From 41029df0f32923ade70ff363175f6a02ab068d00 Mon Sep 17 00:00:00 2001 From: MiKyung Lee <58964324+mlee03@users.noreply.github.com> Date: Thu, 8 Feb 2024 10:53:17 -0500 Subject: [PATCH 01/10] fix gitmodules (#65) Co-authored-by: mlee03 --- .gitmodules | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/.gitmodules b/.gitmodules index e3708a60..016ffa0e 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,10 +1,10 @@ [submodule "NDSL"] path = NDSL - url = git@github.com:NOAA-GFDL/NDSL.git + url = https://github.com/NOAA-GFDL/NDSL.git [submodule "pyFV3"] path = pyFV3 - url = git@github.com:NOAA-GFDL/PyFV3.git + url = https://github.com/NOAA-GFDL/PyFV3.git [submodule "pySHiELD"] path = pySHiELD - url = git@github.com:NOAA-GFDL/PySHiELD.git + url = https://github.com/NOAA-GFDL/PySHiELD.git From 49e27205604821e6d3427a8330c7be1dbe834c5b Mon Sep 17 00:00:00 2001 From: Florian Deconinck Date: Tue, 13 Feb 2024 12:37:11 -0500 Subject: [PATCH 02/10] Update to README (#66) --- README.md | 66 ++++++++++++------------ dependencies.dot | 29 ----------- dependencies.svg | 127 ----------------------------------------------- 3 files changed, 35 insertions(+), 187 deletions(-) delete mode 100644 dependencies.dot delete mode 100644 dependencies.svg diff --git a/README.md b/README.md index 151bea93..0643c01f 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,3 @@ -[![CircleCI][circleci-shield]][circleci-url] [![Contributors][contributors-shield]][contributors-url] [![Stargazers][stars-shield]][stars-url] [![Issues][issues-shield]][issues-url] @@ -6,17 +5,36 @@ # Pace -Pace is an implementation of the FV3GFS / SHiELD atmospheric model developed by NOAA/GFDL using the GT4Py domain-specific language in Python. The model can be run on a laptop using Python-based backend or on thousands of heterogeneous compute nodes of a large supercomputer. +Pace is an implementation of the FV3GFS / SHiELD atmospheric model developed by NOAA/GFDL using the [NDSL](https://github.com/NOAA-GFDL/NDSL) middleware in Python, itself based on [GT4Py](https://github.com/GridTools/gt4py) and [DaCe](https://github.com/spcl/dace). The model can be run on a laptop using Python-based backend or on thousands of heterogeneous compute nodes of a large supercomputer. -Full Sphinx documentation can be found at [https://ai2cm.github.io/pace/](https://ai2cm.github.io/pace/). +🚧 **WARNING** This repo is under active development - supported features and procedures can change rapidly and without notice. 🚧 -**WARNING** This repo is under active development - supported features and procedures can change rapidly and without notice. +The repository model code is split between [pyFV3](https://github.com/NOAA-GFDL/pyFV3) for the dynamical core and [pySHiELD](https://github.com/NOAA-GFDL/pySHiELD) for the physics parametrization. A full depencies looks like the following: + +```mermaid +flowchart TD +GT4Py.cartesian --> |Stencil DSL|NDSL +DaCe --> |Full program opt|NDSL +NDSL --> pyFV3 +NDSL --> pySHiELD +pyFV3 --> |Dynamics|Pace +pySHiELD --> |Physics|Pace + +``` ## Quickstart - bare metal ### Build -Pace requires GCC > 9.2, MPI, and Python 3.8 on your system, and CUDA is required to run with a GPU backend. You will also need the headers of the boost libraries in your `$PATH` (boost itself does not need to be installed). +Pace requires: + +- GCC > 9.2 +- MPI +- Python 3.8. + +For GPU backends CUDA and/or ROCm is required depending on the targeted hardware. + +For GT stencils backends, you will also need the headers of the boost libraries in your `$PATH`. This could be down like this. ```shell cd BOOST/ROOT @@ -30,7 +48,7 @@ export BOOST_ROOT=BOOST/ROOT/boost_1_79_0 When cloning Pace you will need to update the repository's submodules as well: ```shell -git clone --recursive https://github.com/ai2cm/pace.git +git clone --recursive https://github.com/NOAA-GFDL/pace.git ``` or if you have already cloned the repository: @@ -39,7 +57,7 @@ or if you have already cloned the repository: git submodule update --init --recursive ``` -We recommend creating a python `venv` or conda environment specifically for Pace. +We recommend creating a python `venv` or `conda` environment specifically for Pace. ```shell python3 -m venv venv_name @@ -69,7 +87,7 @@ After the run completes, you will see an output direcotry `output.zarr`. An exam ### Environment variable configuration -- `PACE_CONSTANTS`: Pace is bundled with various constants (see _util/pace/util/constants.py_). +- `PACE_CONSTANTS`: Pace is bundled with various constants. - `GFDL` NOAA's FV3 dynamical core constants (original port) - `GFS` Constant as defined in NOAA GFS - `GEOS` Constant as defined in GEOS v13 @@ -101,29 +119,15 @@ make dev mpirun --mca btl_vader_single_copy_mechanism none -n 6 python3 -m pace.driver.run /pace/driver/examples/configs/baroclinic_c12.yaml ``` -## Running translate tests - -See the [translate tests](stencils/pace/stencils/testing/README.md) section for more information. - -## Repository structure - -The top-level directory contains the main components of pace such as the dynamical core, the physical parameterizations and utilities. - -This git repository is laid out as a mono-repo, containing multiple independent projects. Because of this, it is important not to introduce unintended dependencies between projects. The graph below indicates a project depends on another by an arrow pointing from the parent project to its dependency. For example, the tests for fv3core should be able to run with only files contained under the fv3core and util projects, and should not access any files in the driver or physics packages. Only the top-level tests in Pace are allowed to read all files. - -![Graph of interdependencies of Pace modules, generated from dependences.dot](./dependencies.svg) - -## ML emulation +## History -An example of integration of an ML model replacing the microphysics parametrization is available on the `feature/microphysics-emulator` branch. +This repository was first developed at [AI2](https://github.com/ai2cm/pace) and the institute conserves an archived copy with the latest state before the NOAA took over. -[circleci-shield]: https://dl.circleci.com/status-badge/img/gh/ai2cm/pace/tree/main.svg?style=svg -[circleci-url]: https://dl.circleci.com/status-badge/redirect/gh/ai2cm/pace/tree/main [contributors-shield]: https://img.shields.io/github/contributors/ai2cm/pace.svg -[contributors-url]: https://github.com/ai2cm/pace/graphs/contributors -[stars-shield]: https://img.shields.io/github/stars/ai2cm/pace.svg -[stars-url]: https://github.com/ai2cm/pace/stargazers -[issues-shield]: https://img.shields.io/github/issues/ai2cm/pace.svg -[issues-url]: https://github.com/ai2cm/pace/issues -[license-shield]: https://img.shields.io/github/license/ai2cm/pace.svg -[license-url]: https://github.com/ai2cm/pace/blob/main/LICENSE.md +[contributors-url]: https://github.com/NOAA-GFDL/pace/graphs/contributors +[stars-shield]: https://img.shields.io/github/stars/NOAA-GFDL/pace.svg +[stars-url]: https://github.com/NOAA-GFDL/pace/stargazers +[issues-shield]: https://img.shields.io/github/issues/NOAA-GFDL/pace.svg +[issues-url]: https://github.com/NOAA-GFDL/pace/issues +[license-shield]: https://img.shields.io/github/license/NOAA-GFDL/pace.svg +[license-url]: https://github.com/NOAA-GFDL/pace/blob/main/LICENSE.md diff --git a/dependencies.dot b/dependencies.dot deleted file mode 100644 index bec25df2..00000000 --- a/dependencies.dot +++ /dev/null @@ -1,29 +0,0 @@ -# this dotfile is used as a reference source for project dependencies -# each folder entry must have a "label" equal to its directory name -# -# If you update this file, please re-generate the svg with `make dependencies.svg` -# and commit it to the repository - -digraph { - pace [shape=box] - fv3core [shape=oval, label="fv3core"] - driver [shape=oval, label="driver"] - physics [shape=oval, label="physics"] - stencils [shape=oval, label="stencils"] - util [shape=oval, label="util"] - dsl [shape=oval, label="dsl"] - - pace -> driver - driver -> fv3core - driver -> physics - driver -> util - fv3core -> util - fv3core -> stencils - fv3core -> dsl - physics -> util - physics -> stencils - physics -> dsl - stencils -> util - stencils -> dsl - -} diff --git a/dependencies.svg b/dependencies.svg deleted file mode 100644 index 3f5a06a4..00000000 --- a/dependencies.svg +++ /dev/null @@ -1,127 +0,0 @@ - - - - - - -%3 - - - -pace - -pace - - - -driver - -driver - - - -pace->driver - - - - - -fv3core - -fv3core - - - -stencils - -stencils - - - -fv3core->stencils - - - - - -util - -util - - - -fv3core->util - - - - - -dsl - -dsl - - - -fv3core->dsl - - - - - -driver->fv3core - - - - - -physics - -fv3gfs-physics - - - -driver->physics - - - - - -driver->util - - - - - -physics->stencils - - - - - -physics->util - - - - - -physics->dsl - - - - - -stencils->util - - - - - -stencils->dsl - - - - - From 5cd03ca9d772c3cd4f3efd9b5e6d31d38fbe393c Mon Sep 17 00:00:00 2001 From: Oliver Elbert Date: Thu, 29 Feb 2024 13:05:32 -0500 Subject: [PATCH 03/10] hotfix for ntiles in driver dycore config for doubly periodic runs --- driver/pace/driver/driver.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/driver/pace/driver/driver.py b/driver/pace/driver/driver.py index 342062b0..2210bc96 100644 --- a/driver/pace/driver/driver.py +++ b/driver/pace/driver/driver.py @@ -280,6 +280,8 @@ def from_dict(cls, kwargs: Dict[str, Any]) -> "DriverConfig": # Copy grid_type to the DycoreConfig if it's not the default value if grid_type != 0: kwargs["dycore_config"].grid_type = grid_type + if grid_type > 3: + kwargs["dycore_config"].ntiles = 1 if ( isinstance(kwargs["stencil_config"], dict) From 63196de923564195683f9074e07bad4af0483f70 Mon Sep 17 00:00:00 2001 From: Frank Malatino <142349306+fmalatino@users.noreply.github.com> Date: Wed, 6 Mar 2024 13:15:11 -0500 Subject: [PATCH 04/10] Adding issue and PR templates (#74) --- .github/ISSUE_TEMPLATE/bug_report.md | 30 +++++++++++++++++++++++ .github/ISSUE_TEMPLATE/feature_request.md | 19 ++++++++++++++ .github/ISSUE_TEMPLATE/support_request.md | 14 +++++++++++ .github/PULL_REQUEST_TEMPLATE.md | 21 ++++++++++++++++ 4 files changed, 84 insertions(+) create mode 100644 .github/ISSUE_TEMPLATE/bug_report.md create mode 100644 .github/ISSUE_TEMPLATE/feature_request.md create mode 100644 .github/ISSUE_TEMPLATE/support_request.md create mode 100644 .github/PULL_REQUEST_TEMPLATE.md diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md new file mode 100644 index 00000000..53603ebe --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -0,0 +1,30 @@ +--- +name: Bug Report +about: Create a bug report to help us improve +title: '' +labels: Bug +--- + +**Describe the bug** +A clear and concise description of what the bug is + +**To Reproduce** +Steps to reproduce the behavior + +**Expected behavior** +A clear and concise description of what you expected to happen. + +**System Environment** +Describe the system environment, include: +- OS: [e.g. RHEL 7.2] +- Backend used [e.g. dace:cpu] +- Environment variables set +- Compiler(s): Type and version [e.g. Intel 19.1] +- MPI type, and version (e.g. MPICH, Cray MPI, openMPI) +- netCDF Version: For both C and Fortran +- Configure options: Any additional flags, or macros passed to configure +- If this bug came from a model run, which model + +**Additional context** +Add any other context about the problem. If applicable, include where any files +that help describe, or reproduce the problem exist. diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md new file mode 100644 index 00000000..104f3919 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.md @@ -0,0 +1,19 @@ +--- +name: Feature request +about: Suggest an idea for this project +title: '' +labels: 'enhancement' +assignees: '' +--- + +**Is your feature request related to a problem? Please describe.** +A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] + +**Describe the solution you'd like** +A clear and concise description of what you want to happen. + +**Describe alternatives you've considered** +A clear and concise description of any alternative solutions or features you've considered. + +**Additional context** +Add any other context or screenshots about the feature request here. diff --git a/.github/ISSUE_TEMPLATE/support_request.md b/.github/ISSUE_TEMPLATE/support_request.md new file mode 100644 index 00000000..5ce36681 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/support_request.md @@ -0,0 +1,14 @@ +--- +name: Support request +about: Request for help +title: '' +labels: 'question' +assignees: '' +--- + +**Is your question related to a problem? Please describe.** +A clear and concise description of what the problem is. + +**Describe what you have tried** +A clear and concise description of what steps you have taken. Include command +lines, and any messages from the command. diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 00000000..0553236c --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,21 @@ +**Description** +Include a summary of the change and which issue is fixed. Please also include +relevant motivation and context. List any dependencies that are required for +this change. + +Fixes # (issue) +If this is a hotfix to a released version, please specify it. + +**How Has This Been Tested?** +Please describe the tests that you ran to verify your changes. Please also note +any relevant details for your test configuration (e.g. compiler, OS). Include +enough information so someone can reproduce your tests. + +**Checklist:** +- [ ] My code follows the style guidelines of this project +- [ ] I have performed a self-review of my own code +- [ ] I have commented my code, particularly in hard-to-understand areas +- [ ] I have made corresponding changes to the documentation +- [ ] My changes generate no new warnings +- [ ] Any dependent changes have been merged and published in downstream modules +- [ ] New check tests, if applicable, are included From 893664c76358d4f5c9031dc02150db7d3c6804c3 Mon Sep 17 00:00:00 2001 From: MiKyung Lee <58964324+mlee03@users.noreply.github.com> Date: Mon, 11 Mar 2024 15:15:20 -0400 Subject: [PATCH 05/10] add branch to gitmodules (#70) Co-authored-by: mlee03 --- .gitmodules | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitmodules b/.gitmodules index 016ffa0e..9f16caae 100644 --- a/.gitmodules +++ b/.gitmodules @@ -2,9 +2,12 @@ [submodule "NDSL"] path = NDSL url = https://github.com/NOAA-GFDL/NDSL.git + branch = develop [submodule "pyFV3"] path = pyFV3 url = https://github.com/NOAA-GFDL/PyFV3.git + branch = develop [submodule "pySHiELD"] path = pySHiELD url = https://github.com/NOAA-GFDL/PySHiELD.git + branch = develop From 8cfb500a800d9d4fd950424598ea3b0fe35ab029 Mon Sep 17 00:00:00 2001 From: MiKyung Lee <58964324+mlee03@users.noreply.github.com> Date: Mon, 11 Mar 2024 15:16:21 -0400 Subject: [PATCH 06/10] update submodules (#69) Co-authored-by: mlee03 --- NDSL | 2 +- pyFV3 | 2 +- pySHiELD | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/NDSL b/NDSL index 75181f4d..7c0f13fd 160000 --- a/NDSL +++ b/NDSL @@ -1 +1 @@ -Subproject commit 75181f4d00013c862ca8599546fa446995637b43 +Subproject commit 7c0f13fd357e276c8f6176d65d0b73b905fb3df2 diff --git a/pyFV3 b/pyFV3 index ebd6e986..80d1fc67 160000 --- a/pyFV3 +++ b/pyFV3 @@ -1 +1 @@ -Subproject commit ebd6e986bd9151a637a81f02a7ce9cc9ba57937d +Subproject commit 80d1fc67a0d3d65c9fabd5cc6e01e5fd6b12acc2 diff --git a/pySHiELD b/pySHiELD index 7c3d8fce..b54ae3d5 160000 --- a/pySHiELD +++ b/pySHiELD @@ -1 +1 @@ -Subproject commit 7c3d8fced6762ed99742098ba9e799d0e3261266 +Subproject commit b54ae3d50e12594d111a50db435722e792ef8f6c From 972711ee67fffd2c863b1ce80f46ce3951d4a5c4 Mon Sep 17 00:00:00 2001 From: MiKyung Lee <58964324+mlee03@users.noreply.github.com> Date: Tue, 9 Apr 2024 14:14:22 -0400 Subject: [PATCH 07/10] add updated test (#77) Co-authored-by: mlee03 --- tests/main/grid/test_eta.py | 78 ++++++++++++++++++++++++++++++------- 1 file changed, 65 insertions(+), 13 deletions(-) diff --git a/tests/main/grid/test_eta.py b/tests/main/grid/test_eta.py index b34e52aa..200720d7 100755 --- a/tests/main/grid/test_eta.py +++ b/tests/main/grid/test_eta.py @@ -32,6 +32,21 @@ def set_answers(eta_file): return data["ak"].values, data["bk"].values +def write_non_mono_eta_file(in_eta_file, out_eta_file): + """ + Reads in file eta79.nc and alters randomly chosen ak/bk values + This tests the expected failure of set_eta_hybrid_coefficients + for coefficients that lead to non-monotonically increasing + eta values + """ + + data = xr.open_dataset(in_eta_file) + data["ak"].values[10] = data["ak"].values[0] + data["bk"].values[20] = 0.0 + + data.to_netcdf(out_eta_file) + + @pytest.mark.parametrize("km", [79, 91]) def test_set_hybrid_pressure_coefficients_correct(km): @@ -76,15 +91,7 @@ def test_set_hybrid_pressure_coefficients_correct(km): driver.safety_checker.clear_all_checks() -@pytest.mark.parametrize( - "cfile", - [ - "file_is_not_here", - "tests/main/grid/input/eta_not_mono.nc", - ], -) -@pytest.mark.xfail -def test_set_hybrid_pressure_coefficients_fail(cfile): +def test_set_hybrid_pressure_coefficients_nofile(): """This test checks to see that the program fails when (1) the eta_file is not specified in the yaml @@ -103,8 +110,53 @@ def test_set_hybrid_pressure_coefficients_fail(cfile): with open(config_file, "r") as f: yaml_config = yaml.safe_load(f) - yaml_config["grid_config"]["config"]["eta_file"] = cfile + del yaml_config["grid_config"]["config"]["eta_file"] - driver_config = pace.driver.DriverConfig.from_dict(yaml_config) - driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) - driver = pace.driver.Driver(config=driver_config) + try: + driver_config = pace.driver.DriverConfig.from_dict(yaml_config) + driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) + driver = pace.driver.Driver(config=driver_config) + except Exception as error: + if str(error) == "eta file not specified": + pytest.xfail("testing eta file not specified") + else: + pytest.fail(f"ERROR {error}") + + +def test_set_hybrid_pressure_coefficients_not_mono(): + + """This test checks to see that the program + fails when (1) the eta_file is not specified in the yaml + configuration file; and (2), the computed eta values + increase non-monotonically. For the latter test, the eta_file + is specified in test_config_not_mono.yaml file and + the ak and bk values in the eta_file have been changed nonsensically + to result in erronenous eta values. + """ + + dirname = os.path.dirname(os.path.abspath(__file__)) + config_file = os.path.join( + dirname, "../../../driver/examples/configs/baroclinic_c12.yaml" + ) + + with open(config_file, "r") as f: + yaml_config = yaml.safe_load(f) + + in_eta_file = "tests/main/input/eta79.nc" + out_eta_file = "eta_not_mono_79.nc" + write_non_mono_eta_file(in_eta_file, out_eta_file) + yaml_config["grid_config"]["config"]["eta_file"] = out_eta_file + + try: + driver_config = pace.driver.DriverConfig.from_dict(yaml_config) + driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) + driver = pace.driver.Driver(config=driver_config) + except Exception as error: + if os.path.isfile(out_eta_file): + os.remove(out_eta_file) + if str(error) == "ETA values are not monotonically increasing": + pytest.xfail("testing eta values are not monotomincally increasing") + else: + pytest.fail( + "ERROR in testing etav values not are not monotonically increasing" + ) From 67277dc6fb41ad73eb9f5cf2208a9d654a4a7d94 Mon Sep 17 00:00:00 2001 From: MiKyung Lee <58964324+mlee03@users.noreply.github.com> Date: Fri, 12 Apr 2024 12:08:08 -0400 Subject: [PATCH 08/10] pace container CI (#68) * edited yaml * fix spacing in yaml * add run * fix container address * fix container address * try again * try again * testing * change checkout version * fix checkout * fix checkout * oops no git in container * oops no git in container * oops github * submodule woes * home * home * remove init * dubious ownership * testing checkout * whereami * whereami * whereami * whereami * new container * change working directory * new container * git issues * git issues * git issues * omg git * omg git * new container * conda activate * use conda * conda init bash * conda again * conda inited already * try again * constraints.txt * test * pip3 * get the right python version * consolidate runs * consolidate runs * remove cd * test pace:test * fix spacing * test checkout path * test working directory * test working directory * test working directory * change ordering * update grid unit test * modify eta test * update yaml file * oops nevermind nevermind * restore yaml file * add Dockerfile * use script to run tests * fix typo s * chmod typo * change registry * add concurrency, copied from fms * typo * remove push * unmake unecessary changes * test * lint * xfail update * Update .gitmodules * edit README.md * update tests and readme * add push * fix home * fix home * add dockerfile * fix mistakes on Docerkfile * additional dockerfiles * openmpi * test * add mpich * try again * remove test_scripts dir * update to test with openmpi and mpich * finally * noaa to readme * type missed [ * update to reality --------- Co-authored-by: mlee03 --- .github/workflows/main_unit_tests.yml | 31 ------------- .github/workflows/main_unit_tests_mpich.yaml | 26 +++++++++++ .../workflows/main_unit_tests_openmpi.yaml | 26 +++++++++++ README.md | 46 ++++++++++++++++++- 4 files changed, 97 insertions(+), 32 deletions(-) delete mode 100644 .github/workflows/main_unit_tests.yml create mode 100644 .github/workflows/main_unit_tests_mpich.yaml create mode 100644 .github/workflows/main_unit_tests_openmpi.yaml diff --git a/.github/workflows/main_unit_tests.yml b/.github/workflows/main_unit_tests.yml deleted file mode 100644 index cf8ace3d..00000000 --- a/.github/workflows/main_unit_tests.yml +++ /dev/null @@ -1,31 +0,0 @@ -name: "Main unit tests" -on: - pull_request: - types: [opened, synchronize, reopened, ready_for_review, labeled, unlabeled] - -jobs: - main_unit_tests: - runs-on: ubuntu-latest - steps: - - name: Checkout Pace repository - uses: actions/checkout@v3.5.2 - with: - submodules: 'recursive' - - name: Step Python 3.8.12 - uses: actions/setup-python@v4.6.0 - with: - python-version: '3.8.12' - - name: Install OpenMPI & Boost for gt4py - run: | - sudo apt-get install libopenmpi-dev libboost1.74-dev - - name: Install Python packages - run: | - python -m pip install --upgrade pip setuptools wheel - pip install -r requirements_dev.txt -c constraints.txt - - name: Clone datafiles - run: | - mkdir -p tests/main/input && cd tests/main/input - git clone -b store_files https://github.com/mlee03/pace.git tmp && mv tmp/*.nc . && rm -rf tmp - - name: Run all main tests - run: | - pytest -x tests/main diff --git a/.github/workflows/main_unit_tests_mpich.yaml b/.github/workflows/main_unit_tests_mpich.yaml new file mode 100644 index 00000000..ee469b7a --- /dev/null +++ b/.github/workflows/main_unit_tests_mpich.yaml @@ -0,0 +1,26 @@ +name: "Main unit tests with mpich" +on: + pull_request: + types: [opened, synchronize, reopened, ready_for_review, labeled, unlabeled] + +# cancel running jobs if theres a newer push +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + main_unit_tests: + runs-on: ubuntu-latest + container: + image: ghcr.io/noaa-gfdl/pace_mpich:3.8 + steps: + - name: Checkout Pace repository + uses: actions/checkout@v4 + with: + submodules: 'recursive' + - name: setup env and run tests (test) + run: | + cp /home/scripts/setup_env.sh . && chmod +x setup_env.sh + cp /home/scripts/run_tests.sh . && chmod +x run_tests.sh + ./setup_env.sh + ./run_tests.sh diff --git a/.github/workflows/main_unit_tests_openmpi.yaml b/.github/workflows/main_unit_tests_openmpi.yaml new file mode 100644 index 00000000..edb9b0f0 --- /dev/null +++ b/.github/workflows/main_unit_tests_openmpi.yaml @@ -0,0 +1,26 @@ +name: "Main unit tests with openmpi" +on: + pull_request: + types: [opened, synchronize, reopened, ready_for_review, labeled, unlabeled] + +# cancel running jobs if theres a newer push +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + main_unit_tests: + runs-on: ubuntu-latest + container: + image: ghcr.io/noaa-gfdl/pace_openmpi:3.8 + steps: + - name: Checkout Pace repository + uses: actions/checkout@v4 + with: + submodules: 'recursive' + - name: setup env and run tests + run: | + cp /home/scripts/setup_env.sh . && chmod +x setup_env.sh + cp /home/scripts/run_tests.sh . && chmod +x run_tests.sh + ./setup_env.sh + ./run_tests.sh diff --git a/README.md b/README.md index 0643c01f..959e4404 100644 --- a/README.md +++ b/README.md @@ -123,7 +123,7 @@ mpirun --mca btl_vader_single_copy_mechanism none -n 6 python3 -m pace.driver.ru This repository was first developed at [AI2](https://github.com/ai2cm/pace) and the institute conserves an archived copy with the latest state before the NOAA took over. -[contributors-shield]: https://img.shields.io/github/contributors/ai2cm/pace.svg +[contributors-shield]: https://img.shields.io/github/contributors/NOAA-GFDL/pace.svg [contributors-url]: https://github.com/NOAA-GFDL/pace/graphs/contributors [stars-shield]: https://img.shields.io/github/stars/NOAA-GFDL/pace.svg [stars-url]: https://github.com/NOAA-GFDL/pace/stargazers @@ -131,3 +131,47 @@ This repository was first developed at [AI2](https://github.com/ai2cm/pace) and [issues-url]: https://github.com/NOAA-GFDL/pace/issues [license-shield]: https://img.shields.io/github/license/NOAA-GFDL/pace.svg [license-url]: https://github.com/NOAA-GFDL/pace/blob/main/LICENSE.md + +## Running pace in containers +Docker images exist in the Github Container Registry associated with the NOAA-GFDL organization. +These images are publicly accessible and can be used to run a Docker container to work with pace. +The following are directions on how to setup the pace conda environment interactively in a container. + +The latest images can be pulled with the Docker as shown below or +with any other container management tools: + +```shell +docker pull ghcr.io/noaa-gfdl/pace_mpich:3.8 +``` +for MPICH installation of MPI; and +```shell +docker pull ghcr.io/noaa-gfdl/pace_openmpi:3.8 +``` +for OpenMPI installation of MPI. + +If permission issues arise during the pull, a Github personal token +may be required. The steps to create a personal token is found +[here](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens) + +Once the token has been generated, the image can be pulled for example with with: +```shell +docker login --username GITHUB_USERNAME --password TOKEN +docker pull ghcr.io/noaa-gfdl/pace_mpich:3.8 +``` + +Any container management tools compatible with Docker images can be used +to run the container interactively from the pulled image. +With Docker, the following command runs the container interactively. +```shell +docker run -it pace_mpich:3.8 +``` + +In the container, the default `base` conda environment is already activated. +The `pace` conda environment can be created by following the steps below: + +```shell +git clone --recursive -b develop https://github.com/NOAA-GFDL/pace.git pace +cd pace +cp /home/scripts/setup_env.sh . && chmod +x setup_env.sh +source ./setup_env.sh +``` From 7e435fa5018c4da81579603f4727c2bedd4465dd Mon Sep 17 00:00:00 2001 From: Frank Malatino <142349306+fmalatino@users.noreply.github.com> Date: Thu, 18 Apr 2024 10:16:15 -0400 Subject: [PATCH 09/10] Updating submodules and pace refactor (#75) * Updated submodules * pace refactor * Linting * Updates to reflect new structure * Edits to requirements_dev.txt to install editable pace package * Updated README * Updating constraints.txt --- .circleci/config.yml | 6 +- .github/pull_request_template.md | 2 +- .github/workflows/main_unit_tests.yml | 31 +++++++++ .gitignore | 6 +- .jenkins/baroclinic_initialization.sh | 4 +- .jenkins/driver_performance.sh | 2 +- .jenkins/install_virtualenv.sh | 2 +- .jenkins/run_compare_fortran.sh | 2 +- .jenkins/run_diff_rank.sh | 4 +- .jenkins/test_driver.sh | 2 +- .pre-commit-config.yaml | 9 +-- CONTRIBUTING.md | 2 +- Makefile | 6 +- NDSL | 2 +- README.md | 8 +-- constraints.txt | 51 +++++++------- doc_primer_orchestration.md | 6 +- docs/installation.rst | 2 +- driver/examples/README.md | 56 ---------------- examples/README.md | 59 +++++++++++++++- .../examples => examples}/baroclinic_init.py | 2 +- .../examples => examples}/configs/README.md | 0 .../configs/analytic_test.yaml | 0 .../configs/baroclinic_c12.yaml | 0 .../configs/baroclinic_c12_comm_read.yaml | 0 .../configs/baroclinic_c12_comm_write.yaml | 0 .../configs/baroclinic_c12_dp.yaml | 0 .../baroclinic_c12_explicit_physics.yaml | 0 .../baroclinic_c12_from_serialbox.yaml | 0 .../configs/baroclinic_c12_null_comm.yaml | 0 .../configs/baroclinic_c12_orch_cpu.yaml | 0 .../baroclinic_c12_read_restart_fortran.yml | 0 .../configs/baroclinic_c12_write_restart.yaml | 0 .../baroclinic_c48_6ranks_serialbox_test.yaml | 0 .../configs/test_external_C12_1x1.yaml | 0 .../configs/test_external_C12_2x2.yaml | 0 .../configs/tropical_read_restart_fortran.yml | 0 .../configs/tropicalcyclone_c128.yaml | 0 {driver/examples => examples}/create_venv.sh | 0 .../notebooks/driver_write_config.yaml | 0 examples/notebooks/functions.py | 27 +++++--- examples/notebooks/grid_generation.ipynb | 10 +-- .../initial_condition_definition.ipynb | 2 +- .../notebooks/serial_debugging.ipynb | 14 ++-- examples/notebooks/stencil_definition.ipynb | 21 +++--- .../plot_baroclinic_init.py | 0 {driver/examples => examples}/plot_cube.py | 0 {driver/examples => examples}/plot_output.py | 0 .../plot_pcolormesh_cube.py | 0 {driver/examples => examples}/run_docker.sh | 2 +- .../stencil_signatures.py | 17 +++-- .../examples => examples}/write_then_read.sh | 4 +- {driver/examples => examples}/zarr_to_nc.py | 0 {driver => pace}/Makefile | 2 +- {driver => pace}/README.md | 8 +-- {driver/pace/driver => pace}/__init__.py | 8 ++- {driver/pace/driver => pace}/comm.py | 9 +-- .../pace/driver => pace}/configs/__init__.py | 0 {driver/pace/driver => pace}/configs/comm.py | 5 +- {driver/pace/driver => pace}/diagnostics.py | 12 ++-- {driver/pace/driver => pace}/driver.py | 67 +++++++++---------- {driver/pace/driver => pace}/grid.py | 19 ++---- .../pace/driver => pace}/initialization.py | 48 ++++++------- {driver/pace/driver => pace}/registry.py | 2 +- {driver/pace/driver => pace}/run.py | 3 +- {driver/pace/driver => pace}/safety_checks.py | 4 +- {driver/pace/driver => pace}/state.py | 26 ++++--- pyFV3 | 2 +- pySHiELD | 2 +- requirements_dev.txt | 2 +- setup.cfg | 2 +- driver/setup.py => setup.py | 21 +++--- tests/main/driver/test_analytic_init.py | 6 +- tests/main/driver/test_comm_config.py | 2 +- tests/main/driver/test_diagnostics.py | 12 ++-- tests/main/driver/test_diagnostics_config.py | 31 +++++---- tests/main/driver/test_docs.py | 4 +- tests/main/driver/test_driver.py | 5 +- tests/main/driver/test_example_configs.py | 8 +-- tests/main/driver/test_restart_fortran.py | 28 ++++---- tests/main/driver/test_restart_serial.py | 38 ++++++----- tests/main/driver/test_safety_checks.py | 4 +- tests/main/fv3core/test_cartesian_grid.py | 6 +- tests/main/fv3core/test_dycore_call.py | 39 ++++++----- tests/main/fv3core/test_grid.py | 2 +- tests/main/fv3core/test_init_from_geos.py | 11 +-- tests/main/grid/test_eta.py | 32 ++++----- tests/main/physics/test_integration.py | 35 +++++----- tests/main/test_grid_init.py | 15 +++-- .../ext_grid}/test_external_grid.py | 12 ++-- .../mpi/restart}/run_save_and_load_restart.sh | 6 +- .../mpi => tests/mpi/restart}/test_restart.py | 14 ++-- tests/{mpi_54rank => mpi}/test_grid_init.py | 23 ++++--- tests/savepoint/test_checkpoints.py | 45 ++++++------- tests/savepoint/translate/translate_driver.py | 11 ++- 95 files changed, 507 insertions(+), 485 deletions(-) create mode 100644 .github/workflows/main_unit_tests.yml delete mode 100644 driver/examples/README.md rename {driver/examples => examples}/baroclinic_init.py (92%) rename {driver/examples => examples}/configs/README.md (100%) rename {driver/examples => examples}/configs/analytic_test.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_comm_read.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_comm_write.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_dp.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_explicit_physics.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_from_serialbox.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_null_comm.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_orch_cpu.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_read_restart_fortran.yml (100%) rename {driver/examples => examples}/configs/baroclinic_c12_write_restart.yaml (100%) rename {driver/examples => examples}/configs/baroclinic_c48_6ranks_serialbox_test.yaml (100%) rename {driver/examples => examples}/configs/test_external_C12_1x1.yaml (100%) rename {driver/examples => examples}/configs/test_external_C12_2x2.yaml (100%) rename {driver/examples => examples}/configs/tropical_read_restart_fortran.yml (100%) rename {driver/examples => examples}/configs/tropicalcyclone_c128.yaml (100%) rename {driver/examples => examples}/create_venv.sh (100%) rename {driver/examples => examples}/notebooks/driver_write_config.yaml (100%) rename {driver/examples => examples}/notebooks/serial_debugging.ipynb (96%) rename {driver/examples => examples}/plot_baroclinic_init.py (100%) rename {driver/examples => examples}/plot_cube.py (100%) rename {driver/examples => examples}/plot_output.py (100%) rename {driver/examples => examples}/plot_pcolormesh_cube.py (100%) rename {driver/examples => examples}/run_docker.sh (54%) rename {driver/examples => examples}/stencil_signatures.py (80%) rename {driver/examples => examples}/write_then_read.sh (57%) rename {driver/examples => examples}/zarr_to_nc.py (100%) rename {driver => pace}/Makefile (72%) rename {driver => pace}/README.md (81%) rename {driver/pace/driver => pace}/__init__.py (74%) rename {driver/pace/driver => pace}/comm.py (95%) rename {driver/pace/driver => pace}/configs/__init__.py (100%) rename {driver/pace/driver => pace}/configs/comm.py (96%) rename {driver/pace/driver => pace}/diagnostics.py (97%) rename {driver/pace/driver => pace}/driver.py (95%) rename {driver/pace/driver => pace}/grid.py (97%) rename {driver/pace/driver => pace}/initialization.py (91%) rename {driver/pace/driver => pace}/registry.py (98%) rename {driver/pace/driver => pace}/run.py (97%) rename {driver/pace/driver => pace}/safety_checks.py (97%) rename {driver/pace/driver => pace}/state.py (91%) rename driver/setup.py => setup.py (66%) rename tests/{mpi_54rank/test_ext_grid => mpi/ext_grid}/test_external_grid.py (95%) rename {driver/tests/mpi => tests/mpi/restart}/run_save_and_load_restart.sh (66%) rename {driver/tests/mpi => tests/mpi/restart}/test_restart.py (89%) rename tests/{mpi_54rank => mpi}/test_grid_init.py (95%) diff --git a/.circleci/config.yml b/.circleci/config.yml index 149f4e31..3c7cce28 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -386,7 +386,7 @@ jobs: name: run tests command: | . venv/bin/activate - cd driver + cd pace GT_CACHE_ROOT=$(pwd)/.gt_cache MPIRUN_CALL="mpirun -n 6 --mca btl_vader_single_copy_mechanism none" make test_mpi - save_gt_cache: key: v1-gt_cache_driver @@ -409,9 +409,9 @@ jobs: name: run tests command: | . venv/bin/activate - cd driver + cd pace mpirun -n 6 --mca btl_vader_single_copy_mechanism none \ - python3 -m mpi4py -m pace.driver.run examples/configs/baroclinic_c12_orch_cpu.yaml + python3 -m mpi4py -m pace.run examples/configs/baroclinic_c12_orch_cpu.yaml test_main: machine: diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 47c1e8bb..4c592c6a 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -23,7 +23,7 @@ Before submitting this PR, please make sure: - [ ] You have followed the coding standards guidelines established at [Code Review Checklist](https://drive.google.com/file/d/1R0nqOxfYnzaSdoYdt8yjx5J482ETI2Ft/view?usp=sharing). - [ ] Docstrings and type hints are added to new and updated routines, as appropriate - [ ] All relevant documentation has been updated or added (e.g. README, CONTRIBUTING docs) -- [ ] For each public change and fix in `pace-util`, HISTORY has been updated +- [ ] For each public change and fix in `pace`, HISTORY has been updated - [ ] Unit tests are added or updated for non-stencil code changes Additionally, if this PR contains code authored by new contributors: diff --git a/.github/workflows/main_unit_tests.yml b/.github/workflows/main_unit_tests.yml new file mode 100644 index 00000000..79e745d6 --- /dev/null +++ b/.github/workflows/main_unit_tests.yml @@ -0,0 +1,31 @@ +name: "Main unit tests" +on: + pull_request: + types: [opened, synchronize, reopened, ready_for_review, labeled, unlabeled] + +jobs: + main_unit_tests: + runs-on: ubuntu-latest + steps: + - name: Checkout Pace repository + uses: actions/checkout@v3.5.2 + with: + submodules: 'recursive' + - name: Step Python 3.8.12 + uses: actions/setup-python@v4.6.0 + with: + python-version: '3.8.12' + - name: Install OpenMPI & Boost for gt4py + run: | + sudo apt-get install libopenmpi-dev libboost1.74-dev + - name: Install Python packages + run: | + python -m pip install --upgrade pip setuptools wheel + pip install -r requirements_dev.txt -c constraints.txt + - name: Clone datafiles + run: | + mkdir -p tests/main/input && cd tests/main/input + git clone -b store_files https://github.com/mlee03/pace.git tmp && mv tmp/*.nc . && rm -rf tmp + - name: Run all main tests + run: | + python -m pytest -x tests/main diff --git a/.gitignore b/.gitignore index 0a957698..5e261fa3 100644 --- a/.gitignore +++ b/.gitignore @@ -2,9 +2,9 @@ # Test outputs results.xml *.zarr -driver/examples/*.json -driver/examples/**/*.json -driver/examples/comm +examples/*.json +examples/**/*.json +examples/comm 20*-*-*-*-*-*.json *.pkl diff --git a/.jenkins/baroclinic_initialization.sh b/.jenkins/baroclinic_initialization.sh index 7d5d1c08..72a4231e 100755 --- a/.jenkins/baroclinic_initialization.sh +++ b/.jenkins/baroclinic_initialization.sh @@ -62,7 +62,7 @@ export VIRTUALENV=${JENKINS_DIR}/../venv_driver ${JENKINS_DIR}/install_virtualenv.sh ${VIRTUALENV} source ${VIRTUALENV}/bin/activate -CMD="srun python3 ${PACE_DIR}/driver/examples/baroclinic_init.py ${JENKINS_DIR}/driver_configs/${experiment}.yaml" +CMD="srun python3 ${PACE_DIR}/examples/baroclinic_init.py ${JENKINS_DIR}/driver_configs/${experiment}.yaml" run_command "${CMD}" Job${action} ${scheduler_script} $minutes if [ $? -ne 0 ] ; then exitError 1510 ${LINENO} "problem while executing script ${script}" @@ -71,7 +71,7 @@ fi module load sarus sarus pull elynnwu/pace:latest echo "####### generating figures..." -srun -C gpu --partition=debug --account=go31 --time=00:05:00 sarus run --mount=type=bind,source=${PACE_DIR},destination=/work elynnwu/pace:latest python /work/driver/examples/plot_baroclinic_init.py /work/output.zarr ${experiment} pt -1 +srun -C gpu --partition=debug --account=go31 --time=00:05:00 sarus run --mount=type=bind,source=${PACE_DIR},destination=/work elynnwu/pace:latest python /work/examples/plot_baroclinic_init.py /work/output.zarr ${experiment} pt -1 mkdir -p ${ARTIFACT_ROOT}/${experiment} echo "####### moving figures..." cp *.png ${ARTIFACT_ROOT}/${experiment}/. diff --git a/.jenkins/driver_performance.sh b/.jenkins/driver_performance.sh index f31a5ec3..22e3efac 100755 --- a/.jenkins/driver_performance.sh +++ b/.jenkins/driver_performance.sh @@ -33,7 +33,7 @@ cat << EOF > run.daint.slurm set -x export OMP_NUM_THREADS=12 export FV3_DACEMODE=BuildAndRun -srun python -m pace.driver.