-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
479 lines (408 loc) · 14.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import tkinter as tk
from tkinter import Tk
from tkinter import filedialog
import pandas as pd
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import LinearSVC
import matplotlib.figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from tkinter import ttk
from tkinter.filedialog import askopenfilename
from collections import OrderedDict
filename=None
ErrorrateMeans=list()
AccuracyMeans=list()
def browse() :
Tk().withdraw()
global filename
filename = askopenfilename()
print (filename)
def Create_Input_Window():
input_window = tk.Toplevel(root)
input_window.geometry("400x500")
input_window.resizable(0, 0)
def retrieve_input():
if e1 :
inputframe =pd.DataFrame(
OrderedDict(
{
'UserID':[e1.get()],
'No Of Abuse Report':[e2.get()],
'Rejected Friend Requests':[e3.get()],
'No Of Freind Requests Thar Are Not Accepted':[e4.get()],
'No Of Friends':[e5.get()],
'No Of Followers':[e6.get()],
'No Of Likes To Unknown Account':[e7.get()],
'No Of Comments Per Day':[e8.get()],
}))
inputframe = inputframe[['UserID', 'No Of Abuse Report','No Of Freind Requests Thar Are Not Accepted','No Of Friends','No Of Followers','No Of Likes To Unknown Account','No Of Comments Per Day']]
print(inputframe.loc[0])
Naive_Bayes_Manual_Input(inputframe)
def show_predicted_label(label):
if label == 1:
account_type_label=tk.Label(input_window, text="Account Type : Fake").grid(row=24)
else :
account_type_label=tk.Label(input_window, text="Account Type : Not Fake").grid(row=24)
def Linear_Svc_Manual_Input ():
if filename :
print("here")
if e1 :
inputframe =pd.DataFrame(
OrderedDict(
{
'UserID':[e1.get()],
'No Of Abuse Report':[e2.get()],
'Rejected Friend Requests':[e3.get()],
'No Of Freind Requests Thar Are Not Accepted':[e4.get()],
'No Of Friends':[e5.get()],
'No Of Followers':[e6.get()],
'No Of Likes To Unknown Account':[e7.get()],
'No Of Comments Per Day':[e8.get()],
}))
inputframe = inputframe[['UserID', 'No Of Abuse Report','No Of Freind Requests Thar Are Not Accepted','No Of Friends','No Of Followers','No Of Likes To Unknown Account','No Of Comments Per Day']]
print(inputframe.loc[0])
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = inputframe
testing_data=test.values[:, 0:7]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model2 = LinearSVC()
model2.fit(features,labels)
predictions_model2 = model2.predict(testing_data)
print('2.Linear SVC :\n')
print('\n Predicted Class :',predictions_model2[0])
show_predicted_label(predictions_model2[0])
def Naive_Bayes_Manual_Input ():
if filename :
print("here")
if e1 :
inputframe =pd.DataFrame(
OrderedDict(
{
'UserID':[e1.get()],
'No Of Abuse Report':[e2.get()],
'Rejected Friend Requests':[e3.get()],
'No Of Freind Requests Thar Are Not Accepted':[e4.get()],
'No Of Friends':[e5.get()],
'No Of Followers':[e6.get()],
'No Of Likes To Unknown Account':[e7.get()],
'No Of Comments Per Day':[e8.get()],
}))
inputframe = inputframe[['UserID', 'No Of Abuse Report','No Of Freind Requests Thar Are Not Accepted','No Of Friends','No Of Followers','No Of Likes To Unknown Account','No Of Comments Per Day']]
print(inputframe.loc[0])
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = inputframe
testing_data=test.values[:, 0:7]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model1 = MultinomialNB()
model1.fit(features,labels)
predictions_model1 = model1.predict(testing_data)
print('\n1.Multinomial Naive Bayes :\n')
print('\n Predicted Class :',predictions_model1[0])
show_predicted_label(predictions_model1[0])
def Knn__Manual_Input():
if filename :
print("here")
if e1 :
inputframe =pd.DataFrame(
OrderedDict(
{
'UserID':[e1.get()],
'No Of Abuse Report':[e2.get()],
'Rejected Friend Requests':[e3.get()],
'No Of Freind Requests Thar Are Not Accepted':[e4.get()],
'No Of Friends':[e5.get()],
'No Of Followers':[e6.get()],
'No Of Likes To Unknown Account':[e7.get()],
'No Of Comments Per Day':[e8.get()],
}))
