layout | title | permalink | redirect_from | ||
---|---|---|---|---|---|
post |
AISLOADER |
/docs/aisloader |
|
AIS Loader (aisloader
) is a tool to measure storage performance. It is a load generator that we constantly use to benchmark and stress-test AIStore or any S3-compatible backend.
In fact, aisloader can list, write, and read S3(**) buckets directly, which makes it quite useful, convenient, and easy to use benchmark to compare storage performance with aistore in front of S3 and without.
(**)
aisloader
can be further easily extended to work directly with any Cloud storage provider including, but not limited to, aistore-supported GCP and Azure.
In addition, aisloader
generates synthetic workloads that mimic training and inference workloads - the capability that allows to run benchmarks in isolation (which is often preferable) avoiding compute-side bottlenecks (if any) and associated complexity.
There's a large set of command-line switches that allow to realize almost any conceivable workload, with basic permutations always including:
- number of workers
- read and write sizes
- read and write ratios
Detailed protocol-level tracing statistics are also available - see HTTP tracing section below for brief introduction.
- Setup
- Command line Options
- Environment variables
- Examples
- Collecting stats
- HTTP tracing
- AISLoader-Composer
- References
To get started, go to root directory and run:
$ make aisloader
For usage, run: aisloader
or aisloader usage
or aisloader --help
.
For the most recently updated command-line options and examples, please run aisloader
or aisloader usage
.
Command-line option | Type | Description | Default |
---|---|---|---|
-batchsize | int |
Batch size to list and delete | 100 |
-bprops | json |
JSON string formatted as per the SetBucketProps API and containing bucket properties to apply | "" |
-bucket | string |
Bucket name. Bucket will be created if doesn't exist. If empty, aisloader generates a new random bucket name | "" |
-cached | bool |
list in-cluster objects - only those objects from a remote bucket that are present ("cached") | false |
-cksum-type | string |
Checksum type to use for PUT object requests | xxhash |
-cleanup | bool |
when true, remove bucket upon benchmark termination | n/a (required) |
-dry-run | bool |
show the entire set of parameters that aisloader will use when actually running | false |
-duration | string , int |
Benchmark duration (0 - run forever or until Ctrl-C, default 1m). Note that if both duration and totalputsize are zeros, aisloader will have nothing to do | 1m |
-epochs | int |
Number of "epochs" to run whereby each epoch entails full pass through the entire listed bucket | 1 |
-etl | string |
Built-in ETL, one-of: tar2tf , md5 , or echo . Each object that aisloader GETs undergoes the selected transformation. See also: -etl-spec option. |
"" |
-etl-spec | string |
Custom ETL specification (pathname). Must be compatible with Kubernetes Pod specification. Each object that aisloader GETs will undergo this user-defined transformation. See also: -etl option. |
"" |
-getconfig | bool |
when true, generate control plane load by reading AIS proxy configuration (that is, instead of reading/writing data exercise control path) | false |
-getloaderid | bool |
when true, print stored/computed unique loaderID aka aisloader identifier and exit | false |
-ip | string |
AIS proxy/gateway IP address or hostname | localhost |
-json | bool |
when true, print the output in JSON | false |
-loaderid | string |
ID to identify a loader among multiple concurrent instances | 0 |
-loaderidhashlen | int |
Size (in bits) of the generated aisloader identifier. Cannot be used together with loadernum | 0 |
-loadernum | int |
total number of aisloaders running concurrently and generating combined load. If defined, must be greater than the loaderid and cannot be used together with loaderidhashlen | 0 |
-maxputs | int |
Maximum number of objects to PUT | 0 |
-maxsize | int |
Maximal object size, may contain multiplicative suffix | 1GiB |
-minsize | int |
Minimal object size, may contain multiplicative suffix | 1MiB |
-numworkers | int |
Number of goroutine workers operating on AIS in parallel | 10 |
-pctput | int |
