-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
165 lines (101 loc) · 3.4 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from mytorch.nn.linear import Linear
from mytorch.nn.activation import ReLU
class MLP0:
def __init__(self, debug=False):
self.layers = [Linear(2, 3)]
self.f = [ReLU()]
self.debug = debug
def forward(self, A0):
Z0 = self.layers[0].forward(A0)
A1 = self.f[0].forward(Z0)
if self.debug:
self.Z0 = Z0
self.A1 = A1
return A1
def backward(self, dLdA1):
dA1dZ0 =self.f[0].backward()
dLdZ0 = np.multiply(dLdA1 ,dA1dZ0)
dLdA0 = self.layers[0].backward(dLdZ0)
if self.debug:
self.dA1dZ0 = dA1dZ0
self.dLdZ0 = dLdZ0
self.dLdA0 = dLdA0
class MLP1:
def __init__(self, debug=False):
"""
Initialize 2 linear layers. Layer 1 of shape (2,3) and Layer 2 of shape (3, 2).
Use Relu activations for both the layers.
Implement it on the same lines(in a list) as MLP0
"""
self.layers = [Linear(2, 3),Linear(3,2)]
self.f = [ReLU(),ReLU()]
self.debug = debug
def forward(self, A0):
Z0 = self.layers[0].forward(A0)
A1 = self.f[0].forward(Z0)
Z1 = self.layers[1].forward(A1)
A2 = self.f[1].forward(Z1)
if self.debug:
self.Z0 = Z0
self.A1 = A1
self.Z1 = Z1
self.A2 = A2
return A2
def backward(self, dLdA2):
dA2dZ1 = self.f[1].backward()
dLdZ1 = np.multiply(dLdA2,dA2dZ1)
dLdA1 = self.layers[1].backward(dLdZ1)
dA1dZ0 =self.f[0].backward()
dLdZ0 = np.multiply(dLdA1 ,dA1dZ0)
dLdA0 = self.layers[0].backward(dLdZ0)
if self.debug:
self.dA2dZ1 = dA2dZ1
self.dLdZ1 = dLdZ1
self.dLdA1 = dLdA1
self.dA1dZ0 = dA1dZ0
self.dLdZ0 = dLdZ0
self.dLdA0 = dLdA0
class MLP4:
def __init__(self, debug=False):
"""
Initialize 4 hidden layers and an output layer of shape below:
Layer1 (2, 4),
Layer2 (4, 8),
Layer3 (8, 8),
Layer4 (8, 4),
Output Layer (4, 2)
Refer the diagrmatic view in the writeup for better understanding.
Use ReLU activation function for all the layers.)
"""
# List of Hidden Layers
self.layers = [Linear(2, 4),Linear(4,8), Linear(8,8),Linear(8,4),Linear(4,2)]
# List of Activations
self.f=[ReLU(),ReLU(), ReLU(),ReLU(),ReLU()]
self.debug = debug
def forward(self, A):
if self.debug:
self.Z = []
self.A = [A]
L = len(self.layers)
for i in range(L):
Z = self.layers[i].forward(A)
A = self.f[i].forward(Z)
if self.debug:
self.Z.append(Z)
self.A.append(A)
return A
def backward(self, dLdA):
if self.debug:
self.dAdZ = []
self.dLdZ = []
self.dLdA = [dLdA]
L = len(self.layers)
for i in reversed(range(L)):
dAdZ = self.f[i].backward()
dLdZ = np.multiply(dLdA,dAdZ)
dLdA = self.layers[i].backward(dLdZ)
if self.debug:
self.dAdZ = [dAdZ] + self.dAdZ
self.dLdZ = [dLdZ] + self.dLdZ
self.dLdA = [dLdA] + self.dLdA