inputframe = inputframe[['UserID', 'No Of Abuse Report','No Of Freind Requests Thar Are Not Accepted','No Of Friends','No Of Followers','No Of Likes To Unknown Account','No Of Comments Per Day']]
print(inputframe.loc[0])
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = inputframe
testing_data=test.values[:, 0:7]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model3 = KNeighborsClassifier(n_neighbors=3)
model3.fit(features,labels)
predictions_model3 = model3.predict(testing_data)
print('3.K-Nearest Neighbors :\n')
print('\n Predicted Class :',predictions_model3[0])
show_predicted_label(predictions_model3[0])
tk.Label(input_window, text="Enter UserID").grid(row=0)
tk.Label(input_window, text="Enter No Of Abuse Report").grid(row=3)
tk.Label(input_window, text="Enter No Of Rejected Friend Requests").grid(row=5)
tk.Label(input_window, text="Enter No Of Freind Requests Thar Are Not Accepted").grid(row=7)
tk.Label(input_window, text="Enter No Of Friends").grid(row=9)
tk.Label(input_window, text="Enter No Of Followers").grid(row=11)
tk.Label(input_window, text="Enter No Of Likes To Unknown Account").grid(row=13)
tk.Label(input_window, text="Enter No Of Comments Per Day").grid(row=15)
e1 = tk.Entry(input_window)
e2 = tk.Entry(input_window)
e3 = tk.Entry(input_window)
e4 = tk.Entry(input_window)
e4 = tk.Entry(input_window)
e5 = tk.Entry(input_window)
e6 = tk.Entry(input_window)
e7 = tk.Entry(input_window)
e8 = tk.Entry(input_window)
e1.grid(row=2, column=0)
e2.grid(row=4, column=0)
e3.grid(row=6, column=0)
e4.grid(row=8, column=0)
e5.grid(row=10, column=0)
e6.grid(row=12, column=0)
e7.grid(row=14, column=0)
e8.grid(row=16, column=0)
tk.Label(input_window,
text="Predict",
fg = "dark violet",
bg = "yellow2",
width=35,
height=1,
font = "Helvetica 15 bold italic").grid(row=32)
Naive_Bayes_button = tk.Button(input_window,
text="Naive Bayes",
fg="black",
bg="light steel blue",
width=10,
height=2,
command=Naive_Bayes_Manual_Input,
font = "Helvetica 10 bold italic",
)
Naive_Bayes_button.place(relx=0.025, rely=0.8)
Linear_Svc_Button = tk.Button(input_window,
text="Linear SVC",
fg="black",
bg="misty rose",
width=15,
height=2,
font = "Helvetica 10 bold italic",
command=Linear_Svc_Manual_Input,
)
Linear_Svc_Button.place(relx=0.31, rely=0.8)
KNN_button = tk.Button(input_window,
text="KNN",
fg="black",
bg="salmon1",
width=15,
height=2,
font = "Helvetica 10 bold italic",
command=Knn__Manual_Input,
)
KNN_button.place(relx=0.7, rely=0.8)
def Naive_Bayes():
if filename:
global AccuracyMeans,ErrorrateMeans
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = df[~msk]
testing_data=test.values[:, 0:7]
testing_data_labels=test.values[:, 8]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model1 = MultinomialNB()
model1.fit(features,labels)
predictions_model1 = model1.predict(testing_data)
accuracy=accuracy_score(testing_data_labels, predictions_model1)*100
AccuracyMeans.append(accuracy)
error_rate=100-accuracy
ErrorrateMeans.append(error_rate)
precision=precision_score(testing_data_labels, predictions_model1)*100
recall=recall_score(testing_data_labels, predictions_model1)*100
print('\n1.Multinomial Naive Bayes :\n')
print('Confusion Matrix :')
print(confusion_matrix(testing_data_labels, predictions_model1))
print('Accuracy Is : '+str(accuracy )+' %')
print('Error Rate Is : '+str(error_rate)+' %')
print('Precision Is : '+str(precision)+' %')
print('Recall Is : '+str(recall)+' %\n\n')
labels = ['Error Rate', 'Accuracy ']
sizes = [error_rate,accuracy]
explode = (0, 0.1)
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
shadow=True, startangle=90)
plt.title('Naive Bayes Algorithm')
ax1.axis('equal')
plt.tight_layout()
plt.show()
def Linear_Svc():
if filename:
global AccuracyMeans,ErrorrateMeans
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = df[~msk]
testing_data=test.values[:, 0:7]
testing_data_labels=test.values[:, 8]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model2 = LinearSVC()
model2.fit(features,labels)
predictions_model2 = model2.predict(testing_data)
accuracy=accuracy_score(testing_data_labels, predictions_model2)*100
AccuracyMeans.append(accuracy)
error_rate=100-accuracy
ErrorrateMeans.append(error_rate)
precision=precision_score(testing_data_labels, predictions_model2)*100
recall=recall_score(testing_data_labels, predictions_model2)*100
print('2.Linear SVC :\n')
print('Confusion Matrix :')
print(confusion_matrix(testing_data_labels, predictions_model2))
print('Accuracy Is : '+str(accuracy )+' %')
print('Error Rate Is : '+str(error_rate)+' %')
print('Precision Is : '+str(precision)+' %')
print('Recall Is : '+str(recall)+' %\n\n')
labels = ['Error Rate', 'Accuracy ']
sizes = [error_rate,accuracy]
explode = (0, 0.1)
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
shadow=True, startangle=90)
plt.title('Linear SVC Algorithm')
ax1.axis('equal')
plt.tight_layout()
plt.show()
def Knn():
if filename:
global AccuracyMeans,ErrorrateMeans
df=pd.read_csv(filename)
msk = np.random.rand(len(df)) < 0.7
train = df[msk]
test = df[~msk]
testing_data=test.values[:, 0:7]
testing_data_labels=test.values[:, 8]
features = train.values[:, 0:7]
labels = train.values[:, 8].astype('int')
model3 = KNeighborsClassifier(n_neighbors=3)
model3.fit(features,labels)
predictions_model3 = model3.predict(testing_data)
accuracy=accuracy_score(testing_data_labels, predictions_model3)*100
AccuracyMeans.append(accuracy)
error_rate=100-accuracy
ErrorrateMeans.append(error_rate)
precision=precision_score(testing_data_labels, predictions_model3)*100
recall=recall_score(testing_data_labels, predictions_model3)*100
print('3.K-Nearest Neighbors :\n')
print('Confusion Matrix :')
print(confusion_matrix(testing_data_labels, predictions_model3))
print('Accuracy Is : '+str(accuracy )+' %')
print('Error Rate Is : '+str(error_rate)+' %')
print('Precision Is : '+str(precision)+' %')
print('Recall Is : '+str(recall)+' %\n\n')
labels = ['Error Rate', 'Accuracy ']
sizes = [error_rate,accuracy]
explode = (0, 0.1)
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
shadow=True, startangle=90)
plt.title('KNN Algorithm')
ax1.axis('equal')
plt.tight_layout()
plt.show()
def compare():
N = 3
ind = np.arange(N)
width = 0.35
p1 = plt.bar(ind, AccuracyMeans, width )
p2 = plt.bar(ind, ErrorrateMeans, width,bottom=AccuracyMeans )
plt.ylabel('Scores')
plt.title('Performance By Classifiers')
plt.xticks(ind, ('Naive Bayes', 'Linear SVC', 'KNN',))
plt.yticks(np.arange(0, 110, 10))
plt.legend((p1[0], p2[0]), ('Accuracy', 'Error Rate'))
plt.show()
root = tk.Tk()
root.title("Twitter Fake Account Detector")
root.grid_columnconfigure(0, weight=1)
root.geometry("600x500")
root.resizable(0, 0)
tk.Label(root,
text="Fake Account Detector",
fg = "dark violet",
bg = "light blue",
width=400,
height=2,
font = "Helvetica 35 bold italic").pack()
browsebutton = tk.Button(root,
text="Browse File",
fg="blue",
bg="thistle",
width=45,
height=2,
font = "Helvetica 15 bold italic",
command=browse,
)
browsebutton.pack(padx=0,pady=10)
tk.Label(root,
text="Classifiers ",
fg = "dark violet",
bg = "light green",
width=40,
height=1,
font = "Helvetica 35 bold italic").pack(padx=0,pady=0)
Manual_Input_Button = tk.Button(root,
text="Give Manual Input",
fg="black",
bg="LightGoldenRod1",
width=35,
height=2,
font = "Helvetica 10 bold italic",
command=Create_Input_Window,
)
Manual_Input_Button.place(relx=0.25, rely=0.63)
Naive_Bayes_button = tk.Button(root,
text="Naive Bayes",
fg="black",
bg="light steel blue",
width=25,
height=2,
command=Naive_Bayes,
font = "Helvetica 10 bold italic",
)
Naive_Bayes_button.pack( side=tk.LEFT)
Linear_Svc_Button = tk.Button(root,
text="Linear SVC",
fg="black",
bg="misty rose",
width=25,
height=2,
font = "Helvetica 10 bold italic",
command=Linear_Svc,
)
Linear_Svc_Button.pack(side=tk.LEFT)
KNN_button = tk.Button(root,
text="KNN",
fg="black",
bg="salmon1",
width=25,
height=2,
font = "Helvetica 10 bold italic",
command=Knn,
)
KNN_button.pack( side=tk.LEFT)
All_statistics_Button = tk.Button(root,
text="Compare",
fg="black",
bg="aquamarine2",
width=35,
height=2,
font = "Helvetica 10 bold italic",
command=compare,
)
All_statistics_Button.place(relx=0.25, rely=0.9)
root.mainloop()