-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge tag 'v0.5.0' into v0.5.0_forward_merge
Signed-off-by: Ayush Dattagupta <[email protected]>
- Loading branch information
Showing
4 changed files
with
202 additions
and
157 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import asyncio | ||
import json | ||
import os | ||
import tarfile | ||
from functools import partial | ||
from multiprocessing import Pool | ||
|
||
import aiofiles | ||
import aiohttp | ||
import pandas as pd | ||
|
||
|
||
async def download_image(session, url, filename): | ||
async with session.get(url) as response: | ||
if response.status == 200: | ||
async with aiofiles.open(filename, mode="wb") as f: | ||
await f.write(await response.read()) | ||
return True | ||
return False | ||
|
||
|
||
async def process_batch(batch, output_dir, batch_num): | ||
tar_filename = os.path.join(output_dir, f"{batch_num:05d}.tar") | ||
tmp_dir = os.path.join(output_dir, "tmp") | ||
os.makedirs(tmp_dir, exist_ok=True) | ||
|
||
metadatas = [] | ||
async with aiohttp.ClientSession() as session: | ||
tasks = [] | ||
for i, (_, row) in enumerate(batch.iterrows()): | ||
caption = row["TEXT"] | ||
url = row["URL"] | ||
|
||
key = f"{batch_num:05d}{i:04d}" | ||
jpg_filename = os.path.join(tmp_dir, f"{key}.jpg") | ||
txt_filename = os.path.join(tmp_dir, f"{key}.txt") | ||
json_filename = os.path.join(tmp_dir, f"{key}.json") | ||
|
||
meta = {"url": url, "caption": caption, "key": key} | ||
metadatas.append(meta) | ||
|
||
tasks.append(download_image(session, url, jpg_filename)) | ||
|
||
async with aiofiles.open(txt_filename, mode="w") as f: | ||
await f.write(caption) | ||
|
||
async with aiofiles.open(json_filename, mode="w") as f: | ||
await f.write(json.dumps(meta)) | ||
|
||
results = await asyncio.gather(*tasks) | ||
|
||
with tarfile.open(tar_filename, "w") as tar: | ||
for i, success in enumerate(results): | ||
if success: | ||
key = f"{batch_num:05d}{i:04d}" | ||
jpg_base = f"{key}.jpg" | ||
txt_base = f"{key}.txt" | ||
json_base = f"{key}.json" | ||
jpg_tmp = os.path.join(tmp_dir, jpg_base) | ||
txt_tmp = os.path.join(tmp_dir, txt_base) | ||
json_tmp = os.path.join(tmp_dir, json_base) | ||
|
||
tar.add(jpg_tmp, arcname=jpg_base) | ||
tar.add(txt_tmp, arcname=txt_base) | ||
tar.add(json_tmp, arcname=json_base) | ||
|
||
# Clean up temporary files | ||
for i in range(len(batch)): | ||
key = f"{batch_num:05d}{i:04d}" | ||
jpg_tmp = os.path.join(tmp_dir, f"{key}.jpg") | ||
txt_tmp = os.path.join(tmp_dir, f"{key}.txt") | ||
json_tmp = os.path.join(tmp_dir, f"{key}.json") | ||
|
||
os.remove(jpg_tmp) | ||
os.remove(txt_tmp) | ||
os.remove(json_tmp) | ||
|
||
# Write parquet | ||
meta_df = pd.DataFrame(metadatas) | ||
parquet_path = os.path.join(output_dir, f"{batch_num:05d}.parquet") | ||
meta_df.to_parquet(parquet_path) | ||
|
||
|
||
def process_parquet_chunk(chunk, output_dir): | ||
batch_num, batch = chunk | ||
|
||
asyncio.run(process_batch(batch, output_dir, batch_num)) | ||
|
||
|
||
def download_webdataset( | ||
parquet_path, output_dir, entries_per_tar=10000, num_processes=2 | ||
): | ||
os.makedirs(output_dir, exist_ok=True) | ||
|
||
# Read the parquet file | ||
df = pd.read_parquet(parquet_path) | ||
|
||
# Split the dataframe into chunks for multiprocessing | ||
chunks = [ | ||
(batch_num, df[i : i + entries_per_tar]) | ||
for batch_num, i in enumerate(range(0, len(df), entries_per_tar)) | ||
] | ||
|
||
# Use multiprocessing to process chunks in parallel | ||
with Pool(processes=num_processes) as pool: | ||
func = partial(process_parquet_chunk, output_dir=output_dir) | ||
pool.map(func, chunks) | ||
|
||
tmp_dir = os.path.join(output_dir, "tmp") | ||
os.rmdir(tmp_dir) |
Oops, something went wrong.