-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.lean
68 lines (49 loc) · 2.83 KB
/
test.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
-- import Mathlib.Algebra.Field.Basic
-- import Mathlib.Data.Polynomial.RingDivision
-- import Mathlib.FieldTheory.Subfield
-- import Mathlib.GroupTheory.SpecificGroups.Cyclic
-- import Mathlib.Data.Multiset.Basic
-- #check Field.isDomain
-- #check List.maximum_of_length_pos
-- #check Nat.dvd_of_factors_subperm
-- #check Nat.dvd_of_factors_subperm
-- #check isCyclic_of_card_pow_eq_one_le
-- #check Multiset.card
-- variable {G' K : Type _} [Field K] [SetLike G' K]
-- --variable {G : Set K} [DecidableEq G] [Group G] [Fintype G]
-- variable [SubfieldClass G' K] {G : G'} [Fintype G] [DecidableEq G]
-- open
-- instance : SubgroupClass G' K := SubfieldClass.toSubgroupClass G'
-- instance : Group G := SubgroupClass.toGroup G' (G := K)
-- #check Subgroup.zpowers
-- section solution1
-- lemma finite_group_exi_greater_order [Fintype G] :
-- ∃ x : G, ∀ y : G, orderOf y ≤ orderOf x :=sorry
-- noncomputable def greater_order_ele :=
-- Classical.choose (finite_group_exi_greater_order (G := G))
-- lemma finiteCommGroup.order_of_ele_dvd :
-- ∀ x : G, orderOf x ∣ orderOf (greater_order_ele (G := G)) :=sorry
-- def factor_power (p n : ℕ) : ℕ := List.count p (Nat.factors n)
-- lemma exi_prime_factor_pow_gt_of_not_dvd {m n : Nat} :
-- ¬ m ∣ n → ∃ p : Nat, (factor_power p n ) < factor_power p m := sorry
-- lemma dvd_order_of_goe [CommGroup G] : ∀ h : G, orderOf h∣orderOf (greater_order_ele (G := G)) := sorry
-- theorem finite_subgroup_of_field_is_cyclic_proof1 : IsCyclic G := by sorry
-- end solution1
-- section solution2
-- #check Multiset.card_le_of_le
-- lemma roots_in_subfield_subset_roots_in_field : ∀ n, 0 < n →
-- Finset.card (Finset.filter (α := G) (fun a => a ^ n = 1) Finset.univ) ≤ Multiset.card (Polynomial.nthRoots (R := K) n 1) := by
-- intro n hn
-- have : Finset.card (Finset.filter (α := G) (fun a => a ^ n = 1) Finset.univ) ≤ Finset.card (Multiset.toFinset (Polynomial.nthRoots (R := K) n 1) )
-- -- have : Multiset.map (↑) ((Multiset.filter (α := G) (fun a => a ^ n = 1) Finset.univ.val)) ≤ Polynomial.nthRoots n 1 (R := K) := sorry
-- -- -- have heq : Multiset.card (Multiset.filter (α := G) (fun a => a ^ n = 1) Finset.univ.val) = Multiset.card (Multiset.map Subtype.val (Multiset.filter (α := G) (fun a => a ^ n = 1) Finset.univ.val)) := sorry
-- -- rw [←Multiset.card_map]
-- -- exact Multiset.card_le_of_le this
-- #check Polynomial.card_roots
-- lemma aux : ∀ n : ℕ, 0 < n →
-- Finset.card (α:=G) (Finset.filter (fun a => a ^ n = 1) Finset.univ) ≤ n := by
-- intro n hn
-- exact le_trans (roots_in_subfield_subset_roots_in_field (G := G) n hn) (by sorry)
-- theorem finite_subgroup_of_field_is_cyclic_proof2 : IsCyclic G :=
-- isCyclic_of_card_pow_eq_one_le (α := ↑G) (aux (G:=G))
-- end solution2