-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Vibhu Jawa <[email protected]>
- Loading branch information
Showing
3 changed files
with
295 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import time | ||
|
||
from nemo_curator.classifiers import FineWebEduClassifier | ||
from nemo_curator.datasets import DocumentDataset | ||
from nemo_curator.utils.distributed_utils import get_client | ||
from nemo_curator.utils.script_utils import ArgumentHelper | ||
|
||
|
||
def main(args): | ||
global_st = time.time() | ||
|
||
# Input can be a string or list | ||
input_file_path = "/path/to/data" | ||
output_file_path = "./" | ||
|
||
client_args = ArgumentHelper.parse_client_args(args) | ||
client_args["cluster_type"] = "gpu" | ||
client = get_client(**client_args) | ||
|
||
input_dataset = DocumentDataset.read_json( | ||
input_file_path, backend="cudf", add_filename=True | ||
) | ||
|
||
fineweb_classifier = FineWebEduClassifier() | ||
result_dataset = fineweb_classifier(dataset=input_dataset) | ||
result_dataset.to_json(output_file_dir=output_file_path, write_to_filename=True) | ||
|
||
global_et = time.time() | ||
print( | ||
f"Total time taken for fineweb classifier inference: {global_et-global_st} s", | ||
flush=True, | ||
) | ||
|
||
client.close() | ||
|
||
|
||
def attach_args( | ||
parser=argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
), | ||
): | ||
argumentHelper = ArgumentHelper(parser) | ||
argumentHelper.add_distributed_classifier_cluster_args() | ||
|
||
return argumentHelper.parser.parse_args() | ||
|
||
|
||
if __name__ == "__main__": | ||
main(attach_args().parse_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
|
||
os.environ["RAPIDS_NO_INITIALIZE"] = "1" | ||
os.environ["DASK_DATAFRAME__QUERY_PLANNING"] = "False" | ||
import torch | ||
from crossfit import op | ||
from crossfit.backend.torch.hf.model import HFModel | ||
from transformers import AutoConfig, AutoModelForSequenceClassification | ||
|
||
from nemo_curator.classifiers.base import ( | ||
DistributedDataClassifier, | ||
_get_suggest_memory_for_classifier, | ||
_run_classifier_helper, | ||
) | ||
from nemo_curator.datasets import DocumentDataset | ||
|
||
FINEWEB_EDU_IDENTIFIER = "HuggingFaceTB/fineweb-edu-classifier" | ||
|
||
|
||
class FinewebEduModel(HFModel): | ||
def __init__(self, path_or_name, max_mem_gb, autocast=False): | ||
self.path_or_name = path_or_name | ||
self.autocast = autocast | ||
if max_mem_gb is None: | ||
max_mem_gb = _get_suggest_memory_for_classifier() | ||
super().__init__(path_or_name=path_or_name, max_mem_gb=max_mem_gb) | ||
|
||
def load_model(self, device="cuda"): | ||
model = AutoModelForSequenceClassification.from_pretrained(self.path_or_name) | ||
model = model.to(device) | ||
model = self.configure_forward(model, self.autocast) | ||
return model | ||
|
||
@staticmethod | ||
def configure_forward(model, autocast=True): | ||
original_forward = model.forward | ||
|
||
def custom_forward(*args, **kwargs): | ||
if autocast: | ||
with torch.autocast(device_type="cuda"): | ||
output = original_forward(*args, **kwargs) | ||
return output.logits.squeeze(-1).float() | ||
|
||
model.forward = custom_forward | ||
return model | ||
|
||
def load_config(self): | ||
return AutoConfig.from_pretrained(self.path_or_name) | ||
|
||
|
||
class FineWebEduClassifier(DistributedDataClassifier): | ||
def __init__( | ||
self, | ||
filter_by=None, | ||
batch_size=256, | ||
text_field: str = "text", | ||
pred_column="fineweb-edu-score", | ||
int_column="fineweb-edu-score-int", | ||
max_chars=-1, | ||
device_type="cuda", | ||
autocast=True, | ||
max_mem_gb=None, | ||
): | ||
model = FinewebEduModel( | ||
path_or_name=FINEWEB_EDU_IDENTIFIER, | ||
autocast=autocast, | ||
max_mem_gb=max_mem_gb, | ||
) | ||
|
||
self.text_field = text_field | ||
self.int_column = int_column | ||
super().__init__( | ||
model=model, | ||
filter_by=filter_by, | ||
batch_size=batch_size, | ||
pred_column=pred_column, | ||
max_chars=max_chars, | ||
device_type=device_type, | ||