Percentage of PUTs in the aisloader-generated workload | 0 |
-latest | bool |
When true, check in-cluster metadata and possibly GET the latest object version from the associated remote bucket | false |
-port | int |
Port number for proxy server | 8080 |
-provider | string |
ais - for AIS, cloud - for Cloud bucket; other supported values include "gcp" and "aws", for Amazon and Google clouds, respectively | ais |
-putshards | int |
Spread generated objects over this many subdirectories (max 100k) | 0 |
-quiet | bool |
When starting to run, do not print command line arguments, default settings, and usage examples | false |
-randomname | bool |
when true, generate object names of 32 random characters. This option is ignored when loadernum is defined | true |
-readertype | string |
Type of reader: sg(default). Available: sg , file , rand , tar |
sg |
-readlen | string , int |
Read range length, can contain multiplicative suffix | "" |
-readoff | string , int |
Read range offset (can contain multiplicative suffix K, MB, GiB, etc.) | "" |
-s3endpoint | string |
S3 endpoint to read/write S3 bucket directly (with no aistore) | "" |
-s3profile | string |
Other then default S3 config profile referencing alternative credentials | "" |
-seed | int |
Random seed to achieve deterministic reproducible results (0 - use current time in nanoseconds) | 0 |
-skiplist | bool |
Whether to skip listing objects in a bucket before running PUT workload | false |
-filelist | string |
Local or locally accessible text file file containing object names (for subsequent reading) | "" |
-stats-output | string |
filename to log statistics (empty string translates as standard output (default) | "" |
-statsdip | string |
StatsD IP address or hostname | localhost |
-statsdport | int |
StatsD UDP port | 8125 |
-statsdprobe | bool |
Test-probe StatsD server prior to benchmarks | true |
-statsinterval | int |
Interval in seconds to print performance counters; 0 - disabled | 10 |
-subdir | string |
For GET requests, -subdir is a prefix that may or may not be an actual virtual directory. For PUT, -subdir is a virtual destination directory for all aisloader-generated objects. See closely related CLI --prefix option. |
"" |
-test-probe | bool |
Test StatsD server prior to running benchmarks | false |
-timeout | string |
Client HTTP timeout; 0 = infinity) |
10m |
-tmpdir | string |
Local directory to store temporary files | /tmp/ais |
-tokenfile | string |
Authentication token (FQN) | "" |
-totalputsize | string , int |
Stop PUT workload once cumulative PUT size reaches or exceeds this value, can contain multiplicative suffix, 0 = no limit | 0 |
-trace-http | bool |
Trace HTTP latencies (see HTTP tracing) | false |
-uniquegets | bool |
when true, GET objects randomly and equally. Meaning, make sure not to GET some objects more frequently than the others | true |
-usage | bool |
Show command-line options, usage, and examples | false |
-verifyhash | bool |
checksum-validate GET: recompute object checksums and validate it against the one received with the GET metadata | true |
The loads can run for a given period of time (option -duration <duration>
) or until the specified amount of data is generated (option -totalputsize=<total size in KBs>
).
If both options are provided the test finishes on the whatever-comes-first basis.
Example 100% write into the bucket "abc" for 2 hours:
$ aisloader -bucket=abc -provider=ais -duration 2h -totalputsize=4000000 -pctput=100
The above will run for two hours or until it writes around 4GB data into the bucket, whatever comes first.
You can choose a percentage of writing (versus reading) by setting the option -pctput=<put percentage>
.
Example with a mixed PUT=30% and GET=70% load:
$ aisloader -bucket=ais://abc -duration 5m -pctput=30 -cleanup=true
Example 100% PUT:
$ aisloader -bucket=abc -duration 5m -pctput=100 -cleanup=true
The duration in both examples above is set to 5 minutes.
To test 100% read (
-pctput=0
), make sure to fill the bucket beforehand.
The loader can read the entire object (default) or a range of object bytes.
To set the offset and length to read, use option -readoff=<read offset (in bytes)>
and readlen=<length to read (in bytes)>
.
