Skip to content

Latest commit

 

History

History
38 lines (31 loc) · 1.66 KB

README.md

File metadata and controls

38 lines (31 loc) · 1.66 KB

Experiments

Here you can find instructions for reproducing the experiments presented in the paper.

Additionally, in randresnet_configs.sh and resnet_configs.sh you can find the optimal configurations identified during model selection and used in our experiments, for randResNet and fully-trainable ResNet, respectively.

randResNet

To test randResNet on the MNIST dataset across $10$ different random initializations, run the following:

  • $5K$ trainable parameters
python test_randresnet.py --dataset mnist --n_filters 125 --n_layers 3 --scaling 1.0 --alpha 0.5 --beta 0.5 --reg 0.0 --batch_size 256 --n_trials 10
  • $19K$ trainable parameters
python test_randresnet.py --dataset mnist --n_filters 478 --n_layers 3 --scaling 1.0 --alpha 0.5 --beta 0.5 --reg 0.0 --batch_size 256 --n_trials 10
  • $75K$ trainable parameters
python test_randresnet.py --dataset mnist --n_filters 1875 --n_layers 3 --scaling 1.0 --alpha 0.5 --beta 0.5 --reg 0.0 --batch_size 256 --n_trials 10

ResNet

To test fully-trainable ResNet on the MNIST dataset across $10$ different random initializations, run the following:

  • $5K$ trainable parameters
python test_resnet.py --dataset mnist --num_blocks '[1]' --optimizer sgd --lr 0.1 --epochs 50 --patience 10 --batch_size 256 --n_trials 10
  • $19K$ trainable parameters
python test_resnet.py --dataset mnist --num_blocks '[1, 1]' --optimizer sgd --lr 0.1 --epochs 50 --patience 10 --batch_size 256 --n_trials 10
  • $75K$ trainable parameters
python test_resnet.py --dataset mnist --num_blocks '[1, 1, 1]' --optimizer sgd --lr 0.1 --epochs 50 --patience 10 --batch_size 256 --n_trials 10