-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbigram.py
110 lines (91 loc) · 3.66 KB
/
bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
import torch.nn .functional as F
torch.manual_seed(1337)
# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 8 # what is the maximum context length for predictions?
max_iters = 3000
eval_interval = 300
learning_rate = 1e-2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
with open('data/input.txt', 'r', encoding='utf-8') as f:
text = f.read()
#unique chars in the text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# mapping from chars to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,)) # 4 randint from 0-(len(data)-block_size)
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
#simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self,vocab_size):
super().__init__()
self.token_embed_tabel=nn.Embedding(vocab_size,vocab_size) # each token directly reads off the logits for the next token from a lookup table
def forward(self,idx,targets=None):#id and and target are integer tensor
logits=self.token_embed_tabel(idx) # B,T,C -> (batch,time(block),channels(vocab))
if targets is None:
loss=None
else:
#pytorch arrange it differnt way and the dimension
B,T,C=logits.shape
logits=logits.view(B*T,C)
targets=targets.view(B*T)
loss=F.cross_entropy(logits,targets)
return logits,loss
def generate(self,idx,max_new_tokens):
for _ in range(max_new_tokens):
logits,loss=self(idx) #get the prediction
logits=logits[:,-1,:] # focus only in the last time stamp -> becomes( B*C )
probs=F.softmax(logits,dim=-1) #get prob
idx_next=torch.multinomial(probs,num_samples=1)
idx=torch.cat((idx,idx_next), dim=1)
#print(idx)
return idx
model = BigramLanguageModel(vocab_size)
m = model.to(device) #directly move the table to the gpu
#optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
if iter % eval_interval == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# sample a batch of data
xb, yb = get_batch('train')
# loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))