-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathscops_trainer.py
executable file
·254 lines (205 loc) · 10.3 KB
/
scops_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import loss
from utils import utils
from model.feature_extraction import FeatureExtraction, featureL2Norm
from torchvision import transforms
from tps.rand_tps import RandTPS
from visualize import Visualizer
IMG_MEAN = np.array((104.00698793, 116.66876762,
122.67891434), dtype=np.float32)
class PartBasisGenerator(nn.Module):
def __init__(self, feature_dim, K, normalize=False):
super(PartBasisGenerator, self).__init__()
self.w = nn.Parameter(
torch.abs(torch.cuda.FloatTensor(K, feature_dim).normal_()))
self.normalize = normalize
def forward(self, x=None):
out = nn.ReLU()(self.w)
if self.normalize:
return featureL2Norm(out)
else:
return out
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter)**(power))
def adjust_learning_rate(optimizer, i_iter, args):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
class SCOPSTrainer(object):
def __init__(self, args, model):
self.args = args
self.model = model
# Initialize spatial/color transform for Equuivariance loss.
self.tps = RandTPS(args.input_size[1], args.input_size[0],
batch_size=args.batch_size,
sigma=args.tps_sigma,
border_padding=args.eqv_border_padding,
random_mirror=args.eqv_random_mirror,
random_scale=(args.random_scale_low,
args.random_scale_high),
mode=args.tps_mode).cuda(args.gpu)
# Color Transorm.
self.cj_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ColorJitter(
brightness=0.3, contrast=0.3, saturation=0.2, hue=0.2),
transforms.ToTensor(), ])
# KL divergence loss for equivariance
self.kl = nn.KLDivLoss().cuda(args.gpu)
# loss/ bilinear upsampling
self.interp = nn.Upsample(
size=(args.input_size[1], args.input_size[0]), mode='bilinear', align_corners=True)
# Initialize feature extractor and part basis for the semantic consistency loss.
self.zoo_feat_net = FeatureExtraction(
feature_extraction_cnn=args.ref_net, normalization=args.ref_norm, last_layer=args.ref_layer)
self.zoo_feat_net.eval()
self.part_basis_generator = PartBasisGenerator(self.zoo_feat_net.out_dim,
args.num_parts, normalize=args.ref_norm)
self.part_basis_generator.cuda(args.gpu)
self.part_basis_generator.train()
if args.restore_part_basis != '':
self.part_basis_generator.load_state_dict(
{'w': torch.load(args.restore_part_basis)})
# Initialize optimizers.
self.optimizer_seg = optim.SGD(self.model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
self.optimizer_seg.zero_grad()
self.optimizer_sc = optim.SGD(self.part_basis_generator.parameters(
), lr=args.learning_rate_w, momentum=args.momentum, weight_decay=args.weight_decay)
self.optimizer_sc.zero_grad()
# visualizor
self.viz = Visualizer(args)
def step(self, batch, current_step):
loss_con_value = 0
loss_eqv_value = 0
loss_lmeqv_value = 0
loss_sc_value = 0
loss_orthonamal_value = 0
self.optimizer_seg.zero_grad()
self.optimizer_sc.zero_grad()
adjust_learning_rate(self.optimizer_seg, current_step, self.args)
images_cpu = batch['img']
labels = batch['saliency'] if 'saliency' in batch.keys() else None
edges = batch['edge'] if 'edge' in batch.keys() else None
gts = batch['gt'] if 'gt' in batch.keys() else None
landmarks = batch['landmarks'] if 'landmarks' in batch.keys() else None
bbox = batch['bbox'] if 'bbox' in batch.keys() else None
images = images_cpu.cuda(self.args.gpu)
feature_instance, feature_part, pred_low = self.model(images)
pred = self.interp(pred_low)
# prepare for torch model_zoo models images
zoo_mean = np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))
zoo_var = np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))
images_zoo_cpu = (images_cpu.numpy() +
IMG_MEAN.reshape((1, 3, 1, 1))) / 255.0
images_zoo_cpu -= zoo_mean
images_zoo_cpu /= zoo_var
images_zoo_cpu = torch.from_numpy(images_zoo_cpu)
images_zoo = images_zoo_cpu.cuda(self.args.gpu)
with torch.no_grad():
zoo_feats = self.zoo_feat_net(images_zoo)
