-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_triplet.py
157 lines (122 loc) · 5.67 KB
/
train_triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import matplotlib.pyplot as plt
import open3d as o3d
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torch.nn as nn
import os
import glob
from tqdm import tqdm
import pandas as pd
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
from dataset.PointCloudDataset import PointCloudDataset
from dataset.voxelDataset import VoxelDataset
from classifier import Classifier
#from networks.PointNet import PointNet
#from networks.voxnet import VoxNet
#from networks.res_voxnet import ResVoxNet
from TripletLoss.tripletnet import TripletNet, LinClassifier, WholeNet
from TripletLoss.custom_losses import TripletCenterLoss
import argparse
import os
# 2000 dati allenati con batch 32 e 5e-4
# 4000 dati allenati con batch 64 e 1e-3
parser = argparse.ArgumentParser(description='training')
parser.add_argument('--model_name', type=str, default='tripletnet', help='model name (default: tripletnet)', choices=['tripletnet'])
parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate (default: 0.001)')
parser.add_argument('--batch_size', type=int, default=64, help='batch size (default: 32)')
parser.add_argument('--save_dir', type=str, default='checkpoints', help='directory to save checkpoints (default: checkpoints/pointnet)')
parser.add_argument('--ndata', type=int, default=4000, help='number of data points to use (default: 2000)')
parser.add_argument('--npoints', type=int, default=5000, help='number of points in the point cloud (default: 4000)')
parser.add_argument('--train', type=bool, default=True, help='train or test (default: True)')
parser.add_argument('--rotation', type=bool, default=True, help='augment samples using random rotations (default: False)')
args = parser.parse_args()
def main (
model_name='tripletnet',
epochs=10,
lr=0.001,
batch_size=32,
save_dir='checkpoints',
ndata=4000,
npoints = 4000,
train=False,
rotation=False
):
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
save_dir = os.path.join(save_dir, model_name)
##############################
# LOAD MODEL AND DATASET
##############################
print (f"Loading model {model_name}...")
if model_name == 'tripletnet':
dataset_train = PointCloudDataset('dataset/modelnet40_normal_resampled',
train=True,
ndata=ndata,
file_extension='.txt',
npoints=npoints,
rotation=rotation
)
if train: test_data = int(ndata/20)
else: test_data = -1
dataset_val = PointCloudDataset('dataset/modelnet40_normal_resampled',
train=False,
ndata=test_data,
file_extension='.txt',
npoints=npoints,
rotation=False
)
print (f"Train dataset size: {len(dataset_train)}")
print (f"Val dataset size: {len(dataset_val)}")
dataloader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=4)
dataloader_val = DataLoader(dataset_val, batch_size=32, shuffle=True)
Net_tcl = TripletNet()
Net_cls = LinClassifier(nfeatures=256, nclasses=40)
parameters = Net_tcl.parameters()
optimizer = optim.SGD(parameters, lr=5e-4, weight_decay=1e-5)
else:
raise ValueError(f"Model {model_name} not implemented")
# load model if exists
models_saved = glob.glob(os.path.join(save_dir, 'model_*.torch'))
if len(models_saved) > 0:
# get most recent model
epoches_done = max([int(model.split('_')[-1].split('.')[0]) for model in models_saved])
model_tcl_path = os.path.join(save_dir, f'model_{epoches_done}.torch')
print(f"Loading model from {model_tcl_path}")
Net_tcl.load_state_dict(torch.load(model_tcl_path))
model_cls_path = os.path.join(save_dir, f'model_cls_{epoches_done}.torch')
print(f"Loading model from {model_cls_path}")
Net_cls.load_state_dict(torch.load(model_cls_path))
else:
epoches_done = 0
# move models to device
Net_tcl.to(device)
Net_cls.to(device)
features_extractor = Classifier(Net_tcl, device=device)
#LOSS
loss_cls = nn.CrossEntropyLoss()
loss_tcl = TripletCenterLoss(margin=5)
if train:
print ("Starting training")
features_extractor.train_triplet(Net_cls, dataloader_train, dataloader_val, epochs=epochs, optimizer=optimizer,
loss_fn = [loss_cls, loss_tcl], save_dir=save_dir, start_epoch=epoches_done+1)
print ("Training done")
else:
print ("Starting testing")
# whole net
Net_whole = WholeNet(Net_tcl, Net_cls)
Net_whole.to(device)
classifier = Classifier(Net_whole, device=device)
results = classifier.test(dataloader_val)
print ("Testing done")
print(results)
# save results in csv
results.to_csv(os.path.join(save_dir, 'test_results.csv'), index=False)
if __name__ == '__main__':
main(
**vars(args)
)