-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_evaluation.py
53 lines (42 loc) · 1.62 KB
/
model_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
date: 2021/3/15 4:56 下午
written by: neonleexiang
"""
import numpy as np
import os
import cv2 as cv
import tensorflow as tf
def psnr(img1, img2):
diff = img1 - img2
mse = np.mean(np.square(diff))
return 10 * np.log10(255 * 255 / mse)
class Self_Defined_psnr_accuracy(tf.keras.metrics.Metric):
def __init__(self):
super().__init__()
self.psnr_result = []
# self.total = self.add_weight(name='total', dtype=tf.int32, initializer=tf.zeros_initializer())
# self.count = self.add_weight(name='count', dtype=tf.int32, initializer=tf.zeros_initializer())
def update_state(self, y_true, y_pred, sample_weight=None):
# values = tf.cast(tf.equal(y_true, tf.argmax(y_pred, axis=-1, output_type=tf.int32)), tf.int32)
# self.total.assign_add(tf.shape(y_true)[0])
# self.count.assign_add(tf.reduce_sum(values))
for t, p in zip(y_true, y_pred):
self.psnr_result.append(psnr(t * 255., p * 255.))
def result(self):
return np.mean(self.psnr_result)
# return self.count / self.total
if __name__ == '__main__':
prefix = 'result/data_pred'
dir_1 = '-img.png'
dir_2 = '-pred.png'
p_result = []
for i in range(1, 10):
img1_dir = os.path.join(prefix, str(i)+dir_1)
img2_dir = os.path.join(prefix, str(i)+dir_2)
img1 = cv.imread(img1_dir, cv.IMREAD_GRAYSCALE)
img2 = cv.imread(img2_dir, cv.IMREAD_GRAYSCALE)
p_result.append(psnr(img1, img2))
print(np.mean(p_result))
# dir = 'result/data_pred/1-img.png'
# img1 = cv.imread(dir, cv.IMREAD_GRAYSCALE)
# print(img1)