-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain.py
executable file
·271 lines (225 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import argparse
import json
import os
import os.path as osp
import pickle
import random
import sys
from argparse import Namespace
import numpy as np
import cv2
import scipy.misc
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.utils import data
import scops_trainer
from dataset.dataset_factory import dataset_generator
from model.model_factory import model_generator
# solve potential deadlock https://github.com/pytorch/pytorch/issues/1355
cv2.setNumThreads(0)
EXP_NAME = 'SCOPS-Test'
MODEL = 'DeepLab'
BATCH_SIZE = 10
NUM_WORKERS = 4
DATASET = 'PASCAL'
DATA_DIRECTORY = ''
DATA_LIST_PATH = ''
INPUT_SIZE = '128,128'
LEARNING_RATE = 1e-5
MOMENTUM = 0.9
NUM_CLASSES = 6
NUM_STEPS = 2000
POWER = 0.9
RANDOM_SEED = 1234
RESTORE_FROM = None
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 5000
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
CLIP_GRAD_NORM = 5
VIS_TNTERVAL = 100
TPS_SIGMA = 0.01
RAND_SCALE_LOW = 0.7
RAND_SCALE_HIGH = 1.1
NUM_PARTS = 10
LAMBDA_CON = 1e-1
LAMBDA_EQV = 10.0
LAMBDA_SC = 0.1
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(
description="SCOPS: Self-supervised Co-part Segmentation")
# load args from json files
parser.add_argument("-f", "--arg-file", type=str, default=None,
help="load args from json file")
# Exp
parser.add_argument("--exp-name", type=str, default=MODEL,
help="Experiment name. Default: Part-Test")
# Model/Data description
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab/DeepLab_2branch")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--dataset", type=str, default=DATASET,
help="Dataset selection")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--celeba-th", type=float, default=0.0,
help="iou_threshold for celebAWild")
# Data Augmentation
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
# Training hyper parameters
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--clip-gradients", type=float, default=CLIP_GRAD_NORM,
help="Clip gradients norm. Default:5.")
# constraints weighting
parser.add_argument("--lambda-con", type=float, default=LAMBDA_CON,
help="weighting parameter for concentration")
parser.add_argument("--lambda-eqv", type=float, default=LAMBDA_EQV,
help="weighting parameter for equivariance")
parser.add_argument("--lambda-lmeqv", type=float, default=LAMBDA_EQV,
help="weighting parameter for equivariance")
# Equivariance setting
parser.add_argument("--tps-mode", type=str, default='affine',
help="tps mode: affine/projective")
parser.add_argument("--tps-sigma", type=float, default=TPS_SIGMA,
help="peturbation of tps in equivariance loss")
parser.add_argument("--eqv-random-mirror", action="store_true",
help="Whether to use random mirror in equvariance.")
parser.add_argument("--eqv-border-padding", action="store_true",
help="Whether to use border padding in equvariance.")
parser.add_argument("--random-scale-low", type=float, default=RAND_SCALE_LOW,
help="lower bound of random scaling.")
parser.add_argument("--random-scale-high", type=float, default=RAND_SCALE_HIGH,
help="higher bound of random scaling.")
# part training config
parser.add_argument("--ignore-saliency-fg", action="store_true",
help="Whether to ignore saliency foreground and only enforce BG")
parser.add_argument("--ignore-small-parts", action="store_true",
help="Whether to ignore small parts.")
parser.add_argument("--center-crop", action="store_true",
help="Whether to crop center (MAFL).")
parser.add_argument("--self-ref-coord", action="store_true",
help="Whether to use self-referenced centroid.")
parser.add_argument("--kp-threshold", type=int, default=6,
help="maximum number of missing keypoints/landmarks")
# Semantic Consistency config
parser.add_argument("--num-parts", type=int, default=NUM_PARTS,
help="Number of parts")
parser.add_argument("--lambda-sc", type=float, default=LAMBDA_SC,
help="weighting parameter for semantic consistency constraint")
parser.add_argument("--learning-rate-w", type=float, default=1e-3,
help="learning rate for DFF basis")
parser.add_argument("--ref-net", type=str, default='vgg19',
help="reference feature network. default: vgg19")
parser.add_argument("--ref-layer", type=str, default='relu5_4',
help="default: vgg19")
parser.add_argument("--ref-norm", action="store_true",
help="normalize reference feature map")
parser.add_argument("--lambda-orthonamal", type=float, default=1e2,
help="weighting parameter for DFF orthonormal loss")
parser.add_argument("--detach-k", action="store_true",
help="detach k")
parser.add_argument("--no-sal-masking", action="store_true",
help="disable saliency constraint")
parser.add_argument("--restore-part-basis", type=str, default='',
help="load part basis weights")
# Save/visualization
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--vis-interval", type=int, default=VIS_TNTERVAL,
help="visualization interval.")
parser.add_argument("--tb-dir", type=str, default='tb_logs',
help="tensorbard dir.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
return parser.parse_args()
def main():
args = get_arguments()
args_dict = vars(args)
if args.arg_file is not None:
with open(args.arg_file, 'r') as f:
arg_str = f.read()
file_args = json.loads(arg_str)
args_dict.update(file_args)
args = Namespace(**args_dict)
args_str = '{}'.format(json.dumps(vars(args), sort_keys=False, indent=4))
print(args_str)
if not os.path.exists(os.path.join(args.snapshot_dir, args.exp_name)):
os.makedirs(os.path.join(args.snapshot_dir, args.exp_name))
# save args to file
with open(os.path.join(args.snapshot_dir, args.exp_name, 'exp_args.json'), 'w') as f:
print(args_str, file=f)
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
args.input_size = input_size
cudnn.enabled = True
gpu = args.gpu
# create network
model = model_generator(args)
model.train()
model.cuda(args.gpu)
cudnn.benchmark = True
# Initialize SCOPS trainer
trainer = scops_trainer.SCOPSTrainer(args, model)
train_dataset = dataset_generator(args)
trainloader = data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
trainloader_iter = enumerate(trainloader)
for i_iter in range(args.num_steps):
try:
_, batch = trainloader_iter.__next__()
except:
trainloader_iter = enumerate(trainloader)
_, batch = trainloader_iter.__next__()
trainer.step(batch, i_iter)
if i_iter >= args.num_steps - 1:
print('save model ...')
torch.save(model.state_dict(), osp.join(args.snapshot_dir,
args.exp_name, 'model_' + str(args.num_steps) + '.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter != 0:
print('taking snapshot ...')
torch.save(model.state_dict(), osp.join(args.snapshot_dir,
args.exp_name, 'model_' + str(i_iter) + '.pth'))
if __name__ == '__main__':
main()