-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalytical_dim_sims.py
59 lines (48 loc) · 1.49 KB
/
analytical_dim_sims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#%% load stuff
import numpy as np
import matplotlib.pyplot as plt
import pickle
import sys
from params import params
#%% define a function for sampling weights
def get_J_var(K, N, M, rep, p = 0.2, inc = 1):
assert K-inc > -0.5
J = np.zeros((rep, N, M)) #weight matrix
Kvals = [K-inc, K+inc, K]
pvals = np.array([p/2, p, np.inf])
for r in range(rep):
for i in range(M):
Ki = Kvals[int(np.sum(np.random.uniform() > pvals))]
J[r, np.random.choice(N, Ki, replace=False), i] = 1
return J
def get_dim(C):
trs = np.trace(C, axis1=1, axis2=2)
dim = trs**2/np.sum(C**2, axis = (1,2))
return np.mean(dim)
#%% run some simulations
S = params['S']
N = params['N']
rep = 1000
Ks = np.array([3,4,6,8,10,12])
Ms = np.round(S/Ks).astype(int)
ps = np.linspace(0, 1.0, 21)
vars_K = []
dims_K = []
incval = 3
for iK, K in enumerate(Ks):
vars_K.append([])
dims_K.append([])
for ip, p in enumerate(ps):
J = get_J_var(K, N, Ms[iK], rep, p = p, inc = incval)
J -= np.mean(J)
C = J.transpose(0, 2, 1) @ J
dims_K[-1].append(get_dim(C))
C[:, np.arange(C.shape[1]), np.arange(C.shape[2])] = np.nan
if K % 4 == 2 and ip % 3 == 0:
print(K, p, np.nanmean(C), np.nanvar(C), dims_K[-1][-1])
sys.stdout.flush()
vars_K[-1].append(np.nanvar(C))
result = {'Ks': Ks, 'ps': ps, 'dims_K': dims_K, 'vars_K': vars_K, 'incval': incval,
'Ms': Ms, 'N': N, 'S': S}
pickle.dump(result, open('results/analytical_dims.p', 'wb'))
# %%