For convenience, both options support size suffixes: k
- for KiB, m
- for MiB, and g
- for GiB.
Example that reads a 32MiB segment at 1KB offset from each object stored in the bucket "abc":
$ aisloader -bucket=ais://abc -duration 5m -cleanup=false -readoff=1024 -readlen=32m
The test (above) will run for 5 minutes and will not "cleanup" after itself (next section).
NOTE: -cleanup
is a mandatory option defining whether to destroy bucket upon completion of the benchmark.
The option must be specified in the command line.
Example:
$ aisloader -bucket=ais://abc -pctput=100 -totalputsize=16348 -cleanup=false
$ aisloader -bucket=ais://abc -duration 1h -pctput=0 -cleanup=true
The first line in this example above fills the bucket "abc" with 16MiB of random data. The second - uses existing data to test read performance for 1 hour, and then removes all data.
If you just need to clean up old data prior to running a test, run the loader with 0 (zero) total put size and zero duration:
$ aisloader -bucket=<bucket to cleanup> -duration 0s -totalputsize=0
For the PUT workload the loader generates randomly-filled objects. But what about object sizing?
By default, object sizes are randomly selected as well in the range between 1MiB and 1GiB. To set preferred (or fixed) object size(s), use the options -minsize=<minimal object size in KiB>
and -maxsize=<maximum object size in KiB>
Before starting a test, it is possible to set mirror
or EC
properties on a bucket (for background, please see storage services).
For background on local mirroring and erasure coding (EC), please see storage services.
To achieve that, use the option -bprops
. For example:
$ aisloader -bucket=ais://abc -pctput=0 -cleanup=false -duration 10s -bprops='{"mirror": {"copies": 2, "enabled": false}, "ec": {"enabled": false, "data_slices": 2, "parity_slices": 2}}'
The above example shows the values that are globally default. You can omit the defaults and specify only those values that you'd want to change. For instance, to enable erasure coding on the bucket "abc":
$ aisloader -bucket=ais://abc -duration 1h -bprops='{"ec": {"enabled": true}}' -cleanup=false
This example sets the number of data and parity slices to 2 which, in turn, requires the cluster to have at least 5 target nodes: 2 for data slices, 2 for parity slices and one for the original object.
Once erasure coding is enabled, its properties
data_slices
andparity_slices
cannot be changed on the fly.
Note that (n
data_slices
, mparity_slices
) erasure coding requires at least (n + m + 1) target nodes in a cluster.
Even though erasure coding and/or mirroring can be enabled/disabled and otherwise reconfigured at any point in time, specifically for the purposes of running benchmarks it is generally recommended to do it once prior to writing any data to the bucket in question.
The following sequence populates a bucket configured for both local mirroring and erasure coding, and then reads from it for 1h:
# Fill bucket
$ aisloader -bucket=ais://abc -cleanup=false -pctput=100 -duration 100m -bprops='{"mirror": {"enabled": true}, "ec": {"enabled": true}}'
# Read
$ aisloader -bucket=abc -cleanup=false -pctput=0 -duration 1h
Parameters in aisLoader
that represent the number of bytes can be specified with a multiplicative suffix.
For example: 8M
would specify 8 MiB.
The following multiplicative suffixes are supported: 't' or 'T' - TiB 'g' or 'G' - GiB, 'm' or 'M' - MiB, 'k' or 'K' - KiB.
Note that this is entirely optional, and therefore an input such as 300
will be interpreted as 300 Bytes.
Environment Variable | Type | Description |
---|---|---|
AIS_ENDPOINT |
string |
Cluster's endpoint: http or https address of any aistore gateway in this cluster. Overrides ip and port flags. |
To state the same slightly differently, cluster endpoint can be defined in two ways:
- as (plain) http://ip:port address, whereby '--ip' and '--port' are command-line options.
