-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_drosophila_J.py
60 lines (45 loc) · 1.22 KB
/
plot_drosophila_J.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#%% load some stuff
import numpy as np
import matplotlib.pyplot as plt
import pickle
from toolbox import models
plt.rcParams['font.size'] = 15
plt.rcParams['axes.spines.right'] = False
plt.rcParams['axes.spines.top'] = False
result = pickle.load(open('./results/drosophila_J_dim.p', 'rb'))
lin_dim, nonlin_dim, lins, nonlins = [result[k] for k in ['lin_dim', 'nonlin_dim', 'lins', 'nonlins']]
# %%
for dat in [(nonlins, nonlin_dim), (lins, lin_dim)]:
for i in range(2):
plt.figure()
plt.hist(dat[0][:, i], bins = 10)
plt.axvline(dat[1], color = 'k')
plt.show()
# %% try decorrelating J
# what is the inpur covariance that would be optimally decorrelated by the experimentally observed J?
J_G = np.load('niks_crap/glom_J.npy')
C = J_G @ J_G.T
plt.figure()
plt.imshow(C)
plt.show()
vals,Z1 = np.linalg.eigh(C)
print(Z1.shape)
Ctilde_int = Z1.T @ C @ Z1
plt.figure()
plt.imshow(Ctilde_int)
plt.show()
Z = Z1 * (1 / np.sqrt(vals[None, :]))
Ctilde = Z.T @ C @ Z
plt.figure()
plt.imshow(Ctilde)
plt.show()
Jtilde = Z.T @ J_G
print(models.get_dimM(Jtilde.T))
K = Z @ Z.T
plt.figure()
plt.imshow(K)
plt.show()
Xhat = np.random.normal(0, 1, (10000, 50)) @ Z.T
Yhat = Xhat @ J_G
print(models.get_dimM(Yhat))
# %%