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_6ranks.yaml +srun python -m pace.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_6ranks.yaml EOF launch_job run.daint.slurm 3600 diff --git a/.jenkins/install_virtualenv.sh b/.jenkins/install_virtualenv.sh index b049b247..58ea86b6 100755 --- a/.jenkins/install_virtualenv.sh +++ b/.jenkins/install_virtualenv.sh @@ -35,7 +35,7 @@ cd ${PACE_DIR} python3 -m pip install $wheel_command -r ${PACE_DIR}/requirements_dev.txt -c ${PACE_DIR}/constraints.txt # have to be installed in non-develop mode because the directory where this gets built from # gets deleted before the tests run on daint -python3 -m pip install ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/driver ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/dsl ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/fv3core ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/physics ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/stencils ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/util ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/external/gt4py -c ${PACE_DIR}/constraints.txt +python3 -m pip install ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/driver ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/ndsl ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/pyFV3 ${PACE_VENV_INSTALL_PREFIX} ${PACE_DIR}/pySHiELD ${PACE_DIR}/external/gt4py -c ${PACE_DIR}/constraints.txt cd ${workdir} deactivate diff --git a/.jenkins/run_compare_fortran.sh b/.jenkins/run_compare_fortran.sh index 9010225e..d684ba92 100755 --- a/.jenkins/run_compare_fortran.sh +++ b/.jenkins/run_compare_fortran.sh @@ -55,7 +55,7 @@ cat << EOF > run.daint.slurm ######################################################## set -x export OMP_NUM_THREADS=12 -srun python -m pace.driver.run ${JENKINS_DIR}/driver_configs/${NAMELIST}.yaml +srun python -m pace.run ${JENKINS_DIR}/driver_configs/${NAMELIST}.yaml EOF launch_job run.daint.slurm 2400 diff --git a/.jenkins/run_diff_rank.sh b/.jenkins/run_diff_rank.sh index 75ba89bd..804294c6 100755 --- a/.jenkins/run_diff_rank.sh +++ b/.jenkins/run_diff_rank.sh @@ -29,7 +29,7 @@ cat << EOF > run.daint.slurm ######################################################## set -x export OMP_NUM_THREADS=12 -srun python -m pace.driver.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_54ranks.yaml +srun python -m pace.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_54ranks.yaml EOF launch_job run.daint.slurm 29000 @@ -55,7 +55,7 @@ cat << EOF > run.daint.slurm ######################################################## set -x export OMP_NUM_THREADS=12 -srun python -m pace.driver.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_6ranks.yaml +srun python -m pace.run ${JENKINS_DIR}/driver_configs/baroclinic_c192_6ranks.yaml EOF launch_job run.daint.slurm 29000 diff --git a/.jenkins/test_driver.sh b/.jenkins/test_driver.sh index a2381957..dde5d114 100755 --- a/.jenkins/test_driver.sh +++ b/.jenkins/test_driver.sh @@ -3,4 +3,4 @@ JENKINS_DIR="$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" PACE_IMAGE="driver_image" make -C ${JENKINS_DIR}/.. build -docker run --rm driver_image make -C /pace/driver test test_mpi +docker run --rm driver_image make -C /driver/pace/driver test test_mpi diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index d5e8db5b..a6f865f7 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -18,13 +18,10 @@ repos: rev: v0.812 hooks: - id: mypy - name: mypy-driver + name: mypy-pace + files: pace args: [--config-file, setup.cfg] - files: driver - exclude: | - (?x)^( - tests/main/driver/__init__.py | - )$ + - repo: https://github.com/pre-commit/pre-commit-hooks rev: v2.3.0 hooks: diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 51dd8fd3..b45b7212 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -113,7 +113,7 @@ Turns into - Internal functions that are likely to be inlined into a larger stencil do not need this if it will just be removed in the near-term. ### GT4Py stencils -We interface to `gt4py.cartesian.gtscript.stencil` through pace.dsl.stencil, specifically the FrozenStencil, that allows us to minimize runtime overhead in calling stencils. +We interface to `gt4py.cartesian.gtscript.stencil` through ndsl.dsl.stencil, specifically the FrozenStencil, that allows us to minimize runtime overhead in calling stencils. ```python diff --git a/Makefile b/Makefile index 92771a95..71b78f08 100644 --- a/Makefile +++ b/Makefile @@ -115,7 +115,7 @@ dependencies.svg: dependencies.dot dot -Tsvg $< -o $@ .PHONY: constraints.txt -constraints.txt: driver/setup.py dsl/setup.py fv3core/setup.py physics/setup.py util/setup.py stencils/setup.py util/requirements.txt requirements_docs.txt requirements_lint.txt external/gt4py/setup.cfg requirements_dev.txt +constraints.txt: driver/setup.py ndsl/setup.py pyFV3/setup.py pySHiELD/setup.py requirements_docs.txt requirements_lint.txt external/gt4py/setup.cfg requirements_dev.txt pip-compile $^ --output-file constraints.txt sed -i.bak '/\@ git+https/d' constraints.txt rm -f constraints.txt.bak @@ -142,8 +142,8 @@ test_mpi_54rank: mpirun -n 54 $(MPIRUN_ARGS) python3 -m mpi4py -m pytest tests/mpi_54rank driver_savepoint_tests_mpi: build - TARGET=driver $(MAKE) get_test_data - $(CONTAINER_CMD) $(CONTAINER_FLAGS) bash -c "$(SAVEPOINT_SETUP) && cd $(PACE_PATH) && $(MPIRUN_CALL) python -m mpi4py -m pytest --maxfail=1 --data_path=$(EXPERIMENT_DATA_RUN)/driver/ $(TEST_ARGS) $(PHYSICS_THRESH_ARGS) -m parallel $(PACE_PATH)/physics/tests/savepoint" + TARGET=pace $(MAKE) get_test_data + $(CONTAINER_CMD) $(CONTAINER_FLAGS) bash -c "$(SAVEPOINT_SETUP) && cd $(PACE_PATH) && $(MPIRUN_CALL) python -m mpi4py -m pytest --maxfail=1 --data_path=$(EXPERIMENT_DATA_RUN)/pace/ $(TEST_ARGS) $(PHYSICS_THRESH_ARGS) -m parallel $(PACE_PATH)/physics/tests/savepoint" docs: ## generate Sphinx HTML documentation $(MAKE) -C docs html diff --git a/NDSL b/NDSL index 7c0f13fd..61c4cbe5 160000 --- a/NDSL +++ b/NDSL @@ -1 +1 @@ -Subproject commit 7c0f13fd357e276c8f6176d65d0b73b905fb3df2 +Subproject commit 61c4cbe51dd20e7d9eba50ea9f9b2427a20e0a80 diff --git a/README.md b/README.md index 959e4404..5188c318 100644 --- a/README.md +++ b/README.md @@ -77,13 +77,13 @@ Shell scripts to install Pace on specific machines such as Gaea can be found in With the environment activated, you can run an example baroclinic test case with the following command: ```shell -mpirun -n 6 python3 -m pace.driver.run driver/examples/configs/baroclinic_c12.yaml +mpirun -n 6 python3 -m pace.run examples/configs/baroclinic_c12.yaml # or with oversubscribe if you do not have at least 6 cores -mpirun -n 6 --oversubscribe python3 -m pace.driver.run driver/examples/configs/baroclinic_c12.yaml +mpirun -n 6 --oversubscribe python3 -m pace.run examples/configs/baroclinic_c12.yaml ``` -After the run completes, you will see an output direcotry `output.zarr`. An example to visualize the output is provided in `driver/examples/plot_output.py`. See the [driver example](driver/examples/README.md) section for more details. +After the run completes, you will see an output direcotry `output.zarr`. An example to visualize the output is provided in `examples/plot_output.py`. See the [driver example](examples/README.md) section for more details. ### Environment variable configuration @@ -116,7 +116,7 @@ make build ```shell make dev -mpirun --mca btl_vader_single_copy_mechanism none -n 6 python3 -m pace.driver.run /pace/driver/examples/configs/baroclinic_c12.yaml +mpirun --mca btl_vader_single_copy_mechanism none -n 6 python3 -m pace.run /examples/configs/baroclinic_c12.yaml ``` ## History diff --git a/constraints.txt b/constraints.txt index 5b20a8b7..110d3ebf 100644 --- a/constraints.txt +++ b/constraints.txt @@ -62,7 +62,6 @@ charset-normalizer==2.0.4 click==8.0.1 # via # black - # flask # gt4py cloudpickle==2.0.0 # via dask @@ -74,10 +73,12 @@ coverage==5.5 # via pytest-cov cytoolz==0.12.1 # via gt4py +dace + # via ndsl dacite==1.6.0 # via # fv3config - # pace-driver + # pace dask==2021.12.0 # via # -r requirements_dev.txt @@ -111,16 +112,19 @@ f90nml==1.3.1 # via # -r requirements_dev.txt # fv3config + # ndsl # pyfv3 # pyshield +factory-boy==3.3.0 + # via gt4py +faker==24.3.0 + # via factory-boy fasteners==0.16.3 # via zarr fastjsonschema==2.16.2 # via nbformat filelock==3.0.12 # via virtualenv -flask==2.1.2 - # via dace fparser==0.1.4 # via dace frozendict==2.3.4 @@ -143,8 +147,10 @@ google-auth-oauthlib==0.4.5 # via gcsfs gprof2dot==2021.2.21 # via pytest-profiling -gridtools-cpp +gridtools-cpp==2.3.2 # via gt4py +gt4py + # via ndsl h5netcdf==1.1.0 # via ndsl h5py==3.10.0 @@ -157,8 +163,6 @@ idna==3.2 # yarl imagesize==1.2.0 # via sphinx -importlib-metadata==4.11.3 - # via flask importlib-resources==5.10.0 # via # gt4py @@ -169,13 +173,11 @@ ipykernel==6.16.2 # via nbmake ipython==8.5.0 # via ipykernel -itsdangerous==2.1.2 - # via flask jedi==0.18.1 # via ipython jinja2==3.0.1 # via - # flask + # dace # gt4py # sphinx jsonschema==4.16.0 @@ -202,11 +204,11 @@ matplotlib-inline==0.1.6 # via # ipykernel # ipython -mpi4py==3.1.4 +mpi4py==3.1.5 # via # -r requirements_dev.txt # ndsl - # pace-driver + # pace mpmath==1.2.1 # via sympy multidict==5.1.0 @@ -234,7 +236,7 @@ netcdf4==1.6.4 # via # -r requirements_dev.txt # ndsl - # pace-driver + # pace networkx==2.6.3 # via dace ninja==1.11.1 @@ -243,7 +245,7 @@ nodeenv==1.6.0 # via pre-commit numcodecs==0.7.2 # via zarr -numpy==1.21.2 +numpy==1.23.3 # via # -r requirements_dev.txt # cftime @@ -252,7 +254,7 @@ numpy==1.21.2 # h5py # netcdf4 # numcodecs - # pace-driver + # pace # pandas # pyfv3 # pyshield @@ -286,7 +288,7 @@ pickleshare==0.7.5 # via ipython pkgutil-resolve-name==1.3.10 # via jsonschema -platformdirs==2.2.0 +platformdirs==3.9.1 # via # black # virtualenv @@ -312,7 +314,7 @@ pyasn1==0.4.8 # rsa pyasn1-modules==0.2.8 # via google-auth -pybind11==2.8.1 +pybind11==2.11.1 # via gt4py pydantic==1.7.4 # via nbmake @@ -346,6 +348,7 @@ pytest-subtests==0.5.0 # via -r requirements_dev.txt python-dateutil==2.8.2 # via + # faker # jupyter-client # pandas pytz==2021.1 @@ -357,7 +360,7 @@ pyyaml==5.4.1 # dace # dask # fv3config - # pace-driver + # pace # pre-commit # pytest-regressions pyzmq==24.0.1 @@ -368,7 +371,6 @@ recommonmark==0.7.1 # via -r requirements_docs.txt requests==2.26.0 # via - # dace # gcsfs # requests-oauthlib # sphinx @@ -454,6 +456,7 @@ typing-extensions==4.3.0 # via # aiohttp # black + # faker # gt4py # setuptools-scm urllib3==1.26.6 @@ -464,15 +467,13 @@ wcwidth==0.2.5 # via prompt-toolkit websockets==10.3 # via dace -werkzeug==2.1.2 - # via flask wheel==0.37.0 # via astunparse xarray==0.19.0 # via # -r requirements_dev.txt # ndsl - # pace-driver + # pace # pyfv3 # pyshield xxhash==2.0.2 @@ -482,11 +483,9 @@ yarl==1.6.3 zarr==2.9.2 # via # -r requirements_dev.txt - # pace-driver + # pace zipp==3.8.0 - # via - # importlib-metadata - # importlib-resources + # via importlib-resources # The following packages are considered to be unsafe in a requirements file: # setuptools diff --git a/doc_primer_orchestration.md b/doc_primer_orchestration.md index a10baf0c..f669155e 100644 --- a/doc_primer_orchestration.md +++ b/doc_primer_orchestration.md @@ -29,7 +29,7 @@ DaCe needs to be described all memory so it can interface it in the C code that File structure -------------- -`pace.dsl.dace.*` carries the structure for orchestration. +`ndsl.dsl.dace.*` carries the structure for orchestration. - `build.py`: tooling for distributed build & SDFG load. - `dace_config.py`: DaCeConfig & DaCeOrchestration enum. @@ -43,7 +43,7 @@ DaCe Config DaCe has many configuration options. When executing, it drops or reads a `dace.conf` to get/set options for execution. Because this is a performance-portable model and not a DaCe model, decision has been taken to freeze the options. -`pace.dsl.dace.dace_config` carries a set of tested options for DaCe, with doc. It also takes care of removing the `dace.conf` that will be generated automatically when using DaCe. +`ndsl.dsl.dace.dace_config` carries a set of tested options for DaCe, with doc. It also takes care of removing the `dace.conf` that will be generated automatically when using DaCe. Orchestration can be debugged by using the env var `PACE_DACE_DEBUG`. When set to `True`, this will drop a few checks: @@ -54,7 +54,7 @@ When set to `True`, this will drop a few checks: - `trace_all_outputs_at_index` drops a print on every variable at a given index to track numerical protection, - `sdfg_execution_progress`, drops a print after each kernel. Useful when encurring bad crash with no stacktrace, - insert a CUDA_ERROR_CHECK in C after each kernel. -See `dsl/pace/dsl/dace/utils.py` for details. +See `ndsl/dsl/dace/utils.py` for details. Build ----- diff --git a/docs/installation.rst b/docs/installation.rst index a4859bb6..44949a0c 100644 --- a/docs/installation.rst +++ b/docs/installation.rst @@ -10,7 +10,7 @@ When cloning Pace you will need to update the repository's submodules as well: .. code-block:: console - $ git clone --recursive https://github.com/ai2cm/pace.git + $ git clone --recursive https://github.com/NOAA-GFDL/pace.git or if you have already cloned the repository: diff --git a/driver/examples/README.md b/driver/examples/README.md deleted file mode 100644 index ac37af4a..00000000 --- a/driver/examples/README.md +++ /dev/null @@ -1,56 +0,0 @@ -# Driver Examples - -Here we have example scripts and configuration for running the Pace driver. -Currently this contains two examples which run the model on a baroclinic test case using the numpy backend. -You will find this runs fairly slowly, since the "compiled" code is still Python. -In the future, we will add examples for the compiled backends we support. - -The "docker" workflow here is written for the basic baroclinic test example. -`write_then_read.sh` is the second example, which shows how to configure an MPI run to write communication data to disk and then use it to repeat a single rank of that run with the same configuration. -This second example assumes you are already in an appropriate environment to run the driver, for example as documented in the "Host Machine" section below. - -Note that on the baroclinic test case example you will see significant grid imprinting in the first hour time evolution. -Rest assured that this duplicates the behavior of the original Fortran code. - -We have also included a utility to convert the zarr output of the run to netcdf, for convenience. To convert `output.zarr` to `output.nc`, you would run: - -```bash -$ python3 zarr_to_nc.py output.zarr output.nc -``` - -Another example is `baroclinic_init.py`, which initializes a barcolinic wave and writes out the grid and the initial state. To run this script with the c12 6ranks example: - -```bash -$ mpirun -n 6 python3 baroclinic_init.py ./configs/baroclinic_c12.yaml -``` -## Docker - -To run a baroclinic c12 case with Docker in a single command, run `run_docker.sh`. -This example will start from the Python 3.8 docker image, install extra dependencies and Python packages, and execute the example, leaving the output in this directory. - -To visualize the output, two example scripts are provided: -1. `plot_output.py`: To use it, you must install matplotlib (e.g. with `pip install matplotlib`). -2. `plot_cube.py`: this uses plotting tools in [fv3viz](https://github.com/ai2cm/fv3net/tree/master/external/fv3viz). Note the requirements aren't part of pace by default and need to be installed accordingly. It is recommended to use the post processing docker provided at the top level `docker/postprocessing.Dockerfile`. - -## Host Machine - -To run examples on your host machine, you will need to have an MPI library on your machine suitable for installing mpi4py. -For example, on Ubuntu 20.04 this could be the libopenmpi3 and libopenmpi-dev libraries. - -With these requirements installed, set up the virtual environment with - -```bash -$ create_venv.sh -$ . venv/bin/activate -``` - -With the environment activated, the model itself can be run with `python3 -m pace.driver.run `. -Currently this must be done using some kind of mpirun, though there are plans to enable single-tile runs without MPI. -The exact command will vary based on your MPI implementation, but you can try running - -```bash -$ mpirun -n 6 python3 -m pace.driver.run ./configs/baroclinic_c12.yaml -``` - -To run the example at C48 resolution instead of C12, you can update the value of `nx_tile` in the configuration file from 12 to 48. -Here you can also change the timestep in seconds `dt_atmos`, as well as the total run duration with `minutes`, or by adding values for `hours` or `days`. diff --git a/examples/README.md b/examples/README.md index 487badc9..1c98ba40 100644 --- a/examples/README.md +++ b/examples/README.md @@ -44,7 +44,7 @@ Within the `build_scripts` directory are a couple scripts relevant for setting u ``` $ ssh analysis -$ git clone --recursive https://github.com/ai2cm/pace.git +$ git clone --recursive https://github.com/NOAA-GFDL/pace.git $ cd pace/examples/build_scripts ``` @@ -63,3 +63,60 @@ $ jhp launch lab ``` It will take a minute or so for the server to start up. If you are on GFDL's network or have [configured your proxy settings appropriately](https://wiki.gfdl.noaa.gov/index.php/Creating_a_GFDL_SSH_Tunnel), you will then be able to navigate to the URL produced by the command in your local browser. This will take you to the JupyterLab interface, where you can open and run the example notebooks. Note that it can take some time to initially connect to the notebook kernel, so be patient. + +# Driver Examples + +Here we have example scripts and configuration for running the Pace driver. +Currently this contains two examples which run the model on a baroclinic test case using the numpy backend. +You will find this runs fairly slowly, since the "compiled" code is still Python. +In the future, we will add examples for the compiled backends we support. + +The "docker" workflow here is written for the basic baroclinic test example. +`write_then_read.sh` is the second example, which shows how to configure an MPI run to write communication data to disk and then use it to repeat a single rank of that run with the same configuration. +This second example assumes you are already in an appropriate environment to run the driver, for example as documented in the "Host Machine" section below. + +Note that on the baroclinic test case example you will see significant grid imprinting in the first hour time evolution. +Rest assured that this duplicates the behavior of the original Fortran code. + +We have also included a utility to convert the zarr output of the run to netcdf, for convenience. To convert `output.zarr` to `output.nc`, you would run: + +```bash +$ python3 zarr_to_nc.py output.zarr output.nc +``` + +Another example is `baroclinic_init.py`, which initializes a barcolinic wave and writes out the grid and the initial state. To run this script with the c12 6ranks example: + +```bash +$ mpirun -n 6 python3 baroclinic_init.py ./configs/baroclinic_c12.yaml +``` +## Docker + +To run a baroclinic c12 case with Docker in a single command, run `run_docker.sh`. +This example will start from the Python 3.8 docker image, install extra dependencies and Python packages, and execute the example, leaving the output in this directory. + +To visualize the output, two example scripts are provided: +1. `plot_output.py`: To use it, you must install matplotlib (e.g. with `pip install matplotlib`). +2. `plot_cube.py`: this uses plotting tools in [fv3viz](https://github.com/ai2cm/fv3net/tree/master/external/fv3viz). Note the requirements aren't part of pace by default and need to be installed accordingly. It is recommended to use the post processing docker provided at the top level `docker/postprocessing.Dockerfile`. + +## Host Machine + +To run examples on your host machine, you will need to have an MPI library on your machine suitable for installing mpi4py. +For example, on Ubuntu 20.04 this could be the libopenmpi3 and libopenmpi-dev libraries. + +With these requirements installed, set up the virtual environment with + +```bash +$ create_venv.sh +$ . venv/bin/activate +``` + +With the environment activated, the model itself can be run with `python3 -m pace.run `. +Currently this must be done using some kind of mpirun, though there are plans to enable single-tile runs without MPI. +The exact command will vary based on your MPI implementation, but you can try running + +```bash +$ mpirun -n 6 python3 -m pace.run examples/configs/baroclinic_c12.yaml +``` + +To run the example at C48 resolution instead of C12, you can update the value of `nx_tile` in the configuration file from 12 to 48. +Here you can also change the timestep in seconds `dt_atmos`, as well as the total run duration with `minutes`, or by adding values for `hours` or `days`. diff --git a/driver/examples/baroclinic_init.py b/examples/baroclinic_init.py similarity index 92% rename from driver/examples/baroclinic_init.py rename to examples/baroclinic_init.py index fefc0c2d..17f7f4cd 100644 --- a/driver/examples/baroclinic_init.py +++ b/examples/baroclinic_init.py @@ -2,7 +2,7 @@ import yaml -from pace.driver.run import Driver, DriverConfig +from pace import Driver, DriverConfig def parse_args(): diff --git a/driver/examples/configs/README.md b/examples/configs/README.md similarity index 100% rename from driver/examples/configs/README.md rename to examples/configs/README.md diff --git a/driver/examples/configs/analytic_test.yaml b/examples/configs/analytic_test.yaml similarity index 100% rename from driver/examples/configs/analytic_test.yaml rename to examples/configs/analytic_test.yaml diff --git a/driver/examples/configs/baroclinic_c12.yaml b/examples/configs/baroclinic_c12.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12.yaml rename to examples/configs/baroclinic_c12.yaml diff --git a/driver/examples/configs/baroclinic_c12_comm_read.yaml b/examples/configs/baroclinic_c12_comm_read.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_comm_read.yaml rename to examples/configs/baroclinic_c12_comm_read.yaml diff --git a/driver/examples/configs/baroclinic_c12_comm_write.yaml b/examples/configs/baroclinic_c12_comm_write.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_comm_write.yaml rename to examples/configs/baroclinic_c12_comm_write.yaml diff --git a/driver/examples/configs/baroclinic_c12_dp.yaml b/examples/configs/baroclinic_c12_dp.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_dp.yaml rename to examples/configs/baroclinic_c12_dp.yaml diff --git a/driver/examples/configs/baroclinic_c12_explicit_physics.yaml b/examples/configs/baroclinic_c12_explicit_physics.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_explicit_physics.yaml rename to examples/configs/baroclinic_c12_explicit_physics.yaml diff --git a/driver/examples/configs/baroclinic_c12_from_serialbox.yaml b/examples/configs/baroclinic_c12_from_serialbox.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_from_serialbox.yaml rename to examples/configs/baroclinic_c12_from_serialbox.yaml diff --git a/driver/examples/configs/baroclinic_c12_null_comm.yaml b/examples/configs/baroclinic_c12_null_comm.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_null_comm.yaml rename to examples/configs/baroclinic_c12_null_comm.yaml diff --git a/driver/examples/configs/baroclinic_c12_orch_cpu.yaml b/examples/configs/baroclinic_c12_orch_cpu.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_orch_cpu.yaml rename to examples/configs/baroclinic_c12_orch_cpu.yaml diff --git a/driver/examples/configs/baroclinic_c12_read_restart_fortran.yml b/examples/configs/baroclinic_c12_read_restart_fortran.yml similarity index 100% rename from driver/examples/configs/baroclinic_c12_read_restart_fortran.yml rename to examples/configs/baroclinic_c12_read_restart_fortran.yml diff --git a/driver/examples/configs/baroclinic_c12_write_restart.yaml b/examples/configs/baroclinic_c12_write_restart.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c12_write_restart.yaml rename to examples/configs/baroclinic_c12_write_restart.yaml diff --git a/driver/examples/configs/baroclinic_c48_6ranks_serialbox_test.yaml b/examples/configs/baroclinic_c48_6ranks_serialbox_test.yaml similarity index 100% rename from driver/examples/configs/baroclinic_c48_6ranks_serialbox_test.yaml rename to examples/configs/baroclinic_c48_6ranks_serialbox_test.yaml diff --git a/driver/examples/configs/test_external_C12_1x1.yaml b/examples/configs/test_external_C12_1x1.yaml similarity index 100% rename from driver/examples/configs/test_external_C12_1x1.yaml rename to examples/configs/test_external_C12_1x1.yaml diff --git a/driver/examples/configs/test_external_C12_2x2.yaml b/examples/configs/test_external_C12_2x2.yaml similarity index 100% rename from driver/examples/configs/test_external_C12_2x2.yaml rename to examples/configs/test_external_C12_2x2.yaml diff --git a/driver/examples/configs/tropical_read_restart_fortran.yml b/examples/configs/tropical_read_restart_fortran.yml similarity index 100% rename from driver/examples/configs/tropical_read_restart_fortran.yml rename to examples/configs/tropical_read_restart_fortran.yml diff --git a/driver/examples/configs/tropicalcyclone_c128.yaml b/examples/configs/tropicalcyclone_c128.yaml similarity index 100% rename from driver/examples/configs/tropicalcyclone_c128.yaml rename to examples/configs/tropicalcyclone_c128.yaml diff --git a/driver/examples/create_venv.sh b/examples/create_venv.sh similarity index 100% rename from driver/examples/create_venv.sh rename to examples/create_venv.sh diff --git a/driver/examples/notebooks/driver_write_config.yaml b/examples/notebooks/driver_write_config.yaml similarity index 100% rename from driver/examples/notebooks/driver_write_config.yaml rename to examples/notebooks/driver_write_config.yaml diff --git a/examples/notebooks/functions.py b/examples/notebooks/functions.py index ffc37ca6..fb7ca1fa 100644 --- a/examples/notebooks/functions.py +++ b/examples/notebooks/functions.py @@ -10,12 +10,22 @@ from matplotlib import animation from units_config import units -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner +from ndsl import ( + CompilationConfig, + CubedSphereCommunicator, + CubedSpherePartitioner, + DaceConfig, + DaCeOrchestration, + GridIndexing, + Quantity, + QuantityFactory, + RunMode, + StencilConfig, + StencilFactory, + SubtileGridSizer, + TilePartitioner, +) from ndsl.constants import RADIUS -from ndsl.dsl.dace.dace_config import DaceConfig, DaCeOrchestration -from ndsl.dsl.stencil import GridIndexing, StencilConfig, StencilFactory -from ndsl.dsl.stencil_config import CompilationConfig, RunMode from ndsl.grid import ( AngleGridData, ContravariantGridData, @@ -26,12 +36,7 @@ VerticalGridData, ) from ndsl.grid.gnomonic import great_circle_distance_lon_lat -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.quantity import Quantity -from pyFV3.stencils.fvtp2d import FiniteVolumeTransport -from pyFV3.stencils.fxadv import FiniteVolumeFluxPrep -from pyFV3.stencils.tracer_2d_1l import TracerAdvection +from pyFV3.stencils import FiniteVolumeFluxPrep, FiniteVolumeTransport, TracerAdvection class GridType(enum.Enum): diff --git a/examples/notebooks/grid_generation.ipynb b/examples/notebooks/grid_generation.ipynb index 34518f60..cb5f039e 100644 --- a/examples/notebooks/grid_generation.ipynb +++ b/examples/notebooks/grid_generation.ipynb @@ -188,7 +188,7 @@ "source": [ "## Domain decomposition\n", "\n", - "The `pace.util` package provides a number of convenience functions to facilitate domain-decomposition.\n", + "The `ndsl` package provides a number of convenience functions to facilitate domain-decomposition.\n", "\n", "- `TilePartitioner`: determines domain-decomposition on a single tile of the cubed-sphere;\n", "- `CubedSpherePartitioner`: determines domain-decomposition of the entire cubed-sphere, including information about the orientation of each tile\n", @@ -360,7 +360,7 @@ } ], "source": [ - "from ndsl.util import (\n", + "from ndsl import (\n", " CubedSphereCommunicator,\n", " CubedSpherePartitioner,\n", " Quantity,\n", @@ -451,7 +451,7 @@ "\n", "Once we have decomposed the computational domain on the cube, we still need to project the cube onto the sphere and compute the associated metric terms that are essential for numerical discretization on the cubed-sphere.\n", "\n", - "The `ndsl.util.grid` package implements helper functions which make this very easy:\n", + "The `ndsl.grid` package implements helper functions which make this very easy:\n", "- `MetricTerms`: class to compute the metric terms of the cubed-sphere grid\n", "- `GridData`: storage of basic grid data (e.g. lat, lon, area, dx, dy, ...)" ] @@ -493,7 +493,7 @@ } ], "source": [ - "from ndsl.util.grid import GridData, MetricTerms\n", + "from ndsl.grid import GridData, MetricTerms\n", "\n", "# create the object to compute metric terms\n", "metric_terms = MetricTerms(quantity_factory=quantity_factory, communicator=communicator)\n", @@ -577,7 +577,7 @@ ], "source": [ "import numpy as np\n", - "from pace.util import Quantity\n", + "from ndsl import Quantity\n", "\n", "# convert the GT4Py storages into Quantity objects\n", "lon = Quantity(\n", diff --git a/examples/notebooks/initial_condition_definition.ipynb b/examples/notebooks/initial_condition_definition.ipynb index 4b194a01..7d08eaa2 100644 --- a/examples/notebooks/initial_condition_definition.ipynb +++ b/examples/notebooks/initial_condition_definition.ipynb @@ -455,7 +455,7 @@ "metadata": {}, "outputs": [], "source": [ - "from ndsl.util.grid.gnomonic import great_circle_distance_lon_lat\n", + "from ndsl.grid.gnomonic import great_circle_distance_lon_lat\n", "\n", "tracer = quantity_factory.zeros(\n", " dims=(\"x\", \"y\", \"z\"), units=units[\"tracer\"], dtype=\"float\"\n", diff --git a/driver/examples/notebooks/serial_debugging.ipynb b/examples/notebooks/serial_debugging.ipynb similarity index 96% rename from driver/examples/notebooks/serial_debugging.ipynb rename to examples/notebooks/serial_debugging.ipynb index 6af12a00..597051a1 100644 --- a/driver/examples/notebooks/serial_debugging.ipynb +++ b/examples/notebooks/serial_debugging.ipynb @@ -27,9 +27,9 @@ "metadata": {}, "outputs": [], "source": [ - "import pace.util\n", - "import pace.driver\n", - "import pace.fv3core.stencils.d2a2c_vect\n", + "from ndsl.constants import X_DIM, Y_DIM, Z_DIM\n", + "from pace import Driver, DriverConfig\n", + "from pyFV3.stencils import DGrid2AGrid2CGridVectors\n", "import yaml\n", "import dacite\n", "import copy\n", @@ -156,7 +156,7 @@ "metadata": {}, "outputs": [], "source": [ - "driver = pace.driver.Driver(config=pace.driver.DriverConfig.from_dict(read_config))" + "driver = Driver(config=DriverConfig.from_dict(read_config))" ] }, { @@ -344,7 +344,7 @@ "metadata": {}, "outputs": [], "source": [ - "d2a2c = fv3core.stencils.d2a2c_vect.DGrid2AGrid2CGridVectors(\n", + "d2a2c = DGrid2AGrid2CGridVectors(\n", " stencil_factory=driver.stencil_factory,\n", " grid_data=driver.state.grid_data,\n", " nested=False,\n", @@ -371,8 +371,8 @@ "outputs": [], "source": [ "# need temporaries for c-grid contravariant wind multiplied by timestep\n", - "utc = driver.quantity_factory.zeros(dims=[pace.util.X_DIM, pace.util.Y_DIM, pace.util.Z_DIM], units=\"m/s\")\n", - "vtc = driver.quantity_factory.zeros(dims=[pace.util.X_DIM, pace.util.Y_DIM, pace.util.Z_DIM], units=\"m/s\")\n", + "utc = driver.quantity_factory.zeros(dims=[X_DIM, Y_DIM, Z_DIM], units=\"m/s\")\n", + "vtc = driver.quantity_factory.zeros(dims=[X_DIM, Y_DIM, Z_DIM], units=\"m/s\")\n", "d2a2c(\n", " uc=remap_state.uc,\n", " vc=remap_state.vc,\n", diff --git a/examples/notebooks/stencil_definition.ipynb b/examples/notebooks/stencil_definition.ipynb index a5efcc51..f65ed20a 100644 --- a/examples/notebooks/stencil_definition.ipynb +++ b/examples/notebooks/stencil_definition.ipynb @@ -84,7 +84,7 @@ "source": [ "## Setup helpers for building stencils\n", "\n", - "The `ndsl.dsl` package contains provides a helper class for compiling stencils. The helper class is called a stencil factory. In order to setup a stencil factory, several configuration objects have to be defined and passed in.\n", + "The `ndsl` package contains provides a helper class for compiling stencils. The helper class is called a stencil factory. In order to setup a stencil factory, several configuration objects have to be defined and passed in.\n", "\n", "- `DaceConfig`: configuration of DaCe backend\n", "- `CompilationConfig`: specification of how to compile\n", @@ -102,9 +102,7 @@ }, "outputs": [], "source": [ - "from ndsl.dsl.dace.dace_config import DaceConfig, DaCeOrchestration\n", - "from ndsl.dsl.stencil import GridIndexing, StencilConfig, StencilFactory\n", - "from ndsl.dsl.stencil_config import CompilationConfig, RunMode\n", + "from ndsl import DaceConfig, DaCeOrchestration, GridIndexing, StencilConfig, StencilFactory, CompilationConfig, RunMode\n", "\n", "dace_config = DaceConfig(\n", " communicator=None, backend=backend, orchestration=DaCeOrchestration.Python\n", @@ -155,7 +153,7 @@ "metadata": {}, "outputs": [], "source": [ - "from ndsl.dsl.stencil import StencilFactory\n", + "from ndsl import StencilFactory\n", "from ndsl.dsl.typing import FloatField\n", "\n", "\n", @@ -183,7 +181,7 @@ "source": [ "## Compiling and running the stencil\n", "\n", - "To compile and run the stencil we first have to instanciate the wrapper class. This will compile the stencil and return a callable object. Next we have to define a GT4Py data storage (field). This could also be done using the `ndsl.util.Quantity` class, but here we use plain GT4Py data storages for simplicity. Finally, we can call the stencil and pass in the field and value." + "To compile and run the stencil we first have to instanciate the wrapper class. This will compile the stencil and return a callable object. Next we have to define a GT4Py data storage (field). This could also be done using the `ndsl.quantity.Quantity` class, but here we use plain GT4Py data storages for simplicity. Finally, we can call the stencil and pass in the field and value." ] }, { @@ -582,10 +580,8 @@ "metadata": {}, "outputs": [], "source": [ - "from ndsl.dsl.dace.dace_config import DaceConfig, DaCeOrchestration\n", - "from ndsl.dsl.stencil import GridIndexing, StencilConfig, StencilFactory\n", - "from ndsl.dsl.stencil_config import CompilationConfig, RunMode\n", - "from ndsl.util.grid import AngleGridData, ContravariantGridData, DampingCoefficients, GridData, HorizontalGridData, MetricTerms, VerticalGridData\n", + "from ndsl import DaceConfig, DaCeOrchestration, GridIndexing, StencilConfig, StencilFactory, CompilationConfig, RunMode\n", + "from ndsl.grid import AngleGridData, ContravariantGridData, DampingCoefficients, GridData, HorizontalGridData, MetricTerms, VerticalGridData\n", "\n", "\n", "if nz == 1:\n", @@ -706,7 +702,7 @@ "source": [ "import copy as cp\n", "import matplotlib.pyplot as plt\n", - "from pace.fv3core.stencils.fxadv import FiniteVolumeFluxPrep\n", + "from pyFV3.stencils import FiniteVolumeFluxPrep\n", "from units_config import units\n", "\n", "fvf_prep = FiniteVolumeFluxPrep(\n", @@ -839,8 +835,7 @@ } ], "source": [ - "from pace.fv3core.stencils.fvtp2d import FiniteVolumeTransport\n", - "from pace.fv3core.stencils.tracer_2d_1l import TracerAdvection\n", + "from pyFV3.stencils import FiniteVolumeTransport, TracerAdvection\n", "\n", "grid_type = 0 # cubed-sphere\n", "hord = 6 # horizontal diffusion order\n", diff --git a/driver/examples/plot_baroclinic_init.py b/examples/plot_baroclinic_init.py similarity index 100% rename from driver/examples/plot_baroclinic_init.py rename to examples/plot_baroclinic_init.py diff --git a/driver/examples/plot_cube.py b/examples/plot_cube.py similarity index 100% rename from driver/examples/plot_cube.py rename to examples/plot_cube.py diff --git a/driver/examples/plot_output.py b/examples/plot_output.py similarity index 100% rename from driver/examples/plot_output.py rename to examples/plot_output.py diff --git a/driver/examples/plot_pcolormesh_cube.py b/examples/plot_pcolormesh_cube.py similarity index 100% rename from driver/examples/plot_pcolormesh_cube.py rename to examples/plot_pcolormesh_cube.py diff --git a/driver/examples/run_docker.sh b/examples/run_docker.sh similarity index 54% rename from driver/examples/run_docker.sh rename to examples/run_docker.sh index cf70194f..de1692ea 100755 --- a/driver/examples/run_docker.sh +++ b/examples/run_docker.sh @@ -2,4 +2,4 @@ SCRIPT_DIR="$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" -docker run -v ${SCRIPT_DIR}/../../:/pace -w /pace python:3.8 bash -c "apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y python3-venv python3-dev libopenmpi3 libopenmpi-dev && cd /pace/driver/examples && /pace/driver/examples/create_venv.sh && . venv/bin/activate && mpirun -n 6 --allow-run-as-root --mca btl_vader_single_copy_mechanism none python3 -m pace.driver.run /pace/driver/examples/configs/baroclinic_c12.yaml" +docker run -v ${SCRIPT_DIR}/../../:/pace -w /pace python:3.8 bash -c "apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y python3-venv python3-dev libopenmpi3 libopenmpi-dev && cd /examples && /examples/create_venv.sh && . venv/bin/activate && mpirun -n 6 --allow-run-as-root --mca btl_vader_single_copy_mechanism none python3 -m pace.run /examples/configs/baroclinic_c12.yaml" diff --git a/driver/examples/stencil_signatures.py b/examples/stencil_signatures.py similarity index 80% rename from driver/examples/stencil_signatures.py rename to examples/stencil_signatures.py index b23cef99..1ddbe474 100644 --- a/driver/examples/stencil_signatures.py +++ b/examples/stencil_signatures.py @@ -4,15 +4,14 @@ import yaml -import ndsl.dsl -import ndsl.util -import pace.driver +import pace +from ndsl import FrozenStencil def has_stencils(object): for name in dir(object): try: - stencil_found = isinstance(getattr(object, name), ndsl.dsl.FrozenStencil) + stencil_found = isinstance(getattr(object, name), FrozenStencil) except (AttributeError, RuntimeError): stencil_found = False if stencil_found: @@ -26,7 +25,7 @@ def report_stencils(obj, file: Optional[TextIO]): print(f"module {module.__name__}, class {obj.__class__.__name__}:", file=file) all_access_names = collections.defaultdict(list) for name, value in obj.__dict__.items(): - if isinstance(value, ndsl.dsl.FrozenStencil): + if isinstance(value, FrozenStencil): print(f" stencil {name}:", file=file) for arg_name, field_info in value.stencil_object.field_info.items(): if field_info is None: @@ -52,10 +51,10 @@ def report_stencils(obj, file: Optional[TextIO]): if __name__ == "__main__": with open("configs/baroclinic_c12.yaml", "r") as f: - driver_config = pace.driver.DriverConfig.from_dict(yaml.safe_load(f)) - driver_config.comm_config = pace.driver.CreatesCommSelector( - config=pace.driver.NullCommConfig(rank=0, total_ranks=6), type="null" + driver_config = pace.DriverConfig.from_dict(yaml.safe_load(f)) + driver_config.comm_config = pace.CreatesCommSelector( + config=pace.NullCommConfig(rank=0, total_ranks=6), type="null" ) - driver = pace.driver.Driver(config=driver_config) + driver = pace.Driver(config=driver_config) with open("stencil_report.txt", "w") as f: report_stencils(driver.dycore, file=f) diff --git a/driver/examples/write_then_read.sh b/examples/write_then_read.sh similarity index 57% rename from driver/examples/write_then_read.sh rename to examples/write_then_read.sh index a3e89a35..869be852 100755 --- a/driver/examples/write_then_read.sh +++ b/examples/write_then_read.sh @@ -5,5 +5,5 @@ set -e -x MPIRUN_CMD=${MPIRUN_CMD:-mpirun -n 6} -$MPIRUN_CMD python3 -m pace.driver.run configs/baroclinic_c12_comm_write.yaml --log-rank 0 -python3 -m pace.driver.run configs/baroclinic_c12_comm_read.yaml +$MPIRUN_CMD python3 -m pace.run configs/baroclinic_c12_comm_write.yaml --log-rank 0 +python3 -m pace.run configs/baroclinic_c12_comm_read.yaml diff --git a/driver/examples/zarr_to_nc.py b/examples/zarr_to_nc.py similarity index 100% rename from driver/examples/zarr_to_nc.py rename to examples/zarr_to_nc.py diff --git a/driver/Makefile b/pace/Makefile similarity index 72% rename from driver/Makefile rename to pace/Makefile index 250a0a93..435ff599 100644 --- a/driver/Makefile +++ b/pace/Makefile @@ -2,7 +2,7 @@ MPIRUN_CALL ?= mpirun -n 6 test_mpi: MPIRUN_CALL="$(MPIRUN_CALL)" pytest tests/mpi - $(MPIRUN_CALL) python3 -m mpi4py -m pace.driver.run examples/configs/baroclinic_c12.yaml + $(MPIRUN_CALL) python3 -m mpi4py -m pace.run examples/configs/baroclinic_c12.yaml cd examples && MPIRUN_CALL="$(MPIRUN_CALL)" ./write_then_read.sh clean: diff --git a/driver/README.md b/pace/README.md similarity index 81% rename from driver/README.md rename to pace/README.md index 7675eacd..86a4bca3 100644 --- a/driver/README.md +++ b/pace/README.md @@ -1,8 +1,8 @@ -# pace-driver +# pace This package provides command-line routines to run the Pace model, and utilities to write model driver scripts. -We suggest reading the code in the examples directory, or taking a look at `pace/driver/run.py` to see how the main entrypoint for this package works. +We suggest reading the code in the examples directory, or taking a look at `pace/run.py` to see how the main entrypoint for this package works. # Usage @@ -10,8 +10,8 @@ Usage examples exist in the examples directory. The command-line interface may be run in certain debugging modes in serial, but usually you will want to run it using an mpi executor such as mpirun. ```bash -$ python3 -m pace.driver.run --help -Usage: python -m pace.driver.run [OPTIONS] CONFIG_PATH +$ python3 -m pace.run --help +Usage: python -m pace.run [OPTIONS] CONFIG_PATH Run the driver. diff --git a/driver/pace/driver/__init__.py b/pace/__init__.py similarity index 74% rename from driver/pace/driver/__init__.py rename to pace/__init__.py index df00d341..d6bd5eb1 100644 --- a/driver/pace/driver/__init__.py +++ b/pace/__init__.py @@ -11,8 +11,14 @@ from .diagnostics import Diagnostics, DiagnosticsConfig from .driver import Driver, DriverConfig, RestartConfig from .grid import GeneratedGridConfig, SerialboxGridConfig -from .initialization import AnalyticInit, PredefinedStateInit, RestartInit +from .initialization import ( + AnalyticInit, + FortranRestartInit, + PredefinedStateInit, + RestartInit, +) from .registry import Registry +from .safety_checks import SafetyChecker from .state import DriverState, TendencyState diff --git a/driver/pace/driver/comm.py b/pace/comm.py similarity index 95% rename from driver/pace/driver/comm.py rename to pace/comm.py index 27b00a5b..87bfcf8e 100644 --- a/driver/pace/driver/comm.py +++ b/pace/comm.py @@ -3,12 +3,9 @@ import os from typing import Any, ClassVar, List -from ndsl.comm.caching_comm import CachingCommReader, CachingCommWriter -from ndsl.comm.comm_abc import Comm -from ndsl.comm.mpi import MPIComm -from ndsl.comm.null_comm import NullComm - -from .registry import Registry +from ndsl import MPIComm, NullComm +from ndsl.comm import CachingCommReader, CachingCommWriter, Comm +from pace.registry import Registry class CreatesComm(abc.ABC): diff --git a/driver/pace/driver/configs/__init__.py b/pace/configs/__init__.py similarity index 100% rename from driver/pace/driver/configs/__init__.py rename to pace/configs/__init__.py diff --git a/driver/pace/driver/configs/comm.py b/pace/configs/comm.py similarity index 96% rename from driver/pace/driver/configs/comm.py rename to pace/configs/comm.py index bf9c00b7..06f60acf 100644 --- a/driver/pace/driver/configs/comm.py +++ b/pace/configs/comm.py @@ -5,9 +5,8 @@ import dacite -from ndsl.comm.caching_comm import CachingCommReader, CachingCommWriter -from ndsl.comm.mpi import MPIComm -from ndsl.comm.null_comm import NullComm +from ndsl import MPIComm, NullComm +from ndsl.comm import CachingCommReader, CachingCommWriter class CreatesComm(abc.ABC): diff --git a/driver/pace/driver/diagnostics.py b/pace/diagnostics.py similarity index 97% rename from driver/pace/driver/diagnostics.py rename to pace/diagnostics.py index b5961595..b395b353 100644 --- a/driver/pace/driver/diagnostics.py +++ b/pace/diagnostics.py @@ -4,16 +4,16 @@ from datetime import datetime, timedelta from typing import List, Optional, Union -from ndsl.comm.communicator import Communicator +from ndsl import Quantity from ndsl.constants import RGRAV, Z_DIM, Z_INTERFACE_DIM from ndsl.dsl.dace.orchestration import dace_inhibitor from ndsl.filesystem import get_fs from ndsl.grid import GridData -from ndsl.monitor import Monitor, NetCDFMonitor, ZarrMonitor -from ndsl.quantity import Quantity -from pyFV3.dycore_state import DycoreState - -from .state import DriverState +from ndsl.monitor import Monitor, ZarrMonitor +from ndsl.monitor.netcdf_monitor import NetCDFMonitor +from ndsl.typing import Communicator +from pace.state import DriverState +from pyFV3 import DycoreState try: diff --git a/driver/pace/driver/driver.py b/pace/driver.py similarity index 95% rename from driver/pace/driver/driver.py rename to pace/driver.py index 2210bc96..859778c2 100644 --- a/driver/pace/driver/driver.py +++ b/pace/driver.py @@ -9,39 +9,38 @@ import dacite import yaml -import pyFV3 -import pySHiELD -from ndsl.comm.comm_abc import Comm -from ndsl.comm.communicator import ( - Communicator, +from ndsl import ( + CompilationConfig, CubedSphereCommunicator, + DaceConfig, + GridIndexing, + PerformanceCollector, + QuantityFactory, + RunMode, + StencilConfig, + StencilFactory, + SubtileGridSizer, TileCommunicator, + TilePartitioner, + ndsl_log, ) -from ndsl.comm.partitioner import TilePartitioner +from ndsl.comm import Comm from ndsl.constants import N_HALO_DEFAULT -from ndsl.dsl.dace.dace_config import DaceConfig from ndsl.dsl.dace.orchestration import dace_inhibitor, orchestrate -from ndsl.dsl.stencil import GridIndexing, StencilFactory -from ndsl.dsl.stencil_config import CompilationConfig, RunMode, StencilConfig from ndsl.dsl.typing import Float from ndsl.grid import DampingCoefficients, DriverGridData, GridData -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.logging import ndsl_log -from ndsl.performance import PerformanceConfig -from ndsl.performance.collector import PerformanceCollector -from ndsl.performance.timer import Timer -from pace.driver.safety_checks import SafetyChecker - -# TODO: move update_atmos_state into pace.driver +from ndsl.performance import PerformanceConfig, Timer +from ndsl.typing import Communicator +from pace.comm import CreatesCommSelector +from pace.diagnostics import DiagnosticsConfig +from pace.grid import GeneratedGridConfig, GridInitializerSelector +from pace.initialization import InitializerSelector +from pace.safety_checks import SafetyChecker +from pace.state import DriverState +from pyFV3 import DynamicalCore, DynamicalCoreConfig +from pySHiELD import Physics, PhysicsConfig from pySHiELD.update import update_atmos_state -from . import diagnostics -from .comm import CreatesCommSelector -from .grid import GeneratedGridConfig, GridInitializerSelector -from .initialization import InitializerSelector -from .state import DriverState - try: import cupy as cp @@ -103,8 +102,8 @@ class DriverConfig: type="generated", config=GeneratedGridConfig() ) ) - diagnostics_config: diagnostics.DiagnosticsConfig = dataclasses.field( - default_factory=diagnostics.DiagnosticsConfig + diagnostics_config: DiagnosticsConfig = dataclasses.field( + default_factory=DiagnosticsConfig ) performance_config: PerformanceConfig = dataclasses.field( default_factory=PerformanceConfig @@ -112,12 +111,10 @@ class DriverConfig: comm_config: CreatesCommSelector = dataclasses.field( default_factory=CreatesCommSelector ) - dycore_config: pyFV3.DynamicalCoreConfig = dataclasses.field( - default_factory=pyFV3.DynamicalCoreConfig - ) - physics_config: pySHiELD.PhysicsConfig = dataclasses.field( - default_factory=pySHiELD.PhysicsConfig + dycore_config: DynamicalCoreConfig = dataclasses.field( + default_factory=DynamicalCoreConfig ) + physics_config: PhysicsConfig = dataclasses.field(default_factory=PhysicsConfig) days: int = 0 hours: int = 0 @@ -242,14 +239,14 @@ def from_dict(cls, kwargs: Dict[str, Any]) -> "DriverConfig": ) kwargs["dycore_config"] = dacite.from_dict( - data_class=pyFV3.DynamicalCoreConfig, + data_class=DynamicalCoreConfig, data=kwargs.get("dycore_config", {}), config=dacite.Config(strict=True), ) if isinstance(kwargs["physics_config"], dict): kwargs["physics_config"] = dacite.from_dict( - data_class=pySHiELD.PhysicsConfig, + data_class=PhysicsConfig, data=kwargs.get("physics_config", {}), config=dacite.Config(strict=True), ) @@ -491,7 +488,7 @@ def exit_instead_of_build(self): self._start_time = self.config.initialization.start_time ndsl_log.info("setting up dycore object started") - self.dycore = pyFV3.DynamicalCore( + self.dycore = DynamicalCore( comm=communicator, grid_data=self.state.grid_data, stencil_factory=self.stencil_factory, @@ -506,7 +503,7 @@ def exit_instead_of_build(self): ndsl_log.info("setting up physics object started") if not config.dycore_only and not config.disable_step_physics: - self.physics = pySHiELD.Physics( + self.physics = Physics( stencil_factory=self.stencil_factory, quantity_factory=self.quantity_factory, grid_data=self.state.grid_data, diff --git a/driver/pace/driver/grid.py b/pace/grid.py similarity index 97% rename from driver/pace/driver/grid.py rename to pace/grid.py index 98eaf567..0423b793 100644 --- a/driver/pace/driver/grid.py +++ b/pace/grid.py @@ -5,28 +5,23 @@ import f90nml import xarray as xr -from ndsl.comm.communicator import Communicator +from ndsl import Namelist, QuantityFactory, ndsl_log from ndsl.comm.partitioner import get_tile_index from ndsl.constants import X_DIM, X_INTERFACE_DIM, Y_DIM, Y_INTERFACE_DIM from ndsl.grid import ( + AngleGridData, + ContravariantGridData, DampingCoefficients, DriverGridData, GridData, - MetricTerms, - direct_transform, -) -from ndsl.grid.helper import ( - AngleGridData, - ContravariantGridData, HorizontalGridData, + MetricTerms, VerticalGridData, ) -from ndsl.initialization.allocator import QuantityFactory -from ndsl.logging import ndsl_log -from ndsl.namelist import Namelist +from ndsl.grid.stretch_transformation import direct_transform from ndsl.stencils.testing import TranslateGrid, grid - -from .registry import Registry +from ndsl.typing import Communicator +from pace.registry import Registry class GridInitializer(abc.ABC): diff --git a/driver/pace/driver/initialization.py b/pace/initialization.py similarity index 91% rename from driver/pace/driver/initialization.py rename to pace/initialization.py index 07c59067..68a3e639 100644 --- a/driver/pace/driver/initialization.py +++ b/pace/initialization.py @@ -7,22 +7,24 @@ import f90nml -import pyFV3 import pyFV3.initialization.analytic_init as analytic_init -import pySHiELD -from ndsl.comm.communicator import Communicator +from ndsl import ( + CompilationConfig, + DaceConfig, + Namelist, + QuantityFactory, + StencilConfig, + StencilFactory, +) from ndsl.constants import X_DIM, Y_DIM -from ndsl.dsl.dace.orchestration import DaceConfig -from ndsl.dsl.stencil import StencilConfig, StencilFactory -from ndsl.dsl.stencil_config import CompilationConfig from ndsl.grid import DampingCoefficients, DriverGridData, GridData -from ndsl.initialization.allocator import QuantityFactory -from ndsl.namelist import Namelist from ndsl.stencils.testing import TranslateGrid, grid +from ndsl.typing import Communicator +from pace.registry import Registry +from pace.state import DriverState, TendencyState, _restart_driver_state +from pyFV3 import DycoreState from pyFV3.testing import TranslateFVDynamics - -from .registry import Registry -from .state import DriverState, TendencyState, _restart_driver_state +from pySHiELD import PHYSICS_PACKAGES, PhysicsState class Initializer(abc.ABC): @@ -39,7 +41,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: ... @@ -77,7 +79,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: return self.config.get_driver_state( quantity_factory=quantity_factory, @@ -111,7 +113,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: dycore_state = analytic_init.init_analytic_state( analytic_init_case=self.case, @@ -122,7 +124,7 @@ def get_driver_state( moist_phys=True, comm=communicator, ) - physics_state = pySHiELD.PhysicsState.init_zeros( + physics_state = PhysicsState.init_zeros( quantity_factory=quantity_factory, schemes=schemes ) tendency_state = TendencyState.init_zeros( @@ -155,7 +157,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: state = _restart_driver_state( self.path, @@ -206,7 +208,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: state = _restart_driver_state( self.path, @@ -279,14 +281,14 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: backend = quantity_factory.zeros( dims=[X_DIM, Y_DIM], units="unknown" ).gt4py_backend dycore_state = self._initialize_dycore_state(communicator, backend) - physics_state = pySHiELD.PhysicsState.init_zeros( + physics_state = PhysicsState.init_zeros( quantity_factory=quantity_factory, schemes=schemes, ) @@ -305,7 +307,7 @@ def _initialize_dycore_state( self, communicator: Communicator, backend: str, - ) -> pyFV3.DycoreState: + ) -> DycoreState: grid = self._get_serialized_grid(communicator=communicator, backend=backend) ser = self._serializer(communicator) @@ -342,8 +344,8 @@ class PredefinedStateInit(Initializer): used to construct the class. """ - dycore_state: pyFV3.DycoreState - physics_state: pySHiELD.PhysicsState + dycore_state: DycoreState + physics_state: PhysicsState tendency_state: TendencyState grid_data: GridData damping_coefficients: DampingCoefficients @@ -357,7 +359,7 @@ def get_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> DriverState: return DriverState( dycore_state=self.dycore_state, diff --git a/driver/pace/driver/registry.py b/pace/registry.py similarity index 98% rename from driver/pace/driver/registry.py rename to pace/registry.py index b49d5208..2254ec9f 100644 --- a/driver/pace/driver/registry.py +++ b/pace/registry.py @@ -32,7 +32,7 @@ class Registry(Generic[T]): "my_type" and then initialize it. First we import the required symbols: >>> import dataclasses - >>> from pace.driver.registry import Registry + >>> from pace.registry import Registry Then we define a registry and register a class MyConfig: diff --git a/driver/pace/driver/run.py b/pace/run.py similarity index 97% rename from driver/pace/driver/run.py rename to pace/run.py index a78a14ef..f50ff5b3 100644 --- a/driver/pace/driver/run.py +++ b/pace/run.py @@ -6,8 +6,7 @@ import yaml from ndsl.logging import AVAILABLE_LOG_LEVELS, ndsl_log - -from .driver import Driver, DriverConfig +from pace.driver import Driver, DriverConfig @click.command() diff --git a/driver/pace/driver/safety_checks.py b/pace/safety_checks.py similarity index 97% rename from driver/pace/driver/safety_checks.py rename to pace/safety_checks.py index 58d26b30..1f583a5f 100644 --- a/driver/pace/driver/safety_checks.py +++ b/pace/safety_checks.py @@ -2,8 +2,8 @@ import numpy as np -from ndsl.quantity import Quantity -from pyFV3.dycore_state import DycoreState +from ndsl import Quantity +from pyFV3 import DycoreState class VariableBounds: diff --git a/driver/pace/driver/state.py b/pace/state.py similarity index 91% rename from driver/pace/driver/state.py rename to pace/state.py index af1acc97..9dc570b6 100644 --- a/driver/pace/driver/state.py +++ b/pace/state.py @@ -5,16 +5,14 @@ import xarray as xr import ndsl.dsl.gt4py_utils as gt_utils -import pyFV3 -import pySHiELD -from ndsl.comm.communicator import Communicator +from ndsl import Quantity, QuantityFactory, SubtileGridSizer from ndsl.constants import N_HALO_DEFAULT, X_DIM, Y_DIM, Z_DIM from ndsl.dsl.typing import Float from ndsl.filesystem import get_fs from ndsl.grid import DampingCoefficients, DriverGridData, GridData -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.quantity import Quantity +from ndsl.typing import Communicator +from pyFV3 import DycoreState +from pySHiELD import PHYSICS_PACKAGES, PhysicsState @dataclasses.dataclass() @@ -63,8 +61,8 @@ def init_zeros(cls, quantity_factory: QuantityFactory) -> "TendencyState": @dataclasses.dataclass class DriverState: - dycore_state: pyFV3.DycoreState - physics_state: pySHiELD.PhysicsState + dycore_state: DycoreState + physics_state: PhysicsState tendency_state: TendencyState grid_data: GridData damping_coefficients: DampingCoefficients @@ -81,7 +79,7 @@ def load_state_from_restart( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ) -> "DriverState": comm = driver_config.comm_config.get_comm() communicator = Communicator.from_layout(comm=comm, layout=driver_config.layout) @@ -155,7 +153,7 @@ def save_state(self, comm, restart_path: str = "RESTART"): def _overwrite_state_from_restart( path: str, rank: int, - state: pyFV3.DycoreState, + state: DycoreState, restart_file_prefix: str, ): """ @@ -182,7 +180,7 @@ def _restart_driver_state( damping_coefficients: DampingCoefficients, driver_grid_data: DriverGridData, grid_data: GridData, - schemes: List[pySHiELD.PHYSICS_PACKAGES], + schemes: List[PHYSICS_PACKAGES], ): fs = get_fs(path) @@ -192,11 +190,11 @@ def _restart_driver_state( ) if is_fortran_restart: - dycore_state = pyFV3.DycoreState.from_fortran_restart( + dycore_state = DycoreState.from_fortran_restart( quantity_factory=quantity_factory, communicator=communicator, path=path ) else: - dycore_state = pyFV3.DycoreState.init_zeros(quantity_factory=quantity_factory) + dycore_state = DycoreState.init_zeros(quantity_factory=quantity_factory) _overwrite_state_from_restart( path, rank, @@ -204,7 +202,7 @@ def _restart_driver_state( "restart_dycore_state", ) - physics_state = pySHiELD.PhysicsState.init_zeros( + physics_state = PhysicsState.init_zeros( quantity_factory=quantity_factory, schemes=schemes ) diff --git a/pyFV3 b/pyFV3 index 80d1fc67..67f1b5c6 160000 --- a/pyFV3 +++ b/pyFV3 @@ -1 +1 @@ -Subproject commit 80d1fc67a0d3d65c9fabd5cc6e01e5fd6b12acc2 +Subproject commit 67f1b5c6e364cdb617f71c3732851681396cea55 diff --git a/pySHiELD b/pySHiELD index b54ae3d5..69fd798e 160000 --- a/pySHiELD +++ b/pySHiELD @@ -1 +1 @@ -Subproject commit b54ae3d50e12594d111a50db435722e792ef8f6c +Subproject commit 69fd798e2f01a62f9c3df46beeff073e987b9199 diff --git a/requirements_dev.txt b/requirements_dev.txt index 19693cc4..c8bbf8a0 100644 --- a/requirements_dev.txt +++ b/requirements_dev.txt @@ -17,4 +17,4 @@ numpy>=1.15 -e NDSL -e pySHiELD -e pyFV3 --e driver +-e . diff --git a/setup.cfg b/setup.cfg index 1ff1234e..7a5ea7d5 100644 --- a/setup.cfg +++ b/setup.cfg @@ -29,6 +29,6 @@ ignore_missing_imports = True follow_imports = normal namespace_packages = True strict_optional = False -mypy_path = driver:NDSL:pySHiELD:pyFV3 +mypy_path = model:NDSL:pySHiELD:pyFV3 warn_unreachable = True explicit_package_bases = True diff --git a/driver/setup.py b/setup.py similarity index 66% rename from driver/setup.py rename to setup.py index c386d623..29c9899a 100644 --- a/driver/setup.py +++ b/setup.py @@ -1,12 +1,17 @@ +import os +from pathlib import Path from typing import List from setuptools import find_namespace_packages, setup -setup_requirements: List[str] = [] +def local_pkg(name: str, relative_path: str) -> str: + """Returns an absolute path to a local package.""" + path = f"{name} @ file://{Path(os.path.abspath(__file__)).parent / relative_path}" + return path -requirements = [ - "ndsl", + +requirements: List[str] = [ "dacite", "pyyaml", "mpi4py", @@ -16,12 +21,10 @@ "zarr", ] -test_requirements: List[str] = [] - setup( author="Allen Institute for AI", - author_email="elynnw@allenai.org", + author_email="oliver.elbert@noaa.gov", python_requires=">=3.8", classifiers=[ "Development Status :: 2 - Pre-Alpha", @@ -33,11 +36,9 @@ "Programming Language :: Python :: 3.9", ], install_requires=requirements, - setup_requires=setup_requirements, - tests_require=test_requirements, - name="pace-driver", + name="pace", license="BSD license", - packages=find_namespace_packages(include=["pace.*"]), + packages=find_namespace_packages(include=["pace", "pace.*"]), include_package_data=True, url="https://github.com/NOAA-GFDL/pace", version="0.2.0", diff --git a/tests/main/driver/test_analytic_init.py b/tests/main/driver/test_analytic_init.py index 97222db4..f2d748a7 100644 --- a/tests/main/driver/test_analytic_init.py +++ b/tests/main/driver/test_analytic_init.py @@ -4,7 +4,7 @@ import pytest import yaml -import pace.driver +from pace import DriverConfig DIR = os.path.dirname(os.path.abspath(__file__)) @@ -13,7 +13,7 @@ # need to update after TESTED_CONFIGS: List[str] = [ - "../../../driver/examples/configs/analytic_test.yaml", + "../../../examples/configs/analytic_test.yaml", ] @@ -27,5 +27,5 @@ def test_analytic_init_config(tested_configs: List[str]): for config_file in tested_configs: with open(os.path.join(DIR, config_file), "r") as f: config = yaml.safe_load(f) - driver_config = pace.driver.DriverConfig.from_dict(config) + driver_config = DriverConfig.from_dict(config) assert driver_config.initialization.type == "analytic" diff --git a/tests/main/driver/test_comm_config.py b/tests/main/driver/test_comm_config.py index beea714e..59fbece2 100644 --- a/tests/main/driver/test_comm_config.py +++ b/tests/main/driver/test_comm_config.py @@ -1,7 +1,7 @@ import dataclasses import unittest.mock -from pace.driver import CreatesComm, CreatesCommSelector, WriterCommConfig +from pace import CreatesComm, CreatesCommSelector, WriterCommConfig @CreatesCommSelector.register("mock") diff --git a/tests/main/driver/test_diagnostics.py b/tests/main/driver/test_diagnostics.py index eeccab4a..a8e4d621 100644 --- a/tests/main/driver/test_diagnostics.py +++ b/tests/main/driver/test_diagnostics.py @@ -3,8 +3,8 @@ import xarray as xr import yaml -import pace.driver -from pace.driver.run import main +from pace import DiagnosticsConfig, DriverConfig, NullCommConfig +from pace.run import main DIR = os.path.dirname(os.path.abspath(__file__)) @@ -12,15 +12,15 @@ def test_diagnostics_can_be_opened(tmpdir): with open( - os.path.join(DIR, "../../../driver/examples/configs/baroclinic_c12.yaml"), "r" + os.path.join(DIR, "../../../examples/configs/baroclinic_c12.yaml"), "r" ) as f: - driver_config = pace.driver.DriverConfig.from_dict(yaml.safe_load(f)) + driver_config = DriverConfig.from_dict(yaml.safe_load(f)) diagnostics_path = os.path.join(tmpdir, "output.zarr") - driver_config.diagnostics_config = pace.driver.DiagnosticsConfig( + driver_config.diagnostics_config = DiagnosticsConfig( path=diagnostics_path, names=["u", "v", "ua", "va", "w", "delp", "pt", "qvapor"], ) - driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) + driver_config.comm_config = NullCommConfig(rank=0, total_ranks=6) driver_config.dt_atmos = 60 driver_config.minutes = 1 main(driver_config) diff --git a/tests/main/driver/test_diagnostics_config.py b/tests/main/driver/test_diagnostics_config.py index 5e409c88..9b96c1be 100644 --- a/tests/main/driver/test_diagnostics_config.py +++ b/tests/main/driver/test_diagnostics_config.py @@ -2,45 +2,44 @@ import pytest -import pace.driver -import pace.driver.diagnostics -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from pyFV3.dycore_state import DycoreState +from ndsl import QuantityFactory, SubtileGridSizer +from pace import DiagnosticsConfig +from pace.diagnostics import MonitorDiagnostics, NullDiagnostics, ZSelect +from pyFV3 import DycoreState def test_returns_null_diagnostics_if_no_path_given(): - config = pace.driver.DiagnosticsConfig(path=None, names=[]) + config = DiagnosticsConfig(path=None, names=[]) assert isinstance( config.diagnostics_factory(unittest.mock.MagicMock()), - pace.driver.diagnostics.NullDiagnostics, + NullDiagnostics, ) def test_returns_monitor_diagnostics_if_path_given(tmpdir): - config = pace.driver.DiagnosticsConfig( + config = DiagnosticsConfig( path=tmpdir, names=["foo"], derived_names=["bar"], - z_select=[pace.driver.diagnostics.ZSelect(level=0, names=["foo"])], + z_select=[ZSelect(level=0, names=["foo"])], ) result = config.diagnostics_factory(unittest.mock.MagicMock()) - assert isinstance(result, pace.driver.diagnostics.MonitorDiagnostics) + assert isinstance(result, MonitorDiagnostics) def test_raises_if_names_given_but_no_path(): with pytest.raises(ValueError): - pace.driver.DiagnosticsConfig(path=None, names=["foo"]) + DiagnosticsConfig(path=None, names=["foo"]) with pytest.raises(ValueError): - pace.driver.DiagnosticsConfig(path=None, derived_names=["foo"]) + DiagnosticsConfig(path=None, derived_names=["foo"]) def test_zselect_raises_error_if_not_3d(tmpdir): with pytest.raises(AssertionError): - config = pace.driver.DiagnosticsConfig( + config = DiagnosticsConfig( path=tmpdir, - z_select=[pace.driver.diagnostics.ZSelect(level=0, names=["phis"])], + z_select=[ZSelect(level=0, names=["phis"])], ) result = config.diagnostics_factory(unittest.mock.MagicMock()) quantity_factory = QuantityFactory.from_backend( @@ -53,9 +52,9 @@ def test_zselect_raises_error_if_not_3d(tmpdir): def test_zselect_raises_error_if_3rd_dim_not_z(tmpdir): with pytest.raises(ValueError): - config = pace.driver.DiagnosticsConfig( + config = DiagnosticsConfig( path=tmpdir, - z_select=[pace.driver.diagnostics.ZSelect(level=0, names=["foo"])], + z_select=[ZSelect(level=0, names=["foo"])], ) result = config.diagnostics_factory(unittest.mock.MagicMock()) quantity_factory = QuantityFactory.from_backend( diff --git a/tests/main/driver/test_docs.py b/tests/main/driver/test_docs.py index 80d4abfd..aec03fcb 100644 --- a/tests/main/driver/test_docs.py +++ b/tests/main/driver/test_docs.py @@ -1,9 +1,9 @@ import doctest -import pace.driver.registry +import pace.registry def test_registry_doc_examples(): - result = doctest.testmod(pace.driver.registry) + result = doctest.testmod(pace.registry) assert result.attempted > 0, "No doctests found" assert result.failed == 0, "doctests failed" diff --git a/tests/main/driver/test_driver.py b/tests/main/driver/test_driver.py index 602624cf..d5020809 100644 --- a/tests/main/driver/test_driver.py +++ b/tests/main/driver/test_driver.py @@ -4,15 +4,14 @@ import pytest -from ndsl.comm.null_comm import NullComm -from ndsl.dsl.stencil import StencilConfig +from ndsl import NullComm, StencilConfig from ndsl.performance.report import ( TimeReport, gather_hit_counts, gather_timing_data, get_sypd, ) -from pace.driver import CreatesCommSelector, DriverConfig, NullCommConfig +from pace import CreatesCommSelector, DriverConfig, NullCommConfig def get_driver_config( diff --git a/tests/main/driver/test_example_configs.py b/tests/main/driver/test_example_configs.py index 2e4b5d3e..d99130f5 100644 --- a/tests/main/driver/test_example_configs.py +++ b/tests/main/driver/test_example_configs.py @@ -4,12 +4,12 @@ import pytest import yaml -import pace.driver +from pace import DriverConfig dirname = os.path.dirname(os.path.abspath(__file__)) -EXAMPLE_CONFIGS_DIR = os.path.join(dirname, "../../../driver/examples/configs/") +EXAMPLE_CONFIGS_DIR = os.path.join(dirname, "../../../examples/configs/") TESTED_CONFIGS: List[str] = [ "baroclinic_c12.yaml", @@ -88,5 +88,5 @@ def test_all_configs_tested_or_excluded( def test_example_config_can_initialize(path: str, file_list: List[str]): for file_name in file_list: with open(os.path.join(path, file_name), "r") as f: - config = pace.driver.DriverConfig.from_dict(yaml.safe_load(f)) - assert isinstance(config, pace.driver.DriverConfig) + config = DriverConfig.from_dict(yaml.safe_load(f)) + assert isinstance(config, DriverConfig) diff --git a/tests/main/driver/test_restart_fortran.py b/tests/main/driver/test_restart_fortran.py index 49ef5f17..3821d20b 100644 --- a/tests/main/driver/test_restart_fortran.py +++ b/tests/main/driver/test_restart_fortran.py @@ -3,14 +3,16 @@ import numpy as np import xarray as xr -import pace.driver -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.local_comm import LocalComm -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from pace.driver.initialization import FortranRestartInit +from ndsl import ( + CubedSphereCommunicator, + CubedSpherePartitioner, + LocalComm, + NullComm, + QuantityFactory, + SubtileGridSizer, + TilePartitioner, +) +from pace import FortranRestartInit, GeneratedGridConfig from pySHiELD import PHYSICS_PACKAGES @@ -42,15 +44,9 @@ def test_state_from_fortran_restart(): quantity_factory = QuantityFactory.from_backend(sizer=sizer, backend="numpy") restart_dir = os.path.join(PACE_DIR, "tests/main/data/c12_restart") - ( - damping_coefficients, - driver_grid_data, - grid_data, - ) = pace.driver.GeneratedGridConfig( + (damping_coefficients, driver_grid_data, grid_data,) = GeneratedGridConfig( restart_path=restart_dir, eta_file=restart_dir + "/fv_core.res.nc" - ).get_grid( - quantity_factory, null_communicator - ) + ).get_grid(quantity_factory, null_communicator) restart_config = FortranRestartInit(path=restart_dir) driver_state = restart_config.get_driver_state( diff --git a/tests/main/driver/test_restart_serial.py b/tests/main/driver/test_restart_serial.py index c55d9661..144abab1 100644 --- a/tests/main/driver/test_restart_serial.py +++ b/tests/main/driver/test_restart_serial.py @@ -6,16 +6,22 @@ import xarray as xr import yaml -import pace.driver -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.quantity import Quantity -from pace.driver import CreatesComm, DriverConfig -from pace.driver.driver import RestartConfig -from pace.driver.initialization import AnalyticInit +from ndsl import ( + CubedSphereCommunicator, + CubedSpherePartitioner, + NullComm, + Quantity, + QuantityFactory, + SubtileGridSizer, + TilePartitioner, +) +from pace import ( + AnalyticInit, + CreatesComm, + DriverConfig, + GeneratedGridConfig, + RestartConfig, +) from pySHiELD import PHYSICS_PACKAGES @@ -47,7 +53,7 @@ def test_restart_save_to_disk(): with open( os.path.join( DIR, - "../../../driver/examples/configs/baroclinic_c12_write_restart.yaml", + "../../../examples/configs/baroclinic_c12_write_restart.yaml", ), "r", ) as f: @@ -69,13 +75,9 @@ def test_restart_save_to_disk(): quantity_factory = QuantityFactory.from_backend(sizer=sizer, backend=backend) eta_file = driver_config.grid_config.config.eta_file - ( - damping_coefficients, - driver_grid_data, - grid_data, - ) = pace.driver.GeneratedGridConfig(eta_file=eta_file).get_grid( - quantity_factory, communicator - ) + (damping_coefficients, driver_grid_data, grid_data,) = GeneratedGridConfig( + eta_file=eta_file + ).get_grid(quantity_factory, communicator) init = AnalyticInit() driver_state = init.get_driver_state( quantity_factory=quantity_factory, diff --git a/tests/main/driver/test_safety_checks.py b/tests/main/driver/test_safety_checks.py index 5f528c55..77560b88 100644 --- a/tests/main/driver/test_safety_checks.py +++ b/tests/main/driver/test_safety_checks.py @@ -3,8 +3,8 @@ import numpy as np import pytest -from ndsl.quantity import Quantity -from pace.driver.safety_checks import SafetyChecker +from ndsl import Quantity +from pace import SafetyChecker def test_register_variable(): diff --git a/tests/main/fv3core/test_cartesian_grid.py b/tests/main/fv3core/test_cartesian_grid.py index 528735c1..0c5b2f62 100644 --- a/tests/main/fv3core/test_cartesian_grid.py +++ b/tests/main/fv3core/test_cartesian_grid.py @@ -1,11 +1,9 @@ import numpy as np import pytest -from ndsl.comm.communicator import TileCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import TilePartitioner +from ndsl import NullComm, TileCommunicator, TilePartitioner from ndsl.constants import PI -from ndsl.grid.generation import MetricTerms +from ndsl.grid import MetricTerms @pytest.mark.parametrize("npx", [8]) diff --git a/tests/main/fv3core/test_dycore_call.py b/tests/main/fv3core/test_dycore_call.py index 9ef22548..eeb3d08b 100644 --- a/tests/main/fv3core/test_dycore_call.py +++ b/tests/main/fv3core/test_dycore_call.py @@ -4,30 +4,33 @@ from datetime import timedelta from typing import Tuple -import ndsl.dsl.stencil -import ndsl.stencils.testing -import pyFV3 import pyFV3.initialization.analytic_init as ai -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.dsl.dace.dace_config import DaceConfig -from ndsl.dsl.stencil import GridIndexing +from ndsl import ( + CompilationConfig, + CubedSphereCommunicator, + CubedSpherePartitioner, + DaceConfig, + GridIndexing, + NullComm, + Quantity, + QuantityFactory, + StencilConfig, + StencilFactory, + SubtileGridSizer, + TilePartitioner, +) from ndsl.grid import DampingCoefficients, GridData, MetricTerms -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer from ndsl.performance.timer import NullTimer, Timer -from ndsl.quantity import Quantity from ndsl.stencils.testing import assert_same_temporaries, copy_temporaries -from pyFV3.dycore_state import DycoreState +from pyFV3 import DycoreState, DynamicalCore, DynamicalCoreConfig DIR = os.path.abspath(os.path.dirname(__file__)) -def setup_dycore() -> Tuple[pyFV3.DynamicalCore, pyFV3.DycoreState, Timer]: +def setup_dycore() -> Tuple[DynamicalCore, DycoreState, Timer]: backend = "numpy" - config = pyFV3.DynamicalCoreConfig( + config = DynamicalCoreConfig( layout=(1, 1), npx=13, npy=13, @@ -77,8 +80,8 @@ def setup_dycore() -> Tuple[pyFV3.DynamicalCore, pyFV3.DycoreState, Timer]: partitioner = CubedSpherePartitioner(TilePartitioner(config.layout)) communicator = CubedSphereCommunicator(mpi_comm, partitioner) dace_config = DaceConfig(communicator=communicator, backend=backend) - stencil_config = ndsl.dsl.stencil.StencilConfig( - compilation_config=ndsl.dsl.stencil.CompilationConfig( + stencil_config = StencilConfig( + compilation_config=CompilationConfig( backend=backend, rebuild=False, validate_args=True ), dace_config=dace_config, @@ -116,12 +119,12 @@ def setup_dycore() -> Tuple[pyFV3.DynamicalCore, pyFV3.DycoreState, Timer]: moist_phys=config.moist_phys, comm=communicator, ) - stencil_factory = ndsl.dsl.stencil.StencilFactory( + stencil_factory = StencilFactory( config=stencil_config, grid_indexing=grid_indexing, ) - dycore = pyFV3.DynamicalCore( + dycore = DynamicalCore( comm=communicator, grid_data=grid_data, stencil_factory=stencil_factory, diff --git a/tests/main/fv3core/test_grid.py b/tests/main/fv3core/test_grid.py index 2286ea03..0b95f3ea 100644 --- a/tests/main/fv3core/test_grid.py +++ b/tests/main/fv3core/test_grid.py @@ -4,6 +4,7 @@ import pytest from gt4py.cartesian import gtscript +from ndsl import GridIndexing from ndsl.constants import ( X_DIM, X_INTERFACE_DIM, @@ -12,7 +13,6 @@ Z_DIM, Z_INTERFACE_DIM, ) -from ndsl.dsl.stencil import GridIndexing from ndsl.dsl.typing import Index3D diff --git a/tests/main/fv3core/test_init_from_geos.py b/tests/main/fv3core/test_init_from_geos.py index d620d9fa..6d183561 100644 --- a/tests/main/fv3core/test_init_from_geos.py +++ b/tests/main/fv3core/test_init_from_geos.py @@ -2,8 +2,9 @@ import numpy as np import pytest # noqa -import pyFV3 -from ndsl.comm.null_comm import NullComm +from ndsl import NullComm +from pyFV3 import DynamicalCore +from pyFV3.wrappers import GeosDycoreWrapper def test_geos_wrapper(): @@ -84,7 +85,7 @@ def test_geos_wrapper(): comm = NullComm(rank=0, total_ranks=6, fill_value=0.0) backend = "numpy" - wrapper = pyFV3.GeosDycoreWrapper( + wrapper = GeosDycoreWrapper( namelist=namelist, comm=comm, backend=backend, @@ -122,8 +123,8 @@ def test_geos_wrapper(): 7, ) - assert isinstance(wrapper, pyFV3.GeosDycoreWrapper) - assert isinstance(wrapper.dynamical_core, pyFV3.DynamicalCore) + assert isinstance(wrapper, GeosDycoreWrapper) + assert isinstance(wrapper.dynamical_core, DynamicalCore) u = np.ones(shape_y_interface) v = np.ones(shape_x_interface) diff --git a/tests/main/grid/test_eta.py b/tests/main/grid/test_eta.py index 200720d7..f21c8896 100755 --- a/tests/main/grid/test_eta.py +++ b/tests/main/grid/test_eta.py @@ -7,7 +7,7 @@ import xarray as xr import yaml -import pace.driver +from pace import Driver, DriverConfig, NullCommConfig """ @@ -59,9 +59,7 @@ def test_set_hybrid_pressure_coefficients_correct(km): """ dirname = os.path.dirname(os.path.abspath(__file__)) - config_file = os.path.join( - dirname, "../../../driver/examples/configs/baroclinic_c12.yaml" - ) + config_file = os.path.join(dirname, "../../../examples/configs/baroclinic_c12.yaml") with open(config_file, "r") as f: yaml_config = yaml.safe_load(f) @@ -69,9 +67,9 @@ def test_set_hybrid_pressure_coefficients_correct(km): yaml_config["nz"] = km yaml_config["grid_config"]["config"]["eta_file"] = f"tests/main/input/eta{km}.nc" - driver_config = pace.driver.DriverConfig.from_dict(yaml_config) - driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) - driver = pace.driver.Driver(config=driver_config) + driver_config = DriverConfig.from_dict(yaml_config) + driver_config.comm_config = NullCommConfig(rank=0, total_ranks=6) + driver = Driver(config=driver_config) p_results = driver.state.grid_data.p.data ak_results = driver.state.grid_data.ak.data @@ -103,9 +101,7 @@ def test_set_hybrid_pressure_coefficients_nofile(): """ dirname = os.path.dirname(os.path.abspath(__file__)) - config_file = os.path.join( - dirname, "../../../driver/examples/configs/baroclinic_c12.yaml" - ) + config_file = os.path.join(dirname, "../../../examples/configs/baroclinic_c12.yaml") with open(config_file, "r") as f: yaml_config = yaml.safe_load(f) @@ -113,9 +109,9 @@ def test_set_hybrid_pressure_coefficients_nofile(): del yaml_config["grid_config"]["config"]["eta_file"] try: - driver_config = pace.driver.DriverConfig.from_dict(yaml_config) - driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) - driver = pace.driver.Driver(config=driver_config) + driver_config = DriverConfig.from_dict(yaml_config) + driver_config.comm_config = NullCommConfig(rank=0, total_ranks=6) + driver = Driver(config=driver_config) except Exception as error: if str(error) == "eta file not specified": pytest.xfail("testing eta file not specified") @@ -135,9 +131,7 @@ def test_set_hybrid_pressure_coefficients_not_mono(): """ dirname = os.path.dirname(os.path.abspath(__file__)) - config_file = os.path.join( - dirname, "../../../driver/examples/configs/baroclinic_c12.yaml" - ) + config_file = os.path.join(dirname, "../../../examples/configs/baroclinic_c12.yaml") with open(config_file, "r") as f: yaml_config = yaml.safe_load(f) @@ -148,9 +142,9 @@ def test_set_hybrid_pressure_coefficients_not_mono(): yaml_config["grid_config"]["config"]["eta_file"] = out_eta_file try: - driver_config = pace.driver.DriverConfig.from_dict(yaml_config) - driver_config.comm_config = pace.driver.NullCommConfig(rank=0, total_ranks=6) - driver = pace.driver.Driver(config=driver_config) + driver_config = DriverConfig.from_dict(yaml_config) + driver_config.comm_config = NullCommConfig(rank=0, total_ranks=6) + driver = Driver(config=driver_config) except Exception as error: if os.path.isfile(out_eta_file): os.remove(out_eta_file) diff --git a/tests/main/physics/test_integration.py b/tests/main/physics/test_integration.py index 0d3d534e..dfd38af1 100644 --- a/tests/main/physics/test_integration.py +++ b/tests/main/physics/test_integration.py @@ -3,18 +3,23 @@ import numpy as np -import pySHiELD -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.dsl.dace import DaceConfig -from ndsl.dsl.dace.orchestration import DaCeOrchestration -from ndsl.dsl.stencil import GridIndexing, StencilConfig, StencilFactory -from ndsl.dsl.stencil_config import CompilationConfig +from ndsl import ( + CompilationConfig, + CubedSphereCommunicator, + CubedSpherePartitioner, + DaceConfig, + DaCeOrchestration, + GridIndexing, + NullComm, + QuantityFactory, + StencilConfig, + StencilFactory, + SubtileGridSizer, + TilePartitioner, +) from ndsl.grid import GridData, MetricTerms -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer from ndsl.stencils.testing import assert_same_temporaries, copy_temporaries +from pySHiELD import PHYSICS_PACKAGES, Physics, PhysicsConfig, PhysicsState try: @@ -26,7 +31,7 @@ def setup_physics(): backend = "numpy" layout = (1, 1) - physics_config = pySHiELD.PhysicsConfig( + physics_config = PhysicsConfig( dt_atmos=225, hydrostatic=False, npx=13, npy=13, npz=79, nwat=6, do_qa=True ) mpi_comm = NullComm(rank=0, total_ranks=6 * layout[0] * layout[1], fill_value=0.0) @@ -69,17 +74,17 @@ def setup_physics(): eta_file="tests/main/input/eta79.nc", ) grid_data = GridData.new_from_metric_terms(metric_terms) - physics = pySHiELD.Physics( + physics = Physics( stencil_factory, quantity_factory, grid_data, physics_config, ) - physics_state = pySHiELD.PhysicsState.init_zeros( - quantity_factory, schemes=[pySHiELD.PHYSICS_PACKAGES["GFS_microphysics"]] + physics_state = PhysicsState.init_zeros( + quantity_factory, schemes=[PHYSICS_PACKAGES["GFS_microphysics"]] ) random = np.random.RandomState(0) - for field in fields(pySHiELD.PhysicsState): + for field in fields(PhysicsState): array = getattr(physics_state, field.name) # check that it's a storage this way, because Field is not a class if isinstance(array, (np.ndarray, cp.ndarray)): diff --git a/tests/main/test_grid_init.py b/tests/main/test_grid_init.py index d9fb6b5d..9489cd3b 100644 --- a/tests/main/test_grid_init.py +++ b/tests/main/test_grid_init.py @@ -1,13 +1,16 @@ import numpy as np import pytest -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner +from ndsl import ( + CubedSphereCommunicator, + CubedSpherePartitioner, + NullComm, + Quantity, + QuantityFactory, + SubtileGridSizer, + TilePartitioner, +) from ndsl.grid import MetricTerms -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.quantity import Quantity def get_cube_comm(layout, rank: int): diff --git a/tests/mpi_54rank/test_ext_grid/test_external_grid.py b/tests/mpi/ext_grid/test_external_grid.py similarity index 95% rename from tests/mpi_54rank/test_ext_grid/test_external_grid.py rename to tests/mpi/ext_grid/test_external_grid.py index c5b52014..d4dbc0e5 100644 --- a/tests/mpi_54rank/test_ext_grid/test_external_grid.py +++ b/tests/mpi/ext_grid/test_external_grid.py @@ -6,19 +6,19 @@ import xarray as xr import yaml -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.mpi import MPIComm -from ndsl.comm.partitioner import ( +from ndsl import ( + CubedSphereCommunicator, CubedSpherePartitioner, + MPIComm, TilePartitioner, - get_tile_number, ) +from ndsl.comm.partitioner import get_tile_number from ndsl.constants import PI, RADIUS, X_DIM, X_INTERFACE_DIM, Y_DIM, Y_INTERFACE_DIM -from pace.driver import Driver, DriverConfig +from pace import Driver, DriverConfig DIR = os.path.dirname(os.path.abspath(__file__)) -TEST_CONFIGS_DIR = os.path.join(DIR, "../../../driver/examples/configs/") +TEST_CONFIGS_DIR = os.path.join(DIR, "../../../examples/configs/") TEST_DATA_DIR = os.path.join(DIR, "../../../test_input/") TEST_CONFIG_FILE_RANKS = [ diff --git a/driver/tests/mpi/run_save_and_load_restart.sh b/tests/mpi/restart/run_save_and_load_restart.sh similarity index 66% rename from driver/tests/mpi/run_save_and_load_restart.sh rename to tests/mpi/restart/run_save_and_load_restart.sh index 7d975142..76829be8 100755 --- a/driver/tests/mpi/run_save_and_load_restart.sh +++ b/tests/mpi/restart/run_save_and_load_restart.sh @@ -7,6 +7,6 @@ sed -i.bak 's/seconds: 225/seconds: 450/' baroclinic_c12_run_two_steps.yaml sed -i.bak 's/save_restart: true/save_restart: false/' baroclinic_c12_run_two_steps.yaml sed -i.bak 's/path: "output.zarr"/path: "run_two_steps_output.zarr"/' baroclinic_c12_run_two_steps.yaml rm *.bak -$MPIRUN_CALL python -m pace.driver.run baroclinic_c12_write_restart.yaml --log-level=ERROR -$MPIRUN_CALL python -m pace.driver.run RESTART/restart.yaml --log-level=ERROR -$MPIRUN_CALL python -m pace.driver.run baroclinic_c12_run_two_steps.yaml --log-level=ERROR +$MPIRUN_CALL python -m pace.run baroclinic_c12_write_restart.yaml --log-level=ERROR +$MPIRUN_CALL python -m pace.run RESTART/restart.yaml --log-level=ERROR +$MPIRUN_CALL python -m pace.run baroclinic_c12_run_two_steps.yaml --log-level=ERROR diff --git a/driver/tests/mpi/test_restart.py b/tests/mpi/restart/test_restart.py similarity index 89% rename from driver/tests/mpi/test_restart.py rename to tests/mpi/restart/test_restart.py index 2ac12807..2c812d87 100644 --- a/driver/tests/mpi/test_restart.py +++ b/tests/mpi/restart/test_restart.py @@ -7,12 +7,14 @@ import zarr from mpi4py import MPI -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.null_comm import NullComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.quantity import Quantity -from pace.driver import DriverConfig -from pace.driver.state import DriverState +from ndsl import ( + CubedSphereCommunicator, + CubedSpherePartitioner, + NullComm, + Quantity, + TilePartitioner, +) +from pace import DriverConfig, DriverState from pySHiELD import PHYSICS_PACKAGES diff --git a/tests/mpi_54rank/test_grid_init.py b/tests/mpi/test_grid_init.py similarity index 95% rename from tests/mpi_54rank/test_grid_init.py rename to tests/mpi/test_grid_init.py index c5fbfaed..2b647dec 100644 --- a/tests/mpi_54rank/test_grid_init.py +++ b/tests/mpi/test_grid_init.py @@ -2,15 +2,18 @@ import numpy as np -import pyFV3 -from ndsl.comm.communicator import CubedSphereCommunicator, TileCommunicator -from ndsl.comm.mpi import MPIComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.grid import MetricTerms -from ndsl.grid.helper import GridData -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.quantity import Quantity +from ndsl import ( + CubedSphereCommunicator, + CubedSpherePartitioner, + MPIComm, + Quantity, + QuantityFactory, + SubtileGridSizer, + TileCommunicator, + TilePartitioner, +) +from ndsl.grid import GridData, MetricTerms +from pyFV3 import DycoreState from pyFV3.initialization.test_cases.initialize_baroclinic import init_baroclinic_state @@ -121,7 +124,7 @@ def metric_terms_to_quantity_dict(metric_terms: MetricTerms) -> Dict[str, Quanti def dycore_state_to_quantity_dict( - dycore_state: pyFV3.DycoreState, + dycore_state: DycoreState, ) -> Dict[str, Quantity]: return { "u": dycore_state.u, diff --git a/tests/savepoint/test_checkpoints.py b/tests/savepoint/test_checkpoints.py index 27aafafd..28388d0e 100644 --- a/tests/savepoint/test_checkpoints.py +++ b/tests/savepoint/test_checkpoints.py @@ -8,32 +8,31 @@ import xarray as xr import yaml -import pyFV3 -from ndsl.checkpointer import ValidationCheckpointer -from ndsl.checkpointer.thresholds import ( - SavepointThresholds, - Threshold, - ThresholdCalibrationCheckpointer, -) -from ndsl.comm.communicator import CubedSphereCommunicator -from ndsl.comm.mpi import MPIComm -from ndsl.comm.partitioner import CubedSpherePartitioner, TilePartitioner -from ndsl.dsl.stencil import ( +from ndsl import ( CompilationConfig, + CubedSphereCommunicator, + CubedSpherePartitioner, GridIndexing, + MPIComm, + Namelist, + Quantity, + QuantityFactory, StencilConfig, StencilFactory, + SubtileGridSizer, + TilePartitioner, +) +from ndsl.checkpointer import ( + SavepointThresholds, + Threshold, + ThresholdCalibrationCheckpointer, + ValidationCheckpointer, ) from ndsl.grid import DampingCoefficients, GridData -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.namelist import Namelist -from ndsl.quantity import Quantity -from ndsl.stencils.testing import TranslateGrid, dataset_to_dict -from ndsl.stencils.testing.grid import Grid +from ndsl.stencils.testing import Grid, TranslateGrid, dataset_to_dict from ndsl.testing import perturb -from pyFV3.initialization.dycore_state import DycoreState -from pyFV3.testing.translate_fvdynamics import TranslateFVDynamics +from pyFV3 import DycoreState, DynamicalCore, DynamicalCoreConfig +from pyFV3.testing import TranslateFVDynamics def get_grid(data_path: str, rank: int, layout: Tuple[int, int], backend: str) -> Grid: @@ -110,7 +109,7 @@ def test_fv_dynamics( ds = xr.open_dataset(os.path.join(data_path, "FVDynamics-In.nc")).sel( savepoint=0, rank=communicator.rank ) - dycore_config = pyFV3.DynamicalCoreConfig.from_namelist(namelist) + dycore_config = DynamicalCoreConfig.from_namelist(namelist) initializer = StateInitializer( ds, translate, @@ -142,7 +141,7 @@ def test_fv_dynamics( savepoint_data_path=data_path, thresholds=thresholds, rank=communicator.rank ) state, grid_data = initializer.new_state() - dycore = pyFV3.DynamicalCore( + dycore = DynamicalCore( comm=communicator, grid_data=grid_data, stencil_factory=stencil_factory, @@ -164,7 +163,7 @@ def _calibrate_thresholds( stencil_factory: StencilFactory, quantity_factory: QuantityFactory, damping_coefficients: DampingCoefficients, - dycore_config: pyFV3.DynamicalCoreConfig, + dycore_config: DynamicalCoreConfig, n_trials: int, factor: float, ): @@ -175,7 +174,7 @@ def _calibrate_thresholds( perturb(dycore_state_to_dict(trial_state)) # we need to initialize new DynamicalCore because halo updates bind # to a particular state object, currently - dycore = pyFV3.DynamicalCore( + dycore = DynamicalCore( comm=communicator, grid_data=grid_data, stencil_factory=stencil_factory, diff --git a/tests/savepoint/translate/translate_driver.py b/tests/savepoint/translate/translate_driver.py index 446ed08d..43fd345e 100644 --- a/tests/savepoint/translate/translate_driver.py +++ b/tests/savepoint/translate/translate_driver.py @@ -1,14 +1,11 @@ +from ndsl import Namelist, QuantityFactory, SubtileGridSizer from ndsl.constants import N_HALO_DEFAULT -from ndsl.initialization.allocator import QuantityFactory -from ndsl.initialization.sizer import SubtileGridSizer -from ndsl.namelist import Namelist -from pace.driver.run import Driver, DriverConfig -from pace.driver.state import TendencyState -from pyFV3._config import DynamicalCoreConfig +from pace import Driver, DriverConfig, TendencyState +from pyFV3 import DynamicalCoreConfig # TODO physics should not depend on pyFV3 # but also, driver tests should not be in physics -from pyFV3.testing.translate_fvdynamics import TranslateFVDynamics +from pyFV3.testing import TranslateFVDynamics from pyFV3.testing.validation import enable_selective_validation from pySHiELD import PHYSICS_PACKAGES, PhysicsConfig, PhysicsState From b8c8c5354f566ed2c46d2e14c916d0e62685a77f Mon Sep 17 00:00:00 2001 From: Oliver Elbert Date: Thu, 18 Apr 2024 11:54:12 -0400 Subject: [PATCH 10/10] Hotfix/docker notebooks (#80) * Fix to get notebooks working in docker --------- Co-authored-by: Frank Malatino <142349306+fmalatino@users.noreply.github.com> --- Dockerfile | 25 + Makefile | 14 +- examples/Dockerfile | 75 - examples/Makefile | 35 - examples/README.md | 4 +- examples/notebooks/functions.py | 4 +- examples/notebooks/grid_generation.ipynb | 186 +- .../initial_condition_definition.ipynb | 302 +-- examples/notebooks/stencil_definition.ipynb | 2310 ++++------------- 9 files changed, 779 insertions(+), 2176 deletions(-) delete mode 100644 examples/Dockerfile delete mode 100644 examples/Makefile diff --git a/Dockerfile b/Dockerfile index b98c01ea..dca0e192 100644 --- a/Dockerfile +++ b/Dockerfile @@ -2,12 +2,16 @@ FROM python:3.8.13-bullseye@sha256:2a01d88a1684e6d7f08030cf5ae73b536926c64076cab RUN apt-get update && apt-get install -y make \ software-properties-common \ + libgeos-dev \ libopenmpi3 \ libopenmpi-dev \ libboost-all-dev \ libhdf5-serial-dev \ netcdf-bin \ libnetcdf-dev \ + libproj-dev \ + proj-bin \ + proj-data \ python3 \ python3-pip @@ -22,5 +26,26 @@ COPY . /pace RUN cd /pace && \ pip3 install -r /pace/requirements_dev.txt -c /pace/constraints.txt +RUN cd / && \ + git clone https://github.com/ai2cm/fv3net + +ENV CFLAGS="-I/usr/include -DACCEPT_USE_OF_DEPRECATED_PROJ_API_H=1" + +RUN python3 -m pip install \ + numpy==1.21.2 \ + netCDF4==1.5.7 \ + mpi4py==3.1.1 \ + matplotlib==3.5.2 \ + ipyparallel==8.4.1 \ + jupyterlab==3.4.4 \ + shapely==1.8.5 \ + cartopy==0.18.0 \ + jupyterlab_code_formatter==1.5.2 \ + isort==5.10.1 \ + black==22.3.0 \ + /fv3net/external/vcm + +ENV PYTHONPATH=/fv3net/external/fv3viz:/pace/external/gt4py/src + ENV OMPI_ALLOW_RUN_AS_ROOT=1 ENV OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1 diff --git a/Makefile b/Makefile index 71b78f08..587a6b57 100644 --- a/Makefile +++ b/Makefile @@ -20,12 +20,16 @@ BROWSER := python -c "$$BROWSER_PYSCRIPT" DOCKER_BUILDKIT=1 SHELL=/bin/bash CWD=$(shell pwd) +CMD ?=bash PULL ?=True DEV ?=y CHECK_CHANGED_SCRIPT=$(CWD)/changed_from_main.py CONTAINER_CMD?=docker SAVEPOINT_SETUP=pip3 list +PORT ?=8888 +APP_NAME ?=Pace_dev + VOLUMES ?= BUILD_FLAGS ?= @@ -91,13 +95,19 @@ _force_build: enter: docker run --rm -it \ - --network host \ $(VOLUMES) \ - $(PACE_IMAGE) bash + -p=$(PORT):$(PORT) \ + --name="$(APP_NAME)" \ + $(PACE_IMAGE) $(CMD) dev: DEV=y $(MAKE) enter +notebook: + CMD="jupyter notebook --ip 0.0.0.0 --no-browser --allow-root --notebook-dir=/pace/examples/notebooks" \ + DEV=y \ + $(MAKE) enter + test_util: if [ $(shell $(CHECK_CHANGED_SCRIPT) util) != false ]; then \ $(MAKE) -C util test; \ diff --git a/examples/Dockerfile b/examples/Dockerfile deleted file mode 100644 index 7b030f20..00000000 --- a/examples/Dockerfile +++ /dev/null @@ -1,75 +0,0 @@ -FROM ubuntu:20.04@sha256:450e066588f42ebe1551f3b1a535034b6aa46cd936fe7f2c6b0d72997ec61dbd - -ARG DEBIAN_FRONTEND=noninteractive -ENV TZ=Etc/UTC - -RUN apt-get update -y && \ - apt-get install -y \ - tzdata \ - software-properties-common - -RUN add-apt-repository ppa:git-core/ppa -y && \ - apt-get update -y && \ - apt-get install -y \ - git - -RUN apt-get update -y && \ - apt-get install -y \ - g++ \ - libgeos-dev \ - libopenmpi-dev \ - libboost-all-dev \ - libhdf5-serial-dev \ - netcdf-bin \ - libnetcdf-dev \ - libproj-dev \ - proj-bin \ - proj-data \ - python3.8 \ - python3.8-dev \ - python3-pip && \ - rm -rf /var/lib/apt/lists/* && \ - apt-get clean - -RUN python3 -m pip install --upgrade pip wheel - -COPY . /pace - -# 2022.12.22 Added non-editable installs as a workaround for pace module not found, when gt4py was updated to v1.0. -# See https://github.com/ai2cm/pace/issues/419 for more details. -RUN cd /pace && \ - pip3 install -r /pace/requirements_dev.txt -c /pace/constraints.txt && \ - pip install ./driver ./ndsl ./fv3core ./physics -c /pace/constraints.txt - -RUN cd / && \ - git clone https://github.com/ai2cm/fv3net - -ENV CFLAGS="-I/usr/include -DACCEPT_USE_OF_DEPRECATED_PROJ_API_H=1" - -RUN python3 -m pip install \ - numpy==1.21.2 \ - netCDF4==1.5.7 \ - mpi4py==3.1.1 \ - matplotlib==3.5.2 \ - ipyparallel==8.4.1 \ - jupyterlab==3.4.4 \ - shapely==1.8.5 \ - cartopy==0.18.0 \ - jupyterlab_code_formatter==1.5.2 \ - isort==5.10.1 \ - black==22.3.0 \ - /fv3net/external/vcm - -ENV PYTHONPATH=/fv3net/external/fv3viz:/pace/external/gt4py/src - -ENV OMPI_ALLOW_RUN_AS_ROOT=1 - -ENV OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1 - -ENV OMPI_MCA_rmaps_base_oversubscribe=1 - -COPY ./examples/notebooks /notebooks - -WORKDIR /notebooks - -CMD ["jupyter-lab", "--port=8888", "--no-browser", "--ip=0.0.0.0", "--allow-root"] diff --git a/examples/Makefile b/examples/Makefile deleted file mode 100644 index dc1f5058..00000000 --- a/examples/Makefile +++ /dev/null @@ -1,35 +0,0 @@ -IMAGE_NAME ?=gcr.io/vcm-ml/pace_notebook_examples -APP_NAME ?=pace_notebook_examples -PORT ?=8888 -BUILD_OPTIONS ?= -RUN_OPTIONS ?= -CMD?= -CWD =$(shell pwd) - -.PHONY: help build build-nc run dev up stop - -help: - @awk 'BEGIN {FS = ":.*?## "} /^[a-zA-Z_-]+:.*?## / {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' $(MAKEFILE_LIST) - -.DEFAULT_GOAL := help - -build: ## Build the image - docker build $(BUILD_OPTIONS) -t $(IMAGE_NAME) -f Dockerfile .. - -build-nc: ## Build the image without caching - $(MAKE) BUILD_OPTIONS="--no-cache" build - -run: ## Run container - docker run -i -t --rm $(RUN_OPTIONS) -p=$(PORT):$(PORT) --name="$(APP_NAME)" $(IMAGE_NAME) $(CMD) - -dev: ## Run container and mount local directory for development - RUN_OPTIONS="-v $(CWD)/notebooks:/notebooks" $(MAKE) run - -enter: - CMD="/bin/bash" $(MAKE) run - -up: build run ## Build image and run container - -stop: ## Stop and remove running container - docker stop $(APP_NAME) - docker rm $(APP_NAME) diff --git a/examples/README.md b/examples/README.md index 1c98ba40..55143967 100644 --- a/examples/README.md +++ b/examples/README.md @@ -4,11 +4,11 @@ This directory serves as a demo of how you can develop and run individual compon ## Getting started -The easiest way of running these demos is using a Docker container. If you do not already have Docker installed, it can be downloaded directly from [Docker](https://www.docker.com/). Once Docker is set up, you can build and run the container: +The easiest way of running these demos is using a Docker container. If you do not already have Docker installed, it can be downloaded directly from [Docker](https://www.docker.com/). Once Docker is set up, you can build and run the container from the root Pace directory: ``` make build -make run +make notebook ``` Once the docker container is running, you can connect to the Jupyter notebook server by copying and pasting the URLs into any browser on your machine. An example output is shown below: diff --git a/examples/notebooks/functions.py b/examples/notebooks/functions.py index fb7ca1fa..26215739 100644 --- a/examples/notebooks/functions.py +++ b/examples/notebooks/functions.py @@ -272,7 +272,9 @@ def configure_domain( quantity_factory = QuantityFactory.from_backend(sizer=sizer, backend=backend) metric_terms = MetricTerms( - quantity_factory=quantity_factory, communicator=communicator + quantity_factory=quantity_factory, + communicator=communicator, + eta_file="eta79.nc", ) # workaround for single layer diff --git a/examples/notebooks/grid_generation.ipynb b/examples/notebooks/grid_generation.ipynb index cb5f039e..937b973e 100644 --- a/examples/notebooks/grid_generation.ipynb +++ b/examples/notebooks/grid_generation.ipynb @@ -71,7 +71,7 @@ "output_type": "stream", "text": [ "Starting 6 engines with \n", - "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.04engine/s]\n", + "100%|███████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.08engine/s]\n", "%autopx enabled\n" ] } @@ -120,7 +120,7 @@ { "data": { "text/plain": [ - "[stdout:0] I am MPI-rank 0 of a total of 6\n" + "[stdout:3] I am MPI-rank 3 of a total of 6\n" ] }, "metadata": {}, @@ -129,7 +129,7 @@ { "data": { "text/plain": [ - "[stdout:1] I am MPI-rank 1 of a total of 6\n" + "[stdout:4] I am MPI-rank 4 of a total of 6\n" ] }, "metadata": {}, @@ -138,7 +138,7 @@ { "data": { "text/plain": [ - "[stdout:4] I am MPI-rank 4 of a total of 6\n" + "[stdout:1] I am MPI-rank 1 of a total of 6\n" ] }, "metadata": {}, @@ -147,7 +147,7 @@ { "data": { "text/plain": [ - "[stdout:3] I am MPI-rank 3 of a total of 6\n" + "[stdout:0] I am MPI-rank 0 of a total of 6\n" ] }, "metadata": {}, @@ -197,13 +197,67 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[output:2]" + "[stdout:1] 2024-04-17 21:09:45|INFO|rank 1|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:5] 2024-04-17 21:09:45|INFO|rank 5|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:2] 2024-04-17 21:09:45|INFO|rank 2|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:0] 2024-04-17 21:09:45|INFO|rank 0|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:3] 2024-04-17 21:09:45|INFO|rank 3|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:4] 2024-04-17 21:09:45|INFO|rank 4|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[output:3]" ] }, "metadata": {}, @@ -220,14 +274,14 @@ ] }, "metadata": { - "engine": 2 + "engine": 3 }, "output_type": "display_data" }, { "data": { "text/plain": [ - "[output:0]" + "[output:2]" ] }, "metadata": {}, @@ -244,14 +298,14 @@ ] }, "metadata": { - "engine": 0 + "engine": 2 }, "output_type": "display_data" }, { "data": { "text/plain": [ - "[output:5]" + "[output:1]" ] }, "metadata": {}, @@ -268,14 +322,14 @@ ] }, "metadata": { - "engine": 5 + "engine": 1 }, "output_type": "display_data" }, { "data": { "text/plain": [ - "[output:1]" + "[output:4]" ] }, "metadata": {}, @@ -292,14 +346,14 @@ ] }, "metadata": { - "engine": 1 + "engine": 4 }, "output_type": "display_data" }, { "data": { "text/plain": [ - "[output:3]" + "[output:5]" ] }, "metadata": {}, @@ -316,21 +370,14 @@ ] }, "metadata": { - "engine": 3 + "engine": 5 }, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:00\n" ] }, "metadata": {}, @@ -474,7 +521,7 @@ { "data": { "text/plain": [ - "[stderr:2] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", + "[stderr:2] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", " np.sum(p * q, axis=-1)\n" ] }, @@ -484,8 +531,8 @@ { "data": { "text/plain": [ - "[stdout:0] ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_angle_data', '_contravariant_data', '_fC', '_fC_agrid', '_fC_from_lat', '_horizontal_data', '_vertical_data', 'a11', 'a12', 'a21', 'a22', 'ak', 'area', 'area_64', 'bk', 'cos_sg1', 'cos_sg2', 'cos_sg3', 'cos_sg4', 'cosa', 'cosa_s', 'cosa_u', 'cosa_v', 'dp_ref', 'dx', 'dxa', 'dxc', 'dy', 'dya', 'dyc', 'edge_e', 'edge_n', 'edge_s', 'edge_w', 'ee1', 'ee2', 'es1', 'ew2', 'fC', 'fC_agrid', 'ks', 'lat', 'lat_agrid', 'lon', 'lon_agrid', 'new_from_metric_terms', 'p', 'p_ref', 'ptop', 'rarea', 'rarea_c', 'rdx', 'rdxa', 'rdxc', 'rdy', 'rdya', 'rdyc', 'rsin2', 'rsin_u', 'rsin_v', 'rsina', 'sin_sg1', 'sin_sg2', 'sin_sg3', 'sin_sg4', 'sina_u', 'sina_v']\n", - "\n" + "[stderr:5] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", + " np.sum(p * q, axis=-1)\n" ] }, "metadata": {}, @@ -496,7 +543,7 @@ "from ndsl.grid import GridData, MetricTerms\n", "\n", "# create the object to compute metric terms\n", - "metric_terms = MetricTerms(quantity_factory=quantity_factory, communicator=communicator)\n", + "metric_terms = MetricTerms(quantity_factory=quantity_factory, communicator=communicator, eta_file=\"eta79.nc\")\n", "\n", "# compute the grid data\n", "grid_data = GridData.new_from_metric_terms(metric_terms)\n", @@ -517,13 +564,13 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[stdout:1] \n" + "[stdout:2] \n" ] }, "metadata": {}, @@ -532,7 +579,7 @@ { "data": { "text/plain": [ - "[stdout:4] \n" + "[stdout:1] \n" ] }, "metadata": {}, @@ -541,7 +588,7 @@ { "data": { "text/plain": [ - "[stdout:2] \n" + "[stdout:3] \n" ] }, "metadata": {}, @@ -550,7 +597,7 @@ { "data": { "text/plain": [ - "[stdout:5] \n" + "[stdout:4] \n" ] }, "metadata": {}, @@ -559,7 +606,7 @@ { "data": { "text/plain": [ - "[stdout:3] \n" + "[stdout:5] \n" ] }, "metadata": {}, @@ -568,7 +615,7 @@ { "data": { "text/plain": [ - "[stdout:0] \n" + "[stdout:0] \n" ] }, "metadata": {}, @@ -617,16 +664,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 83%|████████████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 5/6 [00:00<00:00, 11.84tasks/s]" - ] - }, { "data": { "text/plain": [ @@ -638,7 +678,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAH4CAYAAABQclA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wVxfn/P7dyL713qSJVEQFBRUQRQTHYe77YsSf5fmOMiRq7MYlRYw+xxpLYY4y9JYIVRVBEBREsiCIgvVzg7O8Pf3uzd5nZnWfazp4z79eLF3DOM888OzufmXlm9pxTFgRBAI/H4/F4PB6Px+PxeCxRnnUAHo/H4/F4PB6Px+MpLXwi6vF4PB6Px+PxeDweq/hE1OPxeDwej8fj8Xg8VvGJqMfj8Xg8Ho/H4/F4rOITUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYpPRD0ej8fj8Xg8Ho/HYxWfiHo8Ho/H4/F4PB6Pxyo+EfV4PB6Px+PxeDwej1V8IurxeJS45JJLUFZWhmXLlhmva8yYMRgzZozxeqIsWrQIZWVluOaaa6zWm3eyarcTTjgBPXr0ELZt2rSp2YA8UoTjSpQePXrghBNOyCYgi8Sv89///jfKysrw73//W2s9b7/9Nqqrq/H5559r9SvD+eefjxEjRmQdhsfjsYxPRD2eEmPBggU47bTT0KtXL9TU1KB58+bYY4898Kc//QkbNmzIOjyPRyvr16/HJZdcon0RXygUcPfdd2PSpEnYbrvt0KRJEwwaNAhXXHEFNm7cyCxzxx13oH///qipqUGfPn1w4403ao2Jxccff4zzzjsPO++8M5o1a4ZOnTph4sSJeOedd5j2ixcvxpFHHomWLVuiefPmOOigg/DZZ58Zj7PUeP3113HJJZdg5cqVmcVwwQUX4JhjjkH37t1J5R577DEcddRR6NWrFxo3boy+ffvi5z//Ofda/vnPf2KXXXZBTU0NunXrhosvvhhbtmxpYPOzn/0Ms2fPxj//+U/Zy/F4PDmkMusAPB6PPZ566ikcccQRaNSoESZPnoxBgwahrq4O06dPxy9+8Qt8+OGHmDp1atZhejzS/OUvf0GhUKj///r163HppZcCgNbT9PXr1+PEE0/EyJEjcfrpp6N9+/Z44403cPHFF+Oll17Cyy+/3OBE789//jNOP/10HHbYYfi///s/TJs2DT/5yU+wfv16/PKXv9QWV5zbb78dd9xxBw477DCceeaZWLVqFf785z9j5MiRePbZZ7HvvvvW265duxZ77703Vq1ahV//+teoqqrCddddh7322guzZs1CmzZtjMVZarz++uu49NJLccIJJ6Bly5YN3vvkk09QXm72nGDWrFl48cUX8frrr5PLTpkyBZ07d8aPf/xjdOvWDR988AFuuukmPP3005g5cyZqa2vrbZ955hkcfPDBGDNmDG688UZ88MEHuOKKK7B06VLceuut9XYdO3bEQQcdhGuuuQaTJk3Sco0ej8d9fCLq8ZQICxcuxNFHH43u3bvj5ZdfRqdOnerfO+uss/Dpp5/iqaeeyjDC0mbdunVo0qRJ1mHknqqqKiv1VFdX47XXXsPuu+9e/9qpp56KHj161CejYZK3YcMGXHDBBZg4cSIeeeSRettCoYDLL78cU6ZMQatWrYzEecwxx+CSSy5p8AjySSedhP79++OSSy5pkIjecsstmD9/Pt5++20MHz4cALD//vtj0KBB+OMf/4irrrrKSIzFiqymGzVqZCCahtx1113o1q0bRo4cSS77yCOPbLOpM3ToUBx//PG4//77ccopp9S/fu6552KnnXbC888/j8rKH5aczZs3x1VXXYWf/vSn6NevX73tkUceiSOOOAKfffYZevXqJXdhHo8nV/hHcz2eEuH3v/891q5dizvuuKNBEhqy/fbb46c//SmA/36+7+67797GrqysDJdccsk2ry9btgxHHnkkmjdvjjZt2uCnP/0p8xHF++67D0OHDkVtbS1at26No48+Gl9++eU2dlOnTkXv3r1RW1uLXXfdFdOmTRO+1s2bN+PSSy9Fnz59UFNTgzZt2mDUqFF44YUX6m3Czwd+9tlnGD9+PJo0aYLOnTvjsssuQxAETL9hTI0aNcLw4cMxY8aMbWw+/vhjHH744WjdujVqamowbNiwbR43u/vuu1FWVob//Oc/OPPMM9G+fXt07dq1/v1nnnkGe+65J5o0aYJmzZph4sSJ+PDDD1OvO/Q7ffp0/OQnP0G7du3QsmVLnHbaaairq8PKlSsxefJktGrVCq1atcJ55523zbUWCgVcf/31GDhwIGpqatChQwecdtpp+P777xvYvfPOOxg/fjzatm2L2tpa9OzZEyeddJJ0u0VZuXIlKioqcMMNN9S/tmzZMpSXl6NNmzYNYj7jjDPQsWPH+v9HPyO6aNEitGvXDgBw6aWXoqysjNl/Fy9ejIMPPhhNmzZFu3btcO6552Lr1q2JMVZXVzdIQkMOOeQQAMBHH31U/9orr7yC5cuX48wzz2xge9ZZZ2HdunWJG0AbNmxAv3790K9fvwaPzq9YsQKdOnXC7rvvnhjr0KFDt/kcbJs2bbDnnns2iBH4IcEYPnx4fRIKAP369cPYsWPx0EMPceuIct9992HXXXdF48aN0apVK4wePRrPP/98AxvZ/h1HROcsQp28+uqrOO2009CmTRs0b94ckydP3qafi8YbjicLFizAAQccgGbNmuG4445j1n/JJZfgF7/4BQCgZ8+e9f1y0aJFAMQ/C/vWW29hwoQJaNGiBRo3boy99toLr732Wmo5APjHP/6BffbZZ5vP4YbXu9dee6FZs2Zo3rw5hg8fjgceeKD+fdaTBax+P3fuXMydOxdTpkypT0IB4Mwzz0QQBPWbMiHhpsgTTzwhdA0ejyf/+ETU4ykRnnzySfTq1Yu5eNbBkUceiY0bN+K3v/0tDjjgANxwww2YMmVKA5srr7wSkydPRp8+fXDttdfiZz/7GV566SWMHj26weeL7rjjDpx22mno2LEjfv/732OPPfbApEmTmAkri0suuQSXXnop9t57b9x000244IIL0K1bN8ycObOB3datWzFhwgR06NABv//97zF06FBcfPHFuPjii7fx+cADD+APf/gDTjvtNFxxxRVYtGgRDj30UGzevLne5sMPP8TIkSPx0Ucf4fzzz8cf//hHNGnSBAcffDAef/zxbXyeeeaZmDt3Ln7zm9/g/PPPBwDce++9mDhxIpo2bYrf/e53uOiiizB37lyMGjWqfqGaxjnnnIP58+fj0ksvxaRJkzB16lRcdNFF+NGPfoStW7fiqquuwqhRo/CHP/wB9957b4Oyp512Gn7xi1/Uf274xBNPxP3334/x48fXX+vSpUux3377YdGiRTj//PNx44034rjjjsObb74p1W5xWrZsiUGDBuHVV1+tf2369OkoKyvDihUrMHfu3PrXp02bhj333JPpp127dvWP/x1yyCG49957ce+99+LQQw+tt9m6dSvGjx+PNm3a4JprrsFee+2FP/7xj9KPqH/zzTcAgLZt29a/9t577wEAhg0b1sB26NChKC8vr3+fRW1tLe655x58+umnuOCCC+pfP+uss7Bq1SrcfffdqKiokIozGmOhUMD777+/TYwAsOuuu2LBggVYs2ZNos9LL70U//M//4OqqipcdtlluPTSS7Hddtvh5ZdfrrfR0b9DRHXO4+yzz8ZHH32ESy65BJMnT8b999+Pgw8+uMFGByXeLVu2YPz48Wjfvj2uueYaHHbYYcx6Dz30UBxzzDEAgOuuu66+X4abJiK8/PLLGD16NFavXo2LL74YV111FVauXIl99tkHb7/9dmLZxYsX44svvsAuu+yyzXt33303Jk6ciBUrVuBXv/oVrr76auy888549tlnE31S+n3nzp3RtWvXbfp9ixYt0Lt3b+Fk2uPxFAGBx+MpelatWhUACA466CAh+4ULFwYAgrvuumub9wAEF198cf3/L7744gBAMGnSpAZ2Z555ZgAgmD17dhAEQbBo0aKgoqIiuPLKKxvYffDBB0FlZWX963V1dUH79u2DnXfeOdi0aVO93dSpUwMAwV577ZUa/+DBg4OJEycm2hx//PEBgOCcc86pf61QKAQTJ04Mqqurg++++65BW7Rp0yZYsWJFve0TTzwRAAiefPLJ+tfGjh0b7LjjjsHGjRsb+Nx9992DPn361L921113BQCCUaNGBVu2bKl/fc2aNUHLli2DU089tUGs33zzTdCiRYttXo8T+h0/fnxQKBTqX99tt92CsrKy4PTTT69/bcuWLUHXrl0btOe0adMCAMH999/fwO+zzz7b4PXHH388ABDMmDGDGwul3VicddZZQYcOHer//3//93/B6NGjg/bt2we33nprEARBsHz58qCsrCz405/+VG93/PHHB927d6///3fffbdNn43aAgguu+yyBq8PGTIkGDp0aGJ8PPbdd9+gefPmwffff9/gWioqKpj27dq1C44++uhUv7/61a+C8vLy4NVXXw0efvjhAEBw/fXXS8X46quvBmVlZcFFF11U/1rYTvG2CIIguPnmmwMAwccff8z1OX/+/KC8vDw45JBDgq1btzZ4L+yLlP4djitRunfvHhx//PH1/xfROYtQJ0OHDg3q6urqX//9738fAAieeOIJcrxhXzr//POFYvjDH/4QAAgWLly4zXvx63zllVcCAMErr7wSBMEP7dmnT59tdL5+/fqgZ8+ewbhx4xLrfvHFF5kaXLlyZdCsWbNgxIgRwYYNGxq8F62HxcknnxxUVFQE8+bN2+Yav/jii23shw8fHowcOXKb1/fbb7+gf//+iXV5PJ7iwZ+IejwlwOrVqwEAzZo1M1bHWWed1eD/55xzDgDg6aefBvDDNy0WCgUceeSRWLZsWf2fjh07ok+fPnjllVcA/PDI59KlS3H66aejurq63t8JJ5yAFi1aCMXSsmVLfPjhh5g/f36q7dlnn13/77KyMpx99tmoq6vDiy++2MDuqKOOavA5vvAULvxG0RUrVuDll1/GkUceiTVr1tRf3/LlyzF+/HjMnz8fixcvbuDz1FNPbXCa9cILL2DlypU45phjGrRRRUUFRowYUd9GaZx88skNHrkbMWIEgiDAySefXP9aRUUFhg0b1uAbUR9++GG0aNEC48aNa1B/+HhnWH/45Sr/+te/Ek82RdqNx5577olvv/0Wn3zyCYAfTj5Hjx6NPffcs/4x7enTpyMIAu6JqCinn376NnXLfFPsVVddhRdffBFXX311gy+g2bBhQ4O+HKWmpkbo26ovueQSDBw4EMcffzzOPPNM7LXXXvjJT35CjnHp0qU49thj0bNnT5x33nkNYgTYn0+sqalpYMPiH//4BwqFAn7zm99s80U7YV/U1b9DKDpnMWXKlAafKT7jjDNQWVlZP2bJxHvGGWdIxUJh1qxZmD9/Po499lgsX768Pq5169Zh7NixePXVVxt8YVec5cuXA8A2n0t+4YUXsGbNGpx//vn19zyE9QhvyAMPPIA77rgDP//5z9GnT5/619P6FKs/tWrVyspPgXk8HjfwX1bk8ZQAzZs3B4DUR+tUiC5AAKB3794oLy+vf3xt/vz5CIJgG7uQcEEY/qZd3K6qqmqbL7AIHwcLadGiBWpra3HZZZfhoIMOwg477IBBgwZhwoQJ+J//+R/stNNODezLy8u38bnDDjsAwDaP3XXr1q3B/8NFXPiZsk8//RRBEOCiiy7CRRddxLzGpUuXokuXLvX/79mzZ4P3wwX1Pvvswywf3sc04rGGCfx22223zevRz8TNnz8fq1atQvv27bnxA8Bee+2Fww47DJdeeimuu+46jBkzBgcffDCOPfbYbRadae3GI0wup02bVv8Y3xVXXIF27drV/zbptGnT0Lx5cwwePDjRVxI1NTXbPBLZqlWr1PjiPPjgg7jwwgtx8sknb5OM1NbWoq6ujllu48aNDb5llEd1dTXuvPNODB8+HDU1NbjrrrsSkwMW69atw4EHHog1a9Zg+vTpDT47GsawadMmZoxRGxYLFixAeXk5BgwYwLXR1b9DRHXOIz7GNG3aFJ06dWowZlHiraysbPBZb1OEcR1//PFcm1WrVqV+AVYQ+3z4ggULAACDBg0SjmXatGk4+eSTMX78eFx55ZUN3kvrU6z+FAQBuV97PJ784hNRj6cEaN68OTp37ow5c+YI2fMWAmlf4JLko1AooKysDM888wzzM23xL1QRIf6lS3fddRdOOOEEjB49GgsWLMATTzyB559/Hrfffjuuu+463HbbbQ2+0ZEC73N44WIuPIE499xzMX78eKbt9ttv3+D/8YVY6OPee+9t8AU8IdEv/JCJlfV6dDFaKBTQvn173H///czyYcJWVlaGRx55BG+++SaefPJJPPfcczjppJPwxz/+EW+++WaDe5nWbjw6d+6Mnj174tVXX0WPHj0QBAF22203tGvXDj/96U/x+eefY9q0adh9992VfupC5vOVcV544QVMnjwZEydOxG233bbN+506dcLWrVuxdOnSBkl+XV0dli9fjs6dOwvV89xzzwH4YRE/f/78bTYykqirq8Ohhx6K999/H88999w2yUbr1q3RqFEjLFmyZJuy4WuicfLQ1b9DTOhcJd5GjRoZ/9mVaFx/+MMfsPPOOzNtksbT8Gd4qJstcWbPno1JkyZh0KBBeOSRR7Zpj3B8XrJkyTabYEuWLMGuu+66jc/vv/++wedMPR5PceMTUY+nRDjwwAMxdepUvPHGG9htt90SbcOd9PgPlIenlSziC+NPP/0UhUKh/htMe/fujSAI0LNnz/pTRxbhj6vPnz+/wUnE5s2bsXDhwganX/Fvxxw4cGD9v1u3bo0TTzwRJ554ItauXYvRo0fjkksuabBALRQK+OyzzxrEM2/ePACoj1uU8GS1qqqqwU9iUOjduzcAoH379tI+VOjduzdefPFF7LHHHkKndCNHjsTIkSNx5ZVX4oEHHsBxxx2Hv//971qSAOCHU9FXX30VPXv2xM4774xmzZph8ODBaNGiBZ599lnMnDmz/jdCeZg+XXnrrbdwyCGHYNiwYXjooYeYyVSYLLzzzjs44IAD6l9/5513UCgUuMlElPfffx+XXXYZTjzxRMyaNQunnHIKPvjgA6HH1QuFAiZPnoyXXnoJDz30EPbaa69tbMrLy7HjjjvinXfeYV5jr169Eh/t7927NwqFAubOncu9HhP9W0TnPObPn4+99967/v9r167FkiVL6u+RST2q9MswrubNm0vFFf5kysKFC5l+58yZs82mWZwFCxZgwoQJaN++PZ5++mlm4hvt99Gk8+uvv8ZXX321zZfZhTGpPOHg8Xjyhf+MqMdTIpx33nlo0qQJTjnlFHz77bfbvL9gwQL86U9/AvDDAqdt27YNvrUU+OF3BnncfPPNDf5/4403AvjhdwiBH74psqKiApdeeuk2p2FBENR/bmnYsGFo164dbrvttgaPM959993bJMb77rtvgz/hDnzoK6Rp06bYfvvtmY+I3XTTTQ3iuOmmm1BVVYWxY8dyr5VF+/btMWbMGPz5z39mnip99913qT7Gjx9f/xt7rM9eivhQ4cgjj8TWrVtx+eWXb/Peli1b6tv/+++/3+YehotOVhvLsueee2LRokV48MEH6x/VLS8vx+67745rr70WmzdvTv18aOPGjQFsu6mig48++ggTJ05Ejx498K9//YubvO+zzz5o3bp1/Tf4htx6661o3LgxJk6cmFjP5s2bccIJJ6Bz587405/+hLvvvhvffvst/vd//1coznPOOQcPPvggbrnllgbfGBzn8MMPx4wZMxoko5988glefvllHHHEEYl1HHzwwSgvL8dll122zecTw76iu39TdM5i6tSpDeK49dZbsWXLlvoxy6Qew98XlemXQ4cORe/evXHNNddg7dq15Li6dOmC7bbbbptNh/322w/NmjXDb3/7221+eiuq92+++Qb77bcfysvL8dxzz3G/7XfgwIHo168fpk6d2uBpmltvvRVlZWU4/PDDG9ivWrUKCxYsMPbN7h6Pxz38iajHUyL07t0bDzzwAI466ij0798fkydPxqBBg1BXV4fXX38dDz/8cIPfrjvllFNw9dVX45RTTsGwYcPw6quv1p8Wsli4cCEmTZqECRMm4I033sB9992HY489tn53u3fv3rjiiivwq1/9CosWLcLBBx+MZs2aYeHChXj88ccxZcoUnHvuuaiqqsIVV1yB0047Dfvssw+OOuooLFy4EHfddZfwj5wPGDAAY8aMwdChQ9G6dWu88847eOSRRxp8MRHww+cDn332WRx//PEYMWIEnnnmGTz11FP49a9/TfophZCbb74Zo0aNwo477ohTTz0VvXr1wrfffos33ngDX331FWbPnp1Yvnnz5rj11lvxP//zP9hll11w9NFHo127dvjiiy/w1FNPYY899miQOOtmr732wmmnnYbf/va3mDVrFvbbbz9UVVVh/vz5ePjhh/GnP/0Jhx9+OO655x7ccsstOOSQQ9C7d2+sWbMGf/nLX9C8efMGJ36qhEnmJ598gquuuqr+9dGjR+OZZ56p/13SJGprazFgwAA8+OCD2GGHHdC6dWsMGjSI9Dk4FmvWrMH48ePx/fff4xe/+MU2vwXau3fv+icPamtrcfnll+Oss87CEUccgfHjx2PatGm47777cOWVV6J169aJdV1xxRWYNWsWXnrpJTRr1gw77bQTfvOb3+DCCy/E4Ycfntjm119/PW655RbstttuaNy4Me67774G7x9yyCH1SdGZZ56Jv/zlL5g4cWK9Fq+99lp06NABP//5zxNj3H777XHBBRfg8ssvx5577olDDz0UjRo1wowZM9C5c2f89re/1d6/RXXOo66uDmPHjsWRRx6JTz75BLfccgtGjRqFSZMmATCrx6FDhwIALrjgAhx99NGoqqrCj370o/p7kUR5eTluv/127L///hg4cCBOPPFEdOnSBYsXL8Yrr7yC5s2b48knn0z0cdBBB+Hxxx9v8JnM5s2b47rrrsMpp5yC4cOH49hjj0WrVq0we/ZsrF+/Hvfccw8AYMKECfjss89w3nnnYfr06Zg+fXq93w4dOmDcuHH1///DH/6ASZMmYb/99sPRRx+NOXPm4KabbsIpp5yC/v37N4jpxRdfRBAEOOigg8Qa0ePx5B/L39Lr8XgyZt68ecGpp54a9OjRI6iurg6aNWsW7LHHHsGNN97Y4GdH1q9fH5x88slBixYtgmbNmgVHHnlksHTpUu7Pt8ydOzc4/PDDg2bNmgWtWrUKzj777G1+AiAIguDRRx8NRo0aFTRp0iRo0qRJ0K9fv+Css84KPvnkkwZ2t9xyS9CzZ8+gUaNGwbBhw4JXX3012GuvvYR+vuWKK64Idt1116Bly5ZBbW1t0K9fv+DKK69s8FMNxx9/fNCkSZNgwYIFwX777Rc0btw46NChQ3DxxRc3+PmJ8GdI/vCHP2xTT7wtgiAIFixYEEyePDno2LFjUFVVFXTp0iU48MADg0ceeaTeJvz5CN7Pn7zyyivB+PHjgxYtWgQ1NTVB7969gxNOOCF45513Eq+b5ze8R+FP0sTbIM7UqVODoUOHBrW1tUGzZs2CHXfcMTjvvPOCr7/+OgiCIJg5c2ZwzDHHBN26dQsaNWoUtG/fPjjwwAMbxEdtNx7t27cPAATffvtt/WvTp08PAAR77rnnNvbxn28JgiB4/fXXg6FDhwbV1dUN6uZdP+unQ+KE18f7E/35jZCpU6cGffv2Daqrq4PevXsH1113XerPYrz77rtBZWVlg58ZCoIffn5n+PDhQefOnRv8VEyc8GdFeH/iPx/y5ZdfBocffnjQvHnzoGnTpsGBBx4YzJ8/PzHGKHfeeWcwZMiQoFGjRkGrVq2CvfbaK3jhhRca2Ij0b5GfbxHROYtQJ//5z3+CKVOmBK1atQqaNm0aHHfcccHy5cu3sReJl9eXkrj88suDLl26BOXl5Q3uRdrPt4S89957waGHHhq0adMmaNSoUdC9e/fgyCOPDF566aXUumfOnBkACKZNm7bNe//85z+D3XffPaitrQ2aN28e7LrrrsHf/va3+veT+hNrfH788ceDnXfeOWjUqFHQtWvX4MILL2Teo6OOOioYNWpUauwej6d4KAuClG+M8Hg8niLkhBNOwCOPPMJ8tM3j8RQvd999N0488UTMmDEDw4YNyzqczBg7diw6d+6Me++9N+tQ8M0336Bnz574+9//7k9EPZ4Swn9G1OPxeDwej6fEuOqqq/Dggw8mfgmdLa6//nrsuOOOPgn1eEoM/xlRj8fj8Xg8nhJjxIgR3N+3tc3VV1+ddQgejycD/Imox+PxeDwej8fj8Xis4j8j6vF4PB6Px+PxeDweq/gTUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYr/siKPxyJBEOCTTz7BCy+8gIULF2Ydjsfj8Xg8HgD9+vXDuHHj0LNnz6xD8XhKBv8ZUY/HMMuWLcNLL72Ep59+Gs8//zyWL1+Orl27okmTJigrK8s6PI/HeT744IOsQ8gdO+64Y9YheDy5IQgCrFmzBl999RW6dOmCCRMmYP/998fee++NFi1aZB2ex1O0+ETU49FMEAR4//338fjjj+PRRx/F3Llz0aFDB7Rv3x5dunRBx44dUVnpH0bwFA9Tp061Wl9QKFitz1XKyovz0zVTpkzJOgRPiVJXV4clS5bg66+/xrfffotly5ZhyJAhOPzww3HIIYegb9++WYfo8RQVPhH1eDSwZcsWvPbaa3jsscfw6KOPYtmyZejevTs6d+6Mrl27onHjxlmH6ClhfKLocQ2fRHvywNq1a/HVV19h8eLF+OKLL7Dddtvh8MMPx6GHHorhw4ejvEj7scdjC5+IejySbNq0Cc8//zweeughPPnkkygUCthuu+3QrVs3dO7c2Z96eoTxiaLHkx+KNYkGfCKdxObNm/Hll1/iq6++whdffIHGjRvjkEMOwZFHHokxY8b4Od/jkcAnoh4PgS1btuDf//437r33Xjz++OOoqqrCdttth+7du6N9+/Z+d7RI8Ymix+MpBnwSrYdCoYAlS5bgiy++wOeff47KykoceeSR+PGPf4zddtvNrwU8HkF8IurxpFAoFPDGG2/gvvvuw0MPPYQtW7age/fu6NWrF9q3b++/cMgRfLLo8XhKkWJOLrNGJLktFAr45ptvsHDhQixatAjNmjXDsccei2OPPRa77LKLXyN4PAn4RNTj4TBnzhzcfffduP/++7F69Wr07NkTPXv2RMeOHf1upyQ2k8WkRDG6cEtLKE0u8nwyW7r45MHjMq6MTVmOv/G6RZLSrVu3YvHixVi0aBEWLVqEDh06YPLkyTj++OPRu3dvpXg9nmLEJ6IeT4Rly5bhgQcewO23345PPvmkPvns0qULKioqsg7PCq4kiyagJKA2YvB4bGCyr5vuz1noNMtxwub4kMd+4cK4LfoI8JYtW/DFF1/UJ6W77LILTj31VBxxxBH+J2E8nv+PT0Q9Jc/mzZvx9NNP4/bbb8dzzz2HTp06oUePHujVqxeqq6uzDo+M7kTSlZ1xVVxIQk2QVWJbbG1YbNeTFcXYjsVyTX6sUEfmlBQANm7ciE8//RSLFi3CsmXLcPDBB+Pkk0/G2LFjS2aT2+Nh4RNRT8kye/Zs3H777bjvvvtQXl6OHj16oE+fPrnZqUxLOMPJv1gTMFFK+fp5C09W34i+XmoUWyIqCqt/8PpG/P1SodiSUSqs8TMpoS2ldpI5JQWAFStWYP78+Vi4cCFqampwwgkn4KSTTvK/UeopSXwi6ikp1q5di7///e+46aab8PHHH6NXr17o3bs3OnXq5OwXCogmnGmUYkJWStesujgs5aS0lBLRpOSTWk60bN4pxWSUOnamnbYWc9vJnpIWCgV89dVX+Oyzz7Bw4UIMGzYMZ599Ng499FDU1NSYCNXjcQ6fiHpKgnfffRe33norHnjgAbRs2RK9e/fG9ttv79Sjt7oSziRKKdko5sWj6RMJ2WQljxRzPwHM3stSSk6LvZ8AZuaHUktQZU9JN27ciHnz5uGzzz7Dxo0bccIJJ+C0007DgAEDTITp8TiDT0Q9Rcvq1atx//3345ZbbsGnn36K3r17Y4cddkC7du0yjctGwplGMSekxXgKmuWCv9iT0mJMMLK6Z8WemBbj2AJkMx8U++O9sqekQRDgm2++wfz587FgwQLsvPPOOPvss3HEEUegtrbWRKgeT6b4RNRTdMycORM33HADHnzwQbRp06b+8Vvbp58uJJxp5D0hFfnyjWK5JheuoxiS0lLpMy5cQzElG8Xeb1yIvdhOT1nXQz0lDRPSDRs24H/+539wzjnnoF+/fjrD9HgyxSeinqKgrq4Ojz76KK699lp88MEH6NOnD3bYYQe0bdvWeN15SDjTsJGQ5vlnS0zdw7wv1G1tZNj4iZC8/dyEq8lnGrY3WkzcV5P9JV6PCVxLQNPIKkHVeY/jfYaSkAZBgG+//Rbz5s3DggULsNtuu+H//u//cOCBB/pv3PXkHp+IenLN119/jVtvvRW33norysrK6hPQRo0aGakvKenMw4SeRh5/w87UoiqPbZEleW0v3V9UlNd2yIo8t5fux7rz3BZZkNf2kn1sFwA2bNiAjz/+GPPnz0fjxo3xk5/8BKeccgratGmjLT6PxyY+EfXkjiAI8Nprr+G6667DP//5T3Tv3h077LADunbtqv2bb33i+V9cvF7XP99XbI+asRDtQ65eq8vfmFuMj4OyyPN1ujwG5X18p5DHsVYlIS0UCvj8888xb948LFmyBEcddRR+9rOfYZdddtEdpsdjFJ+IenLDpk2bcP/99+Oaa67B559/jj59+qB///5o3ry51nriySdrAsvTZytlFnkuL65CXI8x7aTW5c+C8qA8SpyXx/9cTkSB5H6e10e7Rft+XsZZ18cigN/P85jAhYg8np6HR9hVElLgh98lDU9Jd9xxR5x77rk47LDDUFlZqTNMj8cIPhH1OM+KFStw66234rrrrkNFRQX69u2LPn36aBtkWaeelInKlYlO54LC5YWVywmOysLZpcRUV4Lj8r0KcTkRldGha8mpjn6dh4TU5TEToPdzV0+pdY+xrt0v2c+RAj9s1s+bNw+ffPIJamtr8Ytf/AInn3wymjZtqjtMj0cbPhH1OMvChQvxxz/+EXfccQc6dOiA/v37Y7vtttPy+K1q8snD9ERna3Hg6uLc1cTG5u/v2exPuq/DpXsGuJs86G4zm6depvut709y6BzTs+5Ppq7DpfumkpAWCgUsXLgQH330EdasWYMzzzwTP/3pT9GpUyfdYXo8yvhE1OMc77zzDq666io8+eST6N27NwYMGKD825+mEs8kZCdQF3aiXUxEXVzk2VwUqy7wszwpczV58H1KrU+48vu2Lt6/UoxJ19yVxcmlq0mpSkIa/ibp3Llz8cUXX+CYY47BL3/5SwwYMEB3mB6PND4R9ThBEAR46qmncNVVV2HmzJno27cvBg4ciGbNmkn7zCL55CHz7X5ZToSuJaIuLe5cWrDkqV+5mDj4fs6PgYIr8bpyL124j1FciIfar1yLNet7qZKQAsD333+PuXPnYt68edh7773xq1/9CnvttZf2L3j0eKj4RNSTKUEQ4IknnsAFF1yAr776Cv369UP//v2lfn7FpcQzjkuf/xPBlQW6S4tMlxLQOHnpXy7dT8Cdfg64kSzwcHFhHsfFvgW4E4sLcbBwfexyre+rJqTr16/H3Llz8fHHH2PQoEG46qqrsM8++/iE1JMZPhH1ZEKhUMATTzyBCy+8EF999RUGDRqEfv36kb+AyNXkU2RydWmhEseFhYsrC0tX4oiTlBi7GjPgVmy+nyfDiy0vmzJZx+XKGO9CP2fBulcuJ6YuJaWq37RbV1eHDz/8EHPnzsWAAQNw1VVXYezYsT4h9VjHJ6Ieq4QJ6AUXXIDFixdLJaAiP69iG9nJ05WFShzZhYvMY32m0XEdrtwfalwuLcrjqPT9YuxnLt0fSlx50IpsTK71M5XrcOW+hIjq36XkL46uvq+rn8mckMYT0iuvvBL77ruvT0g91vCJqMcKhUIB//jHP3DBBRdgyZIlGDhwoHAC6uKpp65dW9cWoroXXiqL86wndZUYdKJjseNaPwPcuE8qC3QX4teJaj9zNWHQdZ9U+4nvZ/9F9yaUC9flSj8D5BPSuXPn4sMPP0T//v1x5ZVXYty4cT4h9RjHJ6IeowRBgGeeeQY///nPtSSg2/i3NAGZfFzI9qmo6ISZxeSe5QmxC99WHGLqlCmLhNSldo2T1UmRSxo00deyOiV1qV2jZP3ki0sa1N0WWSamLrVriK6EdO7cuejbty+uu+467LnnnjpD9Hga4BNRjzFmzpyJn/70p3jvvfew0047oX///uQENGkQt/n7Yrr98+ozHX8UXl1ZLZqyrjepbhs/fWJz8W4iIU3rc671t7BuF+stpv5mY1MljoiOS2V8C+uWGdtCdN8zW30tJKt1gQsbMjLJKPDfR3Y/+OAD7LPPPrj22mvRt29fXSF6PPX4RNSjnc8//xy//OUv8fjjj2PgwIHYaaedUr8FV8fnPlUSUxe+IIE6SZtaQGSxOM9ikaa6KNWRLGT5+TrZunUnSVlvQOSpXt/ntsX3ObF6TX0Wm3oPs+xvISr9Lk/fOaAjIV2/fj1mzZqFefPm4YQTTsBll12GDh066ArR4/GJqEcf33//Pa644grcfPPN6NWrF4YMGYKmTZsmlhE9/ZQhaRJxIfFkEZ+sbT/6k+ViIU9JqIjfOLx76kqfA8T7nSmtlkq/szHWheSh3wFifc+UVouhD9iukzI3Zf1ocogLa4KsPx4hm5CuXLkSM2fOxNdff41f/vKXOPfcc9G4cWNdIXpKGJ+IepTZtGkTbr75Zlx66aVo3bo1dtllF7Rt25Zrn9W33rr6JQchthZgaTHkfYEkUl9WddquW5SsN2ayWpyXSl+P4vseu/5irS+LOl2Yy0Rw5fOleUpIlyxZgpkzZ6Kurg5XXXUVTjzxRFRUVOgK0VOC+ETUo8Rzzz2H008/HRs2bMCQIUOw3Xbbcb9lLYsENG3X3bUvjwgKhZJ5bKwUk9Do/bUdSxzXtJFFfyjmZIBVr0ubImnaKIYnJNLqK+aNl3i9WW84xInfcxcen7VRr45kNAgCfPbZZ5g1axY6deqEqVOnYrfddtMVoqfE8ImoR4pFixbh7LPPxssvv4whQ4ZgwIABKGdMNC4kn7x6bS4+ZL7koJgTgSzqslVfvE5evVkuQNLqLJVTm2LddInWyas3i6RUtM9nrdliGwPD+lyaU7JKTEXucxZJaR4T0i1btuCDDz7A+++/jyOOOALXXHON//yoh4xPRD0kNm7ciN/97ne4+uqr0atXLwwdOhS1tbXb2LmQgMp8IYGuOHV8SUJevtBCph6geBd7UbLsg6x4ZGIq1mS0GPt7vE5KvaYWwip+s0xIi61vuD6nmE5MXdIEpd48JKRr1qzBO++8gyVLluCKK67AWWedJfQLCR4P4BNRD4GnnnoKZ555JjZv3oxdd911m52vPCWfSX6oPkxMoMX62KDtemzUFa9PpU5VP7pPuYr5ce1iTUR11KejH7kwNsuSRSJgox6XE1Fe+Tgy/nTcz6xPSU3WpyMZBYCvvvoKM2bMQJs2bfDnP/8Zo0eP1hGep8jxiagnlYULF+KMM87AtGnTsMsuu6Bfv34NHsO1nYCanBBkHtsxFYcLnx9K+tKJrMn6cet4fbrrFL0W049YupRI5bU/utB2qj6jZPFIY5baps4FWeP74rb2JuNwYc2juy/KJqRbt27FnDlzMHv2bBx00EG4/vrr0bFjR62xeYoLn4h6uGzZsgXXXXcdfvOb36BXr14YNmwYampq6t+PJ6CAuQE5q4E/qy9ZMLloUJmwVHeTVa9HJnYbbWhrt5pHnk9tsuiPYb26T2tEMD1G2u6Ltr/oxUZCanucUb13qkmIKV1n9d0LUWzqodj6o8rp6Nq1azFjxgx88803+OMf/4iTTz6Z+T0iHo9PRD1M3n33XZxwwgn49ttvMXLkSHTq1Kn+Pd5vf+pO2Fz4fIbtuuMxmFyYhL5NL2BtLhxF+qNKHFn1yazrjtZvqk/G713eH1WMt5epRXMWj66y6rZdv4nHLaOwxpK8bj5G6xAdI0NU+mTW/dFmDKY+nsHyaXszRiUh/eKLL/DWW2+hX79+uPPOO9GvXz8d4XmKCJ+Iehqwdu1aXHDBBbjtttuw0047YfDgwfW/EcVLQJOgJqdZTSRpO/22J1QgeaGscwFhe0GetX+ZBNWVTZH46ZNryaiufpn3PhnWoaNPAmLtnWUS6HpCKtu+LB+u9BlZ/wDtepNIa+8sx6c8JKWqm6U2E1KVZHTz5s2YOXMmPv74Y5x//vn41a9+hUaNGukK0ZNzfCLqqefpp5/GqaeeioqKCowcORKtWrUCIJeA8hB9xCTL5JNn58Lubhxd98OVJFHGtw7/LvVLgPaZIN8vi9d/1o8exqEmfVk+McDC98vi7JcA/bPlWa0xWOi8H6bnWpWE9LvvvsMbb7yBpk2b4q677sKoUaN0hOfJOT4R9eC7777DmWeeiaeeegrDhg1Dv379UFZWpjUBZZHlZy+p9dnaqWaR1x34vCShInWYrotVnys74vF6ovi+yfdfjPeDUk+x9s28JItJ/ovpfkTrlD3pLZb2MKk5XclooVDABx98gFmzZmHy5Mm45ppr0Lx5cx0henKKT0RLnIcffhhTpkxB27ZtMXLkSDRu3NhqApr0eRVddevwq3txIDI5ufSYVqn4jvqP11Hq/TOLz8zlcTGeRaJicnGturg1sTjOun/mOVk0Pa+w6jCZjKnciyx0Y+Mx9jwkpKtXr8Ybb7yBuro63HPPPRg3bpyO8Dw5xCeiJcrSpUsxZcoUvPTSSxgxYgR69eqFv/zlL/XvZz046lz8yPrg+aT6kp2EbSSieUsUXVlg6kweZcvr9CfTR125F7K+87rQF2kXXQtsk4+/6+ijom2Q9Xwm67tYx1CdianJx41V+yilDUwmjK4mo0EQ4KOPPsI777yDY445Btdff70/HS1BfCJaYgRBgIcffhinnXYa2rVrh5EjR+Lee+/97/sGBywZ/7LJq0xdovFQ45CNJ4+nNnldQOlM4vKw+CjlPhr6zlsfVfHvUhKnoheZeFwdN0R956n/h76BfG+GqeiFGo8rc4Kqb5WEdM2aNXj99dexadMm3HPPPdhvv/10hOfJCT4RLSG+/fZbTJkyBS+//DJGjhyJF198sf491xLQJH+hL9uf9YjWmRSDrjjydmpjasKzdbKh+1Qy6tPGJgkvDpN6yesjinnzG/oGzJ78mNZaUiw2+qkOX1n4NuE3j/006tfGxwN4cZjSSx77qc7T0Y8//hgzZszA0Ucfjeuvvx4tWrTQEaLHcXwiWiI8/PDDOPXUU9GhQwfMmzev/vW8DHYs/ybrodRvIoY8niya8JvHiTnu21QdrsSQx5MbkxsxeWzjOMXYV/M4luRprDbt29bcS40hryftun2HflWSUaDh6ehf//pX/9nREsAnokXOypUrcfrpp+Nf//oX1q1bV/+6qWRBt29eHSbrcqHuLBf3vOs1QdaPXZk+FYhTzP01q0VtqfRXG+NNnGLsr1mPKy7117xs8rDqYJFVvabqdiEhle2vuj47etJJJ+EPf/gDGjduLO3P4zY+ES1iXnrpJRx33HFo0qQJPvvss23e1/3ojO3He7P8fIjpyVaXf9VFj0gMlPugEo/rjz6l+c/yc3eufnaR50cW0fpF9WUrHpEYbN+7rD67ZnujKMs+61p/BfS0RxabtC70VxP1JtWtwx8FSn8F1E9HV69ejenTp6O6uhoPPvgghg0bpuTP4yY+ES1CNmzYgPPOOw+33347hg0bhv79+6OsrKz+/ejPs8SRmeyy/Hypjc9N8exdSERFJ5ToZ1pcf3SM5TPtOtPqzzIBNRULVYeuJKMifTZ+713/jFz82qnXKOpXNzInzrY+r+mSZuP2LEx9bjDqM+s+KxJDVokoyyaKjrE2T/NM3J6FjT6rmowWCgW8//77mDVrFn71q1/hwgsvRGVlpY4QPY7gE9EiY+bMmTjqqKOwYcMGjBo1SvjD3knJKfDD4JTliY5IWZkyNuukEE7muhYHoU9RWxFsJaEi9jzy0G8p5VT6ra1Fkmi/1X0aRMFEIqqrzwIN2zDrjQNWmRDT/V2lHNW/zn7rwtgo6lP3hqcrm7RR+zi21xc25h0djw2bPHlVTUiXLVuG6dOno2vXrvjb3/6GHXbYQTU8jyP4RLRI2Lp1K37729/i8ssvx+DBgzF48GCUa3hMh5WgmphcVX2LDKA6d0lNJXU8dE0KLi+MdPrjtaepvmuy38btbNQn6zOOi4+mZrmgF/HDw8T90tGP0vzY1ImK3ygu9tvQp4v+bMxf0Xp09dskX7Z1oupbl3+XT0e3bNmCd999F5988gmuueYanHnmmQ2e9vPkE5+IFgFffvkljjrqKMyfPx977rkn2rVrp8VvNAnlPb4jM1CZGpxZA6jpiUDnhAjk5xHavPgLfZrYhFDxIeLTpk5ky0fxfdfM2KIzWbKxEWHjcT8Vn7yxIA+P1LruL/Rpou/Gfesgq74r6zdvWmP5U01GAWDx4sWYPn06dt99d/z1r39F27ZtlX16ssMnojnn0UcfxYknnohu3bph1113RVVVlbJPVgIaR2ZQNf24CqsOU/WEdak81pTWtq4kzSxfgLuLIRF/Mv3E9COC8Tps1OP7rx5/NhNv2cW9rUdcKTHpqIty3WllSjUZtalVleTU5GO/tsde0Xqy7L8uP6q7ceNGvP7661i1ahX+9re/YezYsarheTLCJ6I5Zd26dTjnnHPw4IMPYvfdd0evXr2UfYokoCySBtasBneTdUXrjNehYwfY5ROlPCyqqP7S+o6NBFQkDlP1ifRhmfZ0ORF1NTYZfyJjjol7IhOHqfpc78N+DE63Z+H7sFwMeUlIVZPRIAjw8ccf4+2338Y555yDK6+8EtXV1crxeeziE9Ec8t577+Hwww/H5s2bseeee6Jp06ZK/mQTUBY2B3KRBDiPk1bWC9s0X4B7CypdE2WWC5F4Pb4Pm/Hnqh50+bPdh+N12t7EMdmHdfgx4c9VX7r8ZdGHo/Xa3kw33Yd1+Ir6cykZBYDvv/8e06ZNQ4cOHfDwww+jT58+yj499vCJaI4oFAq47rrrcMEFF2CnnXZS/kIinQloiOlTHcqkYPrzJCIxyNbj0qIgL750+Yv71O2b5d/mo4Ks+k35dzV5dNUXYP4+m6pD9HHMUu/Huvy52o9N+At9xsnykfi86NTl01Gdj+pu3boV77zzDubNm4ebb74ZJ5xwgv8io5zgE9GcsHz5chx33HF4++23MXr0aHTo0EHal+4E1PSpjuwEYGpnNn59ri98XE0cXfMV9Rf3aerEVfRzUabrzsPjtEBxL+BtJD06F9My/dJEXzZ9AutqMur6OGpyXtSdlKo+Tqy7L5tIevOQkOo4Hf3yyy8xbdo0/OhHP8LUqVOVnxj0mMcnojng9ddfx2GHHYamTZtijz32QKNGjaT82ExAeXayn3Oglo36UKkzrV6Xd5JlFxdJn9kJkY3R9cVTiO5dcV19mVrWhScIsr7XpvqzK9cn61OlT6ouQlWT2KRyriejqr5M9Oe8JaK896NQ+7OOsUW3hlxPSHX4SuvPMsnpunXrMG3aNFRVVeEf//gHBg0aJBWbxw4+EXWYQqGA3//+97jkkkswdOhQDBw4UOpRg6wSUF450Ue4KL5l61R9JMalRFRkgeISOq4zq4lZZlFM8Z9WrwkNuXgqmqc+rXqdWW4CUDcsKL5V63SlP9tYdLuEa/1Zti8D7vbnLE5gVeJI8+Ma5eXlqK6uxo033oiTTz7ZP6rrKD4RdZRly5bhmGOOwbvvvou99toL7du3J/swmYDqTCJMfvYi6t/EYz02J1yZAd+Vx7+iftKuQzTJcqFP8/quiVMZVp26NWT7MUTRPh32G5cezQ39qJ5Qufbop+0+bbK+LMYL0f7g2iO6OucX1zdo433M5BjNqk+2zqwSUmrf0P2osqqvZs2a4YADDsDtt9/uH9V1EJ+IOsj06dNx2GGHoXnz5lKP4rqYgCb51OlXpC6d9Zl4lDaNtPpcXeCI+DH5WDCvLt+nt/XtWp8OfbmSiIr2HZ3XL4Lv08l+TTwRxIMy3unoj7a0QUlK8jAm5b1P6/Dpap/W6adbt26orKzE448/jp122knJp0cvPhF1iCAIcO211+KCCy6QehQ3moBu41tx983kwtTERGCzHh07m1FcGMBdnUziuNyvdfpPqyvLxzpZZVnkabFtMxYWKm1v+nTHRB026nG5X6v6cTGh5SHb/r5fp/vW2bddONXUvX4YNmwY5syZg9tuuw3HH3+8kk+PPnwi6ghr1qzB8ccfj1deeQVjxowhP4rLOwWVGQRNL9RZ8Zma/Gw8giP6KCkvNlFfovGwfGfhx2QsspOniX6Q9qisyR1w049L6ujbLi6SXY5Fpm/b7Ae2Hne1OQ8l2UXh3StXx0mXYpFNTm3N3SYfe7XZr9P8iqwJXUokdcey//7749VXX8Wxxx6LG2+8UfrLPz368ImoA3z00Uf40Y9+hC1btmD06NGora0VLkt5DFckURP1JYKoT9071Sw/NiYzlV3gYluM2L6etIVjVota1XpFNJTVQi0ppjRfsvGI1mfSR+jHlb5N8UUhzafOvm2qDlGfqhtbIrYifrL2EfrJum9Hy2bdt2XrtlGHqM8sDyR0+NEdyzHHHIP//Oc/6NChA/7xj3+gW7du0j496vhENGMeeughnHjiiejbty+GDh2K8oSBOYqOz4GaemREZoClTDaycet8vMfFR49cWcy4sAtq63Eoan8VjUG2DlMnvZRYeL58/97Wj2tjd9y/a/2bUgfFp4rvYktGs+7fuudWXh2m1xpUW4p/qk8V3y4mkjp8nHTSSXjrrbewePFiPPzww9h3332lfXrU8IloRmzevBnnnnsu/vKXv2DPPfdEjx49hMrp+iIiE4O9ruQh6dQnCrUO3Qs/2Th4/l1ZqLsyUej0EyeLPp5WVnVBotr2Jvt41otbnXG4otWoHxa2F52U03tV/7r7uM77kPf+6YpW4/HEUe0DJvq3iv94Ha728az7lk4fU6ZMwSeffII333wTF154IX79618LHwZ59OET0Qz47rvvcPDBB2PBggUYM2YMWrRoIVTORBKa9OhdFrt50UFG966/6qlrvKzuxaQrg7PtCZ7lw5Qf2f5qMi6dGqLegzSN6Txp1ZXAuZBEuuCD50f1FEfUXsRP6EvniabKaSqrnGtJpCs+irGP64qLN2ab2GDSMUeZnlez8qErGV22bBn+/e9/Y7fddsPf/vY3NGvWTNqvh45PRC0za9YsHHDAAWjatClGjRqFqqqq1DKmE9AkO56ticdJbPkWPXFNq9u1RLRYklBb7Wn6BEe1blXfaTv2onW7dEKSdSKat34uumA30c91byTy/Ovo58WYjOY9Boofaj/P21ie5JfSd11MSF1IaKdMmYKNGzfiP//5Dxo1aoSnn34avXv3lvLpoeMTUYs8+OCDOPHEE7Hjjjti8ODBqT/NYjsBFSlna2Gu23+0Ht5JFLVOVxboWSeRLkxKKn5M726n1WeyDh1PFhTbhksxLNB19POwvKkxPalOE/5ZfZ1al0uJpIoPF/pplvNjWl/Pcz8Pfavo1rWTTVkfupPRQqGAGTNmYOHChXjkkUcwbtw4KZ8eGj4RtUChUMCvf/1r3HDDDRg9ejS6d++eWkb3lxHpftRKB0l+bexcqvrPakHJKu8CWS+aVOOI+1H1leQ7j309ax++rzf0Y+rxQh3Y3MTU7duFvh71kTV57+u2Nv5YY7ru+nT6deV01JV+DvyQjALAvHnz8Oabb+LKK6/E//7v/6YeGnnU8ImoYVatWoWjjjoK77zzDvbZZx+0atUq0d6lBDTuy5RPk4/QyDxyS/FtctFDGaBdOA1NIu2xItcm1Cg6+6DJdojXFcWFxXnoR/RRyiRU+quN5CDpGl26FyxMx2d6ftLp12QyqtqXVOsXLS+C6f6ua75mYXMOd7G/2zrZdLm/R2MLk9GlS5filVdewcSJE3HHHXegpqZGKi5POj4RNcinn36KCRMmoFAoYPTo0Yk/nOtSAipyUkmtQ2ZAlh1Y0urSObFlOcnrisFkeZHrzPrkIeon7svm408m+rvO09asNy10xZB1f0/zoRqDii+bj7aa0JarJ6NJmO7vquV19HeTMVD8xOPIqr9T6xLp71SfonXI+uAh2p9UEkrV+MNkdP369XjllVfQvn17PPXUU+jUqZOUX08yPhE1xKuvvopJkyahR48eGD58eOJXQkeTUBZporL9WCKlPh0DPbWOtHpsJ6Jpg7PLiaTpunnY6vNRX7omSFvJK1Wvvs+7sXHDQ7RdbWwqUMftLPq8yQROxo+Lfd6FRDYJ232emlSL9EfdG+VJ9rafMpBZe0VRPZ10IRndunUrXnvtNaxcuRLPPvssBg8eLOXXw8cnoga45557cNppp2HXXXdF//79uXZpp6BpA6Ou3TBZPzzBm9ilS6uDUo+piS1pUE66v3lbVJtc3Ig8emRi44Xa51llbMSlW6uysan2+7wmoqr3ldLnATOn21Q/aX1O90lKWhvp0KqO2ETGqrhtKY711D4fr8/2xnFomxRT1MbkHKSiVVf6vGwsWfXbaNxhMhoEAWbPno05c+bgoYcewsSJE8l+PXx8IqqRQqGACy64ADfccAPGjBmDrl27cm3DJFT28YwothNQlo+goP6NhUl1sPzL1qFjYqMuvnXHkfXiwmbduu67ahxpMYXoPLHS6V/3wkk2JlMJnetlAfnkL4qJjT2ZmKJjss6xnuVftg4TC/MoMuNYnhblYXnf7/XHZLIOV/p9MSWjALBgwQJMnz4dv//97/GTn/yE7NfDpjLrAIqFDRs24Mc//jH+/e9/Y+LEidwvJVL5LCgvGaNOFDoTxjAm3QuSkNCvKf+UGFhkEU+WZDExhPbR+yA7wemaoFkx6ewLJjd2KJhcGJaadijXm3TqqNr3Zds9fjJiYkyO6kqH/7g/HRu/qjHJ9P3oPGuzbIhsWd6aJcmeVXf07yRbE4g+/aGjDl3XqKojXX1fRX9hedlr0FE2Tu/evdG0aVNceOGFmDt3Lm666SZUVvo0ShV/IqqBb7/9FgcccAC+/fZb7LPPPqitrWXayZyChiQtPkQHL50Due7T2STf4aCge/dRtJ2icYj6UI3BlxUrT+nTOhfOtvq/7lMnEV+ij6VldTKbxYI6D30/qQ7f98US+LQ2zfKEJyyfp76vUm9SeepTMibWD5T6qb51PA3A8pvmK2k+zfLphKzLRk9FAWDNmjV46aWXsOOOO+Kxxx5D8+bNSX49DfGJqCLz58/HPvvsg8aNG2PUqFHM3RHVb8RVHURMJqAmkjMTvln18NqHVX+aD5kYbC/kiy0J5dmFmDi1FNkQ0tH/dftO8kVd1OmIJ4sFtUrZrPs/te9H67PR/3XUYdJ3ki+ZpEYlnjyOw1npVbS8yAaCyY08HWssEd82+j+lrfPSh00ko3V1dfj3v/+Nxo0b48UXX/TfqKuAT0QVmDFjBsaPH4/u3btj+PDh2/zora0ENK2sSgw8f7p23qknWqZ29GXa1/TkyisHZDOIu5yE8spFsbGrLKNZ6kaTzusQqddELHlMJvO46RTF9392nTI+87gYD8vmpU6V8ib6f9Sv6Ik6VQMmN0B4vmR8unA6msUaKJ6MFgoFTJ8+vf6EtG/fvuSYPAD7KMiTyrPPPosxY8agX79+2HXXXbUmoWXlDZ9r1zEIy8KKJSmetFPGqE+KXxWi9cUHQJP1JsVjm7wlofH+QYVVRrbdKXqMvp9WH1Xnon5F6mPFS8HUhlCxoeMaZe8P62RFpe+IxBPv/yIaEPEbfV/1OnScXvFObKnlVcrKkpc6VWDN7bx1gCgi81G8XpH6ROc5qrbS6ov7pqAai4p+dNQrWy7+U4vl5eXYc8890b59e4wYMQJvvfUWya/nB/yJqAR//etfMWXKFOyxxx7YfvvtG7yX5SloUnmqXxM7vrp2oanxs+rL6kRTpWyWC/csEljd5bPSQLS87ZOYpPqyOq2Ols+TDrI4SZWtl1depv+Z0LLNE0UbGpD1ofPE2wa2NyTD8jrnatlETNe90tX/dM1nWZ5uRsvnRQPAtiejAPDhhx9i5syZePjhh/3PuxDxiSiBIAjwu9/9Dpdddhn22WcfdOnSpcH7qqegsmVFy+uykYlJp0/R0660x1xcSURVB9S0OFQTeGoMLiahPBuenS4d8NpTl08RLaS1gys6iMZERbRvm9QAK44sNqzCsqx4WDYhSX3J1bkgyRdVB7Ix6RjvbOtAxLYYdCBS3utAzI9qHLJlTZ3gq+qAlYx+9tlnmDZtGm655RacdNJJApF6AJ+IChMEAX72s5/hrrvuwrhx49C2bdv69+LH9YC4ELMQf7yM6imNrrgofllxU+qymYhSBlLdybPqbiNlAmdBqdf2CR2r3+vutya0FferouGs25yHSL+T6dOmTjWLWQsm+qwJv6ynDmzPwzL3OAmRfmfzpJ6a1PGgtlOWc3VetMDqwypasDX2RMskYWpOUCnHSka//vprvPTSS7jooovwq1/9iuS3VPGJqACFQgFTpkzBY489hvHjxzf4qub4KSjlBMTUDpKMDxU/Sf5cHcBNTG5pg6lKe2RRTrWupPbgtZ3NyY9VXsVHms9i1ILsiU5WWshq0Z4XLWSxceLKho/JZDTt/hfzvBAtJzIu6KozLMvzK1o2is6+qpIsivhX8WnygKSYtACwk9Hly5fjueeew09+8hNcccUV23yHjKchPhFNYcuWLZg8eTJeeOEF7LfffmjatGn9eyK/Cyoz8Kahc5BQjYXlz9TCKqkOGZ8644mi+1RTtpyLAzplQU6pU7Z8UkwmklpT8apuquiOJ8S1Xew8nR7ZOpnj+dART1pMxaYH1blBpl6VE6hinhtE6xX1YTomnRuLcbLaoFWdG6j1upSMfv/993juuedw0kkn4dprr/XJaALb/uilp566ujocddRReP311zFhwgQ0btwYAO2zoGmDDUUAugeF+I4cdcElGo/ITmiS77j/svJy5RNN2Th4MWUVQxouLTRY70evjdq/dS5i4/0r/Fu3HqJaoPg3qYcwJlEfuhZmMuOCSjkZZOsRKZeWmMn2b91JWLS/Uvyb1EOS/1LTgwzUa4yXMxUTizBOUXtZO1EfsnpIK8Naj1H8p+mBGms8JpX5ihVXWr0y40K0X8vUp3Nd2apVK+y///645557sH79etx6660ot6TvvOFPRDls3LgRBx98MN5//32MGzcONTU1AOS/kChpkIhj+hQlacBPq0N2106nb127nGkLQV4sKickcV+i5Uppl5yiCRt6SKvH5O6tLU2Inlrx4nDttFFnGcDu6Wu8PtFFnck+wIpFtyZ0+ja1ScXyz6rHlbHUVF1Zap2S5KgmFmltRFkPqSSWor6T7HQeZIhoQtf4pNK3ZcvJlGGdigLA2rVr8dxzz2H//ffH3XffjYqKCmHfpYJPRBmsW7cOEydOxIIFCzB27Fg0atQIgNijuCxEO7eJ0zfZU6a05MDUIosySOuYYFiI3Cebi2eRmLKqy/Tk4pIm4vYmF7sqC3kd7RJH9D653r9dXnQXgyai7+mORWeMMrHEKWVNAG4lsCY0IVo3LwYdGxMs3yp6KyVNuJSMrlu3Ds8//zxGjx6Nv/3tb6iqqhL2XQr4RDTGhg0bMH78eHz++efYZ599UF1drf0UlFpWtbxq3bJ+TPpWmUCzqFu2nK3k0MUkNKlsSJZ1y8Zgyq/q/ciybpcX3XloizhZ1i3jx6RfXdeWRd0ujuEuJqKsMixszm8qdZv2nce1aRaJpc5kdMOGDXjhhRew++6748EHH0Rlpf9kZAh/a6ME2bRpEyZNmoSFCxdi7NixWpLQoFAgl+OdHCbtRPHK6xj8dPlhDWAqvtPaI2yLeNuF9em6LhFE7h0PlwddmwtenbqQIV7OVP+R9RuWobSHjh1ylbK29GcbmxskrDpZ99dE3TY1oNrHRNoj3m7ROGTGcJWyNupSGWdcJhqjrC5U6mb1Xx116tJFvF+rrC2p7SmrKdYJM6WcrTKsn3MEgNraWowbNw7Tp0/H5MmTUciBjmzhE9H/z+bNm3H44Ydj7ty52HfffVFVVdXgUVzK4xmyC3uWyOODGk/0OhJQ3sJUZQBlTezRv2XhlectsFmTg43FgQo247OxuNCxw5ymC542omVkY4/Hr7qg0ZEcx0nSLG+RHR9vVHBdU8UGa1xljXMi2lCNIf6abm3o2swTiTfehraTUZsJrGw9tsqowNIFa84weYoZ9aMjEdY5D6muLVU2amR1YTux1J2M7rfffnj++ecxZcoU+AdSf8CfDQPYunUrjj32WMyYMQPjx4/H3XffXf+ezVOitLJpA4auk0WWn7Jy+W80ZPmk+hOth1WXK8i2n2sTfhYnqEllRU5IdS20owub8HUVbcQn9TB+1ZMx1XaQiSHaJiaJtrtsWVPoSpZ0lGONuaa0wTv9kelHLJ/xPq1ykifbDrr0KYpMfUnaT0O2jKvzbRKi2tBZVzyx0TGPsvp01tqgxKCjnKva4NG4cWOMHz8ejz32GGpqanDjjTeW/E+7lPxnRAuFAiZPnoznn38eEyZMwL333lv/HmXRRi2jUi5eVqY8xYdonJSYVAZNndeuY5FEKSeLSH2UQdlGPPG6bLV1tGyIqg/Rfq/TzuTGkogPW+Vs9UXR2GxqI1pfXvWho89TbHXqo9jnDup84Ko+bI9hcVzShy5/aeVVfdjQh825Q8Q+Hg/v86IAsHr1ajzzzDOYMmUKfve735V0MlrSiWgQBDj99NPx6KOPYsKECWjSpAn3SF01SdNVLlqW9eiAzERCLcPb/ZbxJ5s4RU9fXBksRQdF3UllWlw66ki7tjR9ZLHIltWHTP2i+rBRf1jONX1E30/ChD5kyuhOXJPaJCt9yC48XdGHaJlS1IeobbRMsehDpVy0rGxSqmP81uVPtoyugxKd6+Ks9KGSJCcloytXrsQzzzyDn//857j44ouFfRcbJZ2I/uY3v8ENN9yAAw44AM2aNWPa8BLTKFmcgspM5qq7XUmDgO7JXHQC0DHZUMukwbo3riyao/aAnoFYNknVFZtoWapGdC7yTSx2RfSc5WI7CVWN5ElTuhZPInWplBOdH3SdxLqgEZ0bwtRySagmImEZl+YQXh0m9MGrS7Qcq05KUqpad9S/Tr3J2Ojo57JrZB5ZbvbqTkZXrFiBp59+Gtdccw3OOOMMYd/FRMkmorfccgt+8Ytf4IADDkDr1q1JZamnpiE2BM2yVZ3sef5V/SWdXIn6N5mI6kq8s0wSddir1BGn1DSiy1fUD1WDpk5vWLFQ4or7yWIRnLU9D5E2N7m5wOtjKnXz/JvwpToeUOumtqdMfa7NI7Ix5UEjMvfTa0StrKpGXExGRRJRAFiyZAmef/55/O1vf8Mhhxwi5LuYKMlE9NFHH8Vxxx2H8ePHo2PHjqSy0W/SjSIyMLHKJaFL/DLl0/zp8KnDr65EVHTCc/UkxsUFSrxM2kTjws6rjo2V0I+JBUnUP7W8jsRFZLFga0FLqcPVRXm8DlMakS1rYtzXkZSJ+LR9wpl2H1VPOV1NFE3P1/EyInO16UQ0bs+LQwVb2rOxJk1LhHnx2Nw0zzoZXbRoEV599VU899xzGD16tJDvYqHkEtH//Oc/GD9+PPbaay/06NFDuBzl90R1ToqqZWV9sPyoDhA8v7J+ZONQOcXJ+4LZpdPTLBePuupn+dKlk7hfHX506ETEh9eJWBnRtmRhazOCFYPOfqjj5CdLnbDqF/FRTIvsrHWiMqez/LjYD3X4zuPa1OWTTt3J6EcffYRZs2bhtddew4477ijkuxjgq7cIef/993HggQdixIgRxpJQnk1ZudjvR0VtggLtdw/j/qPl0+oV9RN9Tadfih9WHCL1sto/jIHa1rpjtOnfhSQ0tGGdEojoRDa+eNl4HKJ1R/0k6VVFJyy/qjoRHX94CwbTfVkUG3GY0hVAu4+8dqfMKdT4eOV16SSKCf1R/URjCcuL1Js0p+iqi1XGFXtXSJrHk+4Vz5cMSf2Q2qdZccSvTcVvUoKbBlVnaXOKSH3UWKnasmWfRv/+/dGvXz+MHTsWixYtEipTDJTMieiXX36JYcOGoXv37hgyZIhwOd6juEnwBpKkHS3VXeG08iKLEZkdtzS/Ij51LJREBivW/ZDZ0TNx6iFj7+qunwmtRG10aUWkz6rYqPjk2elIvtO0wrsXpk8WXNOK6dgp8STVkXYPZca5uG+RerPSSppNsWnFRXtXdJ5URmRd4IpWqDoR8SkSm9eKOfvQNu1UNAgCvPnmm1i3bh1mzJhB/g6bPFISiejq1asxYsQIVFRUYPfddxf+vR5qEkoRtGiyZKpOXUmwyCAkKlLVCSCOSHu4lIiaXAC4NCBTyxSbVlR96lhgx8mbVqj2LulWNh6ROnRpRaVOVt82oRVKbLa1Qq3TpWSxWBNRlg2LPGuF55Mam2oM1Dpd04qovazvtGS0UCjglVdeQYcOHfDyyy+jUaNGQv7zStEnops3b8b48eOxaNEijB07FuUcwUShPooLqAkqiomkN61Oqg8TPmUFLVtf6MO1ATCvvin2qmWiFItedGwAUeqj1mkr2SqFRNRGW0briWJ7PqP6MOFTdqNHR52u9AnX5gsXElFWmTimrolXH6VOUZ8mN2x11CkzN5dCMrp582Y8++yzGD16NP72t78JH6DlkaJORIMgwEknnYRnnnkG+++/P6qrq1PLmDwFZZWj7l6p7Frp9MHypeovaTBPGuxUdhJNLy5YtrwJKAvi8bmehFJPR3TrRcWPzpiifkT7WB70wrJ3WS+AnYSbVzeljGg/VjlFpNRj0x91bo3a6Zzjbdm7rBkX9cKqx5Ze4nV5vZhZe+dFL9EEdf369Xjqqadwxhln4Morr8wwKrMUdSJ6xRVX4JprrsHEiRPRtGnTVHsbSahssqk6ULEGDZUBlOdP58KastNmY9c0zV5mMJNJDlQTYmqcOidgE2V0T4gsv1G96PanuuCX1Qu1bhOnNip90dSJqEi7pqG73XWPbWma0bXJqaIZ3fqL+uTdW90bwLqTUVW9UGOxNcckxZXVxg3r/SjRPqRr3aOaRJqes+KvJfm1McfIJMxpyGpGxTYtxqqqKtx222046aSTUn3nkaJNRB944AGcfPLJmDhxItq0aZNoS30U11QCmlSGWpbnQ+UETKcvEf8UX7YSURFkkgxbi2qKLeV6dcciW0bXaUySXnVOll4zP5BXzcR9i1xv1otqnn2IriSPV4fqHKt7U1ZHTKbK8JDdOCgVzciuk2TWQaLlKPXKaFKn/pLKU3zkXTO6N5JUbCsrK/HMM89g3333FYolTxRlIvrmm29izJgx2HvvvdGtW7dU+2giGkWXoFV3U9NiEikrsjtOPXGS8ZXmm1I27kfXojptUBMdOLIevGzEwSKpTW0twkViSisveqKkeoqi6zpNLr5EylD7hGo8Li6qRfyyyFIzvNh01ysyj+jUn0gMKuV19ScdY1aedECxlZmLbWywRcuJxKRSL2WuUdWfSDlK2biPPM41LiWutbW1eO+999C3b18h/3mh6BLRL774Arvssgv69u2LQYMGpdqzHsfVkYjE/eiY7KiLX0q9aadhOgfXpIFNdSGl87SG1fYuLKhdiSNtFzdOFroxuYnCK2NisRr3y6vTRd2Y6H8mfedVN9RY4vUnzYEmNx9ZWtU5VujWjYkTG1afyGPfFvWtaqtTM6G/vOvG5CEFqz5KnbLlTOtGNBZXktGKykp06NABc+bMKaqfdSmqRHTdunUYMWIEAAj9TAvlM6HUXSEbk6rsAChSvw4/aRNH0jWaWFCr7Dy7sDDI8yIiismTDpXFKLVOnm9VP2mJisquuEwZF3Vj0rfLJ0E2NlKS4uD1TRd0Ey9vQzdp5WSvsdjnBZk4XNJNWkxp99013cR9qKxFRevNo26yjqNQKKC2cWMMGTIE06ZNQ1VVVWqZPJC83ZAjCoUCjj76aKxZswYjR440koQGhcI2Yg3/xF9j2YvUkRZT1CerfkqdvPpV/IRl0+KT9Z1WZ0i07qR7ojK5qdpSYqDiShyhX16/jWsnai+KyECepl2dfVKnbuLxmdINawxLGltM9RVRZPp3noi2M6/f8rSjO4407ar2d10xxuNjvZ8UB6VPxesMsandaCwuoCupUrGNz+28fiu6SSEbC+ue69RN2maljB/qnJi06ZNWb7Q+Xv3xGCj3X7ctFVNxlJeXY9l332HWrFk47bTT1IJ0iKKZzS+88EK8/vrrGDNmDCoqKhJtZZPQkOggwxIVNQGVKRe3U0lAWfWriJOX1MruOFPskxJfVpuJ+qXELrP5oNs3BZtxJE3QVL8y5XQuCE1oJ47MmCBbP0U7xY5r18u7F6xFtSiuakeXflzRjgym+5/odZpMLk3MqSxbEe2Y3Nji9QUdaywd2pFdG6nUnzT/s9pLJrGjxGEicTXlu1mzZti0aRPuu+8+3HzzzUKxuE5RJKJ///vfcf3112Ps2LGoqamxXj9rgEkTpcppDGsBTh2EkuqXmZR17faJlk07tUlqU1OTjsmELo9Jq45dYxHfsrvZsju6otpR8SmLqHZlteNxg7TFtah+ZLUTLSvT1+M+wn+rzD2suCiIXg+vjbPWTt6SS6pvXbYi2tGd8PDKUuqLxhmvXyUh1bGepGiX51u3bkxuiJhYQ1IT182bN+NnP/sZXnnlFe2x2Cb3nxH98MMPMXz4cIwePRrdu3dPtVc9DU2yTVrY8t6jJqC8ciI+k2JKslfxF28XUVgDY5x4m5q4p6K2lBjy7tuGrYh+dCyiRd4TiSnJXtafSmJqSj95tM2rb1f1wxvnWXVRfKj4Y9npnGeLcf4x2ceB/FyjyFjJel+Xfijziin9qGhapFySfkz1F9P90BXfTZs2xUcffYSuXbsK+XeRXCeiq1atwpAhQ9C6dWsMHTo01d5kEppkq7r7QxkQWLFQF9A6/elIGtLqcmFwynNiadK3C/oRqYNVl87NI9v6YdWT5McvpN3zrcu2GPQj60+23njZNB+u9wGWLZDPOUXUN9XWpH5E49G9gZQn/YjW4Up/EbU17bu6USP06dMHM2fORKNGjYTKuEZl1gHIEgQBfvzjHyMIAgwZMiTVPqskNHwvLkoRMckMAmFdKsmnTn+sa+ehMuBnPdBEbVWuV5d9km38mqiDqW7btBhY7ap7Z5hVlw4N6dIPNVGk1uMaIv0nK/0A+WpX1gJUdXMzrS6d+lHxFy9vUkPUDQwTRGPQrSHdeov3S5faLkr8NZm+KKqheJuoaki3fkTLUeuirBND/7r7C2uuTYspyzkI+CHm1atWoWWrVjjjjDNw5513kuJxhdwmoldffTVee+01/OhHP0J5yg2jJKEUZJOV+GIg6ZSP6p9Xpww6F7W8gYNXh+yiwTRJ9Ykm0lntLrMWoaz/J9Unk5jrhqohHXHovBaZxUTSQjpJQyLo3DQQsbWtIaq9aQ1lTbx/mNAQb/NIV5uoaIhVXlVDVFT7Yx40lFQvK07eNUV9UBIWyiYeNRGKl0lar7mgIZnr48VCXbdSN4FE75UOW16bUDTEe0/FNsmetSEPAPfeey/GjBmDyZMnC/l3iVw+mvvyyy/jgAMOwAEHHIB27dql2md5GppmFxeuSgLKGwSovliTsuqiPhwIRAROvQcm7lUasru5ugajJHsV36K7cLri0HGvk2KW6a+6NKlLj3F/LB2pLDRN6i0JVr8zdfqkKxEVsbetIYotJRHT0VfjvmT8xePQOUem6SjLuSgeLwtWvK7OLVTfOnRkKlEQjVeXjlT7vk49xv3FUdUQxTZvc5HJ9V9ZeTmqqqowY8YMDB48WMi/K+QuEf32228xYMAADBo0CP369Uu1D5NQHrIdULdgdCegrPdVY5AdUEV3l6L2pjcNdC4WRW1D+yx2oXX55qGiI13xiiRnaf6TyrqmI5E4TN8D6kI5yS/V3tVENM02CZUNLl3jlUkdUeY5XX6S/KaVtzmW6dhQc20RbXqBzqOYdJS2+aqSjLumIx1rcNs6Mp1cUnyXV1SgQ4cOmD9/Ppo2bSpUxgXkz+ozoFAo4LjjjkPbtm3Rt2/fVPvoSWj8T0hZOf1nR3TuaPLKiJSLx82LJyn5Yl2/jJ80v1EflME7Deo9iMfE6xsyu4S6kek7uiZynm9RHelGZuPApI6StETxIwJPR2lldBP6ZN3rpL7haQhFR7rvo8h94cUkQlr/j76uoiMRP0l+o36SMNmPo/c6fr0u6kgmFtF+I3udJnSkS3Mqc2TaGpPV/3laovoRwZSOKHMj6/rTdGRiXqT6pvR1qu/NdXX4/vvvccoppwjX4QK5SkRvuOEGzJw5E7vtthvKysqEyqQJMGmwUN1ZkdkFisfCsxdZ8LLi5V2fjB9eXLxdNupglERa24gMTGk7hKKYTv5c9q2SnJrYdIjHFI0jLQbqIj2emMXfT/MTrz8eF8+vrcVp2lihe7Fs6rpMbY7oRFRHtq9FdMEbvh+WkfEb9UHxE6+fFRdrHjCB6LwUIqojkwmdS/pQjSVpnuetDWTrocZLTR6pPuN+deiRFRtrTpJNYHmxJJWX1ZHJBNDGJo2IfUVFBTZt2oTHHnsMDz30EDmmrMjNo7nvv/8+dt11V4wfPx4dO3ZMtVf9XCjrpgcF2vP+ZeVqj8bFhUadpHl16fIRj4nnVyYhF7FLIi5eStJFTdBc8e1CLF5Laj7SfKq2Q5KtqJZN9TFKG7qiU5lYVGyTtKQ7Bq8lml3UNk1LpsfrPGrJpu+0NYTsXJdkS9GyqN+kuHT6sK0lyhpTdX2iI15Z3yZjqa2txccff4xu3boJlcmSXCSiGzZswODBg9G8efPMfi80LgbdSZXobqjugUWHvyQ/OpMN3uQhUiaPg1ReFxMyGwk67yGlD6nuZNrUUmira8I3eR9EY5CxlfENuKO9LLVEicGGlqJ+dCS1prQk4iuOrvsgYytSvy3fLsQiew9Fyuio30UtxePSMTeYXG9n1W9U7U35rqquxo477ogZM2agoqJCqExWuPNMRgL/+7//iw0bNgj9XmiIrPDS/EV31MI/cXSLklVG1DYaY1DY9vE+FX9xnyrw2pHXzmG9InVT4qMOChR098kQk7HI+JapO0lPvDIsH9S6Zfp/6Ic3Jsj4i/s0gYiePG6R1p+S+iG1P1KJ9xmV/h+9BhU9xeOjlqFQTFoSbQfqdenYTNDhW3SdwLp3aXrSoTGelmT6vw4tRf2JIHovktadSXoSweRaxZQ+ZHyL2q/8/nvMnTsXV111FTkm2zh/Ivriiy/iRz/6EQ4++GA0b9481d72T7WwRKNzpzW0Y3VCHbtrMjt1pne/4sQHaBGfJm1D+zzuIlPtbbY371SBoieqnU49UXePo3YisVPbN74rzopNxqcIrvVhU75NxqJ6b1zVU9SOqhNRO1t64rV5nvTk0vzkim8X5ied67ioDdXO1HrPhJ5M2Ib2edVTZWUl3n33Xey0005CZbLA6UR07dq16NevH3r06IGBAwem2lOSUIA2MKT5pe7iqIpbZKBUEUKSL5kEOq1uXl0yPm3YAm4MNFR704OeTlsZTelYtPN04IKe0uxc0lNa3bK+ZWIphUQ0zTbveqL40pkc6E4IZGxDexf6vEvzX5ZtKDPWptnw7HTMH2m+0vQkGnuW87qIP6pfWd+uxFJRWYnevXvjww8/RFVVlVAZ21RmHUASv/zlL1FeXo4BAwYIl5EVoyrx3R2RCVc0VpZdWJ9s8qnqSybBTHqdMtCIYMo2hDpBmY6JssDLSiNUZDSVRlr/06Epnp5kfImUV9GUSXTWz7pGW3oCsm9LHcQXnDr0JFKXDj3p8iWKrHZZpzw6bGWgJlKqGqHa69ggM92GaXWHiGhKNFaWXbwuFR0kjQNUXyx4905lPhTpD9F5V3cCKOpbRVOm9LR+3Tq0aNkSV199NS666CJSHbZw9kR02rRpGDduHA4++GC0aNEi1d72I7kitmk7T7pPQHQsznXEFNrx2iFantq+Weww6ZjoTO+kycaYxe6+yj0vVk1R2yIPmpLdrBLF9OmQKU2ZGAuy1pTuU5A0HzY0JXvq5DXFty/VeSr0Y2qeEo0zyYeJtV9SHa5oKi0GmT5LudeUWOL2FE1VVFTggw8+QP/+/YXsbeJkIrp+/XoMGDAAnTt3xo477phqb+qRXIotNZnRKfo4lHipZWUnw6R2yXICidpTMD1hm7CPtgtl157qW7etLk2l+eP5FfUtW5aqgTTfWS6Eo7aihP3R9IQtiulFtkl969YUYL//JpUT7Su650+XFs0iUDUlG4sri2wZ3zptk65PVlMUO4pv2bImYsp6/SejKVHfoX9XNFVZVYV+/fph9uzZzn2LrpOP5l500UXYsmWL0OdCo4gsTCkdj5qgJHWI+K4rdZJgEe+IIr6Tdr9Vd1tlk21RKO0lc+91LzKoUNtDJYEW3QGkTCqq94cKq9/r9h36pWw08U5YZFBZaNhCh66ouNYGgPh4J7sJaAPWiYXoqYFI/FTNUk5sKFDnKmpSpCPZSaov675CbQ8ZqGsSEwmQqG1SeyRpihejbBJucq4SicnU5jB1o49nqzpXyfR7ytgY3j8T9mtWr0ar1q1x/fXX4+c//7lQ7LZw7kT0gw8+wLBhwzBp0iS0bt061Z51Gqor4dBtyzuRipeT8Zf2uq76eGXj6EzqdO9wxdvFlR0rl0560voQC5u7zDyfNvo5RVeyOmBN6Cr+dNkmYVNXpvq9aXvKGBpiQldUn0kLTJ3zB2thbFJXvDpE/fHsKD6TkL12ahxU36btdcydrq8D02JyUVdpa87wPZm5W8SO4jMJ27qi2pv0XV1djQULFqBr165CZWzgVCJaKBSw2267YfPmzRg+fHiqvcznQuOk7RqZFhJvd0p2QGD5jftn2com0XG/qkk01VZ0UFeNQdY+zxN7segqfE9lYuf5TfKXha5E603zqaIrSgxpcaj6ds1eR+Kv0t+ifmXuY9IC16aukt5n1WcqsZWxtZEMy9jneT7UkaS4pKvQj+paMC+6Eqk3zaeqrkRt0+LQ4dukfaOaGowdOxZPP/20kL0NzD5bQeSee+7BvHnzsPPOOxurIyjwfzg4vKE6d17idnGf0XiiMagSrSd+zay4RIleB8+vqCAok1I4KLPuVzSe+L91o7qIzMoeoLU31We8P/Duk+k4ov+XTeTS6jHRz0R0ZRIRXYX/99iB18+StGUjJhNzlql+Fo0vC11FY2DFEr3HFH8msNE2puY56loi+m/enBWtWyQOavuxxlnWnJVWd1K9lH5G7YMiujLRV6PtIjJniSDT96l907S9KHV1dXjxxRfx7LPPksqZxJkT0RUrVqB3794YPnw4evbsmWqv+wuKKDtHFL9x/6K7W0m2Ir5kdreSYhH1ZcIujuqOXtTelV0q105tgHxpi7pplEdtmRpnROIw3d9c6fum7XX7ltGWrhMIXgymtZVm46K20q6nFOYVqn2W8zl1fBT1G7fNs7ayXh+LxOFKf7MRC9W+Q4cOWLRoEWpqaoTKmMSZE9Hzzz8frVu3Ro8ePbT7Ft3Nit/EtF1n0R0L2QQtqW4du5cs36ydW0p9KnGl7XCJ7HRRhUvBxi6bCUxeK0Vb8d3eJH2Z3vXPQlvxemVOQ1TiUdWWxz1ktKX7Psf7cZK2RH3J2LimrbB+6iZZEiZPblzDxilV0vsua8vUnE7RFnX9K0sxaYsaiyn7LZs3Y+XKlbj66quF7E3jxAj17rvv4p577sGuu+6KsrKyVHvqaaiMbXwQiouBugNBjTM++LH+LepLxIa3QDU12IS+WYmvzKLYRmIpiqnBSdbeFZLuMS9JEvVJsWPpmgp1J5TVx00hoi2T9ee1f9rCZPukzV2m703SnGmKJG3pnL9ExivXNnRcWlzL2oti41p1a4vSP3lzZhiXTnhrTlMHE/FEStfcleVmhm17ChUVFdi0aROuvPJKLFy40Fg9omS+YgiCAGeffTYGDhyI5s2bi5czcPKVdEISH3yoPkVPQ1n1hu+r+OLZiCSBugYdXiKfNMC4MKnbWFjneVBTmRh4C+fo36bQkZCmwUuATcBqNxcXxx578DZ9on+brDdep05sbu6E9UX/Tpq7TC+WTeHSvBLiwsYWb22SNHelxS27ruIlw9H6kxCNS0RfJg4qRA8ldKzt4+R544aanwSFAsrKynDOOeeQ4jFB5gp//PHHMXfuXAwePFjIPjwNpaBzUoi/L7IbpprIyUzqSeIVXaiqDjK83UJTi2MTmxNU37L2rpD1pM/b9XVNX0nYTATzcjLjyR5eUmry1DIpEZZFdHNHxwZqkr6yJOtxWhYb86jJpCPNX5K+ktZJuutMsk/D9uapjL5cOxXN6ynq5s2b8dxzz+H1118nldNNpl9WtGnTJvTp0wc9e/ZEv379Uu1lvqBI1F7FNt4J46+LnmBSTzqTkkdWwhxHZ1xJgqS2h0nbeLwqvl1bDFD6Aw9dbaPim+U3SWOiPqn6iseQ5ktEnyx7il1ajNT7l7Vtmr1LGkuKMWvNqNra0FdSPSK+qPqixpU2n1P8mbaNxyVr75K+AFp/4OFCu6fpK/Rjeo3IKkPpD5S1n0hcrDmM1U7FskaMvu8CrBjLKyrQr18/zJkzB+UZxVqZSa3/nxtvvBF1dXXYYYcdtPumdjxRW5Zf1g4YxacIrOSXd428AZC6uGD55sUles2mdrKogwb1/bRyMm2rwz4aV1KMMos4nagOxkka0010skxbUKRtQunExLhiG1V9hba2NJYXfamSpC9q+4nWlTSHReHNYbrjEtWX7nqpfnkbUlE/lNejfqN2thJjEY3JbKSLYuN+suYQyhyRds+T7OPtzfLF05gIMklbtB5e3DqR8UvdIM3zHLZgwQL8/e9/x7HHHitch04yOxH97rvv0KtXL4wePRpdu3ZNtXf1NDTNLiStQ8vsiMVFzetkMjtO1F1UE7vmunevqAM5xTc1lizsRa/ftd3kNJ8hOjTG2z0Oy+vWGGWi8xqjxZKFfdYaM30/bWlM18kJRWNZnsLI2KaR1cJXt31S4pqGzjHTlK0rGuOV8Rrjk9XmjQn71q1b46uvvkJtba1QGZ1kdiJ6+eWXo3379kJJaBSdC0Fe+bS6Rf1Sd35F/SX5T7JXqY/n38QClYLqzpTpWHTaU6FOAmk7tTr7k07Cfpi22yrrGzCnsTise+Y1lh9UNSbiIwtsa8xEPSE8jYlg88TGa+wH0hImFibnMmrSLYpOjcVjNK2xeH08jYm0nU2NAXp0Ro3ZNfutW7agSdOmuPHGG3HeeecJl9NFJieiixcvRu/evTFx4kS0bds21T7pNFR1Qjexo8Kzkx0URerVsXsV98VCNuG3sZMYR3aHr5TtqRoT9W/q/qdpjJrI6dIPpb60DQOqHnTeD5l779Jpimv2SfdIx1xmaozVpTPK/GNyLlOZG2zPZUl9RXccxW6vOpeZWC+Gtjo1llavTo1F7fI6l/HK6xrb82LfpEkTLFmyBM2aNRMqowuzRzIcLr/8cnTr1k0oCU0jKPC/Qj3cgeGdZkR9UOpTjVW2rKqNyA4J79SHF7vukxqebfxexnfzWH90QPWTd3ueDxWd6bj/MrFG/ZnYYVUhHpeufqtSPklj8Rh1aszzA0ntm3ZvTMaUFGs0vjzgQr+lzmU66y0lexZpawWRMZBSF4Wk8Tb6vo6N4bhPSlxpdlnMD7x1h+hcRvXNwrW1HNW+sHUrtm7diuuvv55UTgfWT0Q///xz7LDDDpg0aRJat26daq/rs6E6dpsptjIJmsrOp8puNC/5TMPU7hYPlV3s0D4Pu7ZZ2OtqS5dPdZLisKEz0Vhk6qTYseJIismlfpp3ex0607Gp6nUmVyfFjhVHUkyu9btSs6foTNS3jTWSrM50aJGqMxPraFYcSTF53STb19bU4OslS9CyZUuhMjqwvo15ySWXoGfPnkJJqCysRk/aARHdYVZNpFh2rN04ar2yu1qs3VhRqLuTSQOZys6wjoHK2+tDRGc6YlPpf7IxyMYdv26bO8WsGGR05tGDjvZNumdJpwA2iJ/g2IyBpbOstRYiqjNT7eXa6Ytr9kDyiaTKfKZrbcmKjRKHSp1x37I6o15n0jXZ0Jlr/dSGfSEIcM0115DKqWJ1plqwYAHuv/9+DB48mFTOVLIR+mYJOurLlMBDu6TFhO46eZN1tLzOQYU3gCUlwa4shm1Mfi5hIn6dfVwG3iQVjSEeq65603Qm6ke1flYbhP/2FAe88TOrxJQ3r5roc0l93BTx9YErSbDHLPHxk7d2NL3pyOtnMjqjjAtpfZx6EJME6xrS5jQRdGxSFLP9pk2bcM0112D58uWkOlSwmoheffXV6N27t/CRb/hYLgXZDpm0uyzqV1WEphaqSTt9VF+y8Bblskmw7KaDS7i2GyaKSj9h3XfTO7osu3j9uurkaU3GF4Ww3rQdYtcwPQGXKrz7Hu0fNtqSVb9OVDd6VOtO2uiiYmOB7Bqu6F+l3+jUmuz1seZUFX9x31FfWemMt35U8SuCa+s0G/ZlZWW44YYbSOVUsDaKLV26FH/9618xcOBAUjkTiUmabdKgIlJWFV2Tt6mdYtHHJXQPHHFcSbTyvhgwiUmt6SDphJSCyVMZnp+k3WFXE09PNqQtlk1rjbf5JIPJJxnS6qRqzTUNunTyYgPTm+ssZLWmsrHKqz+tXpGNVVGt6Yo/TWtpZXXEoOK7GOw3btyIP/7xj1i/fj2pDlmsjRo33ngjunTpgjZt2gjZmz4NpfpNE7bu05z4SazoAMZ7NETXIBG3S0o8KWQxYWSFSwOOjD2QrdZMQV0kq2pNhqRNHhdwTWueZHhas5GYxutMg6U1kyQtiF3AlThCXDzZoWKy32ettWi9ceKvqWhN5vRXh9ZM6qHUtBZ+g+4999xDKieLlW/NXb9+PTp37oxRo0ahS5cuQmWmTp1KPg2l2Ouwld1hErWL28RFGvUVjyU++OiMiwWrnK525sVgwresvQ3y2D5Zak20flZ7sXaBQ1+qWqPaxUlqI4rPvGrTBqbHi6zbPsnWpNZYdiw9RW14JzIqcynPLo6q1kza2rI3jSvXm8U6krKeYpXTMbfx1pGs9aeuuOJx8OqU9WlqHqTau6Y1gBZ/x44d8dVXX6GiosJoTJVGvf9/7rzzTjRu3BidO3cWsjd5Gkq52Wm2rIlSpPPJ7q7wTmyoiwpqXLILE5Porp+1I6gDSoKeVic1JupA6DKsidTk6Uia1kzVG69DtK68nUTy2lQV3uZd0qYeCxmtseqxCWuTRNZPFNZJhU54JzZpdVKul7LJlfWYaWLcNqE3XXObrNZ4MciiSz/UOqOY6Pu8Ok3MbSJxuaI3k/ebdR9VEdWbzrltxYoVeOKJJ3DooYcKl5HBeCJaKBTw+9//Hv3790dZWZlwOROJJdW3jG3SpE2ZNEXqEY1RRui8xbDK7rIOWyqyA4KpXTKZOlV21nS3rUsJjy69xcuxXjedaPAm57xuJuhoe55fk1qTqcOk3kxBXYTxFq+mktIs9ZY3TM1toW/TcxslJpkNY5NjqO7T7ugaSzQpFfHHey8am4h/yvpP5KkHEUzZRmMTuSbWekM0Jt2xyNYno7ff/OY3+U9EX3jhBaxatQq9evUSsg9PQ0XEQ8VkchTGxdvdpSJ6nToG2KRkzbVFMK89RdpZZgAVIa+PX4gsoHm7sVmjW2824enN5ASkYstCp96KAZN6c4k0vbm4ccJbQLoWJ8BfSOdJb5Q+ILMhIrMZTtGbK3047cmE8DVbsVLvVZreZPzpTPrTyqch2gdlNjaz2Cxi8f2KFWjbrh1mz55N/tlNCsZHpZtvvhm9e/dGOXGwif8JCW9sHhad8dhN+E9CdLcw7pPV7qL+KPFRbeMTC6sfsOI3fR+omExcZU+iKHrTdbIva8sja72JkKQ314jf87zqzRVYbSSqNxfnOl3zhGl4mtPtV4etjN7C13XHImPvku5l9Ra+LuKfEgsF3qGArN7SbEzPmy71CxaiemNtgGeJyUMTAGjZsiXKy8tx2223kcpRMTpjLFmyBM888wz69u2r7CspOQW27Ug6dpx17TCK7GxR/FHg7fjxBCfjTzese5k2OORhsJPF9HWx/Ke1b1Z6E/XDi9UkSZqW0ZvNBX3a/SwlvWWBSPuKai4LKHOcjD8qKnOcLWTmuDhZzA3FgMgaIiu9ia7DROc43fcwbZ7jxUj1F0XHOkJmjlPFdKIoC6Uvb968GXfddZfRn3Ixqqy77roL2223HZo3by5kL/slRdTdrjRMn/yF9kmC0Bkfqy6Tk7JMW1N2o0zEYcPeFjYWJ6z74uIimRejDVxeCFNPXDzZYWKOM0H0tCBtjjMBb44z0Y9lFsase2V7c6dYNG26P1HmOJNrS2qs8RippJVJ2hyLxiLiSwZqW5tYV1LjcM2eer2FrVtRVlaGhx56iFSOgjE1FwoF3HrrrejduzepnK5dCNWJ2/TkxYtLxheLeIIXrdOG8Fh1UHeAVWOQweREnfVCUZU0vdhITlVPWWwskG0thimxiCyAi2WRGqcYr8t2cirjJ2kTSKfuXNvwoWjO8wOm50Yd/l3dEOKto6Jxxe101JmkOdG+rUsDJpNO21BjNH1NZWVl2LhxI/7w+98bq8OYYl555RWsWrUKPXr0MOJfx8QY+pEdQETtRRfwVL+8upIGJl4MJhAZHEzWb9q3af95T1yB5N3arE5xXNCcKFQfopozGYNHL6J9Mzqeuqq5KKpxmNKcTBy6NZd3TPYxGwt1E5qTGctF6+e9x9Icz69IfKb6N/VaTWiOes9FsaV/06eun8ybh7lz55LKiGJstLjvvvvQo0cP4S8psv3boUk7W7wyKjGIwtrJisKLi2VvKrak+uPtp3tHKu+TukuJq+xmjiwimlOdfOM+ReOi1B+tw7TmKDH4kxdPHF2a0xlPFGpyzFt86iQtFt4pk07NFcMmpCjFNj7p0JzONqEmpCxkxwld/diG5mRicsmegkwyXVFRgQceeMBIPEautK6uDo8++ih69uxJKpflyRjrhE7nLjLl2lg7ayxf8dioYtRxCsRrG5FYTArNJdGrkNdJWjShZF1fFic3vN3stNhsT4Is3cV35T0eHrz+avPElNdfk+rmnXyE75kkqW1KZbNHZmMvr5jYwM9ac7xYWPXHE2bTcx3Pn+r6MvShEkNW2Dp1pfS7uro63HHHHQiCQKquJIz8juiLL76IyspKdOjQQcieehpqQ7Qqp6Qy8MQWvscaKKI2slDEnBRj1JaadIvgWqLoWjwhrj42IoLqrm2aP0oZVp83eQrDQ0RzHo8sLM1F/w5tbO3Om5zrKIjOdSaQaW/qvEu19ySjuu5Rnetk7qfpuU62H7NiTLLRWb8oVN+mx9AQk7pev24dmrdogVmzZmHIkCFafRtpmfvuuw/dunVDWVmZCfcAzCQwPNuk43+Rx3hUYdWbtiOkozOm7QC7PpG5lJS5mriaRHVDIm0n2SSsum31+1I+efFkC2t8j5+Q2Kg/7TUZkmK3MdfldQ5wdczJ41NPvLbk9TXdJ6ZJp4umdJcWTzwRznKus/F0hSl70+vd2tpalJeXG3k8tyzQfM66ceNGtGnTBuPHj0e7du2EykydOtXYbh7VFhA/JWTtcsieEIrYicYnWydvkDLZ3iZsTdlnOZHp6kO27E3b2tadzvbXrTvKuEWJk2pryr6UdefKvU3apJXxaVt3rHa0qTuT99GUvcu6k2lP0/a6bZPaX0Z3OtePFF9xOx26c+U+Un2L2Ge9YZIUX1l5Odq0aYPvvvtO60Gj9kdzX3zxRdTW1qJt27ZC9q49lksdIFi7VxRfVHR1YtbjGKJ1qNZNtdVJ2q44BdMLhaT/i5YD9J2Ou4Rt3enChO5k6s8CXt1ed/mAtfh1bVxIoxTuU5w86C4ej27dsTYvXYeXnMnqjtIGafeP2p66dSfTv3ST1gZZ6U62DO//cVatWoV3330Xw4YNE64jDe2J6BNPPIHOnTuTs2VKA6ru4pqCtzhOE43NOKkDgknR6IYqqDBWHeI1gcoAJDqpy1x7VoicylB0ZyO2JJs8tLkIsroLbV3THSC/6KbqjlqXS/BOOVwbU1xIPk0kQq7rTmb8VUl2kzb54jZpdbmcuJa67ij3RuY+Up8WMK07G+sYiv+a2lr861//cjcRDYIA//znP8kBRjsL5XEEnehOuOICSBsAdV4bawdNxE7Uny6oGwqUe+RSX8kC6sm5yDW5MsElEU8IknRn4z7aWgS70N8pj1cVKzKP3KXNeXkabyhzngiy/Ym16aO7b9q4N6LjcqnrDhB/5FRmPSEC5R7oul8yutN92snyz4tTpKwL/di1pwUocZgekzZt2oQHHngAl1xyiTafWhPR2bNnY/Xq1ejUqRO5rMipHG8ASROVjhhkSduxM3W6mzYYuLq40ZEQyT62kndM7D6n7fzxJjpTyOo5/jiTzcRNRndZtCFlZ9ejhugYlrRodvV+6JrzqOSpjaKIPMLnwnVQFtAub6ConnbZvhci7c7ajLAx58WTe1ZdLvQDXhuqznkyCSv1QMXWhrlo/1j67bfo0LEjvvnmG3Ts2FFL/Vqv8F//+he22247VFRUCNmLfj40KDT8jc/oH+C/gov/MYGK33jcVH/UxYuOOkWh+IzGybtn8bhZ15ElLj5OaIK0e6CqO1t9kTVmmCD6eJRL/TVK2njJ057HHiLjn605T4Wk+UdHvKJznitQdBd9zcPGxHxjWne27qdLc56OAwYZn3F73XOeq9rUmVfEadeuHWpqavD0009Tw+Ki9UT0scceI5+Gqt7ItE4vcnqaRWIWHxxkd65M7tjpapckP64K2ZOMyKka5ckFm5jSnivXF8Wm9lxMhIqRNO25cIrDIikZVV2EunB9UfIw5xXLCadJom2U1FamtKer3WVOSkVPEUVPa3WS5FOH9ijasIFrWt2wYQMeeOABnHTSSVr8aYt2xYoVmD17Nrp166bLpTSmd5F1d1BejDziscd3ckTrNAGvfW2dsrg6WZbSCWr4t6j2TPQDig50aU83MovzLLXnyZa8nZ7GT2vSFsg2tUeFctIigsx1uXBPVTF5kmOyrxSb9uKUkvZkYzBpbwNqTNOnT8eWLVu01K3tRPSll15C+/bt0bhxYyF72z/bIrKzo3thrDJQsgaGLHaBRXYBKWWomBasiwOCa5jWnuyJpE5c1F4SpscuG3jtmcdrTz/FoL1SPeGkoNpGOp7Wo0I9yXNRe0nXoKI90bYxrQ2qfxe1unXLFtTU1mLGjBnYbbfdlP1pu7pnn30W7du31+WOicmTyKQdrOjrtuDtOLF23GyQdtqSFLNtTO6U2uoDJmNyYVDj9RsXdo5d0x6QvOsbjc3jSUNUe1nozxXtxed917WXdf06KIZrSNNMvK+IrDtNwPLP01ia9kRjFbFLegqCt2mWdb/Jun4eJp8uKC8vR1lZGV544QVqWGx/OpwEQYBnn30WXbp0oZUzdAMpN4B3lM+aoLOIU3Sy0zkYRO2SHneIto9JXBV6KWHr9J2nvawWxax/myauvfimj61FuQsbFh478PpVtP/pnmNE4gn/nQUmtFdqmiq16xUlPrfo0J5onxQ9FaT41AVl3UmhGNaQJhNLGerq6vDII49o8aXl0dxPP/0US5culfrZFlPouhHxgSH6N68u1wfftEdG0mxVcL1tRMj7CWpe4O2OJtnYiEM3trRngzzG7NkW3pzm2mOyOigm/XmyQ9cjlC5pL+1xVtFrTrLjnc6q+NQB9TFnk/amrzWEEtNnCxZg+z59sHbtWjRt2lSpXi1X9uKLL6Jr166orBTLa21/PjQNSudJ2rmS+bxNmp2pXZCkx2xN7zj5CT57XHgaQcZv0olpnjY5eGOGC4/5eTws0ua+LD8iQH0KSqf+8jTu2CSLx6hN2GdN/Km4Ypr7dKw9TWA6Dhe1QY2pZ8+eqKqqwquvvkoNaxu0nIg+++yzaNu2rQ5XXLLuoCK7NqxHKbKOOyT+mRcgPTZXYhclqwlJxI/fdddP0tMK1N1J08jorxTQ0QZp+kt6v9TvgaxO0p4CclV/MpvFurB1qmES1n0tdv251pcBO2tPnf2VGpupNjflN0ttZ6m/zZs346mnnsIBBxyg5Ec5ES0UCnj11VcxevRoUjkXTmR0d5zoThWrDtlrlimX98Ef0H9/KI+GyPiRwVRMebjH1GtMe0Qo7jepTUxPGsWgP0BvrKw2kbkPXn/ukTb3RW1sUCz600le9KcjJt49dm0zQFdiJKM/nUlZ3JeK/qj3yMWNAhY6+rqNNTG1jsceeww333yzUhzKieiHH36IDRs2kL8xVzRBk2l4U51SxC9rx4e3MNZFkn/Ti2/Tg7rMo8siMYWDncznPU1/bkC2jqRJiFcPtS4RspwUSk1/WcM6CRNBRn+hf68/d2HdV9P6i9cTjyfpfVWy/pyaqv7Cf+uKR4e9bEyy+kuqz7XENQ2vPz22IV5/ySxfvhzt2rfHN998g44dOwrXE0c5EX3ppZfQuXNnlAvegPDzodEbkaXQbSwCkh5lUdnNSRO+SCyifnUgc1ptemHrIjIDB6VcfOL2+pOPIeuTsCxPdqMUk/5kyaP+bJCmP5aNKFnrzwamNlaLDVn9ha+JlKH4T8PWyZ9N/SX5yltSH0LRX/hvl6D0G+o9atOmDWpqavDSSy/huOOOkw1RPRF99tln0a5dO6mylKRI5ajfNqKPHoR/85IJymlflm2gcxDT5dsUrsVDhZq45lF/aYjqj4VqO7jUVpQk06MfXfoT9eUKaY8RUjUomoS5uBDWPQfmPRm1eY8oiWX0bxVfLkDVH++ENWqf136nU3/UvuvieCTDhg0b8I9//CO7RHTr1q147bXXsO+++5LKUTssz543QOjemTDZWeICF0k+k3a4TMSlgsz1JJXNE65NqLrrSNMfr5xpKHUm6Y81YfPKuTwJpz0+lKQ/l6+rFEhb5LE0mLX+KIg+Qpjnk0+Rx/eymANtLYSLYRyRXYMmlaXWb2OdJ7sGNYHOfpN2+p2nNajJE05ZXnzxRQRBgLKyMqnySono7NmzsWXLFuPfmMsjaeeGJ6iwHPXm6BSeyKlm3iZekR17kxOSiwNGsZD0qE0c0ccOXezPaZtCLsYcInpiVgyLQtPkqX1k58CwrEvjJm/+c/WRtzhZz4Gu3U+X0XUfin0OTHrfdBwyjy2LnFr7OTAdShutW7sWzZo3x8KFC9GrVy+p+pQS0Zdfflnq86GiqAyqSTscpnaPdU4CopOWaJ26YkvbLcvDKbQN/yEuDnhZnaAC2+4gu3p6k+WkldY3ZR8Ry/siNe/x20a3Bm1qwfVFo2tPgbhKsZy6yviX0V9SOQqi8SbZUTWo2y7NB+813f2AGq9Jext6otbRuHFj1NTU4D//+Y90Iqp0Rc899xz523Kp6O5UQeG/P5ob/Tfw3yQ1+kfGv047nVDrTGqPqK+wHbOegLOu35NOvK9E/61DfzrJuv4whjQNuqI/jxuInMzFNRgt65IGs4bVHtEFr9dg/sj6HrH6St41aHLdmzYH8tbzecBWvKb70Pr16/HSSy9Jl5c+Ed2yZQtef/11TJgwgVTOxUczeY9XsP52sePo2kFj/T/LE07TbU3dtTJNHiacJExoMI+P6MliWoMeDw/qE0Q2+6TNU1FTT0sVE66dUps+JbJ1qiuiQZE+KRqvq49yu6RBahu52Ka2Ynr22Wely0onojNnzgQAtG7dWrpyl4me0oT/5+1OuTQoi8DrlDKfYcnbtXvyg9egx5MtpazB8N8m6s1bW9km720kGr9IkuCCBk3dD69BOWzET6lj9apVaNGyJb744gt069aNXJd0Ijp9+nR06tRJ+POhVEyeoFF9sx5hivqJ7+Do+pyW7pNOF3aX8oyN+EuljWR36HRoUKU+GXga1OWfQt77lyd7bGtQF6w4Aa8JTz5ISs54GmTZZolJDbo45ohCid3FU9dmzZqhtrYWr732mlQiKn0106dPR6tWrYTtqV9UZBodHZb3uRBbz/ezfCfV7T/HUly4NhiZJOkxJFa/zvIzNqIa9Dr0FAOiGrSpQ5HPlXkN0vGbselktclvaj2q8hEmlfWoqXaU/ZyqSXsbmD4E27hxI9544w1yOUDhRPTNN9/EkCFDSGWoF5e3AUlkl4plp0qafxdFkUSpid4WxdCuIvAmYpOIPCaV1/b0eGQ+KxWFNxfqrDdLDep8FNM2eT5J8iQT3xiK/h19Xef9z2I96qKuRMlz7FEKhQKef/55qbJSieg333yDb775xvg35ori6k3UnZgmPU9PjUUV19pcZdeO95qMjWoZ0c+L8P6fJ2z1SREdqvafPN8HV1BJOGzb+/tNw8QmrUkdFsviUAYTc6GJuVP1XlMTsLwn7KzYs5gL86YtmU041evLy3oU+O/9/uTjjzFg4EDU1dWhurqaVI9UIvrWW2+hffv25MryJmTdYgk7aPzD5/FBIG33OFre5E5WllCTc92iZC2cTE9a8TIiCbPsdVM+j1CsRHWUtCAW0WGpI6tDymJTh6Zk7E3oMG9zoW5E5sLQLiRp0VvM7Sl6babmQkBNh6FvFR26MBfmCdFkiKXDUpkLTd17W3Nh/DUR/6q6TdNhZWUlZs+ejeHDhwvXA0gmom+++Sbp23Kjnw811VFVTxWzQPQRQlcHShNtrjKZUuJxtU2jpMUoO7DE/62zjjySpEPZneK8I6vDYjxh0KlDGQ1S68gjaSemMguvYqLUdSiiQRG7uH383yLlTCUvLtwDF+fCrNvGxTWpjVNlVh1pMTZu0gRvvfWWnUT07bffJn1RUYiNUy6dcYjaUhb1InVlKTyT9VIfb6D4dSVul+sA5B67oTyekTU6TnopOtSlfVuYXtB6komfQIhA1WEx3AfVk3CbyLS5KR26eO9d7JNUHbq0iWtTD/GTTpd1CIi3TXj/TerQ9NM7MpiuY8OGDXjnnXfI5aQS0Tlz5mDEiBGkMtSLpy4AkzqU6+IpBnQmma5NWqWM6L0SWSx7HZrH67A40aVDr0E7iGpH50a3xxyiiavoujTqx8VEPU5WMarWq0uHph/7zkMfEOW1114jlyEnoitWrMDSpUtJj+aaIG3HNGkHy8QjBrY/c5fFSYzIIMu6Ptd3tD3yuKbDUsDr0BNHVIdpn/HJc/8Q7d+6dOCiDotpQUvBletOO0FU1aEr16mDYtahi9jqO4sWLcLWrVtRUVEhXIaciH7wwQdo1aoVGjVqRC1qBOrOb9j5TD/+m1coj3+VmoiLoQ5TeB3qxevQoxOvQzm8Dj0y8Bb9paBDE1rIWofUJK5UNww219WhUU0NFixYgB122EG4DnIi+v7776NNmzbUYs6R1LBJpzg2nuEWReUUVvTzqixMCsz0Z208biGrw7SyNslKhx6PLopBhyp4HdIohs+zuYhuHdp+SkAUXqLmdUjDNY1UVlaipqYG77//PikRJa/iZ82ahaZNmwrbR78xVwSZxEL3B/lDf0Gh0OBP6CP+x1Wiu2usmOPXFn3N4zYu9ztdRPsiq6+y+rTL7ZI0dsSvz+vQ4wrFpkOAHTPgdehxFxkdZhGjCLy1adSPDR26Pk4l4epTeps3b8bs2bNJZcgnoh9++CFatmxJLVYUJD1WQX00UaaeJJIEZepRBVNQfVPsbQw8eR7cVLA1USTpkFpGN7Z16PFkhcs65NWfRRwej0lkdBgtZ/oxUq9DcVw74ZRh8+bNmDt3LqkMufd9+umnaNGiBamMycSCiqln11mnp+H7OneK476SdpJcaPdSTco82WBLh1EfunXo8eSdeP9nPVEU/b8K8UcWeU/9eC3qwdWTGE9Dkp7sA/I1J/p1pD5stOV7771HsiediK5ZswbLly8nJ6KlSFxoss/3U+rwuINrk7VLn721Oakk6SpJh/H3Sm1X16X+4ikO/JzocQ3qCZTJEytbp2Gyc2L4Pm+OTKvDFqLtKHMSbLK/mD6ZtlUHACxevBhBEKCsrEzInpSIzp8/H02aNEFNTY1UcMUKpaPFYQ0A8Y6SNIHnAdcWB67F40nG1qPlrNOZ+I4uq0xW5G0c8HhY8OY3ypzIsvF4ihUTSaurc6Kt5MnDh9Lf1q9bh8ZNmuCbb75Bp06dhMqQ7u68efMy//3QKMXQOVmPK+h6lKgY2sfjsQVLc/6RPo/HLibnRFfwc3P2uPDRJddJ06JruPSxPhe+lyILamtrUVNTg/nz5wuXIZ2Ifvrpp2jSpAk5MI8na9IeA6OUN2GvUofKibxOe1d8e9xGRYuua9f3a0+eUPl8oMvazZsOS/XUrxi+nEcHxbY+ra2txaefforRo0cL2ZMS0c8++wy1tbXC9uFPt4hcgKwQRTsxxXceBgRTyYcr2LhfIm0jM7HJfI6AGk/aa6JlWeS1z+gmi3Zwbeyx9VlR0b4v8yUXprTrtcjHLzD1Y2sNY0KLJudRFR1SbGX6s6lHaF2bJ+IUu/5dWZ+G/k1/zpmqxS2bN+Pzzz8X9k9ORCm/IRrCuwDeLgD1JhdLh3d9cKEiu9sq8nmgqK0rXzZgg+gXBei8bpb+iq0/ljK67mnaWO61mI7XogdQX8wmadF0kugS8S/P0aVF3mcjvRaLC78+1UdUi5999plwOVIi+sUXX6Bfv35SgYm8J7sbbWJgyHNnMInsYGzi9NHWhFAKfUGHFkt1AylrXNCiRx+yWvSbudli6okuf3/E0H1SyPsiHq/FZETvg8mT3TxrsVjqmDNnjrCtcCIaBAGWLFmCYcOGSQWlm7ATmxwUsiDLxwEpbWPqsYFSJc9t5IIWXdc1FRe0mOc+WYpQT2jzNC9mhYlNntCvK/qy8ahnHh4n1YlLWqTE4EqfZOE3XPPF4sWLhW2FE9Hly5dj48aNUo/mZo3oQrlYJ2adi1rXByuP23gtFq8WXYrFk47XYvFq0ZMvvBaz0WKpbZAAdq55/rx56Ne/PwqFAsoF6hJORL/++mvU1taiqqpKKUCXEdnFYt1A3k2Nf3bBBGm+o+/r+kyJSVyJw5MtojvKvM/xJPkzRbFp0eMBzGkxy0fzRLWY9L7HY5s8ajGp/vh7xajFUkyMu3Tpgq1bt2LZsmVo3759qr1wIrp06dJcnobqJtqheB2M96gr5UPOvDIUX6WwqC326/Mkk/ZFFTq1yCrHe03lM7ceTx7xWjQHNeY8XqNHH2nr1GLXosn+77WVTm1tLSorK/Hdd9/pT0QpP91iGpd3DdLElvSZzKTron7uIGtcu0euxeMxD28Cji+ai12LHk/WpG2Wei16PHbImxaL5aQwz1DvaWVlJZYuXYqBAwem24o6Xbp0Kaqrq4WD8PBReSzPi9Ft/P3JDpmJzz8i6/G4Qd61mJc484Rv02woxkdkdUBNiG0l0C7qpKysDEuXLhWyFW6hb775xieiHo8D+GTX4/G4imsLIo/HUzr48Uc/Mm26detW/Yno119/jZqaGuEgpk6dKmwLyC2uTT1bXgy4ch2uDQquxVMMuNLXRPF9wOPxFCt+fPN4SgdX9V5XV4dvvvlGyFZ4BblkyRKnPiNKIW8LZU++cXVg8JQufgz0eGj4cdxjG9fHaa8JD4Wvv/5ayE6418t8WZHvtGbw7erxeDweT/Hj6nxvOmmydd3U63AlWXQlDlWK5To82/Lpp58K2Ql/WdGyZcvQrVs36YBEcGXAdSUOVYrlOqiI/maVDn9Z1cErU6r33OMuOvWYN/16PXpcohTmRq9FN3DxC3RcohS0uHjxYiE74UR0xYoV5BNR0w1D+QYv1wVRTLtC0Wux1QcomPw9NpnBl1KG8kPt1LI67F3XWamR9jtxlLK67UMofd+ktmTtZd53aW70qCP67ZjFMjfK9K9SnRtF28r/RIldikWLoX+Zect0HStXrhSyFUpE161bh40bNxp9NFdlwKFOADpjyTtJvxeVVkYUUwtNG0mia4STlSsLctlEx0+4fExqERDTo2sbMK4io0eT9n5u1IefG/OFrBbDspQyfm7UA3UDpxTmxmK5/+/Pno1dR4wQshVKRJctW4aysjI0atRIKTBdUAccEVsTg4bpgV1lB5CHSDuZPMHw5AtTC3GZ3UqXtShqE0W3FkV8evKNnxvT6xZ5n4WfGz0U/NwoVr/I+3H83KiGjdP3du3aYePGjairq0v96U+hRHTVqlWora1FWVmZlgBdJOyEqpMJb5DQuRvGsmHF4SdFD5DPHTaqHrPSIs9OVo9eix7XcGFuzEKLVFuPxwZ+bvTkgRYtWgAAVq9ejbZt2ybaCiWiq1evJv2GaCnDEoroLpcXo1vkMYHz/BdZLYraleJOqscji8rcyCtP9eXRQ7F8nrFYroOK6bmRYudpSLH0yZqaGpSVlQklokJXu3r16tSj1VKjGDoKlVK8Zo/H4/F4PB6PxyNGWVkZKisrsXr16lRbn4iWOD659MTxfcLj8Xg8HnX8fOo2/tTWHBUVFXoT0aqqKuWgShE/CHk8Hk9D/Ljo8Xg8nlKgWOY76nWUl5frS0TXrl2LiooKUgAeD4ViEapHH75PeDwej8djBz/nenRShh/yxzSEet3mzZtR7juox+PxeDwej8fjKVF8wi5GAKCuri7VTqg16+rqnPrpFlc6QSk+W+7KNdvqA65cr8fj8Xg8Hk+p4sra3yPO5s2bU22ET0RdSkQ9Hg8NVxJqP5Fkhyt9wOPxeEzh5xiPRz8y64cgCHwi6hHDL1Czw0+axY+/xx6Px+PJilKcg1y5Zlvra1euN47Io7mVIo5kE1Fqw5i0N2Gr26fuerO6jlK2t1XGtetwQbulZmfS1oa9r8MN+6xtddrlSWMu9QEZe1frkCnjkn3Wti6vVV2xddHe1Tq0nYh6PB6Px+PxeDwej8eTRk2jRkJ2QieiVVVVCIKAHATlSLqsvFzYPszIKfa6bSl2QHqsJurVaUe1lfEN0O4pxZ4aj4y9bB2AW9dhWl+ivqm2tu0o2haxo8Rn0taWPWC238vG5Vodpsdd1+fRrOZQV2xdtHe5DsCd+dSVtapIDHlYq4rER7WlxCDjm+pf1t50TDJlGjdpgqqqqlQ7oRNR2UTUkw9kjuc9evCfzy1+/D32eDweT1aU4hzkyjXbWl+7cr1xqqurU218IurxlACubDa4OliWAq70AY/H4zGFn2M8Hv1IfZ60rEzfiWh1dbVTiagrA00pLuxcueZS/yYyj8fj8Xg8nlLBlbW/Rxytj+YWfAfweDwej8fj8Xg8JYpPiMUog8ZHc5s2bYqtW7eqxuTxcPHC9sTxfcLj8Xg8Hjv4OdejkwA/5I9pCCWizZs3F/otGM+2eGF7PB5PQ/y46PF4PJ5SoFjmO+p1FAoFNG/ePNVOOBGtq6sjBeDJB8UiEI8+fJ/weDwej0cdP5+6jf8eEHNs3brVJ6ImKcXBpRSv2ePxeDwej8fj8YgRBAG2bNkilIhWijhs3rw5Nm7cqBxYKcDbXRHZdRHdmWHZ+SRRP0Gh4HfLcoyKFlXtvB49nobY0KPXoh2KZV4sluug4udGdymWPrlx40YEQaAvEW3RogU2bNiAIAhQVlamHKCLRG8+pSMk2YaCKysvTxVf6EfELuo3KQ6Z6/CDRPGRx4RaRo+6tChrp0uPXosel3BhbsxKi1Fbr0ePC+Rhboxrxs+NpceqVasAQF8i2rZtWwRBgE2bNqGmpkYtOg2EnVHXpMhC52LVFEl1UwaVpP+LlEmz9YNG8SKjRap9HrQI6Nejbi1S4vDkDxMJI4s86NHPjZ6s8XPjf/Fzo1vYOJj47rvvUFNTI/TzLUKJaJMmTVBTU4MNGzaQElGTAoyia0eValsMhKdlOttHZgKXsZW1z/P9lZ3cZMrI1KF7YszbSa4OdI9Vsnq00V/yrEfZxM+GfYifG+Xxc2O+KKW5sVjmRRObYKFfqhYp8fi5MZnwekVOQwHBRBQAWrdujQ0bNqBVq1bCwVAakdropu1tk8fHJ3lQH/UI0WWf1o4uLhp13Xte+5m8F/5xGbeJji2mko4ke516dHWRyYM3PpXyXFeMiPYZPze6NTfKjItUe7/p6iZZazF8L60spR4qpvXbpk0bITvhRLRt27bGv7DIlQnUlThUKZbroKIrGZMpY6sOwCd+nnyQxeaIy3V4PFmhU4tJ/nTUIRuX16Ib+PuQjo6NSpkyNvRbVl6OLl26CNkKp7ft27fHhg0bhIMIA/Hox7erx+PxeDzFT6nO97aum7rodyXBciUOVYrlOvKGjXbffvvtheyEld6pUydyIuoKvqN7bFKqCwePu/gx0OOh4cfxZPyYoh/X29RrwkOhc+fOQnbCvapz586kR3OnTJkibAvICdCEKFwfCERx5TpcG7hci6cYcKWvieL7gMfjKVb8+ObxlA6u6r26uhodO3YUshW+go4dO6Kurk46KI/Ho4e8JX4ej6d0cHVh5PF4ih8//uhHpk0rKirQvn17IVvhLytq3769T0Q1kXRTk94LCoWi+nbdYsTfn+yQ/ZC/zHt+M8Dj0UvetehKHMWEb9NskP0212K/X1l+A3sSLrZ7EARmElGXPiPq8oJf9PeJ4p0n7SvXoz7i/pzsiI7dI9fi8ZiHd7/T9KOiRZY/j6fU8Vr0eNwgb1r067bsod67LVu2mElE165dSwqkGIkLQmSnVvXnNpIGA9YAwIuvGCdk/3XtpYvohg9gV4sisfk+6ykmZLQY2pjQYrT+YtBiXr/Z1ZMNouvUYtWiyf7vtZXOhg0bsGXLFrRr107IXjgR7dy5MzZs2IDNmzejqqpKOkCXSVtI8kjrmCZP4pLqDgeDtGQ1+l7WIvOJpQfwWkzz5/HYwpQWTZ9ypP1mpogWo/YeT9Z4LeZPizK/75l3Fi9ejIqKCrRt21bIXjgRbdOmDWpqarB27Vq0atVKOsAsEO3kUUQ7Tx46DmUQErmePA4GHjcwpcU86BAobi26FIsnHa/F4tWiJ194LWajxby0j05sXHOfHXZAu3btUC5Yl3AiWlZWhk6dOjmTiMoIF3BfvFlMZuGOFKVtKG3kJ+h08txGLmix2D7/64IW89wnSxHZ0xLA/XkxK6gb0nmcF23c11LrOy5pUbSPudAXkygFLRYTXbp0EbYVTkQBoFu3buTPiSbdYMrnSpIwMYn6jslGJmmN/5tSLqwzKRbTlEJf0KFFn+Bkgwta9OjDazGfyDxFJXpfWXb+vjVE91qA589rMRmVPq0Lm1rUfc9s9AEbdQwaNEjYlpSI9urVC7NmzaLGI3SDo0lFqQk3pBhPdaj3KP6ZgfC1tDIU8vwZPJWdVurpYil+tqFYod5T2UVYqWgxfp1eix4q1HUOpc/J9AGvxWR0jaEet3B1fUqNzQWisffq1Uu4HDkRfeONN4Ttp0yZgqlTp5IeDTB1cknxnYeEkHIqmbfODOjfjFA9ZTA1uamWAcRPxPLYD7Iky8fkXYG66DKtRRu6Uml/r8UfKPbrywITG/TFqkVXDjNM+HZpfuBR7Pq3sT5Nel3WTtaeWqa2thbdu3cXticlottvvz3WrVtHKeLxOEE4GMhMPLKnuqVYhwu+PW4jq0VX+7zvy568InPiDripqzzrMA/JpQnyer90ozInRsuLljFdR23jxth+++2F7UmJ6A477IAVK1ZQihjFtdMDGUR2JGXFWgzt4/HYIk2LftL0eMxjck50hbzHXwzYfFIir+RtTjR5j1ztL67dgw0bNmDjxo3o06ePcBlSItqnTx+sW7cOGzduRE1NDTnAYkX1+B1g74iE9nkfAF3bqXQtHk8yJu4XT1Nx7UX/75oO/UaTpxgQ0WKxzYkejwo2H/nNek70Ws8eSn9r3KQJqqur0bFjR+EypES0WbNmaNOmDVatWuUT0RREks40WHZpH5L2CZYb2Eh2KXVQkxaTSY7NBEpWh/EYk7RYjDp0qb94ioMs5sS869BjFmr/yNvnSVmo6DD6vqtzoskvkzLZX4opqe/SpQvKysqE7UmJKPDD50RXrVqFDh06CJdx6Vl/3b7DBVjabpKuunnPkuvYKTbR7n6B6rGJLR2GPik69CfxnlIhCx2y/Pu5Rz/FtGAuZtLWhC7MiRS/Hj3YaMshQ4aQ7MmJ6MCBAzFz5kxqsaJAx46uaD06dl4oAxEVlzYLTJ4MylCqybetjYy0ts1y0uLVbVKLHk8WuKxDXv1eh55iQ1WHNtZDvDq9DhtSDNddVVWFAQMGkMqQe+DOO++MtWvXCttPmTKF5F/mRogKiXpkH+6oRndWg0Jhmz+uEsbGizl+bdHXPG7jcr/TRbQvsvoqq0+73C5JY0f8+rwOPa5QbDoE2DEDXoced5HRYRYxisBbm0b92NCh6+NUEq4+mVBVVYXBgweTypBPRHfaaScsX76cWsw5dCevuqCcpomeQLHsZD5/KhMjFf/ZtNLCVR1SyFKHHo8OikGHKngd0rBxzaXYrrp1qNtOF5STUK9DPq5d85YtW7Bx40bstNNOpHLkRHTHHXfE999/j02bNqFRo0bU4trhJSJJHTa+iyRiVyqItIcLH0i3jY3P9+X5M4Reh3rxOvToxOtQDq9Djww8rZSCDk30+ax1SG1z1+8RBUrbVVVXo7KyEr179ybVQU5EW7dujfbt22PFihXo1KkTtbg2KJ8bM/GhbFY8sqciMoieBOo8MUxqx7Rn/kUHWU++ENVh/J7nOenOGq9DTxyvQ/unPy7qsJgWwBRcuW7TOnTlOnWgW4fRj8+FiOqwWMbAJGz1nR49eqCiooJUhpyIAsCgQYOwfPlyUiJKnfCojVYKHcll0nasoglxMQ2mxQ7lUaFiWtTmFcpOutdhfvA6zBdeh8WF7NqlWJLLrGJUrVdUh1l//jQPfUCUPfbYg1xGKhHddddd8cQTT5DLmUouZY7NKb7TbHWdTvKEYXNR4cKJcfRv3f5lsPE5VFufdZWpI0+LWtUnE5IWiSz7LJ5MUIE6proQczGh0q7FsqgVgadDF8cik2NqMejQxdht6NDkesQWedIhQNcVdUyl9BdqHyiGz13X1tZi2LBh5HJSiejIkSNx1113CdtPmTIFU6dOBZB9cunKghDgP8uetmPqyiBgos2pO/oqg4RILFkiEqNsX856MnWJJB0mneQXc9vI6lD3Z2lcaGNTOtS5GZp3kh5hjOqwlDQYxeSCWcQ+63YWvR7TGzzFkFwm4eJcmHXbuLImZT1ybBJWHWn1VlZWYsSIEeS6pBLRESNGYOnSpairq0N1dbVwuaw7FBXdSauoiHkdn1Ve5yLFtSSdkuTKPAaRJmzVR6hk2pI6GKlet0iZvOlWFNGnDkR0WOrI6tC0BmXKUBflqtddisgsaFntbmoudAnKZ19dnQtlyrg2F+YJauJeinOh6SfoVOcEEc25tCadN28eBgwcSP7pFkAyEe3YsSM6duyIpUuXomvXrjIutOJSAhUlaZdXBtFBgPfIoU7hudbmlOtjxZ5W1tWkL8+LL1t90oYOeTvJHnFENChiFy/jk8Ts0a3BeFndJzUuzW22MTEXujivUf3nfVxI6tM65kJRDeZNWzaSPRZJ98TF9Wjffv3Qt29f0uFkiFQiCvzweO6XX35JSkSLfVEgMtmGi1bdC/C4/zxDTXJdS4qB4ojJxWsQQSQp1H1dIhOyx5NXdC3GqI+XUcereFlbGjT1kSMb5GmN5aGRNheaWGNnsR51UVei5Dn2KOXl5dhvv/3kyspWOmrUKKxcuVLYfsqUKbJVGUHHzQ9FxtoBiv4xBct3Ut3ReIul85cypbSA4PVXXp+2pUEWXoOeUkJUg67o0GtQHp9UpJNF/El9WlWDKptBonOhar0UZPwWw+m5zAkqhZqaGuy2227kcoBCIrrHHntgyZIlCIJA1kUiJgUj85hI+HfShCvi23RnYNUXjS3LCdlPMG7UYRJTGoz6V9UgtT5VvAY9xYRtDerCFQ16PDJE+6aoBl3ToUkNunatFGznBbpZvXo1NmzYgFGjRkmVl340d5dddkGhUMCKFSvQpk0bWTfOEr/ZMs9YuwrvM6SsRwqL4Xo9+cRrkG/r8diglDUY/p9nq7NeT0Py3kY6H9V2QYOm6vIalMNG/JQ6WrRsiXbt2mG77baTqks6Ea2qqsKuu+6KJUuWkBJRE8+kA2qfZ0sqF/rN4rEi0evRER/rcwNJu1OhvWjdMvfHdLtT/Nv4vGReP5MZYkKD1H6WZ6LXGv5fRIMeTxTdTxNFdZ1Fn8tiwR2dA8P/ZxmXS7h23abnTFtzsq51KGXd6CIuaVBmzeoatmKaOHGidFmlCMeNG4dly5apuEhFdyPGTx10f6bF5UGAWmdSe/AeE8mSrOv3pBPvK9F/Z/2ZsjhZ1x/GkKZBV/TnyQcsDYa4psGsYbVHdKHsNZg/sr5HrL6Sdw2aXPemzYG89XwesBWv6T5UU1ODcePGSZdXaoUxY8aQPidK/cIilcaLP3MeX/BG69AldhOfTUsTF+VETwesASHpWX/ZwcG0cGwN7i4OjDZiSusH8c+KuDbZZjnBpbVFUpuJjnt5pJQ1K4NuDdrsP64vMG3MgcVAsSy0ZQ8lqPrTuU5TtaNq0OZalNVe8Q0iXfqjxmvS3tbajcL333+PTZs2Ye+995auU/rRXAAYPnw46urqsHLlSrRq1UrFlRSsBmMJnQX1MULRxyJE4NWdFI/odWUFL6b4rrupxyvy/liry/D6Pq+9Xe+rPOLXE+9TLl+X6IIi/L9oWY/bqMyBro2XvHhYj6i72GezngNdu58uo6v/FPscyHvftUdiWRtCcX9+DhSH0h6t27RBhw4d0KlTJ+n6lBLR6upqjBw5EosXLyYlotSkjrITozNhjPo3NcgnCYIlelu7q7raMel6kibmYsBWcmyiz7Pq4GFaf1QoMYhMSLzHYWXrtA3v/ojoz+XrKgVEx8joPc3T/UpLykTmQNevN2l8zHIOLJbTShtQ9Bf9v636dfp1RX86/fLGxzyuQV07QQWg9FguoJiIAj98QPXPf/4zBg0aRC5LaaQ8DWZpi4F45+fZshIZlohEfJlEdvFDaSMVXzrJ20IvTrRPFav+0hDVH4u4bVyDab5c6j8isUb/VvHl2ZZS118UWQ3GHx/M0wkwoG8OTDsRygs275HsqVveoeov/l6S/tJ8uYZO/VH7k4vjkQw1NTX40Y9+pORDuSXGjRuHxYsXoyDY+cLPicZ3VHh/TGPrxCr6J4rKNbLaKKmu8H0RvyaQWWwk9Q3ezpbIH5eRXaBSrl1Uf649giNbhwn9scrb7mem708p6k+WPOrPBmn6U50DRevKK15/YsjqD0hvY5XNyqR4KcjqxKb+4vXFX88jFP2F/3ZJfyZPUJctW4ZNmzZhzJgxxKgaonwiutNOO6GmpgZLly5Fx44dhcuJNo7sToOJCVzEbxivyK6Trg4Z1pnFIwcy94dCWpuzrplnHx8s4q9RYjJpr6OOtJ0+kwtc0/6TENWfzj6bpf6yJn7NoidSXn/5TzBZJN1XU/pL8m9afzbmV9H3ZfQX/7cIpaS/vI3fXn96bEO8/tLp2LEj2rdvT64jinIiWl5ejr333htffPEFKRE1NRlTEiPdSZRI8inrl+onKelNS9hcQff94bUJdceItwuoI6akOqgxuQ71/iZdJ1V7pjdQikF/gN6+xWoTqm9WGZX7aHJMKCVMzX2yFIv+dKKqP1676dafjpjS7F1BVx+U0Z/O/h/3laY/0YRNpm5X0dHXXVt7VlRWYtKkSVL1R9GiyokTJ2Lp0qU6XHHJegBJewQhPiC69lgV6zGTtMcFsm5zKqrJumrdSY9upL3vocPquzKPUtlARn+lgI7rTnt0SuTRqlJFtg3S+q5rbcsaF2zrrxg0zrqvxa4/F+O0sfY0cQggOveZanNTfrPUdpZrz0aNGmHChAnKfrS03r777ouvv/4adXV1QvY2f09UBOqpDGvxG7+5oj7T7GR2B0VgdUqVSdn0IxIevZi6B6YnENbkm7eFDcAfM0o5KfW4Tdrcl/VGIMVWp/7yNO7YxNY4lmW/s0H0Mddim/t0rD1N4NIjxSqYyh8A4KuvvsLGjRuVfj80RPnRXADo3r07unTpgiVLlqB79+46XCqj63Ep2UceXBEUC1bbsB4biP7Ns6PietuIQOlbtq63GB8PdOWkxXTb2tKeDYqxH5YivDGrGO+tiP6K8bo9etE1z7ukvbQ6dRy4sA5wROY+0+sq0xscJpNEWSgxbdetG/r374+WLVsq16vt6saPH4+vv/6aVMaFU5mkR3XiO09ZxBnfDVPxJWOXtGts67M2eU9ciwFbyXTSrq9t4p9rsQXrkbYwBpuPE/rFd+nA61fxRyxF0LUBzFuU2sKE9kpNU6V2vaLE5xYd2tP1FF7Uxrb2KOtOCsWwhnQtca2ursYRRxyhxZe2aCdMmJC7z4nyJrukZ61twRNcVo8w8J4xj7ehC4KnxkB9pNkGJmNyYXHA6zcuPG7kmvaA5McJo7F5PGmIai+rzR8XtBef913XXtb166AYrkHkBJG3wWlTe7wTRlZfTtOezg0q1klokvZYZWyTdf08TCau4c917rfffqRyPLS14N57743vvvsO69atE7K3/TlRkR1N3QOATEKUdBrE2yUySdopLKvNdJ7cZDEgexpiWntZJ56Am9pLghVfNK4sk2ZRvPbM47Wnn2LQnsuxuYJqG1G0p0t/VD887cVjjNubJOkaVLQn2jZZrql12NugorISZWVl2HXXXbX40/IZUQBo1aoVBg8ejC+//BL9+vXT5VYK1ilnCG8niOrfZMKa5jtpYBCNTfc1sGKL1sXaZePZq9bvonAp7e3qNYggoz0TfZGigygq2tMNtV2y1p4nW0zPe7qJnwYlvR+3cS3Ro2hP52OWaTHkDZOnOKbHal4dedRenDxpj3cvTK15WTHotrcBNaZRo0ahqqpKS93aElEAOPTQQ/HXv/6VlIiqdo40QYiKTLew0nxSF8BJ9cR9UgeZJN862oU3UMT/nVTG4xYi/cLVe2hKe7p0pxOb2svzBkqe0DHnZYHKKQWvnO45TyeiC2SevWlMJn3FAu9xUBF7Hehqd5k5j2fD0x7P3kTfSfKpY85zZQwJcU2rjRs3xrHHHqvNn9aIDzzwQHz55ZfYunWrkL3o47nRRR7r+D3+iIPJR41Uk+akxyBEyovExlogm56oZU5uku5ZPG7XHneixOHaoEYh7R6o6s72qbzp00DWo0KukTZe8rTnsYfI+GdrzlMhaf7REa/onOcKFN1FX/OwMTHfmNadrfvp0pxn4ikAmXuve85zVZsmE9fvvvsOGzZswAEHHEANi4vWE9HBgwejefPmWLJkCbp27UoqK7rbRD1BpdibOLrXtQtMPW1IOyl1FZHHWEztsLm4kKMgow0Kor5NnoxR9RzF1v3V8RhTFm2Ypr28nsS5iOi9lZnzskbnySeFpDnP5fbj6S46BlBOgEzh2qmMLHnbRKYkcbbnvKSNIJdIO90NMb3WpPqz1Y6UftK+Qwf06dMHHTt21Fa/1kS0rKwMkyZNwltvvUVKRF14rIa68EtbHFAHBJ2Ljbgv3uMlopO0qYWQqF/RxRhl0Rz6lcFkkqAL3UlmOLm4MDEnQdGdjftoa3Fs8t6I6k50w8v1PqSCCd3lAVPJp8oYHRI/6dAVm417I7LG8Lr7AeoJlm7tyTwVpoqM7kyPOdET0rhP1dhsQW0jykaRyWu0MSY1atRI62O5gOZEFAAOOuggPP744wiCAGVlZcLlTJxy2k4YWItgkVhtxpk0SMRtZGLLMlmJLz54cfAmbtcWfTLxUCamPCSWUXh9UVZ3OhHRSdwmqxNb3RSb7gA9O9fFojsevDZy7dpY2rS9+W2ij7uuO5l2dUV3Lo5JIaWuO+p6lIpobhH6N60718anyspKHHjggXrrD4Ig0Olw48aNaNOmDcaPH4927doJlZk6daoTj9tSdkvjj86EsI76Kf50xCdbJ29QN9neph6bNmGf5eSkqw/Zsjdta1t3Ottft+6opzxed+JkrTtX7q3o4tdV3bHa0abuTN5HU/Yu606mPU3b67alnLLZXj9SfMXtdOjOlftI9S1i77ru2rRpg++++4500JiG9hPRmpoaHHTQQZg7d65wIgqY3SXW7Tu+05H1QlYXrMGNeq0myfokgTWYmhq0wjKu7XJmBesk0WbbmLwXqrqz+URFFoie/LCQuW9ed/+FcuJkot60e6HS79N0RzkZyRIdp4gsbOrORc1leXpKPenVXa/I/RBtn7gdax1F1R0Fk/fR5DrcxpqRal9dXY0TTzxRaxIKaP7W3JAf//jH+OKLL6D5sLUBMoOprG04QUUnKlH/Ojoqq17Wa/H3VQkK234jXFJbuIapCVoG1yZZG1Dak2WbpDnT7cmq21a/z7vuPPmF1c/CvmhTd2mvyUCdq3VrLq9zgKvjDbU9XWh/Xlvy+lqoOV2xs/zw+rjtuS6agGU1z5nuIyb7rOn17oYNG1AoFLR/PhQwlIjuu+++2LJlC7799lshe9GfcQmxtSObNCjY2LWJLwZYCwJV0YqUi9cb39GKx6CagCTF4AquxRPiUvJNhbcIltWczLXxNB/+m2dnCt71+6TUowORBbDpPsbTfPzfNvu86FxnAhsnM67OX3lFZm7SOdfJ3E+W5ln/lu3vsv2Yp3lqHC5p1NY8bVLXjZs0Qdu2bbHzzjtr96390Vzgh+Pbww47DO+++y7pK35NHMuL+o6ffAB6byrl2niDQ9yX6mChsshg7R6z/p/VI4VU364+3mhSEyYRaU/e+1lcb5rmWO9lkQiKPMbLsvN4ADc0x9uwFNFdFn09aa4rFc2ZPJlxDd3xu6C5EBHN2d54FWkfmfWlyPtpMWSFrUSX0gcbNWqEU045RftjuYChE1Hgh8dzFy1ahK1btwrZU09FAbXTtKSdYF4ZlRhEYe0KR+HFxXucz0RsSfUnPWahYzBzbcCgYjJ+W7uosohoTiQmyim+aFyU+qN1mNYcJYYsTm88bqNLczrjiUI9AeKdVOpEZHFrWnPFnNTGKbbxSYfmdLZJ0tMOosiOE7r6sYvznOn1lskxQCbR3bJlC4455hgj8Rg5EQWAvffeGy1atMDnn3+OXr16afcvc4LFsle52aIxJNmZiCnqV2TH1tSpG2+Rztrdyuok3GX/rp7SUqCcetjCBc2JQu1fopozGYNHL9RN0VLQXFjehacBTGgu77i2iKZiQnMyT6yJ1i/6nuhTgUkxmdAc9VpNaM7U4ZOtccB0otu3b18MGDCAVEYUYy1UXl6OM844AwsWLCCV03HTkk7hortBqqKUiSseYzwuGV8sWLtvKjtH1E7LGwR57S9ycmpjgeHSiaVrpOmFdf9E9aYjhjR4celGl+Z0xhK/Xtb9KtaFczFel445joLs0xMszcn6S4qNNZdkBUVznh8wPTfq8G9bc6Lw1lHRuOJ2OupM0pxo39alAZV1pWu4lugGQYCamhr84he/MFaH9t8RjfLNN99gu+22w+GHH47mzZsLlaH8pqhoMha1p/im7NLIPGqRtGsm4k/WRjbJM9F+LFvqfdUVR7HYA7TdPV0bIDb0RrGlaE6X3lh1qOiNYqvSfro0l3c92Iopb3Ocbb2J2mU1x1G1ybKljKVp/qn9yZX+7ao9Dz/H8ftPPBY/x7lrD9Cut6amBsuXL0fjxo2F66Fg7NFcAOjYsSP2339/fPLJJxg+fLiSryw6kYhtUKB/KUuSTxF/FFjXwEr6dCbAqvD8x2OllM0zptvclUFb13XKTIg64GlXVm+6x4Ik0hYWvDiKUW9ZIHKfXW5r3ZpT7fcqc5wtkjQnqjfT40MeTpBkcFlvIrFR9Kb7HvLqCl+n6k024abaysxxtsexLOd7HlVVVTjhhBOMJaGAwUdzQ8466ywsWLAABWLGHv8TwjuCd5F47Cb8JyHSPqyJjdXuov4o8VFto/Xz+gEr/qzvg4o9tc1ld34pehOtgxKLrgTUpfvMIklvrhG/567oLa+w2khUby7OdbrmCdPwNKfbrw5bGb2Fr+uORcbeJd3L6i18XcQ/JRYKvKRJVm+iJ50myMN8IKo3kcMQm5hOdFeuXIlCoYDTTz+dVI6K0UdzAaBQKKBHjx7o06cPtt9+e6EyMo/nuvB4BOsEg7Uzq/L4Q9xGxE7msQfe7pBMm+i0ZcUq4puKqf4XlrHx6AWFUtebDk2K+mLZlbLebGghz3ozFbtMX03Tm0zf59nE/ev0xbsOndcgaxuPVcSegotzlUvzuYl7RbVlzW3x8rb1prJ+ZelNpk1E8HpLtqfEVFZejoEDB2LOnDnCdchg9NFc4IcvLTrvvPNw1VVXoXfv3sK/QSPawDzB6vAtYxvGxEI01jS7+Htp9VI7a9xXfBdIxB/lvsjcQ1FEF/O8NhWFZ69rQWtyAqbupru2G6iqt9AXbxea93+dJz+qenMNit507urqWlC4ojdTqLS5yb5IndtkYZ165BVqn3NtbpOJSTQG02MnxTflPunSG3VNITKnihC3U9GbKdsQkxsPMjGp6k2kPtGYqqurcdlllwnZqmD8RBQA1q9fj86dO2PUqFHo0qWLUJk8nIqm7VgllZEZQOODE+VkSGdcLHiLeFd2sVw7EZEhj+2TpdZE60/bwY2fltg6FYrHwapPxWdetWkDV3axszihMak1lh3vtIR1CssqpysZMaE1k7a27E3jyvVmsY6UTTqo67WkuY23jmStP3XFFY+DV6esT1PzINXeNa0BtPg7duyIr776ChUVFUZjMn4iCgCNGzfGOeecg/vvv184EQXcORWNl4vXzXqdh8wpDW9wiA8i0TiooqGe1vLqi9dpYhK2cb9l+ofJAc00JneOdWuN9Z4K0f4kshOtqjWZ+ELiu8kydcroxyQmtSbj36W2sUXSotBUeyTpmxdHllozWa8NZE9mvNa2hRJ33DZNa7Knjkl2qlrTfZ/S1q3xGCl9ypQtxd5VrQn3mf//ky2/+c1vjCehgIUvKwo555xzsHjxYixfvlzIfsqUKeQ6TE6YcWGGf0KoHTot1rhA4/XxfMVjYwlcJa64XbQ+1iAmiskJ3rXFg8lFtw17IFutmUJEa1FUtSYDT2uuLOhc05onGZ7WTN9HGX2ztGYSVmwuac2VOEJkF9+u2APmHzvPUmvReuPEX1PRmkwirUNrJvVQalorr6hARUUFTjjhBFI5Way1bvv27TF58mR8+OGHpHKUk0ZRRB4vYJ08iAwaOjqsjlOPsJyJSTQpnqTEVPckbmpwsJHIlQomtaYD1uJABpMLVp6fpMnbpQWzJ3t4/cLmYtik1kwjqzXXNOjipqZJstjgltWarsMCymauyIGIqNZ0xZ+mtbSyOmJQ8V0M9jU1Nfj5z3+O2tpaUh2yWB0lzz//fCxYsAArV64Usjd9Khq1TRo4RP3K7ATF4zGx+xS34Yna9KDNS0zj90HUHxXXFgVUbOwIi6DST1j3XXYxrDLxxevXVSdPazK+KIT15i0xzftC11XSFsPhv23FEa1fJ1k+GSC7WObh2gmeDVzRv0q/0ak12etjzakq/uK+o76y0pnugw1TSWsx2AdBgJ/85CekcipYXZn07t0bxx13HN5//31SOdPJCWtBHH9sgOqTYqdjl5rSRjxRU33JJOe8Npap3zSuDRCmMRGPzj4uQ9JC0WT9IjoT9aNaP++k1rX+55GHN37y+oGNeFjzqok+Z/JphKQ64/Wz9O4pLuLjJ2/tSDnAkIHXz2R0RhkX0vq4zoSbdQ1pc5oI/jQ0mZqaGpx77rlo06YNqQ4VrI+Ul1xyCT777DOsWLHCWB1JJyA88cgKIw5ViLwdNEq9MqeirPpMDV5JvtMWzGkLeFObFKVmrwsRnemITaX/mdQZr5yNxYloDDI68+hBR/sm3bOsEs94bNFYbOFKMqiiM1dO/ErNHkh+ckxlPtO1tmTFRolDpU7egUI8Fp11suplxWBSZ671Uxv2ZQDOPfdcUjlVrI/S3bt3x4knnojZs2cL2YeP58oKVWTXSgSdIuctHnTUKxNXmqCzIGmXWSUuv9BmI9PPeIO+6mJY1z3KUmc8sji9SYslbTIPX/Nkg6tJZzy2eEw80mLV0deoOjPZvyk6E8XrMR2ZNZuozmzrzYTOROtNQuYwQ3dinrbusL3R6tohg/Dh2P//ptxf/frXaNmyJakOVTIZzS666CJ88cUXWLZsmbIv0R2rpJsh0+lVYpUtq2oje3KaJGJdA0+abdImAish0pnMlJI9z4eKzkxu+CTFGvWX1UKdRzwuXf1WpXzaRp0pjXl+IKl9VTZRVWNKijUaXx5wod9S5zKd9ZaSPYu0tYLIGEipi0LSeBt9X8dGTtwnJa40uyzmB966Q8dcViqnp+E35f7sZz8jldNBJiNyly5dMGXKFMyaNUvIPnoqKjKAUDAxgfI6ffge66RPJcZoeRFhidaXNlHK7DjqtI3Wb2InzLXFlY14KJO0rZiSCOPjxRq3U6knXpeKxqKwxgMbE7kJjWW9yM8LlLksa42FsBbG4R+dG168/8dtReHNuaaTaWqM8Vijflh9xZV+4SpUjdlYC/LiZMUcj9NVjaXNu9F5kwK17UT9mdwEcm0zRtS+UCjU/25os2bNSHXooCwIgsB6rQCWLVuGnj17YvTo0ejatWuq/dSpUwHQdyconVmnbbwT8+yp/niL66SBilVGpj5Wvaw6knzqvh8yfkWILlgo4nfZXvT6dbd7tG4T/SREh8aSdsBNaCwtZl4dMj5Z/r3G9NpnrTHT99OWxlhaM62xrNYKsrZpxNvLVc2I2AIgayxaRmcsxaoxXhmvMT7xPmliPWTLvnXr1vjqq6+s/WRLlMy2r9u2bYuLL74Y7777LgoCjSX7WVERdO6E8Xbe0uqmXhdrAOHtqsrsoqbFnLSbpIqpnd6o3/iuWNpOXtqfrBCJixVj2vVT6jdBkl9ZjVHqjWsm7iOpv8jUx4o5zxoT6V8UjWWFqPZ5fVJVX1nAaneR+KnXJ6MxnfDmSZ31mLjnohrj9dE0jamsRWTsKXGJakxUb5TYddmyrk90jBBJCln1ROuI+2OtE2Xq48UrM4fpTiwpfuP2ouvE6P9F5jCZWGTsReaw6upq3HjjjZkkoUCGJ6IAsGnTJuywww7o0aMH+vXrl2rv6qkoT7yiPql28XpEfMkIgRJXUkIts2tkyjYer4rvLBfILCj9gYeutlHxzfKbpDFRnzKTKq9NRfqDbt0HBfaJbLydTN1rE7Zp9i5pLCnGrDWjamtDX0n1iPii6osaV9p8TvFn2jYel6y9S/oCaP2Bhwvtnqav0I/pNSKrDKU/UNZ+InGx5jBWOxXLGjH6vguwYiyvqED//v0xZ84clJWVZRBVxokoADz22GM48cQTceihh6K6ujrVXiYZNbVQjqMyiFIXykm2lIVdmp80myQ7Sjvx/GY9oVB9593epYVynDzoi+JHNK4kO5WdVq8v+/ZeX/y6RH15fXl9JdkC7tyjOJSkkFq3bX3pSKKLRV9Ue5f0UllZif/85z/YfffdhevQTeap+iGHHIIBAwaQf86FAmVHIs2WlciFf1Tr59mVldO/VCFpIIzvQMX9U+pJsou2jWidKoj6o4ia6lvW3hVk2kYnrL7uor6SsNHXo3XZ0pcn37D6hYi+TNSpAquv8+oWjTGpLp6+siTrcVoWG/OoarIoS5q+ktZJuutMsk/DZl+X1ZfONT0vLopvU33OtH1VVRXGjx+faRIKOJCIlpWV4aabbsKHH36I1atXi5czkHQknSJGxSHjMy1e3m5RtE4VXzybuF/WIKBjQo/XxaqTVT7rCR+wM+m7NkCZ8s3qWzx9mW53nr50YntS59XpwuLZY5+khapJfelOPlmw5i6TUOYu0wtlU7g0r4S4kHTz1iZJcxflBJNix6qTomnKCWaavlQPK5Js0+YtHWv7OCaTVtP2MklxEAS48cYbSfGYwIkRcOjQoTj++OPx9ttvQ+RJYZkvLqLa8sTOmox0EvrjTeLUI3pRG96ulImBJvTP2i2UXTTbOOUUxZWByTWS7jFvZ1TUJ8VORwJK6Tu8Pm4KnraiddtIiD1sbCSAvLkri80d03UmaUvn/CUyXrm24ZPnhTUVG9eqW1uU/smbM8O4dMJbc7LWp0lQ7eKJvOiBhWr9UfJ6uklh69ataNSoES644AL07NnTWD2iODNiXn311VixYgUWLVqk3bfoJBO/8boeqaCeZIosknV0UpZv1gBAqU8lLpHFc5p/0fptJK6uLEhMXitFW7yFHK8fmiBLbcXrpWpLNR5VbXncQ0ZbpjdPVeZMyuYpy7dL2grr17mhZiPZcoUskwjeuOiKtkzN6RRtmTqk4NVdDNqixmLKvrKqCq1atcL5558vZG8aZ1YerVu3xrXXXosZM2Zg8+bNqfaqp6JJAw0VHYMPJQ6RxJayU5Y2+CSdZLHqTINiF90hi8bL2/mnYjJxpeJKoqt6rUmnMjr8y8YSj4OFSGw64uclhEnonHSTdrx5Oje5qPdJcDpJ416W2gqxcfopgoy2KL5FbXSc6LiMK/OVDkTWgzrXN0ltkZQAq9arakPRFfXwgjJ2iMxZWW5kqNrLQIm9qqoKd911F2pqagxHJYZTI8Pxxx+Pvn37YtasWcbqENnhoiRxqqeilEUyBVbSnRSXKCJJKXUAErWN3yveoGhysjeVuJq2B8wMhvE2Z+3csnYyTcUR/T9rQaFat6l+JrrZYwoRXYX/95gnqZ+lncrYiEv3nGWqn7GSQduw7le8HSlxmbrnLi2WqfbUtUT037w5i5qEUtuPl0zF30+rm5LU6kgcw5hEdGWir8Y3enRsPNlIWk3bi1JdXY19990XEyZMIJUzSeY/3xLngw8+wLBhwzBp0iS0bt061Z71cy5pN4YyqOi0jdrxdt1k/aW9rqs+0aRCtN1M3Ysk4u3i2oBCsacM9KrXqkNXlDio912nrpL6OUVXsjqIt3V4bTp1JWObhE1dmer3pu0pY2iICV1RfbL6Y9RGJE7Rfh5/3aSueHWI+uPZUXwmIXvt1Diovk3b65g7XV8HpsXkoq7S1pzhezJzt4gdxWcStnVFtTfpu7q6GgsWLEDXrl2FytjAue3tHXfcEWeffTbeeOMNFAQaN/qIbtrOMUuMPGRsqT55u8mUuqPEd/fiPnm7sdTJhOWXurii2FHi4+2WJe0+iu6gUXf3TOwGxpHZyaP4pOhKN9TBWFRXVJImb5aueGUpsPqsij9duKCrvBJvl6x0JQpPVzri4l076/+i/Sjun4UL7coiaa3C0hXFrwuYGrfifYO1trGpKZkkNCk2qj/etbP8xdtNFF6cMutWar+grgVF5iqTupJNWk2wfv16NGrUCFdddZVTSSgA905EAWDDhg0YMGAAOnXqhB133DHVnnUqmoTqDjbPLimGpB1lGX88vyJleOVE69MZk8ndMJPiN9HXTNtH20X0mk0MuLp2S6maSvPH8yvqW7YsVQNpvk2MbzK2ooT90YUdZhV73ZqixkLpR6KaAuz336Ryon1F9/ypa8xStRWFqinZWExr1lRyYHP9J6spih3Ft2xZEzFlvf6T0ZSo79C/K5qqrKpCv379MHv2bFRUVAiVsYWTiSgATJs2DePGjcPBBx+MFi1apNpTklHTnZq3MxR/XcdgFJ+kZaD4oMSetENGbYu4T922STHo2KVyacIWjcuWTtJsebu4UR8y/TItPtEYVX3IJBB50JTMgoWC6UTUlKZc29yxrSnROJN82NAUq428psRjYdmX6jwV+jG19hONM8mHibVfUh2uaCotBpk+K5u0Uu0pmqqoqMAHH3yA/v37C9nbxNlEFADOOussPPnkk5gwYQLKyspS7adOnZrpJM/rELxdsix2r5PqEfWlsiNNaSNRnzZtQ3vdA5dOslgIy/hW2bGU1ZTMpoPqBJ/mS3XBr6qpLO+vqH0xacqFRDROKc5RSXYqcbugKVMLbJ2k9RkX2pDa3lFc15SpOSrNR1pdsnWbtBW1z1JTvLg2bdqEFi1b4oILLsBFF11kOSoxnE5E165di379+qFHjx4YOHBgqr2pR3RN7E6pCpv1uuwOGdWXyZ3yNL8uTTouJHRU+zxN8jKakp3k03ZtReqPlzGhpzQ7l/SUVresb5lYTPk2GYvuRVXe9UTxpWPBz6qHVRfLNosNUFlbGd+AG/Nflm0oM9am2fDsdMwfab7S9CQae5bzuog/ql9Z367EUlFZid69e+PDDz9EVVWVUBnbZLsllkLTpk1xzz334N1338Xq1atT7VV/W5QHS6jR8jKTa5JPlh2rvvh7QUH+twl1+Eryz4O3cxb9Q/Vp2lZ2R5+CqZ01nTunum1Z9z2M11Sbx+ti6YBlK+Ir7ifqP8lWhWgd8bp06MnjLry5wjU9ic59VF/Ufkwd71l6UkU2edCJDf2bvE4TvpPWejw9icRBWR+y6kqao2T0FPXF0xM1gRZFRE+m+qaNfuZKny8vL8cjjzzibBIKOJ6IAsDYsWNx/PHHY9q0aaRv0RVBVMBR29A+TdS6BZQ2KcdjFVlAiwiGtYCOl08qS7Fj1ReNX3ag020bYipxNZ0smkI2btZmjujEzvJHqTdaHw8RbVM2o2QX0DLtoVNPYVnRel3CBX3YQLeeqPVG60sirf/b0JMoSW2ZlJzoxoWkNcQ1fYtCjTtNT5T5hmLHqi8J0cMSUV+UtTErDoq9Dj2Zso3aU3AhaV23bh0aNWqE3/zmN9hpp52Ey2VBLmbn6667Do0bN8Z7770nXMbUZJS2OxW+JxKDjNipyZXqLleSv7hPFXjtyGtnymJadSeUhY1k0YVYTCw4WHWnLZapm0Widcv0/9APb0yQ8Rf3aQIRPXncQuQUImluspV8RusVhbXgpS6a4/7i8VHLUCgmLZlalNtYxOuy5a0p0vSkQ2M6No90ainqTwRqop223pPxbXKtksektWWrVhgwYAB+/etfk2OyTS5Gy9raWjzyyCOYM2cOlixZkmpPeUSXlwyq7nSK2ibZseqWneRYk76scFnlkwbxaBlR3yx4g2n8XskuAvKW0MVxIXFl2aZpSXS3VwVe3a5oKerD1kI2eh1JO9Lx+DzZkaQl04lnPIZo3eHrMrC0pDpG6dYS5RRJREum9e2SVl1YxLPqShvr0vohNV6RzXSZwwlWHTq0RF176ljz8mx1acnkWt61pLWqqgpPPPGEcz/VwiIXiSgA7LTTTrj66qsxffp0bNq0KdVe9hHdtJ0pqqhlEjDeThbvREY2FtXELRqTSFIq4otqx9utVLkuFxI6lxYSFHhasnVKE8e0lnT5SIrLdD8OYd0jHRs8Hnl4iadtLfFiiP9bRgOqWjKlcSq8dYOqnk3GbXoxbAqVMTHtPumGt+5ixZBULq0OHRseMlqSWeOKEK87aY1pMrGk4ELSGiahd999N7bbbjvhclni9LfmxgmCAOPGjcOXX36JvfbaK/UnXZK+RZd3Y0U6BqUTidqy4qGUEbVNG+xk/STFZsJ/aEu5B6LxiPqN+qbYF5Nv1R1S6j00oSNZ/0la0t3P43gdufHNtrp829IRxZY6N0TL2NYR1Va0TFjOxD1gUWw6MhWL6Homion+m/X4naZRHXqUqZdXxtT6Ok7SGKs7Bll7E763bt2KJk2b4uCDD8bf//53If8ukKtEFAC+/fZbDBgwAIMGDUK/fv1S7cNklEd8lyX+Gg/dCz3qQEApq2swktl9ivtN8h+1N70hILLDZGrAyvPEz0NFR7rilZkceeXzoCOROEzfA0q/SPNLtc9rIppEvG1NJZdZ6UhXkqlrvkwrb3MsU02ioj6yXhDb8J1EMekobeNKJal1TUc61uC2dWQyaaX6Lq+oQIcOHTB//nw0bdpUqIwL5C4RBYCXX34ZBxxwAA444AC0a9cu1Z7y+6ImOomoYIJCQdvAEE+4qAsrXlzUmKI+49cXjzVefxa7bCIJatyPjQnX1uSvM0G3taGjY+Lh+VPRpC49xv2xdMRrlyw21aI+k5DdvKDEIWOv6tu2hii2MnNRlhqK+mJtIqrOkWk6ynIuisfLghWvq3ML1bcOHZla9IvGq0tHqn1fpx7j/uKoaohim7e5yHTSWlVVhRkzZmDw4MFC/l1BbNXtGPvssw8uvvhivPLKK9i4caNW3yzB6/ZZVs7/tsHov+N2IvWwylIHmqifaNwqSWjcNytW2XooA43IxB6tnxUvK+bo/+PvseLIAl5srNfi1x3tnzqRvdesPsPrWyoxxf1T/ejQYzyOqG+ehrKGFWeahuKvuXQ9Ibz4stQQlaRxlxWnrIZ0JI6seOP+RWHFweuTrPpFfZtARENJc1GSX9uIaChtzSBz/0Wg3uu0eHXFo9r3dc1ponOujB50btCwUJ2LVOPQlYTy1pqVlZW4/fbbc5eEAjk9EQWAIAgwadIkzJkzB/vuuy/KUzqEK6eiUShlZHe/ZMrr9ie6YyRbD9W/btt4DK4tnuPEB2BTu3MUW1P9wwUN6dCPaBmZRXRYzmtIHBUNZWmroqG8z0GiZVQSUZ3jnYxtNIa8aMjkvGLSNorrGtKlH9FyshpyYQ6K2udBQxs3bkTLVq1w7LHH4s4778w6JClym4gCwKpVqzBkyBC0bt0aQ4cOTbXPKhm1OQiwYpFdnOrwJzMAs+pIqsulycnGAiNPvl3Qj0gdrLp4fT4P+mHVk+THlUWACdu8+tZlWwz6kfUnW2+8bJoP1/sAyxbI55wi6lvX5oCuhFAknqS5QTWZdV0/onW40l9EbU37rm7UCDvssANmzpyJ6upqoTKu4Xa6n0KLFi3w5JNPYu7cufj8889T7XX8vmiSbZSy8uTHnqLvifhPKxevi1eeUrcufyo74by6VAZIE+hKFPLgWzey+pGpQ1Q/rD7Psk1CVT86klAR/VCgxOJC3ypVTOonqb5oXfHylLqp/pL0E41fhKS6VfVDKSdbhygu6FPmGnWPQfEYovc43odk9ZNWf5JWo/WL1q1Dj7b0I5OkicZB9WtCE6Z9N2rUCM8++2xuk1Ag54koAAwcOBB33nknXn31VXz//fep9qaS0dAuafCK+6X4jvuK1iM6YFCSYRHx8Pyx4pIhWne0LpX6ZDYYTCweXEsuTS2QqLbUCVlFP3EfrLp45aM+eNcRjTXJX5Kmde28i+gnb+Q1blOYWNDyysnoh+eDdR1Uf6y4RH2w6o77ZrWlrH5MbOaY1ILpZNFEHDIx89Zu8fsue21Jc0+0PoqPpGuQ1SPVR7x+Vrkk/cj41mkbjTHrOKi+Kysr8c9//hNdu3YV8u8qRTGTH3300fjZz36Gl156SfuXF4kQFxNvAcCyCcurLqipA0ZS/bIi1rVjKJokpi0OeH5M7QTnObkURefAnrRxQ12AUmD1URPaUfEpi6h2ZbXjcQPevaLqRyWJUunrcR/hv1XmHlZcFKgbUnGbrLVjMml1wbcuWxHtUJIMGdI2i5JgaVcledSxnqRol+dbt25M9FmVDWKdvsvKf/iG3Ouvvx5777239lhsk+vPiEYpFAo46KCD8P7772PcuHGoqKhItFf5vCir46oubqnldCdZrGRaBZX4ysppn9FilUur39SulswOmCs7cabiSEsaZe6JSjwsVPq7Tu2o6kamfpHxLf6+qX5log+65lvGVud4Fq9DtJzXTnq5pPEtfN+F8dsVLYj6VrHVOZ6pxMOrXxZd2tGhG2r9rHK61gYu2Jr0vWbNGrRr3z7XX04Up2gSUQBYt24dRowYAQDYfffdUVZWlmgvk4xGSSonI1CRMjwbHYMS9RrT/IgmIKzyJiYGW8mxC5OxK3HY0I1ITEn6kK2T51vVD+ukRcS3zGI6r7ox6duFJECmzU3c/7S+p3JCoFs38fI2dJNWTvYai31ekInDJd2kxSSyISFTp4hvWT/UOdHUXM2KTbSOPCaWFNtCoYDaxo0xZMgQTJs2DVVVVall8kBRJaIA8OWXX2LIkCHo27cvBg0alGrPSkZ5g1mIzsSSUo46OFDqTdtF1LlA1LXzxfIp284sZCeOUl0YuKgbSj/WtZBX2YSi6EbHwsaGbnwimmyrSzfUWOL1y25syi7o4r5tbN7G7UwmoUkxxGH1iTz2bVHfqrY6NRP6y7tuVP2k2aroVLacad2IxuJKgltRWYmOHTtizpw5aNWqlZD/PFB0iSgAvPnmmxgzZgz23ntvdOvWLdU+TEbjsDqGqckyrZxqeZUB0ebgSikb96Nr8tExybkwINqIg0VSm+reORWNS7dWde4Y67pOm0koVTcu9O2sF+uuaoYXm+lTDpX51fU5lVVGdH6V8Z8nHVBsZeZinWsBkXIiManUS5lrVPUnUo5SNu4jj3ONK0loWXk5amtr8d5776Fv375C/vNCsspzysiRI3HnnXfi3//+N5YvX04qGxSSPzxO2ZVTKaOD6HWUlcv/RES8PVR88Xyz/NtsK15MafGx/kTtROujxEZFth1FrjGMSVQ3lFhkyrB8yPTHsN60fi6qG52a4dUtoxmZ/pR0j1U1k3dErjGpnaLY0gxPzxTS6mVdP8+PqGai9VLj5PlLQiUJTYuJqhlq7LLovM6ksjKakRm70uKgxsuKT0e98TpE5hqer/jrMnOiLPFr0FUmqR+IasZEYkmBGkf4DbnFloQCRXoiGnLFFVfgmmuuwcSJE9G0adNUe8pnRgFzp6MsG5XJl+dXRWSsxYvsrmLcZ9KgmtRmpndB0+xlJuP4tZradVPZDFHZhbVRhtUX46+r9vGoXnT7U9WzrF6odcuW0amZeD+W1UCabbQuFV2n+RaNR/fYlqYZ3XOMjE/d+ov65N1bypwsU5+qvapeqLHYmmOS4pKZp5P8yZRJGlt1rntE+2OaL5Y/HXNW/LUkvzbmGOp6WgRZzajYpsVYVVWF2267DSeddFKq7zxS1IloEAQ46aST8Mwzz2D//fcX+sFXG8lotBxv8NY9Ier2wfKl6i9pQE+bCGTqNj3B8fyb3sWmwNpNZL3OI8tkVKTv6daLih+dMUX9iPaxPOiFZe+yXgD9G1ose17dlDImF5Cs8mn12PQns2BV3dAyPZZS9Z8VLD27phdWPbb0Eq/L68XM2jsvepkyZUr9v9evX4+nnnoKZ5xxBq688soMozJLUSeiALB582aMHz8eixYtwtixY1Eu0OGinxm1sSCPYisBlq3XlE+VQUimvtCHawuLvPqm2KuWiVIsepHd+balFxsneSbtTfsGzOtF5XQkxPZ8RvVhwqfsglVHna70CdfmCxt937ZedNRHqVPUp+qpquk6ZebmLDd5dPmOJpwsNm/ejOeeew6jR4/GAw88kPorIHmm6BNRAFi9ejVGjBiB8vJy7LHHHsI31OTpqK5BSLZO6klsmk+ZncS4H1078KL12pjgXJnQXRq4qWWKTStJPimxqe50U+t0SStUe5d0KxuPSB06F7eydbL6dqlphVpnqWxy2rAXLVOMWuH5pMZmK6l2VSui9qaS0EKhgFdeeQUdOnTAyy+/jEaNGgn5zyslkYgCwFdffYWhQ4eie/fuGDJkiHA5ajIK8DunrgEjqU5eeRHByCaQSbYiPlUWC2H5pMUKr+5iWFwDbgzIMvZJZZJ2WXVpRaTPqtio+OTZ6VhYp2mFdy9MLhbCMi5pxYXEUqSOtHuoY5NPpN6stJJmU2xacdHeFZ0nlRFZF7iiFapORHyKxOa1Yj5pTUtCgyDAm2++ifXr12PGjBlF9TMtPEomEQWA999/H3vssQd22WUX9OvXT7icyqO6LESTQV07Y7LiSotDl1/diWhavawYdNWlw54Sl0uLd9UycWyddqgkuCYWxCZ1klZel1ayTMx0+HdN59EyLETuqa5+Y1onqn5Nb1TF64jjUr83bW9rs1J1LRQl7b6a0ElavUl+eO+r+tWlk7TyOrSiMja4ZJ+WhALAe++9h88//xxvv/02unfvLuQ77/B7SBGy00474amnnsJbb72FRYv+X3tnHqVFcf39L5vIajBsHkERURgRiOCCoARRQcV4UNGgKIpEXINGE+Oa/BKNnKNRjFER5bjGBRGNJoqMAiqIRAFFHMFBdmRAJ6jsDPA87z9vT5q2l+qqW0v3cz/n8A/Tde99um9V3W9V9fOsFG7nT564ThV3TbEg9vXe/mvq1E330wZB+/72aQaaODv+/5O1G/b5VAd/Ub9hq3L+fzrQZVfWvuj1URMqVZuwey7aT2TjC7YNxiHq228nrr+61k9Ex5+olXPduSyKiTh09SsgfSGuOqekjS+qPVU/8aOj/6W144/Fay/iN25OofIV1saV610hbh6Pe1ZRtmSIy8O0OR0WR/CzqdhVEaFp+1nSnCLiL22sLopQERYvXowlS5bgnXfeKRkRCpTYjqjHlClTMHz4cAwaNAht27ZN1TbqqG5UoRD8m+yko7oiKFvARtmjsElhV3UFU6RIC4oWmWfhygq2dz2gfxU72CbqHgefgUquqxZ1KjkdjENVPIbZ9dtP256iME96hrL+XMthW59BVx+Rbatj3BfJIQqbsuMIRTuReFzNSZeuD2sjMler9hPbfUSXXaq5hKKdzrkkTRtT1yfthq5cuRLvv/9+7RcUlRIlKUQBYPz48fjtb3+LM844A/vvv3+qtv6jun6SEtNEoZ3U4akHMoriIW5gEvm8FEI0Lr4wSrHIlvERpNT6CJWtuEJM9z3NQx+R9WHiM4Qhcs91itGoHNOxuKLDlup4kNZ32vsp48+1eUQ2piz0EZnnyX1Era1qH3F55zRJhFZVVaG8vBwvvvgihgwZImQ7T9S3HYAtrrrqKlRVVeHBBx/EGWecgWbNmoVeFyU6/YgmpbdLkjaZ/QNHVNu4ThjWPo3/MB/B/6NYAQwrtikHY5V4PMLiEmmX1m+cfarrVUS8h4jfND5kYwvmeNyzC4tJpI+J4G9LaSsq1rjrkv5Gga0+QmWDmrDcc6WPJCGywKHqO9gHTfSRuH5vQoQGr/H7FC2+04zvcXYor5eNScaOzOdQiU+0H8f1EVm/Ybao+lvQtneNjjkkbd+K2pAQue8uilBRNm7ciOnTp+OBBx4oSREKlPCOKAAUi0VceeWVmDJlCk477TQ0adIk9W6n7ERGOQGmtZV2RyXJh4o92R02/2Cvc2cgTTvRyUf0/ri0Q5T02ZL6h84iL6mtyUkqrI1p/1471/qH/+9x6OgfMm1Er1ft97KfJc6maFuZsVvGv67+IdqmFPuH6LX+NnnpHyrt/G1FxWdYe9Fr/ddH+aDsb6JtqDYtKOtiW/1Dtj8B8buh33//PaZOnYobb7wRf/zjH4Vt542S3REFgDp16mD8+PHYtm0bpk2bhtNOO22vv4uu4vh3AEQTVbadv61sZ0+zo+L/e9Q1ae3JEFxRplqNpSTu84qsgse1SbqXaVdhRXatkvyJXiezoquyEqzaP8JsiDzbqGtEV55F7cX5CPpRQbb/xrUTKS7S9g/qFWqZvurHRNHsUv8QHfdc7B8uidCov8n2D+9aSrEYvNZU/zBJ2Nxos3/osBfnw2/HlAAV9Zm0CRL1f6YI+o4ToZs2bcK0adNw5ZVX4g9/+IPu0JympHdEPfbs2YNhw4Zh1qxZGDRoEJ555pnav+nelfK3E20b1dFUVv+i7FCsbEXZVJ2QVO6DaiFiYjfGJLrzPKt9Iy4GHau+3DfErjeJqTzXfb919g2KXU6dNqPs+NHZN0y2c7V/lFrfiIohafczyV5YG5f6RtoYVNu52jfiROiWLVswdepUDB8+HA8++CDq1KljLC4XYSH6/9m1axfOOeccLFiwAAMHDsQ+++wT+Q25cejsjCIFbFq/UTY8O6qFcZRNilVRkUHe8xkVl8liO60/k21c/Tz+dlFtkyZ2CnEXjIG6v1H0taBd2QJIpfCLsxvXjtvQCxWRsZC6byT5k7FJ1TdE588oP6Z3UbnN/9pRz9OifYNyLFYRoCI2TfSNpPvpwrjnSpsoIbpt2zZMnToVQ4YMweOPP17yIhRgIboXO3fuxJlnnoklS5bg1FNPRYMGDfZ6Z9RG0Z128NIlSCmgtCtyf+NW91QmGdOFpsuDremJx2tro19Q2omyqWpX9P5GFWKmF2hk2+WxDaAuckQX4qh8B22I+pSxa6Lf6uoXaduaLtBd7Req7QDuF1R2wq5ViUN1R9PFGidJhG7fvh3Tpk3DKaecgmeffRZ1De7QugwL0QDbt2/HoEGDsGrVKgwYMGCvnVHATKcJtlVtr+pb1o5O2yrFng3fsu1cFpamxai/rYdN37Ix6LJLIfJt+Xa1EHZld1OknR+bvmXs6LRL9dls+HZxDHdpZzOuTRimNxNkfeu2ncXaNA8i9O2330afPn0wadIk1K9f0l/RsxcsREPYunUrzjzzTCxduhSnnHIKGjZsCABSR3UBtV0KD4rdTREbUbHqmpRl7arsaIb5TROD60LUpC/dhZZLfSJ4PeXpg7j+lqZPUMQShq7dgzwKURVfQLb7hP9v1LFQxigTS5BS7hOAW0JUR58Q9R0VQ1ju6uifaWyXUp+wIVyjROjWrVtRXl6Ofv364YUXXkCDBg2EbZcCLEQj2LFjB4YMGYKFCxdi4MCB2HfffQGAfHdUZDWbevCIsiHSAVWEI5Vt1UHdsxHWXmTFUWVCDdoSbZcHUSnSTnTFV+fEnuaaNNdFtXOhT8S1Fx2jTAk22XZZKbqD/kR3PHXmQFgs1H2C0rbORaKg/TA/LoylOn3Z7OtpdgWpFqxF8izuOhFbFLbjrlPtE0ntk+ItVRG6efNmlJeX4/TTT8dTTz2FevXqCdsuFViIxlBTU4Nhw4bhgw8+wMCBA9G4cWMA8mIUSDeIxrVVHUj8NlQ7rUi7tBOCztXFNPFQr7S6XgzbKqCCmF7dpdjpNFWkB9tR9QdRGyrPLMxWXoWoSrsgafKEOg9UFx+T2lD3t1LrD1nZeZXx5W8bRPTZqORBmA3Z/uBvq3OxP9hG96JMUix+TIpJ2XaUIvSHH35AeXk5zj//fDzyyCP8TmgELEQT2L17N0aMGIHy8nIMGjQITZs2rf2byFHdOCGT1FbEpumBXcSezt2rKB8yNinj8ZOUD3kuUJLa6RD2Ku3jYtKx26orXlNFt2g8HpQ7BBTtXBLLOucGinygiCcpprz1B9W5Qcav6d1QXe2o5wZRv6I2dMdE0ReCdlTt6ao1k+yZFJMU7cKE6HfffYdp06Zh1KhRuO+++/jbcWNgISpAoVDAFVdcgSlTpmDQoEFo3rx57d+Cu6Npj43E/T0OHRM4hbgL2qOYCJJ8yNqh3lEVKUJcLACi2qn6SjMJUYkhWxOuiM089gVRkRHEVl+wJUSz0heo54Qwu8F5ksIHRdxURXdW+oJsO5W+ICPUdY1Pom39UOZq2NiQt74Q1j5PfQEIF6HV1dUoLy/HddddhzvvvJNFaAIsRAUpFov4zW9+gyeeeAKnnnoqWrZsWfs3vxitvV7xOIUoMu3jigLZOCjiSmM3alJLcw+ohWjctaJQ76baWsH2MLGaKds+buFEJY4kHxRQ9WHb9zwKXTtHuoRonvuCawsnUXZVCnudIlTEZxQieZelXX6PtPfJ5lydlb4QlsMqfcGk+FftCy6J0HXr1mH69Om44447cMstt6SyW6qwEE1BsVjEPffcgz/96U846aST0K5du73+TvXuqC5BSnWNTEyUNkVXnKlFHVV7md3UOESLZJF4ZeKg3NEx3Q+irqPqB1H3k8qmSF9Iug+l1A909YGoGKjvT5q2YfGEXeMRl0uuzgVxttL2A9mYVNpH3V/ZHEyT3xSLK6Jx2OoHIu25H4jZUY1Dti1FTRLnU7YfhInQZcuWYfbs2Rg/fjxGjhwpECkDsBCV4plnnsHo0aPRt29fdOrUaa+/qYhRQN9gkNaujhVi1VVAVUEVjMWlAly0nS1MrTT621K3t9UH/O2p+oBo2zh/Nla+g+2z1A9M7jx5bWX9RrWXyT8dfdnkDqSJPiBrQ3VHxjQmP6O/PeVcLSsGqZ4VVf5RzWc2Bai/fVb6ABAuQisqKrBgwQK8/PLLOOOMMyxElV1YiEoybdo0nHPOOejRowe6dev2o7+7sjvqx9QgkzSwyBbj1IWrTSEq69/WERTTBQjFjiTV6rOu40267Ir4S+s3yp6tPmAjH7NahAexWfSasivSXsUOZSxZycc89QGZeNJ+Dl0nU/LSB2y3lW0XFKHFYhHz5s3D8uXLMW3aNBx33HGp7DIsRJWYN28eBg4ciIMOOgjHHnvsj15Itrk7qqPoFLGla7D2rlU9xhLmM8mvjlhsFRIybW2JUZX2No5AiV4j20b1Xob5E/GrIxabJwps7Gxy/qvZ9V+nYw6wtViclTy21Xdk2+vIf79dHYvsSddTLM6G2ZKxaXMX1WYNFBShhUIBs2fPxubNmzFjxgwcfvjhqWNiWIgq89VXX2HAgAFo1KgRTjjhBNSvX/9H15gSpFGDoOqkK+LD/zeqHSxK22F+ou5PmP8kGzIx2CpOs1Q4pWkvkv86i3HK/Ke2HWdLpiixnf9ZE7Gybb32aXPf789E/lOfYKC2HWcrbf5nWYSqtLW5o6mS/xQxBP1Ejc9hviltm8j/NPc6KzlMIXyDIrSmpgbvvvsumjRpgrfffhsHHHBAKrvM/2AhSsCGDRswePBgrF+/vlaUhiHyu6NRiBSpUX9Pe13aeKhsRtkuFgpkE4nfvuh98schakM1Bm4r1j7tjrpKDHF+RfzL2PZyn9p2mgWtsOttLKRQ+c5r7sf54NxPv6Mbdq3NItxrn6XcV/Eb115m8YC6fkjjP61tf+5T2FbdzEhjQzUGF9sGRejmzZvxzjvvoEePHpgyZcpeP+nIpIeFKBHbt2/HxRdfjJkzZ+Lkk09GixYtQq+j3B31I3usQjaOKHtUg32YbSr7aSelqHuuGo+tYj6Lbf3tg8g+S1PFLYVtCvsy919H7mexGLfZ1msfhsyzdD3vddh3IfezuJOk2tZrn5fc11GP6LQvm3O6cj+LAjYoQjds2IAZM2Zg+PDh+Pvf/x56CpJJBwtRQgqFAm6//XY88MADoT/v4kdmd5R6JY76OImuQdqbyNKugibZU40pClHbWRSiNnxTPXfVOJJi8tC566Rin6IYoyoKbS7g2GoLpBsboqB4fhSLoNQ7lkEfFLtCVILWthiyPd5z3tPHpNOHK3mf9cUXYG8h6v08yz333IMxY8aktsuEw0JUA08//TSuuOIKHHvssSgrK4u8Lml3NM0xoSgbIsjaET0ypmMCUREnVMd0gnbSTiZZKhCo2ia1F5n4dEyyFBOribio+6psbKp5X2q7qXHtRe+fzmcocn1YTMG/U8xBSffIVBGcZCdNkW47b2V96xrr43I+eL2u+Trp2riY/NfonINU+qorOS8bi0sitFgs4tNPP0VFRQUmT57MP89CDAtRTcyaNQu/+MUv0KFDBxxzzDGoGzPw+gVpGEmdSdfqV5StNP5URanI5JFWlJqe2NJMumn922qvc0dRxC5VzvttJeWMidh09C3KXas85Lzt/haF6H2l3HEXGeNFYrOR8yL91aRodzHnbc4R/vZRmM550TFeZ2w6+paO+TBtbGHY2M2lyllPhO7Zswdz5szBd999h2nTpqF79+5SdploWIhq5KuvvsJpp52GQqGAfv36oWHDhpHXqr47CpgRpLI+ZAf5tH5EfNlYYQ1rK4ouUW2iSBH5nDp2zGXtBG2ZKrD911PmO7UIVbElmvM6BYbu/kLxGVVjULFFsXAo2k5H3zK9QCVqIw7d+a7aniLfdcaQxk4wDlv5ntaX6A6lzt3ZtDaioFrwjWtPJUK3bduGmTNnonXr1njjjTf4m3E1wUJUM5s2bcL555+PefPmYcCAAZFfYuThkiAN2tJlU8dRpihfcT5lbOssdkxN8hTtk9C5W6drAYbCZtCu7l1L3Z+Bwo7oLlwctopainx36VmEoTs+3fMTpV2di2SuL1pQ9EeqfKcUokFMzuEu5ju1AM1ivvtj80ToN998g5kzZ+LMM8/ExIkTse+++0rFxSTDQtQAhUIBt912G/72t7+hX79+OPjggxPbuCRIqQfTKNu6dnLCfIX5lLFnu+BJUyzoxuYuD+d6tK8wn7L2bNrgXN/bjokFQQrbnl1KASriT9WWK/3FNlnPdR2L6WE+dO1UBv1Q2dUxZ6qKQNt4IrSyshIffvghxo4di+uvvx516tSxHFm+YSFqkEmTJmHkyJHo1q0bevTokZjcFGIUkB8oTBYTJiYLz0/YZ5Hx6dpE68LKuQtFS1o7UZO7DoEY5k+nj2JB/dumbT6bMBu22wPZXMCKygNTAlGHj2DsJo9aumzDhTy1OT8m5XqW89yzrdJvTe2C6rZBGcPo0aNRKBTw8ccfY8WKFZgyZQpOOeUUKZtMOliIGubTTz/F4MGD0aRJE5xwwglo0KBBYhvTgjTN0VmKuEzbTnMMVuQ+5aVAV4nBheIrrZ20eZ6lHI+zmda3KwsuFDZs9xMqG6J2RAtkHXluqjinyHPq3SEXbGQ9hjR20uZ51sbyOLtpcteVXVC/DReE8OjRo7Fjxw689957aNiwId58800ceuihUjaZ9LAQtcC3336LIUOGYNmyZejfvz/2228/oXa6BanMgEo9CFPu5MTZFr02zr9rQtS2DerjaK7kuO64dBy3kvlcYf4pC7c8CFGXbETZkR03deS4Z4tS6MrYiutjeRShFDbymONUcek+RaOa43H3y/b87IKI9dsYPXo0qqurMXPmTPTp0wcvvPACmjVrJm2XSQ8LUUvs2rULv/vd7/DYY4/hxBNPRIcOHYTa6RCjQWwfsxDdsZQ5jkLx2VTjiLLviqB1oQjyyFOOJ7VVFaSUK8xBXMhNz44L+enS/YjC9FE33ScMqItgPzaEQ5ydrI/hFHEE4wliWsSIjs8q9y8LOW47t6hF6Jdffom5c+fijjvuwC233BL7U4uMHliIWuall17CyJEj0blzZ/Tq1Uu4E1B/mZGqrTi7aVbjZXcrRdvpPHaWJpYwezxR/NiGrB2dxwLTxka9uh13vc4jZyr2Ob/D7bg2dgftu5bfaXyksali2zUR6oINzw7V2O1B+ex11xppr01jP61NFduu7IL67VDYuOyyy/Cf//wHX3/9NSZPnszvg1qEhagDLF68GGeddRZ27dqFfv36oVGjRsJt0wjSuEHVxGCoewUxzo+OQt2zG3UPk2IK2hG5TiQeVTuu2EhjJ2ni1V3IJuW2rN80u0w6czsslriYkmzJxiPqT6cNz44ruZ3GVhqSbJo4Ymeq38rmtosFdh5y29/Wdm7L+jbhQ9SmjKDWcTLJFSF7wQUX4N1330Xbtm3x2muvoX379tI2GXVYiDrC5s2bcckll2DmzJno378/Wrdunap9lCC1OQCJ2KScZESEtu5iXSSmYGyitkTjCbNtw47OWFQLR107h7qEr0iBYXpHTDS3XSqQqezojEUmt03mgc7c1uknjU3RZ+D6OOlSLLILtbYW2ihz22ReJ9kVqQldXGChsnP66afj/fffx/Dhw/Hggw+iYcOG0jYZGliIOkSxWMS4ceNw6623olevXujatWuq3y/yi9Ef2bZ45CjKJrVtW35cO37kekGiYieIy3lNaT/Jl2kRmtQ2DJfFn81YwtCxAyNLXsZsl/Na1Y6Liz1RyN5/zutk25S57ZJ4pOpjvXr1QkVFBSZMmIARI0Yo2WToYCHqILNnz8bQoUPRrFkz9O3bN/WKDdUXGnnYXsGj9kXpj3KCjJu8/Zja9TNth+rzi0JduHNOh9sSQcSfa0IU4JymRFdO6z6dEIVoTotem2THVN8Q/fxANsakrOc0hU1Xc5rSzsEHH4x69erh1VdfRffu3ZVsMrSwEHWU6upqXHjhhZg3bx5+/vOfpz6qC+gVpLI2k44xytoV8RnlT8Un9UptnL00BYCHa5NBsRD+szx+TB5BVLVn+shslG2qPqRLyKjmtJc3rghRvx2Rz2Dy6KGqPdM5rdOfjfFCNB9cLdjTEHcPTM2LIm2DBHNM924rVU7rPD4cZy9tbriwm+q31axZMwwePBiPP/44mjZtqmSToYeFqMMUCgXce++9+OMf/yh1VNfDFUEqMujrWulLO8Cm+UyuTLhe+6yQpeIyrk1cO9P5rOJTR1HG+SyGjnEEoM9nGduqPl3JZ2ph7Dqu5bNsLgPu5rOO/ikK9fFZF6lbty722WcfPPTQQ7jsssuk6mdGPyxEM8CcOXNw7rnnomnTplJHdT1sCVLZAY9qB1bFZ5Jf14Ro0BaQ/r6p7vDoiEm3Lb+9OJuqRXHadmE2dPUh22JIly1d+ezK55O1qZKTlDs7Ohd/bI+lOmzpyGcdY6nNXI67Nqq96R1KnfONql+TtpLyefTo0altbt26FbNmzUKDBg3wz3/+E0ceeaRUbIwZWIhmhP/+978YPnw4PvroI/Tr1w9t2rSRtmVSkFJMcDZXxJMmOJeLd8+eC8VTFmz57QVt6lo9FrFlwreLu6FBWwBdzrjWvzxbgF7xRFnYqopJHb5dF6GU9lwfR3XOi6rCM8m+6PWUvv12XBeg1PY8WzKiM8iaNWswa9YsnHXWWZgwYQIfxc0ALEQzhP9bdbt3744ePXqgrsKxCGpBCtBPEEn2bezwBKH04flxrejJgi0qe0Gb1LbD7Jvc3Qnzr8u+i4Wty7YA/c9Zlw/R4+KlnsdU9lzNYx32PJtBsnKCQNR3EBfnR107qqoidM+ePZg3bx6WLl2Khx9+GJdeeqmSPcYcLEQzyCeffIKhQ4di165dOPHEE5VXfCgFqSmxFuZL9w5Pkv+wOGTtuloU5F2MmszfMH+cw/rtudofqOyZzuGgT907lHG+/bi040htz1VbVPZs5LDfr65TBEl+g7hwdDbMHqUtil3Q7777DrNmzUKbNm0wefJkHHbYYco2GXOwEM0oW7duxZgxY/Diiy+iT58+6Nixo7JNWUEqUkzL2E2D7tXSKJ9BHxQTisvHfV0sWlTtiRy/Dvt/akzncNS9Uo0jC8d8XY1Nxp7ImJPlRQ0Rf67nMI/BydeHwTksF4PLu6B+e6oitFgsYvHixfj4448xZswY3HXXXdhnn32U42PMwkI040yZMgUjR45E+/btcdxxx6FBgwbKNkUEqcwgaWtlUeckIvO5PZLuravFsu3ChcKeTJ7Y2N3R7Yfzl8aezSOCHrbz1/TYK+ojTVw6j/m7bM9kX1URezqO/Pptp43HhB+b+avTnqoI3bFjB+bMmYNNmzbh+eefx8knn6waHmMJFqI5YM2aNRg2bBgqKytx4oknolWrViR2wwQpxWCta8APGzR1v9chay9pMnZ5VzRL9jyblEWyzmLVb9NkP5Ft74dzV8/YQrlLozt3/XZN9RMVG35bpSpCKe15NnXkbtA2BbZyV9Zu1vpamD2Ko7hff/01Zs+ejb59++Lpp59Gy5YtlW0y9mAhmhP27NmDsWPH4s4770SPHj2Uv8jIwy9GPUxMBCp20uwkqPrTNUkFoZoISkUgmDhiRV0Up9lFcFVEBymFo4ieTZ15C7hVYKbJR5P9RMWuHxfz1rPpoj0T85ffD/UiRNK1JvqJqm0q+zrnCFURunv3bsyfPx9ffvkl7rvvPlx11VX826A5gIVozliwYAGGDRuGbdu2oW/fvvjJT34i1C5McPrRtWLsQfE+hOw7FKZ8psErEJImeI80RyxdKQoobIoUQK7nbZp2Knlr6mimaN6miVvHc7NV0IveGxNjTFr7pvNdpV1a+5R568LYKGozzedJwruHunLWi8X1uV73Md8w+xSLWC4fxa2ursbs2bPRrl07vPjii/yFRDmChWgO2b59O37/+9/jsccewzHHHIOysrK9Vo3iRKfMpGSzuKeanNNOVq5MtmmFquu7olE2VVfcTRWzJmNJ2w9dETZpi/2sCFEg+lh1GLYETVr71OO9zCkA2302eH0YJo5JZiVndc+NSbFQ7xbKjG2cszS7oIVCAQsXLsTChQtx66234rbbbkP9+vUpQmQcgYVojpk+fTouuugiNG7cGMuXL//R36nFm2lBqqtIE5nEXBGiInZUoRQ4KvG4euxI1L7NnVkXBE0aOypQFsuq8bh6xFPEvsnxPWrRSfdnpvBhYkwzla8Azf2wIURdyFcdfuN8U9hLQ9qdVVUR+sMPP+CDDz5Aw4YN8eKLL+Loo49Wsse4CQvRnPP999/jqquuwr/+9S9s3bq19v91vqugeyDW7csF3zqLz6RCgaKYEcXEbneUXR22w3z4yXO+6j42mXSNCWzmq4nxJkge89X2uOJSvtqYX6h8hJG3fDW1eKkjX1VEqPezLPPmzcOoUaNw7733olGjRtL2GLdhIVoiTJ48GZdffjlat26NpUuX1v5/1op86iM3FP51xKBbiOqwrfP4GLVdk7Z1+XAlBpuLJi7ZzWKf9dv2k8dczeJYkqWxWrdtm+IzLoa8ClBZu6q7oJs3b8acOXOwc+dOPPPMMzj11FMpwmMcxtzSHGOV8847D5WVlSgrK0PTpk1rf3OpTt26pCu0xUJhr/cOqOz77fh9UPsRJS4GF45H2bIN0K74xx2BorCd5v0oEYLPX1d/EIkjKQaqfun5KHVM9FnKsTRpTDWBqXE9i4W9blyPNWqsCuaJyTjCYqAc0+P6g6u2/XZVd0G/+OILvPrqqxgwYACWLFnCIrRE4B3REmTy5MkYPXo0WrVqhd69e+PZZ5+t/Zvpd9fStBd9V1HWl2g8aeOQjUfnESdeaQ+3LWM/Td7Zeo8pKQ7ZeLKYo57trOWoiv20OzkmTwukzVPZz+7auCFqO0v579kGaHI0yY7J3Vdd47orc4KqbRUR6t8FffrppzFw4ECK8JiMwEK0RPnmm29w5ZVXory8HL1790bHjh3x+OOP1/7d9qStOnjqGNxNTrBeu7y+1+ei7TT2KfKLukCgFNMidlx5FrK2dcZt4n1O3QIuaEf1M1EuSorY0L1TmWURqsu2qH3KY7ZUn4dy0UOkPQvQvd8FvfDCCzFu3Dg0b96cIkQmQ7AQLXEmT56MK664Ai1btsRxxx2Hxo0b7/XzLibeSYo6dkZ5dETVLvXkLTIRu1DQlpptv/2gj1LPz7B7kcWFEhO2AbOFPpXwjPMna1NHQWw7P03Yz6LtKB+UwjPMl6wtG/3G1MktXfapROimTZvw4YcfoqamBk8//TQfwy1hWIgy+Pbbb3HNNdfg3//+N44++mh06dIFderUMS5IdfqK8yniz5QoDCPLxT6QvYk2zIduX2H+RPMyzfWy2OqrWcxNz34en0caP3nNTRa5yfbDcGVR1fa4rtNnFgRooVDAokWL8Omnn2LEiBH461//yrugJQ4LUaaWqVOn4le/+hXq1q2L448/Hi1atAAAUkEaJ7j86F6xBcQnJBO7P2GI3Cuq55HFokrnscEoTOWAiCjlvMy/fRP3Og0ifc6UAI3zGwXnZT7zEoj/bKbFZ5zfMCifh+65VkWEfvPNN5g7dy6aNm2Kp556Cn379qUIj8k4LESZvdiyZQtuv/12jB8/Ht26dcPPfvYz1KtXD4CcIE27GujShFEsFKwV+0D8yjXlBJflI8Ay9mV2n00cpxL1a6vQ98ejkpelkJOeD4qcBNwWfcGctB1L0jVhpNlJcyVnZO0D8juHQZLut83xyVYt4Y8jya/qSSiTJ4NUBOiuXbuwYMECLFmyBLfccgtuvvlmNGzYkCpEJuOwEGVCmT9/Pi699FJs2LABvXv3xgEHHFD7tyhBSn0ExZXi36TvYAxU9y6M4Lu5pt+51OFDJB9V4nCl4Dbt2+9fV04Gn53p99h02Aei34EPw5V3MGV8m/ZP8blFxwhTItSED9Ex0kMlJ23no8kYqPqCSE6afjVFRYSuXr0ac+fORVlZGZ588kl07tyZIjwmR7AQZSLZvXs3HnjgAdxxxx3o2LEjjj76aOy77761f/cLUg9T7+uZKFI9P66/8yJrWwbVyVXl88jGbeIe2np/2IR/fwx5yUfPb17yETArlvyY3hE1XYSLQpFLOhce49DVr02NS3GY7A95y0cVAbplyxZ8/PHHWL9+Pe6//35cdtllqKuYp0w+YSHKJLJixQpcffXVeP/999GzZ0906dJlrwElKEhNTz6U/lSOeVHHYXp3QfTdGldIitfGkW7TuRgWg644TO8s5CkfXbh3qjb92DjCbrNvq74iYRrOxR9frzMOF2oe6lyUFaF79uzBokWLsHDhQpx99tkYN24c2rZtSxobky9YiDLCvPHGG7j66quxa9cuHHvssWjTps1efzctSAE9x2HS2tAhTG0IUSDbO2thfkz4CvpT8alqh1qU5qF4jfNlMjeydA8p8siFsVkWkz5Njok2jsrazsOgnSy9lmEqD6mO4a5duxYfffQRWrVqhQkTJuDEE0+kCI/JOSxEmVTs2LED99xzD8aOHYuOHTuiV69eaNSo0Y+uy5Io1THYq4rTLBYNafwAZnPC9feETK3cy8SUxwURz1cec9DvM41fXYW2il2bIjRvueH6nKL7pJFLfSKNX5OLtrIidPPmzZg3bx6qqqrwl7/8BVdffTXq169PFSKTc1iIMlKsWrUK1157LaZPn46jjjoKRxxxROj5fxcEaZRfW4O9n7gjX7a+6CGPBZiHS4LU9vGuOJ95F6GevzyKm6DPKL82vthFNOdt99m8jYGeP5fmFBvfvRD0a+OIeRQ25wNZAbp7924sWrQIn332Gc4//3zce++9PzopxzBJsBBllJg2bRquuuoqbN26FT179kT79u1Rp06d0GtdEKWeTxuFoZ+4SdhWbFk8Qijjz5ZPz6+tVfYgSV88Uwr5l2ehHebXhviMIqlvuCTadflz4XsATPm1JTyjCD5zF3Y/TfilEKDFYhHLly/HJ598ggMPPBATJkzA8ccfTxUiU2KwEGWUqampwcMPP4z/+7//Q4sWLdCrVy+0bNky8nobghSwswOQhrgvG+DinNafLZ+mfYtiu0gshcLc9jFxD869cP959WfDpwtzmQg2x2bbc5GsCK2qqsL8+fOxa9cujB07Fpdeemntb80zjAwsRBkyvv/+e9x111146KGHcMghh6Bnz55o2rRpbJuo3ySlIG6SsV38RBEsGOImdA8d7xTmuUjy+6T2K1KAubIj6hF1L0wWk6WWdybGOo8s5B0gNubp6qt5yAHTPtPMTbZPIHm4UBNkVYB+//33mD9/PqqqqnDzzTfjxhtvROPGjalCbSZKKwAADQRJREFUZEoYFqIMOatWrcLNN9+MV155BV27dkX37t3RsGHD2DYUu6QUX8wi256CtJO1LpHq2rtEun3K+qUomG2KA1nf1ELBhSOrWfHLOfdjOOfE/FLnm0faZ2gz3zxU8o7iPmZJgG7btg2ffvopKisrMXLkSPz5z39G69atqUJkGBaijD4WLFiA66+/Hp988gm6deuGsrIyoW9SE90l1XmsxrQwpZ6kVQqIUizSPES/vMKPrmem8z7oWJVPyjnX8s3z7aLfPOWbLj8y98jWLqjft2v5ZvLUje57oHveTms/ywK0pqYGn3/+OT7//HOcfPLJuO+++9C5c2eqEBmmFhaijFaKxSLeeust3HDDDaiqqkLXrl3RpUuX1II00n4O3rdy6f0dP7YKJtu+48j6F1jYPhYWhc0vLHE11wC7X+jmmk0Zv1GUkgj1+48jq+/IuvKeZxQ2F1ZlRGhNTQ2++OILVFRUoEuXLhg3bhz/HiijFRaijBEKhQJee+013HbbbVi3bp2yIHXxXRMgfVw2V+jDEC3kRLFxbI7yM7j4TFSPhrnwmQA3npOKEHUhfkpU88zVL+Wiek6qecJ59j+oj6e78LlcyTNAXoBWVFTgiy++QFlZGe6++26ccsopkb+CwDBUsBBljFIoFPD666/j1ltvTS1IPfIkTG2vlEeh850i02TpnZ4k0sblogD10PWupC3yskAApIsrC33FBRFIgY0FF12I9v8sCU/beaYiQCsqKtC1a1fcfffdOPnkk1mAMsZgIcpYwROkt912G9auXYuuXbsKv0Pqx0VRCogJU1dFKOBG4eJKke5KHEHiBICrMQNuxcZ5Hk9UbK6KT8Ct++nKGO9CnocR9qxc+OLAKFwSxcFY0opQvwA98sgjcffdd2PAgAEsQBnjsBBlrFIsFmt3SNeuXYsuXbqgrKws8Vt2w3BVlAJuT65huFK4uFhUetiOx09W8sul5wm4k+eAO6IlDJcK8ChczC3AnVhciCMM18cu13Jf9Qjutm3b8MUXX+DLL7+sFaAnnXQSC1DGGixEGScoFot48803cffdd2P+/Pno3LkzunbtimbNmknbdEmYyhy9sT3ZuVIIAO4VdX5sP6e0uNAHXHiOAOd5XAxpcCVeV56lC8/RjwvxpM0r12K1/SxVBeh3332HiooKLF26FAMGDMAtt9yCfv36sQBlrMNClHGOefPmYezYsXj99dfRsWNHdO3aFa1atVKyaUOUyk5mLnwTn2sFOuBGMRXEZBGsunNg4idBRHy7+PxcjAmwl1Oivm3uZnFOiWMqpqS5S2WsMh27K89PRYAWi0VUVVVh8eLFWLNmDS644ALcdNNNOOKII6jDZBhpWIgyzrJy5Urcd999mDhxItq0aYOysjK0b9+eZAVPlzDVPYGaEqkuClHA/eLTQ1cuUdlO8kHpy9VnBrgpGgD6e2biOSf50vFzHa4+N9fiAmjHdNv5pOtzuPTcVARooVDAihUrsHjxYmzevBnXXHMNrrvuOrRt25Y6TIZRhoUo4zwbN27Eo48+inHjxqFu3bro3LkzOnXqhAYNGpDYVxWlrkxmlMWB6wWVh2vxqeSCS+9KUe2euvysPFxddAHk+qHNne8wKPLalTE2DpfHTCB9nrtwMicM6jHWteelIkB37tyJL7/8EpWVlWjUqBFuuukmXHbZZWjatCl1mAxDBgtRJjPs3LkTzz//PO69916sWrUKhx12GMrKytC8eXNSP0FhGjZRZaEw8pApKFwvqgD3Y0wSYS4JT1HSiJwsiFDAbSEKxOe5a6JTFNHcz8o46/pYBETnucndTWpEhGXWxCeQXoBu3LgRS5YswdKlS9G9e3fceOONOPfcc1P/CgHD2ICFKJM5isUi5syZg3HjxuG1117DQQcdhMMPP5zs2K6fsN3S2jgcm8xkSPMFEi5+XtcLwCwXeaKI5pCrn9VlIerqrhQ1Wf6cLo9BWR/f05DFsVZFgBYKBaxcuRKVlZVYv349hg0bhuuuuw49e/akDpNhtMJClMk069atw6OPPopHHnkEderUQadOndC5c2epn38RgYUpHa6/M5bFe2GTrN4vaiGa1ftgiyzfL2oRmuV7YYOs3i8VAbp9+/ba3c8mTZpgzJgxGDVqFH7605+SxccwJmEhyuSCmpoavPLKK7j//vvx2Wef1QrSli1bGvGfdYFq6gicycKBEhv3g/Mm2g81xUJBmw+T9ySLOeORpdzRmS9BPzrIyrF5D1u7nTqfcRrxWSwWsWHDBlRWVmLZsmXo06cPbrjhBgwePBj16tXTFiPDmICFKJM7PvnkEzz44IOYNGkS9t9/f3Ts2BGHHnoo9tlnH+OxuC5Qs/IOVhRZPtIXhcvvjmZV/PgplZxx4TNkfaHFT97zxoXYs3i8No6wz5NGgO7YsQNLly7F8uXLsW3bNlx88cX49a9/jS5dulCGyTBWYSHK5JZNmzbhhRdewMMPP4zKykp06tQJhx9+OFq2bGn9R5xtC9SsC9A4XCuuKHDl9xpN+jWFy+/4yWLrmbm8iEJBHscWwM58kKdFijBkj98Wi0WsX78eS5cuxbJly3DUUUfh2muvxdChQ9GoUSMdoTKMVViIMiXB/Pnz8eijj+K5555DixYt0LFjR3Tq1MnKLmkUceIU0PN7gnmY8KPIo8Dw0F3E5V18+slzngBmf4eR2r5L5D1PALO/h0zpwyVkf35lx44dtUdvd+7ciZEjR+KKK65AWVmZjjAZxhlYiDIlxZYtWzBp0iQ89NBDWLx4ce2x3QMOOMD6LmkUVAI1r6v5cZTSZ1YVp6W0SBHE5W/OpUZWmJaS6AxSCiI0SNqxs9QEpx/Z3c9CoYC1a9di+fLlWLFiBY455hhce+21OPvss7HvvvvqCJVhnIOFKFOyLFy4EE888QSeffZZ1KlTBx06dMBhhx2G/fbbz3ZoQogK1FISY2GU8udPEg+lLD79lJIQ9RMnSktZePopRRHqJ2z8zPuxWlFkdz83btyIpUuXYsWKFWjUqBEuvfRSjBw5Ep07d9YRJsM4DQtRpuTZtWsXpk6diokTJ+Ktt95C27Zt0aFDB2tfcKRKkkBl3EOleLP1TcR5KjjzJkRtfjt1Hu9jXj4TjxXqyO5+bt++HcuWLcOKFSuwceNGDBkyBKNGjcKAAQP4m2+ZkoaFKMP4qK6uxgsvvICJEyfWHt3t0KED2rVrVzKThUkhm7UCxfWfn9F5P019dhs5YVOIZvlnQAAzP61jGpunKLL625hBsvZzSEnI7H7u3r0bq1evxsqVK7Fy5Ur06tULl19+Oc477zw0b95cV6gMkylYiDJMBBUVFXjyySfx3HPPYdOmTejQoQMOOeQQHHDAAajruCBxlSyKXJ2FYdaEuA5cEGKiQtSFWPOObWErKkLzvDDjGrZErczu5549e/D111/Xis82bdpgxIgRuOSSS3DooYcqxcsweYSFKMMkUCgUMHfuXPzjH//ApEmTsHv3bhx88MHo2LEjWrdu7eyXHJUapo8kc4HoLiwSGNOnFzgX9GPjRIqI+CwUCqiqqsKKFSuwcuVKNG/eHMOHD8eFF16Io446imsEhomBhSjDpGD37t1477338Oyzz+KVV15BgwYN0L59exx88MFo3bo175TmFBvv3XJha468vQuYFVgsmsf11wtUSPOFQaoUCgWsW7cOa9aswapVq1C/fn388pe/xEUXXYTevXtzLcAwgrAQZRhJampqUF5ejpdeegmvv/46CoUC2rdvj/bt2+PAAw9E/fr1bYfIZATezbVP3r6wiAIWiuHkVcyZFHJZpKamBmvXrsXatWuxevVqNGnSBGeffTbOO+889O/fn+d8hpGAhSjDELB7927MmTMHr7zyCl5++WVUV1fjoIMOwoEHHoh27dqhcePGtkNkShgWuslkVYhmVSyymGOywJYtW7BmzRqsW7cOq1evxkEHHYShQ4finHPOwdFHH807nwyjCAtRhiGmWCxi0aJFePXVVzFlyhRUVFSgTZs2aN26NQ488EC0bduWV06ZXJEHoatLiOZVcOmExRxji5qaGlRVVWHdunXYsGEDqqur0bNnTwwdOhRDhgzh3/pkGGJYiDKMZqqrqzFjxgy8+eabKC8vR3V1Ndq1a4eGDRuiQYMGtsNjGOdZtGiR7RAyR7du3WyHwDCZoVgsYvPmzVi7di3atWuH0047Daeffjr69++P/fbbz3Z4DJNbWIgyjEGKxSIqKysxY8YMrF69Gjt37rQdEsMwDMOUPGVlZTj11FPRoUMH26EwTMnAQpRhGIZhGIZhGIYxCr+8wjAMwzAMwzAMwxiFhSjDMAzDMAzDMAxjFBaiDMMwDMMwDMMwjFFYiDIMwzAMwzAMwzBGYSHKMAzDMAzDMAzDGIWFKMMwDMMwDMMwDGMUFqIMwzAMwzAMwzCMUViIMgzDMAzDMAzDMEb5fwr+FTglFuDDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAH4CAYAAABQclA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wVxfn/P7dyL713qSJVEQFBRUQRQTHYe77YsSf5fmOMiRq7MYlRYw+xxpLYY4y9JYIVRVBEBREsiCIgvVzg7O8Pf3uzd5nZnWfazp4z79eLF3DOM888OzufmXlm9pxTFgRBAI/H4/F4PB6Px+PxeCxRnnUAHo/H4/F4PB6Px+MpLXwi6vF4PB6Px+PxeDweq/hE1OPxeDwej8fj8Xg8VvGJqMfj8Xg8Ho/H4/F4rOITUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYpPRD0ej8fj8Xg8Ho/HYxWfiHo8Ho/H4/F4PB6Pxyo+EfV4PB6Px+PxeDwej1V8IurxeJS45JJLUFZWhmXLlhmva8yYMRgzZozxeqIsWrQIZWVluOaaa6zWm3eyarcTTjgBPXr0ELZt2rSp2YA8UoTjSpQePXrghBNOyCYgi8Sv89///jfKysrw73//W2s9b7/9Nqqrq/H5559r9SvD+eefjxEjRmQdhsfjsYxPRD2eEmPBggU47bTT0KtXL9TU1KB58+bYY4898Kc//QkbNmzIOjyPRyvr16/HJZdcon0RXygUcPfdd2PSpEnYbrvt0KRJEwwaNAhXXHEFNm7cyCxzxx13oH///qipqUGfPn1w4403ao2Jxccff4zzzjsPO++8M5o1a4ZOnTph4sSJeOedd5j2ixcvxpFHHomWLVuiefPmOOigg/DZZ58Zj7PUeP3113HJJZdg5cqVmcVwwQUX4JhjjkH37t1J5R577DEcddRR6NWrFxo3boy+ffvi5z//Ofda/vnPf2KXXXZBTU0NunXrhosvvhhbtmxpYPOzn/0Ms2fPxj//+U/Zy/F4PDmkMusAPB6PPZ566ikcccQRaNSoESZPnoxBgwahrq4O06dPxy9+8Qt8+OGHmDp1atZhejzS/OUvf0GhUKj///r163HppZcCgNbT9PXr1+PEE0/EyJEjcfrpp6N9+/Z44403cPHFF+Oll17Cyy+/3OBE789//jNOP/10HHbYYfi///s/TJs2DT/5yU+wfv16/PKXv9QWV5zbb78dd9xxBw477DCceeaZWLVqFf785z9j5MiRePbZZ7HvvvvW265duxZ77703Vq1ahV//+teoqqrCddddh7322guzZs1CmzZtjMVZarz++uu49NJLccIJJ6Bly5YN3vvkk09QXm72nGDWrFl48cUX8frrr5PLTpkyBZ07d8aPf/xjdOvWDR988AFuuukmPP3005g5cyZqa2vrbZ955hkcfPDBGDNmDG688UZ88MEHuOKKK7B06VLceuut9XYdO3bEQQcdhGuuuQaTJk3Sco0ej8d9fCLq8ZQICxcuxNFHH43u3bvj5ZdfRqdOnerfO+uss/Dpp5/iqaeeyjDC0mbdunVo0qRJ1mHknqqqKiv1VFdX47XXXsPuu+9e/9qpp56KHj161CejYZK3YcMGXHDBBZg4cSIeeeSRettCoYDLL78cU6ZMQatWrYzEecwxx+CSSy5p8AjySSedhP79++OSSy5pkIjecsstmD9/Pt5++20MHz4cALD//vtj0KBB+OMf/4irrrrKSIzFiqymGzVqZCCahtx1113o1q0bRo4cSS77yCOPbLOpM3ToUBx//PG4//77ccopp9S/fu6552KnnXbC888/j8rKH5aczZs3x1VXXYWf/vSn6NevX73tkUceiSOOOAKfffYZevXqJXdhHo8nV/hHcz2eEuH3v/891q5dizvuuKNBEhqy/fbb46c//SmA/36+7+67797GrqysDJdccsk2ry9btgxHHnkkmjdvjjZt2uCnP/0p8xHF++67D0OHDkVtbS1at26No48+Gl9++eU2dlOnTkXv3r1RW1uLXXfdFdOmTRO+1s2bN+PSSy9Fnz59UFNTgzZt2mDUqFF44YUX6m3Czwd+9tlnGD9+PJo0aYLOnTvjsssuQxAETL9hTI0aNcLw4cMxY8aMbWw+/vhjHH744WjdujVqamowbNiwbR43u/vuu1FWVob//Oc/OPPMM9G+fXt07dq1/v1nnnkGe+65J5o0aYJmzZph4sSJ+PDDD1OvO/Q7ffp0/OQnP0G7du3QsmVLnHbaaairq8PKlSsxefJktGrVCq1atcJ55523zbUWCgVcf/31GDhwIGpqatChQwecdtpp+P777xvYvfPOOxg/fjzatm2L2tpa9OzZEyeddJJ0u0VZuXIlKioqcMMNN9S/tmzZMpSXl6NNmzYNYj7jjDPQsWPH+v9HPyO6aNEitGvXDgBw6aWXoqysjNl/Fy9ejIMPPhhNmzZFu3btcO6552Lr1q2JMVZXVzdIQkMOOeQQAMBHH31U/9orr7yC5cuX48wzz2xge9ZZZ2HdunWJG0AbNmxAv3790K9fvwaPzq9YsQKdOnXC7rvvnhjr0KFDt/kcbJs2bbDnnns2iBH4IcEYPnx4fRIKAP369cPYsWPx0EMPceuIct9992HXXXdF48aN0apVK4wePRrPP/98AxvZ/h1HROcsQp28+uqrOO2009CmTRs0b94ckydP3qafi8YbjicLFizAAQccgGbNmuG4445j1n/JJZfgF7/4BQCgZ8+e9f1y0aJFAMQ/C/vWW29hwoQJaNGiBRo3boy99toLr732Wmo5APjHP/6BffbZZ5vP4YbXu9dee6FZs2Zo3rw5hg8fjgceeKD+fdaTBax+P3fuXMydOxdTpkypT0IB4Mwzz0QQBPWbMiHhpsgTTzwhdA0ejyf/+ETU4ykRnnzySfTq1Yu5eNbBkUceiY0bN+K3v/0tDjjgANxwww2YMmVKA5srr7wSkydPRp8+fXDttdfiZz/7GV566SWMHj26weeL7rjjDpx22mno2LEjfv/732OPPfbApEmTmAkri0suuQSXXnop9t57b9x000244IIL0K1bN8ycObOB3datWzFhwgR06NABv//97zF06FBcfPHFuPjii7fx+cADD+APf/gDTjvtNFxxxRVYtGgRDj30UGzevLne5sMPP8TIkSPx0Ucf4fzzz8cf//hHNGnSBAcffDAef/zxbXyeeeaZmDt3Ln7zm9/g/PPPBwDce++9mDhxIpo2bYrf/e53uOiiizB37lyMGjWqfqGaxjnnnIP58+fj0ksvxaRJkzB16lRcdNFF+NGPfoStW7fiqquuwqhRo/CHP/wB9957b4Oyp512Gn7xi1/Uf274xBNPxP3334/x48fXX+vSpUux3377YdGiRTj//PNx44034rjjjsObb74p1W5xWrZsiUGDBuHVV1+tf2369OkoKyvDihUrMHfu3PrXp02bhj333JPpp127dvWP/x1yyCG49957ce+99+LQQw+tt9m6dSvGjx+PNm3a4JprrsFee+2FP/7xj9KPqH/zzTcAgLZt29a/9t577wEAhg0b1sB26NChKC8vr3+fRW1tLe655x58+umnuOCCC+pfP+uss7Bq1SrcfffdqKiokIozGmOhUMD777+/TYwAsOuuu2LBggVYs2ZNos9LL70U//M//4OqqipcdtlluPTSS7Hddtvh5ZdfrrfR0b9DRHXO4+yzz8ZHH32ESy65BJMnT8b999+Pgw8+uMFGByXeLVu2YPz48Wjfvj2uueYaHHbYYcx6Dz30UBxzzDEAgOuuu66+X4abJiK8/PLLGD16NFavXo2LL74YV111FVauXIl99tkHb7/9dmLZxYsX44svvsAuu+yyzXt33303Jk6ciBUrVuBXv/oVrr76auy888549tlnE31S+n3nzp3RtWvXbfp9ixYt0Lt3b+Fk2uPxFAGBx+MpelatWhUACA466CAh+4ULFwYAgrvuumub9wAEF198cf3/L7744gBAMGnSpAZ2Z555ZgAgmD17dhAEQbBo0aKgoqIiuPLKKxvYffDBB0FlZWX963V1dUH79u2DnXfeOdi0aVO93dSpUwMAwV577ZUa/+DBg4OJEycm2hx//PEBgOCcc86pf61QKAQTJ04Mqqurg++++65BW7Rp0yZYsWJFve0TTzwRAAiefPLJ+tfGjh0b7LjjjsHGjRsb+Nx9992DPn361L921113BQCCUaNGBVu2bKl/fc2aNUHLli2DU089tUGs33zzTdCiRYttXo8T+h0/fnxQKBTqX99tt92CsrKy4PTTT69/bcuWLUHXrl0btOe0adMCAMH999/fwO+zzz7b4PXHH388ABDMmDGDGwul3VicddZZQYcOHer//3//93/B6NGjg/bt2we33nprEARBsHz58qCsrCz405/+VG93/PHHB927d6///3fffbdNn43aAgguu+yyBq8PGTIkGDp0aGJ8PPbdd9+gefPmwffff9/gWioqKpj27dq1C44++uhUv7/61a+C8vLy4NVXXw0efvjhAEBw/fXXS8X46quvBmVlZcFFF11U/1rYTvG2CIIguPnmmwMAwccff8z1OX/+/KC8vDw45JBDgq1btzZ4L+yLlP4djitRunfvHhx//PH1/xfROYtQJ0OHDg3q6urqX//9738fAAieeOIJcrxhXzr//POFYvjDH/4QAAgWLly4zXvx63zllVcCAMErr7wSBMEP7dmnT59tdL5+/fqgZ8+ewbhx4xLrfvHFF5kaXLlyZdCsWbNgxIgRwYYNGxq8F62HxcknnxxUVFQE8+bN2+Yav/jii23shw8fHowcOXKb1/fbb7+gf//+iXV5PJ7iwZ+IejwlwOrVqwEAzZo1M1bHWWed1eD/55xzDgDg6aefBvDDNy0WCgUceeSRWLZsWf2fjh07ok+fPnjllVcA/PDI59KlS3H66aejurq63t8JJ5yAFi1aCMXSsmVLfPjhh5g/f36q7dlnn13/77KyMpx99tmoq6vDiy++2MDuqKOOavA5vvAULvxG0RUrVuDll1/GkUceiTVr1tRf3/LlyzF+/HjMnz8fixcvbuDz1FNPbXCa9cILL2DlypU45phjGrRRRUUFRowYUd9GaZx88skNHrkbMWIEgiDAySefXP9aRUUFhg0b1uAbUR9++GG0aNEC48aNa1B/+HhnWH/45Sr/+te/Ek82RdqNx5577olvv/0Wn3zyCYAfTj5Hjx6NPffcs/4x7enTpyMIAu6JqCinn376NnXLfFPsVVddhRdffBFXX311gy+g2bBhQ4O+HKWmpkbo26ovueQSDBw4EMcffzzOPPNM7LXXXvjJT35CjnHp0qU49thj0bNnT5x33nkNYgTYn0+sqalpYMPiH//4BwqFAn7zm99s80U7YV/U1b9DKDpnMWXKlAafKT7jjDNQWVlZP2bJxHvGGWdIxUJh1qxZmD9/Po499lgsX768Pq5169Zh7NixePXVVxt8YVec5cuXA8A2n0t+4YUXsGbNGpx//vn19zyE9QhvyAMPPIA77rgDP//5z9GnT5/619P6FKs/tWrVyspPgXk8HjfwX1bk8ZQAzZs3B4DUR+tUiC5AAKB3794oLy+vf3xt/vz5CIJgG7uQcEEY/qZd3K6qqmqbL7AIHwcLadGiBWpra3HZZZfhoIMOwg477IBBgwZhwoQJ+J//+R/stNNODezLy8u38bnDDjsAwDaP3XXr1q3B/8NFXPiZsk8//RRBEOCiiy7CRRddxLzGpUuXokuXLvX/79mzZ4P3wwX1Pvvswywf3sc04rGGCfx22223zevRz8TNnz8fq1atQvv27bnxA8Bee+2Fww47DJdeeimuu+46jBkzBgcffDCOPfbYbRadae3GI0wup02bVv8Y3xVXXIF27drV/zbptGnT0Lx5cwwePDjRVxI1NTXbPBLZqlWr1PjiPPjgg7jwwgtx8sknb5OM1NbWoq6ujllu48aNDb5llEd1dTXuvPNODB8+HDU1NbjrrrsSkwMW69atw4EHHog1a9Zg+vTpDT47GsawadMmZoxRGxYLFixAeXk5BgwYwLXR1b9DRHXOIz7GNG3aFJ06dWowZlHiraysbPBZb1OEcR1//PFcm1WrVqV+AVYQ+3z4ggULAACDBg0SjmXatGk4+eSTMX78eFx55ZUN3kvrU6z+FAQBuV97PJ784hNRj6cEaN68OTp37ow5c+YI2fMWAmlf4JLko1AooKysDM888wzzM23xL1QRIf6lS3fddRdOOOEEjB49GgsWLMATTzyB559/Hrfffjuuu+463HbbbQ2+0ZEC73N44WIuPIE499xzMX78eKbt9ttv3+D/8YVY6OPee+9t8AU8IdEv/JCJlfV6dDFaKBTQvn173H///czyYcJWVlaGRx55BG+++SaefPJJPPfcczjppJPwxz/+EW+++WaDe5nWbjw6d+6Mnj174tVXX0WPHj0QBAF22203tGvXDj/96U/x+eefY9q0adh9992VfupC5vOVcV544QVMnjwZEydOxG233bbN+506dcLWrVuxdOnSBkl+XV0dli9fjs6dOwvV89xzzwH4YRE/f/78bTYykqirq8Ohhx6K999/H88999w2yUbr1q3RqFEjLFmyZJuy4WuicfLQ1b9DTOhcJd5GjRoZ/9mVaFx/+MMfsPPOOzNtksbT8Gd4qJstcWbPno1JkyZh0KBBeOSRR7Zpj3B8XrJkyTabYEuWLMGuu+66jc/vv/++wedMPR5PceMTUY+nRDjwwAMxdepUvPHGG9htt90SbcOd9PgPlIenlSziC+NPP/0UhUKh/htMe/fujSAI0LNnz/pTRxbhj6vPnz+/wUnE5s2bsXDhwganX/Fvxxw4cGD9v1u3bo0TTzwRJ554ItauXYvRo0fjkksuabBALRQK+OyzzxrEM2/ePACoj1uU8GS1qqqqwU9iUOjduzcAoH379tI+VOjduzdefPFF7LHHHkKndCNHjsTIkSNx5ZVX4oEHHsBxxx2Hv//971qSAOCHU9FXX30VPXv2xM4774xmzZph8ODBaNGiBZ599lnMnDmz/jdCeZg+XXnrrbdwyCGHYNiwYXjooYeYyVSYLLzzzjs44IAD6l9/5513UCgUuMlElPfffx+XXXYZTjzxRMyaNQunnHIKPvjgA6HH1QuFAiZPnoyXXnoJDz30EPbaa69tbMrLy7HjjjvinXfeYV5jr169Eh/t7927NwqFAubOncu9HhP9W0TnPObPn4+99967/v9r167FkiVL6u+RST2q9MswrubNm0vFFf5kysKFC5l+58yZs82mWZwFCxZgwoQJaN++PZ5++mlm4hvt99Gk8+uvv8ZXX321zZfZhTGpPOHg8Xjyhf+MqMdTIpx33nlo0qQJTjnlFHz77bfbvL9gwQL86U9/AvDDAqdt27YNvrUU+OF3BnncfPPNDf5/4403AvjhdwiBH74psqKiApdeeuk2p2FBENR/bmnYsGFo164dbrvttgaPM959993bJMb77rtvgz/hDnzoK6Rp06bYfvvtmY+I3XTTTQ3iuOmmm1BVVYWxY8dyr5VF+/btMWbMGPz5z39mnip99913qT7Gjx9f/xt7rM9eivhQ4cgjj8TWrVtx+eWXb/Peli1b6tv/+++/3+YehotOVhvLsueee2LRokV48MEH6x/VLS8vx+67745rr70WmzdvTv18aOPGjQFsu6mig48++ggTJ05Ejx498K9//YubvO+zzz5o3bp1/Tf4htx6661o3LgxJk6cmFjP5s2bccIJJ6Bz587405/+hLvvvhvffvst/vd//1coznPOOQcPPvggbrnllgbfGBzn8MMPx4wZMxoko5988glefvllHHHEEYl1HHzwwSgvL8dll122zecTw76iu39TdM5i6tSpDeK49dZbsWXLlvoxy6Qew98XlemXQ4cORe/evXHNNddg7dq15Li6dOmC7bbbbptNh/322w/NmjXDb3/7221+eiuq92+++Qb77bcfysvL8dxzz3G/7XfgwIHo168fpk6d2uBpmltvvRVlZWU4/PDDG9ivWrUKCxYsMPbN7h6Pxz38iajHUyL07t0bDzzwAI466ij0798fkydPxqBBg1BXV4fXX38dDz/8cIPfrjvllFNw9dVX45RTTsGwYcPw6quv1p8Wsli4cCEmTZqECRMm4I033sB9992HY489tn53u3fv3rjiiivwq1/9CosWLcLBBx+MZs2aYeHChXj88ccxZcoUnHvuuaiqqsIVV1yB0047Dfvssw+OOuooLFy4EHfddZfwj5wPGDAAY8aMwdChQ9G6dWu88847eOSRRxp8MRHww+cDn332WRx//PEYMWIEnnnmGTz11FP49a9/TfophZCbb74Zo0aNwo477ohTTz0VvXr1wrfffos33ngDX331FWbPnp1Yvnnz5rj11lvxP//zP9hll11w9NFHo127dvjiiy/w1FNPYY899miQOOtmr732wmmnnYbf/va3mDVrFvbbbz9UVVVh/vz5ePjhh/GnP/0Jhx9+OO655x7ccsstOOSQQ9C7d2+sWbMGf/nLX9C8efMGJ36qhEnmJ598gquuuqr+9dGjR+OZZ56p/13SJGprazFgwAA8+OCD2GGHHdC6dWsMGjSI9Dk4FmvWrMH48ePx/fff4xe/+MU2vwXau3fv+icPamtrcfnll+Oss87CEUccgfHjx2PatGm47777cOWVV6J169aJdV1xxRWYNWsWXnrpJTRr1gw77bQTfvOb3+DCCy/E4Ycfntjm119/PW655RbstttuaNy4Me67774G7x9yyCH1SdGZZ56Jv/zlL5g4cWK9Fq+99lp06NABP//5zxNj3H777XHBBRfg8ssvx5577olDDz0UjRo1wowZM9C5c2f89re/1d6/RXXOo66uDmPHjsWRRx6JTz75BLfccgtGjRqFSZMmATCrx6FDhwIALrjgAhx99NGoqqrCj370o/p7kUR5eTluv/127L///hg4cCBOPPFEdOnSBYsXL8Yrr7yC5s2b48knn0z0cdBBB+Hxxx9v8JnM5s2b47rrrsMpp5yC4cOH49hjj0WrVq0we/ZsrF+/Hvfccw8AYMKECfjss89w3nnnYfr06Zg+fXq93w4dOmDcuHH1///DH/6ASZMmYb/99sPRRx+NOXPm4KabbsIpp5yC/v37N4jpxRdfRBAEOOigg8Qa0ePx5B/L39Lr8XgyZt68ecGpp54a9OjRI6iurg6aNWsW7LHHHsGNN97Y4GdH1q9fH5x88slBixYtgmbNmgVHHnlksHTpUu7Pt8ydOzc4/PDDg2bNmgWtWrUKzj777G1+AiAIguDRRx8NRo0aFTRp0iRo0qRJ0K9fv+Css84KPvnkkwZ2t9xyS9CzZ8+gUaNGwbBhw4JXX3012GuvvYR+vuWKK64Idt1116Bly5ZBbW1t0K9fv+DKK69s8FMNxx9/fNCkSZNgwYIFwX777Rc0btw46NChQ3DxxRc3+PmJ8GdI/vCHP2xTT7wtgiAIFixYEEyePDno2LFjUFVVFXTp0iU48MADg0ceeaTeJvz5CN7Pn7zyyivB+PHjgxYtWgQ1NTVB7969gxNOOCF45513Eq+b5ze8R+FP0sTbIM7UqVODoUOHBrW1tUGzZs2CHXfcMTjvvPOCr7/+OgiCIJg5c2ZwzDHHBN26dQsaNWoUtG/fPjjwwAMbxEdtNx7t27cPAATffvtt/WvTp08PAAR77rnnNvbxn28JgiB4/fXXg6FDhwbV1dUN6uZdP+unQ+KE18f7E/35jZCpU6cGffv2Daqrq4PevXsH1113XerPYrz77rtBZWVlg58ZCoIffn5n+PDhQefOnRv8VEyc8GdFeH/iPx/y5ZdfBocffnjQvHnzoGnTpsGBBx4YzJ8/PzHGKHfeeWcwZMiQoFGjRkGrVq2CvfbaK3jhhRca2Ij0b5GfbxHROYtQJ//5z3+CKVOmBK1atQqaNm0aHHfcccHy5cu3sReJl9eXkrj88suDLl26BOXl5Q3uRdrPt4S89957waGHHhq0adMmaNSoUdC9e/fgyCOPDF566aXUumfOnBkACKZNm7bNe//85z+D3XffPaitrQ2aN28e7LrrrsHf/va3+veT+hNrfH788ceDnXfeOWjUqFHQtWvX4MILL2Teo6OOOioYNWpUauwej6d4KAuClG+M8Hg8niLkhBNOwCOPPMJ8tM3j8RQvd999N0488UTMmDEDw4YNyzqczBg7diw6d+6Me++9N+tQ8M0336Bnz574+9//7k9EPZ4Swn9G1OPxeDwej6fEuOqqq/Dggw8mfgmdLa6//nrsuOOOPgn1eEoM/xlRj8fj8Xg8nhJjxIgR3N+3tc3VV1+ddQgejycD/Imox+PxeDwej8fj8Xis4j8j6vF4PB6Px+PxeDweq/gTUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYr/siKPxyJBEOCTTz7BCy+8gIULF2Ydjsfj8Xg8HgD9+vXDuHHj0LNnz6xD8XhKBv8ZUY/HMMuWLcNLL72Ep59+Gs8//zyWL1+Orl27okmTJigrK8s6PI/HeT744IOsQ8gdO+64Y9YheDy5IQgCrFmzBl999RW6dOmCCRMmYP/998fee++NFi1aZB2ex1O0+ETU49FMEAR4//338fjjj+PRRx/F3Llz0aFDB7Rv3x5dunRBx44dUVnpH0bwFA9Tp061Wl9QKFitz1XKyovz0zVTpkzJOgRPiVJXV4clS5bg66+/xrfffotly5ZhyJAhOPzww3HIIYegb9++WYfo8RQVPhH1eDSwZcsWvPbaa3jsscfw6KOPYtmyZejevTs6d+6Mrl27onHjxlmH6ClhfKLocQ2fRHvywNq1a/HVV19h8eLF+OKLL7Dddtvh8MMPx6GHHorhw4ejvEj7scdjC5+IejySbNq0Cc8//zweeughPPnkkygUCthuu+3QrVs3dO7c2Z96eoTxiaLHkx+KNYkGfCKdxObNm/Hll1/iq6++whdffIHGjRvjkEMOwZFHHokxY8b4Od/jkcAnoh4PgS1btuDf//437r33Xjz++OOoqqrCdttth+7du6N9+/Z+d7RI8Ymix+MpBnwSrYdCoYAlS5bgiy++wOeff47KykoceeSR+PGPf4zddtvNrwU8HkF8IurxpFAoFPDGG2/gvvvuw0MPPYQtW7age/fu6NWrF9q3b++/cMgRfLLo8XhKkWJOLrNGJLktFAr45ptvsHDhQixatAjNmjXDsccei2OPPRa77LKLXyN4PAn4RNTj4TBnzhzcfffduP/++7F69Wr07NkTPXv2RMeOHf1upyQ2k8WkRDG6cEtLKE0u8nwyW7r45MHjMq6MTVmOv/G6RZLSrVu3YvHixVi0aBEWLVqEDh06YPLkyTj++OPRu3dvpXg9nmLEJ6IeT4Rly5bhgQcewO23345PPvmkPvns0qULKioqsg7PCq4kiyagJKA2YvB4bGCyr5vuz1noNMtxwub4kMd+4cK4LfoI8JYtW/DFF1/UJ6W77LILTj31VBxxxBH+J2E8nv+PT0Q9Jc/mzZvx9NNP4/bbb8dzzz2HTp06oUePHujVqxeqq6uzDo+M7kTSlZ1xVVxIQk2QVWJbbG1YbNeTFcXYjsVyTX6sUEfmlBQANm7ciE8//RSLFi3CsmXLcPDBB+Pkk0/G2LFjS2aT2+Nh4RNRT8kye/Zs3H777bjvvvtQXl6OHj16oE+fPrnZqUxLOMPJv1gTMFFK+fp5C09W34i+XmoUWyIqCqt/8PpG/P1SodiSUSqs8TMpoS2ldpI5JQWAFStWYP78+Vi4cCFqampwwgkn4KSTTvK/UeopSXwi6ikp1q5di7///e+46aab8PHHH6NXr17o3bs3OnXq5OwXCogmnGmUYkJWStesujgs5aS0lBLRpOSTWk60bN4pxWSUOnamnbYWc9vJnpIWCgV89dVX+Oyzz7Bw4UIMGzYMZ599Ng499FDU1NSYCNXjcQ6fiHpKgnfffRe33norHnjgAbRs2RK9e/fG9ttv79Sjt7oSziRKKdko5sWj6RMJ2WQljxRzPwHM3stSSk6LvZ8AZuaHUktQZU9JN27ciHnz5uGzzz7Dxo0bccIJJ+C0007DgAEDTITp8TiDT0Q9Rcvq1atx//3345ZbbsGnn36K3r17Y4cddkC7du0yjctGwplGMSekxXgKmuWCv9iT0mJMMLK6Z8WemBbj2AJkMx8U++O9sqekQRDgm2++wfz587FgwQLsvPPOOPvss3HEEUegtrbWRKgeT6b4RNRTdMycORM33HADHnzwQbRp06b+8Vvbp58uJJxp5D0hFfnyjWK5JheuoxiS0lLpMy5cQzElG8Xeb1yIvdhOT1nXQz0lDRPSDRs24H/+539wzjnnoF+/fjrD9HgyxSeinqKgrq4Ojz76KK699lp88MEH6NOnD3bYYQe0bdvWeN15SDjTsJGQ5vlnS0zdw7wv1G1tZNj4iZC8/dyEq8lnGrY3WkzcV5P9JV6PCVxLQNPIKkHVeY/jfYaSkAZBgG+//Rbz5s3DggULsNtuu+H//u//cOCBB/pv3PXkHp+IenLN119/jVtvvRW33norysrK6hPQRo0aGakvKenMw4SeRh5/w87UoiqPbZEleW0v3V9UlNd2yIo8t5fux7rz3BZZkNf2kn1sFwA2bNiAjz/+GPPnz0fjxo3xk5/8BKeccgratGmjLT6PxyY+EfXkjiAI8Nprr+G6667DP//5T3Tv3h077LADunbtqv2bb33i+V9cvF7XP99XbI+asRDtQ65eq8vfmFuMj4OyyPN1ujwG5X18p5DHsVYlIS0UCvj8888xb948LFmyBEcddRR+9rOfYZdddtEdpsdjFJ+IenLDpk2bcP/99+Oaa67B559/jj59+qB///5o3ry51nriySdrAsvTZytlFnkuL65CXI8x7aTW5c+C8qA8SpyXx/9cTkSB5H6e10e7Rft+XsZZ18cigN/P85jAhYg8np6HR9hVElLgh98lDU9Jd9xxR5x77rk47LDDUFlZqTNMj8cIPhH1OM+KFStw66234rrrrkNFRQX69u2LPn36aBtkWaeelInKlYlO54LC5YWVywmOysLZpcRUV4Lj8r0KcTkRldGha8mpjn6dh4TU5TEToPdzV0+pdY+xrt0v2c+RAj9s1s+bNw+ffPIJamtr8Ytf/AInn3wymjZtqjtMj0cbPhH1OMvChQvxxz/+EXfccQc6dOiA/v37Y7vtttPy+K1q8snD9ERna3Hg6uLc1cTG5u/v2exPuq/DpXsGuJs86G4zm6depvut709y6BzTs+5Ppq7DpfumkpAWCgUsXLgQH330EdasWYMzzzwTP/3pT9GpUyfdYXo8yvhE1OMc77zzDq666io8+eST6N27NwYMGKD825+mEs8kZCdQF3aiXUxEXVzk2VwUqy7wszwpczV58H1KrU+48vu2Lt6/UoxJ19yVxcmlq0mpSkIa/ibp3Llz8cUXX+CYY47BL3/5SwwYMEB3mB6PND4R9ThBEAR46qmncNVVV2HmzJno27cvBg4ciGbNmkn7zCL55CHz7X5ZToSuJaIuLe5cWrDkqV+5mDj4fs6PgYIr8bpyL124j1FciIfar1yLNet7qZKQAsD333+PuXPnYt68edh7773xq1/9CnvttZf2L3j0eKj4RNSTKUEQ4IknnsAFF1yAr776Cv369UP//v2lfn7FpcQzjkuf/xPBlQW6S4tMlxLQOHnpXy7dT8Cdfg64kSzwcHFhHsfFvgW4E4sLcbBwfexyre+rJqTr16/H3Llz8fHHH2PQoEG46qqrsM8++/iE1JMZPhH1ZEKhUMATTzyBCy+8EF999RUGDRqEfv36kb+AyNXkU2RydWmhEseFhYsrC0tX4oiTlBi7GjPgVmy+nyfDiy0vmzJZx+XKGO9CP2fBulcuJ6YuJaWq37RbV1eHDz/8EHPnzsWAAQNw1VVXYezYsT4h9VjHJ6Ieq4QJ6AUXXIDFixdLJaAiP69iG9nJ05WFShzZhYvMY32m0XEdrtwfalwuLcrjqPT9YuxnLt0fSlx50IpsTK71M5XrcOW+hIjq36XkL46uvq+rn8mckMYT0iuvvBL77ruvT0g91vCJqMcKhUIB//jHP3DBBRdgyZIlGDhwoHAC6uKpp65dW9cWoroXXiqL86wndZUYdKJjseNaPwPcuE8qC3QX4teJaj9zNWHQdZ9U+4nvZ/9F9yaUC9flSj8D5BPSuXPn4sMPP0T//v1x5ZVXYty4cT4h9RjHJ6IeowRBgGeeeQY///nPtSSg2/i3NAGZfFzI9qmo6ISZxeSe5QmxC99WHGLqlCmLhNSldo2T1UmRSxo00deyOiV1qV2jZP3ki0sa1N0WWSamLrVriK6EdO7cuejbty+uu+467LnnnjpD9Hga4BNRjzFmzpyJn/70p3jvvfew0047oX///uQENGkQt/n7Yrr98+ozHX8UXl1ZLZqyrjepbhs/fWJz8W4iIU3rc671t7BuF+stpv5mY1MljoiOS2V8C+uWGdtCdN8zW30tJKt1gQsbMjLJKPDfR3Y/+OAD7LPPPrj22mvRt29fXSF6PPX4RNSjnc8//xy//OUv8fjjj2PgwIHYaaedUr8FV8fnPlUSUxe+IIE6SZtaQGSxOM9ikaa6KNWRLGT5+TrZunUnSVlvQOSpXt/ntsX3ObF6TX0Wm3oPs+xvISr9Lk/fOaAjIV2/fj1mzZqFefPm4YQTTsBll12GDh066ArR4/GJqEcf33//Pa644grcfPPN6NWrF4YMGYKmTZsmlhE9/ZQhaRJxIfFkEZ+sbT/6k+ViIU9JqIjfOLx76kqfA8T7nSmtlkq/szHWheSh3wFifc+UVouhD9iukzI3Zf1ocogLa4KsPx4hm5CuXLkSM2fOxNdff41f/vKXOPfcc9G4cWNdIXpKGJ+IepTZtGkTbr75Zlx66aVo3bo1dtllF7Rt25Zrn9W33rr6JQchthZgaTHkfYEkUl9WddquW5SsN2ayWpyXSl+P4vseu/5irS+LOl2Yy0Rw5fOleUpIlyxZgpkzZ6Kurg5XXXUVTjzxRFRUVOgK0VOC+ETUo8Rzzz2H008/HRs2bMCQIUOw3Xbbcb9lLYsENG3X3bUvjwgKhZJ5bKwUk9Do/bUdSxzXtJFFfyjmZIBVr0ubImnaKIYnJNLqK+aNl3i9WW84xInfcxcen7VRr45kNAgCfPbZZ5g1axY6deqEqVOnYrfddtMVoqfE8ImoR4pFixbh7LPPxssvv4whQ4ZgwIABKGdMNC4kn7x6bS4+ZL7koJgTgSzqslVfvE5evVkuQNLqLJVTm2LddInWyas3i6RUtM9nrdliGwPD+lyaU7JKTEXucxZJaR4T0i1btuCDDz7A+++/jyOOOALXXHON//yoh4xPRD0kNm7ciN/97ne4+uqr0atXLwwdOhS1tbXb2LmQgMp8IYGuOHV8SUJevtBCph6geBd7UbLsg6x4ZGIq1mS0GPt7vE5KvaYWwip+s0xIi61vuD6nmE5MXdIEpd48JKRr1qzBO++8gyVLluCKK67AWWedJfQLCR4P4BNRD4GnnnoKZ555JjZv3oxdd911m52vPCWfSX6oPkxMoMX62KDtemzUFa9PpU5VP7pPuYr5ce1iTUR11KejH7kwNsuSRSJgox6XE1Fe+Tgy/nTcz6xPSU3WpyMZBYCvvvoKM2bMQJs2bfDnP/8Zo0eP1hGep8jxiagnlYULF+KMM87AtGnTsMsuu6Bfv34NHsO1nYCanBBkHtsxFYcLnx9K+tKJrMn6cet4fbrrFL0W049YupRI5bU/utB2qj6jZPFIY5baps4FWeP74rb2JuNwYc2juy/KJqRbt27FnDlzMHv2bBx00EG4/vrr0bFjR62xeYoLn4h6uGzZsgXXXXcdfvOb36BXr14YNmwYampq6t+PJ6CAuQE5q4E/qy9ZMLloUJmwVHeTVa9HJnYbbWhrt5pHnk9tsuiPYb26T2tEMD1G2u6Ltr/oxUZCanucUb13qkmIKV1n9d0LUWzqodj6o8rp6Nq1azFjxgx88803+OMf/4iTTz6Z+T0iHo9PRD1M3n33XZxwwgn49ttvMXLkSHTq1Kn+Pd5vf+pO2Fz4fIbtuuMxmFyYhL5NL2BtLhxF+qNKHFn1yazrjtZvqk/G713eH1WMt5epRXMWj66y6rZdv4nHLaOwxpK8bj5G6xAdI0NU+mTW/dFmDKY+nsHyaXszRiUh/eKLL/DWW2+hX79+uPPOO9GvXz8d4XmKCJ+Iehqwdu1aXHDBBbjtttuw0047YfDgwfW/EcVLQJOgJqdZTSRpO/22J1QgeaGscwFhe0GetX+ZBNWVTZH46ZNryaiufpn3PhnWoaNPAmLtnWUS6HpCKtu+LB+u9BlZ/wDtepNIa+8sx6c8JKWqm6U2E1KVZHTz5s2YOXMmPv74Y5x//vn41a9+hUaNGukK0ZNzfCLqqefpp5/GqaeeioqKCowcORKtWrUCIJeA8hB9xCTL5JNn58Lubhxd98OVJFHGtw7/LvVLgPaZIN8vi9d/1o8exqEmfVk+McDC98vi7JcA/bPlWa0xWOi8H6bnWpWE9LvvvsMbb7yBpk2b4q677sKoUaN0hOfJOT4R9eC7777DmWeeiaeeegrDhg1Dv379UFZWpjUBZZHlZy+p9dnaqWaR1x34vCShInWYrotVnys74vF6ovi+yfdfjPeDUk+x9s28JItJ/ovpfkTrlD3pLZb2MKk5XclooVDABx98gFmzZmHy5Mm45ppr0Lx5cx0henKKT0RLnIcffhhTpkxB27ZtMXLkSDRu3NhqApr0eRVddevwq3txIDI5ufSYVqn4jvqP11Hq/TOLz8zlcTGeRaJicnGturg1sTjOun/mOVk0Pa+w6jCZjKnciyx0Y+Mx9jwkpKtXr8Ybb7yBuro63HPPPRg3bpyO8Dw5xCeiJcrSpUsxZcoUvPTSSxgxYgR69eqFv/zlL/XvZz046lz8yPrg+aT6kp2EbSSieUsUXVlg6kweZcvr9CfTR125F7K+87rQF2kXXQtsk4+/6+ijom2Q9Xwm67tYx1CdianJx41V+yilDUwmjK4mo0EQ4KOPPsI777yDY445Btdff70/HS1BfCJaYgRBgIcffhinnXYa2rVrh5EjR+Lee+/97/sGBywZ/7LJq0xdovFQ45CNJ4+nNnldQOlM4vKw+CjlPhr6zlsfVfHvUhKnoheZeFwdN0R956n/h76BfG+GqeiFGo8rc4Kqb5WEdM2aNXj99dexadMm3HPPPdhvv/10hOfJCT4RLSG+/fZbTJkyBS+//DJGjhyJF198sf491xLQJH+hL9uf9YjWmRSDrjjydmpjasKzdbKh+1Qy6tPGJgkvDpN6yesjinnzG/oGzJ78mNZaUiw2+qkOX1n4NuE3j/006tfGxwN4cZjSSx77qc7T0Y8//hgzZszA0Ucfjeuvvx4tWrTQEaLHcXwiWiI8/PDDOPXUU9GhQwfMmzev/vW8DHYs/ybrodRvIoY8niya8JvHiTnu21QdrsSQx5MbkxsxeWzjOMXYV/M4luRprDbt29bcS40hryftun2HflWSUaDh6ehf//pX/9nREsAnokXOypUrcfrpp+Nf//oX1q1bV/+6qWRBt29eHSbrcqHuLBf3vOs1QdaPXZk+FYhTzP01q0VtqfRXG+NNnGLsr1mPKy7117xs8rDqYJFVvabqdiEhle2vuj47etJJJ+EPf/gDGjduLO3P4zY+ES1iXnrpJRx33HFo0qQJPvvss23e1/3ojO3He7P8fIjpyVaXf9VFj0gMlPugEo/rjz6l+c/yc3eufnaR50cW0fpF9WUrHpEYbN+7rD67ZnujKMs+61p/BfS0RxabtC70VxP1JtWtwx8FSn8F1E9HV69ejenTp6O6uhoPPvgghg0bpuTP4yY+ES1CNmzYgPPOOw+33347hg0bhv79+6OsrKz+/ejPs8SRmeyy/Hypjc9N8exdSERFJ5ToZ1pcf3SM5TPtOtPqzzIBNRULVYeuJKMifTZ+713/jFz82qnXKOpXNzInzrY+r+mSZuP2LEx9bjDqM+s+KxJDVokoyyaKjrE2T/NM3J6FjT6rmowWCgW8//77mDVrFn71q1/hwgsvRGVlpY4QPY7gE9EiY+bMmTjqqKOwYcMGjBo1SvjD3knJKfDD4JTliY5IWZkyNuukEE7muhYHoU9RWxFsJaEi9jzy0G8p5VT6ra1Fkmi/1X0aRMFEIqqrzwIN2zDrjQNWmRDT/V2lHNW/zn7rwtgo6lP3hqcrm7RR+zi21xc25h0djw2bPHlVTUiXLVuG6dOno2vXrvjb3/6GHXbYQTU8jyP4RLRI2Lp1K37729/i8ssvx+DBgzF48GCUa3hMh5WgmphcVX2LDKA6d0lNJXU8dE0KLi+MdPrjtaepvmuy38btbNQn6zOOi4+mZrmgF/HDw8T90tGP0vzY1ImK3ygu9tvQp4v+bMxf0Xp09dskX7Z1oupbl3+XT0e3bNmCd999F5988gmuueYanHnmmQ2e9vPkE5+IFgFffvkljjrqKMyfPx977rkn2rVrp8VvNAnlPb4jM1CZGpxZA6jpiUDnhAjk5xHavPgLfZrYhFDxIeLTpk5ky0fxfdfM2KIzWbKxEWHjcT8Vn7yxIA+P1LruL/Rpou/Gfesgq74r6zdvWmP5U01GAWDx4sWYPn06dt99d/z1r39F27ZtlX16ssMnojnn0UcfxYknnohu3bph1113RVVVlbJPVgIaR2ZQNf24CqsOU/WEdak81pTWtq4kzSxfgLuLIRF/Mv3E9COC8Tps1OP7rx5/NhNv2cW9rUdcKTHpqIty3WllSjUZtalVleTU5GO/tsde0Xqy7L8uP6q7ceNGvP7661i1ahX+9re/YezYsarheTLCJ6I5Zd26dTjnnHPw4IMPYvfdd0evXr2UfYokoCySBtasBneTdUXrjNehYwfY5ROlPCyqqP7S+o6NBFQkDlP1ifRhmfZ0ORF1NTYZfyJjjol7IhOHqfpc78N+DE63Z+H7sFwMeUlIVZPRIAjw8ccf4+2338Y555yDK6+8EtXV1crxeeziE9Ec8t577+Hwww/H5s2bseeee6Jp06ZK/mQTUBY2B3KRBDiPk1bWC9s0X4B7CypdE2WWC5F4Pb4Pm/Hnqh50+bPdh+N12t7EMdmHdfgx4c9VX7r8ZdGHo/Xa3kw33Yd1+Ir6cykZBYDvv/8e06ZNQ4cOHfDwww+jT58+yj499vCJaI4oFAq47rrrcMEFF2CnnXZS/kIinQloiOlTHcqkYPrzJCIxyNbj0qIgL750+Yv71O2b5d/mo4Ks+k35dzV5dNUXYP4+m6pD9HHMUu/Huvy52o9N+At9xsnykfi86NTl01Gdj+pu3boV77zzDubNm4ebb74ZJ5xwgv8io5zgE9GcsHz5chx33HF4++23MXr0aHTo0EHal+4E1PSpjuwEYGpnNn59ri98XE0cXfMV9Rf3aerEVfRzUabrzsPjtEBxL+BtJD06F9My/dJEXzZ9AutqMur6OGpyXtSdlKo+Tqy7L5tIevOQkOo4Hf3yyy8xbdo0/OhHP8LUqVOVnxj0mMcnojng9ddfx2GHHYamTZtijz32QKNGjaT82ExAeXayn3Oglo36UKkzrV6Xd5JlFxdJn9kJkY3R9cVTiO5dcV19mVrWhScIsr7XpvqzK9cn61OlT6ouQlWT2KRyriejqr5M9Oe8JaK896NQ+7OOsUW3hlxPSHX4SuvPMsnpunXrMG3aNFRVVeEf//gHBg0aJBWbxw4+EXWYQqGA3//+97jkkkswdOhQDBw4UOpRg6wSUF450Ue4KL5l61R9JMalRFRkgeISOq4zq4lZZlFM8Z9WrwkNuXgqmqc+rXqdWW4CUDcsKL5V63SlP9tYdLuEa/1Zti8D7vbnLE5gVeJI8+Ma5eXlqK6uxo033oiTTz7ZP6rrKD4RdZRly5bhmGOOwbvvvou99toL7du3J/swmYDqTCJMfvYi6t/EYz02J1yZAd+Vx7+iftKuQzTJcqFP8/quiVMZVp26NWT7MUTRPh32G5cezQ39qJ5Qufbop+0+bbK+LMYL0f7g2iO6OucX1zdo433M5BjNqk+2zqwSUmrf0P2osqqvZs2a4YADDsDtt9/uH9V1EJ+IOsj06dNx2GGHoXnz5lKP4rqYgCb51OlXpC6d9Zl4lDaNtPpcXeCI+DH5WDCvLt+nt/XtWp8OfbmSiIr2HZ3XL4Lv08l+TTwRxIMy3unoj7a0QUlK8jAm5b1P6/Dpap/W6adbt26orKzE448/jp122knJp0cvPhF1iCAIcO211+KCCy6QehQ3moBu41tx983kwtTERGCzHh07m1FcGMBdnUziuNyvdfpPqyvLxzpZZVnkabFtMxYWKm1v+nTHRB026nG5X6v6cTGh5SHb/r5fp/vW2bddONXUvX4YNmwY5syZg9tuuw3HH3+8kk+PPnwi6ghr1qzB8ccfj1deeQVjxowhP4rLOwWVGQRNL9RZ8Zma/Gw8giP6KCkvNlFfovGwfGfhx2QsspOniX6Q9qisyR1w049L6ujbLi6SXY5Fpm/b7Ae2Hne1OQ8l2UXh3StXx0mXYpFNTm3N3SYfe7XZr9P8iqwJXUokdcey//7749VXX8Wxxx6LG2+8UfrLPz368ImoA3z00Uf40Y9+hC1btmD06NGora0VLkt5DFckURP1JYKoT9071Sw/NiYzlV3gYluM2L6etIVjVota1XpFNJTVQi0ppjRfsvGI1mfSR+jHlb5N8UUhzafOvm2qDlGfqhtbIrYifrL2EfrJum9Hy2bdt2XrtlGHqM8sDyR0+NEdyzHHHIP//Oc/6NChA/7xj3+gW7du0j496vhENGMeeughnHjiiejbty+GDh2K8oSBOYqOz4GaemREZoClTDaycet8vMfFR49cWcy4sAtq63Eoan8VjUG2DlMnvZRYeL58/97Wj2tjd9y/a/2bUgfFp4rvYktGs+7fuudWXh2m1xpUW4p/qk8V3y4mkjp8nHTSSXjrrbewePFiPPzww9h3332lfXrU8IloRmzevBnnnnsu/vKXv2DPPfdEjx49hMrp+iIiE4O9ruQh6dQnCrUO3Qs/2Th4/l1ZqLsyUej0EyeLPp5WVnVBotr2Jvt41otbnXG4otWoHxa2F52U03tV/7r7uM77kPf+6YpW4/HEUe0DJvq3iv94Ha728az7lk4fU6ZMwSeffII333wTF154IX79618LHwZ59OET0Qz47rvvcPDBB2PBggUYM2YMWrRoIVTORBKa9OhdFrt50UFG966/6qlrvKzuxaQrg7PtCZ7lw5Qf2f5qMi6dGqLegzSN6Txp1ZXAuZBEuuCD50f1FEfUXsRP6EvniabKaSqrnGtJpCs+irGP64qLN2ab2GDSMUeZnlez8qErGV22bBn+/e9/Y7fddsPf/vY3NGvWTNqvh45PRC0za9YsHHDAAWjatClGjRqFqqqq1DKmE9AkO56ticdJbPkWPXFNq9u1RLRYklBb7Wn6BEe1blXfaTv2onW7dEKSdSKat34uumA30c91byTy/Ovo58WYjOY9Boofaj/P21ie5JfSd11MSF1IaKdMmYKNGzfiP//5Dxo1aoSnn34avXv3lvLpoeMTUYs8+OCDOPHEE7Hjjjti8ODBqT/NYjsBFSlna2Gu23+0Ht5JFLVOVxboWSeRLkxKKn5M726n1WeyDh1PFhTbhksxLNB19POwvKkxPalOE/5ZfZ1al0uJpIoPF/pplvNjWl/Pcz8Pfavo1rWTTVkfupPRQqGAGTNmYOHChXjkkUcwbtw4KZ8eGj4RtUChUMCvf/1r3HDDDRg9ejS6d++eWkb3lxHpftRKB0l+bexcqvrPakHJKu8CWS+aVOOI+1H1leQ7j309ax++rzf0Y+rxQh3Y3MTU7duFvh71kTV57+u2Nv5YY7ru+nT6deV01JV+DvyQjALAvHnz8Oabb+LKK6/E//7v/6YeGnnU8ImoYVatWoWjjjoK77zzDvbZZx+0atUq0d6lBDTuy5RPk4/QyDxyS/FtctFDGaBdOA1NIu2xItcm1Cg6+6DJdojXFcWFxXnoR/RRyiRU+quN5CDpGl26FyxMx2d6ftLp12QyqtqXVOsXLS+C6f6ua75mYXMOd7G/2zrZdLm/R2MLk9GlS5filVdewcSJE3HHHXegpqZGKi5POj4RNcinn36KCRMmoFAoYPTo0Yk/nOtSAipyUkmtQ2ZAlh1Y0urSObFlOcnrisFkeZHrzPrkIeon7svm408m+rvO09asNy10xZB1f0/zoRqDii+bj7aa0JarJ6NJmO7vquV19HeTMVD8xOPIqr9T6xLp71SfonXI+uAh2p9UEkrV+MNkdP369XjllVfQvn17PPXUU+jUqZOUX08yPhE1xKuvvopJkyahR48eGD58eOJXQkeTUBZporL9WCKlPh0DPbWOtHpsJ6Jpg7PLiaTpunnY6vNRX7omSFvJK1Wvvs+7sXHDQ7RdbWwqUMftLPq8yQROxo+Lfd6FRDYJ232emlSL9EfdG+VJ9rafMpBZe0VRPZ10IRndunUrXnvtNaxcuRLPPvssBg8eLOXXw8cnoga45557cNppp2HXXXdF//79uXZpp6BpA6Ou3TBZPzzBm9ilS6uDUo+piS1pUE66v3lbVJtc3Ig8emRi44Xa51llbMSlW6uysan2+7wmoqr3ldLnATOn21Q/aX1O90lKWhvp0KqO2ETGqrhtKY711D4fr8/2xnFomxRT1MbkHKSiVVf6vGwsWfXbaNxhMhoEAWbPno05c+bgoYcewsSJE8l+PXx8IqqRQqGACy64ADfccAPGjBmDrl27cm3DJFT28YwothNQlo+goP6NhUl1sPzL1qFjYqMuvnXHkfXiwmbduu67ahxpMYXoPLHS6V/3wkk2JlMJnetlAfnkL4qJjT2ZmKJjss6xnuVftg4TC/MoMuNYnhblYXnf7/XHZLIOV/p9MSWjALBgwQJMnz4dv//97/GTn/yE7NfDpjLrAIqFDRs24Mc//jH+/e9/Y+LEidwvJVL5LCgvGaNOFDoTxjAm3QuSkNCvKf+UGFhkEU+WZDExhPbR+yA7wemaoFkx6ewLJjd2KJhcGJaadijXm3TqqNr3Zds9fjJiYkyO6kqH/7g/HRu/qjHJ9P3oPGuzbIhsWd6aJcmeVXf07yRbE4g+/aGjDl3XqKojXX1fRX9hedlr0FE2Tu/evdG0aVNceOGFmDt3Lm666SZUVvo0ShV/IqqBb7/9FgcccAC+/fZb7LPPPqitrWXayZyChiQtPkQHL50Due7T2STf4aCge/dRtJ2icYj6UI3BlxUrT+nTOhfOtvq/7lMnEV+ij6VldTKbxYI6D30/qQ7f98US+LQ2zfKEJyyfp76vUm9SeepTMibWD5T6qb51PA3A8pvmK2k+zfLphKzLRk9FAWDNmjV46aWXsOOOO+Kxxx5D8+bNSX49DfGJqCLz58/HPvvsg8aNG2PUqFHM3RHVb8RVHURMJqAmkjMTvln18NqHVX+aD5kYbC/kiy0J5dmFmDi1FNkQ0tH/dftO8kVd1OmIJ4sFtUrZrPs/te9H67PR/3XUYdJ3ki+ZpEYlnjyOw1npVbS8yAaCyY08HWssEd82+j+lrfPSh00ko3V1dfj3v/+Nxo0b48UXX/TfqKuAT0QVmDFjBsaPH4/u3btj+PDh2/zora0ENK2sSgw8f7p23qknWqZ29GXa1/TkyisHZDOIu5yE8spFsbGrLKNZ6kaTzusQqddELHlMJvO46RTF9392nTI+87gYD8vmpU6V8ib6f9Sv6Ik6VQMmN0B4vmR8unA6msUaKJ6MFgoFTJ8+vf6EtG/fvuSYPAD7KMiTyrPPPosxY8agX79+2HXXXbUmoWXlDZ9r1zEIy8KKJSmetFPGqE+KXxWi9cUHQJP1JsVjm7wlofH+QYVVRrbdKXqMvp9WH1Xnon5F6mPFS8HUhlCxoeMaZe8P62RFpe+IxBPv/yIaEPEbfV/1OnScXvFObKnlVcrKkpc6VWDN7bx1gCgi81G8XpH6ROc5qrbS6ov7pqAai4p+dNQrWy7+U4vl5eXYc8890b59e4wYMQJvvfUWya/nB/yJqAR//etfMWXKFOyxxx7YfvvtG7yX5SloUnmqXxM7vrp2oanxs+rL6kRTpWyWC/csEljd5bPSQLS87ZOYpPqyOq2Ols+TDrI4SZWtl1depv+Z0LLNE0UbGpD1ofPE2wa2NyTD8jrnatlETNe90tX/dM1nWZ5uRsvnRQPAtiejAPDhhx9i5syZePjhh/3PuxDxiSiBIAjwu9/9Dpdddhn22WcfdOnSpcH7qqegsmVFy+uykYlJp0/R0660x1xcSURVB9S0OFQTeGoMLiahPBuenS4d8NpTl08RLaS1gys6iMZERbRvm9QAK44sNqzCsqx4WDYhSX3J1bkgyRdVB7Ix6RjvbOtAxLYYdCBS3utAzI9qHLJlTZ3gq+qAlYx+9tlnmDZtGm655RacdNJJApF6AJ+IChMEAX72s5/hrrvuwrhx49C2bdv69+LH9YC4ELMQf7yM6imNrrgofllxU+qymYhSBlLdybPqbiNlAmdBqdf2CR2r3+vutya0FferouGs25yHSL+T6dOmTjWLWQsm+qwJv6ynDmzPwzL3OAmRfmfzpJ6a1PGgtlOWc3VetMDqwypasDX2RMskYWpOUCnHSka//vprvPTSS7jooovwq1/9iuS3VPGJqACFQgFTpkzBY489hvHjxzf4qub4KSjlBMTUDpKMDxU/Sf5cHcBNTG5pg6lKe2RRTrWupPbgtZ3NyY9VXsVHms9i1ILsiU5WWshq0Z4XLWSxceLKho/JZDTt/hfzvBAtJzIu6KozLMvzK1o2is6+qpIsivhX8WnygKSYtACwk9Hly5fjueeew09+8hNcccUV23yHjKchPhFNYcuWLZg8eTJeeOEF7LfffmjatGn9eyK/Cyoz8Kahc5BQjYXlz9TCKqkOGZ8644mi+1RTtpyLAzplQU6pU7Z8UkwmklpT8apuquiOJ8S1Xew8nR7ZOpnj+dART1pMxaYH1blBpl6VE6hinhtE6xX1YTomnRuLcbLaoFWdG6j1upSMfv/993juuedw0kkn4dprr/XJaALb/uilp566ujocddRReP311zFhwgQ0btwYAO2zoGmDDUUAugeF+I4cdcElGo/ITmiS77j/svJy5RNN2Th4MWUVQxouLTRY70evjdq/dS5i4/0r/Fu3HqJaoPg3qYcwJlEfuhZmMuOCSjkZZOsRKZeWmMn2b91JWLS/Uvyb1EOS/1LTgwzUa4yXMxUTizBOUXtZO1EfsnpIK8Naj1H8p+mBGms8JpX5ihVXWr0y40K0X8vUp3Nd2apVK+y///645557sH79etx6660ot6TvvOFPRDls3LgRBx98MN5//32MGzcONTU1AOS/kChpkIhj+hQlacBPq0N2106nb127nGkLQV4sKickcV+i5Uppl5yiCRt6SKvH5O6tLU2Inlrx4nDttFFnGcDu6Wu8PtFFnck+wIpFtyZ0+ja1ScXyz6rHlbHUVF1Zap2S5KgmFmltRFkPqSSWor6T7HQeZIhoQtf4pNK3ZcvJlGGdigLA2rVr8dxzz2H//ffH3XffjYqKCmHfpYJPRBmsW7cOEydOxIIFCzB27Fg0atQIgNijuCxEO7eJ0zfZU6a05MDUIosySOuYYFiI3Cebi2eRmLKqy/Tk4pIm4vYmF7sqC3kd7RJH9D653r9dXnQXgyai7+mORWeMMrHEKWVNAG4lsCY0IVo3LwYdGxMs3yp6KyVNuJSMrlu3Ds8//zxGjx6Nv/3tb6iqqhL2XQr4RDTGhg0bMH78eHz++efYZ599UF1drf0UlFpWtbxq3bJ+TPpWmUCzqFu2nK3k0MUkNKlsSJZ1y8Zgyq/q/ciybpcX3XloizhZ1i3jx6RfXdeWRd0ujuEuJqKsMixszm8qdZv2nce1aRaJpc5kdMOGDXjhhRew++6748EHH0Rlpf9kZAh/a6ME2bRpEyZNmoSFCxdi7NixWpLQoFAgl+OdHCbtRPHK6xj8dPlhDWAqvtPaI2yLeNuF9em6LhFE7h0PlwddmwtenbqQIV7OVP+R9RuWobSHjh1ylbK29GcbmxskrDpZ99dE3TY1oNrHRNoj3m7ROGTGcJWyNupSGWdcJhqjrC5U6mb1Xx116tJFvF+rrC2p7SmrKdYJM6WcrTKsn3MEgNraWowbNw7Tp0/H5MmTUciBjmzhE9H/z+bNm3H44Ydj7ty52HfffVFVVdXgUVzK4xmyC3uWyOODGk/0OhJQ3sJUZQBlTezRv2XhlectsFmTg43FgQo247OxuNCxw5ymC542omVkY4/Hr7qg0ZEcx0nSLG+RHR9vVHBdU8UGa1xljXMi2lCNIf6abm3o2swTiTfehraTUZsJrGw9tsqowNIFa84weYoZ9aMjEdY5D6muLVU2amR1YTux1J2M7rfffnj++ecxZcoU+AdSf8CfDQPYunUrjj32WMyYMQPjx4/H3XffXf+ezVOitLJpA4auk0WWn7Jy+W80ZPmk+hOth1WXK8i2n2sTfhYnqEllRU5IdS20owub8HUVbcQn9TB+1ZMx1XaQiSHaJiaJtrtsWVPoSpZ0lGONuaa0wTv9kelHLJ/xPq1ykifbDrr0KYpMfUnaT0O2jKvzbRKi2tBZVzyx0TGPsvp01tqgxKCjnKva4NG4cWOMHz8ejz32GGpqanDjjTeW/E+7lPxnRAuFAiZPnoznn38eEyZMwL333lv/HmXRRi2jUi5eVqY8xYdonJSYVAZNndeuY5FEKSeLSH2UQdlGPPG6bLV1tGyIqg/Rfq/TzuTGkogPW+Vs9UXR2GxqI1pfXvWho89TbHXqo9jnDup84Ko+bI9hcVzShy5/aeVVfdjQh825Q8Q+Hg/v86IAsHr1ajzzzDOYMmUKfve735V0MlrSiWgQBDj99NPx6KOPYsKECWjSpAn3SF01SdNVLlqW9eiAzERCLcPb/ZbxJ5s4RU9fXBksRQdF3UllWlw66ki7tjR9ZLHIltWHTP2i+rBRf1jONX1E30/ChD5kyuhOXJPaJCt9yC48XdGHaJlS1IeobbRMsehDpVy0rGxSqmP81uVPtoyugxKd6+Ks9KGSJCcloytXrsQzzzyDn//857j44ouFfRcbJZ2I/uY3v8ENN9yAAw44AM2aNWPa8BLTKFmcgspM5qq7XUmDgO7JXHQC0DHZUMukwbo3riyao/aAnoFYNknVFZtoWapGdC7yTSx2RfSc5WI7CVWN5ElTuhZPInWplBOdH3SdxLqgEZ0bwtRySagmImEZl+YQXh0m9MGrS7Qcq05KUqpad9S/Tr3J2Ojo57JrZB5ZbvbqTkZXrFiBp59+Gtdccw3OOOMMYd/FRMkmorfccgt+8Ytf4IADDkDr1q1JZamnpiE2BM2yVZ3sef5V/SWdXIn6N5mI6kq8s0wSddir1BGn1DSiy1fUD1WDpk5vWLFQ4or7yWIRnLU9D5E2N7m5wOtjKnXz/JvwpToeUOumtqdMfa7NI7Ix5UEjMvfTa0StrKpGXExGRRJRAFiyZAmef/55/O1vf8Mhhxwi5LuYKMlE9NFHH8Vxxx2H8ePHo2PHjqSy0W/SjSIyMLHKJaFL/DLl0/zp8KnDr65EVHTCc/UkxsUFSrxM2kTjws6rjo2V0I+JBUnUP7W8jsRFZLFga0FLqcPVRXm8DlMakS1rYtzXkZSJ+LR9wpl2H1VPOV1NFE3P1/EyInO16UQ0bs+LQwVb2rOxJk1LhHnx2Nw0zzoZXbRoEV599VU899xzGD16tJDvYqHkEtH//Oc/GD9+PPbaay/06NFDuBzl90R1ToqqZWV9sPyoDhA8v7J+ZONQOcXJ+4LZpdPTLBePuupn+dKlk7hfHX506ETEh9eJWBnRtmRhazOCFYPOfqjj5CdLnbDqF/FRTIvsrHWiMqez/LjYD3X4zuPa1OWTTt3J6EcffYRZs2bhtddew4477ijkuxjgq7cIef/993HggQdixIgRxpJQnk1ZudjvR0VtggLtdw/j/qPl0+oV9RN9Tadfih9WHCL1sto/jIHa1rpjtOnfhSQ0tGGdEojoRDa+eNl4HKJ1R/0k6VVFJyy/qjoRHX94CwbTfVkUG3GY0hVAu4+8dqfMKdT4eOV16SSKCf1R/URjCcuL1Js0p+iqi1XGFXtXSJrHk+4Vz5cMSf2Q2qdZccSvTcVvUoKbBlVnaXOKSH3UWKnasmWfRv/+/dGvXz+MHTsWixYtEipTDJTMieiXX36JYcOGoXv37hgyZIhwOd6juEnwBpKkHS3VXeG08iKLEZkdtzS/Ij51LJREBivW/ZDZ0TNx6iFj7+qunwmtRG10aUWkz6rYqPjk2elIvtO0wrsXpk8WXNOK6dgp8STVkXYPZca5uG+RerPSSppNsWnFRXtXdJ5URmRd4IpWqDoR8SkSm9eKOfvQNu1UNAgCvPnmm1i3bh1mzJhB/g6bPFISiejq1asxYsQIVFRUYPfddxf+vR5qEkoRtGiyZKpOXUmwyCAkKlLVCSCOSHu4lIiaXAC4NCBTyxSbVlR96lhgx8mbVqj2LulWNh6ROnRpRaVOVt82oRVKbLa1Qq3TpWSxWBNRlg2LPGuF55Mam2oM1Dpd04qovazvtGS0UCjglVdeQYcOHfDyyy+jUaNGQv7zStEnops3b8b48eOxaNEijB07FuUcwUShPooLqAkqiomkN61Oqg8TPmUFLVtf6MO1ATCvvin2qmWiFItedGwAUeqj1mkr2SqFRNRGW0briWJ7PqP6MOFTdqNHR52u9AnX5gsXElFWmTimrolXH6VOUZ8mN2x11CkzN5dCMrp582Y8++yzGD16NP72t78JH6DlkaJORIMgwEknnYRnnnkG+++/P6qrq1PLmDwFZZWj7l6p7Frp9MHypeovaTBPGuxUdhJNLy5YtrwJKAvi8bmehFJPR3TrRcWPzpiifkT7WB70wrJ3WS+AnYSbVzeljGg/VjlFpNRj0x91bo3a6Zzjbdm7rBkX9cKqx5Ze4nV5vZhZe+dFL9EEdf369Xjqqadwxhln4Morr8wwKrMUdSJ6xRVX4JprrsHEiRPRtGnTVHsbSahssqk6ULEGDZUBlOdP58KastNmY9c0zV5mMJNJDlQTYmqcOidgE2V0T4gsv1G96PanuuCX1Qu1bhOnNip90dSJqEi7pqG73XWPbWma0bXJqaIZ3fqL+uTdW90bwLqTUVW9UGOxNcckxZXVxg3r/SjRPqRr3aOaRJqes+KvJfm1McfIJMxpyGpGxTYtxqqqKtx222046aSTUn3nkaJNRB944AGcfPLJmDhxItq0aZNoS30U11QCmlSGWpbnQ+UETKcvEf8UX7YSURFkkgxbi2qKLeV6dcciW0bXaUySXnVOll4zP5BXzcR9i1xv1otqnn2IriSPV4fqHKt7U1ZHTKbK8JDdOCgVzciuk2TWQaLlKPXKaFKn/pLKU3zkXTO6N5JUbCsrK/HMM89g3333FYolTxRlIvrmm29izJgx2HvvvdGtW7dU+2giGkWXoFV3U9NiEikrsjtOPXGS8ZXmm1I27kfXojptUBMdOLIevGzEwSKpTW0twkViSisveqKkeoqi6zpNLr5EylD7hGo8Li6qRfyyyFIzvNh01ysyj+jUn0gMKuV19ScdY1aedECxlZmLbWywRcuJxKRSL2WuUdWfSDlK2biPPM41LiWutbW1eO+999C3b18h/3mh6BLRL774Arvssgv69u2LQYMGpdqzHsfVkYjE/eiY7KiLX0q9aadhOgfXpIFNdSGl87SG1fYuLKhdiSNtFzdOFroxuYnCK2NisRr3y6vTRd2Y6H8mfedVN9RY4vUnzYEmNx9ZWtU5VujWjYkTG1afyGPfFvWtaqtTM6G/vOvG5CEFqz5KnbLlTOtGNBZXktGKykp06NABc+bMKaqfdSmqRHTdunUYMWIEAAj9TAvlM6HUXSEbk6rsAChSvw4/aRNH0jWaWFCr7Dy7sDDI8yIiismTDpXFKLVOnm9VP2mJisquuEwZF3Vj0rfLJ0E2NlKS4uD1TRd0Ey9vQzdp5WSvsdjnBZk4XNJNWkxp99013cR9qKxFRevNo26yjqNQKKC2cWMMGTIE06ZNQ1VVVWqZPJC83ZAjCoUCjj76aKxZswYjR440koQGhcI2Yg3/xF9j2YvUkRZT1CerfkqdvPpV/IRl0+KT9Z1WZ0i07qR7ojK5qdpSYqDiShyhX16/jWsnai+KyECepl2dfVKnbuLxmdINawxLGltM9RVRZPp3noi2M6/f8rSjO4407ar2d10xxuNjvZ8UB6VPxesMsandaCwuoCupUrGNz+28fiu6SSEbC+ue69RN2maljB/qnJi06ZNWb7Q+Xv3xGCj3X7ctFVNxlJeXY9l332HWrFk47bTT1IJ0iKKZzS+88EK8/vrrGDNmDCoqKhJtZZPQkOggwxIVNQGVKRe3U0lAWfWriJOX1MruOFPskxJfVpuJ+qXELrP5oNs3BZtxJE3QVL8y5XQuCE1oJ47MmCBbP0U7xY5r18u7F6xFtSiuakeXflzRjgym+5/odZpMLk3MqSxbEe2Y3Nji9QUdaywd2pFdG6nUnzT/s9pLJrGjxGEicTXlu1mzZti0aRPuu+8+3HzzzUKxuE5RJKJ///vfcf3112Ps2LGoqamxXj9rgEkTpcppDGsBTh2EkuqXmZR17faJlk07tUlqU1OTjsmELo9Jq45dYxHfsrvZsju6otpR8SmLqHZlteNxg7TFtah+ZLUTLSvT1+M+wn+rzD2suCiIXg+vjbPWTt6SS6pvXbYi2tGd8PDKUuqLxhmvXyUh1bGepGiX51u3bkxuiJhYQ1IT182bN+NnP/sZXnnlFe2x2Cb3nxH98MMPMXz4cIwePRrdu3dPtVc9DU2yTVrY8t6jJqC8ciI+k2JKslfxF28XUVgDY5x4m5q4p6K2lBjy7tuGrYh+dCyiRd4TiSnJXtafSmJqSj95tM2rb1f1wxvnWXVRfKj4Y9npnGeLcf4x2ceB/FyjyFjJel+Xfijziin9qGhapFySfkz1F9P90BXfTZs2xUcffYSuXbsK+XeRXCeiq1atwpAhQ9C6dWsMHTo01d5kEppkq7r7QxkQWLFQF9A6/elIGtLqcmFwynNiadK3C/oRqYNVl87NI9v6YdWT5McvpN3zrcu2GPQj60+23njZNB+u9wGWLZDPOUXUN9XWpH5E49G9gZQn/YjW4Up/EbU17bu6USP06dMHM2fORKNGjYTKuEZl1gHIEgQBfvzjHyMIAgwZMiTVPqskNHwvLkoRMckMAmFdKsmnTn+sa+ehMuBnPdBEbVWuV5d9km38mqiDqW7btBhY7ap7Z5hVlw4N6dIPNVGk1uMaIv0nK/0A+WpX1gJUdXMzrS6d+lHxFy9vUkPUDQwTRGPQrSHdeov3S5faLkr8NZm+KKqheJuoaki3fkTLUeuirBND/7r7C2uuTYspyzkI+CHm1atWoWWrVjjjjDNw5513kuJxhdwmoldffTVee+01/OhHP0J5yg2jJKEUZJOV+GIg6ZSP6p9Xpww6F7W8gYNXh+yiwTRJ9Ykm0lntLrMWoaz/J9Unk5jrhqohHXHovBaZxUTSQjpJQyLo3DQQsbWtIaq9aQ1lTbx/mNAQb/NIV5uoaIhVXlVDVFT7Yx40lFQvK07eNUV9UBIWyiYeNRGKl0lar7mgIZnr48VCXbdSN4FE75UOW16bUDTEe0/FNsmetSEPAPfeey/GjBmDyZMnC/l3iVw+mvvyyy/jgAMOwAEHHIB27dql2md5GppmFxeuSgLKGwSovliTsuqiPhwIRAROvQcm7lUasru5ugajJHsV36K7cLri0HGvk2KW6a+6NKlLj3F/LB2pLDRN6i0JVr8zdfqkKxEVsbetIYotJRHT0VfjvmT8xePQOUem6SjLuSgeLwtWvK7OLVTfOnRkKlEQjVeXjlT7vk49xv3FUdUQxTZvc5HJ9V9ZeTmqqqowY8YMDB48WMi/K+QuEf32228xYMAADBo0CP369Uu1D5NQHrIdULdgdCegrPdVY5AdUEV3l6L2pjcNdC4WRW1D+yx2oXX55qGiI13xiiRnaf6TyrqmI5E4TN8D6kI5yS/V3tVENM02CZUNLl3jlUkdUeY5XX6S/KaVtzmW6dhQc20RbXqBzqOYdJS2+aqSjLumIx1rcNs6Mp1cUnyXV1SgQ4cOmD9/Ppo2bSpUxgXkz+ozoFAo4LjjjkPbtm3Rt2/fVPvoSWj8T0hZOf1nR3TuaPLKiJSLx82LJyn5Yl2/jJ80v1EflME7Deo9iMfE6xsyu4S6kek7uiZynm9RHelGZuPApI6StETxIwJPR2lldBP6ZN3rpL7haQhFR7rvo8h94cUkQlr/j76uoiMRP0l+o36SMNmPo/c6fr0u6kgmFtF+I3udJnSkS3Mqc2TaGpPV/3laovoRwZSOKHMj6/rTdGRiXqT6pvR1qu/NdXX4/vvvccoppwjX4QK5SkRvuOEGzJw5E7vtthvKysqEyqQJMGmwUN1ZkdkFisfCsxdZ8LLi5V2fjB9eXLxdNupglERa24gMTGk7hKKYTv5c9q2SnJrYdIjHFI0jLQbqIj2emMXfT/MTrz8eF8+vrcVp2lihe7Fs6rpMbY7oRFRHtq9FdMEbvh+WkfEb9UHxE6+fFRdrHjCB6LwUIqojkwmdS/pQjSVpnuetDWTrocZLTR6pPuN+deiRFRtrTpJNYHmxJJWX1ZHJBNDGJo2IfUVFBTZt2oTHHnsMDz30EDmmrMjNo7nvv/8+dt11V4wfPx4dO3ZMtVf9XCjrpgcF2vP+ZeVqj8bFhUadpHl16fIRj4nnVyYhF7FLIi5eStJFTdBc8e1CLF5Laj7SfKq2Q5KtqJZN9TFKG7qiU5lYVGyTtKQ7Bq8lml3UNk1LpsfrPGrJpu+0NYTsXJdkS9GyqN+kuHT6sK0lyhpTdX2iI15Z3yZjqa2txccff4xu3boJlcmSXCSiGzZswODBg9G8efPMfi80LgbdSZXobqjugUWHvyQ/OpMN3uQhUiaPg1ReFxMyGwk67yGlD6nuZNrUUmira8I3eR9EY5CxlfENuKO9LLVEicGGlqJ+dCS1prQk4iuOrvsgYytSvy3fLsQiew9Fyuio30UtxePSMTeYXG9n1W9U7U35rqquxo477ogZM2agoqJCqExWuPNMRgL/+7//iw0bNgj9XmiIrPDS/EV31MI/cXSLklVG1DYaY1DY9vE+FX9xnyrw2pHXzmG9InVT4qMOChR098kQk7HI+JapO0lPvDIsH9S6Zfp/6Ic3Jsj4i/s0gYiePG6R1p+S+iG1P1KJ9xmV/h+9BhU9xeOjlqFQTFoSbQfqdenYTNDhW3SdwLp3aXrSoTGelmT6vw4tRf2JIHovktadSXoSweRaxZQ+ZHyL2q/8/nvMnTsXV111FTkm2zh/Ivriiy/iRz/6EQ4++GA0b9481d72T7WwRKNzpzW0Y3VCHbtrMjt1pne/4sQHaBGfJm1D+zzuIlPtbbY371SBoieqnU49UXePo3YisVPbN74rzopNxqcIrvVhU75NxqJ6b1zVU9SOqhNRO1t64rV5nvTk0vzkim8X5ied67ioDdXO1HrPhJ5M2Ib2edVTZWUl3n33Xey0005CZbLA6UR07dq16NevH3r06IGBAwem2lOSUIA2MKT5pe7iqIpbZKBUEUKSL5kEOq1uXl0yPm3YAm4MNFR704OeTlsZTelYtPN04IKe0uxc0lNa3bK+ZWIphUQ0zTbveqL40pkc6E4IZGxDexf6vEvzX5ZtKDPWptnw7HTMH2m+0vQkGnuW87qIP6pfWd+uxFJRWYnevXvjww8/RFVVlVAZ21RmHUASv/zlL1FeXo4BAwYIl5EVoyrx3R2RCVc0VpZdWJ9s8qnqSybBTHqdMtCIYMo2hDpBmY6JssDLSiNUZDSVRlr/06Epnp5kfImUV9GUSXTWz7pGW3oCsm9LHcQXnDr0JFKXDj3p8iWKrHZZpzw6bGWgJlKqGqHa69ggM92GaXWHiGhKNFaWXbwuFR0kjQNUXyx4905lPhTpD9F5V3cCKOpbRVOm9LR+3Tq0aNkSV199NS666CJSHbZw9kR02rRpGDduHA4++GC0aNEi1d72I7kitmk7T7pPQHQsznXEFNrx2iFantq+Weww6ZjoTO+kycaYxe6+yj0vVk1R2yIPmpLdrBLF9OmQKU2ZGAuy1pTuU5A0HzY0JXvq5DXFty/VeSr0Y2qeEo0zyYeJtV9SHa5oKi0GmT5LudeUWOL2FE1VVFTggw8+QP/+/YXsbeJkIrp+/XoMGDAAnTt3xo477phqb+qRXIotNZnRKfo4lHipZWUnw6R2yXICidpTMD1hm7CPtgtl157qW7etLk2l+eP5FfUtW5aqgTTfWS6Eo7aihP3R9IQtiulFtkl969YUYL//JpUT7Su650+XFs0iUDUlG4sri2wZ3zptk65PVlMUO4pv2bImYsp6/SejKVHfoX9XNFVZVYV+/fph9uzZzn2LrpOP5l500UXYsmWL0OdCo4gsTCkdj5qgJHWI+K4rdZJgEe+IIr6Tdr9Vd1tlk21RKO0lc+91LzKoUNtDJYEW3QGkTCqq94cKq9/r9h36pWw08U5YZFBZaNhCh66ouNYGgPh4J7sJaAPWiYXoqYFI/FTNUk5sKFDnKmpSpCPZSaov675CbQ8ZqGsSEwmQqG1SeyRpihejbBJucq4SicnU5jB1o49nqzpXyfR7ytgY3j8T9mtWr0ar1q1x/fXX4+c//7lQ7LZw7kT0gw8+wLBhwzBp0iS0bt061Z51Gqor4dBtyzuRipeT8Zf2uq76eGXj6EzqdO9wxdvFlR0rl0560voQC5u7zDyfNvo5RVeyOmBN6Cr+dNkmYVNXpvq9aXvKGBpiQldUn0kLTJ3zB2thbFJXvDpE/fHsKD6TkL12ahxU36btdcydrq8D02JyUVdpa87wPZm5W8SO4jMJ27qi2pv0XV1djQULFqBr165CZWzgVCJaKBSw2267YfPmzRg+fHiqvcznQuOk7RqZFhJvd0p2QGD5jftn2com0XG/qkk01VZ0UFeNQdY+zxN7