- via
AIS_ENDPOINT
environment universally supported across all AIS clients, e.g.:
$ export AIS_ENDPOINT=https://10.07.56.68:51080
In addition, environment can be used to specify client-side TLS (aka, HTTPS) configuration:
var name | description |
---|---|
AIS_CRT |
X.509 certificate |
AIS_CRT_KEY |
X.509 certificate's private key |
AIS_CLIENT_CA |
Certificate authority that authorized (signed) the certificate |
AIS_SKIP_VERIFY_CRT |
when true, skip X.509 cert verification (usually enabled to circumvent limitations of self-signed certs) |
See also:
For the most recently updated command-line options and examples, please run aisloader
or aisloader usage
.
1. Create a 10-seconds load of 50% PUT and 50% GET requests:
```console
$ aisloader -bucket=my_ais_bucket -duration=10s -pctput=50 -provider=ais
Found 0 existing objects
Run configuration:
{
"proxy": "http://172.50.0.2:8080",
"provider": "ais",
"bucket": "my_ais_bucket",
"duration": "10s",
"put upper bound": 0,
"put %": 50,
"minimal object size in Bytes": 1024,
"maximum object size in Bytes": 1048576,
"worker count": 1,
"stats interval": "10s",
"backed by": "sg",
"cleanup": true
}
Actual run duration: 10.313689487s
Time OP Count Total Bytes Latency(min, avg, max) Throughput Error
01:52:52 Put 26 11.19GB 296.39ms 5.70s 14.91s 639.73MB 0
01:52:52 Get 16 3.86GB 58.89ms 220.20ms 616.72ms 220.56MB 0
01:52:52 CFG 0 0B 0.00ms 0.00ms 0.00ms 0B 0
01:52:52 Clean up ...
01:52:54 Clean up done
```
2. Time-based 100% PUT into ais bucket. Upon exit the bucket is destroyed:
```console
$ aisloader -bucket=nvais -duration 10s -cleanup=true -numworkers=3 -minsize=1K -maxsize=1K -pctput=100 -provider=ais
```
3. Timed (for 1h) 100% GET from a Cloud bucket, no cleanup:
```console
$ aisloader -bucket=aws://nvaws -duration 1h -numworkers=30 -pctput=0 -cleanup=false
```
4. Mixed 30%/70% PUT and GET of variable-size objects to/from a Cloud bucket. PUT will generate random object names and is limited by the 10GB total size. Cleanup enabled - upon completion all generated objects and the bucket itself will be deleted:
```console
$ aisloader -bucket=s3://nvaws -duration 0s -cleanup=true -numworkers=3 -minsize=1024 -maxsize=1MB -pctput=30 -totalputsize=10G
```
5. PUT 1GB total into an ais bucket with cleanup disabled, object size = 1MB, duration unlimited:
```console
$ aisloader -bucket=nvais -cleanup=false -totalputsize=1G -duration=0 -minsize=1MB -maxsize=1MB -numworkers=8 -pctput=100 -provider=ais
```
6. 100% GET from an ais bucket:
```console
$ aisloader -bucket=nvais -duration 5s -numworkers=3 -pctput=0 -provider=ais -cleanup=false
```
7. PUT 2000 objects named as aisloader/hex({0..2000}{loaderid})
:
```console
$ aisloader -bucket=nvais -duration 10s -numworkers=3 -loaderid=11 -loadernum=20 -maxputs=2000 -objNamePrefix="aisloader" -cleanup=false
```
8. Use random object names and loaderID to report statistics:
```console
$ aisloader -loaderid=10
```
9. PUT objects with random name generation being based on the specified loaderID and the total number of concurrent aisloaders:
```console
$ aisloader -loaderid=10 -loadernum=20
```
10. Same as above except that loaderID is computed by the aisloader as hash(loaderstring) & 0xff
:
```console
$ aisloader -loaderid=loaderstring -loaderidhashlen=8
```
11. Print loaderID and exit (all 3 examples below) with the resulting loaderID shown on the right:
```console
$ aisloader -getloaderid (0x0)
$ aisloader -loaderid=10 -getloaderid (0xa)