zoo_feat = torch.cat([self.interp(zoo_feat)
for zoo_feat in zoo_feats], dim=1)
# saliency masking
if not self.args.no_sal_masking and labels is not None:
zoo_feat = zoo_feat * \
labels.unsqueeze(dim=1).expand_as(
zoo_feat).cuda(self.args.gpu)
loss_sc = loss.semantic_consistency_loss(
features=zoo_feat, pred=pred, basis=self.part_basis_generator())
loss_sc_value += self.args.lambda_sc * loss_sc.data.cpu().numpy()
# orthonomal_loss
loss_orthonamal = loss.orthonomal_loss(self.part_basis_generator())
loss_orthonamal_value += self. args.lambda_orthonormal * \
loss_orthonamal.data.cpu().numpy()
# Concentratin Loss
loss_con = loss.concentration_loss(pred)
loss_con_value += self.args.lambda_con * loss_con.data.cpu().numpy()
# Equivariance Loss
images_cj = torch.from_numpy(
((images_cpu.numpy() + IMG_MEAN.reshape((1, 3, 1, 1))) / 255.0).clip(0, 1.0))
for b in range(images_cj.shape[0]):
images_cj[b] = torch.from_numpy(self.cj_transform(
images_cj[b]).numpy() * 255.0 - IMG_MEAN.reshape((1, 3, 1, 1)))
images_cj = images_cj.cuda()
self.tps.reset_control_points()
images_tps = self.tps(images_cj)
feature_instance_tps, feature_part_tps, pred_low_tps = self.model(
images_tps)
pred_tps = self.interp(pred_low_tps)
pred_d = pred.detach()
pred_d.requires_grad = False
# no padding in the prediction space
pred_tps_org = self.tps(pred_d, padding_mode='zeros')
loss_eqv = self.kl(F.log_softmax(pred_tps, dim=1),
F.softmax(pred_tps_org, dim=1))
loss_eqv_value += self.args.lambda_eqv * loss_eqv.data.cpu().numpy()
centers_tps = utils.batch_get_centers(nn.Softmax(dim=1)(pred_tps)[:, 1:, :, :])
pred_tps_org_dif = self.tps(pred, padding_mode='zeros')
centers_tps_org = utils.batch_get_centers(nn.Softmax(
dim=1)(pred_tps_org_dif)[:, 1:, :, :])
loss_lmeqv = F.mse_loss(centers_tps, centers_tps_org)
loss_lmeqv_value += self.args.lambda_lmeqv * loss_lmeqv.data.cpu().numpy()
# visualization
if current_step % self.args.vis_interval == 0:
with torch.no_grad():
pred_softmax = nn.Softmax(dim=1)(pred)
part_softmax = pred_softmax[:, 1:, :, :]
# normalize
part_softmax /= part_softmax.max(dim=3, keepdim=True)[
0].max(dim=2, keepdim=True)[0]
self.viz.vis_images(current_step, images_cpu, images_tps.cpu(
), labels, edges, IMG_MEAN, pred.float())
self.viz.vis_part_heatmaps(
current_step, part_softmax, threshold=0.1, prefix='pred')
if landmarks is not None:
self.viz.vis_landmarks(current_step, images_cpu,
IMG_MEAN, pred, landmarks)
if bbox is not None:
self.viz.vis_bboxes(current_step, bbox)
print('saving part basis')
torch.save({'W': self.part_basis_generator().detach().cpu(), 'W_state_dict': self.part_basis_generator.state_dict()},
osp.join(self.args.snapshot_dir, self.args.exp_name, 'BASIS_' + str(current_step) + '.pth'))
self.viz.vis_losses(current_step, [self.part_basis_generator.w.mean(), self.part_basis_generator.w.std()], [
'part_basis_mean', 'part_basis_std'])
# sum all loss terms
total_loss = self.args.lambda_con * loss_con \
+ self.args.lambda_eqv * loss_eqv \
+ self.args.lambda_lmeqv * loss_lmeqv \
+ self.args.lambda_sc * loss_sc \
+ self.args.lambda_orthonormal * loss_orthonamal
total_loss.backward()
# visualize loss curves
self.viz.vis_losses(current_step,
[loss_con_value, loss_eqv_value, loss_lmeqv_value,
loss_sc_value, loss_orthonamal_value],
['loss_con', 'loss_eqv', 'loss_lmeqv', 'loss_sc', 'loss_orthonamal'])
# clip gradients
nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_gradients)
self.optimizer_seg.step()
nn.utils.clip_grad_norm_(
self.part_basis_generator.parameters(), self.args.clip_gradients)
self.optimizer_sc.step()
print('exp = {}'.format(osp.join(self.args.snapshot_dir, self.args.exp_name)))
print(('iter = {:8d}/{:8d}, ' +
'loss_con = {:.3f}, ' +
'loss_eqv = {:.3f}, ' +
'loss_lmeqv = {:.3f}, ' +
'loss_sc = {:.3f}, ' +
'loss_orthonamal = {:.3f}')
.format(current_step, self.args.num_steps,
loss_con_value,
loss_eqv_value,
loss_lmeqv_value,
loss_sc_value,
loss_orthonamal_value))