autocast=autocast, | ||
labels=None, | ||
out_dim=1, | ||
) | ||
|
||
def _run_classifier(self, dataset: DocumentDataset): | ||
print("Starting Fineweb EDU classifier inference", flush=True) | ||
ddf = dataset.df | ||
|
||
pipe = op.Sequential( | ||
op.Tokenizer( | ||
self.model, | ||
cols=[self.text_field], | ||
tokenizer_type="sentencepiece", | ||
max_length=self.model.max_seq_length(), | ||
), | ||
op.Predictor( | ||
self.model, | ||
sorted_data_loader=True, | ||
batch_size=self.batch_size, | ||
pred_output_col=self.pred_column, | ||
), | ||
keep_cols=ddf.columns.tolist(), | ||
) | ||
ddf = pipe(ddf) | ||
# Go from list to scalar | ||
ddf[self.pred_column] = ddf[self.pred_column].list.get(0) | ||
ddf[self.int_column] = ( | ||
ddf[self.pred_column].clip(lower=0, upper=5).round().astype(int) | ||
) | ||
return DocumentDataset(ddf) |
109 changes: 109 additions & 0 deletions
109
nemo_curator/scripts/classifiers/fineweb_edu_classifier_inference.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import time | ||
import warnings | ||
|
||
os.environ["RAPIDS_NO_INITIALIZE"] = "1" | ||
from nemo_curator.classifiers import FineWebEduClassifier | ||
from nemo_curator.datasets import DocumentDataset | ||
|
||
# Get relevant args | ||
from nemo_curator.utils.distributed_utils import get_client, read_data, write_to_disk | ||
from nemo_curator.utils.file_utils import get_remaining_files | ||
from nemo_curator.utils.script_utils import ArgumentHelper | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
|
||
def main(): | ||
args = ArgumentHelper.parse_distributed_classifier_args().parse_args() | ||
print(f"Arguments parsed = {args}", flush=True) | ||
|
||
client_args = ArgumentHelper.parse_client_args(args) | ||
client_args["cluster_type"] = "gpu" | ||
client = get_client(**client_args) | ||
print("Starting Fineweb classifier inference", flush=True) | ||
global_st = time.time() | ||
files_per_run = len(client.scheduler_info()["workers"]) * 2 | ||
|
||
if not os.path.exists(args.output_data_dir): | ||
os.makedirs(args.output_data_dir) | ||
|
||
# Some times jsonl files are stored as .json | ||
# So to handle that case we can pass the input_file_extension | ||
if args.input_file_extension is not None: | ||
input_file_extension = args.input_file_extension | ||
else: | ||
input_file_extension = args.input_file_type | ||
|
||
input_files = get_remaining_files( | ||
args.input_data_dir, args.output_data_dir, input_file_extension | ||
) | ||
print(f"Total input files {len(input_files)}", flush=True) | ||
|
||
if args.input_file_type == "pickle": | ||
add_filename = False | ||
else: | ||
add_filename = True | ||
|
||
fineweb_edu_classifier = FineWebEduClassifier( | ||
batch_size=args.batch_size, | ||
autocast=args.autocast, | ||
max_chars=args.max_chars, | ||
max_mem_gb=args.max_mem_gb_classifier, | ||
) | ||
|
||
for file_batch_id, i in enumerate(range(0, len(input_files), files_per_run)): | ||
batch_st = time.time() | ||
current_batch_files = input_files[i : i + files_per_run] | ||
print( | ||
f"File Batch ID {file_batch_id}: total input files {len(current_batch_files)}", | ||
flush=True, | ||
) | ||
df = read_data( | ||
input_files=current_batch_files, | ||
file_type=args.input_file_type, | ||
add_filename=add_filename, | ||
) | ||
df = fineweb_edu_classifier(DocumentDataset(df)).df | ||
print(f"Total input Dask DataFrame partitions {df.npartitions}", flush=True) | ||
|
||
write_to_disk( | ||
df=df, | ||
output_file_dir=args.output_data_dir, | ||
write_to_filename=add_filename, | ||
output_type=args.output_file_type, | ||
) | ||
batch_et = time.time() | ||
print( | ||
f"File Batch ID {file_batch_id}: completed in {batch_et-batch_st} seconds", | ||
flush=True, | ||
) | ||
|
||
global_et = time.time() | ||
print( | ||
f"Total time taken for domain classifier inference: {global_et-global_st} s", | ||
flush=True, | ||
) | ||
client.close() | ||
|
||
|
||
def console_script(): | ||
main() | ||
|
||
|
||
if __name__ == "__main__": | ||
console_script() |