eb70qVLOXXqlIOjSZzr169z9OhRAGrVquXgaFzPgAEDAPjzzz+5cePGI49///33ALRo0YJixYqlaGwiIiIiIpL6KTkjIiIiTuP+/fusWLECSLmWZmaptbWZWpolznPPPUfz5s0xDMNyU97Zbd68GYDSpUuTLVs2B0fjeqpUqULlypWJjo5m6tSpDz0WHh5u+dygQYMcEZ6IiIiIiKRySs6IiIiI01i7di337t3D39+fSpUqpeje7dq1w83Njd27d3P27NkU3dteDMNQciYJBg4cCMBvv/1GTEyMg6N5NvO8GbU0S77+/fsD8OOPPxIfH2/5/G+//UZ4eDjPPfccTZo0cVR4IiIiIiKSiik5IyIiIk5j4cKFQELVjMlkStG9c+TIQb169YCENkepweHDh7l06RI+Pj4aGJ8ITZs2JWfOnNy8eZNVq1Y5OpxnMidn9HebfJ07dyZz5sycOXPGksg0DINJkyYB8Oabb+Lmpl+ZRERERETE9vSbhoiIiDiF+Ph4Fi9eDKTsvJkHvfzyywB8+eWX3Lx50yEx2JL5ZnO9evVIly6dg6Nxfh4eHnTs2BGAWbNmOTiap7t37x67d+8GVDljDV9fX3r37g3ADz/8ACTMaTp69CgZMmSgZ8+ejgxPRERERERSMSVnRERExCns3r2by5cvkyFDBho0aOCQGHr16kVAQAA3b95k+PDhDonBltTSLOk6d+4MwIIFC4iMjHRwNE+2Y8cOYmNjyZs3LwULFnR0OC7t9ddfB2Dp0qWcPXuW7777Dkj4fpApUyZHhiYiIiIiIqmYkjMiIiLiFBYtWgRA8+bN8fb2dkgMnp6e/PjjjwBMmTLFMnDdFUVGRrJhwwZAyZmkqFGjBgUKFCA8PJxly5Y5Opwn2rhxI5DQ0iylWwCmNs899xyNGzfGMAzee+89li5dCiS0NBMREREREbEXJWdERETEKTw4b8aRatWqRd++fYGEd9S7wmD4x9mwYQP3798nX758lCpVytHhuAw3Nzc6deoEwOzZs1Nkz2vXrhEUFJSkSh3zvBm1NLONAQMGADBnzhwMw6BZs2aUKFHCwVGJiIiIiEhq5pLJmbFjx1KlShUyZsxIzpw5adeuHceOHXvoGMMwGDVqFP7+/qRLl4769etz6NChh46Jiopi4MCBZM+enfTp09OmTRsuXryYkk9FREREgDNnzhAcHIy7uzutWrVydDh88cUXZMuWjYMHDzJhwgRHh5MsD7Y0U2VF0phnDy1ZsoSwsDCbrx8ZGcnKlSt59913CQwMJFeuXDRr1ozu3bsn6vzY2Fi2bt0KJFTOiPVat25N3rx5LX8eOHCgA6MREREREZG0wCWTM+vXr+eNN95g27ZtrFy5ktjYWJo2bcq9e/csx3z55ZeMHz+eSZMmsXPnTnLnzk2TJk0IDw+3HDN48GDmz5/P7Nmz2bRpE3fv3uX5558nLi7OEU9LREQkzTK3NKtduzZZs2Z1cDSQLVs2vvrqKwBGjRrFuXPnHBxR0mneTPIFBgZSokQJ7t+/b6noskZ8fDz79u3jyy+/pEmTJmTJkoWmTZvy1VdfsX//fgBMJhPz5s2zXAtPs3//fu7evYufnx9lypSxOj4BDw8PXnvtNQCKFi1KixYtHByRiIiIiIikdi6ZnFmxYgW9evWiTJkylC9fnl9//ZXz58+ze/duIKFqZsKECYwcOZIOHToQEBDA9OnTiYiIYObMmQDcuXOHKVOm8PXXX9O4cWMqVKjAjBkzCA4OZtWqVY58eiIiImmO+YZ027ZtHRzJv3r27EmdOnWIiIjgrbfecnQ4SXLhwgUOHz6Mm5sbjRs3dnQ4LsdkMtG5c2fAutZm165do0+fPvTu3ZuqVasyfPhwVq1aRVRUFHnz5qV3797MnDmTq1evMmzYMCBhzsndu3efuq65pVnNmjVxd3dPdnzysCFDhjBs2DBmzJiBm5tL/pokIiIiIiIuxMPRAdjCnTt3ACzvtD1z5gwhISE0bdrUcoy3tzf16tVjy5Yt9OvXj927dxMTE/PQMf7+/gQEBLBly5bHvss0KiqKqKgoy5/NbS5iYmJcth+9CGB5/ep1LOL8UuP1Ghoayvr16wFo0aKFUz237777jipVqrBw4ULmzZvn8Hk4ibV8+XIAqlSpQoYMGZzqa+oqXnjhBT755BOCgoIICQkhW7ZsSV7jtddes1TepE+fnnr16tGoUSMaN25MyZIlH2o3N2LECP7880/OnDnDBx98wLhx4564rvl6qVmzpv5ubcjLy4vPPvsMSF3fYyXxUuO/sSKpma5ZEdeh61XSmsS+1l0+OWMYBu+88w61a9cmICAAgJCQEABy5cr10LG5cuWytCUJCQnBy8uLLFmyPHKM+fz/Gjt2LJ988skjnw8KCsLX19fq5yLiaCtXrnR0CCJ2s3HjRhYsWEB8fPwzj/X19eWNN97A398/BSJLntR0va5fv564uDgKFCjAsWPHHpkj52ht27Zl3rx59O/fn9jYWHx8fBwd0jNNnz4dgEKFCrFs2TIHR+O6ChcuzJkzZ/j000+T3B7u+PHjLFy4EJPJxIgRI6hQoQKenp5AwhuJzpw588g53bt359NPP2XixIkUKFCAokWLPnKMYRisXbsWADc3N/39ithBavo3ViQt0DUr4jp0vUpaERERkajjXD458+abb3LgwAFLe4cH/Xf4rWEYzxyI+7RjRowYwTvvvGP5c1hYWxnkbAAASTJJREFUGPnz56dp06ZkypQpGdGLOIeYmBhWrlxJkyZNLDeORFKTW7du0bNnT0ulZWL8/PPPbNy4EW9vbztGlnSp8Xr9448/AOjcuTMtW7Z0cDSPql+/Prt37+bs2bPs3LmTsWPHOjqkp4qLi6N3794ADBgwgBo1ajg4Itd1+PBh3n//fQ4fPsy3336bpHO/++47ALp06ULVqlUTdc22bNmSo0eP8ueff/LHH3+wefPmR9qWnTx5ktu3b+Pl5cXAgQNdIlko4ipS47+xIqmZrlkR16HrVdIac8etZ3Hp5MzAgQNZtGgRGzZsIF++fJbP586dG0iojsmTJ4/l89euXbNU0+TOnZvo6GhCQ0Mfqp65du0aNWvWfOx+3t7ej71J5+npqW8skirotSyp1TfffMOdO3coU6YMX3/99VOPjY6Opnfv3uzbt49Ro0ZZhsI7m9RyvUZHR1sG13fo0MEpn5Ofnx8TJ06kdevWfPvtt/Ts2ZOyZcs6JBbDMLh+/fpTK8D27dtHaGgofn5+1KxZEw8Pl/5xz6G6dOnC+++/z4YNG7h+/Xqiq+lWrVrFmjVr8PT05OOPP+bw4cOJvma//fZbgoKC2LNnDz///DODBg166PFt27YBCS3rMmbMmPQnJSLPlFr+jRVJK3TNirgOXa+SViT2de6Sv60bhsHAgQOZP38+69ato3Dhwg89XrhwYXLnzs3KlSupUKECkHDzZ/369XzxxRcAVKpUCU9PT1auXEnHjh0BuHLlCgcPHuTLL79M2SckIiJ2c+XKFcs72MeMGZOo1kRTp06lbdu2fP311zRr1owmTZrYO8w0a/369YSFhZE7d26qVKni6HCe6Pnnn6d9+/bMnz+f/v37s2HDBrsPDA8LC+PgwYMcOHCAAwcOsH//foKDgwkPD0/U+Y0bN1ZixkoFCxakZs2abNmyhT///JPBgwc/8xzDMHj//fcBeP311ylUqBCHDx9O9J65c+fmiy++oF+/fowcOZL27duTP39+y+PmavHatWsn7cmIiIiIiIiIU7HvXQU7eeONN5gxYwYzZ84kY8aMhISEEBISQmRkJJDQzmzw4MGMGTOG+fPnc/DgQXr16oWvry9dunQBEt4F27dvX4YMGcLq1avZu3cv3bp1o2zZsjRu3NiRT09ERGxo9OjRREZGUqNGDVq3bp2oc9q0acPrr78OQM+ePblx44Y9Q0zTzMPSW7dubfdkh7W+/fZb0qdPz+bNm5k2bZpN146Li2P+/Pl8/PHHtGvXjiJFiuDn50etWrXo378/kydPZsuWLZbEjMlkeupHxowZee2112waY1r18ssvAzBr1qxEHT9//nx27txJ+vTpGTlyZLL2fOWVV6hZsyZ37959pHJm48aNANSpUydZa4uIiIiIiIhzcO67IE8wefJk7ty5Q/369cmTJ4/lY86cOZZjhg0bxuDBgxkwYACVK1fm0qVLBAUFPdT+4ZtvvqFdu3Z07NiRWrVq4evry+LFix/p7S0iIq7p1KlT/PLLLwCMHTv2mXPHHvT1119TqlQprly5Qt++fTEMw15hOr07d+6wdu3ap7bSSg7DMFi0aBGQkBBzdvnz5+fTTz8F4N1337Vp0q5Xr1506NCBTz/9lIULF1qGxefNm5cWLVrw3nvvMXPmTA4ePEh0dDTx8fFP/QgLC6Np06Y2iy8te+mll3Bzc2PHjh2cPn36qcfGxcXxwQcfAPD2229b2ukmlZubGz/99BMeHh4sWLCABQsWAHD16lVOnDiByWR6YhteERERERERcQ0umZwxDOOxH7169bIcYzKZGDVqFFeuXOH+/fusX7+egICAh9bx8fFh4sSJ3Lx5k4iICBYvXvxQ2wgREXFtH3/8MbGxsTRr1ox69eol6VxfX19mzpyJl5cXixYt4qeffrJTlM4tNDSUatWq0bBhQwYNGmTTJNW+ffu4cOECvr6+NGrUyGbr2tOgQYMoV64ct27dYtiwYTZZc9++fcyYMQOTyUTv3r359ttvWbt2LTdu3ODixYssW7aMsWPH8vLLL1OmTBn1aE5huXLlomHDhgDMnj37qcf+/vvvHDlyhKxZszJ06FCr9g0ICODdd98FEuYshoeHs3nzZstjD85MFBEREREREdfjkskZERGRZzlw4AAzZ84EEmbNJEdgYCBjx44F4J133uHIkSM2i88VREdH88ILL3Ds2DEAvv/+e8vsNlswV800bdqUdOnS2Wxde/Lw8ODHH38E4Ndff7W0mLLGJ598AkCnTp2YOnUqgwYNon79+mTLls3qtcU2OnfuDDw9ORMVFcXHH38MwHvvvYefn5/V+3744YcUKVKEixcv8uGHH1peb5o3IyIiIiIi4vqUnBERkVRp5MiRGIbBSy+9RMWKFZO9zuDBg2natCmRkZG8/PLLREVF2TBK52UYBv3792ft2rVkyJCBt956C4ARI0bw22+/2WQP87yZtm3b2mS9lFKjRg3LPJeBAwcSFxeX7LX27t3LggULMJlMfPTRR7YKUWysQ4cOeHp6EhwczKFDhx57zI8//sj58+fx9/fnzTfftMm+6dKlY/LkyQBMnDjR0sJXyRkRERERERHXp+SMiIikOps3b2bJkiW4u7szevRoq9Zyc3Nj2rRpZM+enf379/P+++/bKErn9sUXXzB16lTc3NyYM2cOEyZMsLRp6tu3LytWrLBq/QsXLrB3717c3Nxo1aqVLUJOUWPGjCFz5szs37+fadOmJXudUaNGAQlD50uVKmWb4MTmsmTJQosWLQCYNWvWI4+Hh4fz+eefAwntFG1ZCda0aVO6dOlCfHw8V65cAaBOnTo2W19EREREREQcQ8kZERFJVQzDsCRQevfuTYkSJaxeM0+ePPz6668AjB8/nqCgIKvXdGZz585lxIgRAHz77be0bNkSSEjYdO3aldjYWF588UV27dqV7D3MLc1q1qxJjhw5rA86hWXLls1S6fLBBx8QHh6e5DV2797NokWLcHNzU9WMC3iwtdl/Zy9NmDCB69evU6xYMXr37m3zvcePH0/mzJkBKFCggGYkioiIiIiIpAJKzoiISKryzz//sGHDBry9vS3zH2zh+eefZ8CAAQD07NmT69ev22xtZ7J9+3a6d+8OJLTserA9k5ubG1OnTv1/7d13eM7X/8fx150pIfaMIMRoqa1V1VbUboKW1ia2lKrZ2sSM2kVr71U1vzVqtUaNora0VSOoGXtFZH1+f/jm/jVfm3vkTp6P63Jdcn/O55z3ceWI6/NyPkeVK1fWvXv3FBAQoJMnT77UOAnhTK1atV69aDvp0KGD8ufPr0uXLr3UWTwJu2YaN25skRAR1lWrVi15enrq5MmTiYLJa9euadSoUZKkwYMHy9XV1eJjZ8uWTePGjZMkffTRRxbvHwAAAABge4QzAIBkIz4+3rxrpkOHDvLx8bFo/6NGjVLhwoV16dIltWrV6pH/Pe/oTp8+rVq1aikqKkoBAQEaO3bsI23c3Ny0bNkylShRQhEREapWrZoiIiJeaJxbt25p8+bNkhzvvJl/c3Nz08iRIyVJo0eP1tmzZ5/73r1795pfvdevXz9rlQgLSp06tWrWrCnp4e6ZBMOHD9ft27dVokQJ1atXz2rjBwUFKTw83BwEAQAAAAAcG+EMACDZWLp0qQ4cOCAvLy/za7ksycPDQ4sWLZKbm5tWrVplPqg7Obh165YCAwMVERGhYsWKadGiRXJ2dn5s27Rp0+qnn36Sr6+vTp48qYCAAN29e/e5x1q/fr1iYmJUqFAhFSxY0FJTsIvatWurQoUKioqKeqHvuYRdM02aNFGBAgWsVB0srWHDhpKkxYsXKz4+XufOndOECRMkSUOHDpWTk3X/ae3r62uVnTkAAAAAANsjnAEAJAsxMTHq27evJKl79+7KnDmzVcYpVqyY+RVW3bp107lz56wyji3Fxsaqfv36CgsLU44cObR69Wp5eXk99Z7s2bNr/fr1ypQpk37//XfVq1dPMTExzxzr5s2b5gPVHXnXTAKTyaQxY8bIZDJp4cKF2r179zPv2b17t9auXcuuGQdUvXp1pUuXTufPn9f27ds1aNAgPXjwQO+9955q1Khh7/IAAAAAAA6EcAYAkCzMnj1bx48fV5YsWdSlSxerjvXFF1/o3XffVVRUlEJDQ606lrUZhqGOHTtq/fr18vT01KpVq577sPGCBQtqzZo18vDw0E8//aS2bduaX/UWGxurP//8U4sXL1afPn1Us2ZN5cmTRxkyZNDKlSslOfZ5M/9WqlQpBQUFSZK6dOnyzNfdJeyaadasmfz8/KxdHizI3d1dderUkfRwp8zMmTMlSaGhoTKZTPYsDQAAAADgYAhnAAAO7/79+xo4cKAkqXfv3s/c9fGqnJycNHjwYEnS9OnT9c8//1h1PGsaN26cJk+eLJPJpAULFqh06dIvdH/ZsmX1ww8/yNnZWbNnz1bVqlVVpkwZeXl5qXDhwmrQoIGGDRum1atXm89kyZMnjz777DOVK1fOGlOyi6FDhyp16tTatWuXfvjhhye227Vrl9atWycXFxfzTi84loRXm23YsEFxcXEKCAhQ+fLl7VwVAAAAAMDREM4AABzed999p/PnzytXrlwKDg62yZj+/v7y9/dXdHS0hg0bZpMxLW3FihXq1q2bJGnkyJH66KOPXqqfwMBATZ48WZK0adMm7du3T1FRUUqdOrXefvtttW3bVhMnTtS2bdt048YNnT59Wt99953Vz+ewJW9vb/Xo0UOS1KNHD0VFRT223YABAyQ9PNw9X758NqsPllOxYkVlzZrV/PXQoUPtWA0AAAAAwFG52LsAAABexe3bt82vFhs4cKBSpUpls7EHDhyoChUqaMaMGerZs6fy5Mljs7Ff1ZQpU9ShQwcZhqG2bduqa9eur9Rf69at5eXlpb/++ktFixZV8eLFlTdv3mQVwDxLt27dNHXqVJ05c0bjxo1Tz549E13fsWOHNm7cyK4ZB+fi4qKGDRvqm2++UaNGjVS8eHF7lwQAAAAAcEAp54kJAMCqIiMj1ahRI40dO9ZmY965c0dffPGFrl27ptdee01Nmza12diS9P7776tSpUqKiYlxmP89Hx8frx49eig4OFhxcXEKCgrSxIkTLXJeRv369TVgwADVqVNHfn5+KSqYkSRPT09zUDhs2DBdvnw50fWEXTMtWrSQr6+vrcuDBQ0ZMkQzZszQlClT7F0KAAAAAMBBpaynJgAAq5k7d64WLVqkrl27au3atVYdKzY2VlOnTlWBAgU0Z84cSQ8P5HZxsf2G0ISzbmbNmqXw8HCbj/8ioqKi1KBBA40YMUKSNGjQIM2aNUuurq52riz5aNSokcqUKaM7d+6oX79+5s9//fVX/fzzz3J1dVWfPn3sWCEsIU2aNGrZsqXSpElj71IAAAAAAA6KcAYAYBHTpk0z/75FixaP7BqwlPXr16tkyZJq166dLl++rPz582vlypUvfV7KqypfvryqVKmi2NjYJL175urVq6pUqZKWLFkiV1dXzZ07V/369bPIjhn8PycnJ/PusRkzZujw4cOS/n/XTMuWLR3q9XcAAAAAAMA6CGcAAK9s37592r9/v9zc3FS4cGFFRESoRYsWMgzDYmMcPXpU1atXV/Xq1XX06FFlzJhR48aNU1hYmGrXrm2xcV5Gwu6Z2bNn69SpU3at5XGOHz+ucuXKaefOnUqfPr02bNhg81fApSTvvvuuPv30U8XHx6tbt27aunWrNm/eLFdXV/Xu3dve5QEAAAAAgCSAcAYA8MoSds3UrVtXP/zwg1KlSqWffvpJEyZMeOW+L126pLZt26p48eJav369XF1d1bVrV504cUKdOnWSm5vbK4/xqsqVK6dq1aopLi5OQ4YMsXc5iezYsUPlypXTiRMn5Ovrq507d8rf39/eZSV7w4cPl5ubmzZt2qQmTZpIklq3bq3cuXPbuTIAAAAAAJAUEM4AAF7J3bt3tXDhQklSmzZtVKRIEY0aNUqS9NVXX5lf6/SiHjx4oKFDh6pAgQKaNm2a4uPj9cknn+jPP//U6NGjlSFDBovNwRISds/MnTtXJ06csHM1Dy1evFiVKlXStWvX9Oabb+q3337T66+/bu+yUoR8+fKpc+fOkqRz587Jzc2NXTMAAAAAAMCMcAYA8EoWL16sO3fuKH/+/OYdGe3bt1dgYKAePHighg0b6v79+y/U58WLF+Xv76++ffvq7t27Klu2rLZv364lS5bIz8/PCrN4dWXLllWNGjWSxO6ZqKgoDRkyRA0aNNCDBw9Uu3ZtbdmyRdmyZbNrXSlN7969lSVLFkkPg0sfHx87VwQAAAAAAJIKF3sXAABJzaZNm7RmzZrnaluwYEG1bdtWzs7OVq4q6Up4pVmbNm3Mh8ubTCbNnDlTxYoV0x9//KEvv/xSEydOfK7+du/erTp16ujChQtKnz69vv32WzVs2NAhDq4PCQnRTz/9pHnz5qlPnz4qUKCATce/evWqJk2apIkTJyoiIkKS1KlTJ40ePTpFf4/aS7p06bRo0SItWrTIvLMKAAAAAABAIpwBgEQuXbqk2rVrKzIy8rnvOXz4sL777juHCA8s7fDhw9q9e7dcXFwUFBSU6FqWLFk0Z84cVatWTd9++62qV6+uwMDAp/Y3Z84ctW3bVtHR0SpcuLD+85//KH/+/NacgkW99dZbCggI0Jo1azR48GDNnTvXJuMeP35cY8eO1ezZs827lHLlyqUBAwaoVatWNqkBj1epUiVVqlTJ3mUAAAAAAIAkhnAGAP5lyJAhioyMVOHChVW7du2ntr17964mTpyoyZMnK2fOnOrbt6+Nqkw6EnbNfPTRR499ZVbVqlXVpUsXjR07Vi1atNCRI0eUPXv2R9rFxsbqyy+/1Lhx4yRJtWvX1rx58+Tl5WXV+q0hJCREa9as0YIFC9SnTx8VKlTIKuMYhqHt27dr1KhR+vHHH2UYhiSpVKlS6t69uz755BO5urpaZWwAAAAAAAC8GsIZAPiv8PBwTZ06VZI0ceJEVaxY8Zn3FCpUSJ9//rn69esnb29vtWzZ0tplJhmRkZGaP3++pIevNHuS0NBQ/fLLLzp06JCaN2+utWvXysnp/488u3btmurXr6+ff/5ZktS/f38NGDAgURtHUqZMGdWsWVOrVq3S4MGDzX9GlhIbG6vt27dr6NCh2rt3r/nzwMBAdevWTRUqVEiRu7gAAAAAAAAciWM++QIAKxgwYIBiYmJUpUqV5wpmJKlDhw7q1auXJKlt27bPfVZNcrB06VLdvHlTvr6+qly58hPbubu7a+HChUqVKpXWr1+v8ePHm68dPXpUb731ln7++WelTp1aS5cu1cCBAx02mEkQEhIiSVq0aJH+/PNPi/V7/fp1vfnmmxo1apT27t0rd3d3tWnTRn/88YdWrVolf39/ghkAAAAAAAAH4NhPvwDAQo4cOWLe4TBs2LAXunfo0KEKCgpSXFyc6tWrpz179lijxCQn4ZVmrVu3fmaYUrhwYY0ZM0aS1KNHDx06dEjLly/X22+/rVOnTilv3rzatWuX6tata/W6baFUqVL66KOPFB8fr0GDBlms3yFDhigsLExeXl7q06ePzp49q6lTp+r111+32BgAAAAAAACwPsIZAJDUt29fGYahunXrqkyZMi90r8lk0rRp01StWjVFRkYqICBAx48ft1KlScOff/6p7du3y9nZWS1atHiue4KDg1WrVi1FR0erSpUqqlu3ru7du6cPPvhAe/fuVdGiRa1ctW0l7J5ZvHixwsLCXrm/kydPauLEiZKkrl27asCAAcqaNesr9wsAAAAAAADbI5wBkOLt2rVLP/74o5ycnDRkyJCX6sPV1VVLly5V6dKldfXqVVWrVk2XL1+2cKVJR8KumcDAQHl7ez/XPSaTSTNmzFCOHDl05coVSVKnTp20fv16ZcqUyWq12kvx4sVVp04dGYZhkd0zvXv3VkxMjKpWraqSJUtaoEIAAAAAAADYC+EMgBTNMAz17t1bktS8eXO99tprL91XmjRptGbNGvn5+Sk8PFwffvih7ty5Y6lSk4yoqCjNnTtXktSmTZsXujdz5sxasmSJ3n//fc2ePVvjxo2Ti4uLNcpMEgYMGCBJWrJkiXbu3PnS/ezatUs//PCDnJycFBoaaqnyAAAAAAAAYCeEMwBStI0bN2rLli1yc3MzP0h/FdmyZdO6deuUJUsW7d+/X5988omio6MtUGnSsWLFCl27dk0+Pj6qXr36C99fvnx5bd26VUFBQVaoLmkpVqyYmjdvLsMw1Lx5c0VGRr5wH4ZhqHv37pKkFi1aJLvXvwEAAAAAAKREhDMAUqx/75pp3769cufObZF+8+fPrzVr1sjT01MbNmxQ69atZRiGRfpOChJeadaqVSs5OzvbuZqkb8yYMfL29tbx48fVt2/fF75/+fLl2rlzpzw9PS3yejQAAAAAAADYH+EMgBRr2bJl2rdvn9KkSWMOaSzlzTff1NKlS+Xs7Kx58+apX79+Fu3fXo4fP67NmzfLZDKpZcuW9i7HIWTIkMEcaI0bN07bt29/7nujo6PVo0cPSdKXX3753Of7AAAAAAAAIGkjnAGQIsXGxpp3MXTt2lVZsmSx+Bg1atTQjBkzJEnDhw/X2bNnLT6GrU2fPl3Sw7lZaqdRSvDhhx+qRYsWMgxDLVq00L17957rvkmTJunkyZPKnj27+dVmAAAAAAAAcHyEMwBSpDlz5ujYsWPKlCmTunXrZrVxgoKC9MEHHyguLk4TJkyw2ji2EB0drdmzZ0uS2rRpY99iHNCYMWPk4+OjEydOPNdOrRs3bphfYzZo0CClSZPG2iUCAAAAAADARghnAKQ4UVFRCgkJkST17t1badOmtep4Xbt2lfTwrJY7d+5YdSxr+vHHHxUREaEcOXIoICDA3uU4nPTp05t3Ho0fP15bt259avthw4bp+vXrKlKkiFq0aGGLEgEAAAAAAGAjhDMAUpxJkybp3Llz8vHxUfv27a0+Xo0aNVSoUCHdunVLs2bNsvp41pJwbkqLFi3k6upq52ocU7Vq1dS6dWtJUsuWLXX37t3HtgsPD9f48eMlSSNHjpSLi4vNagQAAAAAAID1Ec4ASFHu3LmjYcOGSZIGDBigVKlSWX1MJycnde7cWdLDA+Hj4uKsPqalhYeHa+PGjZKkVq1a2bkaxzZ69GjlypVLp06dUs+ePR/bpnfv3oqOjlblypVVvXp1G1cIAAAAAAAAayOcAZCijBkzRlevXlXBggXVvHlzm43brFkzZcyYUeHh4frxxx9tNq6lzJgxQ4ZhqEqVKsqXL5+9y3FoadOm1cyZMyVJ3377rX755ZdE13fv3q3vv/9eJpNJI0eOlMlkskeZAAAAAAAAsCLCGQApxpUrVzR69GhJ0uDBg236qihPT08FBwdLehgQOZLIyEjz69jatGlj52qSh8qVK5u/H1q1amU+i8gwDHXv3l2SFBQUpBIlStirRAAAAAAAAFgR4QyAFCM0NFR37txRyZIl9cknn9h8/A4dOsjV1VXbt2/X3r17bT7+i4qMjNTYsWOVL18+XbhwQVmyZFHt2rXtXVayMWLECOXJk0enT5/WV199JUlauXKltm/fLg8PDw0ePNjOFQIAAAAAAMBaOGEYeEmGYWjixIn67bffnqv9e++9p3bt2vGKIju5cuWKJk2aJEkaNmyYnJxsn017e3urQYMGmjdvnsaOHauFCxfavIbnERkZqSlTpujrr7/W5cuXJUm+vr6aNm2a3Nzc7Fxd8uHl5aWZM2eqUqVKmjx5smrVqmUOabp16yYfHx87VwgAAAAAAABrIZwBXtLAgQM1cODA526/cOFCXb16VX379rViVXiSyZMnKyoqSqVLl1a1atXsVkeXLl00b948LVmyRF9//bVy5cplt1r+V2RkpCZPnqwRI0YkCmX69OmjZs2aEcxYwQcffKAOHTro22+/Ve3atRUTE6OsWbOaQxoAAAAAAAAkT4QzwEuYP3++OZjp0qWLcufO/dT2p0+f1jfffKN+/fopR44catWqlS3KxH9FRUVp4sSJkh7uSLDn7qWSJUvK399fW7Zs0cSJE/X111/brZYECaHM119/rYiICEkPQ5m+ffuqWbNmcnV1tXOFydvw4cP1008/6dSpU5KkQYMGycvLy85VAQAAAAAAwJoIZ4AX9Ouvv5rDla+++uq5H657enoqNDRU7dq1U/bs2RUQEGDNMvEvCxcuVEREhHx8fOxy1sz/6tq1q7Zs2aKpU6eqX79+SpMmjV3quHbtmiZNmqQJEyYQythRmjRpNGvWLFWqVElFihQhvAUAAAAAAEgBbH/oAuDATpw4oY8//ljR0dGqU6eOQkNDn/veoUOHKigoSHFxcfr000+1e/duK1aKBIZhaMyYMZKkTp06JYnAISAgQAUKFNDNmzc1e/Zsm49//PhxtW/fXrly5VK/fv0UEREhX19fTZ8+XX///bdatWqVJP6cUpL3339fJ06c0LZt2+Tiwv+bAAAAAAAASO4IZ4DndP36dQUEBOjatWt68803NW/evBc6VN5kMmnatGmqXr267t+/r4CAAP39999WrBiStGHDBoWFhSlNmjRq3bq1vcuRJDk5Oalz586SpG+++UZxcXFWH9MwDO3YsUMff/yxChUqpEmTJun+/fsqWbKkFixYQCiTBOTJk0dp06a1dxkAAAAAAACwAcIZ4DlER0erbt26+vvvv5U7d279+OOP8vT0fOF+XF1dtWTJEpUpU0bXrl1TtWrVdOnSJStUnLQZhqG9e/fq1q1bVh9r9OjRkqTWrVsrffr0Vh/veQUFBSlDhgw6ceKEVq9ebbVxYmNjtWTJEpUrV07vvvuuVq5cKcMwFBAQoF9++UX79u1To0aNCGUAAAAAAAAAGyKcAZ7BMAwFBwdry5Yt8vLy0urVq5U9e/aX7i9NmjRas2aN/Pz8dPr0aX344Ye6ffu2BStO+oYNG6a33npLfn5+mjhxomJiYqwyzpEjR7Rx40Y5OTnpiy++sMoYLyt16tRq166dJGns2LEW798wDE2aNEkFCxZUvXr1tHv3brm7u6t169b6448/tHr1alWsWFEmk8niYwMAAAAAAAB4OsIZ4BmGDx+uWbNmycnJSYsXL1bRokVfuc+sWbNq/fr1ypIliw4cOKC6desqOjraAtUmfdu2bVP//v0lPTyQvmPHjipatKh+/PFHGYZh0bESzpqpW7eu8ubNa9G+LeHzzz+Xi4uLtm7dqn379lm071mzZql9+/YKDw9XpkyZ1L9/f505c0bTpk3T66+/btGxAAAAAAAAALwYwhngKZYsWaLevXtLkiZMmKAaNWpYrG8/Pz+tXbtWqVOn1qZNm9SyZUvFx8dbrP+k6OrVq2rUqJHi4+PVpEkTTZo0SVmyZNGxY8dUu3ZtffDBB9q/f79Fxrp48aIWLFggSeratatF+rS0nDlzqn79+pIsu3vGMAxzf506ddLZs2c1cOBAZcuWzWJjAAAAAAAAAHh5hDPAE+zevVvNmjWT9PABd/v27S0+RpkyZbR06VK5uLhowYIF6tmzp8XHSCoMw1Dz5s11/vx584H0wcHBOnHihHr27Cl3d3dt2bJFZcqUUVBQkM6dO/dK43377beKiYnRO++8o7fffttCs7C8Ll26SJIWL16s8+fPW6TPrVu36ujRo/L09FRISMhLnY8EAAAAAAAAwHoIZ4DHOH36tGrVqqWoqCgFBgaaD5W3hurVq2v69OmSpJEjR+rbb7+12lj2NHbsWK1Zs0bu7u5avHix0qRJI0lKmzatQkNDdezYMTVq1EiGYWju3LkqWLCg+vXrp7t3777wWJGRkZo0aZKkpLtrJkHp0qX1/vvvKzY2VhMnTrRInxMmTJAkNWvWTOnTp7dInwAAAAAAAAAsh3AG+B93795VYGCgIiIiVKJECS1atEjOzs5WHTMoKEjDhg2TJHXr1k3Hjh2z6ni2tnfvXvOuoLFjx6p48eKPtMmTJ48WLFig3bt3691339X9+/c1ZMgQFShQQL/++usLjTdnzhxdv35defPm1UcffWSJKVhVQoA0ZcoU3bt375X6Onv2rFauXCnp4Zk2AAAAAAAAAJIewhngXwzDUJs2bRQWFqYcOXJo1apV5h0e1tazZ09VrVpVDx48UOvWrZPN+TO3bt1S/fr1FRMTo7p16yo4OPip7d966y1t27ZNy5Ytk5+fny5duqQqVapoxYoVzzVefHy8+byVzp07Wz1Ys4TAwED5+fnpxo0bmjNnziv1NWnSJMXHx6tSpUoqUqSIhSoEAAAAAAAAYEmEM0jSDMPQ+fPnbRZUTJo0Sd9//71cXFy0ZMkS+fj42GRcSTKZTJoyZYpSp06t7du3m1/L5cgSwq7w8HD5+vpq+vTpMplMz7zPZDKpTp06OnLkiGrXrq0HDx7ok08+0ZQpU5557+rVq3X8+HGlT59eLVu2tMQ0rM7Z2VmdO3eW9HBnUUxMzEv1c//+fU2dOlWS1LFjR0uVBwAAAAAAAMDCCGeQpHXr1k0+Pj7KkSOHmjZtqgULFigiIsIqY+3Zs8f8gHzEiBEqX768VcZ5Gl9fXw0fPlzSw500Z86csXkNljR16lQtWbJELi4u+v7771/4/BMPDw8tXbpUbdq0UXx8vIKDgxUSEiLDMJ54z5gxYyRJ7dq1s9muJ0to3ry5smTJohMnTjxXCPU4ixYt0vXr1+Xr66vAwEALVwgAAAAAAADAUghnkGTNnTvX/HqqiIgIzZ8/X02aNFG2bNlUpkwZ9e3bV7/++utL7zL4t2vXrunTTz9VTEyM6tSpYw5p7KF9+/Z69913dffuXbVt2/apQURSduTIEfOfY2hoqMqWLftS/bi4uGjKlCnq37+/JGngwIEKDg5WXFzcI2337dunrVu3ysXFxeHOW0mTJo0GDRokSQoJCdGNGzde6H7DMDRhwgRJD7+HHOF1bgAAAAAAAEBKRTiDJGn//v1q166dJKlPnz7asmWLevbsqRIlSkh6+BB+6NChev/995U5c2bVqVNH8+bNe6nXn8XHx6tp06Y6e/as8ufPr5kzZz7Xq7esxcnJSdOnT5e7u7s2bNjwymeQ2MO9e/dUr149RUVFqUaNGuYD71+WyWTSwIEDNWnSJJlMJk2dOlWffPKJ7t+/n6hdwq6ZBg0a2PSVdJbSunVrFSlSRNeuXdOQIUNe6N4dO3bo4MGD8vDwUKtWraxUIQAAAAAAAABLIJxBknP16lXVqVNHUVFRCggI0KBBg1ShQgWFhobqwIEDunjxoubMmaOGDRsqU6ZMun37tlasWKFmzZqpevXqunjx4guNFxoaqp9++kmpUqXS0qVLlS5dOivN7PkVKlRIAwcOlCR16dLlhedkbx07dtRff/0lb29vzZkzR05OlvmrJjg4WEuXLpW7u7tWrlypqlWrmneY/PPPP1q8eLEkvXIYZC8uLi4aPXq0JGnChAk6fvz4c987fvx4SVLjxo2VMWNGq9QHAAAAAAAAwDIIZ5CkxMXFqWHDhjpz5oz8/Pw0f/78Rx7sZ8+eXc2aNdPChQt1+fJl7dmzR/3795eHh4c2btyoYsWKac2aNc813s8//2x+XdZ3332n4sWLW3xOL6tbt24qXbq0bt68qQ4dOjjM683mz5+vWbNmycnJSQsWLFCWLFks2n+dOnW0fv16pUuXTtu3b9d7772nc+fOacKECYqLi1PFihVVsmRJi45pS9WqVVONGjUUExOjHj16PNc9586d0/LlyyU9DMYAAAAAAAAAJG2EM0hS+vTpo02bNsnT01MrV6585gHyzs7OevPNNzVw4EDt379fJUqU0NWrVxUYGKgvvvhCUVFRT7z3/PnzatiwoeLj49WqVSu1aNHCwrN5NS4uLpoxY4ZcXFy0YsUKLV261N4lPdNff/2l4OBgSVL//v3l7+9vlXEqVKigX3/9Vd7e3goLC1O5cuU0depUSY67a+bfRo0aJWdnZ61YsUJbtmx5ZvvJkycrLi5OFSpUULFixaxfIAAAAAAAAIBXQjiDJGPp0qX6+uuvJUmzZs3SG2+88UL3v/baa/rtt9/Mh9BPmDBBb731lv74449H2sbExKh+/fq6cuWKihcvbj5IPakpXry4evXqJUn6/PPPde3aNTtX9GTnz59XtWrVdO/ePfn7+6tv375WHa9o0aLauXOnChUqpHPnzunWrVsqVKiQPvzwQ6uOawuFCxc2n7nUtWtXxcXFPbFtVFSUOZhi1wwAAAAAAADgGAhnkCSEhYWpefPmkqTu3burXr16L9WPu7u7xo4dq7Vr1ypr1qw6cuSISpcurcmTJyd6LVivXr20Y8cOpU2bVkuXLpWHh4clpmEVffr0UeHChRUREWEOnpKa69evq1q1ajp79qwKFiyoH374Qc7OzlYfN0+ePNqxY4fefvttSVLPnj0tdr6NvYWEhChdunQ6cOCA5s2b98R2P/zwg65cuaJcuXKpdu3aNqwQAAAAAAAAwMtKHk8x4dBu3bqljz/+WPfu3VOlSpUUGhr6yn3WqFFDhw8fVrVq1RQVFaXPPvtMderU0bVr17R8+XLzoeuzZ89W/vz5X3k8a3J3d9fMmTPl5OSk+fPna+3atfYuKZHIyEjVrFlTYWFh8vb21vr16y1+zszTZMqUSdu2bdPhw4cVFBRks3GtLUuWLObdR71799bdu3cfaWMYhsaPHy9J+uyzz+Ti4mLTGgEAAAAAAAC8HMIZ2FV8fLyaNm2q48ePK3fu3Pr+++8t9oA5W7ZsWrt2rcaMGSNXV1etXLlSxYsXN58t061bN3388ccWGcvaypYta941065dO92+fdu+Bf1Xwuvhdu7cqfTp02vdunXy9fW1eR2urq4qWrSoTCaTzce2po4dOypfvny6ePGiRo4c+cj13377Tfv27ZO7u7vatGljhwoBAAAAAAAAvAzCGdjVkCFDtGrVKrm7u2v58uXKnDmzRft3cnJSly5dtHv3bhUqVEjnz5/X7du39e6771pkh44tDR48WH5+fjp37py++uore5cjwzDUtm1brV69WqlSpdKqVatUtGhRe5eVrLi7u2vEiBGSpJEjR+rcuXOJriecldSwYUOLrx0AAAAAAAAA1kM4A7tZs2aNQkJCJEmTJ09W6dKlrTZWyZIltW/fPnXs2FGVK1fW999/L1dXV6uNZw2enp6aPn26JGnKlCnasmWLXevp2bOnZs+eLWdnZy1evFjvvvuuXetJrurUqaP33ntP9+/fV69evcyfX7x4UUuWLJH0cIcNAAAAAAAAAMdBOAO7CAsLU+PGjWUYhtq3b6/mzZtbfczUqVNr/Pjx2rhxo3LmzGn18azB399f7dq1kyS1aNFCt27deuU+r1+/rgkTJujQoUOKiop6rnvGjBlj3tExdepU1apV65XrwOOZTCaNGTNGkjR//nzt3btX0sOALjY2VuXLl1epUqXsWSIAAAAAAACAF0Q4A5uKjIxU3759VapUKd26dUvly5fX2LFj7V2WQxkxYoTy5s2r06dPq0OHDq/UV3R0tGrWrKlu3bppwIABypo1q6pVq6bRo0fr8OHDMgzjkXvmzZunbt26SZJCQ0PVsmXLV6oBz1amTBk1a9ZMktSlSxc9ePBAkydPlsSuGQAAAAAAAMAREc7AJgzD0PLly/X6669r6NChio6OVrVq1bRs2TK5ubnZuzyHkjZtWi1YsEDOzs5asGCBFixY8NJ9de7cWTt37pSXl5cyZMigqKgobdiwQd27d1fx4sWVI0cONW3aVHPnztWFCxe0du1atWjRQtLDkKBHjx6WmhaeYejQofLw8NCOHTvUpEkTXb58Wd7e3qpTp469SwMAAAAAAADwgghnYHV///23atSoobp16+rs2bPKnTu3li9frp9++knZsmWzd3kOqVy5curfv78k6bPPPlN4ePgL9zFr1ixNmjRJJpNJ8+bN08yZM3XgwAGNGTNGNWrUkKenpy5fvqz58+crKChIOXPmVK1atRQXF6cmTZpo1KhRMplMlp4ansDHx0dfffWVJGnp0qWSpODgYIc7OwkAAAAAAAAA4Qys6N69e+rdu7eKFi2q9evXy83NTX369NGff/6pjz/+mAf7r6h3794qX7687ty5o8aNGys2Nva57/3999/12WefSZJCQkL04YcfymQyqUiRIurSpYvWrl2r69eva/PmzerVq5fKlCkjk8mkuLg4Va9eXTNnzpSTE3992NqXX34pb29vSZKbm5vatm1r54oAAAAAAAAAvAyersLiDMPQsmXL9Prrrys0NFTR0dGqUaOGjh49qiFDhsjT09PeJSYLLi4umj9/vtKmTatdu3ZpyJAhz3XflStXVKdOHT148EC1atVS3759H9vO3d1d/v7+GjZsmPbu3asrV65o8+bN+s9//sNuDTtJnTq1Ro8eLUlq2bIlO88AAAAAAAAAB0U4A4uKj49XzZo19cknn+iff/5Rnjx5tHLlSq1Zs0YFChSwd3nJjq+vr6ZMmSJJGjx4sLZv3/7U9rGxsWrQoIH++ecfFSxYUHPnzn3uHTCZMmWSv78/ZwTZWYMGDXT27FmNHz/e3qUAAAAAAAAAeEmEM7AoJycnvfbaa3Jzc1O/fv30xx9/qHbt2rzCzIoaNGigZs2aKT4+Xk2aNNHNmzef2LZnz5765ZdflCZNGq1YsULp0qWzXaGwmFy5crF7CQAAAAAAAHBghDOwuAEDBigsLEyDBg3iFWY2MnHiROXLl09nzpxR+/btZRjGI20WL15sfiXW7NmzVbhwYVuXCQAAAAAAAAAQ4QyswMvLS/nz57d3GSmKl5eXFi5cKGdnZy1atEjz589PdP3IkSNq2bKlJKlHjx6qW7euPcoEAAAAAAAAAIhwBkg2ypYtq5CQEElShw4ddOrUKUnSjRs39PHHHysyMlJVqlTR0KFD7VglAAAAAAAAAIBwBkhGevXqpffee0937txR48aNFR0drSZNmujkyZPy9fXVokWL5OzsbO8yAQAAAAAAACBFI5wBkhFnZ2fNnz9f6dKl02+//aYyZcpo7dq1SpUqlZYvX65MmTLZu0QAAAAAAAAASPEIZ4BkJnfu3Jo6daqkh2fNSNK0adNUsmRJe5YFAAAAAAAAAPgvhwxntm3bppo1a8rb21smk0krV65MdN0wDIWEhMjb21seHh7y9/dXWFhYojYPHjxQx44dlTlzZqVOnVq1atXSuXPnbDgLwHrq1aunNm3aSJI6d+6sJk2a2LkiAAAAAAAAAEAChwxn7t27p+LFi2vixImPvT5ixAiNGTNGEydO1N69e5U9e3ZVqVJFd+7cMbfp3LmzVqxYoe+//17bt2/X3bt3FRgYqLi4OFtNA7CqKVOm6MSJExo7dqy9SwEAAAAAAAAA/IuLvQt4GTVq1FCNGjUee80wDI0bN059+vRRnTp1JElz5sxRtmzZtHDhQrVr1063bt3SjBkzNG/ePFWuXFmSNH/+fOXKlUubNm1StWrVbDYXwFpMJpP8/PzsXQYAAAAAAAAA4H84ZDjzNOHh4bp06ZKqVq1q/szd3V0VKlTQzp071a5dO+3bt08xMTGJ2nh7e+uNN97Qzp07nxjOPHjwQA8ePDB/ffv2bUlSTEyMYmJirDQjwPoSvn/5PgaSPtYr4FhYs4DjYL0CjoU1CzgO1itSmuf9Xk924cylS5ckSdmyZUv0ebZs2XTmzBlzGzc3N2XIkOGRNgn3P05oaKgGDhz4yOcbNmyQp6fnq5YO2N3GjRvtXQKA58R6BRwLaxZwHKxXwLGwZgHHwXpFShEZGflc7ZJdOJPAZDIl+towjEc++1/PatOrVy917drV/PXt27eVK1cuVa1aVWnTpn21ggE7iomJ0caNG1WlShW5urrauxwAT8F6BRwLaxZwHKxXwLGwZgHHwXpFSpPwxq1nSXbhTPbs2SU93B2TI0cO8+cRERHm3TTZs2dXdHS0bty4kWj3TEREhN55550n9u3u7i53d/dHPnd1deUvFiQLfC8DjoP1CjgW1izgOFivgGNhzQKOg/WKlOJ5v8+drFyHzeXNm1fZs2dPtE0uOjpaW7duNQcvpUuXlqura6I2Fy9e1NGjR58azgAAAAAAAAAAALwqh9w5c/fuXZ04ccL8dXh4uA4ePKiMGTMqd+7c6ty5s4YNG6YCBQqoQIECGjZsmDw9PdWoUSNJUrp06dSqVSt169ZNmTJlUsaMGdW9e3cVLVpUlStXtte0AAAAAAAAAABACuCQ4czvv/+uihUrmr9OOAcmKChIs2fP1ldffaX79++rffv2unHjhsqWLasNGzbIy8vLfM/YsWPl4uKievXq6f79+6pUqZJmz54tZ2dnm88HAAAAAAAAAACkHA4Zzvj7+8swjCdeN5lMCgkJUUhIyBPbpEqVShMmTNCECROsUCEAAAAAAAAAAMDjJbszZwAAAAAAAAAAAJIywhkAAAAAAAAAAAAbIpwBAAAAAAAAAACwIcIZAAAAAAAAAAAAGyKcAQAAAAAAAAAAsCHCGQAAAAAAAAAAABsinAEAAAAAAAAAALAhwhkAAAAAAAAAAAAbIpwBAAAAAAAAAACwIcIZAAAAAAAAAAAAGyKcAQAAAAAAAAAAsCHCGQAAAAAAAAAAABsinAEAAAAAAAAAALAhF3sX4MgMw5Ak3b59286VAK8mJiZGkZGRun37tlxdXe1dDoCnYL0CjoU1CzgO1ivgWFizgONgvSKlScgLEvKDJyGceQV37tyRJOXKlcvOlQAAAAAAAAAAgKTizp07Spcu3ROvm4xnxTd4ovj4eF24cEFeXl4ymUz2Lgd4abdv31auXLn0zz//KG3atPYuB8BTsF4Bx8KaBRwH6xVwLKxZwHGwXpHSGIahO3fuyNvbW05OTz5Zhp0zr8DJyUk+Pj72LgOwmLRp0/JDEnAQrFfAsbBmAcfBegUcC2sWcBysV6QkT9sxk+DJsQ0AAAAAAAAAAAAsjnAGAAAAAAAAAADAhghnAMjd3V0DBgyQu7u7vUsB8AysV8CxsGYBx8F6BRwLaxZwHKxX4PFMhmEY9i4CAAAAAAAAAAAgpWDnDAAAAAAAAAAAgA0RzgAAAAAAAAAAANgQ4QwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMkExs27ZNNWvWlLe3t0wmk1auXJno+uXLl9W8eXN5e3vL09NT1atX1/HjxxO18ff3l8lkSvSrQYMGidrcuHFDTZs2Vbp06ZQuXTo1bdpUN2/etPLsgOTFFuv19OnTatWqlfLmzSsPDw/5+flpwIABio6OtsUUgWTFVj9jEzx48EAlSpSQyWTSwYMHrTQrIHmy5Xpds2aNypYtKw8PD2XOnFl16tSx5tSAZMlWa/bvv/9W7dq1lTlzZqVNm1bly5fX5s2brT09IFmxxHqVpF27dumDDz5Q6tSplT59evn7++v+/fvm6zx3QkpCOAMkE/fu3VPx4sU1ceLER64ZhqGPPvpIp06d0n/+8x8dOHBAefLkUeXKlXXv3r1Ebdu0aaOLFy+af02ZMiXR9UaNGungwYNat26d1q1bp4MHD6pp06ZWnRuQ3Nhivf7111+Kj4/XlClTFBYWprFjx2ry5Mnq3bu31ecHJDe2+hmb4KuvvpK3t7dV5gIkd7Zar8uWLVPTpk3VokULHTp0SDt27FCjRo2sOjcgObLVmg0ICFBsbKx++eUX7du3TyVKlFBgYKAuXbpk1fkByYkl1uuuXbtUvXp1Va1aVXv27NHevXv1+eefy8np/x9R89wJKYoBINmRZKxYscL89bFjxwxJxtGjR82fxcbGGhkzZjSmTZtm/qxChQpGp06dntjvH3/8YUgyfvvtN/Nnu3btMiQZf/31l0XnAKQU1lqvjzNixAgjb968r1oykKJZe82uXbvWeO2114ywsDBDknHgwAELVg+kLNZarzExMUbOnDmN6dOnW6NsIMWy1pq9cuWKIcnYtm2b+bPbt28bkoxNmzZZdA5ASvGy67Vs2bJG3759n9gvz52Q0rBzBkgBHjx4IElKlSqV+TNnZ2e5ublp+/btidouWLBAmTNnVpEiRdS9e3fduXPHfG3Xrl1Kly6dypYta/7s7bffVrp06bRz504rzwJIGSy1Xh/n1q1bypgxo+WLBlIwS67Zy5cvq02bNpo3b548PT2tXzyQwlhqve7fv1/nz5+Xk5OTSpYsqRw5cqhGjRoKCwuzzUSAFMJSazZTpkx6/fXXNXfuXN27d0+xsbGaMmWKsmXLptKlS9tmMkAy9zzrNSIiQrt371bWrFn1zjvvKFu2bKpQoUKi9cxzJ6Q0hDNACvDaa68pT5486tWrl27cuKHo6GgNHz5cly5d0sWLF83tGjdurEWLFmnLli3q16+fli1blujd2ZcuXVLWrFkf6T9r1qxsBwcsxFLr9X+dPHlSEyZMUHBwsC2mAaQYllqzhmGoefPmCg4OVpkyZewxFSDZs9R6PXXqlCQpJCREffv21erVq5UhQwZVqFBB169ft/m8gOTKUmvWZDJp48aNOnDggLy8vJQqVSqNHTtW69atU/r06e0wMyD5eZ71+u+fn23atNG6detUqlQpVapUyXw2Dc+dkNK42LsAANbn6uqqZcuWqVWrVsqYMaOcnZ1VuXJl1ahRI1G7Nm3amH//xhtvqECBAipTpoz279+vUqVKSXr4D9v/ZRjGYz8H8OIsuV4TXLhwQdWrV9enn36q1q1b22QeQEphqTU7YcIE3b59W7169bL1FIAUw1LrNT4+XpLUp08f1a1bV5I0a9Ys+fj4aMmSJWrXrp3tJgUkY5Zas4ZhqH379sqaNat+/fVXeXh4aPr06QoMDNTevXuVI0cOW08NSHaeZ70m/Pxs166dWrRoIUkqWbKkfv75Z82cOVOhoaGSeO6ElIWdM0AKUbp0aR08eFA3b97UxYsXtW7dOl27dk158+Z94j2lSpWSq6ur+X8wZM+eXZcvX36k3ZUrV5QtWzar1Q6kNJZYrwkuXLigihUrqly5cpo6daq1SwdSJEus2V9++UW//fab3N3d5eLiovz580uSypQpo6CgIJvMA0gJLLFeEx7kFi5c2NzG3d1d+fLl09mzZ607ASCFsdTP2NWrV+v7779X+fLlVapUKX333Xfy8PDQnDlzbDUVINl71np93M9PSXr99dfNPz957oSUhnAGSGHSpUunLFmy6Pjx4/r9999Vu3btJ7YNCwtTTEyM+QdouXLldOvWLe3Zs8fcZvfu3bp165beeecdq9cOpDSvsl4l6fz58/L391epUqU0a9YsOTnxYx+wpldZs+PHj9ehQ4d08OBBHTx4UGvXrpUkLV68WEOHDrVJ/UBK8irrtXTp0nJ3d9exY8fMbWJiYnT69GnlyZPH6rUDKdGrrNnIyEhJeuTfwk5OTub/yQ/Acp60Xn19feXt7Z3o56ck/f333+afnzx3QkrDa82AZOLu3bs6ceKE+evw8HAdPHhQGTNmVO7cubVkyRJlyZJFuXPn1pEjR9SpUyd99NFHqlq1qqSH51EsWLBAH374oTJnzqw//vhD3bp1U8mSJVW+fHlJD/83Q/Xq1dWmTRtNmTJFktS2bVsFBgaqUKFCtp804KBssV4vXLggf39/5c6dW6NGjdKVK1fM42XPnt22EwYcnC3WbO7cuRONmSZNGkmSn5+ffHx8bDRTwPHZYr2mTZtWwcHBGjBggHLlyqU8efJo5MiRkqRPP/3U9pMGHJgt1my5cuWUIUMGBQUFqX///vLw8NC0adMUHh6ugIAAu8wbcESvul5NJpO+/PJLDRgwQMWLF1eJEiU0Z84c/fXXX1q6dKkknjshBTIAJAubN282JD3yKygoyDAMw/jmm28MHx8fw9XV1cidO7fRt29f48GDB+b7z549a7z//vtGxowZDTc3N8PPz8/44osvjGvXriUa59q1a0bjxo0NLy8vw8vLy2jcuLFx48YNG84UcHy2WK+zZs167Bj86AdenK1+xv5beHi4Ick4cOCAlWcHJC+2Wq/R0dFGt27djKxZsxpeXl5G5cqVjaNHj9pyqkCyYKs1u3fvXqNq1apGxowZDS8vL+Ptt9821q5da8upAg7vVddrgtDQUMPHx8fw9PQ0ypUrZ/z666+JrvPcCSmJyTAMw6rpDwAAAAAAAAAAAMx4+TwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMAAAAAAAAAACADRHOAAAAAAAAAAAA2BDhDAAAAAAAAAAAgA0RzgAAAAAAAAAAANgQ4QwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMAAAAAAAAAACADRHOAAAAAEh2AgICZDKZ5OTkpO3btz/XPdu3b5eTk5NMJpMCAwOtXCEAAACAlMxkGIZh7yIAAAAAwJLOnTunIkWK6Pbt2ypUqJAOHjyoVKlSPbH9gwcPVLx4cR07dkxp06ZVWFiYfHx8bFgxAAAAgJSEnTMAAAAAkh0fHx99/fXXkqRjx45p4MCBT20/aNAgHTt2TJI0YsQIghkAAAAAVsXOGQAAAADJkmEYqlixorZu3SoXFxft2bNHJUuWfKTdoUOHVKZMGcXGxsrf31+//PKLTCaTHSoGAAAAkFIQzgAAAABItk6cOKFixYrp/v37KlGihPbu3SsXFxfz9bi4OJUtW1b79u2Th4eHjhw5Ij8/PztWDAAAACAl4LVmAAAAAJKt/Pnza9CgQZKkgwcPauTIkYmujxkzRvv27ZMkDR48OFEwc+7cOfXq1UulSpVShgwZlCpVKuXOnVv169fX5s2bnzrujRs3NGvWLDVp0kSFCxdWmjRp5ObmpuzZs6tatWqaOnWqoqOjn3j/6dOnZTKZZDKZNHv2bEnS8uXL9eGHH8rb21suLi7y9/d/iT8RAAAAAEkBO2cAAAAAJGtxcXEqV66c9u7dK3d3dx06dEiFChXSyZMnVbRoUd2/f19vvvmmdu3aJWdnZ0nSjBkz1LFjR92/f/+J/bZq1UqTJ09OtBMnga+vr86cOfPUukqWLKm1a9cqe/bsj1w7ffq08ubNK0maOXOmNm/erHnz5iVqU6FCBW3ZsuVZ0wcAAACQBBHOAAAAAEj2jhw5otKlSysmJkbly5fXtm3bVLlyZW3evFmurq7av3+/3njjDUkPw5BWrVpJkt544w21a9dOJUuWlKenp8LDwzVjxgytXbtWktS1a1eNHj36kfFy5cqlnDlzKjAwUCVLllS2bNkUHR2t8PBwzZ8/X+vWrZP05IDl3+FMsWLFdPjwYb333nv67LPPVLBgQd28eVOnT5821wkAAADAsRDOAAAAAEgRBgwYYH7FWaVKlfTzzz+bPw8JCZEk/fPPP3rttdcUGRmpoKAgTZ8+/bE7Y/r06aNhw4bJyclJf/75pwoWLJjo+vHjx1WgQIEn1jJr1iy1bNlSkrRp0yZVqlQp0fV/hzOS1KxZM82ePVsmk+nFJw4AAAAgySGcAQAAAJAiREdHq1SpUgoLCzN/9sYbb2jfvn1yc3OTJHXv3l2jR4+Wt7e3Tp48qVSpUj22r9jYWPn6+ur8+fPq06ePhgwZ8sL1lCpVSgcOHNDnn3+uCRMmJLr273Amffr0Onv2rLy8vF54DAAAAABJk5O9CwAAAAAAW3Bzc9PMmTPN58o4OztrxowZ5mBGkv7zn/9IkmrWrPnEYEaSXFxcVK5cOUnSrl27njquYRi6dOmS/v77bx09etT8y9vbW5J06NChp95fs2ZNghkAAAAgmXl0fz4AAAAAJFNvvfWWfHx8dObMGfn4+Oitt94yX7t165ZOnDghSZoyZYqmTJnyXH1eunTpsZ+vWbNGkyZN0rZt23Tnzp0n3n/16tWn9l+sWLHnqgMAAACA4yCcAQAAAABJERERL3VfZGRkoq8Nw1CbNm00Y8aM57r//v37T72eIUOGl6oLAAAAQNJFOAMAAAAAkuLi4sy/79y5s1q1avVc9/37tWiSNHPmTHMwU6JECXXu3Flly5ZVzpw55enpaX6tWrNmzTRv3jw96xjQhPYAAAAAkg/CGQAAAACQlClTJvPvIyMj9cYbb7xUP9OmTZMk+fn5aefOnfLw8Hhsuxs3brxU/wAAAAAcn5O9CwAAAACApCBLlizKmTOnJGnTpk3P3NHyJGFhYZKk2rVrPzGYMQxD+/fvf7lCAQAAADg8whkAAAAA+K9atWpJkk6dOqWlS5e+VB+xsbGSHj2L5t9+/PFHXbhw4aX6BwAAAOD4CGcAAAAA4L++/PJLubu7S5KCg4P1+++/P7X92rVrdfjw4USfFShQQJK0atWqx7667OTJk2rfvr2FKgYAAADgiAhnAAAAAOC/8ubNq8mTJ0uSrl+/rvLly6t169ZauXKl9u/frz179mj58uXq2bOn8ufPr4CAAJ09ezZRH82aNZMknT9/Xu+8845mzZqlPXv2aNu2bQoJCVHp0qV1/fp1lSpVyubzAwAAAJA0uNi7AAAAAABISpo3by4PDw+1bdtWt2/f1owZMzRjxozHtnVyclLq1KkTfdapUydt3LhRGzZs0F9//aWWLVsmuu7h4aG5c+dqzZo1nDsDAAAApFDsnAEAAACA/1G/fn2dPn1aw4cPl7+/v7JmzSpXV1d5enoqX758qlmzpsaMGaPTp0+rYsWKie51dXXVmjVrNH78eJUpU0aenp7y8PBQ/vz5FRwcrP379+vTTz+108wAAAAAJAUmwzAMexcBAAAAAAAAAACQUrBzBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGyIcAYAAAAAAAAAAMCGCGcAAAAAAAAAAABsiHAGAAAAAAAAAADAhghnAAAAAAAAAAAAbIhwBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGyIcAYAAAAAAAAAAMCGCGcAAAAAAAAAAABsiHAGAAAAAAAAAADAhghnAAAAAAAAAAAAbIhwBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGzo/wBEbXnHNnTIpwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"#| eval: false\n",
"import pandas as pd\n",
@@ -2616,1509 +865,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "\n",
- " | Name | Type | Params\n",
- "------------------------------------------------------------\n",
- "0 | loss | MAE | 0 \n",
- "1 | valid_loss | MAE | 0 \n",
- "2 | padder | ConstantPad1d | 0 \n",
- "3 | scaler | TemporalNorm | 0 \n",
- "4 | pdm_blocks | ModuleList | 22.6 K\n",
- "5 | preprocess | SeriesDecomp | 0 \n",
- "6 | enc_embedding | DataEmbedding_wo_pos | 2.6 K \n",
- "7 | normalize_layers | ModuleList | 8 \n",
- "8 | predict_layers | ModuleList | 456 \n",
- "9 | projection_layer | Linear | 66 \n",
- "10 | out_res_layers | ModuleList | 756 \n",
- "11 | regression_layers | ModuleList | 456 \n",
- "------------------------------------------------------------\n",
- "24.6 K Trainable params\n",
- "2.4 K Non-trainable params\n",
- "27.0 K Total params\n",
- "0.108 Total estimated model params size (MB)\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f469cf035b9549df85a57a96d51d77a8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Sanity Checking: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eb4657a0892a422284e46702195d94dc",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Training: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0904f0200b1a42bd8baaf6c6e4041d62",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e93fbf22d3c4476e8a488b466f9d7c41",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b6de0bb3c1bd44a0a71dc4e367abdf41",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5c3686dce1e2401fa60d4ed61d8f15cc",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b77b30fa19444964b44424b07690c51d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "89100d0655134dca95ccf6074564cf98",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "dfc86eaf2ee644678a2c0aff094cf7f6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5ebd52cc2cec49f6b0ac70eab66737c4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0da1839cd53949ad926a2955ea499b6e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e16b6c727be94bf38a481eef7eae1168",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "44223cfc47f54a0097c5a78a2e297e06",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0b78838140214bdc92a9eb42b9d840e9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1162173955454bd387ae5a3e86602d18",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8a664f99fd37451ca9c0743a7f2cb109",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c1408cc89fcf4415a0b30943a2eaf9eb",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1a16e775e77840df8e5c46783e8a277b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "dd7b5ac1772541aba0e127bc24de96d1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "62a139d4733c4f7384803475c4f19dd2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fff05b4ef6174e708b1a3426973ad60d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f9624b34452c4885bf02f2a8f603c701",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "43da54aeb3a74b0a9933da9494d25ded",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fe3be3485a7f442a966be527989db274",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "24d18f11eb6b49f48bf2850f3c055be3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6bd4eb9e348044c9921ffd01a17ad596",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b5c196d2c30e4bb7910a4684036f4e54",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0a10d93727ac42578603c709e6b92ffc",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2aa94ab2f9cf4bf588dbb7aab8e7d976",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1c1f5787023e4e0790c5860cbc4bf2d1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c1cb1b9a8c4b443aba12c90d1694da6b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e805018e773940d296ab03b4fc8ba42d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9e002e775e90488e9b42d8e1783a11fd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "30c41c0677ba4d4c8190b1dae45dee99",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3b47fcf442df4a4a8ea4ccdba8014f01",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d014279ace1a48dd8b0cd5e4ac5686a7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "de9471962a6e468cbda76967a134ec43",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6468a03ff73f4019a8d455d7940fb24b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1d5c0a3dbfed43d09868c434ca6938da",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5338097fa103402f83c61329959d2796",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e7383d0860864d96ab03248de5593740",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b766e9b72bde4f4f9317986fc6b40c9f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d1902dfd5e4f42d1afe10bcdf1162337",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3c4883c4bb584bed9ef6f47fdd876f49",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0f7458d3a9a64da5baeee31c1a76da14",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "17b60debf7de484aab0d59d05b67e0fc",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "901da97c65644802b33924f7bfba7279",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "decdf2d5d2ef4fd7865e53a9e605beb4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "028e3002f0214fe48a9768681a873ff9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "bd22b1cb98c54612920dfd3fc56417e3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "82243073b00748e385d25cdcef3336d3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "61def5a49d6744ca9f61764999a6f2a7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5689527f24cf48b2826b2da1ae629349",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9370efddcbe244238006ff96753bde87",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d88b515fb11343069b9edaafacf1e089",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "61e6663fd65541af930dd749c2e298f7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e00f67bc48a649ff80af4dcd89f8544b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "294c7e9acb6b43b085e722f459935ccd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f3361a6efc3a4a38b331484033a74f3d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3b9ac4bf19244df3a55564b805bb1b69",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7eab1f12508f454e9ca98e1676892c79",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "580985bd6ef94a3fabaf4c504c157846",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b6b99fff05a24cfca8599df762f77bfa",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "104e165ed328404397f91dac692c9cfd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "326c735a8afb482abfd937eaf3be8cdd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7caf2d4395e44fe28925012fab51d790",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "df93a4eff7d54fc39ee1f40d4841ce47",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e6cfd4b92f1348b891687c2ec5e9e7d0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a1403f17c97243e5a8d63f5a4e1e678c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6b9075b976f84618ac5e39603140cc99",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9b63db6c68ca490c93e21f6d0e558357",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "36b20cf73ff24540a94b10491e9ce86f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7227ac3385d346dc937ffcd00c088065",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "563d8825fcfb4e7faedf50697f3fc71a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "dccd9c861a8246fd8af851ebc4ac0f39",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fcc149fe26844640865786e1371ff211",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7917a57daf49496690d91b547b4e5172",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0064b881926f428d9e74b17b92989943",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ff49d08251564bc98ce091d639c26d88",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6889d9a2697a4872a4190e3ed308b198",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d83341703e3e4688a60d9acd657913ea",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ea85a5d1674b4aa5aff6157b3969a79a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1fba9dfdc72945a8a12dc2e3e78a5d48",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a709e867d4be466eb7b1b629ae1e74db",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b689d755f8f043b0b61f89393fe11abf",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "14cb9734205c4893ac67bab89c1c7b29",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "08db0ced55ac458990ba0592833117d9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "33f38c9cfcbd4eb2966f1f00e7eba99a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7f63e79352c842109390ee7600666b35",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d3df9fd2dffa4ed29a13172e0aaaf8c8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f2910b059e8348c98a0fd8857d82202f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1fe7fbe25bd84126a95e36c5fd6d2a57",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b2daa5dcf32d41d299ed6e060fad34d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "596fa1f1b8e149a98f8987b4ec4221b6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "34ff387c93444604a8a17b0ebf334e5e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eae2e90e160941739fa317bab1f9919c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b4968140b3724f359132903465ee1f5e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "52e138cc1469436b92df3d9b738cf2f1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c23f27b6c0cd480cb12b3627f8bdff4c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0d72bd9ff13c4ccfba3f895973ef7324",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "bf99f626fab04b8ea10be663a2f6a1c5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7229797e5418435f933bd7346cdd4c71",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_steps=500` reached.\n",
