From 208d638ec2c7fbcf055529d728c2d8a53054b684 Mon Sep 17 00:00:00 2001 From: Gerrit Kuik <71829427+GerritKuik@users.noreply.github.com> Date: Wed, 13 Mar 2024 09:33:59 +0100 Subject: [PATCH] Update Control_systems.md --- Control_systems.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Control_systems.md b/Control_systems.md index 6037087..79ee7bd 100644 --- a/Control_systems.md +++ b/Control_systems.md @@ -1,4 +1,4 @@ -(control_systems)= +exercise(control_systems)= # Control systems In this chapter a number of basic principles of control systems are covered. The following will be discussed: @@ -422,8 +422,8 @@ so $$ \begin{split} -{\rm Re} [ A ( \omega ) ] &= \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2} = \frac{1}{1 + \left( \frac{1}{\omega \tau} \right)^2},\; {\rm and} \\ -{\rm Im} [ A ( \omega ) ] &= \frac{\omega \tau}{1 + \omega^2 \tau^2} = \frac{1}{1 + \frac{1}{\omega \tau} + \omega \tau}. +{\rm Re} [ A ( \omega ) ] &= \frac{\omega^2 \tau^2}{1 + \omega^2 \tau^2},\; {\rm and} \\ +{\rm Im} [ A ( \omega ) ] &= \frac{\omega \tau}{1 + \omega^2 \tau^2}. \end{split} $$ (eq:ch7-15)