$ aisloader -loaderid=loaderstring -loaderidhashlen=8 -getloaderid (0xdb)
```
12. Destroy existing ais bucket. If the bucket is Cloud-based, delete all objects:
```console
$ aisloader -bucket=nvais -duration 0s -totalputsize=0 -cleanup=true
```
13. Generate load on a cluster listening on custom IP address and port:
```console
$ aisloader -ip="example.com" -port=8080
```
14. Generate load on a cluster listening on custom IP address and port from environment variable:
```console
$ AIS_ENDPOINT="examples.com:8080" aisloader
```
15. Use HTTPS when connecting to a cluster:
```console
$ aisloader -ip="https://localhost" -port=8080
```
16. PUT TAR files with random files inside into a cluster:
```console
$ aisloader -bucket=my_ais_bucket -duration=10s -pctput=100 -provider=ais -readertype=tar
```
17. Generate load on tar2tf
ETL. New ETL is started and then stopped at the end. TAR files are PUT to the cluster. Only available when cluster is deployed on Kubernetes.
```console
$ aisloader -bucket=my_ais_bucket -duration=10s -pctput=100 -provider=ais -readertype=tar -etl=tar2tf -cleanup=false
```
18. Timed 100% GET directly from S3 bucket (notice '-s3endpoint' command line):
console $ aisloader -bucket=s3://xyz -cleanup=false -numworkers=8 -pctput=0 -duration=10m -s3endpoint=https://s3.amazonaws.com
19. PUT approx. 8000 files into s3 bucket directly, skip printing usage and defaults. Similar to the previous example, aisloader goes directly to a given S3 endpoint ('-s3endpoint'), and aistore is not being used:
console $ aisloader -bucket=s3://xyz -cleanup=false -minsize=16B -maxsize=16B -numworkers=8 -pctput=100 -totalputsize=128k -s3endpoint=https://s3.amazonaws.com -quiet
20. Generate a list of object names (once), and then run aisloader without executing list-objects:
```console
$ ais ls ais://nnn --props name -H > /tmp/a.txt
$ aisloader -bucket=ais://nnn -duration 1h -numworkers=30 -pctput=0 -filelist /tmp/a.txt -cleanup=false
```
Collecting is easy - aisloader
supports at-runtime monitoring via with Graphite using StatsD.
When starting up, aisloader
will try to connect
to provided StatsD server (see: statsdip
and statsdport
options). Once the
connection is established the statistics from aisloader are send in the following
format:
<metric_type>.aisloader.<hostname>-<loaderid>.<metric>
metric_type
- can be:gauge
,timer
,counter
hostname
- is the hostname of the machine on which the loader is ranloaderid
- see:-loaderid
optionmetric
- can be:latency.*
,get.*
,put.*
(see: aisloader metrics)
Grafana helps visualize the collected statistics. It is convenient to use and provides numerous tools to measure and calculate different metrics.
We provide simple script which allows you to set up the Graphite and Grafana servers which run inside separate dockers. To add new dashboards and panels, please follow: grafana tutorial.
When selecting a series in panel view, it should be in the format: stats.aisloader.<loader>.*
.
Remember that metrics will not be visible (and you will not be able to select
them) until you start the loader.
Following is a brief illustrated sequence to enable detailed tracing, capture statistics, and toggle tracing on/off at runtime.
IMPORTANT NOTE:
The amount of generated (and extremely detailed) metrics can put a strain on your StatsD server. That's exactly the reason for runtime switch to toggle HTTP tracing on/off. The example below shows how to do it (in particular, see
kill -HUP
).
