forked from shinkuan/Akagi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibriichi_helper.py
140 lines (119 loc) · 4.35 KB
/
libriichi_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
def meta_to_recommend(meta: dict, is_3p=False) -> dict:
# """
# {
# "q_values":[
# -9.09196,
# -9.46696,
# -8.365397,
# -8.849772,
# -9.43571,
# -10.06071,
# -9.295085,
# -0.73649096,
# -9.27946,
# -9.357585,
# 0.3221028,
# -2.7794597
# ],
# "mask_bits":2697207348,
# "is_greedy":true,
# "eval_time_ns":357088300
# }
# """
recommend = []
mask_unicode_4p = [
"1m", "2m", "3m", "4m", "5m", "6m", "7m", "8m", "9m",
"1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p",
"1s", "2s", "3s", "4s", "5s", "6s", "7s", "8s", "9s",
"E", "S", "W", "N", "P", "F", "C",
'5mr', '5pr', '5sr',
'reach', 'chi_low', 'chi_mid', 'chi_high', 'pon', 'kan_select', 'hora', 'ryukyoku', 'none'
]
mask_unicode_3p = [
"1m", "2m", "3m", "4m", "5m", "6m", "7m", "8m", "9m",
"1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p",
"1s", "2s", "3s", "4s", "5s", "6s", "7s", "8s", "9s",
"E", "S", "W", "N", "P", "F", "C",
'5mr', '5pr', '5sr',
'reach', 'pon', 'kan_select', 'nukidora', 'hora', 'ryukyoku', 'none'
]
if is_3p:
mask_unicode = mask_unicode_3p
else:
mask_unicode = mask_unicode_4p
def mask_bits_to_binary_string(mask_bits):
binary_string = bin(mask_bits)[2:]
binary_string = binary_string.zfill(46)
return binary_string
def mask_bits_to_bool_list(mask_bits):
binary_string = mask_bits_to_binary_string(mask_bits)
bool_list = []
for bit in binary_string[::-1]:
bool_list.append(bit == '1')
return bool_list
def eq(l, r):
# Check for approximate equality using numpy's floating-point epsilon
return np.abs(l - r) <= np.finfo(float).eps
def softmax(arr, temperature=1.0):
arr = np.array(arr, dtype=float) # Ensure the input is a numpy array of floats
if arr.size == 0:
return arr # Return the empty array if input is empty
if not eq(temperature, 1.0):
arr /= temperature # Scale by temperature if temperature is not approximately 1
# Shift values by max for numerical stability
max_val = np.max(arr)
arr = arr - max_val
# Apply the softmax transformation
exp_arr = np.exp(arr)
sum_exp = np.sum(exp_arr)
softmax_arr = exp_arr / sum_exp
return softmax_arr
def scale_list(list):
scaled_list = softmax(list)
return scaled_list
q_values = meta['q_values']
mask_bits = meta['mask_bits']
mask = mask_bits_to_bool_list(mask_bits)
scaled_q_values = scale_list(q_values)
q_value_idx = 0
true_count = 0
for i in range(46):
if mask[i]:
true_count += 1
for i in range(46):
if mask[i]:
recommend.append((mask_unicode[i], scaled_q_values[q_value_idx]))
q_value_idx += 1
recommend = sorted(recommend, key=lambda x: x[1], reverse=True)
return recommend
def state_to_tehai(state) -> tuple[list[str], str]:
tehai34 = state.tehai # with tsumohai, no aka marked
akas = state.akas_in_hand
tsumohai = state.last_self_tsumo()
return _state_to_tehai(tehai34, akas, tsumohai)
def _state_to_tehai(tile34: int, aka: list[bool], tsumohai: str|None) -> tuple[list[str], str]:
pai_str = [
"1m", "2m", "3m", "4m", "5m", "6m", "7m", "8m", "9m",
"1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p",
"1s", "2s", "3s", "4s", "5s", "6s", "7s", "8s", "9s",
"E", "S", "W", "N", "P", "F", "C", "?"
]
aka_str = [
"5mr", "5pr", "5sr"
]
tile_list = []
for tile_id, tile_count in enumerate(tile34):
for _ in range(tile_count):
tile_list.append(pai_str[tile_id])
for idx, aka in enumerate(aka):
if aka:
tile_list[tile_list.index("5" + ["m", "p", "s"][idx])] = aka_str[idx]
if len(tile_list)%3 == 2 and tsumohai is not None:
tile_list.remove(tsumohai)
else:
tsumohai = "?"
len_tile_list = len(tile_list)
if len_tile_list < 13:
tile_list += ["?"]*(13-len_tile_list)
return (tile_list, tsumohai)