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f20945254b4b400c8398e42fd239fe6e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Predicting: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/neuralforecast/core.py:210: FutureWarning: In a future version the predictions will have the id as a column. You can set the `NIXTLA_ID_AS_COL` environment variable to adopt the new behavior and to suppress this warning.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAKHCAYAAAB0L5wRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8c+kEwgdUiAJvQgICEpv0kRQAXsF0RXXXRHr/lx1hdXFjrrorsuuFBUrigUB6R2kl0DokIRASEJLJfX+/hjukJA2ycxkUt6v58kzw9xzzzlTbtadT77nWAzDMAQAAAAAAAAAAIBy4eHuCQAAAAAAAAAAAFQnhDMAAAAAAAAAAADliHAGAAAAAAAAAACgHBHOAAAAAAAAAAAAlCPCGQAAAAAAAAAAgHJEOAMAAAAAAAAAAFCOCGcAAAAAAAAAAADKEeEMAAAAAAAAAABAOSKcAQAAAAAAAAAAKEeEMwAAAKjyVq9eLYvFIovFoilTprh7OgAAAACAao5wBgAAAJXC9OnTbQGLxWLR119/7e4p5ZvP1T+1atVSWFiYRo0apY8//lhJSUnuni5QohMnThT7uS7sZ/To0e6eNkowZcoUTZkyRXPmzHH3VAAAAHAZ4QwAAAAqhVmzZuX796effuqmmdgnNTVVMTEx+vXXX/XnP/9Zbdq00W+//ebuaQGohqZOnaqpU6cSzgAAAFQgXu6eAAAAAFCSzZs3a9++ffkeW7FihU6cOKFmzZqVeP7AgQNlGIaLZme1YMGCfP9OTk7Wrl279NlnnykxMVFnzpzRbbfdpjVr1qhHjx4unQvgDI0aNdLMmTNLbBccHFwOswEAAACqFovh6v+XCgAAADjoD3/4g/73v/9Jkh5++GHNnj1bkvS3v/1NU6dOddu8LBaL7X5R/1l99uxZjRgxQlu3bpUk9ezZU5s2bSqX+QGldeLECTVv3lySFB4erhMnTrh3QnAK83fVgAEDtHr1avdOBgAAAJJY1gwAAAAVXGpqqr755htJUvPmzfXhhx+qVq1akqTZs2crNzfXndMrUYMGDTR37lzbvzdv3qzo6Gg3zggAAAAA4G6EMwAAAKjQvv32WyUnJ0uSHnzwQQUEBOj222+XJMXExGjZsmUl9rF69Wrb5uVTpkwptE2zZs1ksVhsy6RlZGTo448/1sCBAxUcHCxPT0+7llArTPv27dW6dWvbv/fu3Wu7f+nSJf3000+aNGmSevfurUaNGsnb21sBAQFq3bq1HnzwQbueoyQlJSXpvffe06BBgxQYGCgfHx/Vrl1bLVu2VO/evfXMM89oyZIlyszMLPT8uLg4TZ06VX369FHDhg3l7e2tunXrqk2bNurfv79eeuklrV69usRAbNeuXXrqqafUuXNn1a9fX76+vgoJCdHIkSM1a9YsZWdnF3u++V4NHDjQ9hr985//VK9evdSgQQPVqFFDLVu21MSJE3Xs2DG7XpvU1FRNmzZN3bp1U506dRQQEKCOHTvqpZde0unTpyVJ48ePt41dUsXIxYsX9d5772nIkCEKCQmRr6+v6tevr27duunFF19UbGxssecXNtaPP/6osWPHKjw8XL6+voXOY926dZowYYLat2+vgIAA+fj4KCgoSJ06ddKYMWP08ccf6/jx43a9Jq6WkZGhf//737rpppvyvUZdu3bVCy+8UOI8C7tuDx8+rGeffVYdOnRQ3bp1i7ymL126pP/85z8aNWqUQkND5efnpzp16qhjx46aNGmSDh06ZPfzSExM1JtvvqnBgwfbnoe/v79at26tO++8U59++qmSkpIKPffQoUOaPn26xowZo9atW6tWrVry8fFR48aN1b9/f73++utKTEy0ax5lee/N18+0Zs0a22N5f9iLBgAAwA0MAAAAoALr06ePIcmQZBw5csQwDMNYuXKl7bE777yzxD5WrVpla//qq68W2iY8PNyQZISHhxvHjx83OnbsaDvH/AkPD893Tt5jJendu7et7bx582yPN2/evMA4hf3cdtttRnJycpH9b9u2zQgKCrKrr61btxY4f9GiRUZAQIBd5yckJBQ6h0uXLhkTJkwwLBZLsed36NDBOHr0aJHPxWw3YMAA49ixY0anTp2K7KtmzZrG8uXLi33tIyMjbe9vYT+NGjUy1q5da4wbN8722PHjx4vs79tvvzXq169f7HP08/Mz5syZU2Qfecc6ePCgcfvttxfajzmPnJwcY+LEiXa9PyNHjiz29SjO8ePHi/y8l8b27duLfc0lGT4+PsY777xTZB9XX7eff/65UaNGjQL9XH1Nr1692mjSpEmxY3t6ehrTpk0r8XnMmDHDqFmzZomv+fjx4wucO3fuXLver9q1axsLFy4scg6OvPf2nCPJmD17domvBQAAAJzLSwAAAEAFdfDgQW3YsEGS1LdvX7Vs2VKSNHDgQDVr1kwnTpzQTz/9pMTERDVs2NApY2ZkZGjs2LGKiIhQz549dccddyg0NFQXLlzIV/FSWvHx8bb7devWtd1PS0tT3bp1deONN6pr164KDw+Xv7+/kpKStGfPHn3zzTc6ffq0fvrpJ02YMEHffvttgb7T0tI0evRoxcXFSZK6deumMWPGqEmTJqpZs6bOnz+vyMhIrVq1Srt37y5w/qlTp3TXXXcpJSVFknVfipEjRyooKEi+vr5KTExURESEVqxYUWTFQXZ2tm666SbbfhaBgYG655571KVLF9WsWVOxsbFasGCB1q5dq3379ql///7auXOnGjVqVORrlpSUpJEjRyoyMlLDhg3TqFGjFBQUpLi4OH322Wfatm2bUlNTde+99+rAgQOqX79+gT4SEhJ044032qpjwsLCNGHCBLVt21YpKSlaunSp5s+fr7Fjx6pz585FzsX03//+VxMnTpRhGPLy8tKoUaN04403KigoSKmpqdqwYYPmzZun9PR0jR8/Xj4+Prr33nuL7XPy5MlavHixwsPD9dBDD6ldu3bKzMzUli1b5OvrK0n66KOP9J///EeSFBAQoDvuuEPdunVTo0aNlJmZqZMnT2rbtm1avnx5ic/B1SIiIjRgwADb56lt27Z68MEH1apVK128eFGLFi3STz/9pMzMTD3//PPKyMjQSy+9VGyfGzdu1D/+8Q9ZLBaNGzdO/fr1U61atXTs2DE1bdrU1m7x4sW67bbblJWVJYvFoiFDhmj48OFq2rSpMjMztW3bNn322We6cOGC/vrXv0qSXnzxxULH/L//+z+99dZbtn/37dtXo0aNUnh4uHJzcxUdHa0NGzZo2bJlhe45lZaWJovFos6dO6t///5q166d7TN68uRJLV++XEuWLFFSUpJuv/12bdy4Udddd12Bfhx57xcsWCBJGjNmjCSpQ4cOev311wu0K2xcAAAAuJi70yEAAACgKM8//7ztL7v/+9//5jv2yiuv2I69//77xfZTmsoZ8+fNN98scX552xdn//79+dpGR0fbji1atMjIzMws8tzU1FRjzJgxtnPXrVtXoM13331nO/7ss88WO5d9+/YZ8fHx+R575513bOfPmDGj2PN///13Iz09vcDj//d//2fr49577zVSUlIKPf+jjz6ytbv//vsLbZP3tfLy8jK+/fbbAm2ys7ONW265xdbu3XffLbSvhx56yNbmxhtvLHReCxcuNHx8fAqtWMlr9+7dhq+vryHJCA0NNXbt2lXomAcOHDCaNm1qSDICAgKMs2fPFmiTt3JGkjF69OhCX1dThw4dDElG/fr1jaioqCLbXbp0ydi8eXORx0viaOVMbm6uce2119r6GDduXKGf7x9++MHw9va2VbFs27atQJu8160ko3Hjxsbu3buLHPvUqVO2iqY6deoYK1asKLKdOUdPT08jMjKyQJsff/zRNm7NmjWNH374ochxz549a6xatarA4xEREcbhw4eLPM8wDGP58uWGv7+/IckYPHhwoW2c8d6bz2XAgAHFzgcAAADlh3AGAAAAFVJWVpYRGBhoSNYloi5cuJDv+JEjR2xfOHbs2LHYvkobztx22212zdGecObcuXNGjx49bO169uxpV995Xbx40ba00qOPPlrg+BtvvGHrf9++faXuP++SSampqaU+/8yZM4afn58hyejevbuRnZ1dbPv777/f9sX4yZMnCxzP+7q+8sorRfZz8OBBW7vCvtiOi4uzBQB16tQxzpw5U2RfL7/8conhjBmSeXp6Gjt27Cj2OS5btqzYoC9vONOkSZNil6wzDMMWCtmzjJ8j8oYz9vxc/WX/woUL812XWVlZRY41depUW9u77rqrwPGrw5kFCxYUO/enn37a1vann34qtu2BAwcMT09PQ5Lx+OOP5zuWm5trC0QkGV9//XWxfTkqb9Bc2PXgjPeecAYAAKDi8RAAAABQAf3yyy86c+aMJGn06NGqU6dOvuMtW7ZU3759JVmXUdqyZYvTxp40aVKpz/nxxx/z/XzxxRd6/vnn1a5dO/3++++SJB8fH02fPr3UfdeuXVudOnWSJG3evLnA8Zo1a9rub9++vdT9O3r+N998o0uXLkmSnnvuOXl6ehbb/qGHHpIk5eTkaMWKFUW28/Dw0FNPPVXk8TZt2ig0NFSStG/fvgLHf/31V2VlZUmS7r//fjVu3LjIvp588kl5eRW96vOFCxf0008/SZKGDh2qrl27FtlWkoYMGaKQkBBJ0m+//VZs2wkTJqhWrVrFtjHfo7179yozM7PYtu70/fff2+4/99xzxb6mkydPlr+/vyTr9W6+V4UJCwvTbbfdVuRxwzD0+eefS7Iuo3brrbcWO8+2bdvqhhtukFTw/dmxY4ft89S1a1fdfffdxfblqD59+tjuF3d9V/T3HgAAAKXDnjMAAACokD799FPb/XHjxhXaZvz48Vq/fr0kadasWbYvWx3h6emp3r17l/o8c0+HojRq1Ehz5sxRr169Chw7f/685s2bpyVLligiIkJnz55VampqoftYnDx5ssBjQ4YMkcVikWEY+uMf/6jDhw/rnnvu0TXXXGPX3IcNG2YLjcaOHau//OUvuv3229W8eXO7zl+7dm2+5/Ljjz8W2z42NtZ2f//+/UW2a9u2rRo0aFBsX02aNFFMTIzOnz9f4NjWrVtt9wcNGlRsP40bN9Y111yjPXv2FHp8w4YNys3NlWTd96Ok5yjJFrgU9xwlqV+/fiX2NWzYMH399dc6cOCABg8erKefflrDhg0rMdRxRKNGjTRz5sxi21y911PecGH48OHFnlu7dm317t1by5cvV3p6unbv3q3u3bsX2rZv376yWCxF9rV//34lJiZKkoKCgux6f8wQ8fjx47p06ZL8/PwkSevWrbO1GT16dIn9lGT9+vX66quvtGXLFh07dkzJyclFBlGFXd/ueO8BAADgeoQzAAAAqHBOnTqlJUuWSJKCg4M1dOjQQtvdddddmjRpktLS0vTVV19p+vTptr/EL6sGDRrYvqR1RI0aNdSgQQN16tRJI0aM0IMPPqi6desWaPfTTz/pkUce0dmzZ+3qNykpqcBj7du318svv6zXXntNqampeu211/Taa6+pcePG6tu3r/r376+bbrpJbdu2LbTP4cOH66GHHtJnn32mxMREPf/883r++ecVFhamPn36aMCAAbr55pttVSpXO3HihO3+H//4R7ueh+ncuXNFHrv6i//C+Pr6SpIyMjIKHDt16pTtfsuWLUvsq2XLlkWGM3mf43fffafvvvuuxP5MxT1HSfk2tC/KW2+9pfXr1+vkyZNav3691q9fLy8vL3Xp0kX9+vXTwIEDNWzYMKd8dk3+/v6lDidOnz4tyRpgBQUFldi+bdu2to3s875fVyvpNcr7/qxZs0Zr1qyxY7ZXnDt3zlbpFBMTY3vc3oCzMCkpKXrwwQftCopMhV3f7njvAQAA4HqEMwAAAKhw5syZo5ycHEnW5aiKWiYrICBAY8aM0bx585SUlKT58+fblswqqxo1apTpvMKqXEqyadMm3XHHHcrOzpYkXXvttRoyZIhatWqlevXqydfX11Yt8PLLL2vfvn226o2r/f3vf9cNN9ygN998Uxs2bJAkxcfH64cfftAPP/wgybp80nvvvacePXoUOH/u3LkaPHiw3n//fe3atUuSFB0drejoaH311VeyWCwaMWKEpk+fXiDkuXDhQqmfu6m4ZZo8PBxbhTk1NdV2357Qrrg2jjzH4pbrkuz7zIWFhWnnzp2aNm2aPvvsM509e1bZ2dnatm2btm3bpvfff1+1a9fWU089pZdeeskWWpW35ORkSfmXyitO3uoP89zClPQaOfL+SPk/h3kDEkeqU+6++24tWrRIkvX1GDlypLp27aqQkBD5+/vblnyLiIjQK6+8Ikm233t5VZb3HgAAAKVDOAMAAIAKxTAMzZo1y/bvd999V++++65d53766acOhzPl6W9/+5stmPn444/1xBNPFNn2H//4R4n9jRo1SqNGjdKZM2e0bt06bdq0SWvWrNGOHTtkGIY2bNigfv36adGiRRoyZEiB8x966CE99NBDio6Otp2/atUq7d+/X4ZhaNGiRVq3bp02bNhg2wNHyv8F9vnz5wutEHKHvAFBWlpaie3zhjlXy/scP/jgg2L3wnGVhg0bavr06XrnnXe0fft2bdy4URs2bNDKlSt17tw5JSUl6bXXXtOGDRu0bNkyh8OtsggICNCFCxeKfS3zSklJyXduWeV9fyZPnqz333+/zH3Vrl3bdj/v/Epjw4YNtmCmU6dOWrp0aZGVRN7e3iX2VxneewAAAJQO/8UGAACACmXNmjU6evRomc5du3atDh8+7OQZuUZWVpZWr14tSerWrVuxwYyUf9mmkgQGBuqOO+7Qe++9p23btunEiRO64447bOM+/fTTxZ4fFham+++/Xx999JH27dunffv2acCAAZKs1Q1//etf87XPu+SUuZF6RWAuUyXJrs/UsWPHijyW9zlGREQ4NjEHeXp66oYbbtDkyZP13Xff6cyZM/r2229Vp04dSdLKlSu1YMECt8wtODhYkvVzEhcXV2L7Q4cO2e7nfb9Ky5nvT96+StovqChLly613Z82bVqxS7wdP37c7n4r8nsPAACA0qFyBgAAABXKp59+ars/ZswYXXvttSWes2XLFi1evFiSNGvWLL3xxhsum5+zJCYm2qpmWrVqVWzbLVu22DY7L4uwsDB9+eWXWrNmjRISEhQREaELFy7YXeFyzTXX6IcfflCjRo2Um5ubb8N0SRo4cKAWLlwoSfrhhx/Up0+fMs/Vma6//np98sknkqRVq1bZAqrCxMfHFxssDRgwQBaLRYZhaOHChcrMzJSPj4/T51wWXl5euvPOOxUbG2sL3tatW6fbb7+93OfSs2dPRUZGSpJ+++03jRs3rsi2ycnJ2rhxoyTrsmWdO3cu87hdunRR3bp1deHCBa1bt06JiYl27VlUmP79+9vu//jjj/rb3/5W6j7yBlMlXd9mhU1Z2Pvem5/dsiy/CAAAANegcgYAAAAVxsWLF/X9999Lsv6F+L/+9S9NmTKlxJ8PPvjA1sfcuXML3behosm75NaRI0eKbfvqq686PJ63t7eaNGli+7cZDNmrfv36tuWert5D5Z577rHtc/HJJ5+U+HzKy8iRI21LRs2bN08JCQlFtp0xY0axn5uGDRtq5MiRkqxfvL/33nvOnawTNG/e3Ha/tO+vs+QNwN57771i5/Hhhx/alj+79dZb7Vreqyienp564IEHJEkZGRl66aWXytzXddddpw4dOkiSdu7cqW+++abUfdh7fW/cuFFLliwp/SSvUtJ7by77Zu9ycwAAAHA9whkAAABUGF9++aXS09MlScOGDSt2KaC82rRpo549e0qSTp8+7dBfopeX2rVrq02bNpKk7du3a/78+QXa5OTk6Omnny7xy9t//vOf+u677/Jtan61devWac+ePZKsyzblrSqYOnWqfvvtN+Xm5hZ5/pdffmnbdL1r1675jjVp0sT2V/tpaWkaPny4du7cWeycIyIi9PjjjxfbxlGBgYG69957JVmDv3vuuafQL6d//fVXvf322yX29/rrr9tCqJdfflkffvhhsZUIFy9e1AcffKDly5eX8RlYnT59Ws8++2yxS7NlZWVp5syZtn936dLFoTHLasSIEbYKmL179+qxxx4rEOZJ0s8//6zXXntNkjVYeeGFFxwe+69//avq168vSZo5c6b+8pe/FDq2KT09XbNnz9bXX3+d73GLxaLXX3/d9u9HHnlEP/74Y5H9nD9/3rZEoen666+33Z86daouXbpU4Lw9e/bozjvvLPYz5Kz33gxvDhw4YPsdCwAAAPdiWTMAAABUGHmXNHvooYdKde5DDz2kzZs32/q55ZZbnDo3V5g8ebJtr5m77rpLd999twYMGKB69erpyJEjmjdvniIjI9WxY0f5+vpq+/bthfazY8cOzZ07V3Xq1NHw4cN13XXXqWnTpvLy8lJ8fLxWrVqlhQsX2sKXq/eMWbVqlaZMmaLGjRtr+PDh6tKli4KDg2WxWHT69GktXrw4X8Bw9fmSNbjYvXu3Fi9erGPHjql79+666aabdOONN6pJkyayWCw6e/asIiIitHr1akVGRsrT09O27JirvPvuu1q2bJlOnz6tlStX6pprrtGECRPUrl07paSkaOnSpfruu+9Uv359denSRStWrJCkQjdU79y5s/73v/9p3Lhxys3N1eTJk/Wvf/1LY8aMUfv27VWzZk0lJyfr6NGj2rJli9asWaPMzEx9/vnnDj2HjIwMTZ8+XdOnT1e3bt3Ur18/XXPNNapbt65SUlJ09OhRffXVV7Y9c1q0aKF77rnHoTHLymKxaN68eerZs6dSUlI0e/Zsbdq0SQ899JBatGihpKQkLV68ON++KFOnTtV1113n8NjBwcH67rvvNHLkSF26dElvv/225s2bpzvvvFPXXnutAgIClJqaqqioKG3btk0rVqxQWlqaLSTKa/To0Xr22Wf13nvvKTU1VWPGjFHfvn01atQohYeHyzAMxcTEaNOmTVqyZInuvvtuDRw40Hb+2LFjFRYWpujoaG3btk1t27bVo48+qlatWiktLU1r1qzR119/raysLI0bN05z584t9Dk5670fMmSI9uzZo9TUVN1yyy166KGH1KhRI1ksFklSp06d8lXWAQAAoBwYAAAAQAWwa9cuQ5IhyahTp46Rnp5eqvPPnTtn+Pr6GpIMLy8vIy4uznZs1apVtr5fffXVQs8PDw83JBnh4eF2j2n2Wdb/rM7NzTUmTJiQr5+rfzp16mQcO3bMGDBgQJFjPfzww8X2Yf54e3sbr7/+eoHzBw0aZNf5NWvWNGbNmlXk88nKyjKef/55w9vb267+inqtzeMDBgwo8TUs7nUx7d+/3wgLCytyHg0aNDBWr15t3H///bbHzp07V2R/S5cuNZo2bWrXc/T19TUWL15coI9x48bZ2hw/frzY53jixAm7xpJkdOzY0Thy5EiJr1tRjh8/XuL7Y49t27bZrqmifnx8fIy33nqryD7suW4Ls2PHDqNdu3Z2vV6enp7Gf//73yL7evfddw0/P78S+3n44YcLfQ0aNmxY7Nhvvvlmsc/TWe99bGysERgYWOS5s2fPtvv1BQAAgHNQOQMAAIAKIW/VzJ133ik/P79SnV+vXj3dcsstmj9/vrKzszV37lynLJXkShaLRZ9++qlGjhypmTNnatu2bUpKSlKDBg3Utm1b3XnnnXrkkUdKfC0++eQTjR8/XqtWrdL69et18OBBJSQkKDs7W7Vr11br1q01cOBAPfLII2rdunWB8xcuXKj169dr1apV2rhxo44cOaLExEQZhqG6deuqXbt2GjJkiB599FGFhIQUOQ8vLy+9/fbb+vOf/6xZs2Zp5cqVOnz4sM6dOycPDw81aNBAbdq0UY8ePTR8+PB8G6+7Uvv27bV//359+OGHmj9/vo4cOSLDMBQaGqpbbrlFkyZNUpMmTfTmm2/anoe5v05hhg4daqtY+PXXX7Vt2zYlJCTo0qVLCggIULNmzdS5c2fdeOONuuWWW1S3bl2H5h8eHq7o6GitWrVKq1at0o4dOxQdHa3k5GT5+PgoKChIXbt21e2336677rpLXl7u/7953bp108GDB/Xpp5/qp59+0p49e3T27FnVrFlT4eHhGjp0qJ544ol8e6U4S9euXbVv3z4tWLBAP/30kzZv3qwzZ84oNTVVtWrVUmhoqDp16qRBgwbplltuKXb5xGeffVb33XefZs6cqaVLl+rw4cM6f/68fHx81KRJE1133XUaMWJEvr128r4Ge/bs0XvvvaeFCxcqKipKXl5eCgkJ0aBBg/TYY4/puuuuK7AkWl7Oeu9DQkK0Y8cOvffee1q+fLmOHz+ulJSUYpdUAwAAgGtZDP5rDAAAAEA1l5ubq6CgICUkJKhz587atWuXu6cEAAAAoAoruJAyAAAAAFQz33zzjRISEiRJgwYNcvNsAAAAAFR1hDMAAAAAqrTNmzfr0qVLRR5fv369/vSnP0mSPDw89Nhjj5XX1AAAAABUU+5fjBgAAAAAXOjNN9/U2rVrNWLECHXv3t22b05sbKyWL1+uJUuW2PbeeOGFF9S+fXt3ThcAAABANcCeMwAAAACqtNGjR+unn34qto3FYtGzzz6rt956Sx4eLDAAAAAAwLUIZwAAAABUaUeOHNHPP/+sZcuW6ejRozp79qySkpIUEBCgsLAwDRgwQI899pg6dOjg7qkCAAAAqCYIZwAAAAAAAAAAAMoRe844IDc3V6dOnVJAQIAsFou7pwMAAAAAAAAAANzIMAwlJycrJCSk2CWTCWcccOrUKYWGhrp7GgAAAAAAAAAAoAKJiYlR06ZNizxOOOOAgIAASdYXuXbt2m6eDVB2WVlZWrp0qYYNGyZvb293TwdAMbhegcqFaxaoPLhegcqFaxaoPLheUd0kJSUpNDTUlh8UhXDGAeZSZrVr1yacQaWWlZUlf39/1a5dm/+RBCo4rlegcuGaBSoPrlegcuGaBSoPrldUVyVthVL0gmcAAAAAAAAAAABwOsIZAAAAAAAAAACAckQ4AwAAAAAAAAAAUI4IZwAAAAAAAAAAAMoR4QwAAAAAAAAAAEA5IpwBAAAAAAAAAAAoR17unkB1lJWVpZycHHdPA9WIp6envL293T0NAAAAAAAAAIAIZ8pVUlKSEhMTlZGR4e6poBry9fVVw4YNVbt2bXdPBQAAAAAAAACqNcKZcpKUlKTY2FjVqlVLDRs2lLe3tywWi7unhWrAMAxlZWXp4sWLio2NlSQCGgAAAAAAAABwI8KZcpKYmKhatWqpadOmhDIodzVq1FBAQIBOnjypxMREwhkAAAAAAAAAcCMPd0+gOsjKylJGRobq1KlDMAO3sVgsqlOnjjIyMpSVleXu6QAAAAAAAABAtUU4Uw5ycnIkiQ3Z4XbmZ9D8TAIAAAAAAAAAyh/hTDmiagbuxmcQAAAAAAAAANyPcAYAAAAAAAAAAKAcEc4AAAAAAAAAAACUI8IZAAAAAAAAAACAckQ4g3JnsVhK9dOsWTN3TxkAAAAAAAAAAKfxcvcEUP2MGzeuwGPr16/X0aNH1blzZ3Xp0iXfsYYNG5bTzAAAAAAAAAAAcD3CGZS7OXPmFHhs/PjxOnr0qEaPHq0pU6aU+5wAAAAAAAAAACgvLGsGAAAAAAAAAABQjghnUKGtXr1aFotF48ePV1xcnB599FE1bdpUXl5e+uCDDyRJAwcOlMVi0YkTJwqcf+LECVksFg0cOLDQ/n/55RcNHz5cDRo0kJ+fn9q0aaNXXnlFKSkprntSAAAAAAAAAKql3Fxp3Dhp0iQpLc3ds4E7sawZKoWEhARdf/31ys7OVt++fXXp0iX5+/s71Oezzz6r6dOny8/PTzfccIMaNmyo7du36/XXX9fixYu1Zs0a1axZ00nPAAAAAAAAAEB1t3ev9Nln1vvr1kk//CA1b+7eOcE9CGcqAMMwlFaJYlJ/f39ZLJZyHXPRokUaM2aMvvzyS/n5+Tnc37fffqvp06era9eu+uGHH9SsWTNJUlZWlv785z9r5syZmjJlit555x2HxwIAAAAAAAAASTp06Mr9Xbuk7t2lr7+Whg5125TgJoQzFUBaWppq1arl7mnYLSUlpdwrSnx9fTVjxgynBDOSNG3aNEnSV199ZQtmJMnb21sffvihfv75Z/3vf//TW2+9JQ8PVv8DAAAAAAAA4DgznBk2TDp/Xtq6VbrpJumNN6Tnn5fK+W/i4UZ864xK4brrrlOTJk2c0ld8fLx2796t9u3bq23btgWO+/n5qXv37rpw4YIOHz7slDEBAAAAAAAAwPy6sV8/ae1aacIE6z40f/mLdPfdElthVx9UzlQA/v7+lWoDekf3eimLsLAwp/UVFRUlSYqMjCxxebbExMRCAxwAAAAAAAAAKC0znGnTRvLzk/73P+n666VJk6TvvpP275d+/FFq1cqt00Q5IJypACwWCxvPl6Csy5nl5uYWeCwnJ0eSFBwcrGHDhhV7foMGDco0LgAAAAAAAABczVzWrHVr663FIj3+uHTttdLtt0v79ln3oZk3Txo50n3zhOsRzqDS8/HxkaRCq49iYmIKPNa0aVNJUlBQkObMmePSuQEAAAAAAACAZN1jJjHRev/qypjevaUdO6Q77pA2bpRuuUWaOlV66SWJLbGrJt5WVHrBwcGSpENm7JzH0qVLCzzWtGlTtW3bVnv27NHx48ddPj8AAAAAAAAAMJc0Cw6WAgIKHg8Ollatkv74R8kwpL/9TZo4sXzniPJDOINKb8CAAZKk9957T2lpabbHly9frg8++KDQc15++WXl5OTo9ttvV0RERIHjR48e1axZs1wyXwAAAAAAAADVjxnOmEuaFcbHR/rXv6T//tf67//9T8rIcP3cUP4IZ1Dp3XvvvWrbtq02btyo9u3b64477lCPHj00fPhwPfHEE4We88ADD+iFF17Qzp071aVLF11//fW66667dNNNN6l9+/Zq1aqV/vnPf5bzMwEAAAAAAABQVZnhTJs2Jbd95BFrUCNJcXGumxPch3AGlV6NGjW0YsUK3XvvvUpOTtaiRYuUm5urb775Rn/605+KPO+tt97SihUrdOutt+rkyZP68ccftXPnTvn7++v555+ncgYAAAAAAACA05i7MhRXOWOyWKzLnEnSqVOumxPcx8vdEyiLZs2aKSoqqsDjTzzxhD7++GMZhqGpU6dq5syZOn/+vHr06KGPP/5YHTp0sLXNyMjQc889p6+++krp6ekaPHiw/vWvf9k2i0f5mjNnjubMmVPg8YEDB8owjBLPb9Kkib788stCjxV3/o033qgbb7zR7nkCAAAAAAAAQFnYs6xZXsHBUlSUdPq06+YE96mUlTNbt27V6dOnbT/Lli2TJN15552SpLffflvTp0/XRx99pK1btyooKEhDhw5VcnKyrY/JkydrwYIF+vrrr7V+/XqlpKRo1KhRysnJcctzAgAAAAAAAABUTYZxpXLGnmXNJCkkxHpL5UzVVCnDmUaNGikoKMj2s3DhQrVs2VIDBgyQYRj64IMP9NJLL2ns2LHq2LGj5s6dq7S0NFtlxcWLF/Xpp5/qvffe05AhQ9S1a1d98cUX2rt3r5YvX+7mZwcAAAAAAAAAqEoSEqSkJOtyZS1b2neOuawZlTNVU6Vc1iyvzMxMffHFF3rmmWdksVh07NgxxcXFadiwYbY2vr6+GjBggDZu3KiJEydq+/btysrKytcmJCREHTt21MaNGzV8+PBCx8rIyFBGRobt30lJSZKkrKwsZWVlFTnHrKwsGYah3Nxc5ebmOvqUgTLLzc2VYRjKysqSp6en7XHz81vc5xhAxcD1ClQuXLNA5cH1ClQuXLNA5cH1ahUZaZHkpbAwQ56e2bLn5QgM9JDkqZMnc5WVxYpPlYW9n/VKH878+OOPunDhgsaPHy9JiouLkyQFBgbmaxcYGGjbpyYuLk4+Pj6qV69egTbm+YV54403NHXq1AKPL126VP7+/kWe5+XlpaCgIKWkpCgzM9Ou5wW4QmZmptLT07V27VplZ2cXOG4uEQig4uN6BSoXrlmg8uB6BSoXrlmg8qju1+uKFWGSuqpu3QQtWrTJrnMSEqzn7N2boEWLNrt0fnCetLQ0u9pV+nDm008/1YgRIxRiLsB3mcViyfdvwzAKPHa1ktq8+OKLeuaZZ2z/TkpKUmhoqIYNG6batWsXed6lS5cUExOjWrVqyc/Pr9g5AK506dIl1ahRQ/3798/3WczKytKyZcs0dOhQeXt7u3GGAErC9QpULlyzQOXB9QpULlyzQOXB9Wq1caN1h5GePRvo5ptvtuscLy+LZsyQsrIa230O3M9ccasklTqciYqK0vLly/XDDz/YHgsKCpJkrY4JNhflkxQfH2+rpgkKClJmZqbOnz+fr3omPj5evXv3LnI8X19f+fr6Fnjc29u72F8sOTk5slgs8vDwkIdHpdzmB1WEh4eHLBZLkZ/Zkj7LACoOrlegcuGaBSoPrlegcuGaBSqP6n69HjtmvW3XzlPe3p7FN74sNNR6GxdnqdavXWVj73tVqZOC2bNnq3Hjxho5cqTtsebNmysoKChfmVxmZqbWrFljC166desmb2/vfG1Onz6tiIiIYsMZAAAAAAAAAABK69Ah623r1vafYy4WlZgosVtG1VNpK2dyc3M1e/ZsjRs3Tl5eV56GxWLR5MmTNW3aNLVu3VqtW7fWtGnT5O/vr/vuu0+SVKdOHT3yyCN69tln1aBBA9WvX1/PPfecOnXqpCFDhrjrKQEAAAAAAAAAqpjcXOnIEev9Nm3sP69BA8nbW8rKkuLipLAw18wP7lFpw5nly5crOjpaEyZMKHDshRdeUHp6up544gmdP39ePXr00NKlSxUQEGBr8/7778vLy0t33XWX0tPTNXjwYM2ZM0eenvaVlAEAAAAAAAAAUJJTp6S0NMnTU2rWzP7zLBYpOFiKjrb2QThTtVTacGbYsGEyDKPQYxaLRVOmTNGUKVOKPN/Pz08zZszQjBkzXDRDAAAAAAAAAEB1d/iw9bZ5c2slTGmY4czp086fF9yrUu85AwAAAAAAAABARWaGM6VZ0sxk7jtz6pTz5oOKgXAGAAAAAAAAAAAXOXTIetu6denPDQ623lI5U/UQzgAAAAAAAAAA4CJUzqAwhDNwG4vFUuzPwIED3T1FAAAAAAAAAHAIlTMojJe7JwCMGzeu0MfbtWtXzjOpPFavXq1BgwZp3LhxmjNnjrunAwAAAAAAAKAQOTnSsWPW+2UJZ6icqboIZ+B2hAsAAAAAAAAAqqLoaCkzU/L1lUJDS38+lTNVF8uaAQAAAAAAAADgAuaSZi1bSp6epT/frJxJSLCGPKg6CGdQacTExGjixIkKDw+Xr6+vGjdurLFjx2rr1q0F2p44ccK2b01SUpKeffZZNW/eXN7e3po8ebKtXUJCgp577jm1bdtWfn5+qlevnkaMGKG1a9cWOY/9+/fr4Ycfts0jMDBQ/fv314cffpiv3a5du/TCCy+oW7duatSokXx9fdWiRQs98cQTOlVEHWJkZKQefPBBtWzZUn5+fmrUqJG6dOmiyZMn6/TleHz8+PEaNGiQJGnu3Ln59umZMmVKKV9VAAAAAAAAAK5y+LD1tk2bsp3foIHkdXn9qzNnnDMnVAwsa4ZKYe/evbrxxhuVmJiodu3aaezYsYqOjtaCBQv0yy+/6Msvv9Sdd95Z4Lz09HQNGDBAUVFRGjBggK677jrVq1dPknTgwAENGTJEsbGxatmypW6++WadPXtWK1eu1NKlS/X555/rvvvuy9ffd999pwcffFAZGRnq0KGDevfurXPnzikiIkKTJ0/WU089ZWv75ptvav78+erYsaP69Okji8WiXbt26d///rd+/PFHbdu2TSFm9C1px44d6tu3ry5duqQbbrhBN9xwg5KTk3Xs2DF9+OGHGj16tIKDg9W3b1/FxcXpt99+U8uWLdW3b19bH126dHHyKw8AAAAAAACgrMzKmbLsNyNJHh7Wpc1iYqz7zpRlaTRUTIQzqPAMw9D999+vxMREvfjii/rHP/4hi8UiSZo/f77uvvtuPfLII+rfv78CAwPznbtlyxb16tVLx44dU926dW2P5+Tk6M4771RsbKw+/PBDPfnkk7Y+d+7cqaFDh+qxxx7TkCFD1LhxY0nS4cOH9dBDDyk3N1fffPON7rrrLlt/ubm5WrRoUb6xH3vsMb3//vsKNheGvNzu9ddf16uvvqqXX35Zs2bNsh375z//qfT0dH3//fcaO3Zsvr4iIyNt83/00UfVqlUr/fbbb+rbty979gAAAAAAAAAVlFk5U9ZwRroSzrDvTNXCsmYVgGFIqamV58cwnPv88y7LlffnwoULkqTVq1dr7969at68uV577TVbiCJJd9xxh0aPHq3k5GTNnj270P7/+c9/5gtmJOmXX35RRESE7r33Xk2aNClfn127dtUrr7yi1NRUffHFF7bH33//fV26dEkTJ07MF8xIkoeHh0aNGpXvsRtvvDFfMGO2+9vf/qYmTZrop59+yncsPj7edt7V2rdvX6AvAAAAAAAAABWbo8uaSdZwRiKcqWqonKkA0tKkWrXcPQv7paRINWs6r79x48YV+riPj48kad26dZKku+++W56F7Jr14IMP6ocfftC6dev0f//3f/mOBQcHq3v37gXOWbZsmSRp9OjRhY5tLhWWdz+b5cuXS5ImTpxY3NPJ5+zZs/r5558VERGhCxcuKCcnR5KUlZWlc+fO6dy5c6pfv74kqVu3blq8eLEeeughvfzyy+revbs8PMhPAQAAAAAAgMooM1M6ftx635HKGXNnhCK2sUYlRTgDtytpWa5Tl3/rNGvWrNDj5uOnCvntFBYWVug5J06ckGQNfO6+++4ix05MTLTdj4mJkSS1aNGi2PmavvrqKz322GNKSUkpsk1ycrItnHn++ee1fv16/fLLL/rll19Up04d9ejRQ6NGjdL48eMVEBBg17gAAAAAAAAA3O/4cSk31/qH7o4sikPlTNVEOFMB+Ptbq1EqC39/94ybd+kxe4/7+fkV2tasYBkxYoRtT5nCtGvXrsAYJc1DkqKiojR+/HgZhqEPPvhAI0eOVJMmTVSjRg1JUu/evbVp0yYZedaIq127tlauXKkNGzbol19+0erVq7VixQotXbpUb7zxhtatW6eWLVuWODYAAAAAAAAA98u734wdXykWicqZqolwpgKwWJy7TFhVE3L5t89xswbwKlFRUZJUqj1ZmjZtKkl6/PHHdeutt9p1TmhoqA4fPqyjR4+qY8eOxbZdtGiRMjMz9eyzz+qpp54qcPzYsWOFnmexWNS3b1/bsmoJCQl66qmn9NVXX+mvf/2rvvnmG7vmCgAAAAAAAMC9Dh2y3jqypJlE5UxVxYYWqPD69esnSfrmm29sFS95ffHFF/na2WPIkCGSpB9//LHU58ycObPEtufPn5dkDXSutnbtWp05c8auMRs1aqQpU6ZIkvbu3Wt73NyPJzs7265+AAAAAAAAAJQvs3KmTRvH+qFypmoinEGFN3DgQHXq1EnHjx/X3/72t3xLgf3444/64YcfVKtWLY0fP97uPu+44w61a9dOc+bM0VtvvaWsrKx8xzMzM/XDDz/kC0QmT54sPz8/ffLJJ/r+++/ztc/NzdWiRYts/25z+TfuF198odTUVNvjsbGxevzxxwud0yeffFJoddDixYsl5d8/x6wmOnjwoF3PFwAAAAAAAED5cnblTEKCdNXXmKjEWNYMFZ7FYtG8efM0aNAgTZs2TQsWLFCXLl0UHR2tDRs2yMvLS7NmzVJQUJDdfXp5eWnBggUaPny4/u///k8ffvihrr32WtWuXVsxMTE6cOCALly4oAULFqhTp06SrIHLrFmzNG7cON1xxx3q2LGjOnbsqPPnz2vv3r06deqULTi69dZb1aFDB23btk2tWrVSnz59dOnSJa1atUpdunRR7969tXHjxnxz+uSTT/THP/5R11xzjdq3by8vLy8dPHhQu3btUo0aNfTqq6/a2jZr1kzXXnuttm3bphtuuEEdOnSQp6enbr31VruXaQMAAAAAAADgOnn3nHFEo0aSp6eUkyOdOSNd3rEBlRyVM6gUOnXqpB07dugPf/iDUlJSNH/+fB08eFCjR4/Whg0bdOedd5a6z3bt2mnXrl2aMmWKGjdurPXr1+vXX39VQkKC+vfvr9mzZ9uWMjPde++92rp1q+677z6dPXtW33//vXbt2qXWrVvrn//8p62dj4+P1q1bpz/+8Y/y8/PTwoULFRkZqSeffFLLli2Tt7d3gfm89tprmjBhgiwWi1asWKFffvlFaWlpeuyxx7Rnzx716tUrX/vvv/9eo0eP1rFjx/TZZ5/p008/1Y4dO0r9OgAAAAAAAABwrvR0KSbGet/RZc08PCTz79LZd6bqoHIGbpN3eTJ7hIWF2bXfi2StLLGn/3r16unVV1/NV5VSks6dO2vevHl29f2vf/2r0GOrV68u8Ngtt9yiW265xe55tGrVSgsWLLC7PQAAAAAAAIDyceSI9bZuXalBA8f7CwmRYmPZd6YqoXIGAAAAAAAAAAAnMpc0a9NGslgc78/cd4bKmaqDcAYAAAAAAAAAACc6dMh66+h+M6aQEOstlTNVB+EMAAAAAAAAAABOZFbOOCucoXKm6iGcAQAAAAAAAADAifIua+YMVM5UPYQzAAAAAAAAAAA4kbOXNaNypuohnAEAAAAAAAAAwEmSkqQzZ6z32XMGRSGcAQAAAAAAAADAScwlzRo3lurUcU6fZuVMfLyUne2cPuFehDPlyDAMd08B1RyfQQAAAAAAAMC1zHDGWVUzktSokeTpKRnGlaocVG6EM+XA09NTkpSVleXmmaC6Mz+D5mcSAAAAAAAAgHOZ4UybNs7r09NTCgy03mffmaqBcKYceHt7y9fXVxcvXqRyAW5jGIYuXrwoX19feXt7u3s6AAAAAAAAQJV06JD11pmVMxL7zlQ1Xu6eQHXRsGFDxcbG6uTJk6pTp468vb1lsVjcPS1UA4ZhKCsrSxcvXlRKSoqaNGni7ikBAAAAAAAAVZYrKmekK/vOUDlTNRDOlJPatWtLkhITExUbG+vm2aA68vX1VZMmTWyfRQAAAAAAAADO54o9Z6Qr4QyVM1UD4Uw5ql27tmrXrq2srCzl5OS4ezqoRjw9PVnKDAAAAAAAAHCxs2elc+es91u1cm7f5rJmVM5UDYQzbuDt7c0X5QAAAAAAAABQxZhVM02bSv7+zu2bZc2qFg93TwAAAAAAAAAAgKrg0CHrrbOXNJOuVM6wrFnVQDgDAAAAAAAAAIATmJUzbdo4v28qZ6oWwhkAAAAAAAAAAJzADGdcWTlz5ozEluaVH+EMAAAAAAAAAABO4MplzRo3ljw8pNxcKT7e+f2jfBHOAAAAAAAAAADgIMNw7bJmnp5SYKD1PvvOVH6EMwAAAAAAAAAAOCguTkpJsVa3tGjhmjHYd6bqIJwBAAAAAAAAAMBBZtVMs2aSj49rxjD3naFypvIjnAEAAAAAAAAAwEFmOOOK/WZMVM5UHYQzAAAAAAAAAAA46NAh660rwxkqZ6oOwhkAAAAAAAAAABxkVs60aeO6MaicqToIZwAAAAAAAAAAcFB5LGtG5UzVQTgDAAAAAAAAAIADcnOlI0es96mcgT0IZwAAAAAAAAAAcMDJk9KlS5K3txQW5rpxzMqZuDgpJ8d148D1CGcAAAAAAAAAAHBAdLT1NjRU8vJy3TiNG0sWi7VSJyHBdePA9QhnAAAAAAAAAABwgLkHTJMmrh3Hy0sKDMw/JionwhkAAAAAAAAAABxgBiXmsmOuxL4zVQPhDAAAAAAAAAAADijPcMYcg8qZyo1wBgAAAAAAAAAAB1A5g9IinAEAAAAAAAAAwAHuCGeonKncCGcAAAAAAAAAAHCAO5Y1o3KmciOcAQAAAAAAAADAAaUJZ95//33NmzevzGNROVM1eLl7AgAAAAAAAAAAVFbJydYf6UpwUpRDhw7pmWeekSTVqFFDY8eOLfV4VM5UDVTOAAAAAAAAAABQRmZIEhBg/SnOgQMHbPfHjRuX79/2MgOguDgpN7fUp6OCIJwBAAAAAAAAAKCMSrOk2aFDh2z3U1JSNGbMGCWbZTd2CgyULBYpJ0dKSCjVqahACGcAAAAAAAAAACij0oQzhw8fliT94Q9/UJMmTXTgwAGNHz9ehmHYPZ63t9SokfU+S5tVXoQzAAAAAAAAAACUUVnCmb59++r777+Xj4+PfvjhB7399tulGtMcyxwblQ/hDAAAAAAAAAAAZVSWcKZ169bq0aOH/vnPf0qS/vrXv2r58uV2j2nuO0PlTOVFOAMAAAAAAAAAQBnZG86kpaXp5MmTkqzhjCQ99thjmjBhgnJzc3XPPfcoKirKrjGpnKn8CGcAAAAAAAAAACgje8OZo0ePSpLq1q2rBg0aSJIsFos+/vhjdevWTWfPntXtt9+uS5culTgmlTOVH+EMAAAAAAAAAABlZG84k3dJM4vFYnvcz89P33//vRo0aKDt27frT3/6kwzDKLYvKmcqP8IZAAAAAAAAAADKwDDKFs5cLTw8XF9//bU8PDw0a9Ys/fe//y22LypnKj/CGQAAAAAAAAAAyuDiRSk93XrfDEyKUlw4I0lDhgzRtGnTJEl//vOf9fvvvxfZF5UzlR/hDAAAAAAAAAAAZWCGI/XrSzVqFN+2pHBGkl544QXdfvvtysrK0u23364zZ84U2s4MguLipNzcUk8bFQDhDAAAAAAAAAAAZWDvkmaSfeGMxWLR7Nmz1a5dO8XGxmrcuHGFtgsKst5mZ0uJiaWaMioIwhkAAAAAAAAAAMrA3nAmJSVFpy9vEFNcOCNJAQEBmj9/viTpt99+U2pqaoE23t5So0bW++w7UzlV2nAmNjZWDzzwgBo0aCB/f3916dJF27dvtx03DENTpkxRSEiIatSooYEDB2rfvn35+sjIyNCTTz6phg0bqmbNmrr11lt18uTJ8n4qAAAAAAAAAIBKyN5w5siRI5KkBg0aqF69eiX226FDB9WpU0eSFBUVVWgb9p2p3CplOHP+/Hn16dNH3t7eWrx4sfbv36/33ntPdevWtbV5++23NX36dH300UfaunWrgoKCNHToUCUnJ9vaTJ48WQsWLNDXX3+t9evXKyUlRaNGjVJOTo4bnhUAAAAAAAAAoDKxN5yxZ0mzqzVr1kySdOLEiUKPm/vOUDlTOXm5ewJl8dZbbyk0NFSzZ8+2PWZ+UCVr1cwHH3ygl156SWPHjpUkzZ07V4GBgfryyy81ceJEXbx4UZ9++qk+//xzDRkyRJL0xRdfKDQ0VMuXL9fw4cPL9TkBAAAAAAAAACoXV4czu3fvLrJyxgxnqJypnCplOPPzzz9r+PDhuvPOO7VmzRo1adJETzzxhP7whz9Iko4fP664uDgNGzbMdo6vr68GDBigjRs3auLEidq+fbuysrLytQkJCVHHjh21cePGQsOZjIwMZWRk2P6dlJQkScrKylJWVparni7gcubnl88xUPFxvQKVC9csUHlwvQKVC9csUHlU9ev15ElPSR5q3DhbWVlGke0OHjwoSWrRooXdr0VYWJgk6ejRo4WeExjoIclTsbE5ysrKLfXc4Rr2vr+VMpw5duyY/v3vf+uZZ57RX//6V23ZskWTJk2Sr6+vHnroIcXFxUmSAgMD850XGBhoSxnj4uLk4+NTYH2/wMBA2/lXe+ONNzR16tQCjy9dulT+/v7OeGqAWy1btszdUwBgJ65XoHLhmgUqD65XoHLhmgUqj6p6vR47NlSSv06c2KhFi84X2W7Lli2SpJSUFC1atMiuvlNTUyVJmzdvLvScc+eaS7pWO3fGa9GiLaWeO1wjLS3NrnaVMpzJzc1V9+7dNW3aNElS165dtW/fPv373//WQw89ZGtnsVjynWcYRoHHrlZcmxdffFHPPPOM7d9JSUkKDQ3VsGHDVLt27bI+HcDtsrKytGzZMg0dOlTe3t7ung6AYnC9ApUL1yxQeXC9ApUL1yxQeVTl6zU3V7pwwfoV++2391JoaNFtzVWf7rrrLnXt2tWu/jMzMzVr1ixlZmbq5ptvLuS4RTNnSoYRWOhxuIe54lZJKmU4ExwcrGuuuSbfY+3bt9f3338vSQoKCpJkrY4JNhfekxQfH2+rpgkKClJmZqbOnz+fr3omPj5evXv3LnRcX19f+fr6Fnjc29u7yv1iQfXEZxmoPLhegcqFaxaoPLhegcqFaxaoPKri9ZqQIJkrWIWGequop3fx4kUlJCRIsn6Pbe/r0KpVK0lSVFRUoeeYYdDp0x7y9vYo3eThMva+v5XyHevTp49tjT7ToUOHFB4eLklq3ry5goKC8pXKZWZmas2aNbbgpVu3bvL29s7X5vTp04qIiCgynAEAAAAAAAAAQJJOnbLeNm6sIoMZSTp8+LAk65YaAQEBdvffrFkzSdaCgsKWygoJsd7GxVmreFC5VMrKmaefflq9e/fWtGnTdNddd2nLli2aOXOmZs6cKcm6nNnkyZM1bdo0tW7dWq1bt9a0adPk7++v++67T5JUp04dPfLII3r22WfVoEED1a9fX88995w6deqkIUOGuPPpAQAAAAAAAAAqODOcMUOSopjhTOvWrUvVf926dVW7dm0lJSUpOjpa7dq1y3f88gJSysqSzp6VGjUqVfdws0oZzlx//fVasGCBXnzxRf39739X8+bN9cEHH+j++++3tXnhhReUnp6uJ554QufPn1ePHj20dOnSfMnk+++/Ly8vL911111KT0/X4MGDNWfOHHl6errjaQEAAAAAAAAAKglXhzMWi0XNmjXTnj17dOLEiQLhjI+P1LChlJgonT5NOFPZVMpwRpJGjRqlUaNGFXncYrFoypQpmjJlSpFt/Pz8NGPGDM2YMcMFMwQAAAAAAAAAVFWuDmck5QtnChMcfCWcufbaUncPN6qUe84AAAAAAAAAAOBO5RHOmPusFxXOmGObc0HlQTgDAAAAAAAAAEAplVfljFR0OBMcbL09fbrUXcPNCGcAAAAAAAAAACgle8KZc+fO6dy5c5KkVq1alXqMksIZKmcqL8IZAAAAAAAAAABKyZ5wxqyaCQkJUc2aNUs9hhnOREVFFXrcrJwhnKl8CGcAAAAAAAAAACiFnBwpLs56355wpixLmklXwpm4uDilp6cXON68ufX2yJEydQ83IpwBAAAAAAAAAKAU4uOl3FzJw0Nq3Ljodo6GM/Xq1VNAQIAkKTo6usDxdu2st4cOWQMjVB6EMwAAAAAAAAAAlIK5jFhQkOTpWXQ7R8MZi8Wi8PBwSYXvO9OsmeTjI2VkSIVkN6jAHA5n0tLSlJaWVuTxGTNmqF+/fmrfvr1uvvlmLVy40NEhAQAAAAAAAABwG3v2m5EcD2ekK0ubFRbOeHpKrVpZ7x88WOYh4AYOhTO//PKLAgICFBISouTk5ALHJ0yYoMmTJ2vjxo06ePCgfvvtN9122216++23HRkWAAAAAAAAAAC3sSecMQzDFs60adOmzGMVF85IV5Y2O3CgzEPADRwKZ3777TcZhqHRo0fb1r0zrV+/XnPmzJEk+fv7q2vXrvLz85NhGHr55Ze1b98+R4YGAAAAAAAAAMAt7AlnEhISdPHiRVksFrVs2bLMY5nhTFRUVKHH27a13lI5U7k4FM5s3rxZFotFgwYNKnBs5syZkqSQkBBFRkZq+/btOnDggEJDQ5WTk6P//Oc/jgwNAAAAAAAAAIBb2BPOmFUzoaGh8vPzK/NYJVXOEM5UTg6FM/Hx8ZIKXy9vyZIlslgsevLJJ9W0aVNJ1g/hk08+KcMwtGbNGkeGBgAAAAAAAADALcxwpkmTots4Y78ZiWXNqiqHwpmEhARJUq1atfI9vn//fiUmJkqSbr311nzHunfvLqnoDxIAAAAAAAAAwD7nz0sLF0oZGe6eSfVSmsoZR8OZ8PBwSdLp06d16dKlAsfNypnTp6WkJIeGQjlyKJzx9PSUJJ07dy7f4+vWrZMkNWrUSO3M2O6yevXqSVKhHyIAAAAAAAAAQMkMQ5o3z/rF/C23SJd3mUA5Kc9wpkGDBqpZs6YkKTo6usDxunWlxo2t9w8dcmgolCOHwpkml2u2du3ale/xX3/9VRaLRf369StwzsWLFyVJDRs2dGRoAAAAAAAAAKiWjhyRhg2THnhAury4ka76ihYulJUlXd7xo1zCGYvFwtJmVZBD4Uy/fv1kGIY++ugj2zJmW7du1ZIlSyRJw4cPL3BOZGSkJCkoKMiRoQEAAAAAAACgWsnMlP7xD6ljR2n5csnXVzK/gj1yxL1zq07i4qy33t5SgwaFtzEMw2nhjHRl35moqKhCj5tLmx086PBQKCcOhTNPPPGEPDw8dPz4cbVo0ULdu3fXgAEDlJ2drXr16unuu+8ucM7KlStlsVjUpUsXR4YGAAAAAAAAgGpj/Xqpa1fp5Zet+8sMGSJFREh//7v1OOFM+YmNtd6GhEgWS+Ft4uLilJqaKg8PD7Vo0cLhMUuqnCGcqXwcCmeuu+46vfPOO7JYLEpJSdGOHTt06dIleXt767///a8CAgLytb948aJ+/fVXSdLQoUMdGRoAAAAAAAAAqrzz56XHHpP69ZP275caNZK++EJaulRq1cr6I1n3QElLc+9cq4vS7DcTHh4uHx8fh8e0d1kzwpnKw8vRDp5++mkNGTJE8+fPV1xcnIKDg3XvvfeqrRnV5bF69Wpdf/31kqQhQ4Y4OjQAAAAAAAAAVEmGIX39tTR58pX9TR59VHrrLal+/Svt6teX6tWzhjjHjlmXPINrlSacccaSZpI15JFKrpw5dEjKzZU8HCrLQHlwOJyRpE6dOqlTp04ltrvtttt02223OWNIAAAAAAAAAKiypk+XnnvOer9dO+k//5H69y+8batW0tat1qXNCGdczx3hTEmVM82aWffAuXRJio62/hsVm0P52YQJEzRhwgR99913zpoPAAAAAAAAAFR7s2dbbydPlnbtKjqYka4sbca+M+XDneHMqVOnlJGRUeC4l5dkDsXSZpWDQ+HM3LlzNXfuXNWuXdtZ8wEAAAAAAACAau3UKWnfPutm86+8Ivn6Ft+ecKZ8uSOcadiwofz9/SVJMTExhbYxlzY7cMApQ8LFHApnGjVqJEkKDAx0ymQAAAAAAAAAoLpbtsx62717/v1litKypfWWcKZ8lBTO5Obm6sjlN8NZ4YzFYilxabN27ay3VM5UDg6FM9dcc40kKSoqyimTAQAAAAAAAIDqbulS6+2wYfa1p3KmfJUUzpw6dUrp6eny8vKyBSrOUFI4Y1bOEM5UDg6FMw888IAMw9DcuXOdNR8AAAAAAAAAqLZyc69UztgTzpw9e1Z79y6QZN0IvpDtSOBE6enS+fPW+0WFM4cOHZIkNW/eXN7e3k4bOzw8XFLJ4QzLmlUODoUzDz/8sAYPHqyffvpJU6dOlWEYzpoXAAAAAAAAAFQ7u3dLCQlSrVpSz57Ftz1w4IC6d++uP/5xrHx9M2UY0vHj5TPP6ur0aettjRpSnTqFt3H2fjMmeytnTp2SkpOdOjRcwMuRk9etW6fnnntOCQkJ+vvf/66vv/5ad999t6699lrVq1dPnp6exZ7fv39/R4YHAAAAAAAAgCrFrJoZNEjy8Sm63dq1azV69Gidv1zGUatWnDIywnTkyJW9R+B8eZc0s1gKb+OucKZePalxYyk+Xjp0SOrWzanDw8kcCmcGDhwoS55P4KFDh/Taa6/Zda7FYlF2drYjwwMAAAAAAABAlWLuNzN0aNFtvv76a40bN06ZmZmqW7euLly4IE/P45LC2HfGxUrab0ZyfThT3B7wbdtaw5kDBwhnKjqHljWTJMMwyvwDAAAAAAAAALBKS5PWrbPeL2y/GcMw9NZbb+nee+9VZmamxo4dq6+//lqSlJkZKUk6erS8Zls9VYRwJjY2VpmZmYW2MaumDh506tBwAYcqZ1atWuWseQAAAAAAAABAtbZ2rZSZKYWFSW3a5D+WnZ2tJ598Up988okk6emnn9Y777yjU5fTguTkHZJE5YyLlRTO5OTk6OjlhMzZ4UyjRo1Uo0YNpaenKyYmRi1btizQxtx3hnCm4nMonBkwYICz5gEAAAAAAAAA1Zq5pNmwYfn3M0lJSdHdd9+tRYsWyWKx6IMPPtCkSZMkSSEhIfL29lZWlvXbeMIZ1yopnImJiVFmZqZ8fHwUFhbm1LEtFovCw8N14MABnThxothw5sABpw4NF3B4WTMAAAAAAAAAgOOWLbPe5t1v5vTp0xowYIAWLVokPz8/ff/997ZgRpI8PT0vhwDWao0TJ6SsrPKbc3VTUjhjLmnWokULeXp6On18c2mzEydOFHrcXNbs8GEpN9fpw8OJCGcAAAAAAAAAwM1OnZIiIqwVM4MHWx/bv3+/evbsqR07dqhhw4ZatWqVxowZU+Bc6xf2p+Ttna3sbCk6ulynXq3YG844e0kzU0nhTLNmkre3lJ4uxcS4ZApwEoeWNcsrKSlJ8+fP16ZNmxQXF6e0tDTNmjVL4eHhtjanTp3ShQsX5OfnpxYtWjhraAAAAAAAAACo1Myqme7dpQYNpO3bt2vw4MG6ePGiWrdurcWLFxe6jJUkNW/eXJKhunXPKSGhsY4ckYpoCgdVlHAmKiqq0ONeXlKrVlJkpHVpszxfz6OCcUo48/HHH+ull15ScnKyJMkwDFksFqWmpuZrt2bNGt1///3y8/PTyZMnVb9+fWcMDwAAAAAAAACVWt79ZiTprbfe0sWLF9W7d2/9/PPPatCgQZHnml/Y+/mdlGQNZ4YPd+18q6PkZOuPJAUHF97G3ZUzknVps8hI6eBBPgcVmcPLmk2ZMkWTJk1SUlKSfHx81K1btyLb3n333QoODlZGRoa+//57R4cGAAAAAAAAgEovN/dK5YwZzuzdu1eS9OqrrxYbzEhm5YxkGNZg4MgR18yzujt92nobEGD9KYyrwxlzpariwpm2ba23Bw+6ZApwEofCmZ07d+q1116TJD3wwAOKi4vTli1bih7Mw0N33nmnDMPQMvO3DQAAAAAAAABUY3v2SAkJUs2aUs+eUmZmpu1L/g4dOpR4vllNkZa2RxLhjKuYS5o1aVL48ezsbB07dkyS6ytnYmNjlZmZWWgbwpnKwaFwZsaMGTIMQ7169dJnn32mOnXqlHhOr169JF1JfgEAAAAAAACgOjOXNBs0SPLxkQ4dOqScnBzVrl1bIUVtbpKHWTlz/vxWSYQzrlLSfjNRUVHKzs6Wn5+fmjZt6pI5BAYGys/PT7m5uTp58mShbdq1s94eOOCSKcBJHApn1qxZI4vFoj//+c92n5M32QMAAAAAAACA6u7q/Wb2798vyVo1Y7FYSjw/MDBQvr6+MoxDkqRjx6ScHJdMtVorKZwxq51atWolDw+HdxQplMViKXFpM7NyJjZWSklxyTTgBA59Qk5fXmSvrflu28HX11eSlJGR4cjQAAAAAAAAAFDppaVJ69ZZ75vhzL59+yRJ11xzjV19eHh4XP6j+Bh5eeUqM9P6xTycy95wxlVLmpnMAoioqKhCj9erJzVqZL1/6JBLpwIHOBTO+Pj4SJKysrLsPscMdOrWrevI0AAAAAAAAABQ6a1bJ2VmSmFhUps21sfMyhl7wxnJ/MI+Vw0bJkliaTNXKCmcOXQ5CSmvcKaoyhmJpc0qA4fCGXPdPDPJtcfSyzV6rVq1cmRoAAAAAAAAAKj0zCXNhg6VzBXM8i5rZi9z35latc5IIpxxBbMayd2VMyUtayZdWdrs4EHXzOGLL6SHH5Z++cU1/VcHDoUzN954owzD0OzZs+1qf+zYMX366aeyWCwaOnSoI0MDAAAAAAAAQKV39X4zmZmZtgqM0lfOSJ6eJyQRzrhCRVvWzJ3hzIoV0pw50q5drum/OnAonPnzn/8sLy8vbdiwQVOmTCm27bZt2zRs2DClpKTI19dXEydOdGRoAAAAAAAAAKjUTp2SIiKsFTODB1sfO3LkiLKzsxUQEGBbucgeZuVMZub+y/04fbrVmmEUH85kZmbawpKKEM64elkzcy8bcyk+lJ5D4UybNm30yiuvyDAMvfbaa+rRo4fefvtt2/ElS5borbfe0uDBg9WjRw8dP35cFotFb775poKDgx2ePAAAAAAAAABUVsuWWW+7d5caNLDeN7eQuOaaa2Qx1zmzg/mFfVLSDkmEM8524YJ06ZL1fmFfbR87dky5ubny9/d3+Xff5nt98uTJIveDNytnDh2ScnOdPwfCGcd5OdrBK6+8oqysLE2bNk1bt27Vtm3bbL80nn/+eVs7wzBksVj0t7/9TZMmTXJ0WAAAAAAAAACo1MxwxlzSTLqy30xpljSTrlTOnD37uyRrOGMYV/axgWPMqpn69SU/v4LHd+/eLUnq1KlTqUK1sggMDJSvr68yMjIUGxtrC2vyat5c8vaW0tOlkyelsDDnjX/unJSYaL3v4iKhKs2hyhnT3//+d23evFljx45VjRo1ZBhGvh9vb2+NGDFC69at06uvvuqMIQEAAAAAAACg0srNvRLO5N2e26yc6dChQ6n6a9iwofz9/SWdkKenofR06fRpJ00WJe43s2OHtWKpa9euLp+Lh4eHwsPDJRW9tJmXl9SqlfW+s5c2M6tmmjSRatVybt/VicOVM6bu3btr/vz5ys7O1v79+xUfH6+cnBw1aNBAHTp0UI0aNZw1FAAAAAAAAABUanv2SPHxUs2aUq9eVx4va+WMxWJR8+bNtW/fPjVunK7Tp/119GjRYQJKp6RwZufOnZKk6667rlzmEx4erkOHDhW770zbtlJkpHTwYP7qLEexpJlzOC2csXXo5aVrr73W2d0CAAAAAAAAQJWxdKn1dtAgycfHej8rK0uHLn/zXdrKGcm6F8m+fftUr95ZnT7tryNHpH79nDXj6q24cMYwjHKtnJGu7DtTUjgjWcMZZzL7I5xxjFOWNQMAAAAAAAAA2M8MZ/JWNBw5ckRZWVmqVauWQkNDS92nue+Mn9/Jy/05PE1cVlw4c/LkSZ09e1ZeXl7q2LFjuczHnnCmXTvrrauWNTPDH5QN4QwAAAAAAAAAlKO0NGn9euv9vPvN5F3SrCybyptf2OfmWlMZwhnnKS6cMatmrrnmGvn5+ZXLfNxZOcOyZs7h0LJmEyZMKPU5FotFfn5+qlOnjlq3bq2ePXuqffv2jkwDAAAAAAAAACqNdeukjAwpNDR/9cG+ffsklX6/GZNZOZOWtkcS4Ywz2RPOlNd+M9KVcCYqKqrINuZn6+RJKTXVur+Ro3JzpcOHrfcJZxzjUDgzZ86cMiW4V+vevbumT5+uPn36ONwXAAAAAAAAAFRkeZc0y/v1at7KmbIwv7A/e/Z3SdZwxjDyj4GyKS6c2blzp6Ty229GuvJex8TEKDs7W15eBb/qr19fatRISkiwVrs4Y3onT0rp6ZKXl3Q5C0QZObSsWVhYmMLCwtSwYUMZhmH78fHxUWBgoAIDA+Xj42N7XJIaNmyopk2bqnbt2rbHt27dqgEDBmjevHlOeVIAAAAAAAAAUFEVtt+MdCWc6dChQ5n6NStnzp7dIovFUFKSlJhY5mnistxc6fRp6/2KUjkTFBQkHx8f5eTkKDY2tsh2ZvWMs/adMZc0a9nSGtCg7BwKZ06cOKEFCxYoICBAPj4+evrpp7Vz506lpqbq1KlTOnXqlFJTU7Vz505NnjxZ3t7eqlWrlhYsWKDz588rJiZGb731lgICApSbm6tHH31UMTExznpuAAAAAAAAAFChnDolRURYq1kGD77yeHZ2tg5e3hykrJUzdevWVe3atSVlKDAwWxJLmznD2bNSVpb1flBQ/mPx8fGKjY2VxWJR586dy21OHh4eCgsLk1S++86w34zzOBTOnDlzRjfffLPi4uK0atUqvffee+rcubM8PK506+Hhoc6dO2v69OlatWqV4uLidPPNN+v06dNq0qSJnn/+ea1evVo1atRQZmamPvroI4efFAAAAAAAAABURMuXW2+7dZMaNLjy+NGjR5WZmamaNWvavnQvLYvFYqueadz4oiTCGWcwlzRr3Fjy9s5/zFzSrHXr1goICCjXeZlLmxUXzrRrZ711Vjhj9pN3rySUjUPhzHvvvae4uDg988wz6tWrV4nte/XqpWeeeUbx8fF65513bI937dpVEyZMkGEYWrZsmSNTAgAAAAAAAIAKa+VK6+3Qofkf37dvnySpffv2+f74vbTML+wDAs5IIpxxhoq234zJnnDGVcuaUTnjOIfCmZ9++kkWi0XDhw+3+5ybbrpJkvTrr7/me3zEiBGSiv8gAQAAAAAAAEBlZoYlV3+Xb+43U9YlzUxm5Yyn5wlJ0tGjDnVXpWVlSSkpJbcrLpxxx34zJjOciYqKKrKNGc4cOmTdO8dRhDPO41A4c/LkSUmSr6+v3eeYbc1zTSGXP9lpaWmOTAkAAAAAAAAAKizza9GmTfM/blbOdOjQwaH+zS/ss7KsYQ+VM4XbsUO65hqpXj1p1Chp3ryig5rKXDnTvLl1Kba0NCk21rHxMjIkcyjCGcc5FM74+/tLkrZt22b3OVu3bs13rikjI0OSVK9ePUemBAAAAAAAAAAVUm7ulS/Irw5nnF05c+GCtaKDcCY/w5A++UTq1cv62mRnS7/+Kj3wgHVPmXvukX76yRpEmIoKZy5evKgjl19gd4Qz4eHhkooPZ7y9pZYtrfcdXdrs6FHrZzggQAoKcqwvOBjOdOvWTYZh6I033tDZs2dLbJ+YmKg333xTFotF3bt3z3fs4OWdhBo3buzIlAAAAAAAAACgQjpzxhoGeHhIwcFXHs/OzrZ9P+qsypkzZzZKks6elc6fd6jLKiM5WbrvPumPf5QyM6VbbpF+/1165RWpVSspPV365htp9Ghr+PDoo9Y9gmJirOdfHc7s3r1bkhQaGqqGDRuW75PRlfc6JiZG2dnZRbYzlza7/BErs7xLmlksjvUFB8OZJ554QpJ1ibKePXvq119/lWEYBdoZhqGFCxeqV69eirn8Sf7Tn/6Ur82SJUsKDW0AAAAAAAAAoCowlzQLDpa8vK48fuzYMWVkZMjf399WDVFW5hf2585FKzDQuskI+85Ie/dK3btLX38teXpK775rrZC54Qbp73+3Bg9btkhPP20NYS5ckD79VBo82FpZI0lNmuTv0537zUhScHCwvL29lZ2drVNmeU8h2rWz3joznIHjvEpuUrRbb71Vjz32mGbOnKljx47p1ltvVYMGDdSlSxdbBUx8fLx27dqVr7Jm4sSJGjVqlO3fcXFx+vHHH2UYhkaMGOHIlAAAAAAAAACgQjIrMEJD8z9uLmnWvn17eXg49Pf0ql27turXr69z584pJCRdZ87U1JEj1mCiOjIMafZs6U9/ki5dsi4n9803Uu/e+dtZLNL111t/3nlHWrtW+uoraf78K5VHrVvnP8ed+81Ikqenp8LCwnT06FGdOHFCYWFhhbYzK2ccXdbMDHfM/uAYh8IZSfrkk08UHh6u1157TZcuXVJiYqJWrFiRr41ZTePr66tXX31V//d//5fveO3atRUZGSlJanJ1/AgAAAAAAAAAVYBZOXP1fjP79u2T5Ph+M6bmzZvr3LlzqlfvrKSa1XbfmdRUaygzd6713zfdJH3+uVTSCmSentKgQdafjz6Sli2zPnZ1KOHuyhnJWil19OhRRUVFFdnGFcuawXEOhzOS9OKLL+rhhx/W3LlztWLFCkVEROj85TixXr166tChgwYPHqxx48YpOO9iipc5o1wPAAAAAAAAACqyosIZs3LGWeFMs2bNtH37dtWocVJSWLUMZyIjpTvukPbvt+7x8/rr0l/+Yr1fGj4+0siRBR9PT0+3FRy4q3JGurKM3YkTJ4psY4YzMTHWwKpmzbKNRTjjXE4JZyQpKChIf/nLX/SXv/zFWV0CAAAAAAAAQJVR1LJmZuVMhw4dnDJO8+bNJUm5uYcl9a524czatdKIEVJamnV/n6++kgYMcO4Ye/fuVU5Ojho1auTW1aDMoofiwpkGDazVQomJ1oClLFnShQtSfLz1/tXLu6FsHFvAEAAAAAAAAABgl8IqZ3JycnTg8mYgzqyckaT09D2SVO3CmenTrcHMgAHSzp3OD2ak/PvNWCwW5w9gpzaXy1jM+RTF0aXNzKqZ4GCpdu2y9YH8CGcAAAAAAACAauD06dNasmSJbX9olL/Cwpnjx48rIyNDNWrUsIUqjjIrZxITt0iSzpyRUlKc0nWlEBFhvf3b36TAQNeMURH2m5GkAZeTp507dyoxMbHIdu3aWW8dDWdY0sx5nLasmSkpKUnJycnKyckpsW1YWJizhwcAAAAAAABwlaioKPXu3VunTp3S2rVr1a9fP3dPqdrJzZViY6338y5rZi5p1q5dO3l6ejplLDPkiYnZqwYNpLNnpaNHpc6dndJ9hZaWJh07Zr3fsaPrxslbOeNOQUFB6tSpk/bu3asVK1bo7rvvLrSdWTlzuUir1AhnnM8plTPLli3TmDFj1LBhQ9WrV09hYWFq3rx5sT8tWrQo83hTpkyRxWLJ9xMUFGQ7bhiGpkyZopCQENWoUUMDBw60/ZIzZWRk6Mknn1TDhg1Vs2ZN3XrrrTppRtcAAAAAAABAFXH27FkNHz5cp06dkmTdKwPlLz5eysqybkgfHHzl8f3790ty3n4z0pVw5uLFi2rWLFtS9Vna7MAByTCse6w0buyaMbKysrRnj3XJOHdXzkjS0KFDJUnLly8vso0ZVG3fXrYxzIobM+SB4xwOZyZNmqSbbrpJP//8s86dOyfDMOz+cUSHDh10+vRp20/e/1F5++23NX36dH300UfaunWrgoKCNHToUCUnJ9vaTJ48WQsWLNDXX3+t9evXKyUlRaNGjbKr4gcAAAAAAACoDNLS0jRq1CgdzLOWUVRUlBtnVH3FxFhvg4MlrzzrGZl/VO6s/WYkyd/fX40vJxONGydJqj7hjPk3+k7MugqIjIxURkaGAgICHCpCcJYhQ4ZIshZRFPW9e69eksUiHT4sxcWVfgwqZ5zPoWXNvvzyS3300UeSJD8/P40ePVrdunVT/fr15eHh2u1svLy88lXLmAzD0AcffKCXXnpJY8eOlSTNnTtXgYGB+vLLLzVx4kRdvHhRn376qT7//HPbB/eLL75QaGioli9fruHDh7t07gAAAAAAAICrZWdn6+6779bmzZtVr1493X777frf//5HOOMmhe03I12pnHFmOCNZ952Jj49XQMAZSfWrTThj7jfjynAm75Jmrv4e3B79+/eXj4+PoqKidOTIEbVu3bpAm7p1rcva7dolrVsn3Xmn/f0bBuGMKzgUzvznP/+RJIWGhmrlypVq2bKlUyZlj8OHDyskJES+vr7q0aOHpk2bphYtWuj48eOKi4vTsGHDbG19fX01YMAAbdy4URMnTtT27duVlZWVr01ISIg6duyojRs3FhnOZGRkKCMjw/bvpCRr6pyVlaWsrCwXPVPA9czPL59joOLjegUqF65ZoPLgegUqF67ZkhmGoccff1wLFy6Un5+fFixYoLi4OP3vf//TiRMneO3cICrKQ5KnQkJylZVlXb0nJydHkZGRkqQ2bdo49X0JCwvT77//Lg+PY5La6/DhK+OWp/K+XiMiPCV5qF27HGVl5bpkjG3btkmSOnfuXCGuJR8fH/Xq1Utr1qzRb7/9ZlvW7mp9+3po1y5PrV6do9Gj7X9tYmOltDRveXoaato0WxXgKVdo9n4mHApn9uzZI4vFoldffbVcg5kePXros88+U5s2bXTmzBm9/vrr6t27t/bt26e4yzVZgYGB+c4JDAy0/VVAXFycfHx8VK9evQJt4oqp6XrjjTc0derUAo8vXbpU/v7+jj4twO2WLVvm7ikAsBPXK1C5cM0ClQfXK1C5cM0Wbd68efruu+/k4eGhp59+WhcuXLDtt3zo0CEtWrTIzTOsftasuUZSa2VnH9eiRdbyjtOnT+vSpUvy8fFRZGSkDpnlCU6Qm2v98j0qaoWkkYqIyNCiRUud1n9pldf1um3bEEk1lZy8SYsWnXXJGCtXrpQkeXh4VJhrqenlkqx58+YpNDS00Db+/sGSbtCiRSkaNmy13X3v2dNQUh8FBqZq+fIVjk+2iktLS7OrnUPhjJkAde3a1ZFuSm3EiBG2+506dVKvXr3UsmVLzZ07Vz179pQkWSyWfOcYhlHgsauV1ObFF1/UM888Y/t3UlKSQkNDNWzYMNWuXbssTwWoELKysrRs2TINHTpU3t7e7p4OgGJwvQKVC9csUHlwvQKVC9ds8T755BN99913kqSPP/5YjzzyiCQpISFBzz33nM6fP6/BgwfL19fXndOsdr76ylOS1LdvM918c5gkaeHChZKk9u3b65ZbbnHqeLGxsfr+++9Vs+ZpSdLZszU0aNDNqlHDqcOUqDyv15QUKT7eOsaECT3UoIHzx8jNzdUDDzwgSXrooYfUqVMn5w9SBo0aNdK8efMUGRmp4cOHy9PTs0Cbbt2kt9+WoqJqq1evm3VV7UKRTp60Lt3WpYu/br75ZmdOu0oyV9wqiUPhTLNmzRQZGamUlBRHunFYzZo11alTJx0+fFijR4+WZK2OCQ4OtrWJj4+3VdMEBQUpMzNT58+fz1c9Ex8fr969exc5jq+vb6H/o+Xt7c1/CKBK4LMMVB5cr0DlwjULVB5cr0DlwjVb0A8//KCnnnpKkjR16lQ9/vjjtmPBwcGqUaOG0tPTFRcXp1atWrlrmtVSbKz1NjzcU97e1i/ODx48KEnq0KGD0z/L5vt76tRe1akjXbwoxcR4u3QvluKUx/Vq7qsTGCgFBblmrMOHDyslJUV+fn669tpr5eXl0FfsTtOjRw/VrVtXFy5c0O7du9WjR48CbZo2te4Zc+iQRVu2eGvUKPv6PnrUetu2rYe8vd2/x05FZ+/n3KFXcuzYsZKkFSvcW8qUkZGhyMhIBQcHq3nz5goKCspXJpeZmak1a9bYgpdu3brJ29s7X5vTp08rIiKi2HAGAAAAAAAAqKjWrFmj++67T4ZhaOLEiXrllVfyHbdYLAoPD5ck2/L/KD+XV5VT3hWn9u/fL0m65pprnD6eue9IVNQJtWplSLryJXtVtW+f9daVAdSOHTskqUIFM5Lk6empG2+8UVLxS8j172+9XbfO/r4vZ4hq27ass0NhHApnnn32WYWFhemDDz7QgQMHnDWnEj333HNas2aNjh8/rt9//1133HGHkpKSNG7cOFksFk2ePFnTpk3TggULFBERofHjx8vf31/33XefJKlOnTp65JFH9Oyzz2rFihXauXOnHnjgAXXq1ElDhgwpt+cBAAAAAAAAOMPevXt12223KSMjQ6NHj9bHH39c6PL9ZjgTHR1d3lOs1nJzr1TOXN4aRJK073Ka0MEFaYL5Xqempio0NEPSlcqSqirCupWPS8OZnTt3Sir/rT7sMXToUEnS8uXLi2zTr5/1du1a+/s1t0Jq06asM0NhHApn6tSpoyVLligwMFB9+vTRv/71L50/f95ZcyvSyZMnde+996pt27YaO3asfHx8tHnzZtsvnBdeeEGTJ0/WE088oe7duys2NlZLly5VQECArY/3339fo0eP1l133aU+ffrI399fv/zyS6Fr8QEAAAAAAAAVVXR0tG666SZdvHhRffv21Zdfflnkd1xhYda9TqicKV/x8VJWluThIZk7MeTm5ioyMlKSaypnfH19FRISIkmqW/ecpKofzpRn5cx1113nukHKyCw82LhxY5FbkZiVM9u2SfbsW5+ZKR0/br1POONcDtVdtWjRQpKUlpam8+fP68knn9SkSZPUsGFD+fv7F3uuxWLR0TLW0X399dcl9j1lyhRNmTKlyDZ+fn6aMWOGZsyYUaY5AAAAAAAAABXBo48+qlOnTqlDhw76+eefVaOYHd9Z1sw9zCXNgoIkczuKqKgopaeny9fX1/Y9q7M1b95cp06dkp/fSUkh1Sac6djRNf0bhlGhK2datmypZs2a6cSJE1q7dq1uvvnmAm3Cw61L68XESJs3S5dXQivS8eNSTo5Us6Z0OeuDkzhUOXPixAmdOHFC8fHxkqwfztzcXMXHx9uOFfcDAAAAAAAAoOwuXbqkNWvWSJK++eYb1atXr9j2hDPuYYYzhS1p1rZtW5ftXWLuOyNZU5mqHM4kJVkDB8l1lTMnT55UYmKiPD091alTJ9cM4gCLxWKrnilqaTOLpXRLm5n7zbRpYz0XzuPQVT9u3DhnzQMAAAAAAABAKe3YsUOZmZlq3LixXUtjEc64hxkahIZeeWz//v2SXLPfjKl58+aSpNTU3ZLuU1SUdZkqHx+XDek2l19OhYRIdeu6Zgyzauaaa66Rn5+fawZx0NChQ/W///1Py5YtK7JN//7Sl19K69aV3B/7zbiOQ+HM7NmznTUPAAAAAAAAAKW0adMmSVKvXr1ksePP2s1wJiYmRrm5ufLwcGhhHdipuMoZV+w3YzIrZ+Lj98jf37rHyPHjUtu2LhvSbSIirLfVdb8Z04033iiLxaKIiAjFxcUpKCioQBuzcmbTppLDOsIZ1+G3LwAAAAAAAFBJbdy4UZLUu3dvu9qHhITI09NTWVlZOn36tCunhjyKq5xxZThjVs6cOHFcrVtbHzt82GXDuZW534wrw5mKvN+MqWHDhrb5FbW0Wfv2UsOGUnq6dDlvKpK5rFlVDPTcjXAGAAAAAAAAqIQMwyh1OOPl5aWml8s3WNqs/FxdOZObm1suy5qZlTNRUVFq08aQdOXL9qrGDGc6dnTdGJWhckayLm0mqcilzSwWqW9f6/2S9p2hcsZ1nBrOXLp0SRs2bND333+vzz//XElJSc7sHgAAAAAAAMBlUVFRiouLk5eXl7p162b3eew7U/6uDmeio6OVlpYmHx8ftWzZ0mXjhoaGysPDQ5cuXVKTJimSrnzZXtW4unImISFBJy+/kZ07d3bNIE5ihjPLly+XYRiFtunf33pb3L4zSUlSXJz1PuGM8zklnImJidG4ceNUt25d9e/fX3fddZfGjx9v+7CaPv30U91www0aOnRokR8KAAAAAAAAACUzq2auu+461ahRw+7zzHAmOjraJfNCfrm5V8IZc1kzs2qmbdu28vJyaFvwYnl7e9sqpQICrN+yV8XKmfPnpVOnrPddtUqcuaRZ69atVbt2bdcM4iR9+vSRn5+fTp06pcjIyELbmPvOrFsn5eQU3o+5BF5goFSnjgsmWs05HM5s2bJFXbt21RdffKHMzEwZhlFk8HLrrbdqz549WrlypZYuXero0AAAAAAAAEC1tWnTJklSr169SnVeWFiYJCpnyktCgpSVZV1KKjjY+ti+y2UertxvxmTuO+PtfUxS1aycMatmQkMlV+UmlWG/GZOfn5/6XU5fitp3pksXqVYt6eJFKSKi8H7MII+qGddwKJy5ePGibrvtNp07d05BQUH617/+pb179xbZvlGjRhoxYoQk6ddff3VkaAAAAAAAAKBaK+1+MyaWNStfZtVMUJDk7W29b1bOlEc4Y+47k5lp/Qb+9GnrclVViauXNJMqz34zpiFDhkgqet8ZLy+pTx/r/aKWNmO/GddyKJyZMWOGzpw5o4YNG2rTpk16/PHHS9zAylzSbMuWLY4MDQAAAAAAAFRbqamp2r17t6TSV84QzpSvmBjrrbmkmXSlcqak71KdwayciYs7oMaNrY+Zy1VVFeUZzlSGyhnpyr4zq1evVlZWVqFtzKXN1q4tvA/CGddyKJz55ZdfZLFY9Mwzz9jKIUti/sI5evSoI0MDAAAAAAAA1dbWrVuVk5Ojpk2bKjTvt/52yBvOsC+065mVM5e3fpFhGG6pnDlx4oTatrU+VtX2nTHDmY4dXdN/UlKSjhw5IqnyhDOdO3dWw4YNlZKSot9//73QNv37W2/XrZMK+1Vgfk7Mzw2cy6Fw5vDliLW/+S7aoW7dupKsH2gAAAAAAAAApVfWJc2kK3vOpKSk6Pz5806dFwq6unImOjpaqamp8vb2VqtWrVw+vlk5c/z4cVsFRFXbd8bVlTO7du2SJDVt2lSNGjVyzSBO5uHhocGDB0sqemmz66+XfHykuDjpcvZkYxhUzriaQ+FMenq6JKlmzZp2n5OSkiLJuikRAAAAAAAAgNLbtGmTpNIvaSZJNWrUUOPL61uxtJnrXV05Y1bNtGnTRt7mJjQuZFbOREdHq3XrXElVq3ImMVE6c8Z6v31714yxc+dOSZVnvxmTubTZ8uXLCz3u5yf16GG9f/W+M3FxUkqK5OEhtWjhyllWXw6FM2ZKGGPGv3bYvn27JCk4ONiRoQEAAAAAAIBqyTAMWzhTlsoZiX1nylNR4Ux57DcjSU2aNJGXl5eysrLUsOFZSVUrnDGrZpo1k2rVcs0YlW2/GZMZzvz++++6ePFioW2K2nfGrJpp3lzy9XXVDKs3h8KZG264QZK0ePFiu9rn5ORo5syZslgs6tu3ryNDAwAAAAAAANXS4cOHdfbsWfn5+alLly5l6oNwpvxcvazZvstpQnnsNyNJnp6etqXsfH2t7/ehQ4XvMVIZuXpJs5MnT2rFihWSKl/lTFhYmFq3bq2cnBytXr260DbmjiVXhzNmgMeSZq7jUDhz7733yjAMzZo1y1baVZTc3Fw9/vjjtmT4gQcecGRoAAAAAAAAoFoy95vp3r27fHx8ytSHGc5ER0c7bV4oKDdXio213jcrZ8zN2csarJWFue9MZuYBeXpKqanSqVPlNrxLmeFMx47O73v37t3q2bOnYmNjFRISogEDBjh/EBcraWmz3r2tS5cdP36lyktiv5ny4FA4c/vtt6t3797KyMjQ4MGD9fHHHys+Pt523GKx6MyZM/r888/VvXt3zZo1SxaLRTfddJMGDhzo6NwBAAAAAACAasfRJc0k2SopqJxxrcREKTNTslikkBDp7Nmztj9e79OnT7nNw9x35uTJY7qc09i+fK/sXFU5s3TpUvXr10+xsbFq3769Nm7cqDp16jh3kHIwZMgQSdKyZcsKPR4QIJmrteXdd8b8fLRt68rZVW8OhTOS9OOPP6pdu3a6cOGCJk2apODgYFksFknWMq+QkBCNHz9eu3fvlmEY6tixo+bNm+fwxAEAAAAAAOAaqampysrKcvc0UASzcqZXr15l7oNlzcqHuaRZUJDk7X3lvWvfvr0aNmxYbvMwK2eOHz9u+7K9Kuw7YxhSRIT1vjPDmdmzZ2vkyJFKTk7WwIEDtWHDBts1U9kMGjRIHh4eOnjwYJF7x5tLm+UNZ1jWzPUcDmcaNmyobdu26U9/+pN8fX1lGIbtJyMjw3bfy8tLjz32mDZu3Ki6des6YeoAAAAAAAAoK8MwFB8frzVr1uiTTz7RU089peHDhyssLEy1atVS8+bNlZKS4u5p4ioXL1607VlCOFPxmctEmUuarV+/XpLKfT9us3LmxIkTti/bq0LlTHy8dPastTKpXTvH+zMMQ6+++qomTJig7Oxs3XfffVqyZInq1avneOduUrduXdve8UUtbdavn/XW3HcmK0s6dsx6n3DGdbyc0Ym/v79mzJihKVOm6LffftO2bdsUHx+vnJwcNWjQQF27dtWIESMUEhLijOEAAAAAAABQBosXL9b333+vyMhIRUZG6vz580W2jY2N1datWzVo0KBynCFK8vvvv8swDLVo0UKBgYFl7scMZxISEpSWliZ/f39nTRF5mIUKoaHWW3eFM3krZ+65x/pYVaicMZc0a9FCcvQjnJmZqT/84Q/67LPPJEkvvfSSXnvtNdsqUZXZkCFDtHnzZi1btkwPP/xwgePmx3HfPmvYde6clJ0t1aghNWlSzpOtRpwSzpgaNGig++67T/fdd58zuwUAAAAAAICDLl68qNGjRyszM9P2mMViUbNmzdS+fXu1a9dO7du3V/v27TVt2jQtWrRIO3bsIJypYMxlsRzZb0ay/jV9QECAkpOTFR0drXbOKDtAAXkrZ9LT07V161ZJ7qucOXnypFq2zJHkWaXCGUeXNLt48aLGjh2rlStXytPTU//+97/1hz/8wfEJVhBDhw7V66+/ruXLlys3N1ceHvkX1GrUSGrfXoqMlNavl7wupwZt2kgeDq+9haI4NZwBAAAAAABAxbRs2TJlZmYqPDxcb775ptq3b682bdqoRo0aBdr27t1bixYt0s6dO90wUxRn06ZNkhxb0kyyBnPh4eGKiIhQVFQU4YyL5A1ntm3bpqysLAUHB9sqWcpLUFCQfH19lZGRoVq1YiWF6fhxKTNT8vEp16k4lRnOdOxY9j5iYmJ08803KyIiQrVq1dK3336rESNGOGeCFUTPnj1Vs2ZNJSQkaO/evercuXOBNv37W8OZtWuvVMuwpJlruTz3ysjI0IoVK/TNN99oy5Ytrh4OAAAAAAAAhfj1118lSbfffrvuuecede7cudBgRpK6du0qSdqxY0e5zQ8ly83N1ebNmyU5Xjkjse9Meci7rFneJc3Ke6ksDw8Ptbn8TXtc3E7VqiXl5kpHj5brNJzO0cqZXbt2qWfPnoqIiFBwcLDWrl1b5YIZSfLx8dGAAQMkFb3vTP/+1tt1667sR0Q441oOhTNRUVF64YUX9MILL+jChQsFjm/evFktW7bUsGHDdN9996lXr166/vrrFR0d7ciwAAAAAAAAKIXc3FwtWrRIkjRy5MgS21933XWSpIMHDyo1NdWlc4P99u/fr6SkJNWqVUsdHSkVuIxwxvXyVs64a78ZU8+ePSVJmzZttH3pbn4JXxkZhmPhTG5ursaMGaNTp06pQ4cO2rx5sy2YroqGDh0qSVq5cmWhx/v1s97u2GH9kaS2bctjZtWXQ+HMggUL9O6772rlypWqW7duvmPJyckaPXq0Tp8+LcMwbD/bt2/XyJEjlZ2d7cjQAAAAAAAAsNP27dsVHx+vgIAAu74YDgoKUnBwsHJzc7Vnz55ymCHsYe43c8MNN8jLy/HdCghnXMswroQzTZrkasOGDZLcF86Y1VabNm2yfelemfedOX1aOn/euidKWUKEXbt26cSJE6pZs6bWr1+vsLAw50+yAunRo4ckFfk7PTRUatZMysmRLm+NROWMizkUzixbtkwWi0WjR48ucGzmzJmKj4+XJE2aNEk//fSTnnjiCUnWlH/u3LmODA0AAAAAAAA7mUuaDRs2TD52bjBh/gU5+85UHGY444wlzSTZvoxmlRvXSEiw7ulisUjnz+/XxYsXVatWLV177bVumY+5T9HWrVvVsmWOpIpVOTN7tvTll/a3N6tmWrWS/PxKP55ZTThkyJAChQdV0TXXXCNJOnnyZKGrYElXqmdMrVu7eFLVnEPhzLFjxyRJ3bp1K3Ds22+/lcVi0ZgxY/TBBx/olltu0UcffaQ777xThmFo/vz5jgwNAAAAAAAAO5nhjD1LmpnMpc3Yd6bi2LRpk6QrX7I7isoZ1zKrZgIDpd9/XyfJ+t45o+qpLNq0aaP69evr0qVL8vE5LqniVM4sXSpNmCDdf7+0d69955jhTFlX+CvL78XKrE6dOgoNDZUk7TNfvKuY+85IUsOGUv365TGz6suhcMasjAkMDMz3eFJSku1/uB9++OF8x+655x5J0u7dux0ZGgAAAAAAAHaIi4vTtm3bJKlUG11TOVOxJCYm6tDlMgdz7xBHmeFMbGwsWxC4QEyM9TY01P37zUiSxWKxBXsXL1rXraoIlTOZmdKkSVf+/Y9/2HeeI/vNJCYm6vfff5dUut+LlZ25V1VEREShx/NWzrDfjOs5FM4kJydLknJycvI9vmHDBuXk5MjT01MDBw7Md8xM586dO+fI0AAAAAAAALDD4sWLJUndu3dXUFCQ3eeZlTN79+5VZmamS+YG+23evFmS1L59e9V30p+zBwUFycfHRzk5OYqNjXVKn7jCrJxp2rRihDPSlSXxjh1bIkmKj5eKWOGq3Hz4obWCx1xZ7Ntv7avocSSc+e2332QYhq699lo1bdq09B1UUiWFM23aSI0bX7kP13IonKlTp44k6dSpU/keX716tSSpc+fOqlmzZqHn+pVlIUAAAAAAAACUSlmX7gkPD1e9evWUlZWl/fv3u2JqKAVzvxlnLWkmSR4eHrY/pGZpM+czw5k6dZIVHR0tT09P26bs7mKGM9u2rVJwsPUxdy5tFhsr/f3v1vsffCDddptkGNIbbxR/nmE4Fs6Y+83cfPPNpT+5EispnLFYpEGDrPc7dSqvWVVfDoUz5pu5YMEC22M5OTm2/WYGme9kHmYKf/VSaAAAAAAAAHCuzMxMLV26VFLpwxmLxWJb2ox9Z9zP3G/G/HLdWdh3xnXMZc0yMo5IslajFfWH7OXl+uuvl6enp2JiYtSs2SVJ7l3a7IUXpJQUqVcv6cEHpZdesj7+xRfS5e3OC3XypJSUJHl5lb7CIycnR0uWWCuHqst+Mybz+/y9e/fKMIxC20yfLr3zjvT44+U5s+rJoXBmzJgxMgxDn3/+uf7yl79o4cKFuu+++2y/zO+6664C55hrnIaFhTkyNAAAAAAAAEqwfv16JScnKzAwUN26dSv1+ew7UzFkZWVpy5YtkpxbOSMRzriSWTmTmGi9fty9pJkk1axZU507d7583/pH9O6qnFm7VvryS2u1xkcfSR4e0vXXS8OHSzk50ltvFX2uWTXTurXk41O6cX///XedO3dOdevWddr+TZVF+/btZbFYdPbsWdt+8lcLCZGee06qUaOcJ1cNORTOTJw4Ue3bt5dhGHr33Xd12223af78+ZKkW265Rd27dy9wzoIFC2SxWArsRQMAAAAAAADnMpc0GzFihDw8Sv81kLnvDJUz7rVnzx6lpaWpbt26ateunVP7JpxxHTOcOXZsraSKEc5IVwK+zMy9ktxTOZOdLf35z9b7EydKl3/VSJJeecV6O3v2leqjq5nhzOVCkFIxlzQbPny4vLy8St9BJVajRg21atVKUtFLm6H8OBTO+Pr6asWKFRo7dqy8vLxkGIa8vb314IMP6vPPPy/Qfu3atbY1SocOHerI0AAAAAAAAChBWfebMZmVM7t371ZOTo7T5oXSMZc069mzZ5lCtuIQzriGYVwJZ44eXSNJ6tOnjxtndIW5NF5cnDU0ckflzL//Le3dK9WvL73+ev5jffpIAwdKWVnW5bUK44z9ZqrbkmamkvadQflx+Ld5UFCQ5s+fr6SkJMXGxiopKUlz585VQEBAgbahoaFatWqVVq5cqeuvv97RoQEAAAAAAFCEo0eP6uDBg/Ly8irzH8m2adNG/v7+Sk1N1eHDh508Q9hr48aNkpy/34x0ZeuB6Ohop/ddnSUmShkZksViSIpV69atK8we3GblzLFj1n1XDh+WcnPLb/z4+CvVMf/4h9SgQcE2L79svf3vf6W4uILHyxrOnDp1Sjt37pTFYtHw4cNLd3IVQThTcTgtavf19VVwcLB8ilnkr3nz5howYIAGDBggi8XirKEBAAAAAABwFbNqpl+/fqpTp06Z+vD09LTtT8G+M+5jVs64IpwxK2eio6OL3CAcpWcux+Xvnywpq8IsaSZJzZo1U1BQkLKzD8nTM1fp6VeqfMrDiy9KFy9KXbtKf/hD4W1uvFHq2VO6dEl67738x3Jzyx7OLF68WJJ0/fXXq3HjxqWcedVAOFNxOLcOEgAAAAAAABWCo0uamdh3xr1Onz6tEydOyMPDQzfccIPT+w8NDZXFYlF6eroSEhKc3n91ZYYdFkuspIqz34wkWSyWy0FfjurXPy+p/JY2+/13adYs6/2PPpI8PYua45Xqmn//21qJZIqOllJTJW9v6fL2KXar7kuaSfnDGQJZ93I4nElLS1NaWlqRx2fMmKF+/fqpffv2uvnmm7Vw4UJHhwQAAAAAAEAxUlJStHr1akmOfwlp7jtDOOMeZtVMp06dCt1GwFE+Pj4KDg6WxL4zzmSGM2lphyRVrHBGurK0mafnUUnSoUOuHzM3V/rzn633x42TSioEGzHCWl2Tmip9+OGVx82qmXbtrAGNvTIzM7Vs2TJJ0s0331yKmVctrVu3lre3t1JSUljO0M0cCmd++eUXBQQEKCQkRMnJyQWOT5gwQZMnT9bGjRt18OBB/fbbb7rtttv09ttvOzIsAAAAAAAAirFixQplZmaqRYsWatu2rUN9mZUzO3fu5K+s3cDcb8b8Mt0VzKXNCGecx1zWLDc3So0aNVLr1q3dO6GrmEvkJSVtkVQ+lTNz5li0bZtUu7b05pslt7dYruw9889/ShcuWO+XdUmz9evXKzk5WY0bN7b9XquOvL291a5dO0nSPvPFhFs4FM789ttvMgxDo0ePLpDcr1+/XnPmzJEk+fv7q2vXrvLz85NhGHr55Zd54wEAAAAAAFwk75Jmju7726FDB3l7e+v8+fN8ee8GZjjjiv1mTIQzzndlD5eT6tOnT4Xbf/u6666Tt7e30tJ2SXJ95Uxysrdeesm6htnUqVJQkH3njR5tDWGSkqzLoEllD2fMJc1GjBghD4/qvdsH+85UDA59Cjdv3iyLxaJBgwYVODZz5kxJUkhIiCIjI7V9+3YdOHBAoaGhysnJ0X/+8x9HhgYAAAAAAEAhDMNw6r4KPj4+ti/ydu7c6XB/sF9GRoa2b98uiXCmsrkSzsRUuCXNJMnPz0/dunWTZC2ZcXXlzFdftdPZsxZ16CD96U/2n+fhIb30kvX+++9LycmSmSeUNZypzvvNmDpcfvEIZ9zLoXAmPj5ekgoty1uyZIksFouefPJJNW3aVJJ1g7Enn3xShmFozZo1jgwNAAAAAACAQuzevVuxsbHy9/fXgAEDnNIn+864x44dO5SZmalGjRqpRYsWLhuHcMb5YmLMJQBPVshwRjKXyrOWzERFSZcuuWacXbukJUuaS5JmzCjdPjGSdNddUuvW0rlz0r/+JUVGWh8vTThz/PhxRUZGytPTU0OHDi3dBKogKmcqBofCmYSEBElSrVq18j2+f/9+JSYmSpJu/X/27jq+yvr94/jrrAsYDKS7u7tjgIA0IqCIiqiogIF+jZ+ifMVAvoqgYhcljUg4csQo6e5mI0cM1rt/f8z7AFKLk9v7+Xjs4XbOfX8+1+KMeV/3dV2dO9/yXJ06dQA4evRoZrYWEREREREREZE7MFuatWnTBj8/P5usefPcGXGctWvXAqlVM/Zsi6XkjG0Zxo3kjK/veWty09WkVmOdxcPjKoYBBw/afg/DgJde8iQlxUKvXincoQHTfXl6wptvpr4/ciTExoKvL5QunfY1zKqZxo0bExwcnP4gshgzObN7926Sk5OdHE32lankjKdnap/Aixcv3vL4qlWrAMiXL591uJApd+7cAMTZKxUrIiIiIiIiIpKN3TxvxlZUOeMc5ryZ1AoH+ylWrBgAx48ft+s+2cX585CQkHrZtX79Ivj4+Dg5ojszW+WlpKSWotijtdmhQ7BmjQdeXsl8/HHGkwD9+kHx4nDtWurHFSumJm3SSi3NblWyZEn8/f2Jj4/n0KFDzg4n28pUcqZw4cIAbN269ZbH58+fj8VioWnTpredc/nyZQDy5s2bma1FRERERERERORfzp8/z7p16wDo0KGDzdatXr06FouFyMhIoqKibLau3NvGjRsBaNCggV33MStnoqOjuXr1ql33yg5uzJuJolkz+37vMqNQoUL/JOZSszL799t+D/OycYkSV/hn8kWGeHvDf/5z4+P0tDS7fv06y5YtA2z7e9GdeXh4aO6MC8hUcqZp06YYhsH48eOtbcw2btzIokWLAGjXrt1t5+z5pylggQIFMrO1iIiIiIiIiIj8y6JFizAMg+rVq1tnANtCYGAg5cuXB9TazFGuXLlirWSpXr26XffKkSOHtduNWptl3o3kzAmXnTdjSq2eSU3O2KNyZvv21P8WL34l02s98QQUKpT6fnqSMytWrCAuLo6iRYtaExKS+bkzBw4cYPny5SQmJtoyrGwlU8mZwYMH4+HhwZEjRyhVqhR16tShefPmJCUlkTt3bnr37n3bOcuWLcNisVCjRo3MbC0iIiIiIiIiIv9ij5ZmJs2dcazdu3cDqdUNjpiRobkztrNjx6V/3jtl95Z0mZUaX2rJjD0qZ7ZtS/1vyZKZT874+sJPP0HHjjBgQNrPM1uadejQwa6zm9xNZpMz33zzDa1atWLw4MG2DCtbyVRyplatWowePRqLxUJMTAybN28mLi4Ob29vvvvuO3LkyHHL8ZcvX7b+kRAaGpqZrUVERERERERE5CZJSUnWbib2TM5o7oxjmBdMzQuo9qbkjO1s3BgJQN68ceTMmdPJ0dzbrZUzhs3XNytnSpS4bJP12raFP/+EggXTdrxhGHZNWruzzCZn5s2bB0Dbtm1tFlN245XZBV566SXatGnDjBkziIqKomDBgvTp08da6nqzFStWULduXQDatGmT2a1FREREREREROQf69at49KlS4SEhFC/fn2br1+zZk1AlTOOsmvXLgCHtWFScsZ29uxJndtTrpyfkyO5v+rVq+Pnd4q4OLh40cKFCxASYpu1L1+Go0dT3y9RIvOVMxmxd+9ejh49io+PD61atXJKDK7KTM7s37+f+Ph4fH1903zu/v372b9/P15eXnccbSJpk+nkDEDVqlWpWrXqfY/r0qULXbp0scWWIiIiIiIiIiJyE/Pu8Pbt2+Pp6Wnz9c3kzOHDh7l06ZJDWm1lZ0rOuK9Tp1JbZ9Wqld/Jkdyft7c39epVZuXK40Ax9u2DRo1ss7ZZNVO0qEFQkHPmkpgtzVq0aEFgYKBTYnBVZsvES5cusW/fPqpVq5bmc//8808Amjdv7vLVYa4sU23NRERERERERETENdi7dU/u3LkpUaIEAFu3brXLHnKD2pq5pytXrhATEwxA8+alnRtMGqW2NrP93BkzOVO1qu3bpaWVmZxRS7PbWSyWDLc2M1uaPfTQQzaPKztRckZERERERERExM0dP36cHTt24OHhYdcWM5o74xjR0dFERqbOLalUqZJD9lRyxjbWrl0HFAGgdu0HnBtMGjVs2JAbc2dst+62ban/dVZy5sqVK6xatQqADh06OCUGV5eR5Ex0dLT166rkTObYpK3ZzY4ePcr58+eJjY3FMO79wmvWrJmttxcRERERERERyXbMu8MbNWpEnjx57LZPzZo1mTVrlubO2JnZ0qxYsWLkyJHDIXsWK1YMgMjIyHTPn5AbFi/eDKQOSC9UyLmxpFVqcmYpADt3JgA+NlnXTM5Uq+ac5MySJUtITEykbNmylClTxikxuLqMJGcWLVpEcnIylSpVolSpUvYKLVuwSXJm3759jBo1ij/++IMrV9I23MlisZCUlGSL7UVEREREREREsjWzpZm97w5X5YxjOLqlGUC+fPnw9/cnNjaWkydPUrq0e7TkcjXh4YcAyJnzOr6+AU6OJm3y5ctHwYJXiYyEHTvisUVyJjkZzOv91aoZHDqU6SXTTS3N7i8jyRlz3oyqZjIv023N5syZQ61atZg4cSKXL1/GMIw0v4mIiIiIiIiISOYkJCSwdGnqXe/2vghZs2ZNAPbu3cv169ftuld2ZlbOVK5c2WF7WiwWa/WMWptlTGJiItu3RwNQpIjFydGkT4MGuQE4edKP5OTMr3foEFy/Dv7+4IyiFcMwrMkZtTS7O/N3zJEjR4iJibnv8UlJSSxcuBCATp062TW27CBTyZkTJ07w6KOPEhsbS6FChfj888/59ttvgdRf6EuXLmXGjBn85z//odA/dXxNmjRhyZIlLFu2LPPRi4iIiIiIiIhkc3v27CE2NpZcuXJRtWpVu+5VsGBBChQoQEpKCtvNad9ic85IzoDmztzL7t0QF3fvY7Zs2UJCQj4AypTxc0BUthMaWh6IIznZm+PHM7+e2dKsShXw9Mz8eum1detWIiMjCQgI0GiNe8ibNy/58+cHYPfu3fc9fs2aNURHRxMSEvJPOzzJjEwlZ7744guuX79Ojhw5WL9+PUOGDLnlm9KyZUu6d+/OqFGjOHDgAI888ghr1qzhhx9+oHnz5pkOXkREREREREQkuzOTJNWrV8disf/d+mb1jFqb2Y/ZYkjJGdfw449QuTLUrHmjVded/Pzzz0ARAIoVc6/KmcaNGwAHAdi9O/OlM2butnr1TC+VIWarxzZt2mh+0n2kp7XZvHnzgNRqJE9nZN2ymEwlZ5YsWYLFYmHw4MHWypi78ff3Z+LEidSsWZOpU6cyc+bMzGwtIiIiIiIiIiLAtn9uUa9WrZpD9jPnzmzZssUh+2U3586d49y5c1gsFipWrOjQvZWcuV1iIrz/fur7e/dCvXrwyy+3H3f48GG+++47oCgARYo4LkZbqFy5Ml5ehwFYuTIq0+uZlTPp+bV08uRJTp8+nem9k5OT+fHHHwHo0qVLptfL6tKTnNG8GdvKVHLm6NGjADRq1Mj62M13aCQlJd26mYcHQ4YMwTAM6wtEREREREREREQy7ubKGUdQ5Yx9mS3NSpYsSWBgoEP3VnLmdlOnwrFj8MAD0LYtxMbCgAEwcGDq+6YRI0aQlJREnjyp2Qh3S854enpSpMg1ANati870emZyJq2/lhYuXEjZsmWpXr06ly9fztTes2fP5siRI4SEhPDII49kaq3sIK3JmQMHDrBv3z68vLxo27atI0LL8jKVnLl2LfUFW7RoUetjAQEB1vfv9EIyyzHNuzpERERERERERCTjnFU5s3PnThISEhyyZ3birJZmoOTMv6WkwIcfpr4/bBgsWJBaRWOxwA8/QIMGsH9/6vds4sSJAAQGVgDgpsulbqNatdQ5Ofv3Z64l26VLWOfWpGUM1syZM+nSpQtxcXGcP3/+nwqkjDEMg08//RSAwYMH33KtWu4srckZs6VZ8+bNyZUrl93jyg4ylZwxvwlxN03DCgkJsb5/6NCh2865cuUKAOfPn8/M1iIiIiIiIiJiR4ZhODsESYMzZ85w9uxZPDw8rBfY7K1EiRIEBweTkJCQpgHSkj5m5Yyjvp83M5MzJ06cICUlxeH7u5o//oA9eyBnThg8OHWw/f/9HyxenFpJs3071K4NTz65EMMw6N69B+fOpSY43K1yBqB584IAnD+fO1PrmPNmihWD3PdZ6rfffuPhhx8mMTGR8uXLA/D5559nOPEbERHB+vXr8fX15fnnn8/QGtlNpUqVAIiMjOTixYt3Pc5Mzqilme1kKjljvmAOHz5sfSxHjhzWX+RhYWG3nbNkyRIAgoODM7O1iIiIiIiIiNjJ+fPnKVWqFFWqVGHlypXODkfuwayaKVu2rMPuELdYLNbWZpo7Y3tmcsYZlTOFChXC09OTxMREoqIyP3fEnRnGjaqZ55+HmwsFWreGrVuhWTOIiYGNG4cD4xgy5EPMe9gLF3Z0xJnXtWvqjKOkpEIcOXI2w+uktaXZN998w+OPP05KSgpPPPEEmzdvJn/+/Jw6dYpp06ZlaO8xY8YA8Nhjj5E/f/4MrZHd5MyZ03o93/z982+XLl1i1apVAHTq1MlhsWV1mUrONGzYEIB169bd8ninTp0wDIPRo0ezbNky6+MzZszg888/x2Kx0Lhx48xsLSIiIiIiIiJ2MmPGDI4ePcquXbto3rw5gwYN4tKlS84OS+7A0S3NTJo7Yx+GYTi1rZmXlxeF/8kqZPfWZsuXw4YN4OeX2tLs3woWhKVLoXjxyf888gIDBpQFUqtqfH0dFqrNlCqVC0/PSwDMnXvni/RpYVbO3OvX0pgxY3j22WcxDIMXXniB77//noCAAIYMGQLAp59+mu4KzoMHDzJnzhwAXn755YyEnm3dr7XZokWLSE5OpmLFipQuXdqRoWVpmUrOdOjQAcMwmDVrFsnJydbHhw8fTkBAADExMYSGhpIvXz5y5sxJ7969iY2NxcPDg+HDh2c6eBERERERERGxvZkzZwI3LtZ89913VKxYkenTp6vdmYvZ/s9V0OppnbptI+bcGVXO2FZUVBTR0dF4eHhQoUIFp8SguTOpzKqZp55KTbbcSXj4Uo4d64enZ2eCg5M5ejT1cXdsaWYKCUkdRbF8+ekMr3GvyhnDMHjvvfd49dVXAfjPf/7DF198gYdH6mXqZ599loCAALZt28bSpUvTte/nn3+OYRh06NCBihUrZjj+7Oh+yRm1NLOPTCVnWrRowbvvvssTTzzBqVOnrI8XK1aM6dOnkytXLgzD4MKFC8TExGAYBr6+vnz33Xc0aNAg08GLiIiIiIiIiG1dvHiR5cuXAzBr1izCw8MpX748UVFRPPzww3Tp0oUTJ044OUoxObtyZuvWrbfcsCuZY7YUKlOmDH5+fk6JQckZ2LgRlixJnTHzTw7hNoZh8OabbwIweHAJtm3zpH791OfcOS9QtmxqAn7bttgMnZ+cDOb1/X8nZwzD4LXXXmPEiBEAfPDBB3z44YdYLBbrMXny5OGpp54CUqtn0urChQv8+OOPALzyyisZij07u1dyJikpiYULFwJKztiaV2ZOtlgsvPvuu3d87sEHH+TgwYNMnz6dXbt2kZSURNmyZXn44Yet5ZEiIiIiIiIi4lr++OMPkpOTqVq1KmXLlqVs2bJs27aNUaNG8eGHHzJv3jyWL1/OqFGjGDx4MJ6ens4OOdtKSEhgz549gOMrZ8qXL4+/vz/Xrl3j4MGD1rnEkjnObGlmUnLmRtVMv35QosSdj/njjz/YsGEDAQEBvPXWW+TPDytXwvz50KSJw0K1uXr1crFmDZw4EUBCQgI+Pj7pOv/gQYiNBX9/uLn7VUpKCkOGDOGbb74B4LPPPmPYnfrFAcOGDePLL7/kr7/+Yvv27WlKPk+YMIHY2Fhq1KhBy5Yt0xWz3JqcMQzjloTZmjVriI6OJiQkxDrmRGwjU5Uz95MnTx6eeeYZvvjiC7766iteeuklJWZEREREREREXNisWbMA6NGjh/UxX19f3nvvPbZu3UqjRo2IiYlhyJAhNG7cmB07djgr1Gxvz549JCUlERwcTNGiRR26t6enpzUhpLkztmNWzpgXSp0huyVnZs6caa0WBNizB2bPTn3/9dfvfE5ycjJvv/02kJpIMAfP+/hAt26QL59dQ7arhg3zApCSUjpDbQvNlmZVq6ZWHkFq5cW4ceP45ptvsFgsfPfdd3dNzACUKlXK+m/Q//73v/vuGR8fz/jx44HUqpmbEwuSNhUqVMDDw4OLFy8SFRV1y3N//vknkDriRDdk2Fa6kzNnzpzhtddeo2rVquTMmZPAwEDKli3LoEGDrHdriIiIiIiIiIj7uXr1KmFhYcCtyRlTpUqVWLVqFV999RU5c+Zk/fr11KpVi3Hjxjk6VOHGvJlq1ao55WKk5s7YnipnHOvQoUP07NmTVq1aMWLECFJSUvj449TnunaFSpXufN6UKVPYuXMnwcHB1tkpWUXFiubl4vIsXrwk3ef/e96MYRgMGDCA5cuX4+npycSJExk4cOB91zFbk02ePPmWcRp3MnnyZKKioihcuDC9e/dOd8wCfn5+lC1bFri9tZk5b6ZTp04OjyurS1dyZt26dVSuXJkxY8awe/duYmJiiI2N5fDhw/zwww/UqFGDyZMn2yvWOzL7Et6cbTUMgxEjRlCoUCH8/f1p0aKF9c4DU3x8PC+++CJ58+YlMDCQzp07c/LkSYfGLiIiIiIiIuJK5s+fT3x8PGXLlr3rxWEPDw+ee+45du/eTbdu3UhKSuKVV17h+vXrDo5WzHkzjm5pZjLnzqhyxjYMw2D37t2A6yRnDMNwWhyOsGHDBuv77733Hh07PsekSamf8xtv3PmchIQE65iH119/ndy5c9s9TkcqUwYsFgMIZsGCv9N9/j85Y8xOZFu3bmXatGl4eXkxdepU+vbtm6Z16tevT9OmTUlMTLznDQCGYVira4YOHYq3t3e6Y5ZUd5o7c+DAAfbt24eXlxft2rVzVmhZVpqTM1euXKFnz55cvHgRwzAwDIOQkBBr2Z5hGCQmJvLUU085rIJm48aNfPvtt7f1Hfzkk0/43//+x/jx49m4cSMFChQgNDSUq1evWo8ZNmwYs2fPZurUqaxevZqYmBg6deqkIXYiIiIiIiKSbd3c0ux+lRiFCxdm5syZFClShMTERNauXeuIEOUmZnImLfMY7KFOnToA/P3336SkpDglhqzk5MmTXLlyBS8vL8qVK+e0OEqUKIGvry8xMTHs3bvXaXE4wqZNm4DU15CPjw+LFlUmKclCo0ax1Kt353N+/PFHDh8+TP78+XnxxRcdGK1j+PlB4cJJAGzYkERMTEy6zv935cz8+fOB1Eq7Ll26pGstsyppwoQJt1zXvVlYWBg7d+4kKCiIp59+Ol3ry63ulJwxq2aaN29Orly5nBJXVpbm5MyPP/7I6dOnsVgsdO3alYMHD3Lu3DkiIyOJjIy0/jJKSEhgzJgxdgvYFBMTQ79+/fjuu+9uyVAbhsHnn3/OW2+9Rffu3alSpQq//PIL169ft1b1XL58mR9++IExY8bQpk0batasycSJE9mxYwdLlqS/XE9ERERERETE3cXGxrJgwQLgzi3N7sRisdCsWTMAVq5cabfY5M7MtmbOqpypUqUKAQEBXL58OctfxHcE84JouXLl0j2E3ZZ8fX2tr+u//vrLaXE4gln1NXToUGbNWg2kXtzfubMfq1atuu3469ev8/777wPw9ttvExgY6LBYHaljRy8AkpO7EB4enubzLl6EEydS3zdzxmZypnbt2umOo1OnTpQrV856LfdOPv30UwAGDhxIcHBwuveQG8yKvZuTM+a8mYceesgpMWV1Xmk90PwDrUGDBsycOfOWO2geeOABxo4dS0xMDD/99JP1WHt6/vnn6dixI23atOG///2v9fEjR44QFRVF27ZtrY/5+vrSvHlzIiIieOaZZ9i0aROJiYm3HFOoUCGqVKlCRETEXUu04uPjiY+Pt3585coVABITE0lMTLT1pyjiMObPr36ORVyfXq8i7kWvWRH3oddr6gW0a9euUaxYMapVq5bmr0WTJk2YPHky4eHh2frr52hRUVGcPXsWDw8PypUr57SvfZ06dVi5ciWrV6+2zitwhKz4mjWTbRUrVnT65xUaGsrixYtZuHAhzz//vFNjsRfDMKzJmWrVqjFjRk3Ak4CAnVy5MptWreYxbtw4nnrqKes5X3zxBZGRkZQoUYInnnjC6d8ne+nRw8I333gB3Vmw4P1brqHey5YtFsCL4sUNAgKSOH36HOvXrwdSkzMZ+XoNGzaMwYMH89lnn/HMM8/g5XXjcva2bdtYsmQJHh4eDB48OMt+PxylfPnyAOzatYv4+HiuXLliTVK2a9dOX990SOvXKs3JmZ07d2KxWHj++efvWto8dOhQfvrpJ86cOcOFCxcICQlJ6/LpMnXqVDZv3szGjRtvey4qKgrA2m7NlD9/fusgs6ioKHx8fG7rCZk/f37r+Xfy4Ycf8t577932eFhYGAEBAen+PERczeLFi50dgoikkV6vIu5Fr1kR95GdX69ffvklkFqFsXDhwjSfZ7azWrt2LXPnzlW/fwfZsmULAAULFmTFihVOiyNfvnwAzJgx47ZrMY6QlV6zYWFhAPj4+Djkxud78fPzA2DFihXMnj0bX19fp8ZjD5GRkVy+fBkvLy/27DnFuHHVAU+ee+4y69Y1Zs2aNTz33HPMmzePJ598kvj4eEaNGgVA586ds3T3neRkCAxsxbVreZg27QJt26bt5/HPP0sBVcmfP4oFCzawfPlyDMOgRIkS5M2bN0Ov15CQEHLlysXx48f5v//7P5o2bWp9buzYsQA0bNiQ3bt3W2c2ScYkJSXh5eXFtWvX+OWXX9i/fz9JSUkUKVKEffv2sW/fPmeH6DbSOocvzcmZixcvAlChQoW7HlOxYkXr+9HR0XZJzpw4cYKhQ4cSFhZm/YfiTv6dQDIM4779cu93zBtvvMHLL79s/fjKlSsULVqUtm3bkjNnzjR+BiKuJzExkcWLFxMaGqr/kRJxcXq9irgXvWZF3Ed2f70mJCTw+OOPA/Dyyy/TuHHjNJ9rGAbvv/8+Z8+eJW/evOk6VzLOnPfboEEDOnTo4LQ4kpKSmDlzJqdOnXJoHFnxNTty5EgAunTp4tTvKaS+rj/55BNOnjxJYGBgmisn3MmMGTOA1IT0iROduH7dkwoVDD74oB4WyzI++ugj3n33XRYsWEBsbCyVK1fm6tWrVKhQgY8//hhPT08nfwb29fDDifz0E5w/35Jq1apRpEiR+54zZ07q16R16wfo0KEDkyZNAqBXr14AGX697tq1i/fff59ly5YxatQoLBYLp0+fZvXq1QCMHj3aOgNLMqdixYrs2LGDfPnysXz5cgB69+7t9N9J7sbsuHU/aU7OJCQkYLFY7pkQufnFlZCQkNal02XTpk2cPXv2lj6FycnJrFy5kvHjx1szeFFRURQsWNB6zNmzZ613cBQoUICEhASio6NvqZ45e/YsjRo1uuvevr6+d7xTwNvbO8v8ISDZm36WRdyHXq8i7kWvWRH3kV1fr0uXLuXy5csUKFCAZs2a4eGR5hG1ADRr1owZM2awZs0aWrRoYZ8g5Ra7du0CoGbNmk79mW3SpAmQmiy6fv26wwdGZ5XXbEpKijXhVr16dZf4nNq3b8/333/PkiVL6Nixo7PDsTmzjVyNGg354ovUpMJ//mPB1zf1a//OO+9QvXp1Hn30UZYvX269UP3BBx/c8/poVjFggDc//QTQjaVL5zFwYP/7nmOOKqlVyxOLxbBWynTq1Ino6OgMv15ffPFFPvnkE7Zs2UJERAQtWrRgwoQJJCYm0rRpUxo2bJjuNeXOqlatyo4dO9i5c6d15lTXrl1d4neSO0nr1yt9f225gNatW7Njxw62bt1qfatTpw79+vVj69atlCpVigIFCtxSJpeQkEB4eLg18VK7dm28vb1vOSYyMpKdO3feMzkjIiIiIiIikhXNmjULSL0Ak97EDGAdHr5y5UqbxiV3t23bNiD1Qr4z5c+fn5IlS2IYBhs2bHBqLO7s2LFjXL9+HR8fH8qUKePscACsM5kXLVrk5EjsY9OmTQDExj7MmTNQrBj07XvrMV26dCEiIoKSJUsCqTOWunXr5uhQnaJxYwgKugLkZuLEM/c9PinpRnKmenWIiIjg0qVLhISEUK9evUzFkjdvXp544gkAPv30U2JiYpgwYQIAr7zySqbWlltVqVIFgB9//JHo6Gjy5MlDgwYNnBxV1uV2yZkcOXJQpUqVW94CAwMJCQmhSpUqWCwWhg0bxqhRo5g9ezY7d+5kwIABBAQE0Pef37C5cuXiqaee4pVXXmHp0qVs2bKFRx99lKpVq9KmTRsnf4YiIiIiIiIijpOcnMycOXMA6NGjR4bWaN68OQBr1qwhKSnJVqHJXcTHx1urLKpVq+bkaLDetb5u3TonR+K+dv5zVbtChQq3DDx3pjZt2uDp6cnevXutc5yzCsMw2Lx5M+DJihWpiYPhw+FON7tXrVqVDRs28NlnnzFnzpz7jk3IKjw9oW3b1NZM69YVs84Xu5sDByAuDgICoFQpmD9/PpBagWWLFnAvvfQSFouF+fPnM3z4cC5dukTZsmV56KGHMr223GAmZ44ePQpAhw4dXOZ3UlaU7q/s22+/TXBwcKaPs1gs/PDDD+ndPk1ee+01YmNjGTx4MNHR0dSvX5+wsDBy5MhhPeazzz7Dy8uLhx9+mNjYWFq3bs3PP/+c5ftFioiIiIiIiNxs1apVnDt3jjx58liTLOlVpUoVgoODuXTpEps3b870XdJyb3v37iUpKYng4GCKFi3q7HBo2LAhkydPZu3atc4OxW2ZbeoqV67s5EhuCA4OpkGDBqxZs4a//vqLQYMGOTskmzlx4gQXLlzAw6MVp0/7kicPPPnk3Y/Pmzcvw4YNc1h8ruKFF/IzaxbEx7fn7793UK/e3Sv1/ukSR9WqqYkdMzljq5Z4ZcuWpWvXrsyePdtaNfPSSy9lqNpT7s5MzpiU/LKvdCdn5s6de8/nzezx/Y4DbJacWbFixW0xjBgxghEjRtz1HD8/P8aNG8e4ceNsEoOIiIiIiIiIOzJbmnXu3DnDPeU9PDxo2rQp8+bNY+XKlUrO2JnZ0qxatWoucRe/2fJm3bp1pKSk6GJpBpjJmX9fGHW2du3asWbNGhYtWpSlkjNmS7O8eR/l7Fno0CG14kNu1by5N76+F4iPD+Hrrw/dMznzz68lqldPbdO3a9cuPDw8rO3xbOHVV19l9uzZAISEhPD444/bbG1JVbx4cQIDA7l27RpeXl42/f7J7dL1r6VhGDZ7ExERERERERHnSklJsSZnMtrSzGRW3YSHh2c6Lrk3c5C5s+fNmKpXr46fnx/R0dEcOHDA2eG4JbOtmStVzkBqSyqApUuXkpiY6ORobCe1pRkkJoYCqckZuZ2HB9SvfxyAv/7Kec9jzeRMtWo3qmYaNWpEnjx5bBZPo0aNrG0Un3vuOQKUUbM5Dw8P6++hZs2akStXLidHlLWluXLmyJEj9oxDRERERERERBxsw4YNnDp1ihw5cmR6BmuzZs2A1DZpycnJahtuRzdXzrgCb29v6tSpw+rVq1m7di3ly5d3dkhuJTk5mb179wKul5ypXbs2efPm5fz586xbt46mTZs6OySbSK2cKUJ0dBE8PKBtW2dH5LqeeSY3K1dCZGQ9oqNjyZ3b/47HmW3NqleHDz+0bUuzm02ZMoU5c+bwzDPP2HxtSdW8eXM2bNhgnd8u9pPm5Ezx4sXtGYeIiIiIiIiIOJhZNdOxY0f8/PwytVbNmjUJCgri8uXL7Ny502WqOrIiV6ucgdS5M6tXr2bdunUMGDDA2eG4lcOHDxMXF4e/vz8lS5Z0dji38PDwIDQ0lClTprBo0aIskZwxDOOf5EwXAOrXh5AQ58bkynr3Lk7//qdITi7MF19s5d13a9x2zMWLcPJk6vulS19n2bJlgH2SM8WLF2fo0KE2X1dueO+99+jevTv169d3dihZnpqAioiIiIiIiGRDhmEwc+ZMIPMtzQC8vLxo3LgxoNZm9hQVFcXZs2dvaT3jCsy5M2vXrnVyJO7HbGlWsWJFl6w4M1ub/fXXX06OxDYiIyM5e/YskNrL7MEHnRuPq/P0tFChwg4Afv/9zqMqzJZmJUrA5s3LiYuLo2jRoi43Q0nSxt/fnwYNGrjETLOsTskZERERERERkWxo27ZtHD58GD8/Px600dVJs7XZypUrbbKe3M6smilbtqxLzVswkzM7d+7k6tWrTo7GvezatQtwvZZmprb/9PzatGnTP0kN95ZaNeONh4fmzaRV796pl5D37StHbOztz9/c0sycN9OxY0dd3Be5DyVnRERERERERLIhs6VZ+/btCQwMtMmazZs3B1KTM4Zx5zusJXPMeTOu1NIMoFChQhQrVoyUlBQ2btzo7HDcipmccdUqgwIFClCjRg0AwsLCnBuMDWzevBloQkpKIA88ADVrOjsi1zdoUA3gGCkpgUydeum2583KmWrVjFuSMyJyb0rOiIiIiIiIiGRDtmxpZqpTpw5+fn6cO3fOOuBcbMtMzlSrVs3JkdyuYcOGAKxbt87JkbgXs62Zq1bOQNZqbZaanLnR0sxDV0fvK3/+B8iXbwUA33136bbnzcqZ3LlPcPz4cfz8/GjVqpXjAhRxU/r1IyIiIiIiIpLN7N27l927d+Pt7U2nTp1stq6vr6/1Ar1am9mH2dbM1Spn4EZyRnNn0i4xMZF9+/YB7pOcSUlJcXI0mZPa1iy1laPmzaRd+/ZXANi4sQDXr994PCkJ/skvcvr0QgBatmzpUm0XRVyVkjMiIiIiIiIi2YzZ0qxNmzYEBwfbdG1z7kx4eLhN1xWIj49nz549gGtWzphzZ9atW6e2dml08OBBEhMTCQoKolixYs4O564aNmxIUFAQ586dY8uWLc4OJ8POnDnDqVOeQGU8PAz+GacjafDYYxWBIyQl+bFgwY3X9/79EB8PgYGwbt1kQC3NRNJKyRkRERERERGRbMZsada9e3ebr20mZzR3xvb27t1LUlISwcHBFC1a1Nnh3KZmzZr4+vpy/vx5Dh065Oxw3ILZ0qxSpUp4uHB/LR8fH1q3bg24d2uz1JZmqeUyDRtayJ3bufG4k6ZNm+DpmZrY//77K9bHzZZmFSsmsXbtGkDJGZG0ct3f+iIiIiIiIiJic0ePHmXz5s14eHjQpUsXm6/foEEDvL29OXXqFIcPH7b5+tnZzfNmLBaLk6O5nY+PD7Vq1QLU2iytdu3aBbh2SzOT2dps0aJFTo4k425OznTo4NxY3I2fnx9166b+Tl+2LIBr11If/+fXErlyHSU5OZlKlSpRokQJ5wQp4maUnBERERERERHJRsyWZs2bNydfvnw2Xz8gIIC6desCmjtja648b8Zkzp1Zt26dkyNxD2ZypkqVKk6O5P7atWsHQEREBJcvX3ZyNBmzceN2ILUCSPNm0q9795LAQRITvZk/P/UxMzlz5cpqQFUzIumh5IyIiIiIiIhINmLPlmam5s2bA0rO2JpZOePKyRlz7owqZ9LGbGvmDpUzJUuWpFy5ciQnJ7Ns2TJnh5Mha9d6AUGEhMRTo4azo3E/bduGAtMAmDo1GbjR1mzfvtTHlZwRSbtMJWd0F4SIiIiIiIiI+4iMjCQiIgKAbt262W0fc+5MeHi43fbIbgzDuKWtmasyK2e2b9/ONbPvkdxRfHw8Bw4cANwjOQPu3drswoULnD1bG4D27S24YGdAl1e1alXy5FkKwPz5cOwYnDqV+tyVK6vJlSsXjRo1cmKEIu4lU8mZRo0aUblyZcaMGcPZs2dtFZOIiIiIiIiI2IFZyVKrVi0KFy5st30aNWqEh4cHR44c4cSJE3bbJzs5c+YM586dw8PDw6Uv5BcpUoQiRYqQnJzM33//7exwXNr+/ftJTk4mV65cdn092pLZ2mzRokUYhuHkaNJny5YtmPNmunb1cW4wbsrDw4P27QsC+0lI8OSDD1IfDw6+CFylXbt2eHt7OzNEEbeS6bZme/fu5bXXXqNo0aJ0796defPmkZKSYovYRERERERERMSG1q9fD2D3O5tz5sxpHQyv1ma2YVbNlC1bloCAACdHc29qbZY2N7c0s7hJGUfz5s3x9fXl+PHj7Nu3z9nhpMvixQeBilgsybRp4+xo3NfNrc1+/DH1McPYCqilmUh6ZSo5M3bsWGrUqIFhGCQmJjJ37ly6du1KkSJFeOONN9i/f7+t4hQRERERERGRTDLbk9evX9/ue5mtzZScsY3t/wx2cOV5MyaztZna4d/brl27APdpaQYQGBhofW27W2uzJUtSKzpKlDhFcLBzY3FnoaE3kjPJqWNnuHx5JRaLhQcffNB5gYm4oUwlZ1588UU2bdrE1q1befHFFwkJCcEwDKKiovjkk0+oWLEiTZo04aefflKfUREREREREREnSkhIYPPmzcCNygZ7at68OaDkjK24w7wZ082VM+7W+sqRzORMlSpVnBxJ+tzc2syd7N1bEoBWreKdHIl7K1SoEJUqpQB7b3p0O/Xq1SNfvnzOCkvELWW6rRmk/mEwduxYTp06xYwZM+jYsSMeHh4YhsHatWsZOHAgBQsWZODAgaxZs8YWW4qIiIiIiIhIOmzbto34+HhCQkIoXbq03fdr0qQJkNoO/cyZM3bfL6tzp8qZWrVq4e3tzdmzZzl69Kizw3FZN7c1cyft27cHIDw8nNjYWCdHkzZRUZe4fj01adi/vxIImXVza7NU29TSTCQDbJKcMXl7e1vnzpw4cYIPP/yQ8uXLYxgGMTEx/PTTTzRr1oyKFSsyevRo/XEmIiIiIiIi4iA3tzRzxHyLPHnyULVqVQBWrVpl9/2ysvj4ePbs2QO4R3LGz8+PmjVrApo7czexsbEcOnQIcL/kTKVKlShSpAhxcXFuUxn366/HgAA8PSNp2jTY2eG4vbZt2wJTgRTgHHBEyRmRDLBpcuZmBQoU4PXXX2f37t2sWbOGgQMHEhQUhGEY7Nu3j//85z8ULVqUrl27ul0ZpIiIiIiIiNygtkXuwUzOOKKlmUmtzWxjz549JCUlERwcTJEiRZwdTppo7sy97d27F8MwCAkJIX/+/M4OJ10sFovbtTb7888kAIoW3YkDctNZXrNmzfDxOQSEAm0pWLCANSErImlnt+TMzRISEoiPjyc5Odl6d45hGCQlJTFv3jw6duxIzZo19Q+2iIiIiIiImxk7diz58uUjLCzM2aHIfTgjOWMODg8PD3fYnlnRzS3NHFH1ZAs3z52R293c0sxdvqc3M1ub/fXXX06OJG22bi0EQMOGl50cSdYQGBhIo0aNgGXAVjp06OCWP8cizma35Mzx48cZOXIkpUuXplWrVkycOJHr16/j4eFBp06d+P3333n77bcpUqQIhmGwbds2WrRowfr16+0VkoiIiIiIiNjYhAkTuHDhAv369ePUqVPODkfu4ty5cxw+fBiLxUK9evUctm/Tpk0B2LFjBxcvXnTYvlnNtm3bgNSZv+7CrJzZunWr28wluRfDMJg5cybHjx+3yVp//PEH4H4tzUxt2rTB09OTPXv2cOzYMWeHc08HD8LVqwWBRHr0yOXscLKM1NZmqdTSTCRjbJqciYuLY/LkyYSGhlKqVClGjBjBkSNHMAyDkiVL8t///pfjx4/zxx9/0KtXL95//32OHDnCxIkTyZs3LwkJCbzzzju2DElERERERETsJDIykr179wJw/vx5+vXrR3JyspOjkjsxb4SsUKECuXI57uJkgQIFrLNoV69e7bB9s5qbK2fcRbFixShYsCBJSUls2rTJ2eFk2h9//EHPnj2pX79+phM0H3/8MTNmzMDT05N+/frZKELHCg4Opn79+oDrV8/Mnh33z3uradLEfRKcrs5Mzvj4+NCmTRsnRyPinmySnFm/fj3PPvssBQsW5LHHHmPZsmWkpKTg4+ND7969Wbx4MQcPHuTNN9+kYMGCtwbg4UHfvn353//+B5Al/sEWERERERHJDpYvXw5AyZIlCQoKIjw8nJEjRzo5KrkTZ7Q0M5mtzTR3JmPMbiPgXpUzFoslS7U2mzt3LgBRUVF06NCBS5cuZWid2bNn88YbbwCpbSEbN25sqxAdzlmtzaKjo3nooYf45JNP0nT8rFnXAciZc43bzfdxZbVr1+aLL75gypQp5MiRw9nhiLilTCVnRo8eTaVKlWjUqBHfffcdly9fxjAMKlWqxGeffcapU6eYMmUKrVu3vu9adevWBVJ/wYqIiIiIiIjrW7ZsGQA9evTgm2++AeD999+3Pi6uw5nJmebNmwNKzmTUmTNnOHfuHB4eHlSpUsXZ4aSL2drM3WcMp6SksHDhQgD8/f3ZtWsXPXr0ICEhIV3rbNmyhUcffRSA559/nueff97msTqSmZxZsmQJiYmJDtt35MiR/Pnnn7z++uv3rciLjYVNm3ICUKvWGUeEl628+OKLdO/e3dlhiLitTCVnXn/9dfbt24dhGAQEBPDkk08SERHBjh07GDp0KHny5EnzWl5eXpkJRURERERERBzMTMK0atWKvn378uSTT2IYBv369ePs2bNOjk5MycnJbNiwAcDahsiRzMqZzZs3c/XqVYfv7+7Mqply5crh7+/v5GjS5+bKGcMwnBxNxm3bto2oqCgCAwNZvnw5QUFBLFu2jEGDBqX58zp9+jQPPfQQ169fp23btnz++ef2DdoBateuTe7cubly5QqbN292yJ5Hjhxh/Pjx1o8HDRpEfHz8XY9fsQISE72A4zRvntf+AYqIpEOm25rVqVOHb775hsjISL7//vsM34VTunRpUlJS1J9YRERERETEDRw9epQjR47g5eVFkyZNAPjiiy+oVKkSUVFR9O/fn5SUFCdHKQB79+7l6tWrBAYGOmX4eNGiRSlRogTJyclEREQ4fH9HO3nyJC+++CKrVq2yyXrmvBl3amlmql27Nl5eXkRGRnLixAlnh5NhZtVMq1atqF+/PtOmTcPT05NffvmF999//77nX79+nS5dunDq1CkqVKjA77//niVuUvbw8LAmX8PDwx2y51tvvUViYiJNmjThgQceYM+ePfdsb7ZggfneQurUqe2QGEVE0ipTyZlt27axfv16nn76aYKCgmwVk4iIiIiIiLg4c95MvXr1rL3mAwMDmTZtGv7+/vz111+MHj3amSHKP8yWUnXr1nXaBWGztZmjLuA60+eff8748eNp1qwZL7zwAjExMRle6/z588ybNw+A6tWr2ypEhwkICLDG7c5zZ8zkzIMPPmj971dffQXAiBEj+OWXX+56bkpKCgMGDODvv/8mJCSEP//8k+DgYLvH7CgtWrQAYMWKFXbf6++//2bKlClYLBa++OILxo4dC8B///tf9u3bd9vxhgHz55s3CSygVq1ado9RRCQ9MpWcqVq1qq3iEBERERERETdyc0uzm1WuXJkvvvgCSL3DOTtUSri69evXA86ZN2MykzOOuIDrbDfPwPjyyy+pUqUKS5YsSdcacXFxfPrpp5QpU4ZVq1bh4eFB27ZtbR2qQ7j73Jno6Gjr7zEzOQOp7bRef/11AAYOHMjSpUvveP57773H9OnT8fb2ZtasWZQuXdr+QTuQmZxZtWoVSUlJdtvHMAyGDx8OwKOPPkrNmjXp3bs37du3JyEhgWeeeea2FnMHDsCRIx5AAvny7aRgwYJ2i09EJCMy3dZMREREREREshfDMKzJmZYtW972/FNPPUWfPn1ITk6mT58+XLx40dEhyk3Mi+LOmDdjMn9ONmzYkKXnzsTGxlpnb3z33XeUKFGCY8eOERoaytNPP83ly5fveb5hGEydOpWKFSsyfPhwLl++TI0aNVi8eDF16tRxxKdgc2Zyxl0rZxYvXkxKSgoVK1akRIkStzw3atQoHnnkEZKSkujevTs7d+685fkpU6ZY255988031hZgWUnVqlUJDg4mJiaGLVu22G2fBQsWsGLFCnx9fRk5ciQAFouFr776ioCAAMLDw/npp59uOeefgidgJXXrVsBisdgtPhGRjEhTcub48eN2eRMRERERERH3s3//fk6fPo2vr6/1wuvNLBYLEyZMoEyZMhw/fpwnn3zSrYeBu7OrV69aLxg7MzlTokQJSpYsSXJy8i2VJVnN33//TWJiIgUKFOCpp55ix44dvPDCCwB8//33VK5cmT///POO565evZoGDRrQp08fjh49SuHChfn555/ZtGnTbRVq7sSs2Nq8eTNxcXFOjib9/t3S7GYeHh789NNPNGnShCtXrtChQwdOnz4NpCZFn3jiCQCGDx9ufT+r8fT0tCad7FUZl5SUxGuvvQbAkCFDKF68uPW5kiVLWhNgr776KmfOnLE+d/O8GbU0ExFXlKbkTMmSJW3+VqpUKXt/biIiIiIiImIHZtVMo0aN8Pf3v+MxOXPm5Pfff8fHx4e5c+cybtw4R4Yo/9i4cSOGYVC8eHGnt/QxEwzmz09WtGbNGgAaN26MxWIhKCiIcePGsXLlSsqUKcOpU6d46KGHeOyxx7hw4QIABw4coEePHjRt2pQNGzYQGBjIyJEj2b9/P48//jgeHu7d9KRkyZI88MADJCYm2rWywh5SUlJYtGgRAB06dLjjMX5+fsyZM4dy5cpx4sQJOnXqxO7du+natSvx8fF07tyZDz/80JFhO5y958788ssv7N69m9y5c/PGG2/c9vzQoUOpWbMm0dHRDBv2Ejt2wMcfw40RV5o3IyKuKU3/whuGYZc3ERERERERcT/Lly8Hbp8382+1atXi008/BVLvHN+0aZPdY5NbmfNmnFk1Y8oOyRlzNknjxo1vebxp06Zs27aNV199FQ8PDyZOnEilSpV44oknqFSpErNmzcLDw4NBgwZx8OBB3n77bQICApzxKdicxWKxVs+4W2uzrVu3EhUVRWBgIE2aNLnrcSEhISxcuJB8+fKxZcsWqlevzpkzZ6hWrRqTJk3C09PTgVE7njlTavXq1TafO3Pt2jXeeecdAP7v//6P3Llz33ZMbKwX/fpNA75l6tSPqVYN/vMfiI8H2APspXbt2jaNS0TEFrzSctC/ezaKiIiIiIhI9pSSkpLm5AzACy+8wLJly5gzZw69e/dm8+bN5MyZ095hyj/MeTPmxXFnMufObNmyhYsXL5InTx4nR2RbhmFYkzONGjW67fmAgABGjx5Nr169ePLJJ9m1axc///wzkNoya/To0VSuXNmRITtMw4YN+eOPP6w/j+7CbGnWunVrfH1973lsqVKlmDdvHi1atCAuLo78+fMzb948goKCHBGqU1WvXp1cuXJx+fJltm7datP5SJ9//jmnT5+mRIkSDB48GADDgD17UmfKLFgAq1ZBYmIZoAwAFkssbdt6U63aKUaPbk5ISAhFixa1WUwiIraSpuTM448/bu84RERERERExA3s3LmT8+fPExgYSN26de97vMVi4YcffmDz5s0cOnSI8ePH8+abbzogUjEMw6WSMwULFqRChQrs3buX8PBwunXr5uyQbGr//v1cuHABPz8/atasedfj6tWrx6ZNm/joo49Yu3Ytr7zyCqGhoQ6M1PHM2VSrVq3CMAy3Gcx+r3kzd1K/fn3mzp3LV199xTvvvEOxYsXsGZ7LMOfOzJs3jxUrVtgsOXP27Fk+/vhjAEaNGmVNkE2eDI8+euuxpUtDaGgCM2cO5Ny56VSt+gJlypQFzlGrVqjb/MyJSPbi3o1LRURERERExKHMllRNmzbF29s7TefkyZOHESNGADB58mR7hSb/cvToUc6ePYu3t/c9kwWOZFZbmdVXWYk5b6Zu3br4+Pjc81hfX1/effddFi1alOUTM5CaHAwICCAqKopt27Y5O5w0iY6OtrZhS2tyBqBt27bMmTMn2804MVubhd8Y9JJpI0eO5OrVq9SuXZvevXtbH2/ZEvz8oG1b+Pxz2L8fDh6Er7/24eefHwHi+N///scvv/wCoJZmIuKylJwRERERERGRNDOTM2lpaXazbt264ePjw65du9ixY4c9QpN/MefN1KhRAz8/PydHkyorz50xkzP/njcjqcmoNm3aADB//nwnR5M2YWFhpKSkUKlSJYoXL+7scFxeixYtAFi5ciXJycmZXm///v1MmDABgNGjR+PhceMSZqFCEB0Nf/0FQ4dC2bI3zuvQoQO9e/cmJSXF2mYwuyXKRMR9KDkjIiIiIiIiaZKUlGS9Kzq9yZng4GA6dOgAwJQpU2wem9zOlVqamcwLuLt27eLMmTPODcbGzAvBSs7cWceOHQFYsGCBkyNJm/S2NMvuatSoQc6cObly5Qpbt27N9HpvvvkmSUlJdOjQwTqv6mb3yjd//vnnBAcHWz9W5YyIuKo0zZxJi23btrFq1SoOHz7M1atX75slN/sOi4iIiIiIiHvYsmULV65cITg4mBo1aqT7/D59+jBnzhymTJnCBx98oBkAduaKyZmQkBBq1KjB1q1bWb58OY888oizQ7KJCxcusHfvXuDGfBW5lZnkWLduHRcuXCAkJMTJEd1dSkoKixYtApScSStPT0+aNm3K/PnzCQ8Pz1RCZO3atcycORMPDw/rzJn0KFCgAJ988gmDBg0iJCSEkiVLZjgWERF7ynRyZt++fTz55JPWP/rSwhz+puSMiIiIiIiI+zBbUbVo0QJPT890n9+pUyeCgoI4evQo69at00VsO4qPj2fLli1A6pByV9KyZUu2bt3KsmXLskxyxqyaqVChgksnHZypaNGiVK1alR07dvDXX3/Rt29fu+2VkJDAsmXLmD17NqtXr+bNN9+kX79+aT5/69atnDlzhqCgIJo0aWK3OLOaFi1aMH/+fFasWMHLL7+coTUMw2D48OEAPPHEE1SpUiVD6zz11FMkJydTtmxZ3QggIi4rU8mZU6dO0axZM86fP49hGAAEBQWRO3fuW3pBioiIiIiIiPszkzN3ajGTFgEBAXTt2pWJEycyZcoUJWfsaOvWrSQkJJA3b15KlSrl7HBu0apVKz777DOWL1/u7FBsRi3N0qZjx47s2LGDBQsW2Dw5ExMTw6JFi5g9ezZ//vknV65csT43ZMgQOnXqRK5cudK0ltl6rXXr1vj6+to0zqzMbFu4atUqkpOTM5TEnzt3LmvWrMHf35/33nsvw7F4eHjw7LPPZvh8ERFHyFQG5YMPPuDcuXMADBw4kL1793LlyhWOHTvGkSNH7vsmIiIiIiIi7iEhIYHVq1cD6Z83c7M+ffoAMG3aNJKSkmwSm9zu5pZmrnbXeLNmzfD09OTgwYMcP37c2eHYxJo1awBo1KiRkyNxbebcqUWLFtlkaPyVK1f49ddf6dy5M/ny5aNXr15MnjyZK1euUKBAAZ599lnKli3LxYsX+fzzz9O8rubNZEyNGjXIkSMHly5dYvv27ek+PzExkddffx2Al19+mcKFC9s6RBERl5Kp5MyiRYuwWCz079+fb7/9lnLlytkqLhEREREREXEhGzZs4Pr16+TLl4/KlStneJ3Q0FBCQkI4c+YMK1assF2AcgtXnDdjypkzJ3Xq1AHIEtUzCQkJbNy4EVDlzP00bNiQXLlyceHCBTZs2JDhdaKioujUqRMDBgxg4MCBzJs3j7i4OEqXLs2rr75KREQEp06d4uuvv+aDDz4AYMyYMVy4cOG+a1+8eNH6+lFyJn28vLxo2rQpQIZ+v0+ePJn9+/eTN29eXnvtNRtHJyLiejKVnDl9+jQA/fv3t0kwIiIiIiIi4prMlmatWrXKVCWGt7c3PXv2BFIvxIl9rF+/HnC9eTMms/rK/LlyZ1u2bCEuLo6QkBDdtHofXl5etGvXDrjROiwj3n77bcLCwkhJSaFatWq89957bN++nQMHDjB69GgaNmxobbffo0cPqlevztWrVxk9evR91168eDEpKSlUrlyZYsWKZTjG7MpsbRYeHp6u81JSUvj4448BGD58ODlz5rR1aCIiLidTyZncuXMDEBwcbItYRERERERExEXdnJzJLLO12axZs4iPj8/0enKrM2fOcOTIESwWC3Xr1nV2OHdkzi1atmyZdYatu7q5pZmrtZBzRR07dgQynpy5dOkSU6ZMAeDdd9/l77//5p133qFq1ap3/Pp7eHjw3//+F4AvvviCqKioe65vxqWqmYxp3rw5ACtXriQlJSXN5/3555/s2bOHnDlz8swzz9grPBERl5Kp5IxZhrx//36bBCMiIiIiIiKu5/r166xduxawTXKmadOmFC5cmMuXL1tnO4jtmFUzlSpVSvMAdEdr3Lgx3t7enDx5kkOHDjk7nEyJiIgA1NIsrdq3bw/A5s2biYyMTPf5v/32G9evX6dy5crUqFEjTed07NiR+vXrExsby4cffnjX41JSUli0aBGg5ExG1apVi6CgIKKjo9M8d8YwDD766CMABg8e7LK/t0REbC1TyZkhQ4ZgGAbffvutreIRERERERERFxMREUFCQgJFihShdOnSmV7Pw8ODRx55BMB6B7zYjjkvw1VbmgEEBATQsGFDwL1bmxmGcUvljNzfAw88YK3oSm9y1jAMJkyYAMCgQYPSXKlksVis1TMTJkzgxIkTdzxuy5YtnD17lqCgIJo0aZKu2CTVzXNn0trabPXq1axduxZfX1+GDh1qz/BERFxKppIzoaGhvPbaayxfvpznnnuOxMREW8UlIiIiIiIiLsIc2p7ZeTM3M1ubzZs3j5iYGJusKanMypkGDRo4OZJ7ywpzZ44cOUJUVBTe3t7W7iJyfxltbbZ69Wp2795NQEAAffv2Tde5rVu3pkWLFiQkJDBy5Mg7HmMmi9q0aYOPj0+61pcbzNZmK1asSNPxZtXMgAEDKFCggL3CEhFxOV5pOejXX3+963OVKlWiUaNGfPvtt8ybN4+ePXtSoUIFAgIC7rtu//790x6piIiIiIiIOIUt582YatWqRdmyZTlw4ABz586lX79+Nls7O0tOTmbDhg2AeyRnRowYYZ07447zWsyWZrVr18bf39/J0biPDh06MGLECMLCwkhMTMTb2ztN55lVM3379k136yuLxcLIkSNp2rQpP/74I6+99hplypS55RjNm7GNFi1aADfmznh43P3e8B07drBgwQI8PDx49dVXHRShiIhrSFNyZsCAAWn6IykyMpJx48alaWOLxaLkjIiIiIiIiIu7cuUKGzduBG4McbcFi8VCnz59eP/995k8ebKSMzaye/duYmJiCAoKolKlSs4O557q1auHv78/586dY9euXVSpUsXZIaWbWpplTO3atcmXLx/nzp1j9erVafrdcu7cOWbMmAHAs88+m6F9mzRpQvv27Vm0aBHvvfcev/32m/W5ixcvWqvOlJzJHHPuzMWLF9m5cyfVqlW767GffPIJAD169LgtWSYiktWlua2ZYRg2fxMRERERERHXtmrVKpKTkylTpgzFihWz6dpma7OwsDAuXLhg07WzK/Pict26dfH09HRyNPfm6+trnethts5zN2ZypnHjxk6OxL14eHhYEyBpbW32888/k5CQQJ06dahdu3aG9zZnz0yaNIndu3dbHw8LCyMlJYUqVapQtGjRDK8v4O3tbX1t36u12dGjR61zx15//XVHhCYi4lLSlJw5cuSIzd8OHz5s789NREREREREMslsaWbLqhlThQoVqFGjBklJSdY74iVz1q1bB7h+SzOTO8+duXz5Mjt37gRUOZMR6Zk7k5KSwjfffANkvGrGVLt2bbp164ZhGLz77rvWx815M6qasY20zJ353//+R3JyMm3atMlUwk1ExF2lqa1Z8eLF7R2HiIiIiIiIuCCzosGW82Zu1rdvX7Zu3cqUKVN45pln7LJHduKuyZkVK1aQnJzs8tU+N1u3bh2GYVCqVCkNMc+A0NBQPD092b17N0ePHqVEiRJ3PXbp0qUcOnSInDlz8sgjj2R67/fff585c+YwY8YMtmzZQvXq1ZWcsbH7zZ05d+4c33//PQD/+c9/HB2eiIhLSHNbMxEREREREcleLly4wNatWwH7VM4A9O7dG0i9gHfq1Cm77JFdXLlyxdqmqX79+k6OJm1q1apFzpw5uXTpkvVnzV1EREQAammWUblz57ZWHN2vembChAkA9O/fn8DAwEzvXaVKFWtbxf/7v/9j8+bNnDt3jqCgIH0/baR27doEBgZy4cIFdu3addvz48ePJzY2ltq1a9st+S8i4uoylZxp1aoVrVu35tixY2k+5/Tp09bzRERERERExHWFh4djGAaVK1cmf/78dtmjWLFiNGnSBMMw+P333+2yR3axceNGDMOgRIkSdvt+2ZqXlxfNmjUD3K+1mTlvRi3NMq5Dhw7AvZMzp0+fZu7cuQA2ra5799138fT0ZP78+YwYMQJIrebx8fGx2R7Zmbe3tzXR9e/WZjExMYwbNw5InTVjsVgcHZ6IiEvIVHJmxYoVrFixgmvXrqX5nNjYWOt5IiIiIiIi4rrMi+X2vqvZvIN98uTJdt0nq3O3lmYm8+fLbKHnDpKSkqxfb1VaZJw5d2bZsmXExsbe8ZgffviB5ORkmjRpQpUqVWy2d7ly5Xj88ccBmD9/PqCWZrZmtjYLDw+/5fHvv/+e6OhoypQpQ/fu3Z0QmYiIa1BbMxEREREREbkjMzljr5Zmpl69euHp6cmmTZs4cOCAXffKqgzDsLbZctfkzMqVK0lMTHRyNGmzY8cOrl27Rs6cOalcubKzw3FbVapUoUiRItYbef8tKSmJb7/9FoBnn33W5vu/8847eHt7Wz9Wcsa2bk7OpKSkAJCQkMD//vc/AIYPH+5Wc6ZERGzN4ckZs8rGz8/P0VuLiIiIiIhIGkVFRbFnzx4sFgvNmze361758uWjTZs2AEyZMsWue7mSgwcPMnLkSJYtW0ZSUlKG1rh8+TJff/01tWrVsraGcpd5M6aqVasSEhLCtWvX2Lhxo7PDSROzpVnDhg1vG3QuaWexWO7Z2mzhwoWcPHmSkJAQevToYfP9ixcvzqBBg4AbiSKxnTp16hAQEMD58+et87CmTJnCiRMnKFCgAP3793dyhCIizuXwvyAWLlwIoH/wREREREREXJjZYqpmzZrkyZPH7vv17dsXSL1wZxiG3fdzBc8++yzvvPMOrVu3plChQjzzzDMsXrz4vtUjhmGwdu1annzySQoVKsTgwYPZunUrvr6+DBo0iHr16jnoM7ANDw8Pa3WWu8ydMZMzammWeWZrswULFtz22p8wYQIATzzxhN1u8h05ciTPPvusdQaK2M7Nc2fM6plPPvkEgGHDhunGbRHJ9rzSc/CTTz55x8fffvttgoOD73lufHw8hw4dYuPGjQ6580pEREREREQyzlHzZkxdu3bFz8+PvXv3sm3bNmrUqOGQfZ3lwoUL1jZOuXPn5ty5c3z77bd8++235MmTh65du9KzZ09at25tHVAeHR3NxIkT+fbbb9m5c6d1rUqVKjFo0CAee+wxhyTS7KFly5bMmDGDZcuW8fbbbzt07/j4eN5++22mTZvG2LFj6dq1633PMVvINWrUyM7RZX2tWrXCx8eHw4cPs3//fsqXLw/A0aNHrTf4mtUt9pA7d26+/vpru62f3bVo0YLFixezYsUKihYtyu7du8mZM6dd2tSJiLibdCVnfv75ZywWyy2PGYbB3Llz03S+eQdEnjx5eOONN9KztYiIiIiIiDiIYRgsXrwYcFxyJmfOnHTs2JGZM2cyZcqULJ+c+fPPP0lOTqZatWr8/fffhIeHM2PGDGbNmsW5c+f48ccf+fHHH8mVKxddunTBMAymT59OXFwcAP7+/jz88MMMGjSIhg0b3vb/6u7G/DmLiIggLi7OYXfU79mzh759+7J161YA+vXrR0REBNWrV7/rOSdPnuT48eN4enq6XQs5VxQUFETz5s1ZvHgx8+fPtyZnvvvuOwzDoE2bNpQtW9bJUUpGmTdnr1ixglOnTgHw3HPPkStXLmeGJSLiEtLV1qxYsWK3vEFqf9CCBQve9tzNb8WLF6d8+fK0bNmSt956i+3bt1OyZEm7fEIiIiIiIiKSOQcPHuTYsWP4+PjQrFkzh+3bp08fILW1mTk8OquaM2cOkFox5O3tTZs2bZgwYQKRkZEsX76c559/ngIFCnD58mV+/fVXfvvtN+Li4qhWrRrjx4/n9OnT/PzzzzRq1MjtEzMA5cuXp2DBgsTHx7N27Vq772cYBhMmTKB27dps3bqVvHnzUq9ePa5fv06XLl04f/78Xc81W5pVr16doKAgu8eaHfx77kxCQgI//PADgCos3FzdunXx9/fn/PnzrF27Fh8fH4YOHerssEREXEK6KmeOHj16y8fm0LuwsDAqVapks6BERERERETEecyqmcaNGxMYGOiwfTt06ECOHDk4ceIE69aty7Ito65fv85ff/0FQLdu3W55ztPTkxYtWtCiRQvGjh3L2rVrmTVrFklJSTz66KPUrVs3SyRj/s1isdCqVSsmTZrEsmXLrDNo7OH8+fMMHDjQ2gUkNDSUX375BT8/P+rVq8fBgwfp1asXYWFheHt733a+WprZXseOHXnppZdYuXIlV69eZdGiRZw5c4YCBQrQuXNnZ4cnmeDj40Pjxo1ZsmQJAAMGDKBgwYJOjkpExDWkq3Lm35o1a0azZs0c+se6iIiIiIiI2FdYWBiQetHakfz9/a0XYmfMmOHQvR0pLCyM2NhYihcvfs/2WZ6enjRp0oT//e9/fPHFF9SrVy9LJmZMZmszc96RPSxevJhq1aoxd+5cfHx8GDNmDIsWLaJgwYLkzp2buXPnEhQUxIoVK3j55ZfvuIZZOWMOOpfMK1u2LGXKlCExMZElS5YwYcIEAAYOHHjHBJm4F7O1mcVi4dVXX3VyNCIiriNTyZkVK1awfPlyihcvbqt4RERERERExImSkpJYvnw54PjkDECvXr2A1ORMVm1tNnv2bCC1aiYrJ1vSy6yW2bBhAzExMTZdOz4+nldffZW2bdsSGRlJhQoVWL9+PS+//LK1KwhApUqVmDRpEgDjx4/n+++/v2Wda9euWefTKDljW2Zrs7Fjx7Js2TI8PDx4+umnnRyV2MLDDz9MYGAgzz33nOYHiYjcJFPJGREREREREclaNmzYwJUrVwgJCaFmzZoO379du3YEBQVx4sQJNmzY4PD97S0xMZF58+YBqfNm5IaSJUtSokQJkpKSWL16tc3W3bt3Lw0aNGDMmDFA6gyTTZs2UaNGjTse37lzZ0aOHAnA4MGDrW3MIPX1kZycTJEiRShatKjNYpTU1mYA4eHhQGqyxpx3LO6tXLlyXLlyhfHjxzs7FBERl2Lz5MyVK1c4deoUx48fv++biIiIiIiIuBazpVnr1q3x9PR0+P5+fn489NBDQNZsbbZq1Sqio6PJmzcvTZo0cXY4LsdsbbZ06VKbrPfXX39Rq1Yttm7dSkhICHPmzOHrr78mICDgnue99dZb9OzZk8TERLp3787JkycBtTSzp2bNmt3yfXn22WedGI3YmoeHhyoFRUT+xSbJmcWLF9OtWzfy5s1L7ty5KVasGCVLlrznW6lSpWyxtYiIiIiIiNjQ4sWLAee0NDPd3NrMMAynxWEPZkuzzp07OyX55eratGkDwB9//GGT7/1bb71FbGwsrVu3Zvv27XTp0iVN51ksFn766SeqVavGmTNn6NatG7GxsdYqmkaNGmU6NrmVn58frVu3BqBYsWK0b9/eyRGJiIjYV6aTM0OGDKF9+/b88ccfXLx4EcMw0vyWUV9//TXVqlUjZ86c5MyZk4YNG7Jw4ULr84ZhMGLECAoVKoS/vz8tWrRg165dt6wRHx/Piy++SN68eQkMDKRz587WO2FERERERESyo8uXL7N+/XrAucmZ9u3bExgYyLFjx/j777+dFoetGYbBnDlzALU0u5tOnTrh5+fH/v372bx5c6bW2rNnD5s2bcLLy4spU6ZQqFChdJ0fFBTEnDlzCAkJ4e+//+bpp59m7dq1gCpn7OW5557Dy8uLd999V8lLERHJ8rwyc/LkyZOt/SL9/Pzo2rUrtWvXJk+ePLcM1LO1IkWK8NFHH1GmTBkAfvnlF7p06cKWLVuoXLkyn3zyCf/73//4+eefKVeuHP/9738JDQ1l37595MiRA4Bhw4Yxb948pk6dSkhICK+88gqdOnVi06ZN+gNARERERMQOwsLCWLt2LS+99BI5c+Z0djhyB8uXLyc5OZly5cpRvHhxp8Xh7+9Pp06d+P3335k+fTp169Z1Wiy2tGnTJk6ePElgYKC1QkRulSNHDh566CGmT5/OlClTqF27dobXmjhxIpCa7MuXL1+G1ihZsiTTp08nNDSUSZMmARAQEED16tUzHJfc3YMPPkhCQoLaX4mISLaQqeTMN998A0DRokVZtmwZpUuXtklQ92P2HzZ98MEHfP3116xbt45KlSrx+eef89Zbb9G9e3cgNXmTP39+Jk+ezDPPPMPly5f54Ycf+O2336x/EE+cOJGiRYuyZMkS2rVr55DPQ0REREQku0hMTKRv375cuHCBX3/9lUmTJtGgQQNnhyX/4gotzUw9e/a0Jmc+/vjjLHGx1mxp1r59e/z9/Z0cjevq06cP06dP5/fff+eTTz7J0M2fKSkp1mTKY489lql4WrZsyeeff86LL74IQP369fHyytTlFLmHrPBaFxERSYtM/TWxfft2LBYL7777rsMSM/+WnJzM9OnTuXbtGg0bNuTIkSNERUXRtm1b6zG+vr40b96ciIgInnnmGTZt2kRiYuItxxQqVIgqVaoQERFx1+RMfHw88fHx1o+vXLkCpP6PZmJiop0+QxH7M39+9XMs4vr0ehVxL3rN3rB48WIuXLgAwOHDh2nSpAlvv/02//nPf1S57kLCwsKA1KHszv65DQ0NJSAggKNHj7JhwwZq1apl1/0c8Xo1kzMPPfSQ07++rqxNmzbkzJmTkydPsmLFCpo2bZruNVavXs2xY8fIkSMH7du3z/TXe9CgQWzdupUffviBBx98UN8/F6B/Y0Xch16vkt2k9Wc9U8kZc5OaNWtmZpkM2bFjBw0bNiQuLo6goCBmz55NpUqVrMP58ufPf8vx+fPn59ixYwBERUXh4+ND7ty5bzsmKirqrnt++OGHvPfee7c9HhYWRkBAQGY/JRGnM++UFBHXp9eriHvRaxa+/PJLAJo1a4ZhGKxatYr33nuPadOm8dJLL/HAAw84OUI5c+YMBw8exMPDg/j4eBYsWODskKhRowYRERF88skn9O/f3yF72uv1eurUKfbs2YOnpydeXl4u8fV1ZXXq1GHZsmWMHj2aq1evpvv8r776CoB69eqxfPlym8TUqVMnqlevTuHChfX9cyH6N1bEfej1KtnF9evX03RcppIzJUqUYM+ePcTExGRmmQwpX748W7du5dKlS8ycOZPHH3+c8PBw6/P/LoM1DOO+pbH3O+aNN97g5Zdftn585coVihYtStu2bdUzW9xaYmIiixcvJjQ0FG9vb2eHIyL3oNeriHvRazZVYmIiTz31FABvvvkmLVu2ZPLkyQwZMoQ9e/YwfPhwxo8fT+/evZ0cafb2ww8/ANCgQQN69uzp5GhSXbt2jYiICLZt28aDDz5o13ZH9n69fvrpp0Bqi6yHH37Y5utnNd7e3ixbtoyNGzcyc+bMdH1P4uPjGTBgAACvvfYaLVu2tFOU4kz6N1bEfej1KtmN2XHrfjKVnOnevTsffPABS5cuzVCZcWb4+PhQpkwZIPWOmo0bNzJ27Fhef/11ILU6pmDBgtbjz549a62mKVCgAAkJCURHR99SPXP27FkaNWp01z19fX3x9fW97XFvb2/9YpEsQT/LIu5Dr1cR95LdX7MrVqzgwoUL5M2bl9atW+Pl5cWAAQNo1qwZ/fr1Y926dTz22GMsXryY8ePHkyNHDmeHnC0tW7YMgHbt2rnMz2vnzp3x9/fn0KFD7Nq1yyFdG+z1ev3jjz+A1P+PdpWvrytr27YtDzzwAGfPniU8PJwHH3wwzef++eefXLp0icKFC9O6dWu1Tszisvu/sSLuRK9XyS7S+nOe/ql6N3nllVcoVqwYn3/+OXv37s3MUplmGAbx8fGULFmSAgUK3FIml5CQQHh4uDXxUrt2bby9vW85JjIykp07d94zOSMiIiIiIuk3Y8YMIPWi9M1DtEuVKsWqVat455138PDw4Ndff6VGjRqsW7fOWaFmW8nJySxZsgRInfXiKoKCgqwX5c2fI3cUGRlp/bnu3Lmzk6NxD15eXtYKo8mTJ6fr3N9++w2Avn37KjEjIiIiLitTyZlcuXKxaNEi8ufPT+PGjfnqq6+Ijo62VWx39eabb7Jq1SqOHj3Kjh07eOutt1ixYgX9+vXDYrEwbNgwRo0axezZs9m5cycDBgwgICCAvn37WuN+6qmneOWVV1i6dClbtmzh0UcfpWrVqrRp08bu8YuIiIiIZBdJSUnMmjULgF69et32vJeXF++99x7h4eEUL16cw4cP06RJE0aNGoVhGI4ON9vavHkz0dHR5MqVi7p16zo7nFuYPzfTp09325+JuXPnAlC/fn0KFy7s5GjcR58+fQCYM2dOmnu3X7x4kfnz5wPw6KOP2i02ERERkczKVFuzUqVKAakDbqKjo3nxxRcZMmQIefPmJSAg4J7nWiwWDh06lKF9z5w5w2OPPUZkZCS5cuWiWrVqLFq0yHqH12uvvUZsbCyDBw8mOjqa+vXrExYWdkt7hM8++8x6J05sbCytW7fm559/1l01IiIiIiI2FB4ezvnz58mbNy8tWrS463FNmjRh69atDB48mClTpvDWW29Rs2bNdLUykowzuwq0atXqluomV9CxY0d8fX05cOAA27dvp3r16s4OKd1mz54NQLdu3ZwciXtp2LAhxYsX59ixY8yfP/+OCd5/mzFjBgkJCVSrVo1q1ao5IEoRERGRjMnUX91Hjx695WPDMDAMg7Nnz9733MwMcjQHVd5r7REjRjBixIi7HuPn58e4ceMYN25chuMQEREREZF7mz59OpB6Ufp+F/2Dg4OZNGkSOXLk4Ntvv+XXX39VcsZBwsLCANdqaWbKkSMHDz74IHPmzGHGjBlul5y5dOmSdZ5P165dnRuMm7FYLDzyyCN8/PHHTJkyJU3JmYkTJwKqmhERERHXl6nkzOOPP26rOEREREREJIu5uaVZz54903SOxWLh6aef5ttvv2Xu3LlcvXr1lgp4sb2YmBgiIiIA10zOQGprszlz5jB9+nTef//9TN3s52gLFiwgKSmJihUrUr58eWeH43b69OnDxx9/zIIFC7h8+TK5cuW667FHjx5l1apVWCwWa0s0EREREVeVqeTMTz/9ZKs4REREREQki1m5ciXnzp0jT548tGzZMs3n1a5dm/Lly7Nv3z5mz55N//797RilrFy5ksTEREqWLEnp0qWdHc4dderUCV9fX/bt28euXbuoUqWKs0NKszlz5gCqmsmoatWqUbFiRfbs2cPs2bMZMGDAXY+dPHkyAC1btqRIkSIOilBEREQkYzycHYCIiIiIiGRNN7c08/b2TvN5FouFfv36ATdaFIn93NzSzFUrUnLmzEm7du2AGz9X7iAuLo6FCxcCmjeTURaLhb59+wIwZcqUux5nGAa//fYboJZmIiIi4h6UnBEREREREZtLTk62tjRLy5yIfzOTM0uXLiUyMtKmscmtFi9eDLhuSzOT2RrPnZIzS5YsISYmhsKFC1OnTh1nh+O2HnnkESD198GZM2fueMzmzZvZu3cvfn5+dO/e3ZHhiYiIiGSIzZMzZ86cYenSpUyfPp3p06ff848nERERERHJmlatWsXZs2fJnTs3rVq1Svf5pUqVolGjRqSkpDB16lQ7RCgAp06dYvfu3Xh4eGTo++RInTt3xsfHhz179rB7926nxXHgwAFOnjyZpmNvbmnmqlVJ7qBMmTLUrVuX5OTkuybnzCq7zp0733MujYiIiIirsElyxjAMvvnmG6pWrUqhQoVo27YtjzzyCI888ght27alUKFCVK1alW+//RbDMGyxpYiIiIiIuDDzAmrXrl3T1dLsZmZrIrU2sx+zaqZOnTrkyZPHydHcW65cuWjbti3gnOqZiIgIOnXqRLly5ShdujRvv/02165du+vxycnJ/PHHH4BamtlCnz59gDu3NktKSrI+/thjjzk0LhEREZGMynRyJjo6mqZNmzJ48GB2796NYRh3fNu9ezfPPfcczZo149KlSzYIXUREREREXFFycjIzZ84EMtbSzNSrVy+8vLzYvHmzUyslsjJ3aWlmMlubzZgxwyH7GYZBWFgYLVq0oHHjxsyfPx+AhIQEPvjgAypWrMiMGTPueBNiREQE586dI3fu3DRr1swh8WZlvXv3xmKxEBERwbFjx255zuzYERISYp1NJCIiIuLqMpWcMQyDLl26EBERgWEY5MmTh+eee46ff/6ZRYsWsXDhQn7++WcGDx5MSEgIhmEQERFBly5dbBW/iIiIiIi4mNWrV3PmzBmCg4Np3bp1htfJmzcvDz74IACTJk2yVXjyj5SUFJYsWQJgrUhxdZ07d8bb25udO3eyd+9eu+2TkpLCrFmzqFu3Lu3atSM8PBxvb28GDhzI/v37mT17NsWLF+fEiRP06tWL0NBQ9uzZc8sas2fPBqBTp04Zrh6TGwoVKkTz5s0Bbmt1aFbXPfLII/pai4iIiNvIVHJm8uTJrF69GovFQr9+/Th8+DBffvkl/fv3p23btrRr147+/fszfvx4Dh8+zGOPPYZhGKxevfqOpcgiIiIiIuL+bm5p5uPjk6m1zNZmkyZNIiUlJdOxyQ3bt2/n7NmzBAYG0qBBA2eHkya5c+emTZs2gH1amyUlJfHbb79RpUoVevTowaZNm/D392fYsGEcPnyY7777jrJly9K1a1d2797Nu+++i6+vL0uXLqVatWq8+uqrXLlyBcMwrMkZtTSznTu1NouJiWHWrFnAjd8XIiIiIu4g08kZgObNm/Pbb7+RI0eOux4bFBTEL7/8QvPmzTEMQ32jRURERESyIFu1NDM99NBD5MiRg2PHjhEREZHp9eQGs6VZixYtMp1EcyTz58rWrc2mTJnCc889x1NPPcWePXvIlSsXb7/9NseOHeOzzz6jSJEitxwfEBDAiBEj2L17N507dyYpKYkxY8ZQoUIF3n//fY4ePYqfn5/bVCW5gx49euDt7c22bduslUpz587l+vXrlC5dmvr16zs5QhEREZG0y1RyZvPmzVgsFl544YU0n/Piiy8CsGXLlsxsLSIiIiIiLigiIoKoqChy5cplrXDIDH9/f3r06AGgG7xszEzOuFvyoEuXLnh5ebF9+3b2799vkzV37drFgAEDOHfuHPnz5+ejjz7i+PHjjBw5knz58t3z3FKlSjF37lzmz59PmTJliIyMZMSIEQC0a9eOwMBAm8Qo3DJTxqye+e2334DUqhmLxeK02ERERETSK1PJmYsXLwJQsmTJNJ9jHmueKyIiIiIiWYfZaqpLly42q8YwWxVNmzaN+Ph4m6yZ3cXGxrJy5UoAQkNDnRxN+uTJk8c6y8hW1TNz5szBMAyqVq3K/v37ef3118mZM2e61ujQoQM7d+5k1KhRBAQEADfacIntmF/TyZMnExkZaU0y9uvXz5lhiYiIiKRbppIzuXLlAuD06dNpPsc8Nr1/6IqIiIiIiGtLSUmxaUszU4sWLShUqBDR0dEsXLjQZutmZ6tXryY+Pp7ChQtToUIFZ4eTbubPl63mzsydOxeAZs2a4e/vn+F1fH19eeONNzhw4ADLli2jd+/eNolPbujcuTP+/v4cOnSIV199lZSUFBo0aEDZsmWdHZqIiIhIumQqOVOlShUAfvrppzSf8+OPP95yroiIiIiIZA0RERGcPn2anDlz2rQaw9PTk759+wIwadIkm62bnd3c0swdW0F16dIFT09Ptm7dysGDBzO11unTp9m4cSMWi4W6devaJL5ChQrRsmVLm6wltwoKCqJz587AjTm4ZnWdiIiIiDvJVHKmZ8+eGIbB7NmzGTFiBIZh3PVYwzAYMWIEs2fPxmKx2PROOhERERHJfmJiYnj//fcZPXr0Pf8OFce5uaWZr6+vTdc2L77OmzePS5cu2XTt7CgsLAxwv5Zmprx589KqVSsg863N5s2bB0C9evUIDg7ObGjiADe3i/Py8uLhhx92YjQiIiIiGZOp5MzTTz9NhQoVMAyDkSNHUq1aNcaMGcPq1as5cOAABw8eZPXq1YwZM4bq1aszcuRIACpUqMDTTz9tk09ARERERLKfBQsWULlyZd59911ee+01Nm3a5OyQsr2UlBTrRXJ73IhVrVo1KleuTHx8vLV1mmTMqVOn2LZtG4B1dos76tmzJ5D51mZmS7OHHnoo0zGJY7Rv396aSGvfvj358uVzbkAiIiIiGeCVmZO9vb1ZuHAhrVq14siRI+zevZvXXnvtrscbhkGpUqVYuHAhXl6Z2lpEREREsqEzZ84wdOhQfv/991senzJlCnXq1HFSVAKwdu1aTp8+TY4cOWjbtq3N17dYLDz66KO88cYbTJw4kaeeesrme7izxMREDh48yL59+zh79iznz5/n3LlznD9//rb3r127BkDNmjV54IEHnBx5xnXr1o3nnnuOzZs3c/jwYUqVKpXuNa5evcrSpUuB1OTMkSNHbB2m2IGvry/PPPMMn3zyCS+++KKzwxERERHJkExnSIoXL8727dsZMWIEP/zww11bDAQHBzNw4EDeeecdgoKCMrutiIiIiGQjhmHw448/8uqrr3Lp0iU8PDx4+eWXqVmzJv369eP3339n9OjReHhkqjBcMsGsmuncubPNW5qZ+vbtyxtvvEF4eDgnTpygaNGidtnHlcXHx7N//3527959y9v+/ftJSkpK8zp+fn688MILdozU/vLly0eLFi1YtmwZM2bMuOeNgncTFhZGQkICZcqUoUKFCkrOuJFRo0bx2muvkSdPHmeHIiIiIpIhNilfCQwMZPTo0XzwwQds2rSJnTt3cvHiRQDy5MlDlSpVqF27Nj4+PrbYTkRERESykf379/PMM8+wYsUKIPVu/++//55atWoRHx/P4MGDOXXqFKtWraJ58+bODTabsndLM1OxYsVo3rw54eHhTJkyJUMX491RUlISL7zwAitWrODgwYMkJyff8bjAwEAqVKhA4cKFyZs3r/UtX758t72fM2dOLBaLgz8T2+vVq1emkjNmS7MuXbpkia9HduLh4aHEjIiIiLg1m/YW8/HxoWHDhjRs2NCWy4qIiIhINpSQkMDo0aMZOXIk8fHx+Pv7M3LkSIYOHWptkevr60v37t356aefmDJlipIzTrJ+/XpOnjxJjhw5aNeunV336tevH+Hh4UycODHbJGfmzZvHN998Y/04V65cVKpU6ba3IkWKZLvqsW7duvH888+zceNGjh49SokSJdJ8blJSEvPnzwdSkzMiIiIiIo6Uvf5yFxERERG3sGHDBmrXrs3bb79NfHw8bdu2ZdeuXbzyyiu3zS7s06cPkNpWKzEx0RnhZnvmQPaHHnoIPz8/u+7Vs2dPfHx82LFjB9u3b7frXq7il19+AWDgwIGcOnWK6OhoIiIi+P7773n55Zdp3749xYoVy3aJGYD8+fPTrFkz4EZrvbRas2YNFy9eJCQkRDcYioiIiIjDZb+/3kVERETEpR05coSWLVuyc+dO8ubNy8SJE1m0aBElS5a84/EtW7Ykf/78XLhwgcWLFzs4WklKSmLatGmAfVuamXLnzk2nTp0AmDRpkt33c7Zz585ZqzteeuklChUqpPZb/2L+3KU3OWO2NOvUqdNtSV8REREREXtL81+gK1eutPnm5h1OIiIiIiKmYcOGcf36dRo1asTcuXPJmzfvPY/38vLi4YcfZty4cUyePJkOHTo4KFIBWLhwIadOnSIkJIT27ds7ZM9HH32UWbNmMWnSJD788MMsXTEyZcoUkpKSqFOnDpUqVXJ2OC6pe/fuvPDCC6xfv57jx49TrFix+55jGIY1OdO5c2d7hygiIiIicps0J2datGhh0zu0LBYLSUlJNltPRERERNzf/Pnz+eOPP/Dy8uK77767b2LG1KdPH8aNG8ecOXO4fv06AQEBdo5UTBMmTADgiSeesHtLM1OHDh0IDg7m1KlThIeH07JlS4fs6wxmS7PHH3/cyZG4rgIFCtC0aVNWrlzJzJkzeemll+57zu7duzl8+DC+vr60bdvWAVGKiIiIiNwq3beYGYZhszcREREREVNcXBxDhgwBUqtn0lMl0KBBA0qUKMG1a9f4888/7RWi/MvRo0dZuHAhAIMGDXLYvr6+vtZWVhMnTnTYvo62c+dONm/ejLe3N4888oizw3Fp5s+DOf/ofsyqmTZt2hAUFGS3uERERERE7ibdjXX9/f3p0qULoaGhWbp9gIiIiIg41ujRozl8+DCFChXinXfeSde5FouFRx55hI8++ogpU6bw8MMP2ylKudl3332HYRi0adOGsmXLOnTvRx99lO+++44ZM2YwduzYLHmB/ddffwWgY8eOaa4iy666d+/OkCFDWLt2LSdPnqRIkSL3PP6PP/4A1NJMRERERJwnzcmZHDlycPXqVWJjY/n9999ZsWIFffv25bHHHqN69er2jFFEREREsrgjR44watQoAMaMGUOOHDnSvUafPn346KOPWLBgAZcuXSI4ONjGUcrNEhIS+OGHHwB49tlnHb5/kyZNKFu2LAcOHGDSpEk888wzDo/BnpKSkqxVQWppdn+FChWicePGrF69mpkzZzJ06NC7HhsZGcn69esBeOihhxwVooiIiIjILdJc+nLmzBmmTJlChw4d8PT0JCoqis8++4xatWpRvXp1Pv30U06fPm3PWEVEREQki3rppZeIi4ujZcuW9O7dO0NrVK1alUqVKpGQkMDs2bNtHKH829y5czlz5gwFChRwSvWBh4cHgwcPBuDLL7/Mcm2TlyxZQmRkJCEhIXTo0MHZ4biFnj17AvdvbTZv3jwA6tevT8GCBe0el4iIiIjInaQ5OePn50fv3r35888/OXXqFJ999hk1a9bEMAx27NjB66+/TvHixQkNDeW3337j2rVr9oxbRERERLKIBQsWMHfuXLy8vBg/fjwWiyVD61gsFvr27QvA5MmTbRmi3MGECRMAGDhwIN7e3k6JYcCAAQQEBLBjxw5WrVrllBjs5ZdffgGgb9+++Pj4ODka99CjRw8A1qxZw6lTp+56nFqaiYiIiIgryNDQmHz58jF06FD+/vtvdu3axeuvv06RIkVITk5m6dKlDBgwgPz58/PYY4/x119/Zbm72ERERETENuLi4hgyZAgAw4YNo1KlSplazxyavmzZMqKiojIdn9zZvn37WLZsGR4eHjz99NNOiyM4OJhHH30USK2eySouX77MnDlzALU0S48iRYrQsGFDAGbNmnXHY2JiYliyZAkAXbp0cVhsIiIiIiL/lqHkzM0qVqzIhx9+yLFjx1i2bBkDBgwgR44cXL9+nUmTJtGhQwcKFy7M66+/bot4RURERCQLGT16NIcOHaJQoUK88847mV6vdOnS1KtXj5SUlPu2NpKM+/bbbwHo0KEDxYoVc2oszz//PJB6MT6rtFmeNm0acXFxVKpUiVq1ajk7HLfSq1cvAGbMmHHH58PCwoiPj6dUqVKZTgaLiIiIiGRGppMzN2vRogU//vgjUVFRTJ48mQcffNA6n2bcuHG23EpERERE3NzRo0cZNWoUAGPGjCFHjhw2WbdPnz4ATJkyxSbrya1iY2P5+eefAXj22WedGwxQrVo1mjZtSlJSkjVp5O5+/fVXILVqJqNt/rIrs7XZqlWriIyMvO15s6VZly5d9LUVEREREaeyaXLGZLFY8PDwwGKx6A9eEREREbmjYcOGERcXR8uWLendu7fN1n344YexWCysXbuWo0eP2mxdSTVjxgwuXrxIsWLFaN++vbPDAW5Uz3zzzTckJCQ4OZrMOXToEKtXr8bDw8Pask3SrlixYtSvXx/DMG5rbZaUlMSff/4JqKWZiIiIiDifTZMz4eHhDBw4kPz589OnTx8WLlxIYmIiBQsWtPYSFxERERFZsGABc+fOxcvLi3Hjxtn0hp5ChQrRokULAKZOnWqzdSXVhAkTABg0aBCenp5OjiZVt27dKFiwIFFRUcyePdvZ4WSKWTUTGhpKoUKFnByNe7pba7OIiAguXLhAnjx5aNy4sTNCExERERGxynRyZs+ePbz55psUL16cVq1a8dNPP3HlyhX8/f3p27cvf/31FydOnOCjjz6yRbwiIiIi4ubi4uKsN+4MHTqUypUr23wPtTazj+3btxMREYGXlxdPPvmks8Ox8vHxYdCgQQCMHz/eydFkXEpKyi0tzSRjzNZmK1eu5MyZM9bHzZZmHTt2xMvLyymxiYiIiIiYMpScOXv2LGPHjqVOnTpUqVKFjz/+mBMnTmCxWGjVqhW//PILZ86c4bfffiM0NBQPD7t0TxMRERERN/Tpp59y6NAhChUqxLvvvmuXPXr06IG3tzfbt29n165ddtkjO/rmm28A6Nq1KwULFnRyNLcaNGgQXl5erF69mm3btjk7nAxZtWoVR48eJWfOnHTt2tXZ4bitEiVKULduXVJSUqyVVIZhMHfuXEAtzURERETENaQ5axIXF8fUqVPp2LEjRYoU4eWXX2bz5s0YhkHlypX5+OOPOX78OIsXL+axxx4jMDDQnnGLiIiIiBs6evQoH3zwAZCapMmRI4dd9smTJ491HoqqZ2wjJiaG3377DYBnn33WydHcrlChQnTv3h2AL7/80snRZMwvv/wCpLbl8vf3d3I07s1sbTZ9+nQgtePDwYMH8fHxoW3bts4MTUREREQESEdy5oEHHqBfv34sWrSIpKQk8ufPz0svvcTmzZvZvn07w4cPV09kEREREbkrwzAYNmwYcXFxtGjRgkceecSu+93c2swwDLvulR1MmTKFq1evUrZsWVq2bOnscO7o+eefB2DSpElER0c7OZr0uX79ujWRoJZmmdezZ08AVqxYwdmzZ60tzVq3bm23pLCIiIiISHqkudFuTEwMFosFPz8/OnfuTNu2bfH09GT79u1s3749Q5v3798/Q+eJiIiIpMeFCxd44YUXqF27Nq+++qqzw8m2Pv74Y+bOnYuXlxfjx4/HYrHYdb/OnTsTEBDA4cOH2bhxI/Xq1bPrflmZYRh8/fXXQGrVjKu2LW7atClVq1Zlx44d/Pzzz7z00ktOi+XkyZMMHTqUevXqMXz48Pt+zWbPnk1MTAylSpWiSZMmDooy6ypZsiS1a9dm06ZNzJkzRy3NRERERMTlpHsKYlxcHNOmTWPatGmZ2thisSg5IyIiInYXGRlJaGgou3btYvr06fTv358HHnjA2WFlO1OnTuWNN94AYMyYMVSuXNnuewYGBtK5c2emTp3KlClTlJzJhL///pstW7bg6+vr0lUdFouF559/nmeffZavvvqKoUOHOiWRFBkZSatWrThw4ACzZs1i1apVTJw4keDg4LueY7Y069+/v90Tl9lFz5492bRpE19//bV1DtFDDz3k5KhERERERFKl6/9UDMOw6ZuIiIiIPR0/fpxmzZpZB8InJyczefJkJ0eV/axatcp6QX/YsGEMGTLEYXubrc1+//13kpOTHbZvVjNhwgQAHn74YUJCQpwczb3169ePXLlycfDgQcLCwhy+/9mzZ2ndujUHDhygUKFC+Pn5MX/+fOrUqcOOHTvueM7JkydZsmQJoO4CtmS2Ntu6dSuGYVC3bl214hYRERERl5Hmypnly5fbMw4RERERmzpw4ABt2rTh+PHjlChRgp49e/Lpp5/y66+/MmzYMGeHl23s27ePLl26kJCQQLdu3fj0008dun/79u3JnTs3kZGRhIeH06pVK4funxVcunSJKVOmAKktzVxdUFAQAwYMYOzYsXz55Ze0b9/eYXtfvHiR0NBQ9uzZQ+HChVm5ciWXLl2ie/fuHDp0iAYNGvDjjz/Su3fvW86bOHEihmHQrFkzSpYs6bB4s7oyZcpQo0YNtm7dCqS2OhQRERERcRVpTs40b97cnnGIiIiI2MzOnTsJDQ0lKiqK8uXLs2TJEvz9/Rk7dixbtmxhx44dVK1a1dlhOp1hGHZtn3T27FkefPBBoqOjqV+/PhMnTsTT09Nu+92Jj48PPXr04Pvvv2fy5MlKzmTAb7/9RmxsLFWrVqVhw4bODidNBg8ezNixY5k/fz5HjhxxSMLj8uXLtG3blu3bt5M/f36WLVtGqVKlgNS2cH369GHJkiU88sgjbNy4kY8++ggvLy8Mw7ilpZnYVq9evazJGc2bERERERFX4pqTPEVEREQyaNOmTTRv3pyoqCiqVatGeHg4RYoUISQkhE6dOgE3ZjtkZ7NnzyYgIICcOXNSunRpGjRowEMPPcSTTz7J66+/zqeffsovv/zCggUL2L9/f7rXv379Og899BBHjhyhVKlS/PHHHwQEBNjhM7m/Rx99FIDJkydz9uxZp8TgSEeOHCE+Pt4maxmGYW1p9uyzz7rNLJRy5crRtm1bDMPg66+/tvt+V69e5cEHH2TTpk3kzZuXpUuXUq5cOevzefPmZdGiRbz++utA6tyltm3bcu7cOf7++2/27t2Lv78/vXr1snus2U2fPn0ICAigRo0aVKlSxdnhiIiIiIhYKTkjIiIiWcaaNWto1aoVFy9epF69eixfvpz8+fNbnzfnnkyaNImkpCRnhekSxo0bR1xcHFevXuXw4cOsX7+eP//8k59++olPPvmE4cOHM2DAADp27Ej58uVp164d4eHhaZobmJycTL9+/diwYQN58uRhwYIFPPDAAw74rO6sWbNm1K1bl9jYWD777DOnxeEIZrVGlSpVWLlyZabXCw8PZ/fu3QQGBlqTXO7ihRdeAOCHH34gNjbWbvtcv36dTp06sXbtWnLnzs2SJUuoXLnybcd5enry0UcfMWPGDAIDA1m+fDm1a9fm3XffBaBbt27kzJnTbnFmVyVLlmTv3r0sW7bMbZKLIiIiIpI9KDkjIiIiWcKSJUto27YtV65coVmzZixZsoQ8efLccsyDDz5ISEgIUVFRLF682EmROt+FCxesF+5XrFjB6tWrmT17Nt9++y3//e9/GTp0KH379iU0NJQaNWrg6elJWFgYLVq0oEmTJsyfP/+eSZpXX32VOXPm4OPjw5w5cyhfvryjPrU7slgsvP322wCMHz+eixcvOjUee5o5cyYABw8epHnz5rzwwgvExMSke52YmBjeffddOnbsCEDfvn3dLnHQoUMHihcvzsWLF5k6dapd9oiLi6NLly6sXLmSnDlz8tdff1G9evV7ntOjRw82bNhAuXLlOHHiBAsXLgRuJI/F9ooWLUru3LmdHYaIiIiIyC2UnBERERG3N2/ePDp27Mj169dp3749CxcuJEeOHLcd5+PjQ9++fQH49ddfHR2my5g3bx7JyclUr16d5s2b07hxY7p27crTTz/NW2+9xeeff86kSZMICwtjy5YtHDhwgOeeew5fX18iIiLo1KkTNWrUYOrUqSQnJ9+y9hdffMHnn38OpH6NmzZt6oTP8HadOnWiWrVqxMTEMG7cOGeHYzdm0rFx48YAfPnll1SpUoUlS5ak6fzk5GS+//57ypYty/vvv8/169dp1KgR77//vt1ithdPT08GDx4MpCbl0lL1lR4JCQn06NGDJUuWEBgYyMKFC6lbt26azq1UqRIbNmywDqgvWrQorVu3tml8IiIiIiLi2pScEREREbf2+++/0717dxISEujWrRtz5sy552wTc+D2nDlzuHz5sqPCdClz5swBoGvXrmk6vmTJknz11VccOXKE4cOHExQUxPbt2+nTpw8VKlTg+++/Jz4+njlz5jBs2DAAPvroI3r37m2fTyADPDw8eOuttwAYO3YsV65ccXJEtnfs2DEOHDiAp6cn8+fPZ/HixZQoUYJjx44RGhrK008/fc+f+b/++osaNWrw9NNPExUVRenSpZkxYwarV6+mQIECDvxMbOfJJ5/E19eXzZs3s379eputm5iYyCOPPMKCBQvw9/dn/vz5NGrUKF1r5MqVi9mzZzN9+nQWLlyIp6enzeITERERERHXp+SMiIiIuK2ffvqJvn37kpSURL9+/Zg2bRq+vr73PKd27dpUqlSJuLg4pk+f7qBIXce1a9f466+/gNQZF+lRsGBBPvnkE44dO8Z7771Hnjx5OHjwIE8//TSlS5emb9++GIbBM888w2uvvWaP8DOlR48elC9fnujoaIcMiXc0szqmXr165MqVizZt2rBjxw5efPFFAL7//nsqV67Mn3/+ect527dvp127drRv356dO3eSO3duPvvsM3bv3k2PHj3cek5H3rx56dOnD5BaPWMLycnJ9O/fn9mzZ+Pr68vcuXNp3rx5htby8PCgZ8+ed5xRIyIiIiIiWZuSMyIiIuKWxo0bx5NPPklKSgqDBg3i119/yyTQfgAAVaBJREFUxcvL677nWSwWa/XML7/8Yu8wXU5YWBhxcXGUKFGCatWqZWiNPHny8M4773Ds2DHGjBlDwYIFOXXqFLGxsXTo0IHx48e75AV9T09P3nzzTQDGjBnD9evXnRyRbZnJmTZt2lgfCwoK4osvvmDlypWULVuWU6dO8dBDD/Hoo4+yc+dOnnrqKWrUqEFYWBg+Pj688sorHDp0iGHDhuHj4+OsT8Wmnn/+eQCmTZvGqVOnMr3ezz//zNSpU/H29mbGjBmEhoZmek0REREREcl+lJwRERERt/PRRx8xZMgQAF566SUmTJiAh0fa/6x59NFHsVgsrF69mkOHDtkrTJc0e/ZsILVqJrMJlKCgIF5++WWOHDnCd999xxtvvMHvv/+epiSZs/Tp04eSJUty7tw5vvvuO2eHYzMpKSnW5MydkgVNmzZl27ZtDB8+HA8PDyZNmkTVqlX58ccfMQyDhx9+mD179vDpp59mucHpderUoWnTpiQmJlrnIWVUUlISH374IQAffPABnTp1skGEIiIiIiKSHSk5IyIiIm7DMAzefvtt3njjDQDeeecdxowZk+4kQ+HCha3VBb/99pvN43RViYmJ1pZW6W1pdi++vr4MHDiQUaNGERQUZLN17cHb25v//Oc/AHzyySfEx8c7OSLb2LZtG+fPnycoKIgGDRrc8Rh/f38++eQT1q5da22j1ahRIyIiIvj9998pVaqUI0N2KPN7PmHCBKKjozO8zu+//86hQ4fImzcvgwcPtlV4IiIiIiKSDSk5IyIiIm7BMAxeeuklPvjgAyD1wvp7772X4eqPxx9/HIBff/0VwzBsFqcrW7lyJdHR0eTLly/dw8uzkscff5zChQtz+vRpfv75Z2eHYxNm1Uzz5s3x9va+57H16tVj8+bN7Ny5k9WrV9OwYUNHhOhUDz74IFWrViUmJoavvvoqQ2ukpKRYf/+8/PLLBAYG2jJEERERERHJZpScEREREZeXnJzM008/zdixYwH48ssvGT58eKbW7NatG0FBQRw5coTVq1fbIkyXZ7Y069y5M56enk6Oxnl8fX157bXXgNQWeYmJiU6OKPMWL14M3Lml2Z34+PhQuXJll5wNZA8Wi8VaPTN27NgMzRuaPXs2e/bsITg42DrHRkREREREJKOUnBERERGXlpiYyGOPPcYPP/yAh4cHP//8s03aCQUEBNCrVy8gtXomqzMMgzlz5gDQtWtXp8biCgYOHMgDDzzA0aNHmTx5srPDyZS4uDhWrVoFYG3XJ7d7+OGHKVGiBOfOneOnn35K17mGYfDf//4XgCFDhpAzZ057hCgiIiIiItmIkjMiIiLisuLi4ujVqxdTpkzBy8uLqVOnWtuR2YK51rRp04iNjbXZuq7o77//5tSpUwQFBekCPqnJuVdeeQWAUaNGkZyc7OSIMm7NmjXExcVRsGBBKlWq5OxwXJaXl5e14m706NHpqphasGABW7duJSgoiCFDhtgrRBERERERyUaUnBERERGXdO3aNTp37szcuXPx9fVlzpw51koXW2natCnFixfnypUrzJ0716ZruxqzaubBBx/Ez8/PucG4iOeee47cuXOzf/9+ZsyY4exwMsxsadamTZts06Yso5544gny5cvHsWPHmDZtWprOMQyDkSNHAjB48GBCQkLsGaKIiIiIiGQTSs6IiIiIy4mPj+fBBx9k8eLFBAYGsmDBAjp27GjzfTw8POjfvz8Av/zyi83XdyXmvBm1NLshR44cDBs2DID//ve/pKSkODegDFqyZAmQ9nkz2Zm/v7/1e/7RRx9hGMZ9z1m2bBnr16/Hz8+Pl19+2c4RioiIiIhIdqHkjIiIiLicadOmsWrVKnLlysXixYtp1aqV3fZ67LHHAAgLCyMyMtJu+zjTvn372LNnD97e3nZJcrmzF198kRw5crBz507mzZvn7HDS7cKFC2zevBnQvJm0Gjx4sPV7vmDBgvseb86aGTRoEPnz57d3eCIiIiIikk0oOSMiIiIuZ8qUKQC89NJLNGzY0K57lS1blkaNGpGSksKkSZPsupezmC3NWrZsSa5cuZwbjIvJnTs3L7zwApB6ET4tlRSuZNmyZRiGQeXKlSlYsKCzw3ELwcHBPPvss0Bq9cy9rF69mhUrVuDt7W2dVyMiIiIiImILSs6IiIiISzl//rx1hkafPn0csufNrc3c7eJ8Wpgtzbp16+bkSFzTSy+9hL+/P3///TdhYWHODiddzNeKWpqlz7Bhw/Dx8WH16tWsWbPmrsd98MEHQOqsmiJFijgqPBERERERyQaUnBERERGXMmPGDJKSkqhVqxblypVzyJ69e/fG19eXnTt3snXrVofs6SinT59m/fr1AHTu3NnJ0bimfPnyWSspRo4c6TYJOsMwrMkZtTRLn0KFCvH4448D8PHHH9/xmL///ptFixbh6enJ66+/7sjwREREREQkG1ByRkRERFzK5MmTAejbt6/D9gwODqZLly4A/Prrrw7b1xHmzp0LQIMGDShUqJCTo3Fdr776Kj4+PqxZs4aVK1c6O5w0OXz4MEePHsXb25vmzZs7Oxy3M3z4cCwWC/PmzWPnzp23PW9WzfTr149SpUo5OjwREREREcnilJwRERERl3HixAlWrVqFxWKhd+/eDt3bbG02adIkEhMTHbq3PZnzZtTS7N4KFSrEU089BcCoUaOcHE3amFUzDRs2JCgoyMnRuJ+yZcvSs2dPAD755JNbntu+fTtz5szBYrHwxhtvOCM8ERERERHJ4pScEREREZfx+++/A9C0aVOHz3do164dDzzwAOfOneOvv/5y6N72cunSJZYtWwZA165dnRuMGzArKcLCwjh06JCzw7mvJUuWAGpplhlmu7LJkydz7Ngx6+Nmgq5Xr15UqFDBKbGJiIiIiEjWpuSMiIiIuIwpU6YA0KdPH4fv7eXlRb9+/QAYMWIECQkJDo/B1ubPn09SUhKVKlVy2Pwed1ayZElCQ0MB+PHHH50czb0lJydbE29mzJJ+tWvXJjQ0lOTkZMaMGQPAvn37mDZtGgBvvfWWM8MTEREREZEsTMkZERERcQn79+9n8+bNeHl5WVsNOdqrr75Knjx52LRpE++//75TYrAls6WZqmbS7umnnwbgp59+IikpycnR3N2mTZuIjo4mV65c1KlTx9nhuLX//Oc/AHz//fecO3eODz/8EMMw6Ny5M9WqVXNydCIiIiIiklUpOSMiIiIuwayaCQ0NJW/evE6JoVChQnzzzTcAfPjhh0RERDglDluIjY1l4cKFgObNpEfnzp3Jly8fkZGRzJ8/39nh3JXZ0qxly5Z4eXk5ORr31rJlS+rWrUtsbCyvvPIKEydOBFQ1IyIiIiIi9qXkjIiIiDidYRhObWl2s549e9K/f39SUlJ47LHHuHr1qlPjyailS5dy7dr/t3fX8VlX///Hn9eChYwxYoyRoxQkZKA4iwGjJEUQRLo7hkpKCiiNdHcqKQyku2OUMpGUFtgYMZbv3x98uX7ykeaKxeN+u3GTXe/zPud18Hpxjfdr55x7ypo1q4oVK2bvcJKMVKlSqWHDhpIerqSwtoiICK1evVpDhgzRxYsXX/i+9evXS2JLM0swmUzm1TNz5sxRfHy8ypUrp/fee8/OkQEAAABIzpJkcWbw4MF699135eHhIW9vb1WvXl1hYWGPtTEMQ3379pWvr6/c3NwUGBioEydOPNYmOjpa7du3V4YMGfTGG2+oatWqL/WPYgAAYBmHDx9WWFiYXF1dE8UWXD/99JNy5MihM2fOqFOnTvYO55UsW7ZM0sMtzUwmk52jSVqaNWsmSQoJCbH494aXL1/WokWL1K5dOxUpUkTp0qVT5cqV1bVrV1WqVEnR0dHP7ePevXvmVV1BQUEWjS+lql69ut58803z17169bJjNAAAAABSgiRZnNm6davatm2rPXv2aP369YqLi1O5cuV07949c5shQ4ZoxIgRGjt2rPbv3y8fHx+VLVv2sZ9+7dSpk5YtW6aFCxdqx44dunv3ripXrqz4+Hh7TAsAgBTr0aqZKlWqyMPDw87RSJ6enpozZ45MJpOmT59uLnQkFXFxcVq5cqUktjR7FW+++aY+/vhjJSQkaMaMGa/V1+nTp7V+/Xo1bdpUuXPnVpYsWVSnTh2NGzdOR48elWEYypMnj9KmTaujR4+qR48ez+1z+/btiomJUfbs2ZU3b97Xig8POTg4mP/sS5UqpY8//tjOEQEAAABI7pJkcWbt2rVq1KiR3n77bRUpUkQzZszQhQsXdPDgQUkPV82MGjVKPXv2VI0aNVSwYEHNmjVL9+/f1/z58yVJt2/f1rRp0zR8+HAFBQWpaNGimjt3ro4dO2bewxsAAFhfQkKCFi5cKMn+W5r928cff6yuXbtKenhI/JUrV+wc0YvbtWuXbty4IS8vLx4yv6LmzZtLkqZNm6aEhIRX6mPGjBkqUKCAxo0bpzlz5ujMmTNycHBQ0aJF1aFDBy1evFhXrlzRqVOnNHv2bEnSiBEjzFuWPc2j60FBQayKsqD69etr8+bNWrJkib1DAQAAAJACJIvTQ2/fvi1JSpcunSTp7Nmzunr1qsqVK2du4+LiopIlS2rXrl1q2bKlDh48qNjY2Mfa+Pr6qmDBgtq1a5fKly//n3Gio6Mf22oiMjJSkhQbG6vY2FirzA2whUfvX97HSM5+//13LViw4IVWR/r4+Khp06Z64403bBDZy0mO+bpjxw5dvHhRadKkUVBQUKKaW69evbR27VqFhoaqSZMmWrFiRZJ4GP7o4XKlSpUkJa/3i61Uq1ZNnp6eOn/+vNauXfvSZ7tcu3ZNnTt3lmEYypcvn6pVq6ZPPvlE77//vjw9PR9rGxsbqwoVKqhly5aaNGmSGjZsqIMHDypDhgxP7PtRcaZUqVL8v7WwDz/8UBI5k1Ilx89YIDkjZ4Gkg3xFSvOi7/UkX5wxDEPBwcH66KOPVLBgQUnS1atXJUmZMmV6rG2mTJl0/vx5c5tUqVLJy8vrP20e3f+/Bg8erH79+v3n9XXr1snd3f215wLY2/N+UhdIqmJiYtS+fXtdu3bthe9ZvHixunXrJgeHxLnINDnl68SJEyVJxYsX16ZNm+wczX81bdpUXbp00dq1a9W+fXt9+umn9g7pmQzDMK9Eypo1q0JCQuwcUdL14YcfKiQkRAMHDnzpf0iOHj1at2/fVq5cuTR48GA5OjoqPj5eO3fufOo9pUuX1urVq3Xx4kXVqFFDXbt2/U8xMCIiQseOHZP0cNUZ/38By0tOn7FASkDOAkkH+YqU4v79+y/ULskXZ9q1a6ejR49qx44d/7n2v/+YNQzjuT/t+qw23bt3V3BwsPnryMhIZcuWTeXKlVOaNGleIXogcYiNjdX69etVtmxZOTs72zscwOK+//57Xbt2TT4+PqpTp84z28bHx2vy5Mnat2+fDh48qD59+tgoyheT3PI1NjbWfPh6ly5dXnp1gq3ExsYqODhYc+bMUfv27R87ONyWoqOjdenSpWdus3X69Gldv35dbm5u6tatGz9A8hqyZMmikJAQ7d+/X8WLF5e3t/cL3bdr1y5t3rxZkjR9+nRFRES8cM7mzJlTH330kfbs2aNr166pSZMmj11/dD5TkSJFEtU2gEBykNw+Y4HkjpwFkg7yFSnNox23nidJF2fat2+vlStXatu2bcqaNav5dR8fH0kPV8dkzpzZ/Pr169fNq2l8fHwUExOj8PDwx1bPXL9+XR988METx3NxcZGLi8t/Xnd2duYvFiQLvJeRHJ09e1ZDhgyRJI0aNUq1a9d+7j3FixdXw4YNNXDgQPn7+6tGjRrWDvOlJZd83bhxo27cuCFvb2+VK1dOTk6J81uTjh07as2aNVq/fr0aN26sXbt2WfXP//bt2/rjjz/Mv06ePKk//vhDZ86ceeHzT8qXL/+f7bPwcooXL653331X+/fv14IFC/T1118/9564uDh17NhRktSsWTN98MEHCgkJeeGcfe+99zRo0CB98803Cg4OVqlSpZQvXz7z9UdFn3LlyiWLvwOAxCi5fMYCKQU5CyQd5CtSihd9nyfOvVqewzAMtWvXTkuXLtWmTZvk5+f32HU/Pz/5+Pg8tlQuJiZGW7duNRdeihUrJmdn58faXLlyRcePH39qcQYAkPR06tRJDx48UOnSpfXFF1+80D0NGjRQ586dzb9/tIUQLG/+/PmSpFq1aiXawowkOTg4aMaMGfLy8tKBAwfUv39/i/Z/4cIFdejQQaVLl1bmzJmVNm1aBQQEqEmTJho6dKh+/fVX/fXXX0pISJCrq6s8PDye+Stz5szq0KGDRWNMqR6t7Jo6daoMw3hu+wkTJujIkSPy8vLS4MGDX2nM4OBglS5dWvfv31fdunUVExMj6eH3wI++dw0KCnqlvgEAAAAAiUOSLM60bdtWc+fO1fz58+Xh4aGrV6/q6tWrioqKkvRwO7NOnTpp0KBBWrZsmY4fP65GjRrJ3d1ddevWlSR5enqa95DfuHGjDh8+rHr16qlQoUL8YxcAkonVq1dr5cqVcnJy0tixY1/qIPchQ4YoKChI9+7dU7Vq1XTz5k0rRpq4LVu2TPXr19fZs2ct2m9UVJSWLVsmSUlie6YsWbJo0qRJkqRBgwZp165dFuk3Li5OFStW1JgxY7R582bz2Xe+vr4qU6aM2rVrp7Fjx2rjxo26fPmy7t+/r8jIyGf+unz5skqVKmWR+FK6L7/8Um+88YbCwsKeuI3uv127dk3fffedpIfvkQwZMrzSmA4ODpo9e7a8vLx08OBB9e3bV5IUFhamS5cuycXFRR9//PEr9Q0AAAAASBwS74+oPsOECRMkSYGBgY+9PmPGDDVq1EiS9O233yoqKkpt2rRReHi4SpQooXXr1snDw8PcfuTIkXJyctIXX3yhqKgolSlTRjNnzpSjo6OtpgIAsJIHDx6YVw507txZ+fPnf6n7nZyctGjRIr377rs6c+aMvvjiC/3222+JenWHNSxYsED16tVTQkKCtm7dqs2bNyt37twW6Xv16tW6e/eucuTIoYCAAIv0aW21atVS/fr1NWfOHNWvX1+hoaGPfW/xKiZNmqTff/9d6dOn1/Dhw5U/f3699dZbnGeXSHh4eKhOnTqaNm2apkyZ8syiSNeuXXX79m35+/urefPmrzVulixZNGXKFNWsWVM//PCDypcvr6NHj0qSPvroI7m5ub1W/wAAAAAA+0qSK2cMw3jir0eFGenh6pm+ffvqypUrevDggbZu3aqCBQs+1o+rq6vGjBmjmzdv6v79+/r111+VLVs2G88GAGANQ4cO1ZkzZ+Tr62v+SfaXlS5dOq1cuVKpU6fWpk2bXui8ieRk6dKlql+/vhISEpQ6dWr9/fffKlmypE6dOmWR/h8dbF6nTh05OCSdb0nGjBmjHDly6MyZM+rSpctr9XXr1i317t1bktS/f381bNhQ7733HoWZRObR1mY///yzIiIinthm586dmjVrliRp/PjxFvlhn88//1xNmzaVYRiqX7++lixZIoktzQAAAAAgOUg6T0IAAHhBZ8+e1aBBgyRJI0aMeK2VDW+//bbmzJkjSRo9erRmzJhhkRgTu1WrVqlOnTqKj49Xw4YNFRYWpgIFCujSpUsqWbKkwsLCXqv/27dva/Xq1ZKSxpZm/+bp6Wl+CD9lyhRt2bLllfvq37+/bt26pbffflstWrSwUISwtBIlSqhgwYJ68OCB5s2b95/rcXFxatu2rSSpadOmKlGihMXGHjVqlPLkyaO///5bW7dulSSVLVvWYv0DAAAAAOyD4gwAINnp3LmzHjx4oNKlS+uLL7547f6qV6+ufv36SZJatWqlPXv2vHafidm6dev0+eefKzY21rydk6+vrzZv3qyCBQvqypUrKlmypH7//fdXHmP58uWKjo5W/vz5VbhwYQtGbxslS5ZUy5YtJUktWrQwn3v3Mk6ePKlx48ZJ+v9brSJxMplM5m3KpkyZIsMwHrs+ceJEHTlyRF5eXho8eLBFx06dOrXmz59vfn+kS5dO77zzjkXHAAAAAADYHsUZAECyEhISohUrVsjJyUljxoyRyWSySL+9evVSjRo1FBMToxo1aujy5csW6Tex2bJli6pXr66YmBh99tlnmj17tnl7Jm9vb23evFlFihTRtWvXVKpUKR0/fvyVxnm0pdmXX35psf9Htvbjjz/K19dXp06d0oABA176/i5duiguLk6VK1dmJUQSUK9ePbm4uOjIkSM6ePCg+fVr166pV69ekqSBAwcqY8aMFh/73XffVf/+/SVJ1apV43xEAAAAAEgGKM4AAJKNBw8eqEOHDpKkTp06qUCBAhbr28HBQbNmzTKvHPnss8/04MEDi/WfGOzatUuVK1dWVFSUKlWqpIULF8rZ2fmxNhkyZNDGjRtVtGhRXb9+XaVKlTIfUv6irl+/rg0bNkhKelua/Zunp6fGjx8vSRoyZIiOHDnywveuXbtWISEhcnJy0vDhw60VIiwoXbp0+vzzzyU9XD3zSNeuXXX79m35+/tbdWu6bt26ad++ffrpp5+sNgYAAAAAwHYozgAAko2hQ4fq9OnT8vX1NR+ybkmpU6fWihUrlC5dOu3bt0+tWrX6z/ZGSdX+/ftVsWJF3bt3T0FBQfrll1+UKlWqJ7ZNnz69Nm7cqOLFi+vGjRsqVaqUDh8+/MJj/fzzz4qPj1fx4sWVJ08eS03BLqpVq6aaNWsqPj5eTZs2VVxc3HPviY2NVXBwsCSpffv2ypcvn7XDhIU82tps/vz5unv3rnbu3Gk+f2j8+PFWXdFiMpn07rvvKnXq1FYbAwAAAABgOxRnAADJwrlz5zRo0CBJ0vDhw+Xh4WGVcXLlyqXFixfL0dFRs2bNUkhIiFXGsaXQ0FCVL19ekZGR+uSTT7RixQq5uro+8x4vLy+tX79e7733nm7duqUyZco8ttXTv4WHh2vXrl2aNm2avvnmGw0ZMkSSVLduXYvPxR7GjBmjtGnT6uDBgxo9evRz20+cOFF//PGHMmTIYJUiIqynZMmSypMnj+7evav58+erbdu2kqSmTZuqRIkSdo4OAAAAAJCUUJwBACQLnTp10oMHD1SqVCnVrl3bqmOVKVPGvPIhODhYsbGxVh3Pmk6cOKGyZcsqPDxcAQEBWrVqldzd3V/o3rRp02rdunUKCAhQeHi4ypQpozlz5mj06NFq3bq1AgMDlSlTJqVLl04ffvihmjVrpmHDhunChQtycXGx+v8nW/Hx8TFvTfbdd9/pzJkzT21769Yt9enTR5I0YMAApU2b1hYhwkJMJpOaNWsmSercubOOHDkiLy8vDR482M6RAQAAAACSGoozAIAkLyQkRCtWrJCTk5PGjh1rkwPme/XqJW9vb/35558aN26c1cezhrCwMJUpU0Y3btxQ8eLFtWbNmpdeceTp6anffvtNH330kW7fvq0GDRqoU6dOmjhxorZu3arr169LkrJmzaqyZcuqQ4cOGj9+vA4ePChfX19rTMsuGjdurNKlSysqKkotW7Z86nZ3ffv2VXh4uAoWLGh+yI+kpWHDhnJyctL9+/clSQMHDlTGjBntHBUAAAAAIKlxsncAAAC8jgcPHqhDhw6SHq6eKVCggE3GTZMmjb7//nu1aNFC/fr1U7169ZQhQwabjG0JK1euVMOGDRUREaHChQvrt99+k6en5yv15eHhoTVr1qhBgwY6efKk3nrrLeXPn9/83zfffNNq28wlFiaTSZMmTVKhQoW0YcMGzZ49Ww0bNnyszR9//KHx48dLkkaNGiUnJ74NS4p8fHxUpUoVLVu2TP7+/mrRooW9QwIAAAAAJEGsnAEAWMS9e/dUt25d8/ZOtvDPP/+oVatWOn36tHx9fW1+fkeTJk1UpEgRRUREmLeqSuzi4uLUtWtXVatWTREREXr//fe1fv16pUuX7rX6TZ06tZYuXarff/9dS5cu1cCBA1W/fn0VL1482RdmHsmTJ4/69esn6eGWV9euXXvsenBwsOLj41W1alWVKVPGHiHCQoYOHaqmTZtqwYIFcnR0tHc4AAAAAIAkiOIMAMAipkyZogULFujrr7/WrFmzrDrW1atX9fXXXytnzpzmsUaOHGnzIoCjo6NGjRol6eEh78ePH7fp+C/rypUrKlOmjIYMGSLp4UqjrVu3ytvb286RJR/BwcEqWrSowsPD1bFjR/PrISEhWrt2rZydnTVs2DA7RghLyJ07t6ZOnap8+fLZOxQAAAAAQBJFcQYA8Nri4uLMRQpJatmypfbu3WvxcS5fvqxOnTrJz89Pw4cP1/379/Xuu+9q9erV+uKLLyw+3osIDAxUjRo1lJCQoODg4KeeNWJvmzdvVtGiRbVt2zZ5eHjo559/1siRI5UqVSp7h5asODk5aerUqXJ0dNSiRYv066+/KjY2VsHBwZKkDh06KG/evHaOEgAAAAAA2BvFGQDAa1uyZInOnz+vDBkyqHLlyoqOjtZnn32my5cvW6T/v//+W+3atVOuXLk0evRoPXjwQO+//77WrFmjvXv36tNPP7XIOK9q6NChSpUqldavX69Vq1bZNZb/lZCQoEGDBikoKEjXrl1T4cKFdeDAAdWsWdPeoSVb/v7+6tKliySpTZs2+vHHHxUWFqaMGTPqu+++s3N0AAAAAAAgMaA4AwB4LYZhmM+Zadu2rebPn6+3335bV65cUY0aNfTgwYNX7vvcuXNq1aqVcufOrXHjxik6OlofffSR1q9fr127dqlChQoymUyWmsory5Urlzp37ixJ6tKli2JiYuwc0UM3b95UlSpV1LNnTyUkJKhx48bavXs3WzHZQJ8+fZQ7d25dvHjRXJAZMGCAPD097RwZAAAAAABIDCjOAABey44dO7R//365uLioTZs28vDw0IoVK+Tl5aW9e/eqdevWL73VV1xcnPr376+8efNq0qRJio2NVWBgoDZt2qRt27YpKCgoURRl/q1Hjx7KlCmTTp06pbFjx9o7HO3du1f+/v4KCQmRq6urpk2bpunTp8vd3d3eoaUI7u7umjx5svnrwoULq1mzZnaMCAAAAAAAJCZO9g4AABKbEydOaMuWLS/UNnfu3CpfvnyiKxTY0qNVMw0aNDAfLJ87d24tWrRIFSpU0MyZM1W0aFF16NDhhfo7d+6c6tWrp507d0qSypQpo969e+uTTz6xzgQsJE2aNBo4cKCaNWum/v37q379+sqYMaNNY4iOjtbSpUs1ZcoUbd68WZKUJ08e/fLLLypSpIhNY4FUunRpderUSRMnTtS4cePk6Oho75AAAAAAAEAiQXEGAP7lxo0b+uSTT3Tr1q0Xvuebb77Rjz/+mCILNKdOndLKlSslyXzg+SNly5bVsGHDFBwcrODgYBUsWFClS5d+Zn/z589X69atFRkZKQ8PD40fP1716tWzWvyW1qhRI40dO1ahoaHq3bu3JkyYYJNxT548qSlTpmjWrFm6efOmJMnBwUFffvmlxo0bx1ZadjRixAgNHz5cDg4sVgYAAAAAAP8fxRkA+Jfu3bvr1q1byp49u0qUKPHMtg8ePNCvv/6qoUOHKi4uTsOHD09xBZqRI0fKMAxVrlxZb7311n+ud+rUSaGhoZo9e7Zq1aqlAwcOyM/P7z/tIiMj1bZtW82dO1eSFBAQoLlz5ypXrlxWn4MlOTo6atSoUQoMDNTkyZPVpk0bFSpUyCpjRUVFadGiRZo8ebK2b99ufj1r1qxq1qyZmjRpomzZslllbLw4k8mU4v5eAAAAAAAAz0dxBgD+z969ezVt2jRJ0rx58/TRRx89954JEyaoTZs2GjlypOLi4jR69OgU8yD2xo0bmjFjhiSpS5cuT2xjMpk0adIk/fHHH9q/f7+qVaumXbt2KXXq1OY2u3fv1ldffaWzZ8/KwcFBvXr10nfffScnp6T5EVWyZEl9/vnnWrJkiTp37qz169db9D0RFhamqVOnqlGjRoqIiJD0sChUuXJlNW/eXBUqVGD7LAAAAAAAgESOPTYAQFJ8fLzatm0rwzDUoEGDFyrMSFLr1q3Nh36PGTNG7dq1U0JCgjVDTTQmTJigBw8eyN/fXyVLlnxqO1dXVy1btkw+Pj46duyYGjVqpISEBMXHx2vAgAH6+OOPdfbsWeXIkUNbt25Vv379kmxh5pGhQ4cqVapU2rhxo3nbN0s4dOiQihcvrlWrVikiIkI5cuTQgAEDdP78eS1fvlyVKlWiMAMAAAAAAJAEUJwBAElTp07VwYMHlSZNGg0ZMuSl7m3evLmmTZsmk8mk8ePHq02bNsm+QPPgwQONHTtW0sNVM89bGZIlSxYtXbpUqVKl0pIlS9SlSxcFBgaqd+/eio+P15dffqnQ0NAXLooldn5+fuYzeLp06aLo6OjX7jMuLk7NmzdXdHS03nrrLa1atUpnzpxRr169lCVLltfuHwAAAAAAALZDcQZAinfjxg11795dkjRgwABlypTppfto0qSJZs6cad7Gq0WLFsm6QDNv3jxdv35dWbNmVa1atV7onoCAAE2cOFGSNGrUKO3YsUMeHh6aPXu25s2bp7Rp01oxYtvr0aOHMmXKpNOnT2vMmDGv3d+YMWN06NAhpU2bVt26dVO5cuU4ZB4AAAAAACCJ4qkOgBSvR48eCg8PV+HChdWmTZtX7qdBgwaaM2eOHBwcNG3aNDVt2lTx8fEWjDRxMAxDI0aMkCR17NhRzs7OL3xv48aN1alTJ0nS+++/r9DQUNWvXz9ZntPj4eGhQYMGSXpY9Ltw4cIr93XhwgV99913kqTBgwcnu0IWAAAAAABASkNxBkCKtm/fPk2dOlWSNG7cuNc+6+Srr77S/Pnz5ejoqJkzZ6pRo0bJrkCzdu1a/f777/Lw8FDz5s1f+v4RI0bozz//1I4dO5QrVy4rRJh4NGrUSCVKlFBkZKS++OILxcTEvHQfhmGobdu2unfvnj766CM1btzYCpECAAAAAADAlijOAEix4uPj1bZtWxmGoQYNGljsvJPatWtr4cKFcnJy0ty5c1W/fn3FxcVZpO/EYNiwYZIenrXj6en50vebTCblzZs3RRxc7+DgoAULFiht2rTau3evvv3225fuY8mSJVq1apWcnZ01efJktjIDAAAAAABIBnjCAyDFmjp1qg4cOKA0adJoyJAhFu27Zs2aWrx4sZycnLRgwQI1a9bMov3bS2hoqDZt2iRHR0d17NjR3uEkCX5+fpo9e7YkafTo0frll19e+N7bt2+rQ4cOkqRu3bopf/78VokRAAAAAAAAtkVxBkCKdOPGDfXo0UPSw/NAMmXKZPExPvvsMy1ZskSOjo6aNWuW9uzZY/ExbG348OGSpFq1ail79ux2jibpqFKlinnVTJMmTXTq1KkXuq979+66cuWK8uXLZ36/AgAAAAAAIOmjOAMgRerRo4du3bqlwoULq02bNlYbp2rVqmrQoIEkqW/fvlYbxxYuXryohQsXSpK6dOli52iSnoEDB+rjjz/WnTt3VLNmTUVFRT2z/a5duzRhwgRJ0qRJk+Tq6mqLMAEAAAAAAGADFGcApDj79u3T1KlTJUljx46Vk5OTVcfr1auXnJyc9Ntvv2n37t1WHcuaxowZo7i4OH3yyScqXry4vcNJcpycnLRw4UJlzJhRR48eVfv27Z/aNiYmRi1atJAkNW7cWIGBgTaKEgAAAAAAALZAcQZAihIfH6+2bdvKMAzVr19fH3/8sdXHzJUrlxo2bChJ6tOnj9XHs4Y7d+5o0qRJklg18zp8fX01f/58mUwmTZs2TbNmzXpiu2HDhunEiRPKkCGDhg4dauMoAQAAAAAAYG0UZwCkKNOmTdOBAweUJk0aDRkyxGbjPlo9s379eu3cudNm41rKtGnTdPv2beXLl0+VK1e2dzhJWlBQkHmLu9atW+vYsWOPXf/rr7/Uv39/SdLIkSOVPn16W4cIAAAAAAAAK6M4AyDFuHnzprp37y5J6t+/v3x8fGw2ds6cOdW4cWNJSW/1TEREhEaNGiVJCg4OloMDHx2vq1evXipXrpyioqJUq1Yt3blzR5JkGIZatWql6OholS1bVl999ZWdIwUAAAAAAIA18IQNQIrRo0cP3bp1S4UKFVLbtm1tPn7Pnj3l7OysjRs3avv27TYf/2WdOnVK7dq1U9asWXX+/HllyJBBDRo0sHdYyYKDg4Pmzp2rLFmyKCwsTM2bN5dhGJo7d642btwoV1dXTZgwQSaTyd6hAgAAAAAAwAqsewo2kIxFRESoSZMm2r9//wu1/+CDDzRlyhSlSZPGypHhScLCwjR16lRJ0rhx4+TkZPu//nLkyKEmTZpo0qRJ6tOnjzZt2mTzGJ7HMAxt3rxZI0eO1OrVq2UYhiSpUKFC+umnn+Tm5mbnCJOPjBkzavHixSpZsqQWLVqkt99+Wz/99JOkh6urcufObecIAQAAAAAAYC0UZ4BXcOfOHVWsWFF79ux54XsWL16sCxcuaO3atfL09LRidHiS/v37KyEhQVWrVtXHH39stzh69Oih6dOna/Pmzdq6datKlixpt1j+7cGDB1qwYIFGjRqlo0ePml+vVKmSOnfurNKlS7OKwwo++OAD/fjjj+rSpYt69+4t6WEhrEuXLnaODAAAAAAAANZEcQZ4Sffu3VOlSpW0Z88eeXl5ad68efL29n7mPVevXlX9+vW1Z88elS1bVuvWrVPatGltEzD0+++/a8GCBZJkPojdXrJnz65mzZppwoQJ6tOnj7Zs2WLXeC5evKipU6dqwoQJun79uiTJ3d1djRo1UseOHZUvXz67xpcSdO7cWTt27NCyZctkMpk0efJkOTs72zssAAAAAAAAWBHFGeAlREVFqVq1atq+fbvSpEmjdevWqXjx4i9076ZNmxQUFKT9+/crKChI69atU7p06awcMSSpX79+MgxDNWrUUNGiRe0djnr06KFp06Zp69at2rx5s0qVKmXT8ePi4rRmzRpNnjxZISEhSkhIkCRly5ZN7du3V7NmzeTl5WXTmFIyk8mk6dOny9XVVSVKlND7779v75AAAAAAAABgZQ72DgBIKqKjo1WzZk1t3LhRb7zxhtauXfvChRlJeuedd7Rp0yZlyJBBBw8eVJkyZXTz5k0rRgxJOnbsmBYvXizJ/qtmHsmaNauaN28u6eHZIo/OdbG28+fPq3fv3sqZM6eqVq2qVatWKSEhQSVLltTChQt1+vRpffPNNxRm7CBt2rSaP3++OnbsaO9QAAAAAAAAYAMUZ4AXEBsbqzp16igkJERubm5avXq1AgICXrqfwoULa/PmzfL29lZoaKhKly6tf/75xwoRJ26GYWjfvn2KiIiw+liPCjJffPGFChUqZPXxXlT37t3l4uKi7du3a9OmTVYbJzY2VsuWLdOnn34qPz8/DRgwQJcuXVKGDBnUpUsXnTx5Ulu2bFHt2rXZSgsAAAAAAACwEYozwHPExcWpXr16Wr58uVxcXLRy5crXOsS9YMGC2rJli3x8fHT06FGVKlVK165ds2DEiV+vXr1UokQJ5ciRQ999953VVhAdPnxYS5culclkUp8+fawyxqvKkiWLWrRoIck6q2fi4uLUr18/Zc+eXTVq1NCaNWtkGIZKly6thQsX6uLFixo2bJjefPNNi44LAAAAAAAA4PkozgDPkJCQoCZNmmjx4sVydnbWkiVLFBQU9Nr95s+fX1u2bFHmzJl14sQJlSpVSlevXrVAxInf7NmzNWjQIElSZGSkvv/+e+XMmVPdu3e3+CqiR6tmvvzySxUoUMCifVtCt27d5Orqqp07d2rDhg0W7Xv48OHq27evrl69Km9vb3Xt2lWnTp3Sxo0bVbt2bbm4uFh0PAAAAAAAAAAvjuIM8BQJCQlq2bKl5syZI0dHRy1atEiVKlWyWP9vvvmmtm7dqixZsuiPP/5QYGCgLl++bLH+E6MdO3aYz1rp3r27lixZoiJFiuju3bv64YcflDNnTn3zzTcWWUl04MABrVy5Ug4ODurdu/dr92cNvr6+atmypSTLrp65f/++hg8fLkkaOHCg/v77b/3www/KkyePRfoHAAAAAAAA8HoozgBPYBiGOnbsqKlTp8rBwUHz5s3TZ599ZvFx8ubNq61btypbtmwKCwtTYGCgLl68aPFxEoOzZ8/qs88+U0xMjD7//HN9//33qlGjhg4fPqwVK1aoWLFiun//voYNGyY/Pz917tz5tYpVj7Yxq1evXqLeuqtr165ydXXV7t27tW7dOov0OWXKFP3zzz/y8/PTN998o1SpUlmkXwAAAAAAAACWQXEG+B+GYejbb7/V2LFjZTKZNGPGDNWuXdtq4+XOnVtbt25Vjhw5dOrUKVWqVElRUVFWG88eIiMjVaVKFd24cUP+/v6aNWuWHBwe/vVjMplUtWpV7d+/X6tXr1aJEiUUFRWlUaNGKVeuXGrfvr1u3779UuPt2bNHISEhcnR01HfffWeNKVlM5syZ1bp1a0mWWT0THR2tIUOGSHq4bZqzs/NrxwgAAAAAAADAsijOAP9j5MiRGjZsmCRp4sSJatCggdXH9PPz09atW5UxY0YdPXpUwcHBVh/TVuLi4lSnTh2dOHFCvr6+Wrlypd54443/tDOZTPr000+1e/du/fbbb/rggw8UHR2tsWPH6r333tPvv//+wmM+WjXTsGHDJLGVV9euXeXm5qa9e/dq7dq1r9XXzJkzdfnyZWXJkkUNGza0UIQAAAAAAAAALIniDBK9f/75x2JncTzPkiVL9PXXX0uShg4dqhYtWthkXEnKkSOH5syZI+lhUejnn3+22djW9PXXX2vNmjVyc3PTypUrlSVLlme2N5lMKleunHbs2KH169crW7Zs+vPPP1WiRAktXbr0uePt2LFD69atk5OTk3r16mWpaVhVpkyZ1KZNG0lS7969lZCQ8Er9xMbG6ocffpAkffvtt3JxcbFYjAAAAAAAAAAsh+IMEi3DMNSpUyd5e3vLx8dHtWrV0tixY3Xs2LFXfnj9LLt371a9evVkGIbatm2rLl26WHyM5ylfvry6desmSWrWrJnOnDlj8xgsadKkSRo9erQkafbs2SpWrNgL32symRQUFKQDBw4oMDBQd+/e1eeff64ePXooPj7+qfc9WjXTpEkT+fn5vd4EbOjbb79V6tSpdeDAAU2cOPGV+pg/f77OnTsnb29vNWvWzMIRAgAAAAAAALAUijNItAYPHmx+sH/9+nX98ssvat++vQoXLixvb2999tlnGjVqlA4fPvzMh/Uv4q+//lLVqlX14MEDValSRaNHj5bJZLLENF5a//79FRAQoMjISNWuXVsxMTF2ieN1bdy4UW3btpUkDRgwQDVr1nylfry9vbV+/XrzVm+DBw9WpUqVdOvWrf+03bJlizZt2iRnZ2f17Nnz1YO3A29vbw0ePFjSw23O/v7775e6Pz4+XoMGDZIkdenSRe7u7haPEQAAAAAAAIBlUJxBojRjxgzzw/URI0Zo+/bt+v7771W2bFm5u7vr5s2bWr58uTp37ix/f3+lT59etWvX1unTp196rBs3bqhixYq6ceOGihUrpgULFsjR0dHSU3phzs7OWrBggby8vHTgwAF1797dbrG8qrCwMNWsWVPx8fH66quvXrtQ4uTkpOHDh2vevHlyc3PTb7/9puLFi+vIkSPmNoZhmFfNNG/eXNmzZ3+tMe2hTZs2CggI0N27d9WmTZuX2s7vl19+0Z9//ikvLy+1bt3ailECAAAAAAAAeF0UZ5DorF69Ws2bN5ckdevWTZ07d9ZHH32knj17at26dYqIiNCuXbs0ePBgVahQQalTp9bt27e1ePFiFSpUSEOGDFFcXNwLjRUVFaVq1arpr7/+Uo4cObRq1aonHlZvazly5NCMGTMkPSxOrVq1ys4RvbibN2+qcuXKioiIUEBAgKZOnWqxVUh169bV7t275efnp7NnzyogIEALFiyQJG3atEnbtm2Ti4tLkixoSZKDg4OmTp0qZ2dnrVq1SosXL36h+xISEvT9999Lkjp16iQPDw9rhgkAAAAAAADgNVGcQaKyZ88e1apVS/Hx8WrYsKF5m6Z/c3Z2VkBAgLp166Y1a9YoPDxcu3fvVunSpRUVFaWuXbvq3Xff1YEDB545VkJCgho2bKhdu3bJ09NTISEh8vHxsdbUXlq1atXUoUMHSVLDhg118eJFO0f0fDExMapZs6b++usvZc+eXcuWLZOrq6tFxyhSpIgOHDig8uXLKyoqSnXr1lWXLl303XffSZJatmyprFmzWnRMWypQoIB5pVH79u118+bN597z66+/6vjx4/Lw8FD79u2tHSIAAAAAAACA10RxBonGyZMnValSJUVFRalixYqaMmXKC624cHJy0vvvv68NGzZoxowZ8vLyUmhoqEqUKKHg4GDdvXv3ifd17dpVP//8s5ydnbVs2TIVKFDA0lN6bUOGDJG/v79u3bqlL7/88oVXBNlDdHS0ateurS1btih16tRatWqVMmXKZJWx0qVLp9WrV6tHjx6SHq4u2r17t1xdXdWtWzerjGlL3bp1U4ECBfTPP//o66+/fmZbwzDMq2batWsnLy8vW4QIAAAAAAAA4DVQnEGicPnyZVWoUEG3bt3Su+++ay6avAyTyaRGjRrp5MmT+vLLL5WQkKCRI0eqYMGCWrNmzWNtx48fr2HDhkmSpk+frlKlSllsLpbk4uKiRYsWycPDQzt27FDfvn3tHdITPXjwQDVq1NDy5cuVKlUq/fzzzypUqJBVx3R0dNTAgQO1ZMkSpU6dWpLUunVrZc6c2arj2oKLi4t5O7iZM2dq/fr1T227bt06HThwQG5uburcubMNowQAAAAAAADwqijOwO5u376tihUr6vz588qbN69Wr179Wue+eHt7a/78+QoJCVGOHDl0/vx5ffrpp6pbt66uXbumX3/91bz104ABA1SvXj1LTcUq8uTJo8mTJ0uSBg0apA0bNtg5osfdu3dPlStXVkhIiNzc3LRq1SpVqFDBZuPXqFFDhw4d0sSJEzV48GCbjWttAQEBateunaSHW7Xdu3fvP20Mw9CAAQMkSa1atVLGjBltGiMAAAAAAACAV0NxBnb14MEDVa9eXUePHpWPj49+++03iz1grlixoo4fP67g4GA5ODhowYIFyp8/v+rUqaOEhAQ1bdrUfLZHYlenTh01b95chmGoXr16unr1qr1DkiRFRkaqYsWK2rhxo1KnTq01a9aobNmyNo8jb968atmypVxcXGw+tjUNHDhQ2bJl09mzZ9WnT5//XN+2bZt27twpFxeX525/BgAAAAAAACDxoDgDu4mPj1f9+vW1ZcsWeXh4aM2aNfLz87PoGKlTp9bw4cO1d+9evfPOOwoPD9f9+/dVtmxZTZgw4YXOtEksRo0apYIFC+ratWuqX7++EhIS7BpPRESEypUrp+3btytNmjRat26dSpYsadeYkhsPDw9NmDBBkjRy5EgdOHDgseuPzppp2rSpfH19bR4fAAAAAAAAgFdDcQZ2YRiGOnXqpF9++UXOzs5avny53nnnHauNV7x4ce3bt0+jRo1SmzZtzOMmJe7u7lq0aJHc3d21YcMGDRo0yG6x3Lx5U6VLl9bevXuVLl06bdq0SQEBAXaLJzmrVKmS+Qylpk2bKjY2VpK0Z88ebdiwQU5OTvr222/tHCUAAAAAAACAl0FxBjZ37tw51atXT2PHjpUkzZkzR6VLl7b6uM7OzurYsaPGjRunNGnSWH08ayhQoID5z613795avXr1a/c5Y8YMZc6cWV27dlX37t21atUqhYeHP7X9tWvXFBgYqMOHDytjxozavHmzihUr9tpx4OlGjx6t9OnT6+jRoxo2bJikh1ueSVKDBg2UI0cOe4YHAAAAAAAA4CVRnIHNXL16Ve3bt1e+fPk0f/58SQ8fOteuXdvOkSUtjRs3VsuWLWUYhurWrauTJ0++cl8rVqxQs2bNdPPmTYWFhWn48OGqUqWK0qdPr8KFC6tt27ZauHChLl26JEm6dOmSSpYsqePHjytz5szaunWrChcubKmp4SkyZsyokSNHSpL69eunxYsXa9WqVXJwcFC3bt3sHB0AAAAAAACAl+Vk7wCQ/EVERGjo0KEaNWqU7t+/L0kqW7asBg0apOLFi9s5uqTpp59+0okTJ7Rjxw5Vq1ZNe/fuVdq0aV+qj507d6pOnTpKSEhQgwYN5OnpqTt37mjnzp06deqUjh07pmPHjmn8+PGSJD8/P8XExOjSpUvKli2bNm3apDx58lhhdniSevXqae7cuVq3bp3q1KkjSapTp47y5s1r58gAAAAAAAAAvCxWzsBq7t+/rx9//FG5cuXSoEGDdP/+fZUoUUKbNm3SunXrKMy8hlSpUumXX35RtmzZ9Oeff6pu3bqKj49/4ftPnDihypUr68GDB6pSpYomTpyoMmXKaPLkyfrzzz915coV/fzzz+rQoYOKFi0qBwcHnT17VpcuXVKuXLm0bds2CjM2ZjKZNHHiRLm7u8swDElSjx497BwVAAAAAAAAgFdBcQYWFxMTowkTJih37tzq1q2bwsPD9fbbb2v58uXavXu3SpUqZe8Qk4VMmTJp+fLlcnV11Zo1a9SzZ88Xuu/ixYuqUKGCIiIiFBAQoIULF8rJ6fFFdD4+PqpZs6ZGjx6tQ4cOKTw8XGvXrtXw4cO1c+dO5cyZ0wozwvP4+flp8ODBkqTatWvr7bfftnNEAAAAAAAAAF4F25rBogzDUEBAgA4dOiRJypkzp/r376+6devK0dHRztElP/7+/po+fbrq1q2rH3/8UUWKFNGXX3751Pbh4eGqUKGCLl68qLfeeku//vqr3N3dFRsb+8xx0qRJo/Lly6t8+fKWngJeUocOHfTRRx8pf/789g4FAAAAAAAAwCti5QwsymQyqUaNGsqUKZPGjBmjsLAw1a9fn8KMFX355Zfq2rWrJKlp06bmwtj/ioqKUtWqVXXixAn5+vrqt99+U/r06W0ZKizE399fbm5u9g4DAAAAAAAAwCuiOAOL69y5s06fPq127dopVapU9g4nRRg4cKAqVqyoqKgoVa9eXdevX3/senx8vOrWrasdO3bI09NTa9euVfbs2e0ULQAAAAAAAACkbBRnYHHu7u5644037B1GiuLo6Kj58+crX758+vvvv1WzZk3FxMRIerjVXNu2bbV8+XK5uLhoxYoVKlSokJ0jBgAAAAAAAICUi+IMkEykTZtWK1asUJo0abR9+3Z17NhRkvT9999r0qRJMplMmjdvnkqWLGnnSAEAAAAAAAAgZXOydwAALOett97S/PnzVaVKFU2cOFHXr1/X0qVLJUnjxo3T559/bucIAQAAAAAAAACsnAGSmUqVKmnQoEGSZC7M9OrVS61bt7ZnWAAAAAAAAACA/5MkizPbtm1TlSpV5OvrK5PJpOXLlz923TAM9e3bV76+vnJzc1NgYKBOnDjxWJvo6Gi1b99eGTJk0BtvvKGqVavq4sWLNpwFYD1du3ZV3bp1JUnNmjVT//797RwRAAAAAAAAAOCRJFmcuXfvnooUKaKxY8c+8fqQIUM0YsQIjR07Vvv375ePj4/Kli2rO3fumNt06tRJy5Yt08KFC7Vjxw7dvXtXlStXVnx8vK2mAViNyWTS3LlzFRYWpsmTJ8tkMtk7JAAAAAAAAADA/0mSZ85UrFhRFStWfOI1wzA0atQo9ezZUzVq1JAkzZo1S5kyZdL8+fPVsmVL3b59W9OmTdOcOXMUFBQkSZo7d66yZcumDRs2qHz58k/sOzo6WtHR0eavIyMjJUmxsbGKjY215BQBi/Dz81NcXNxz2z16//I+BhI/8hVIWshZIOkgX4GkhZwFkg7yFSnNi77XTYZhGFaOxapMJpOWLVum6tWrS5LOnDmj3Llz69ChQypatKi5XbVq1ZQ2bVrNmjVLmzZtUpkyZXTr1i15eXmZ2xQpUkTVq1dXv379njhW3759n3ht/vz5cnd3t+zEAAAAAAAAAABAknL//n3VrVtXt2/fVpo0aZ7aLkmunHmWq1evSpIyZcr02OuZMmXS+fPnzW1SpUr1WGHmUZtH9z9J9+7dFRwcbP46MjJS2bJlU7ly5Z75hwwkdrGxsVq/fr3Kli0rZ2dne4cD4BnIVyBpIWeBpIN8BZIWchZIOshXpDSPdtx6nmRXnHnkf8/YMAzjueduPK+Ni4uLXFxc/vO6s7Mzf7EgWeC9DCQd5CuQtJCzQNJBvgJJCzkLJB3kK1KKF32fO1g5Dpvz8fGRpP+sgLl+/bp5NY2Pj49iYmIUHh7+1DYAAAAAAAAAAADWkOyKM35+fvLx8dH69evNr8XExGjr1q364IMPJEnFihWTs7PzY22uXLmi48ePm9sAAAAAAAAAAABYQ5Lc1uzu3bv666+/zF+fPXtWoaGhSpcunbJnz65OnTpp0KBByps3r/LmzatBgwbJ3d1ddevWlSR5enqqadOm6tKli9KnT6906dLp66+/VqFChRQUFGSvaQEAAAAAAAAAgBQgSRZnDhw4oFKlSpm/Dg4OliQ1bNhQM2fO1LfffquoqCi1adNG4eHhKlGihNatWycPDw/zPSNHjpSTk5O++OILRUVFqUyZMpo5c6YcHR1tPh8AAAAAAAAAAJByJMniTGBgoAzDeOp1k8mkvn37qm/fvk9t4+rqqjFjxmjMmDFWiBAAAAAAAAAAAODJkt2ZMwAAAAAAAAAAAIkZxRkAAAAAAAAAAAAbojgDAAAAAAAAAABgQxRnAAAAAAAAAAAAbIjiDAAAAAAAAAAAgA1RnAEAAAAAAAAAALAhijMAAAAAAAAAAAA2RHEGAAAAAAAAAADAhijOAAAAAAAAAAAA2BDFGQAAAAAAAAAAABuiOAMAAAAAAAAAAGBDFGcAAAAAAAAAAABsiOIMAAAAAAAAAACADTnZO4CkzDAMSVJkZKSdIwFeT2xsrO7fv6/IyEg5OzvbOxwAz0C+AkkLOQskHeQrkLSQs0DSQb4ipXlUL3hUP3gaijOv4c6dO5KkbNmy2TkSAAAAAAAAAACQWNy5c0eenp5PvW4ynle+wVMlJCTo8uXL8vDwkMlksnc4wCuLjIxUtmzZ9PfffytNmjT2DgfAM5CvQNJCzgJJB/kKJC3kLJB0kK9IaQzD0J07d+Tr6ysHh6efLMPKmdfg4OCgrFmz2jsMwGLSpEnDhySQRJCvQNJCzgJJB/kKJC3kLJB0kK9ISZ61YuaRp5dtAAAAAAAAAAAAYHEUZwAAAAAAAAAAAGyI4gwAubi4qE+fPnJxcbF3KACeg3wFkhZyFkg6yFcgaSFngaSDfAWezGQYhmHvIAAAAAAAAAAAAFIKVs4AAAAAAAAAAADYEMUZAAAAAAAAAAAAG6I4AwAAAAAAAAAAYEMUZwAAAAAAAAAAAGyI4gyQTGzbtk1VqlSRr6+vTCaTli9f/tj1a9euqVGjRvL19ZW7u7sqVKigU6dOPdYmMDBQJpPpsV916tR5rE14eLjq168vT09PeXp6qn79+oqIiLDy7IDkxRb5eu7cOTVt2lR+fn5yc3NT7ty51adPH8XExNhiikCyYqvP2Eeio6P1zjvvyGQyKTQ01EqzApInW+br6tWrVaJECbm5uSlDhgyqUaOGNacGJEu2ytk///xT1apVU4YMGZQmTRp9+OGH2rx5s7WnByQrlshXSdq9e7dKly6tN954Q2nTplVgYKCioqLM13nuhJSE4gyQTNy7d09FihTR2LFj/3PNMAxVr15dZ86c0YoVK3T48GHlyJFDQUFBunfv3mNtmzdvritXrph/TZo06bHrdevWVWhoqNauXau1a9cqNDRU9evXt+rcgOTGFvl68uRJJSQkaNKkSTpx4oRGjhypiRMnqkePHlafH5Dc2Ooz9pFvv/1Wvr6+VpkLkNzZKl+XLFmi+vXrq3Hjxjpy5Ih27typunXrWnVuQHJkq5ytVKmS4uLitGnTJh08eFDvvPOOKleurKtXr1p1fkByYol83b17typUqKBy5cpp37592r9/v9q1aycHh///iJrnTkhRDADJjiRj2bJl5q/DwsIMScbx48fNr8XFxRnp0qUzpkyZYn6tZMmSRseOHZ/a7++//25IMvbs2WN+bffu3YYk4+TJkxadA5BSWCtfn2TIkCGGn5/f64YMpGjWztmQkBDjrbfeMk6cOGFIMg4fPmzB6IGUxVr5Ghsba2TJksWYOnWqNcIGUixr5ew///xjSDK2bdtmfi0yMtKQZGzYsMGicwBSilfN1xIlShi9evV6ar88d0JKw8oZIAWIjo6WJLm6uppfc3R0VKpUqbRjx47H2s6bN08ZMmTQ22+/ra+//lp37twxX9u9e7c8PT1VokQJ82vvv/++PD09tWvXLivPAkgZLJWvT3L79m2lS5fO8kEDKZglc/batWtq3ry55syZI3d3d+sHD6QwlsrXQ4cO6dKlS3JwcFDRokWVOXNmVaxYUSdOnLDNRIAUwlI5mz59euXPn1+zZ8/WvXv3FBcXp0mTJilTpkwqVqyYbSYDJHMvkq/Xr1/X3r175e3trQ8++ECZMmVSyZIlH8tnnjshpaE4A6QAb731lnLkyKHu3bsrPDxcMTEx+uGHH3T16lVduXLF3O6rr77SggULtGXLFn333XdasmTJY3tnX716Vd7e3v/p39vbm+XggIVYKl//1+nTpzVmzBi1atXKFtMAUgxL5axhGGrUqJFatWql4sWL22MqQLJnqXw9c+aMJKlv377q1auXVq1aJS8vL5UsWVK3bt2y+byA5MpSOWsymbR+/XodPnxYHh4ecnV11ciRI7V27VqlTZvWDjMDkp8Xydd/f342b95ca9eulb+/v8qUKWM+m4bnTkhpnOwdAADrc3Z21pIlS9S0aVOlS5dOjo6OCgoKUsWKFR9r17x5c/PvCxYsqLx586p48eI6dOiQ/P39JT38xvZ/GYbxxNcBvDxL5usjly9fVoUKFVSrVi01a9bMJvMAUgpL5eyYMWMUGRmp7t2723oKQIphqXxNSEiQJPXs2VOff/65JGnGjBnKmjWrfv75Z7Vs2dJ2kwKSMUvlrGEYatOmjby9vbV9+3a5ublp6tSpqly5svbv36/MmTPbempAsvMi+fro87Nly5Zq3LixJKlo0aLauHGjpk+frsGDB0viuRNSFlbOAClEsWLFFBoaqoiICF25ckVr167VzZs35efn99R7/P395ezsbP4JBh8fH127du0/7f755x9lypTJarEDKY0l8vWRy5cvq1SpUgoICNDkyZOtHTqQIlkiZzdt2qQ9e/bIxcVFTk5OypMnjySpePHiatiwoU3mAaQElsjXRw9yCxQoYG7j4uKiXLly6cKFC9adAJDCWOozdtWqVVq4cKE+/PBD+fv7a/z48XJzc9OsWbNsNRUg2Xtevj7p81OS8ufPb/785LkTUhqKM0AK4+npqYwZM+rUqVM6cOCAqlWr9tS2J06cUGxsrPkDNCAgQLdv39a+ffvMbfbu3avbt2/rgw8+sHrsQErzOvkqSZcuXVJgYKD8/f01Y8YMOTjwsQ9Y0+vk7E8//aQjR44oNDRUoaGhCgkJkSQtWrRIAwcOtEn8QEryOvlarFgxubi4KCwszNwmNjZW586dU44cOaweO5ASvU7O3r9/X5L+872wg4OD+Sf5AVjO0/I1Z86c8vX1fezzU5L+/PNP8+cnz52Q0rCtGZBM3L17V3/99Zf567Nnzyo0NFTp0qVT9uzZ9fPPPytjxozKnj27jh07po4dO6p69eoqV66cpIfnUcybN0+ffvqpMmTIoN9//11dunRR0aJF9eGHH0p6+NMMFSpUUPPmzTVp0iRJUosWLVS5cmW9+eabtp80kETZIl8vX76swMBAZc+eXcOGDdM///xjHs/Hx8e2EwaSOFvkbPbs2R8bM3Xq1JKk3LlzK2vWrDaaKZD02SJf06RJo1atWqlPnz7Kli2bcuTIoaFDh0qSatWqZftJA0mYLXI2ICBAXl5eatiwoXr37i03NzdNmTJFZ8+eVaVKlewybyApet18NZlM+uabb9SnTx8VKVJE77zzjmbNmqWTJ0/ql19+kcRzJ6RABoBkYfPmzYak//xq2LChYRiGMXr0aCNr1qyGs7OzkT17dqNXr15GdHS0+f4LFy4Yn3zyiZEuXTojVapURu7cuY0OHToYN2/efGycmzdvGl999ZXh4eFheHh4GF999ZURHh5uw5kCSZ8t8nXGjBlPHIOPfuDl2eoz9t/Onj1rSDIOHz5s5dkByYut8jUmJsbo0qWL4e3tbXh4eBhBQUHG8ePHbTlVIFmwVc7u37/fKFeunJEuXTrDw8PDeP/9942QkBBbThVI8l43Xx8ZPHiwkTVrVsPd3d0ICAgwtm/f/th1njshJTEZhmFYtfoDAAAAAAAAAAAAMzafBwAAAAAAAAAAsCGKMwAAAAAAAAAAADZEcQYAAAAAAAAAAMCGKM4AAAAAAAAAAADYEMUZAAAAAAAAAAAAG6I4AwAAAAAAAAAAYEMUZwAAAAAAAAAAAGyI4gwAAAAAAAAAAIANUZwBAAAAAAAAAACwIYozAAAAAJKdSpUqyWQyycHBQTt27Hihe3bs2CEHBweZTCZVrlzZyhECAAAASMlMhmEY9g4CAAAAACzp4sWLevvttxUZGak333xToaGhcnV1fWr76OhoFSlSRGFhYUqTJo1OnDihrFmz2jBiAAAAACkJK2cAAAAAJDtZs2bVjz/+KEkKCwtTv379ntm+f//+CgsLkyQNGTKEwgwAAAAAq2LlDAAAAIBkyTAMlSpVSlu3bpWTk5P27dunokWL/qfdkSNHVLx4ccXFxSkwMFCbNm2SyWSyQ8QAAAAAUgqKMwAAAACSrb/++kuFCxdWVFSU3nnnHe3fv19OTk7m6/Hx8SpRooQOHjwoNzc3HTt2TLlz57ZjxAAAAABSArY1AwAAAJBs5cmTR/3795ckhYaGaujQoY9dHzFihA4ePChJGjBgwGOFmYsXL6p79+7y9/eXl5eXXF1dlT17dtWuXVubN29+5rjh4eGaMWOG6tWrpwIFCih16tRKlSqVfHx8VL58eU2ePFkxMTFPvf/cuXMymUwymUyaOXOmJGnp0qX69NNP5evrKycnJwUGBr7CnwgAAACAxICVMwAAAACStfj4eAUEBGj//v1ycXHRkSNH9Oabb+r06dMqVKiQoqKi9O6772r37t1ydHSUJE2bNk3t27dXVFTUU/tt2rSpJk6c+NhKnEdy5syp8+fPPzOuokWLKiQkRD4+Pv+5du7cOfn5+UmSpk+frs2bN2vOnDmPtSlZsqS2bNnyvOkDAAAASIQozgAAAABI9o4dO6ZixYopNjZWH374obZt26agoCBt3rxZzs7OOnTokAoWLCjpYTGkadOmkqSCBQuqZcuWKlq0qNzd3XX27FlNmzZNISEhkqTg4GANHz78P+Nly5ZNWbJkUeXKlVW0aFFlypRJMTExOnv2rObOnau1a9dKenqB5d/FmcKFC+vo0aP6+OOP1bp1a+XLl08RERE6d+6cOU4AAAAASQvFGQAAAAApQp8+fcxbnJUpU0YbN240v963b19J0t9//6233npL9+/fV8OGDTV16tQnrozp2bOnBg0aJAcHB/3xxx/Kly/fY9dPnTqlvHnzPjWWGTNmqEmTJpKkDRs2qEyZMo9d/3dxRpIaNGigmTNnymQyvfzEAQAAACQ6FGcAAAAApAgxMTHy9/fXiRMnzK8VLFhQBw8eVKpUqSRJX3/9tYYPHy5fX1+dPn1arq6uT+wrLi5OOXPm1KVLl9SzZ099//33Lx2Pv7+/Dh8+rHbt2mnMmDGPXft3cSZt2rS6cOGCPDw8XnoMAAAAAImTg70DAAAAAABbSJUqlaZPn24+V8bR0VHTpk0zF2YkacWKFZKkKlWqPLUwI0lOTk4KCAiQJO3evfuZ4xqGoatXr+rPP//U8ePHzb98fX0lSUeOHHnm/VWqVKEwAwAAACQz/12fDwAAAADJ1HvvvaesWbPq/Pnzypo1q9577z3ztdu3b+uvv/6SJE2aNEmTJk16oT6vXr36xNdXr16tCRMmaNu2bbpz585T779x48Yz+y9cuPALxQEAAAAg6aA4AwAAAACSrl+//kr33b9//7GvDcNQ8+bNNW3atBe6Pyoq6pnXvby8XikuAAAAAIkXxRkAAAAAkBQfH2/+fadOndS0adMXuu/f26JJ0vTp082FmXfeeUedOnVSiRIllCVLFrm7u5u3VWvQoIHmzJmj5x0D+qg9AAAAgOSD4gwAAAAASEqfPr359/fv31fBggVfqZ8pU6ZIknLnzq1du3bJzc3tie3Cw8NfqX8AAAAASZ+DvQMAAAAAgMQgY8aMypIliyRpw4YNz13R8jQnTpyQJFWrVu2phRnDMHTo0KFXCxQAAABAkkdxBgAAAAD+T9WqVSVJZ86c0S+//PJKfcTFxUn671k0/7Zy5Updvnz5lfoHAAAAkPRRnAEAAACA//PNN9/IxcVFktSqVSsdOHDgme1DQkJ09OjRx17LmzevJOnXX3994tZlp0+fVps2bSwUMQAAAICkiOIMAAAAAPwfPz8/TZw4UZJ069Ytffjhh2rWrJmWL1+uQ4cOad++fVq6dKm6deumPHnyqFKlSrpw4cJjfTRo0ECSdOnSJX3wwQeaMWOG9u3bp23btqlv374qVqyYbt26JX9/f5vPDwAAAEDi4GTvAAAAAAAgMWnUqJHc3NzUokULRUZGatq0aZo2bdoT2zo4OOiNN9547LWOHTtq/fr1WrdunU6ePKkmTZo8dt3NzU2zZ8/W6tWrOXcGAAAASKFYOQMAAAAA/6N27do6d+6cfvjhBwUGBsrb21vOzs5yd3dXrly5VKVKFY0YMULnzp1TqVKlHrvX2dlZq1ev1k8//aTixYvL3d1dbm5uypMnj1q1aqVDhw6pVq1adpoZAAAAgMTAZBiGYe8gAAAAAAAAAAAAUgpWzgAAAAAAAAAAANgQxRkAAAAAAAAAAAAbojgDAAAAAAAAAABgQxRnAAAAAAAAAAAAbIjiDAAAAAAAAAAAgA1RnAEAAAAAAAAAALAhijMAAAAAAAAAAAA2RHEGAAAAAAAAAADAhijOAAAAAAAAAAAA2BDFGQAAAAAAAAAAABuiOAMAAAAAAAAAAGBDFGcAAAAAAAAAAABsiOIMAAAAAAAAAACADVGcAQAAAAAAAAAAsKH/BystMbPIAwlFAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"#| eval: false\n",
"fcst = NeuralForecast(models=[model], freq='M')\n",
diff --git a/neuralforecast/models/timemixer.py b/neuralforecast/models/timemixer.py
index 19b1d972c..571c4e96e 100644
--- a/neuralforecast/models/timemixer.py
+++ b/neuralforecast/models/timemixer.py
@@ -5,6 +5,7 @@
'PastDecomposableMixing', 'TimeMixer']
# %% ../../nbs/models.timemixer.ipynb 3
+import math
import numpy as np
import torch
@@ -157,13 +158,13 @@ def __init__(self, seq_len, down_sampling_window, down_sampling_layers):
[
nn.Sequential(
torch.nn.Linear(
- seq_len // (down_sampling_window**i),
- seq_len // (down_sampling_window ** (i + 1)),
+ math.ceil(seq_len // (down_sampling_window**i)),
+ math.ceil(seq_len // (down_sampling_window ** (i + 1))),
),
nn.GELU(),
torch.nn.Linear(
- seq_len // (down_sampling_window ** (i + 1)),
- seq_len // (down_sampling_window ** (i + 1)),
+ math.ceil(seq_len // (down_sampling_window ** (i + 1))),
+ math.ceil(seq_len // (down_sampling_window ** (i + 1))),
),
)
for i in range(down_sampling_layers)
@@ -200,13 +201,13 @@ def __init__(self, seq_len, down_sampling_window, down_sampling_layers):
[
nn.Sequential(
torch.nn.Linear(
- seq_len // (down_sampling_window ** (i + 1)),
- seq_len // (down_sampling_window**i),
+ math.ceil(seq_len / (down_sampling_window ** (i + 1))),
+ math.ceil(seq_len / (down_sampling_window**i)),
),
nn.GELU(),
torch.nn.Linear(
- seq_len // (down_sampling_window**i),
- seq_len // (down_sampling_window**i),
+ math.ceil(seq_len / (down_sampling_window**i)),
+ math.ceil(seq_len / (down_sampling_window**i)),
),
)
for i in reversed(range(down_sampling_layers))
@@ -516,7 +517,7 @@ def __init__(
self.predict_layers = torch.nn.ModuleList(
[
torch.nn.Linear(
- self.input_size // (self.down_sampling_window**i),
+ math.ceil(self.input_size // (self.down_sampling_window**i)),
self.h,
)
for i in range(self.down_sampling_layers + 1)