1. Run aisloader for 90s (32 workes, 100% write, sizes between 1KB and 1MB) with detailed tracing enabled:
$ aisloader -bucket=ais://abc -duration 90s -numworkers=32 -minsize=1K -maxsize=1M -pctput=50 --cleanup=false --trace-http=true
$ nc 8125 -l -u -k
# The result will look as follows - notice "*latency*" metrics (in milliseconds):
...
aisloader.u18044-0.put.latency.posthttp:0.0005412320409368235|ms|@0.000049
aisloader.u18044-0.put.latency.proxyheader:0.06676835268647904|ms|@0.000049
aisloader.u18044-0.put.latency.targetresponse:0.7371088368431411|ms|@0.000049aisproxy.DLEp8080.put.count:587262|caistarget.vuIt8081.kalive.ms:1|ms
aistarget.vuIt8081.disk.sda.avg.rsize:58982|g
aistarget.vuIt8081.disk.sda.avg.wsize:506227|g
aistarget.vuIt8081.put.count:587893|c
aistarget.vuIt8081.put.redir.ms:2|ms
aistarget.vuIt8081.disk.sda.read.mbps:5.32|g
aistarget.vuIt8081.disk.sda.util:3|gaisloader.u18044-0.get.count:0|caisloader.u18044-0.put.count:19339|caisloader.u18044-0.put.pending:7|g|@0.000052aisloader.u18044-0.put.latency:4.068928072806246|ms|@0.000052
aisloader.u18044-0.put.minlatency:0|ms|@0.000052
aisloader.u18044-0.put.maxlatency:60|ms|@0.000052aisloader.u18044-0.put.throughput:1980758|g|@0.000052aisloader.u18044-0.put.latency.posthttp:0.0005170898185014737|ms|@0.000052
aisloader.u18044-0.put.latency.proxyheader:0.06742851233259217|ms|@0.000052
aisloader.u18044-0.put.latency.proxyrequest:0.1034696726821449|ms|@0.000052
aisloader.u18044-0.put.latency.targetheader:0.0699622524432494|ms|@0.000052
aisloader.u18044-0.put.latency.targetrequest:0.09168002482031129|ms|@0.000052
aisloader.u18044-0.put.latency.targetresponse:0.806660116862299|ms|@0.000052
aisloader.u18044-0.put.latency.proxy:0.6616681317544858|ms|@0.000052
aisloader.u18044-0.put.latency.targetconn:1.0948859816950205|ms|@0.000052
aisloader.u18044-0.put.latency.proxyresponse:0.425616629608563|ms|@0.000052
aisloader.u18044-0.put.latency.proxyconn:1.2669734732923108|ms|@0.000052
aisloader.u18044-0.put.latency.target:1.0063602047675682|ms|@0.000052aisproxy.DLEp8080.put.count:605044|caistarget.vuIt8081.put.redir.ms:2|ms
...
$ pgrep -a aisloader
3800 aisloader -bucket=ais://abc -duration 90s -numworkers=32 -minsize=1K -maxsize=1M -pctput=100 --cleanup=false --trace-http=true
# kill -1 3800
# or, same: kill -HUP 3800
Time OP Count Size (Total) Latency (min, avg, max) Throughput (Avg) Errors (Total)
10:11:27 PUT 20,136 (20,136 8 0) 19.7MiB (19.7MiB) 755.308µs 3.929ms 42.493ms 1.97MiB/s (1.97MiB/s) -
...
Detailed latency info is disabled
...
# As stated, `SIGHUP` is a binary toggle - next time used it'll enable detailed trace with `aisloader printing:
Detailed latency info is enabled
Note that other than
--trace-http
, all command-line options in this section are used for purely illustrative purposes.
For benchmarking production-level clusters, a single AISLoader instance may not be able to fully saturate the load the cluster can handle. In this case, multiple aisloader instances can be coordinated via the AISLoader Composer. See the README for instructions on setting up.
For documented aisloader
metrics, please refer to:
The same readme (above) also describes:
For StatsD compliant backends, see:
Finally, for another supported - and alternative to StatsD - monitoring via Prometheus integration, see: