-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict.py
50 lines (44 loc) · 1.88 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from tensorflow.python.ops.gen_math_ops import imag
import pickle
from tensorflow.keras.models import load_model
import sys
from argparse import ArgumentParser
import display
from predict_func import *
from metrics import m_iou
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--model-save',default= 'Unet.h5', type= str)
parser.add_argument('--classes', type= int, default= 2)
parser.add_argument('--test-file', type= str, required= True)
parser.add_argument('--image-size', type= int, default= 256)
parser.add_argument('--color-mode', default= 'hsv', type= str)
parser.add_argument('--function',default= None)
parser.add_argument('--use-kmean', default= True, type= bool)
try:
args= parser.parse_args()
except:
parser.print_help()
sys.exit(0)
assert args.color_mode == 'hsv' or args.color_mode == 'rgb', 'hsv or rgb'
print('---------------------Welcome to Unet-------------------')
print('Author')
print('Github: Nguyendat-bit')
print('Email: nduc0231@gmail')
print('---------------------------------------------------------------------')
print('Predict Unet model with hyper-params:')
print('===========================')
for i, arg in enumerate(vars(args)):
print('{}.{}: {}'.format(i, arg, vars(args)[arg]))
Mean_IoU = m_iou(args.classes)
# Load model
unet = load_model(args.model_save, custom_objects= {'mean_iou':Mean_IoU.mean_iou})
kmean = None
# Load label
with open('label.pickle', 'rb') as handel:
label = pickle.load(handel)
if args.use_kmean:
with open('kmean.pickle', 'rb') as handel:
kmean = pickle.load(handel)
inp_size = (args.image_size, args.image_size)
display.show_example(args.test_file, None, unet, label, inp_size, args.color_mode, None, None, function= args.function, kmean= kmean)