这个文件是用来记录一些常用的模版代码,一些基本的子问题的代码。
反转指定区间的代码:
/** 反转区间 [a, b) 的元素,注意是左闭右开 */
ListNode reverse(ListNode a, ListNode b) {
ListNode pre, cur, nxt;
pre = null; cur = a; nxt = a;
// while 终止的条件改一下就行了
while (cur != b) {
nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
}
// 返回反转后的头结点
return pre;
}
反转以 a 为头节点的链表代码:
// 反转以 a 为头结点的链表
ListNode reverse(ListNode a) {
ListNode pre, cur, nxt;
pre = null; cur = a; nxt = a;
while (cur != null) {
nxt = cur.next;
// 逐个结点反转
cur.next = pre;
// 更新指针位置
pre = cur;
cur = nxt;
}
// 返回反转后的头结点
return pre;
}
对应二叉树的遍历基础代码,链表也有对应的前序遍历和后序遍历
二叉树的遍历:
void traverse(TreeNode root) {
// 前序遍历代码
traverse(root.left);
// 中序遍历代码
traverse(root.right);
// 后序遍历代码
}
链表的递归遍历
void traverse(ListNode head) {
// 前序遍历代码
traverse(head.next);
// 后序遍历代码
}
差分数组技巧
class Difference {
// 差分数组
private: vector<int> diff;
public:
Difference(vector<int>& nums) {
// assert nums.size() > 0;
diff = vector<int>(nums.size());
diff[0] = nums[0];
for (int i=1; i < nums.size(); i++)
diff[i] = nums[i] - nums[i-1];
}
void increment(int i, int j, int val) {
diff[i] += val;
if (j+1 < diff.size())
diff[j+1] -= val;
}
vector<int> result() {
vector<int> res(diff.size());
res[0] = diff[0];
for (int i = 1; i < diff.size(); i++)
res[i] = res[i-1] + diff[i];
return res;
}
};
滑动窗口算法核心框架
// 滑动窗口算法框架
// labuladong 写法
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c: t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
char c = s[right];
// 右移(增大)窗口
right++;
// 进行窗口内数据的一系列更新
while (window needs shrink) {
char d = s[left];
// 左移(缩小)窗口
left++;
// 进行窗口内数据的一系列更新
}
}
}
经典数据结构算法-> 二分查找
int binarySearch(int[] nums, int target) {
// 一左一右两个指针相向而行
int left =0, right = nums.length - 1;
while (left <= right) {
int mid = (right + left) / 2;
if (nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid -1;
}
return -1;
}
滑动窗口法
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 增大窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 缩小窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
二分查找框架
int binarySearch(int[] nums, int target) {
int left = 0, right = ...;
while(...) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
...
} else if (nums[mid] < target) {
left = ...
} else if (nums[mid] > target) {
right = ...
}
}
return ...;
}
最简单的c++基本的二分搜索
int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1; // 注意
while(left <= right) {
int mid = left + (right - left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1; // 注意
else if (nums[mid] > target)
right = mid - 1; // 注意
}
return -1;
}
寻找左侧边界的二分搜索
int left_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0;
int right = nums.length; // 注意
while (left < right) { // 注意
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid; // 注意
}
}
return left;
}
int left_bound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
// 搜索区间为 [left, right]
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
// 搜索区间变为 [mid+1, right]
left = mid + 1;
} else if (nums[mid] > target) {
// 搜索区间变为 [left, mid-1]
right = mid - 1;
} else if (nums[mid] == target) {
// 收缩右侧边界
right = mid - 1;
}
}
// 检查出界情况
if (left >= nums.length || nums[left] != target) {
return -1;
}
return left;
}
寻找右侧边界
int right_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0, right = nums.length;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
left = mid + 1; // 注意
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid;
}
}
return left - 1; // 注意
}
int right_bound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] == target) {
// 这里改成收缩左侧边界即可
left = mid + 1;
}
}
// 这里改为检查 right 越界的情况,见下图
if (right < 0 || nums[right] != target) {
return -1;
}
return right;
}
int binary_search(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while(left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if(nums[mid] == target) {
// 直接返回
return mid;
}
}
// 直接返回
return -1;
}
int left_bound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] == target) {
// 别返回,锁定左侧边界
right = mid - 1;
}
}
// 最后要检查 left 越界的情况
if (left >= nums.length || nums[left] != target) {
return -1;
}
return left;
}
int right_bound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] == target) {
// 别返回,锁定右侧边界
left = mid + 1;
}
}
// 最后要检查 right 越界的情况
if (right < 0 || nums[right] != target) {
return -1;
}
return right;
}
目标元素不存在的情况,这里补充一下。
当目标元素 target 不存在数组 nums 中时,搜索左侧边界的二分搜索的返回值可以做以下几种解读:
1、返回的这个值是 nums 中大于等于 target 的最小元素索引。
2、返回的这个值是 target 应该插入在 nums 中的索引位置。
3、返回的这个值是 nums 中小于 target 的元素个数。
比如在有序数组 nums = [2,3,5,7] 中搜索 target = 4,搜索左边界的二分算法会返回 2,你带入上面的说法,都是对的。
所以以上三种解读都是等价的,可以根据具体题目场景灵活运用,显然这里我们需要的是第一种。
// 搜索左侧边界的二分搜索
int left_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0, right = nums.length;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid;
}
}
return left;
}
二分查找的边界问题:
// 搜索左侧边界
int left_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0, right = nums.length;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
// 当找到 target 时,收缩右侧边界
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] > target) {
right = mid;
}
}
return left;
}