-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
188 lines (154 loc) · 6.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import utils
import logging
import os
import sys
from torch.utils.data import DataLoader
from glob import glob
import torch
from PIL import Image
import argparse
import monai
from monai.data import PersistentDataset, list_data_collate, SmartCacheDataset, partition_dataset
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai import transforms as mt
from monai.visualize import plot_2d_or_3d_image
import random
import ufcn
import load_FFSData
import load_FFSDataTest
import processing
pjoin = os.path.join
def get_transforms():
train_trans = mt.Compose(
[
mt.LoadImageD(keys=['img', 'seg']),
mt.EnsureChannelFirstd(keys=['img', 'seg']),
mt.ScaleIntensityD(keys=['img',"seg"]),
mt.ToTensorD(keys=['img', 'seg']),
]
)
val_trans = mt.Compose(
[
mt.LoadImageD(keys=['img', 'seg']),
mt.EnsureChannelFirstd(keys=["img", "seg"]),
mt.ScaleIntensityD(keys=['img',"seg"]),
mt.ToTensorD(keys=['img', 'seg']),
]
)
return train_trans, val_trans
def main(args):
dataset = load_FFSData.CustomDataset()
data_loader = DataLoader(dataset, batch_size=args.batchsize, shuffle=True)
print("number batch of train",data_loader.__len__())
testDataset = load_FFSDataTest.CustomDataset()
testDataload = DataLoader(testDataset, batch_size=args.batchsize, shuffle=True)
print("number batch of test",testDataload.__len__())
print("data load done")
dice_metric = DiceMetric(include_background=True, reduction="mean")
post_trans = mt.Compose([
mt.Activations(sigmoid=True)
])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ufcn.UFCN(activation = args.activation, threshold = args.thresh)
#model.apply(utils.init_weights)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = torch.nn.DataParallel(model)
model.to(device)
print("model loaded")
loss_function = monai.losses.ssim_loss.SSIMLoss(spatial_dims=2)
bce = torch.nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max')
# start a typical PyTorch training
val_interval = 1
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
outputPreq = 0
for epoch in range(args.epochs):
print("-" * 10)
print(f"epoch {epoch + 1}/{args.epochs}")
model.train()
epoch_loss = 0
step = 0
for inputs1, inputs2, labels in data_loader:
inputs1 = inputs1.to(device)
inputs2 = inputs2.to(device)
labels = labels.to(device)
step += 1
data_range = inputs1.max().unsqueeze(0)
outputs, _, labelLoss = model(inputs1, inputs2)
l1 = loss_function(outputs, inputs1, data_range)
term = 1
layerLoss = 0
for i in labelLoss:
layerLoss = layerLoss + term * bce(i.to(dtype = float), labels.to(dtype = float))
term -= 0.4
l2 = layerLoss / len(labelLoss)
loss = 0.9 * l1 + 0.1 * l2
#print(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
#epoch_len = len(train_ds) // data_loader.batch_size
#print(f"{step}, train_loss: {loss.item():.4f}")
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if (epoch + 1) % args.val_inter == 0:
model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
val_images = None
val_labels = None
val_outputs = None
for inputs1, inputs2, label, seg in testDataload:
inputs1 = inputs1.to(device)
inputs2 = inputs2.to(device)
label = label.to(device)
seg = seg.to(device)
val_outputs, val_seg, labelLoss = model(inputs1, inputs2)
if label == 1:
value = dice_metric(y_pred=processing(val_seg), y=processing(seg))
metric_count += len(value)
metric_sum += value.item() * len(value)
metric = metric_sum / metric_count
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), pjoin('checkpoints', f'{args.arch}_{args.ext}.pth'))
print("saved new best metric model")
print(
"current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
scheduler.step(metric)
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--data", default='gd', type=str)
parser.add_argument("--arch", default='ufcn', type=str)
parser.add_argument("--val_inter", default=1, type=int)
parser.add_argument("--batchsize", default=1, type=int)
parser.add_argument("--test_batch_size", default=1, type=int)
parser.add_argument("--epochs", default=100, type=int)
parser.add_argument("--print_freq", default=1, type=int)
parser.add_argument("--fast", default=False, type=bool)
parser.add_argument("--dataDic", default='./train_data')
parser.add_argument("--lr", default=1e-2, type=float)
parser.add_argument("--ext", default='unet', type=str)
parser.add_argument("--pref", default=20, type=int)
parser.add_argument("--activation", default='relu', type=str)
parser.add_argument("--thresh", default=0.02, type=float)
args = parser.parse_args()
print(args)
main(args)