-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes.tex
155 lines (140 loc) · 6.44 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
\documentclass{article}
\usepackage[margin=0.7in]{geometry}
\usepackage[parfill]{parskip}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,amsfonts,amsthm,bm}
\usepackage{graphicx}
\usepackage{titlesec}
\usepackage[table]{xcolor}
\usepackage[colorlinks=true, linkcolor=dblue, citecolor=dred]{hyperref}
\usepackage[nameinlink]{cleveref}
\usepackage{natbib}
\usepackage{braket}
\usepackage{url}
\usepackage{lmodern}
\definecolor{dred}{rgb}{0.6,0,0}
\definecolor{dpurple}{HTML}{A020F0}
\definecolor{dblue}{rgb}{0,0,0.6}
\Crefname{equation}{Equation}{Equations}
\Crefname{figure}{Figure}{Figures}
\creflabelformat{equation}{#2#1#3}
\crefrangelabelformat{equation}{#3#1#4-#5#2#6}
\renewcommand\b\bm
\begin{document}
\begin{equation}
C_{ii} = var(m_i) = f (1-f)
\end{equation}
\begin{align}
dim &= \frac{(\sum_i \lambda_i)^2}{\sum_i \lambda_i^2}\\
&= \frac{tr(\b{C})^2}{tr(\b{C} \b{C})}\\
&= \frac{tr(\b{C})^2}{\sum_{ij}C_{ij}^2}\\
&= \frac{(M f (1-f))^2}{M f^2 (1-f)^2 + \sum_{i \neq j} C_{ij}^2}\\
&\approx \frac{M^2 f^2 (1-f)^2}{M f^2 (1-f)^2 + M (M-1) \braket{C_{i \neq j}^2}}\\
&= \frac{M}{1 + (M-1)f^{-2}(1-f)^{-2}\braket{C_{i \neq j}^2}}.
\end{align}
Define $\b{\Sigma} = \b{J}^T \b{J}$ and $\b{z}_{ij} = [z_i; z_j] \sim \mathcal{N}(\b{z}, \b{\mu} = 0, \b{\Sigma}[i;j, i;j] ) $.
\begin{align}
C_{ij} &= \braket{m_i m_j} - f^2\\
&= p(z_i > \theta_i \cup z_j > \theta_j) - f^2\\
&= \int_{z_i = \theta_i} \left [ \int_{z_j = \theta_j} p(z_j| z_i) dz_j \right ] p(z_i) dz_i.
\end{align}
Define $S_{ij} = s_{ij}^2 = \braket{(\b{j}_i^T \b{x})^T (\b{j}_j^T \b{x})}$ as the output correlation before the nonlinearity.
Can we make a convexity argument about $\braket{C_{ij}^2}$ and $\braket{S_{ij}^2}$ and apply Jensen's inequality?
This would be useful since we can analytically compute $\braket{S_{ij}^2}$:
\begin{align}
\braket{S_{ij}^2} &= \int S^2 p(\rho|\b{j}_1, \b{j}_2) p(\b{j}_1) p(\b{j}_2) dS d\b{j}_1 d\b{j}_2\\
&= \int (\b{j}_1^T \b{j}_2)^2 p(\b{j}_1) p(\b{j}_2) d\b{j}_1 d\b{j}_2\\
&= \int (\b{j}_1^T \b{j}_2)^2 p(\b{j}_1|K_1) p(\b{j}_2|K_2) d\b{j}_1 d\b{j}_2 dK_1 dK_2\\
&= \int S(O; K_1, K_2)^2 p(O|K_1, K_2) p(K_1) p(K_2) dO dK_1 dK_2\\
&= \int S(O; K_1, K_2)^2 Hypergeom(N, K_1, K_2, O) p(K_1) p(K_2) dO dK_1 dK_2,
\end{align}
where
\begin{align}
S(O; K_1, K_2) &= O j_+^2 + (K_1 + K_2 - 2O) j_- j_+ + (N - K_1 - K_2 + O) j_-^2\\
&= O(j_+^2 + j_-^2 - 2 j_+ j_-) + (K_1 + K_2)(j_+ j_- - j_-^2)+Nj_-^2\\
&= O (j_+ - j_-)^2 + (K_1 + K_2)((1- \mu_j)(-\mu_j) - (-\mu_j)^2) + N \mu_j^2\\
&= O(1 - \mu_j + \mu_j) - \mu_j (K_1 + K_2) + \mu_j^2 N
&:= O + \beta
\end{align}
with $j_+ = 1 - \mu_j$ and $j_- = 0 - \mu_j$ in the presence of inhibition.
Now
\begin{equation}
S(O; K_1, K_2)^2 = O^2 + 2O \beta + \beta^2.
\end{equation}
We now note that
\begin{equation}
\int O Hypergeom(N, K_1, K_2, O) dO = K_1 K_2 / N
\end{equation}
and
\begin{equation}
\int O^2 Hypergeom(N, K_1, K_2, O) dO =
N^{-2} \left ( (K_1 K_2)^2 + \frac{K_1 K_2 (N-K_1) (N-K_2)}{N-1} \right ) := \gamma.
\end{equation}
This leads to
\begin{align}
\braket{S_{ij}^2}
&= \int (\gamma + 2\beta K_1 K_2/N + \beta^2 ) p(K_1) p(K_2) dK_1 dK_2.
\end{align}
We now treat these terms one at a time, remembering that $\beta = N \mu_j^2 - \mu_j (K_1 + K_2)$, noting that $\mu_j = \frac{\braket{K}}{N} := \frac{\mu_k}{N}$, and denoting $v_k := \braket{K^2}$.
\begin{align}
I_1 &:= \int \gamma p(K_1) p(K_2) dK_1 dK_2\\
&= \braket{K^2}^2/N^2 + (N-1)^{-1} (\braket{K}^2 + \braket{K^2}^2/N^2 - 2 \braket{K} \braket{K^2} / N)\\
&= \frac{\braket{K^2}^2}{N (N-1)} + \frac{\braket{K}^2}{N-1} - 2 \frac{\braket{K} \braket{K^2}}{N (N-1)}\\
&= \frac{v_k^2}{N (N-1)} + \frac{\mu_k^2}{N-1} - 2 \frac{\mu_k v_k}{N (N-1)}
\end{align}
\begin{align}
I_2 &:= \int (2\beta K_1 K_2/N) p(K_1) p(K_2) dK_1 dK_2\\
&= 2/N \int ((-\mu_j (K_1+K_2) + N \mu_j^2) K_1 K_2) p(K_1) p(K_2) dK_1 dK_2\\
&=2/N \left ( N \mu_j^2 \braket{K}^2 - 2 \mu_j \braket{K}\braket{K^2} \right )\\
&= 2 \mu_j^2 \braket{K}^2 - 4 \frac{\mu_j \braket{K}\braket{K^2}}{N}\\
&= 2 \frac{\mu_k^4}{N^2} - 4 \frac{\mu_k^2 v_k}{N^2}\\
&= 2 \frac{\mu_k^2}{N^2}(\mu_k^2 - 2 v_k)
\end{align}
\begin{align}
I_3 &:= \int \beta^2 p(K_1) p(K_2) dK_1 dK_2\\
&= \int (N \mu_j^2 - \mu_j (K_1+K_2))^2 p(K_1) p(K_2) dK_1 dK_2\\
&= N^2 \mu_j^4 - 4 N \mu_j^3 \braket{K} + 2 \mu_j^2 (\braket{K}^2 + \braket{K^2})\\
&= \frac{\mu_k^4}{N^2} - 4 \frac{\mu_k^4}{N^2} + 2 \frac{\mu_k^4 + \mu_k^2 v_k}{N^2}\\
&= \frac{\mu_k^2}{N^2}(2 v_k - \mu_k^2)
\end{align}
This gives us
\begin{align}
\braket{S_{ij}^2} &= I_1 + I_2 + I_3\\
&= \frac{v_k^2}{N (N-1)} + \frac{\mu_k^2}{N-1} - 2 \frac{\mu_k v_k}{N (N-1)} + 2 \frac{\mu_k^2}{N^2}(\mu_k^2 - 2 v_k) + \frac{\mu_k^2}{N^2}(2 v_k - \mu_k^2)\\
&= \frac{v_k^2}{N (N-1)} + \frac{\mu_k^2}{N-1} - 2 \frac{\mu_k v_k}{N (N-1)} + \frac{\mu_k^4}{N^2} - 2 \frac{\mu_k^2}{N^2} v_k.
\end{align}
We can take the derivative of this result to find the optimum:
\begin{align}
\frac{\partial \braket{S_{ij}^2}}{\partial v_k} &=
2 \frac{v_k}{N (N-1)} - 2 \frac{\mu_k}{N (N-1)} - 2 \frac{\mu_k^2}{N^2}\\
&\propto v_k - \mu_k - \mu_k^2 + \frac{\mu_k^2}{N}.
\end{align}
We see that this is zero, and the correlation thus optimized, when the variance is
\begin{equation}
v_k - \mu_k^2 = \mu_k ( 1 - \frac{\mu_k}{N}).
\end{equation}
We can also note that
\begin{align}
\braket{S_{ii}} &= \braket{\b{j}_i^T \b{j}_i}\\
&= \braket{K j_+^2 + (N-K) j_-^2}\\
&= \braket{K (1 + \mu_j^2 - 2 \mu_j) + N \mu_j^2 - K \mu_j^2}\\
&= \braket{K - 2 K \mu_k/N + \mu_k^2/N}\\
&= \mu_k - 2 \mu_k^2/N + \mu_k^2 / N\\
&= \mu_k (1 - \mu_k / N)
\end{align}
and
\begin{align}
\braket{S_{ii}^2} &= \braket{(K(1 - 2 \mu_k/N) + \mu_k^2/N)^2}\\
&= \braket{K^2(1 + 4 \mu_k^2 / N^2 - 4 \mu_k/N) + \mu_k^4/N^2 + 2 K (\mu_k^2/N - 2 \mu_k^3/N^2)}\\
&= v_k(1 + 4 \mu_k^2 / N^2 - 4 \mu_k/N) + \mu_k^4/N^2 + 2 \mu_k^3/N - 4 \mu_k^4/N^2\\
&= v_k(1 + 4 \mu_k^2 / N^2 - 4 \mu_k/N) + 2 \mu_k^3/N - 3 \mu_k^4/N^2.
\end{align}
This allows us to compute the input dimensionality
\begin{align}
dim &= \frac{M \braket{S_{ii}}^2}{\braket{S_{ii}^2} + (M-1) \braket{S_{ij}^2}}.
\end{align}
Since $\braket{S_{ii}}^2$ does not depend on $v_k$, the dimensionality is minimized when the denominator is maximized, which happens when
\begin{equation}
v_k - \mu_k^2 = \mu_k ( 1 - \frac{\mu_k}{N}) - N(N-1)/(2M-2) (1 + 4 \mu_k^2 / N^2 - 4 \mu_k/N).
\end{equation}
\end{document}