segqfE9lYuf5TfKXha5E603zqaIrSgxpcaj6ds1eR+Kv0t+ifmXuY9IC16aukt5n1WcqsZWxtZEMy9jneT7UkaS4pKvQj+paMC+6Eqk3zaeqrkRt0+LQ4dukfaOaGowdOxZPP/20kL0NzD5bQeSee+7BvHnzsPPOOxurIyjwfzg4vKE6d17idnGf0XiiMagSrSd+zay4RIleB8+vqCAok1I4KLPuVzSe+L91o7qIzMoeoLU31We8P/Duk+k4ov+XTeTS6jHRz0R0ZRIRXYX/99iB18+StGUjJhNzlql+Fo0vC11FY2DFEr3HFH8msNE2puY56loi+m/enBWtWyQOavuxxlnWnJVWd1K9lH5G7YMiujLRV6PtIjJniSDT96l907S9KHV1dXjxxRfx7LPPksqZxJkT0RUrVqB3794YPnw4evbsmWqv+wuKKDtHFL9x/6K7W0m2Ir5kdreSYhH1ZcIujuqOXtTelV0q105tgHxpi7pplEdtmRpnROIw3d9c6fum7XX7ltGWrhMIXgymtZVm46K20q6nFOYVqn2W8zl1fBT1G7fNs7ayXh+LxOFKf7MRC9W+Q4cOWLRoEWpqaoTKmMSZE9Hzzz8frVu3Ro8ePbT7Ft3Nit/EtF1n0R0L2QQtqW4du5cs36ydW0p9KnGl7XCJ7HRRhUvBxi6bCUxeK0Vb8d3eJH2Z3vXPQlvxemVOQ1TiUdWWxz1ktKX7Psf7cZK2RH3J2LimrbB+6iZZEiZPblzDxilV0vsua8vUnE7RFnX9K0sxaYsaiyn7LZs3Y+XKlbj66quF7E3jxAj17rvv4p577sGuu+6KsrKyVHvqaaiMbXwQiouBugNBjTM++LH+LepLxIa3QDU12IS+WYmvzKLYRmIpiqnBSdbeFZLuMS9JEvVJsWPpmgp1J5TVx00hoi2T9ee1f9rCZPukzV2m703SnGmKJG3pnL9ExivXNnRcWlzL2oti41p1a4vSP3lzZhiXTnhrTlMHE/FEStfcleVmhm17ChUVFdi0aROuvPJKLFy40Fg9omS+YgiCAGeffTYGDhyI5s2bi5czcPKVdEISH3yoPkVPQ1n1hu+r+OLZiCSBugYdXiKfNMC4MKnbWFjneVBTmRh4C+fo36bQkZCmwUuATcBqNxcXxx578DZ9on+brDdep05sbu6E9UX/Tpq7TC+WTeHSvBLiwsYWb22SNHelxS27ruIlw9H6kxCNS0RfJg4qRA8ldKzt4+R544aanwSFAsrKynDOOeeQ4jFB5gp//PHHMXfuXAwePFjIPjwNpaBzUoi/L7IbpprIyUzqSeIVXaiqDjK83UJTi2MTmxNU37L2rpD1pM/b9XVNX0nYTATzcjLjyR5eUmry1DIpEZZFdHNHxwZqkr6yJOtxWhYb86jJpCPNX5K+ktZJuutMsk/D9uapjL5cOxXN6ynq5s2b8dxzz+H1118nldNNpl9WtGnTJvTp0wc9e/ZEv379Uu1lvqBI1F7FNt4J46+LnmBSTzqTkkdWwhxHZ1xJgqS2h0nbeLwqvl1bDFD6Aw9dbaPim+U3SWOiPqn6iseQ5ktEnyx7il1ajNT7l7Vtmr1LGkuKMWvNqNra0FdSPSK+qPqixpU2n1P8mbaNxyVr75K+AFp/4OFCu6fpK/Rjeo3IKkPpD5S1n0hcrDmM1U7FskaMvu8CrBjLKyrQr18/zJkzB+UZxVqZSa3/nxtvvBF1dXXYYYcdtPumdjxRW5Zf1g4YxacIrOSXd428AZC6uGD55sUles2mdrKogwb1/bRyMm2rwz4aV1KMMos4nagOxkka0010skxbUKRtQunExLhiG1V9hba2NJYXfamSpC9q+4nWlTSHReHNYbrjEtWX7nqpfnkbUlE/lNejfqN2thJjEY3JbKSLYuN+suYQyhyRds+T7OPtzfLF05gIMklbtB5e3DqR8UvdIM3zHLZgwQL8/e9/x7HHHitch04yOxH97rvv0KtXL4wePRpdu3ZNtXf1NDTNLiStQ8vsiMVFzetkMjtO1F1UE7vmunevqAM5xTc1lizsRa/ftd3kNJ8hOjTG2z0Oy+vWGGWi8xqjxZKFfdYaM30/bWlM18kJRWNZnsLI2KaR1cJXt31S4pqGzjHTlK0rGuOV8Rrjk9XmjQn71q1b46uvvkJtba1QGZ1kdiJ6+eWXo3379kJJaBSdC0Fe+bS6Rf1Sd35F/SX5T7JXqY/n38QClYLqzpTpWHTaU6FOAmk7tTr7k07Cfpi22yrrGzCnsTise+Y1lh9UNSbiIwtsa8xEPSE8jYlg88TGa+wH0hImFibnMmrSLYpOjcVjNK2xeH08jYm0nU2NAXp0Ro3ZNfutW7agSdOmuPHGG3HeeecJl9NFJieiixcvRu/evTFx4kS0bds21T7pNFR1Qjexo8Kzkx0URerVsXsV98VCNuG3sZMYR3aHr5TtqRoT9W/q/qdpjJrI6dIPpb60DQOqHnTeD5l779Jpimv2SfdIx1xmaozVpTPK/GNyLlOZG2zPZUl9RXccxW6vOpeZWC+Gtjo1llavTo1F7fI6l/HK6xrb82LfpEkTLFmyBM2aNRMqowuzRzIcLr/8cnTr1k0oCU0jKPC/Qj3cgeGdZkR9UOpTjVW2rKqNyA4J79SHF7vukxqebfxexnfzWH90QPWTd3ueDxWd6bj/MrFG/ZnYYVUhHpeufqtSPklj8Rh1aszzA0ntm3ZvTMaUFGs0vjzgQr+lzmU66y0lexZpawWRMZBSF4Wk8Tb6vo6N4bhPSlxpdlnMD7x1h+hcRvXNwrW1HNW+sHUrtm7diuuvv55UTgfWT0Q///xz7LDDDpg0aRJat26daq/rs6E6dpsptjIJmsrOp8puNC/5TMPU7hYPlV3s0D4Pu7ZZ2OtqS5dPdZLisKEz0Vhk6qTYseJIismlfpp3ex0607Gp6nUmVyfFjhVHUkyu9btSs6foTNS3jTWSrM50aJGqMxPraFYcSTF53STb19bU4OslS9CyZUuhMjqwvo15ySWXoGfPnkJJqCysRk/aARHdYVZNpFh2rN04ar2yu1qs3VhRqLuTSQOZys6wjoHK2+tDRGc6YlPpf7IxyMYdv26bO8WsGGR05tGDjvZNumdJpwA2iJ/g2IyBpbOstRYiqjNT7eXa6Ytr9kDyiaTKfKZrbcmKjRKHSp1x37I6o15n0jXZ0Jlr/dSGfSEIcM0115DKqWJ1plqwYAHuv/9+DB48mFTOVLIR+mYJOurLlMBDu6TFhO46eZN1tLzOQYU3gCUlwa4shm1Mfi5hIn6dfVwG3iQVjSEeq65603Qm6ke1flYbhP/2FAe88TOrxJQ3r5roc0l93BTx9YErSbDHLPHxk7d2NL3pyOtnMjqjjAtpfZx6EJME6xrS5jQRdGxSFLP9pk2bcM0112D58uWkOlSwmoheffXV6N27t/CRb/hYLgXZDpm0uyzqV1WEphaqSTt9VF+y8Bblskmw7KaDS7i2GyaKSj9h3XfTO7osu3j9uurkaU3GF4Ww3rQdYtcwPQGXKrz7Hu0fNtqSVb9OVDd6VOtO2uiiYmOB7Bqu6F+l3+jUmuz1seZUFX9x31FfWemMt35U8SuCa+s0G/ZlZWW44YYbSOVUsDaKLV26FH/9618xcOBAUjkTiUmabdKgIlJWFV2Tt6mdYtHHJXQPHHFcSbTyvhgwiUmt6SDphJSCyVMZnp+k3WFXE09PNqQtlk1rjbf5JIPJJxnS6qRqzTUNunTyYgPTm+ssZLWmsrHKqz+tXpGNVVGt6Yo/TWtpZXXEoOK7GOw3btyIP/7xj1i/fj2pDlmsjRo33ngjunTpgjZt2gjZmz4NpfpNE7bu05z4SazoAMZ7NETXIBG3S0o8KWQxYWSFSwOOjD2QrdZMQV0kq2pNhqRNHhdwTWueZHhas5GYxutMg6U1kyQtiF3AlThCXDzZoWKy32ettWi9ceKvqWhN5vRXh9ZM6qHUtBZ+g+4999xDKieLlW/NXb9+PTp37oxRo0ahS5cuQmWmTp1KPg2l2Ouwld1hErWL28RFGvUVjyU++OiMiwWrnK525sVgwresvQ3y2D5Zak20flZ7sXaBQ1+qWqPaxUlqI4rPvGrTBqbHi6zbPsnWpNZYdiw9RW14JzIqcynPLo6q1kza2rI3jSvXm8U6krKeYpXTMbfx1pGs9aeuuOJx8OqU9WlqHqTau6Y1gBZ/x44d8dVXX6GiosJoTJVGvf9/7rzzTjRu3BidO3cWsjd5Gkq52Wm2rIlSpPPJ7q7wTmyoiwpqXLILE5Porp+1I6gDSoKeVic1JupA6DKsidTk6Uia1kzVG69DtK68nUTy2lQV3uZd0qYeCxmtseqxCWuTRNZPFNZJhU54JzZpdVKul7LJlfWYaWLcNqE3XXObrNZ4MciiSz/UOqOY6Pu8Ok3MbSJxuaI3k/ebdR9VEdWbzrltxYoVeOKJJ3DooYcKl5HBeCJaKBTw+9//Hv3790dZWZlwOROJJdW3jG3SpE2ZNEXqEY1RRui8xbDK7rIOWyqyA4KpXTKZOlV21nS3rUsJjy69xcuxXjedaPAm57xuJuhoe55fk1qTqcOk3kxBXYTxFq+mktIs9ZY3TM1toW/TcxslJpkNY5NjqO7T7ugaSzQpFfHHey8am4h/yvpP5KkHEUzZRmMTuSbWekM0Jt2xyNYno7ff/OY3+U9EX3jhBaxatQq9evUSsg9PQ0XEQ8VkchTGxdvdpSJ6nToG2KRkzbVFMK89RdpZZgAVIa+PX4gsoHm7sVmjW2824enN5ASkYstCp96KAZN6c4k0vbm4ccJbQLoWJ8BfSOdJb5Q+ILMhIrMZTtGbK3047cmE8DVbsVLvVZreZPzpTPrTyqch2gdlNjaz2Cxi8f2KFWjbrh1mz55N/tlNCsZHpZtvvhm9e/dGOXGwif8JCW9sHhad8dhN+E9CdLcw7pPV7qL+KPFRbeMTC6sfsOI3fR+omExcZU+iKHrTdbIva8sja72JkKQ314jf87zqzRVYbSSqNxfnOl3zhGl4mtPtV4etjN7C13XHImPvku5l9Ra+LuKfEgsF3qGArN7SbEzPmy71CxaiemNtgGeJyUMTAGjZsiXKy8tx2223kcpRMTpjLFmyBM888wz69u2r7CspOQW27Ug6dpx17TCK7GxR/FHg7fjxBCfjTzese5k2OORhsJPF9HWx/Ke1b1Z6E/XDi9UkSZqW0ZvNBX3a/SwlvWWBSPuKai4LKHOcjD8qKnOcLWTmuDhZzA3FgMgaIiu9ia7DROc43fcwbZ7jxUj1F0XHOkJmjlPFdKIoC6Uvb968GXfddZfRn3Ixqqy77roL2223HZo3by5kL/slRdTdrjRMn/yF9kmC0Bkfqy6Tk7JMW1N2o0zEYcPeFjYWJ6z74uIimRejDVxeCFNPXDzZYWKOM0H0tCBtjjMBb44z0Y9lFsase2V7c6dYNG26P1HmOJNrS2qs8RippJVJ2hyLxiLiSwZqW5tYV1LjcM2eer2FrVtRVlaGhx56iFSOgjE1FwoF3HrrrejduzepnK5dCNWJ2/TkxYtLxheLeIIXrdOG8Fh1UHeAVWOQweREnfVCUZU0vdhITlVPWWwskG0thimxiCyAi2WRGqcYr8t2cirjJ2kTSKfuXNvwoWjO8wOm50Yd/l3dEOKto6Jxxe101JmkOdG+rUsDJpNO21BjNH1NZWVl2LhxI/7w+98bq8OYYl555RWsWrUKPXr0MOJfx8QY+pEdQETtRRfwVL+8upIGJl4MJhAZHEzWb9q3af95T1yB5N3arE5xXNCcKFQfopozGYNHL6J9Mzqeuqq5KKpxmNKcTBy6NZd3TPYxGwt1E5qTGctF6+e9x9Icz69IfKb6N/VaTWiOes9FsaV/06eun8ybh7lz55LKiGJstLjvvvvQo0cP4S8psv3boUk7W7wyKjGIwtrJisKLi2VvKrak+uPtp3tHKu+TukuJq+xmjiwimlOdfOM+ReOi1B+tw7TmKDH4kxdPHF2a0xlPFGpyzFt86iQtFt4pk07NFcMmpCjFNj7p0JzONqEmpCxkxwld/diG5mRicsmegkwyXVFRgQceeMBIPEautK6uDo8++ih69uxJKpflyRjrhE7nLjLl2lg7ayxf8dioYtRxCsRrG5FYTArNJdGrkNdJWjShZF1fFic3vN3stNhsT4Is3cV35T0eHrz+avPElNdfk+rmnXyE75kkqW1KZbNHZmMvr5jYwM9ac7xYWPXHE2bTcx3Pn+r6MvShEkNW2Dp1pfS7uro63HHHHQiCQKquJIz8juiLL76IyspKdOjQQcieehpqQ7Qqp6Qy8MQWvscaKKI2slDEnBRj1JaadIvgWqLoWjwhrj42IoLqrm2aP0oZVp83eQrDQ0RzHo8sLM1F/w5tbO3Om5zrKIjOdSaQaW/qvEu19ySjuu5Rnetk7qfpuU62H7NiTLLRWb8oVN+mx9AQk7pev24dmrdogVmzZmHIkCFafRtpmfvuuw/dunVDWVmZCfcAzCQwPNuk43+Rx3hUYdWbtiOkozOm7QC7PpG5lJS5mriaRHVDIm0n2SSsum31+1I+efFkC2t8j5+Q2Kg/7TUZkmK3MdfldQ5wdczJ41NPvLbk9TXdJ6ZJp4umdJcWTzwRznKus/F0hSl70+vd2tpalJeXG3k8tyzQfM66ceNGtGnTBuPHj0e7du2EykydOtXYbh7VFhA/JWTtcsieEIrYicYnWydvkDLZ3iZsTdlnOZHp6kO27E3b2tadzvbXrTvKuEWJk2pryr6UdefKvU3apJXxaVt3rHa0qTuT99GUvcu6k2lP0/a6bZPaX0Z3OtePFF9xOx26c+U+Un2L2Ge9YZIUX1l5Odq0aYPvvvtO60Gj9kdzX3zxRdTW1qJt27ZC9q49lksdIFi7VxRfVHR1YtbjGKJ1qNZNtdVJ2q44BdMLhaT/i5YD9J2Ou4Rt3enChO5k6s8CXt1ed/mAtfh1bVxIoxTuU5w86C4ej27dsTYvXYeXnMnqjtIGafeP2p66dSfTv3ST1gZZ6U62DO//cVatWoV3330Xw4YNE64jDe2J6BNPPIHOnTuTs2VKA6ru4pqCtzhOE43NOKkDgknR6IYqqDBWHeI1gcoAJDqpy1x7VoicylB0ZyO2JJs8tLkIsroLbV3THSC/6KbqjlqXS/BOOVwbU1xIPk0kQq7rTmb8VUl2kzb54jZpdbmcuJa67ij3RuY+Up8WMK07G+sYiv+a2lr861//cjcRDYIA//znP8kBRjsL5XEEnehOuOICSBsAdV4bawdNxE7Uny6oGwqUe+RSX8kC6sm5yDW5MsElEU8IknRn4z7aWgS70N8pj1cVKzKP3KXNeXkabyhzngiy/Ym16aO7b9q4N6LjcqnrDhB/5FRmPSEC5R7oul8yutN92snyz4tTpKwL/di1pwUocZgekzZt2oQHHngAl1xyiTafWhPR2bNnY/Xq1ejUqRO5rMipHG8ASROVjhhkSduxM3W6mzYYuLq40ZEQyT62kndM7D6n7fzxJjpTyOo5/jiTzcRNRndZtCFlZ9ejhugYlrRodvV+6JrzqOSpjaKIPMLnwnVQFtAub6ConnbZvhci7c7ajLAx58WTe1ZdLvQDXhuqznkyCSv1QMXWhrlo/1j67bfo0LEjvvnmG3Ts2FFL/Vqv8F//+he22247VFRUCNmLfj40KDT8jc/oH+C/gov/MYGK33jcVH/UxYuOOkWh+IzGybtn8bhZ15ElLj5OaIK0e6CqO1t9kTVmmCD6eJRL/TVK2njJ057HHiLjn605T4Wk+UdHvKJznitQdBd9zcPGxHxjWne27qdLc56OAwYZn3F73XOeq9rUmVfEadeuHWpqavD0009Tw+Ki9UT0scceI5+Gqt7ItE4vcnqaRWIWHxxkd65M7tjpapckP64K2ZOMyKka5ckFm5jSnivXF8Wm9lxMhIqRNO25cIrDIikZVV2EunB9UfIw5xXLCadJom2U1FamtKer3WVOSkVPEUVPa3WS5FOH9ijasIFrWt2wYQMeeOABnHTSSVr8aYt2xYoVmD17Nrp166bLpTSmd5F1d1BejDziscd3ckTrNAGvfW2dsrg6WZbSCWr4t6j2TPQDig50aU83MovzLLXnyZa8nZ7GT2vSFsg2tUeFctIigsx1uXBPVTF5kmOyrxSb9uKUkvZkYzBpbwNqTNOnT8eWLVu01K3tRPSll15C+/bt0bhxYyF72z/bIrKzo3thrDJQsgaGLHaBRXYBKWWomBasiwOCa5jWnuyJpE5c1F4SpscuG3jtmcdrTz/FoL1SPeGkoNpGOp7Wo0I9yXNRe0nXoKI90bYxrQ2qfxe1unXLFtTU1mLGjBnYbbfdlP1pu7pnn30W7du31+WOicmTyKQdrOjrtuDtOLF23GyQdtqSFLNtTO6U2uoDJmNyYVDj9RsXdo5d0x6QvOsbjc3jSUNUe1nozxXtxed917WXdf06KIZrSNNMvK+IrDtNwPLP01ia9kRjFbFLegqCt2mWdb/Jun4eJp8uKC8vR1lZGV544QVqWGx/OpwEQYBnn30WXbp0oZUzdAMpN4B3lM+aoLOIU3Sy0zkYRO2SHneIto9JXBV6KWHr9J2nvawWxax/myauvfimj61FuQsbFh478PpVtP/pnmNE4gn/nQUmtFdqmiq16xUlPrfo0J5onxQ9FaT41AVl3UmhGNaQJhNLGerq6vDII49o8aXl0dxPP/0US5culfrZFlPouhHxgSH6N68u1wfftEdG0mxVcL1tRMj7CWpe4O2OJtnYiEM3trRngzzG7NkW3pzm2mOyOigm/XmyQ9cjlC5pL+1xVtFrTrLjnc6q+NQB9TFnk/amrzWEEtNnCxZg+z59sHbtWjRt2lSpXi1X9uKLL6Jr166orBTLa21/PjQNSudJ2rmS+bxNmp2pXZCkx2xN7zj5CT57XHgaQcZv0olpnjY5eGOGC4/5eTws0ua+LD8iQH0KSqf+8jTu2CSLx6hN2GdN/Km4Ypr7dKw9TWA6Dhe1QY2pZ8+eqKqqwquvvkoNaxu0nIg+++yzaNu2rQ5XXLLuoCK7NqxHKbKOOyT+mRcgPTZXYhclqwlJxI/fdddP0tMK1N1J08jorxTQ0QZp+kt6v9TvgaxO0p4CclV/MpvFurB1qmES1n0tdv251pcBO2tPnf2VGpupNjflN0ttZ6m/zZs346mnnsIBBxyg5Ec5ES0UCnj11VcxevRoUjkXTmR0d5zoThWrDtlrlimX98Ef0H9/KI+GyPiRwVRMebjH1GtMe0Qo7jepTUxPGsWgP0BvrKw2kbkPXn/ukTb3RW1sUCz600le9KcjJt49dm0zQFdiJKM/nUlZ3JeK/qj3yMWNAhY6+rqNNTG1jsceeww333yzUhzKieiHH36IDRs2kL8xVzRBk2l4U51SxC9rx4e3MNZFkn/Ti2/Tg7rMo8siMYWDncznPU1/bkC2jqRJiFcPtS4RspwUSk1/WcM6CRNBRn+hf68/d2HdV9P6i9cTjyfpfVWy/pyaqv7Cf+uKR4e9bEyy+kuqz7XENQ2vPz22IV5/ySxfvhzt2rfHN998g44dOwrXE0c5EX3ppZfQuXNnlAvegPDzodEbkaXQbSwCkh5lUdnNSRO+SCyifnUgc1ptemHrIjIDB6VcfOL2+pOPIeuTsCxPdqMUk/5kyaP+bJCmP5aNKFnrzwamNlaLDVn9ha+JlKH4T8PWyZ9N/SX5yltSH0LRX/hvl6D0G+o9atOmDWpqavDSSy/huOOOkw1RPRF99tln0a5dO6mylKRI5ajfNqKPHoR/85IJymlflm2gcxDT5dsUrsVDhZq45lF/aYjqj4VqO7jUVpQk06MfXfoT9eUKaY8RUjUomoS5uBDWPQfmPRm1eY8oiWX0bxVfLkDVH++ENWqf136nU3/UvuvieCTDhg0b8I9//CO7RHTr1q147bXXsO+++5LKUTssz543QOjemTDZWeICF0k+k3a4TMSlgsz1JJXNE65NqLrrSNMfr5xpKHUm6Y81YfPKuTwJpz0+lKQ/l6+rFEhb5LE0mLX+KIg+Qpjnk0+Rx/eymANtLYSLYRyRXYMmlaXWb2OdJ7sGNYHOfpN2+p2nNajJE05ZXnzxRQRBgLKyMqnySono7NmzsWXLFuPfmMsjaeeGJ6iwHPXm6BSeyKlm3iZekR17kxOSiwNGsZD0qE0c0ccOXezPaZtCLsYcInpiVgyLQtPkqX1k58CwrEvjJm/+c/WRtzhZz4Gu3U+X0XUfin0OTHrfdBwyjy2LnFr7OTAdShutW7sWzZo3x8KFC9GrVy+p+pQS0Zdfflnq86GiqAyqSTscpnaPdU4CopOWaJ26YkvbLcvDKbQN/yEuDnhZnaAC2+4gu3p6k+WkldY3ZR8Ry/siNe/x20a3Bm1qwfVFo2tPgbhKsZy6yviX0V9SOQqi8SbZUTWo2y7NB+813f2AGq9Jext6otbRuHFj1NTU4D//+Y90Iqp0Rc899xz523Kp6O5UQeG/P5ob/Tfw3yQ1+kfGv047nVDrTGqPqK+wHbOegLOu35NOvK9E/61DfzrJuv4whjQNuqI/jxuInMzFNRgt65IGs4bVHtEFr9dg/sj6HrH6St41aHLdmzYH8tbzecBWvKb70Pr16/HSSy9Jl5c+Ed2yZQtef/11TJgwgVTOxUczeY9XsP52sePo2kFj/T/LE07TbU3dtTJNHiacJExoMI+P6MliWoMeDw/qE0Q2+6TNU1FTT0sVE66dUps+JbJ1qiuiQZE+KRqvq49yu6RBahu52Ka2Ynr22Wely0onojNnzgQAtG7dWrpyl4me0oT/5+1OuTQoi8DrlDKfYcnbtXvyg9egx5MtpazB8N8m6s1bW9km720kGr9IkuCCBk3dD69BOWzET6lj9apVaNGyJb744gt069aNXJd0Ijp9+nR06tRJ+POhVEyeoFF9sx5hivqJ7+Do+pyW7pNOF3aX8oyN+EuljWR36HRoUKU+GXga1OWfQt77lyd7bGtQF6w4Aa8JTz5ISs54GmTZZolJDbo45ohCid3FU9dmzZqhtrYWr732mlQiKn0106dPR6tWrYTtqV9UZBodHZb3uRBbz/ezfCfV7T/HUly4NhiZJOkxJFa/zvIzNqIa9Dr0FAOiGrSpQ5HPlXkN0vGbselktclvaj2q8hEmlfWoqXaU/ZyqSXsbmD4E27hxI9544w1yOUDhRPTNN9/EkCFDSGWoF5e3AUlkl4plp0qafxdFkUSpid4WxdCuIvAmYpOIPCaV1/b0eGQ+KxWFNxfqrDdLDep8FNM2eT5J8iQT3xiK/h19Xef9z2I96qKuRMlz7FEKhQKef/55qbJSieg333yDb775xvg35ori6k3UnZgmPU9PjUUV19pcZdeO95qMjWoZ0c+L8P6fJ2z1SREdqvafPN8HV1BJOGzb+/tNw8QmrUkdFsviUAYTc6GJuVP1XlMTsLwn7KzYs5gL86YtmU041evLy3oU+O/9/uTjjzFg4EDU1dWhurqaVI9UIvrWW2+hffv25MryJmTdYgk7aPzD5/FBIG33OFre5E5WllCTc92iZC2cTE9a8TIiCbPsdVM+j1CsRHWUtCAW0WGpI6tDymJTh6Zk7E3oMG9zoW5E5sLQLiRp0VvM7Sl6babmQkBNh6FvFR26MBfmCdFkiKXDUpkLTd17W3Nh/DUR/6q6TdNhZWUlZs+ejeHDhwvXA0gmom+++Sbp23Kjnw811VFVTxWzQPQRQlcHShNtrjKZUuJxtU2jpMUoO7DE/62zjjySpEPZneK8I6vDYjxh0KlDGQ1S68gjaSemMguvYqLUdSiiQRG7uH383yLlTCUvLtwDF+fCrNvGxTWpjVNlVh1pMTZu0gRvvfWWnUT07bffJn1RUYiNUy6dcYjaUhb1InVlKTyT9VIfb6D4dSVul+sA5B67oTyekTU6TnopOtSlfVuYXtB6komfQIhA1WEx3AfVk3CbyLS5KR26eO9d7JNUHbq0iWtTD/GTTpd1CIi3TXj/TerQ9NM7MpiuY8OGDXjnnXfI5aQS0Tlz5mDEiBGkMtSLpy4AkzqU6+IpBnQmma5NWqWM6L0SWSx7HZrH67A40aVDr0E7iGpH50a3xxyiiavoujTqx8VEPU5WMarWq0uHph/7zkMfEOW1114jlyEnoitWrMDSpUtJj+aaIG3HNGkHy8QjBrY/c5fFSYzIIMu6Ptd3tD3yuKbDUsDr0BNHVIdpn/HJc/8Q7d+6dOCiDotpQUvBletOO0FU1aEr16mDYtahi9jqO4sWLcLWrVtRUVEhXIaciH7wwQdo1aoVGjVqRC1qBOrOb9j5TD/+m1coj3+VmoiLoQ5TeB3qxevQoxOvQzm8Dj0y8Bb9paBDE1rIWofUJK5UNww219WhUU0NFixYgB122EG4DnIi+v7776NNmzbUYs6R1LBJpzg2nuEWReUUVvTzqixMCsz0Z208biGrw7SyNslKhx6PLopBhyp4HdIohs+zuYhuHdp+SkAUXqLmdUjDNY1UVlaipqYG77//PikRJa/iZ82ahaZNmwrbR78xVwSZxEL3B/lDf0Gh0OBP6CP+x1Wiu2usmOPXFn3N4zYu9ztdRPsiq6+y+rTL7ZI0dsSvz+vQ4wrFpkOAHTPgdehxFxkdZhGjCLy1adSPDR26Pk4l4epTeps3b8bs2bNJZcgnoh9++CFatmxJLVYUJD1WQX00UaaeJJIEZepRBVNQfVPsbQw8eR7cVLA1USTpkFpGN7Z16PFkhcs65NWfRRwej0lkdBgtZ/oxUq9DcVw74ZRh8+bNmDt3LqkMufd9+umnaNGiBamMycSCiqln11mnp+H7OneK476SdpJcaPdSTco82WBLh1EfunXo8eSdeP9nPVEU/b8K8UcWeU/9eC3qwdWTGE9Dkp7sA/I1J/p1pD5stOV7771HsiediK5ZswbLly8nJ6KlSFxoss/3U+rwuINrk7VLn721Oakk6SpJh/H3Sm1X16X+4ikO/JzocQ3qCZTJEytbp2Gyc2L4Pm+OTKvDFqLtKHMSbLK/mD6ZtlUHACxevBhBEKCsrEzInpSIzp8/H02aNEFNTY1UcMUKpaPFYQ0A8Y6SNIHnAdcWB67F40nG1qPlrNOZ+I4uq0xW5G0c8HhY8OY3ypzIsvF4ihUTSaurc6Kt5MnDh9Lf1q9bh8ZNmuCbb75Bp06dhMqQ7u68efMy//3QKMXQOVmPK+h6lKgY2sfjsQVLc/6RPo/HLibnRFfwc3P2uPDRJddJ06JruPSxPhe+lyILamtrUVNTg/nz5wuXIZ2Ifvrpp2jSpAk5MI8na9IeA6OUN2GvUofKibxOe1d8e9xGRYuua9f3a0+eUPl8oMvazZsOS/XUrxi+nEcHxbY+ra2txaefforRo0cL2ZMS0c8++wy1tbXC9uFPt4hcgKwQRTsxxXceBgRTyYcr2LhfIm0jM7HJfI6AGk/aa6JlWeS1z+gmi3Zwbeyx9VlR0b4v8yUXprTrtcjHLzD1Y2sNY0KLJudRFR1SbGX6s6lHaF2bJ+IUu/5dWZ+G/k1/zpmqxS2bN+Pzzz8X9k9ORCm/IRrCuwDeLgD1JhdLh3d9cKEiu9sq8nmgqK0rXzZgg+gXBei8bpb+iq0/ljK67mnaWO61mI7XogdQX8wmadF0kugS8S/P0aVF3mcjvRaLC78+1UdUi5999plwOVIi+sUXX6Bfv35SgYm8J7sbbWJgyHNnMInsYGzi9NHWhFAKfUGHFkt1AylrXNCiRx+yWvSbudli6okuf3/E0H1SyPsiHq/FZETvg8mT3TxrsVjqmDNnjrCtcCIaBAGWLFmCYcOGSQWlm7ATmxwUsiDLxwEpbWPqsYFSJc9t5IIWXdc1FRe0mOc+WYpQT2jzNC9mhYlNntCvK/qy8ahnHh4n1YlLWqTE4EqfZOE3XPPF4sWLhW2FE9Hly5dj48aNUo/mZo3oQrlYJ2adi1rXByuP23gtFq8WXYrFk47XYvFq0ZMvvBaz0WKpbZAAdq55/rx56Ne/PwqFAsoF6hJORL/++mvU1taiqqpKKUCXEdnFYt1A3k2Nf3bBBGm+o+/r+kyJSVyJw5MtojvKvM/xJPkzRbFp0eMBzGkxy0fzRLWY9L7HY5s8ajGp/vh7xajFUkyMu3Tpgq1bt2LZsmVo3759qr1wIrp06dJcnobqJtqheB2M96gr5UPOvDIUX6WwqC326/Mkk/ZFFTq1yCrHe03lM7ceTx7xWjQHNeY8XqNHH2nr1GLXosn+77WVTm1tLSorK/Hdd9/pT0QpP91iGpd3DdLElvSZzKTron7uIGtcu0euxeMxD28Cji+ai12LHk/WpG2Wei16PHbImxaL5aQwz1DvaWVlJZYuXYqBAwem24o6Xbp0Kaqrq4WD8PBReSzPi9Ft/P3JDpmJzz8i6/G4Qd61mJc484Rv02woxkdkdUBNiG0l0C7qpKysDEuXLhWyFW6hb775xieiHo8D+GTX4/G4imsLIo/HUzr48Uc/Mm26detW/Yno119/jZqaGuEgpk6dKmwLyC2uTT1bXgy4ch2uDQquxVMMuNLXRPF9wOPxFCt+fPN4SgdX9V5XV4dvvvlGyFZ4BblkyRKnPiNKIW8LZU++cXVg8JQufgz0eGj4cdxjG9fHaa8JD4Wvv/5ayE6418t8WZHvtGbw7erxeDweT/Hj6nxvOmmydd3U63AlWXQlDlWK5To82/Lpp58K2Ql/WdGyZcvQrVs36YBEcGXAdSUOVYrlOqiI/maVDn9Z1cErU6r33OMuOvWYN/16PXpcohTmRq9FN3DxC3RcohS0uHjxYiE74UR0xYoV5BNR0w1D+QYv1wVRTLtC0Wux1QcomPw9NpnBl1KG8kPt1LI67F3XWamR9jtxlLK67UMofd+ktmTtZd53aW70qCP67ZjFMjfK9K9SnRtF28r/RIldikWLoX+Zect0HStXrhSyFUpE161bh40bNxp9NFdlwKFOADpjyTtJvxeVVkYUUwtNG0mia4STlSsLctlEx0+4fExqERDTo2sbMK4io0eT9n5u1IefG/OFrBbDspQyfm7UA3UDpxTmxmK5/+/Pno1dR4wQshVKRJctW4aysjI0atRIKTBdUAccEVsTg4bpgV1lB5CHSDuZPMHw5AtTC3GZ3UqXtShqE0W3FkV8evKNnxvT6xZ5n4WfGz0U/NwoVr/I+3H83KiGjdP3du3aYePGjairq0v96U+hRHTVqlWora1FWVmZlgBdJOyEqpMJb5DQuRvGsmHF4SdFD5DPHTaqHrPSIs9OVo9eix7XcGFuzEKLVFuPxwZ+bvTkgRYtWgAAVq9ejbZt2ybaCiWiq1evJv2GaCnDEoroLpcXo1vkMYHz/BdZLYraleJOqscji8rcyCtP9eXRQ7F8nrFYroOK6bmRYudpSLH0yZqaGpSVlQklokJXu3r16tSj1VKjGDoKlVK8Zo/H4/F4PB6PxyNGWVkZKisrsXr16lRbn4iWOD659MTxfcLj8Xg8HnX8fOo2/tTWHBUVFXoT0aqqKuWgShE/CHk8Hk9D/Ljo8Xg8nlKgWOY76nWUl5frS0TXrl2LiooKUgAeD4ViEapHH75PeDwej8djBz/nenRShh/yxzSEet3mzZtR7juox+PxeDwej8fjKVF8wi5GAKCuri7VTqg16+rqnPrpFlc6QSk+W+7KNdvqA65cr8fj8Xg8Hk+p4sra3yPO5s2bU22ET0RdSkQ9Hg8NVxJqP5Fkhyt9wOPxeEzh5xiPRz8y64cgCHwi6hHDL1Czw0+axY+/xx6Px+PJilKcg1y5Zlvra1euN47Io7mVIo5kE1Fqw5i0N2Gr26fuerO6jlK2t1XGtetwQbulZmfS1oa9r8MN+6xtddrlSWMu9QEZe1frkCnjkn3Wti6vVV2xddHe1Tq0nYh6PB6Px+PxeDwej8eTRk2jRkJ2QieiVVVVCIKAHATlSLqsvFzYPszIKfa6bSl2QHqsJurVaUe1lfEN0O4pxZ4aj4y9bB2AW9dhWl+ivqm2tu0o2haxo8Rn0taWPWC238vG5Vodpsdd1+fRrOZQV2xdtHe5DsCd+dSVtapIDHlYq4rER7WlxCDjm+pf1t50TDJlGjdpgqqqqlQ7oRNR2UTUkw9kjuc9evCfzy1+/D32eDweT1aU4hzkyjXbWl+7cr1xqqurU218IurxlACubDa4OliWAq70AY/H4zGFn2M8Hv1IfZ60rEzfiWh1dbVTiagrA00pLuxcueZS/yYyj8fj8Xg8nlLBlbW/Rxytj+YWfAfweDwej8fj8Xg8JYpPiMUog8ZHc5s2bYqtW7eqxuTxcPHC9sTxfcLj8Xg8Hjv4OdejkwA/5I9pCCWizZs3F/otGM+2eGF7PB5PQ/y46PF4PJ5SoFjmO+p1FAoFNG/ePNVOOBGtq6sjBeDJB8UiEI8+fJ/weDwej0cdP5+6jf8eEHNs3brVJ6ImKcXBpRSv2ePxeDwej8fj8YgRBAG2bNkilIhWijhs3rw5Nm7cqBxYKcDbXRHZdRHdmWHZ+SRRP0Gh4HfLcoyKFlXtvB49nobY0KPXoh2KZV4sluug4udGdymWPrlx40YEQaAvEW3RogU2bNiAIAhQVlamHKCLRG8+pSMk2YaCKysvTxVf6EfELuo3KQ6Z6/CDRPGRx4RaRo+6tChrp0uPXosel3BhbsxKi1Fbr0ePC+Rhboxrxs+NpceqVasAQF8i2rZtWwRBgE2bNqGmpkYtOg2EnVHXpMhC52LVFEl1UwaVpP+LlEmz9YNG8SKjRap9HrQI6Nejbi1S4vDkDxMJI4s86NHPjZ6s8XPjf/Fzo1vYOJj47rvvUFNTI/TzLUKJaJMmTVBTU4MNGzaQElGTAoyia0eValsMhKdlOttHZgKXsZW1z/P9lZ3cZMrI1KF7YszbSa4OdI9Vsnq00V/yrEfZxM+GfYifG+Xxc2O+KKW5sVjmRRObYKFfqhYp8fi5MZnwekVOQwHBRBQAWrdujQ0bNqBVq1bCwVAakdropu1tk8fHJ3lQH/UI0WWf1o4uLhp13Xte+5m8F/5xGbeJji2mko4ke516dHWRyYM3PpXyXFeMiPYZPze6NTfKjItUe7/p6iZZazF8L60spR4qpvXbpk0bITvhRLRt27bGv7DIlQnUlThUKZbroKIrGZMpY6sOwCd+nnyQxeaIy3V4PFmhU4tJ/nTUIRuX16Ib+PuQjo6NSpkyNvRbVl6OLl26CNkKp7ft27fHhg0bhIMIA/Hox7erx+PxeDzFT6nO97aum7rodyXBciUOVYrlOvKGjXbffvvtheyEld6pUydyIuoKvqN7bFKqCwePu/gx0OOh4cfxZPyYoh/X29RrwkOhc+fOQnbCvapz586kR3OnTJkibAvICdCEKFwfCERx5TpcG7hci6cYcKWvieL7gMfjKVb8+ObxlA6u6r26uhodO3YUshW+go4dO6Kurk46KI/Ho4e8JX4ej6d0cHVh5PF4ih8//uhHpk0rKirQvn17IVvhLytq3769T0Q1kXRTk94LCoWi+nbdYsTfn+yQ/ZC/zHt+M8Dj0UvetehKHMWEb9NskP0212K/X1l+A3sSLrZ7EARmElGXPiPq8oJf9PeJ4p0n7SvXoz7i/pzsiI7dI9fi8ZiHd7/T9KOiRZY/j6fU8Vr0eNwgb1r067bsod67LVu2mElE165dSwqkGIkLQmSnVvXnNpIGA9YAwIuvGCdk/3XtpYvohg9gV4sisfk+6ykmZLQY2pjQYrT+YtBiXr/Z1ZMNouvUYtWiyf7vtZXOhg0bsGXLFrRr107IXjgR7dy5MzZs2IDNmzejqqpKOkCXSVtI8kjrmCZP4pLqDgeDtGQ1+l7WIvOJpQfwWkzz5/HYwpQWTZ9ypP1mpogWo/YeT9Z4LeZPizK/75l3Fi9ejIqKCrRt21bIXjgRbdOmDWpqarB27Vq0atVKOsAsEO3kUUQ7Tx46DmUQErmePA4GHjcwpcU86BAobi26FIsnHa/F4tWiJ194LWajxby0j05sXHOfHXZAu3btUC5Yl3AiWlZWhk6dOjmTiMoIF3BfvFlMZuGOFKVtKG3kJ+h08txGLmix2D7/64IW89wnSxHZ0xLA/XkxK6gb0nmcF23c11LrOy5pUbSPudAXkygFLRYTXbp0EbYVTkQBoFu3buTPiSbdYMrnSpIwMYn6jslGJmmN/5tSLqwzKRbTlEJf0KFFn+Bkgwta9OjDazGfyDxFJXpfWXb+vjVE91qA589rMRmVPq0Lm1rUfc9s9AEbdQwaNEjYlpSI9urVC7NmzaLGI3SDo0lFqQk3pBhPdaj3KP6ZgfC1tDIU8vwZPJWdVurpYil+tqFYod5T2UVYqWgxfp1eix4q1HUOpc/J9AGvxWR0jaEet3B1fUqNzQWisffq1Uu4HDkRfeONN4Ttp0yZgqlTp5IeDTB1cknxnYeEkHIqmbfODOjfjFA9ZTA1uamWAcRPxPLYD7Iky8fkXYG66DKtRRu6Uml/r8UfKPbrywITG/TFqkVXDjNM+HZpfuBR7Pq3sT5Nel3WTtaeWqa2thbdu3cXticlottvvz3WrVtHKeLxOEE4GMhMPLKnuqVYhwu+PW4jq0VX+7zvy568InPiDripqzzrMA/JpQnyer90ozInRsuLljFdR23jxth+++2F7UmJ6A477IAVK1ZQihjFtdMDGUR2JGXFWgzt4/HYIk2LftL0eMxjck50hbzHXwzYfFIir+RtTjR5j1ztL67dgw0bNmDjxo3o06ePcBlSItqnTx+sW7cOGzduRE1NDTnAYkX1+B1g74iE9nkfAF3bqXQtHk8yJu4XT1Nx7UX/75oO/UaTpxgQ0WKxzYkejwo2H/nNek70Ws8eSn9r3KQJqqur0bFjR+EypES0WbNmaNOmDVatWuUT0RREks40WHZpH5L2CZYb2Eh2KXVQkxaTSY7NBEpWh/EYk7RYjDp0qb94ioMs5sS869BjFmr/yNvnSVmo6DD6vqtzoskvkzLZX4opqe/SpQvKysqE7UmJKPDD50RXrVqFDh06CJdx6Vl/3b7DBVjabpKuunnPkuvYKTbR7n6B6rGJLR2GPik69CfxnlIhCx2y/Pu5Rz/FtGAuZtLWhC7MiRS/Hj3YaMshQ4aQ7MmJ6MCBAzFz5kxqsaJAx46uaD06dl4oAxEVlzYLTJ4MylCqybetjYy0ts1y0uLVbVKLHk8WuKxDXv1eh55iQ1WHNtZDvDq9DhtSDNddVVWFAQMGkMqQe+DOO++MtWvXCttPmTKF5F/mRogKiXpkH+6oRndWg0Jhmz+uEsbGizl+bdHXPG7jcr/TRbQvsvoqq0+73C5JY0f8+rwOPa5QbDoE2DEDXoced5HRYRYxisBbm0b92NCh6+NUEq4+mVBVVYXBgweTypBPRHfaaScsX76cWsw5dCevuqCcpomeQLHsZD5/KhMjFf/ZtNLCVR1SyFKHHo8OikGHKngd0rBxzaXYrrp1qNtOF5STUK9DPq5d85YtW7Bx40bstNNOpHLkRHTHHXfE999/j02bNqFRo0bU4trhJSJJHTa+iyRiVyqItIcLH0i3jY3P9+X5M4Reh3rxOvToxOtQDq9Djww8rZSCDk30+ax1SG1z1+8RBUrbVVVXo7KyEr179ybVQU5EW7dujfbt22PFihXo1KkTtbg2KJ8bM/GhbFY8sqciMoieBOo8MUxqx7Rn/kUHWU++ENVh/J7nOenOGq9DTxyvQ/unPy7qsJgWwBRcuW7TOnTlOnWgW4fRj8+FiOqwWMbAJGz1nR49eqCiooJUhpyIAsCgQYOwfPlyUiJKnfCojVYKHcll0nasoglxMQ2mxQ7lUaFiWtTmFcpOutdhfvA6zBdeh8WF7NqlWJLLrGJUrVdUh1l//jQPfUCUPfbYg1xGKhHddddd8cQTT5DLmUouZY7NKb7TbHWdTvKEYXNR4cKJcfRv3f5lsPE5VFufdZWpI0+LWtUnE5IWiSz7LJ5MUIE6proQczGh0q7FsqgVgadDF8cik2NqMejQxdht6NDkesQWedIhQNcVdUyl9BdqHyiGz13X1tZi2LBh5HJSiejIkSNx1113CdtPmTIFU6dOBZB9cunKghDgP8uetmPqyiBgos2pO/oqg4RILFkiEqNsX856MnWJJB0mneQXc9vI6lD3Z2lcaGNTOtS5GZp3kh5hjOqwlDQYxeSCWcQ+63YWvR7TGzzFkFwm4eJcmHXbuLImZT1ybBJWHWn1VlZWYsSIEeS6pBLRESNGYOnSpairq0N1dbVwuaw7FBXdSauoiHkdn1Ve5yLFtSSdkuTKPAaRJmzVR6hk2pI6GKlet0iZvOlWFNGnDkR0WOrI6tC0BmXKUBflqtddisgsaFntbmoudAnKZ19dnQtlyrg2F+YJauJeinOh6SfoVOcEEc25tCadN28eBgwcSP7pFkAyEe3YsSM6duyIpUuXomvXrjIutOJSAhUlaZdXBtFBgPfIoU7hudbmlOtjxZ5W1tWkL8+LL1t90oYOeTvJHnFENChiFy/jk8Ts0a3BeFndJzUuzW22MTEXujivUf3nfVxI6tM65kJRDeZNWzaSPRZJ98TF9Wjffv3Qt29f0uFkiFQiCvzweO6XX35JSkSLfVEgMtmGi1bdC/C4/zxDTXJdS4qB4ojJxWsQQSQp1H1dIhOyx5NXdC3GqI+XUcereFlbGjT1kSMb5GmN5aGRNheaWGNnsR51UVei5Dn2KOXl5dhvv/3kyspWOmrUKKxcuVLYfsqUKbJVGUHHzQ9FxtoBiv4xBct3Ut3ReIul85cypbSA4PVXXp+2pUEWXoOeUkJUg67o0GtQHp9UpJNF/El9WlWDKptBonOhar0UZPwWw+m5zAkqhZqaGuy2227kcoBCIrrHHntgyZIlCIJA1kUiJgUj85hI+HfShCvi23RnYNUXjS3LCdlPMG7UYRJTGoz6V9UgtT5VvAY9xYRtDerCFQ16PDJE+6aoBl3ToUkNunatFGznBbpZvXo1NmzYgFGjRkmVl340d5dddkGhUMCKFSvQpk0bWTfOEr/ZMs9YuwrvM6SsRwqL4Xo9+cRrkG/r8diglDUY/p9nq7NeT0Py3kY6H9V2QYOm6vIalMNG/JQ6WrRsiXbt2mG77baTqks6Ea2qqsKuu+6KJUuWkBJRE8+kA2qfZ0sqF/rN4rEi0evRER/rcwNJu1OhvWjdMvfHdLtT/Nv4vGReP5MZYkKD1H6WZ6LXGv5fRIMeTxTdTxNFdZ1Fn8tiwR2dA8P/ZxmXS7h23abnTFtzsq51KGXd6CIuaVBmzeoatmKaOHGidFmlCMeNG4dly5apuEhFdyPGTx10f6bF5UGAWmdSe/AeE8mSrOv3pBPvK9F/Z/2ZsjhZ1x/GkKZBV/TnyQcsDYa4psGsYbVHdKHsNZg/sr5HrL6Sdw2aXPemzYG89XwesBWv6T5UU1ODcePGSZdXaoUxY8aQPidK/cIilcaLP3MeX/BG69AldhOfTUsTF+VETwesASHpWX/ZwcG0cGwN7i4OjDZiSusH8c+KuDbZZjnBpbVFUpuJjnt5pJQ1K4NuDdrsP64vMG3MgcVAsSy0ZQ8lqPrTuU5TtaNq0OZalNVe8Q0iXfqjxmvS3tbajcL333+PTZs2Ye+995auU/rRXAAYPnw46urqsHLlSrRq1UrFlRSsBmMJnQX1MULRxyJE4NWdFI/odWUFL6b4rrupxyvy/liry/D6Pq+9Xe+rPOLXE+9TLl+X6IIi/L9oWY/bqMyBro2XvHhYj6i72GezngNdu58uo6v/FPscyHvftUdiWRtCcX9+DhSH0h6t27RBhw4d0KlTJ+n6lBLR6upqjBw5EosXLyYlotSkjrITozNhjPo3NcgnCYIlelu7q7raMel6kibmYsBWcmyiz7Pq4GFaf1QoMYhMSLzHYWXrtA3v/ojoz+XrKgVEx8joPc3T/UpLykTmQNevN2l8zHIOLJbTShtQ9Bf9v636dfp1RX86/fLGxzyuQV07QQWg9FguoJiIAj98QPXPf/4zBg0aRC5LaaQ8DWZpi4F45+fZshIZlohEfJlEdvFDaSMVXzrJ20IvTrRPFav+0hDVH4u4bVyDab5c6j8isUb/VvHl2ZZS118UWQ3GHx/M0wkwoG8OTDsRygs275HsqVveoeov/l6S/tJ8uYZO/VH7k4vjkQw1NTX40Y9+pORDuSXGjRuHxYsXoyDY+cLPicZ3VHh/TGPrxCr6J4rKNbLaKKmu8H0RvyaQWWwk9Q3ezpbIH5eRXaBSrl1Uf649giNbhwn9scrb7mem708p6k+WPOrPBmn6U50DRevKK15/YsjqD0hvY5XNyqR4KcjqxKb+4vXFX88jFP2F/3ZJfyZPUJctW4ZNmzZhzJgxxKgaonwiutNOO6GmpgZLly5Fx44dhcuJNo7sToOJCVzEbxivyK6Trg4Z1pnFIwcy94dCWpuzrplnHx8s4q9RYjJpr6OOtJ0+kwtc0/6TENWfzj6bpf6yJn7NoidSXn/5TzBZJN1XU/pL8m9afzbmV9H3ZfQX/7cIpaS/vI3fXn96bEO8/tLp2LEj2rdvT64jinIiWl5ejr333htffPEFKRE1NRlTEiPdSZRI8inrl+onKelNS9hcQff94bUJdceItwuoI6akOqgxuQ71/iZdJ1V7pjdQikF/gN6+xWoTqm9WGZX7aHJMKCVMzX2yFIv+dKKqP1676dafjpjS7F1BVx+U0Z/O/h/3laY/0YRNpm5X0dHXXVt7VlRWYtKkSVL1R9GiyokTJ2Lp0qU6XHHJegBJewQhPiC69lgV6zGTtMcFsm5zKqrJumrdSY9upL3vocPquzKPUtlARn+lgI7rTnt0SuTRqlJFtg3S+q5rbcsaF2zrrxg0zrqvxa4/F+O0sfY0cQggOveZanNTfrPUdpZrz0aNGmHChAnKfrS03r777ouvv/4adXV1QvY2f09UBOqpDGvxG7+5oj7T7GR2B0VgdUqVSdn0IxIevZi6B6YnENbkm7eFDcAfM0o5KfW4Tdrcl/VGIMVWp/7yNO7YxNY4lmW/s0H0Mddim/t0rD1N4NIjxSqYyh8A4KuvvsLGjRuVfj80RPnRXADo3r07unTpgiVLlqB79+46XCqj63Ep2UceXBEUC1bbsB4biP7Ns6PietuIQOlbtq63GB8PdOWkxXTb2tKeDYqxH5YivDGrGO+tiP6K8bo9etE1z7ukvbQ6dRy4sA5wROY+0+sq0xscJpNEWSgxbdetG/r374+WLVsq16vt6saPH4+vv/6aVMaFU5mkR3XiO09ZxBnfDVPxJWOXtGts67M2eU9ciwFbyXTSrq9t4p9rsQXrkbYwBpuPE/rFd+nA61fxRyxF0LUBzFuU2sKE9kpNU6V2vaLE5xYd2tP1FF7Uxrb2KOtOCsWwhnQtca2ursYRRxyhxZe2aCdMmJC7z4nyJrukZ61twRNcVo8w8J4xj7ehC4KnxkB9pNkGJmNyYXHA6zcuPG7kmvaA5McJo7F5PGmIai+rzR8XtBef913XXtb166AYrkHkBJG3wWlTe7wTRlZfTtOezg0q1klokvZYZWyTdf08TCau4c917rfffqRyPLS14N57743vvvsO69atE7K3/TlRkR1N3QOATEKUdBrE2yUySdopLKvNdJ7cZDEgexpiWntZJ56Am9pLghVfNK4sk2ZRvPbM47Wnn2LQnsuxuYJqG1G0p0t/VD887cVjjNubJOkaVLQn2jZZrql12NugorISZWVl2HXXXbX40/IZUQBo1aoVBg8ejC+//BL9+vXT5VYK1ilnCG8niOrfZMKa5jtpYBCNTfc1sGKL1sXaZePZq9bvonAp7e3qNYggoz0TfZGigygq2tMNtV2y1p4nW0zPe7qJnwYlvR+3cS3Ro2hP52OWaTHkDZOnOKbHal4dedRenDxpj3cvTK15WTHotrcBNaZRo0ahqqpKS93aElEAOPTQQ/HXv/6VlIiqdo40QYiKTLew0nxSF8BJ9cR9UgeZJN862oU3UMT/nVTG4xYi/cLVe2hKe7p0pxOb2svzBkqe0DHnZYHKKQWvnO45TyeiC2SevWlMJn3FAu9xUBF7Hehqd5k5j2fD0x7P3kTfSfKpY85zZQwJcU2rjRs3xrHHHqvNn9aIDzzwQHz55ZfYunWrkL3o47nRRR7r+D3+iIPJR41Uk+akxyBEyovExlogm56oZU5uku5ZPG7XHneixOHaoEYh7R6o6s72qbzp00DWo0KukTZe8rTnsYfI+GdrzlMhaf7REa/onOcKFN1FX/OwMTHfmNadrfvp0pxn4ikAmXuve85zVZsmE9fvvvsOGzZswAEHHEANi4vWE9HBgwejefPmWLJkCbp27UoqK7rbRD1BpdibOLrXtQtMPW1IOyl1FZHHWEztsLm4kKMgow0Kor5NnoxR9RzF1v3V8RhTFm2Ypr28nsS5iOi9lZnzskbnySeFpDnP5fbj6S46BlBOgEzh2qmMLHnbRKYkcbbnvKSNIJdIO90NMb3WpPqz1Y6UftK+Qwf06dMHHTt21Fa/1kS0rKwMkyZNwltvvUVKRF14rIa68EtbHFAHBJ2Ljbgv3uMlopO0qYWQqF/RxRhl0Rz6lcFkkqAL3UlmOLm4MDEnQdGdjftoa3Fs8t6I6k50w8v1PqSCCd3lAVPJp8oYHRI/6dAVm417I7LG8Lr7AeoJlm7tyTwVpoqM7kyPOdET0rhP1dhsQW0jykaRyWu0MSY1atRI62O5gOZEFAAOOuggPP744wiCAGVlZcLlTJxy2k4YWItgkVhtxpk0SMRtZGLLMlmJLz54cfAmbtcWfTLxUCamPCSWUXh9UVZ3OhHRSdwmqxNb3RSb7gA9O9fFojsevDZy7dpY2rS9+W2ij7uuO5l2dUV3Lo5JIaWuO+p6lIpobhH6N60718anyspKHHjggXrrD4Ig0Olw48aNaNOmDcaPH4927doJlZk6daoTj9tSdkvjj86EsI76Kf50xCdbJ29QN9neph6bNmGf5eSkqw/Zsjdta1t3Ottft+6opzxed+JkrTtX7q3o4tdV3bHa0abuTN5HU/Yu606mPU3b67alnLLZXj9SfMXtdOjOlftI9S1i77ru2rRpg++++4500JiG9hPRmpoaHHTQQZg7d65wIgqY3SXW7Tu+05H1QlYXrMGNeq0myfokgTWYmhq0wjKu7XJmBesk0WbbmLwXqrqz+URFFoie/LCQuW9ed/+FcuJkot60e6HS79N0RzkZyRIdp4gsbOrORc1leXpKPenVXa/I/RBtn7gdax1F1R0Fk/fR5DrcxpqRal9dXY0TTzxRaxIKaP7W3JAf//jH+OKLL6D5sLUBMoOprG04QUUnKlH/Ojoqq17Wa/H3VQkK234jXFJbuIapCVoG1yZZG1Dak2WbpDnT7cmq21a/z7vuPPmF1c/CvmhTd2mvyUCdq3VrLq9zgKvjDbU9XWh/Xlvy+lqoOV2xs/zw+rjtuS6agGU1z5nuIyb7rOn17oYNG1AoFLR/PhQwlIjuu+++2LJlC7799lshe9GfcQmxtSObNCjY2LWJLwZYCwJV0YqUi9cb39GKx6CagCTF4AquxRPiUvJNhbcIltWczLXxNB/+m2dnCt71+6TUowORBbDpPsbTfPzfNvu86FxnAhsnM67OX3lFZm7SOdfJ3E+W5ln/lu3vsv2Yp3lqHC5p1NY8bVLXjZs0Qdu2bbHzzjtr96390Vzgh+Pbww47DO+++y7pK35NHMuL+o6ffAB6byrl2niDQ9yX6mChsshg7R6z/p/VI4VU364+3mhSEyYRaU/e+1lcb5rmWO9lkQiKPMbLsvN4ADc0x9uwFNFdFn09aa4rFc2ZPJlxDd3xu6C5EBHN2d54FWkfmfWlyPtpMWSFrUSX0gcbNWqEU045RftjuYChE1Hgh8dzFy1ahK1btwrZU09FAbXTtKSdYF4ZlRhEYe0KR+HFxXucz0RsSfUnPWahYzBzbcCgYjJ+W7uosohoTiQmyim+aFyU+qN1mNYcJYYsTm88bqNLczrjiUI9AeKdVOpEZHFrWnPFnNTGKbbxSYfmdLZJ0tMOosiOE7r6sYvznOn1lskxQCbR3bJlC4455hgj8Rg5EQWAvffeGy1atMDnn3+OXr16afcvc4LFsle52aIxJNmZiCnqV2TH1tSpG2+Rztrdyuok3GX/rp7SUqCcetjCBc2JQu1fopozGYNHL9RN0VLQXFjehacBTGgu77i2iKZiQnMyT6yJ1i/6nuhTgUkxmdAc9VpNaM7U4ZOtccB0otu3b18MGDCAVEYUYy1UXl6OM844AwsWLCCV03HTkk7hortBqqKUiSseYzwuGV8sWLtvKjtH1E7LGwR57S9ycmpjgeHSiaVrpOmFdf9E9aYjhjR4celGl+Z0xhK/Xtb9KtaFczFel445joLs0xMszcn6S4qNNZdkBUVznh8wPTfq8G9bc6Lw1lHRuOJ2OupM0pxo39alAZV1pWu4lugGQYCamhr84he/MFaH9t8RjfLNN99gu+22w+GHH47mzZsLlaH8pqhoMha1p/im7NLIPGqRtGsm4k/WRjbJM9F+LFvqfdUVR7HYA7TdPV0bIDb0RrGlaE6X3lh1qOiNYqvSfro0l3c92Iopb3Ocbb2J2mU1x1G1ybKljKVp/qn9yZX+7ao9Dz/H8ftPPBY/x7lrD9Cut6amBsuXL0fjxo2F66Fg7NFcAOjYsSP2339/fPLJJxg+fLiSryw6kYhtUKB/KUuSTxF/FFjXwEr6dCbAqvD8x2OllM0zptvclUFb13XKTIg64GlXVm+6x4Ik0hYWvDiKUW9ZIHKfXW5r3ZpT7fcqc5wtkjQnqjfT40MeTpBkcFlvIrFR9Kb7HvLqCl+n6k024abaysxxtsexLOd7HlVVVTjhhBOMJaGAwUdzQ8466ywsWLAABWLGHv8TwjuCd5F47Cb8JyHSPqyJjdXuov4o8VFto/Xz+gEr/qzvg4o9tc1ld34pehOtgxKLrgTUpfvMIklvrhG/567oLa+w2khUby7OdbrmCdPwNKfbrw5bGb2Fr+uORcbeJd3L6i18XcQ/JRYKvKRJVm+iJ50myMN8IKo3kcMQm5hOdFeuXIlCoYDTTz+dVI6K0UdzAaBQKKBHjx7o06cPtt9+e6EyMo/nuvB4BOsEg7Uzq/L4Q9xGxE7msQfe7pBMm+i0ZcUq4puKqf4XlrHx6AWFUtebDk2K+mLZlbLebGghz3ozFbtMX03Tm0zf59nE/ev0xbsOndcgaxuPVcSegotzlUvzuYl7RbVlzW3x8rb1prJ+ZelNpk1E8HpLtqfEVFZejoEDB2LOnDnCdchg9NFc4IcvLTrvvPNw1VVXoXfv3sK/QSPawDzB6vAtYxvGxEI01jS7+Htp9VI7a9xXfBdIxB/lvsjcQ1FEF/O8NhWFZ69rQWtyAqbupru2G6iqt9AXbxea93+dJz+qenMNit507urqWlC4ojdTqLS5yb5IndtkYZ165BVqn3NtbpOJSTQG02MnxTflPunSG3VNITKnihC3U9GbKdsQkxsPMjGp6k2kPtGYqqurcdlllwnZqmD8RBQA1q9fj86dO2PUqFHo0qWLUJk8nIqm7VgllZEZQOODE+VkSGdcLHiLeFd2sVw7EZEhj+2TpdZE60/bwY2fltg6FYrHwapPxWdetWkDV3axszihMak1lh3vtIR1CssqpysZMaE1k7a27E3jyvVmsY6UTTqo67WkuY23jmStP3XFFY+DV6esT1PzINXeNa0BtPg7duyIr776ChUVFUZjMn4iCgCNGzfGOeecg/vvv184EQXcORWNl4vXzXqdh8wpDW9wiA8i0TiooqGe1vLqi9dpYhK2cb9l+ofJAc00JneOdWuN9Z4K0f4kshOtqjWZ+ELiu8kydcroxyQmtSbj36W2sUXSotBUeyTpmxdHllozWa8NZE9mvNa2hRJ33DZNa7Knjkl2qlrTfZ/S1q3xGCl9ypQtxd5VrQn3mf//ky2/+c1vjCehgIUvKwo555xzsHjxYixfvlzIfsqUKeQ6TE6YcWGGf0KoHTot1rhA4/XxfMVjYwlcJa64XbQ+1iAmiskJ3rXFg8lFtw17IFutmUJEa1FUtSYDT2uuLOhc05onGZ7WTN9HGX2ztGYSVmwuac2VOEJkF9+u2APmHzvPUmvReuPEX1PRmkwirUNrJvVQalorr6hARUUFTjjhBFI5Way1bvv27TF58mR8+OGHpHKUk0ZRRB4vYJ08iAwaOjqsjlOPsJyJSTQpnqTEVPckbmpwsJHIlQomtaYD1uJABpMLVp6fpMnbpQWzJ3t4/cLmYtik1kwjqzXXNOjipqZJstjgltWarsMCymauyIGIqNZ0xZ+mtbSyOmJQ8V0M9jU1Nfj5z3+O2tpaUh2yWB0lzz//fCxYsAArV64Usjd9Khq1TRo4RP3K7ATF4zGx+xS34Yna9KDNS0zj90HUHxXXFgVUbOwIi6DST1j3XXYxrDLxxevXVSdPazK+KIT15i0xzftC11XSFsPhv23FEa1fJ1k+GSC7WObh2gmeDVzRv0q/0ak12etjzakq/uK+o76y0pnugw1TSWsx2AdBgJ/85CekcipYXZn07t0bxx13HN5//31SOdPJCWtBHH9sgOqTYqdjl5rSRjxRU33JJOe8Npap3zSuDRCmMRGPzj4uQ9JC0WT9IjoT9aNaP++k1rX+55GHN37y+oGNeFjzqok+Z/JphKQ64/Wz9O4pLuLjJ2/tSDnAkIHXz2R0RhkX0vq4zoSbdQ1pc5oI/jQ0mZqaGpx77rlo06YNqQ4VrI+Ul1xyCT777DOsWLHCWB1JJyA88cgKIw5ViLwdNEq9MqeirPpMDV5JvtMWzGkLeFObFKVmrwsRnemITaX/mdQZr5yNxYloDDI68+hBR/sm3bOsEs94bNFYbOFKMqiiM1dO/ErNHkh+ckxlPtO1tmTFRolDpU7egUI8Fp11suplxWBSZ671Uxv2ZQDOPfdcUjlVrI/S3bt3x4knnojZs2cL2YeP58oKVWTXSgSdIuctHnTUKxNXmqCzIGmXWSUuv9BmI9PPeIO+6mJY1z3KUmc8sji9SYslbTIPX/Nkg6tJZzy2eEw80mLV0deoOjPZvyk6E8XrMR2ZNZuozmzrzYTOROtNQuYwQ3dinrbusL3R6tohg/Dh2P//ptxf/frXaNmyJakOVTIZzS666CJ88cUXWLZsmbIv0R2rpJsh0+lVYpUtq2oje3KaJGJdA0+abdImAish0pnMlJI9z4eKzkxu+CTFGvWX1UKdRzwuXf1WpXzaRp0pjXl+IKl9VTZRVWNKijUaXx5wod9S5zKd9ZaSPYu0tYLIGEipi0LSeBt9X8dGTtwnJa40uyzmB966Q8dcViqnp+E35f7sZz8jldNBJiNyly5dMGXKFMyaNUvIPnoqKjKAUDAxgfI6ffge66RPJcZoeRFhidaXNlHK7DjqtI3Wb2InzLXFlY14KJO0rZiSCOPjxRq3U6knXpeKxqKwxgMbE7kJjWW9yM8LlLksa42FsBbG4R+dG168/8dtReHNuaaTaWqM8Vijflh9xZV+4SpUjdlYC/LiZMUcj9NVjaXNu9F5kwK17UT9mdwEcm0zRtS+UCjU/25os2bNSHXooCwIgsB6rQCWLVuGnj17YvTo0ejatWuq/dSpUwHQdyconVmnbbwT8+yp/niL66SBilVGpj5Wvaw6knzqvh8yfkWILlgo4nfZXvT6dbd7tG4T/SREh8aSdsBNaCwtZl4dMj5Z/r3G9NpnrTHT99OWxlhaM62xrNYKsrZpxNvLVc2I2AIgayxaRmcsxaoxXhmvMT7xPmliPWTLvnXr1vjqq6+s/WRLlMy2r9u2bYuLL74Y7777LgoCjSX7WVERdO6E8Xbe0uqmXhdrAOHtqsrsoqbFnLSbpIqpnd6o3/iuWNpOXtqfrBCJixVj2vVT6jdBkl9ZjVHqjWsm7iOpv8jUx4o5zxoT6V8UjWWFqPZ5fVJVX1nAaneR+KnXJ6MxnfDmSZ31mLjnohrj9dE0jamsRWTsKXGJakxUb5TYddmyrk90jBBJCln1ROuI+2OtE2Xq48UrM4fpTiwpfuP2ouvE6P9F5jCZWGTsReaw6upq3HjjjZkkoUCGJ6IAsGnTJuywww7o0aMH+vXrl2rv6qkoT7yiPql28XpEfMkIgRJXUkIts2tkyjYer4rvLBfILCj9gYeutlHxzfKbpDFRnzKTKq9NRfqDbt0HBfaJbLydTN1rE7Zp9i5pLCnGrDWjamtDX0n1iPii6osaV9p8TvFn2jYel6y9S/oCaP2Bhwvtnqav0I/pNSKrDKU/UNZ+InGx5jBWOxXLGjH6vguwYiyvqED//v0xZ84clJWVZRBVxokoADz22GM48cQTceihh6K6ujrVXiYZNbVQjqMyiFIXykm2lIVdmp80myQ7Sjvx/GY9oVB9593epYVynDzoi+JHNK4kO5WdVq8v+/ZeX/y6RH15fXl9JdkC7tyjOJSkkFq3bX3pSKKLRV9Ue5f0UllZif/85z/YfffdhevQTeap+iGHHIIBAwaQf86FAmVHIs2WlciFf1Tr59mVldO/VCFpIIzvQMX9U+pJsou2jWidKoj6o4ia6lvW3hVk2kYnrL7uor6SsNHXo3XZ0pcn37D6hYi+TNSpAquv8+oWjTGpLp6+siTrcVoWG/OoarIoS5q+ktZJuutMsk/DZl+X1ZfONT0vLopvU33OtH1VVRXGjx+faRIKOJCIlpWV4aabbsKHH36I1atXi5czkHQknSJGxSHjMy1e3m5RtE4VXzybuF/WIKBjQo/XxaqTVT7rCR+wM+m7NkCZ8s3qWzx9mW53nr50YntS59XpwuLZY5+khapJfelOPlmw5i6TUOYu0wtlU7g0r4S4kHTz1iZJcxflBJNix6qTomnKCWaavlQPK5Js0+YtHWv7OCaTVtP2MklxEAS48cYbSfGYwIkRcOjQoTj++OPx9ttvQ+RJYZkvLqLa8sTOmox0EvrjTeLUI3pRG96ulImBJvTP2i2UXTTbOOUUxZWByTWS7jFvZ1TUJ8VORwJK6Tu8Pm4KnraiddtIiD1sbCSAvLkri80d03UmaUvn/CUyXrm24ZPnhTUVG9eqW1uU/smbM8O4dMJbc7LWp0lQ7eKJvOiBhWr9UfJ6uklh69ataNSoES644AL07NnTWD2iODNiXn311VixYgUWLVqk3bfoJBO/8boeqaCeZIosknV0UpZv1gBAqU8lLpHFc5p/0fptJK6uLEhMXitFW7yFHK8fmiBLbcXrpWpLNR5VbXncQ0ZbpjdPVeZMyuYpy7dL2grr17mhZiPZcoUskwjeuOiKtkzN6RRtmTqk4NVdDNqixmLKvrKqCq1atcL5558vZG8aZ1YerVu3xrXXXosZM2Zg8+bNqfaqp6JJAw0VHYMPJQ6RxJayU5Y2+CSdZLHqTINiF90hi8bL2/mnYjJxpeJKoqt6rUmnMjr8y8YSj4OFSGw64uclhEnonHSTdrx5Oje5qPdJcDpJ416W2gqxcfopgoy2KL5FbXSc6LiMK/OVDkTWgzrXN0ltkZQAq9arakPRFfXwgjJ2iMxZWW5kqNrLQIm9qqoKd911F2pqagxHJYZTI8Pxxx+Pvn37YtasWcbqENnhoiRxqqeilEUyBVbSnRSXKCJJKXUAErWN3yveoGhysjeVuJq2B8wMhvE2Z+3csnYyTcUR/T9rQaFat6l+JrrZYwoRXYX/95gnqZ+lncrYiEv3nGWqn7GSQduw7le8HSlxmbrnLi2WqfbUtUT037w5i5qEUtuPl0zF30+rm5LU6kgcw5hEdGWir8Y3enRsPNlIWk3bi1JdXY19990XEyZMIJUzSeY/3xLngw8+wLBhwzBp0iS0bt061Z71cy5pN4YyqOi0jdrxdt1k/aW9rqs+0aRCtN1M3Ysk4u3i2oBCsacM9KrXqkNXlDio912nrpL6OUVXsjqIt3V4bTp1JWObhE1dmer3pu0pY2iICV1RfbL6Y9RGJE7Rfh5/3aSueHWI+uPZUXwmIXvt1Diovk3b65g7XV8HpsXkoq7S1pzhezJzt4gdxWcStnVFtTfpu7q6GgsWLEDXrl2FytjAue3tHXfcEWeffTbeeOMNFAQaN/qIbtrOMUuMPGRsqT55u8mUuqPEd/fiPnm7sdTJhOWXurii2FHi4+2WJe0+iu6gUXf3TOwGxpHZyaP4pOhKN9TBWFRXVJImb5aueGUpsPqsij9duKCrvBJvl6x0JQpPVzri4l076/+i/Sjun4UL7coiaa3C0hXFrwuYGrfifYO1trGpKZkkNCk2qj/etbP8xdtNFF6cMutWar+grgVF5iqTupJNWk2wfv16NGrUCFdddZVTSSgA905EAWDDhg0YMGAAOnXqhB133DHVnnUqmoTqDjbPLimGpB1lGX88vyJleOVE69MZk8ndMJPiN9HXTNtH20X0mk0MuLp2S6maSvPH8yvqW7YsVQNpvk2MbzK2ooT90YUdZhV73ZqixkLpR6KaAuz336Ryon1F9/ypa8xStRWFqinZWExr1lRyYHP9J6spih3Ft2xZEzFlvf6T0ZSo79C/K5qqrKpCv379MHv2bFRUVAiVsYWTiSgATJs2DePGjcPBBx+MFi1apNpTklHTnZq3MxR/XcdgFJ+kZaD4oMSetENGbYu4T922STHo2KVyacIWjcuWTtJsebu4UR8y/TItPtEYVX3IJBB50JTMgoWC6UTUlKZc29yxrSnROJN82NAUq428psRjYdmX6jwV+jG19hONM8mHibVfUh2uaCotBpk+K5u0Uu0pmqqoqMAHH3yA/v37C9nbxNlEFADOOussPPnkk5gwYQLKyspS7adOnZrpJM/rELxdsix2r5PqEfWlsiNNaSNRnzZtQ3vdA5dOslgIy/hW2bGU1ZTMpoPqBJ/mS3XBr6qpLO+vqH0xacqFRDROKc5RSXYqcbugKVMLbJ2k9RkX2pDa3lFc15SpOSrNR1pdsnWbtBW1z1JTvLg2bdqEFi1b4oILLsBFF11kOSoxnE5E165di379+qFHjx4YOHBgqr2pR3RN7E6pCpv1uuwOGdWXyZ3yNL8uTTouJHRU+zxN8jKakp3k03ZtReqPlzGhpzQ7l/SUVresb5lYTPk2GYvuRVXe9UTxpWPBz6qHVRfLNosNUFlbGd+AG/Nflm0oM9am2fDsdMwfab7S9CQae5bzuog/ql9Z367EUlFZid69e+PDDz9EVVWVUBnbZLsllkLTpk1xzz334N1338Xq1atT7VV/W5QHS6jR8jKTa5JPlh2rvvh7QUH+twl1+Eryz4O3cxb9Q/Vp2lZ2R5+CqZ01nTunum1Z9z2M11Sbx+ti6YBlK+Ir7ifqP8lWhWgd8bp06MnjLry5wjU9ic59VF/Ufkwd71l6UkU2edCJDf2bvE4TvpPWejw9icRBWR+y6kqao2T0FPXF0xM1gRZFRE+m+qaNfuZKny8vL8cjjzzibBIKOJ6IAsDYsWNx/PHHY9q0aaRv0RVBVMBR29A+TdS6BZQ2KcdjFVlAiwiGtYCOl08qS7Fj1ReNX3ag020bYipxNZ0smkI2btZmjujEzvJHqTdaHw8RbVM2o2QX0DLtoVNPYVnRel3CBX3YQLeeqPVG60sirf/b0JMoSW2ZlJzoxoWkNcQ1fYtCjTtNT5T5hmLHqi8J0cMSUV+UtTErDoq9Dj2Zso3aU3AhaV23bh0aNWqE3/zmN9hpp52Ey2VBLmbn6667Do0bN8Z7770nXMbUZJS2OxW+JxKDjNipyZXqLleSv7hPFXjtyGtnymJadSeUhY1k0YVYTCw4WHWnLZapm0Widcv0/9APb0yQ8Rf3aQIRPXncQuQUImluspV8RusVhbXgpS6a4/7i8VHLUCgmLZlalNtYxOuy5a0p0vSkQ2M6No90ainqTwRqop223pPxbXKtksektWWrVhgwYAB+/etfk2OyTS5Gy9raWjzyyCOYM2cOlixZkmpPeUSXlwyq7nSK2ibZseqWneRYk76scFnlkwbxaBlR3yx4g2n8XskuAvKW0MVxIXFl2aZpSXS3VwVe3a5oKerD1kI2eh1JO9Lx+DzZkaQl04lnPIZo3eHrMrC0pDpG6dYS5RRJREum9e2SVl1YxLPqShvr0vohNV6RzXSZwwlWHTq0RF176ljz8mx1acnkWt61pLWqqgpPPPGEcz/VwiIXiSgA7LTTTrj66qsxffp0bNq0KdVe9hHdtJ0pqqhlEjDeThbvREY2FtXELRqTSFIq4otqx9utVLkuFxI6lxYSFHhasnVKE8e0lnT5SIrLdD8OYd0jHRs8Hnl4iadtLfFiiP9bRgOqWjKlcSq8dYOqnk3GbXoxbAqVMTHtPumGt+5ixZBULq0OHRseMlqSWeOKEK87aY1pMrGk4ELSGiahd999N7bbbjvhclni9LfmxgmCAOPGjcOXX36JvfbaK/UnXZK+RZd3Y0U6BqUTidqy4qGUEbVNG+xk/STFZsJ/aEu5B6LxiPqN+qbYF5Nv1R1S6j00oSNZ/0la0t3P43gdufHNtrp829IRxZY6N0TL2NYR1Va0TFjOxD1gUWw6MhWL6Homion+m/X4naZRHXqUqZdXxtT6Ok7SGKs7Bll7E763bt2KJk2b4uCDD8bf//53If8ukKtEFAC+/fZbDBgwAIMGDUK/fv1S7cNklEd8lyX+Gg/dCz3qQEApq2swktl9ivtN8h+1N70hILLDZGrAyvPEz0NFR7rilZkceeXzoCOROEzfA0q/SPNLtc9rIppEvG1NJZdZ6UhXkqlrvkwrb3MsU02ioj6yXhDb8J1EMekobeNKJal1TUc61uC2dWQyaaX6Lq+oQIcOHTB//nw0bdpUqIwL5C4RBYCXX34ZBxxwAA444AC0a9cu1Z7y+6ImOomoYIJCQdvAEE+4qAsrXlzUmKI+49cXjzVefxa7bCIJatyPjQnX1uSvM0G3taGjY+Lh+VPRpC49xv2xdMRrlyw21aI+k5DdvKDEIWOv6tu2hii2MnNRlhqK+mJtIqrOkWk6ynIuisfLghWvq3ML1bcOHZla9IvGq0tHqn1fpx7j/uKoaohim7e5yHTSWlVVhRkzZmDw4MFC/l1BbNXtGPvssw8uvvhivPLKK9i4caNW3yzB6/ZZVs7/tsHov+N2IvWwylIHmqifaNwqSWjcNytW2XooA43IxB6tnxUvK+bo/+PvseLIAl5srNfi1x3tnzqRvdesPsPrWyoxxf1T/ejQYzyOqG+ehrKGFWeahuKvuXQ9Ibz4stQQlaRxlxWnrIZ0JI6seOP+RWHFweuTrPpFfZtARENJc1GSX9uIaChtzSBz/0Wg3uu0eHXFo9r3dc1ponOujB50btCwUJ2LVOPQlYTy1pqVlZW4/fbbc5eEAjk9EQWAIAgwadIkzJkzB/vuuy/KUzqEK6eiUShlZHe/ZMrr9ie6YyRbD9W/btt4DK4tnuPEB2BTu3MUW1P9wwUN6dCPaBmZRXRYzmtIHBUNZWmroqG8z0GiZVQSUZ3jnYxtNIa8aMjkvGLSNorrGtKlH9FyshpyYQ6K2udBQxs3bkTLVq1w7LHH4s4778w6JClym4gCwKpVqzBkyBC0bt0aQ4cOTbXPKhm1OQiwYpFdnOrwJzMAs+pIqsulycnGAiNPvl3Qj0gdrLp4fT4P+mHVk+THlUWACdu8+tZlWwz6kfUnW2+8bJoP1/sAyxbI55wi6lvX5oCuhFAknqS5QTWZdV0/onW40l9EbU37rm7UCDvssANmzpyJ6upqoTKu4Xa6n0KLFi3w5JNPYu7cufj8889T7XX8vmiSbZSy8uTHnqLvifhPKxevi1eeUrcufyo74by6VAZIE+hKFPLgWzey+pGpQ1Q/rD7Psk1CVT86klAR/VCgxOJC3ypVTOonqb5oXfHylLqp/pL0E41fhKS6VfVDKSdbhygu6FPmGnWPQfEYovc43odk9ZNWf5JWo/WL1q1Dj7b0I5OkicZB9WtCE6Z9N2rUCM8++2xuk1Ag54koAAwcOBB33nknXn31VXz//fep9qaS0dAuafCK+6X4jvuK1iM6YFCSYRHx8Pyx4pIhWne0LpX6ZDYYTCweXEsuTS2QqLbUCVlFP3EfrLp45aM+eNcRjTXJX5Kmde28i+gnb+Q1blOYWNDyysnoh+eDdR1Uf6y4RH2w6o77ZrWlrH5MbOaY1ILpZNFEHDIx89Zu8fsue21Jc0+0PoqPpGuQ1SPVR7x+Vrkk/cj41mkbjTHrOKi+Kysr8c9//hNdu3YV8u8qRTGTH3300fjZz36Gl156SfuXF4kQFxNvAcCyCcurLqipA0ZS/bIi1rVjKJokpi0OeH5M7QTnObkURefAnrRxQ12AUmD1URPaUfEpi6h2ZbXjcQPevaLqRyWJUunrcR/hv1XmHlZcFKgbUnGbrLVjMml1wbcuWxHtUJIMGdI2i5JgaVcledSxnqRol+dbt25M9FmVDWKdvsvKf/iG3Ouvvx5777239lhsk+vPiEYpFAo46KCD8P7772PcuHGoqKhItFf5vCir46oubqnldCdZrGRaBZX4ysppn9FilUur39SulswOmCs7cabiSEsaZe6JSjwsVPq7Tu2o6kamfpHxLf6+qX5log+65lvGVud4Fq9DtJzXTnq5pPEtfN+F8dsVLYj6VrHVOZ6pxMOrXxZd2tGhG2r9rHK61gYu2Jr0vWbNGrRr3z7XX04Up2gSUQBYt24dRowYAQDYfffdUVZWlmgvk4xGSSonI1CRMjwbHYMS9RrT/IgmIKzyJiYGW8mxC5OxK3HY0I1ITEn6kK2T51vVD+ukRcS3zGI6r7ox6duFJECmzU3c/7S+p3JCoFs38fI2dJNWTvYai31ekInDJd2kxSSyISFTp4hvWT/UOdHUXM2KTbSOPCaWFNtCoYDaxo0xZMgQTJs2DVVVVall8kBRJaIA8OWXX2LIkCHo27cvBg0alGrPSkZ5g1mIzsSSUo46OFDqTdtF1LlA1LXzxfIp284sZCeOUl0YuKgbSj/WtZBX2YSi6EbHwsaGbnwimmyrSzfUWOL1y25syi7o4r5tbN7G7UwmoUkxxGH1iTz2bVHfqrY6NRP6y7tuVP2k2aroVLacad2IxuJKgltRWYmOHTtizpw5aNWqlZD/PFB0iSgAvPnmmxgzZgz23ntvdOvWLdU+TEbjsDqGqckyrZxqeZUB0ebgSikb96Nr8tExybkwINqIg0VSm+reORWNS7dWde4Y67pOm0koVTcu9O2sF+uuaoYXm+lTDpX51fU5lVVGdH6V8Z8nHVBsZeZinWsBkXIiManUS5lrVPUnUo5SNu4jj3ONK0loWXk5amtr8d5776Fv375C/vNCsspzysiRI3HnnXfi3//+N5YvX04qGxSSPzxO2ZVTKaOD6HWUlcv/RES8PVR88Xyz/NtsK15MafGx/kTtROujxEZFth1FrjGMSVQ3lFhkyrB8yPTHsN60fi6qG52a4dUtoxmZ/pR0j1U1k3dErjGpnaLY0gxPzxTS6mVdP8+PqGai9VLj5PlLQiUJTYuJqhlq7LLovM6ksjKakRm70uKgxsuKT0e98TpE5hqer/jrMnOiLPFr0FUmqR+IasZEYkmBGkf4DbnFloQCRXoiGnLFFVfgmmuuwcSJE9G0adNUe8pnRgFzp6MsG5XJl+dXRWSsxYvsrmLcZ9KgmtRmpndB0+xlJuP4tZradVPZDFHZhbVRhtUX46+r9vGoXnT7U9WzrF6odcuW0amZeD+W1UCabbQuFV2n+RaNR/fYlqYZ3XOMjE/d+ov65N1bypwsU5+qvapeqLHYmmOS4pKZp5P8yZRJGlt1rntE+2OaL5Y/HXNW/LUkvzbmGOp6WgRZzajYpsVYVVWF2267DSeddFKq7zxS1IloEAQ46aST8Mwzz2D//fcX+sFXG8lotBxv8NY9Ier2wfKl6i9pQE+bCGTqNj3B8fyb3sWmwNpNZL3OI8tkVKTv6daLih+dMUX9iPaxPOiFZe+yXgD9G1ose17dlDImF5Cs8mn12PQns2BV3dAyPZZS9Z8VLD27phdWPbb0Eq/L68XM2jsvepkyZUr9v9evX4+nnnoKZ5xxBq688soMozJLUSeiALB582aMHz8eixYtwtixY1Eu0OGinxm1sSCPYisBlq3XlE+VQUimvtCHawuLvPqm2KuWiVIsepHd+balFxsneSbtTfsGzOtF5XQkxPZ8RvVhwqfsglVHna70CdfmCxt937ZedNRHqVPUp+qpquk6ZebmLDd5dPmOJpwsNm/ejOeeew6jR4/GAw88kPorIHmm6BNRAFi9ejVGjBiB8vJy7LHHHsI31OTpqK5BSLZO6klsmk+ZncS4H1078KL12pjgXJnQXRq4qWWKTStJPimxqe50U+t0SStUe5d0KxuPSB06F7eydbL6dqlphVpnqWxy2rAXLVOMWuH5pMZmK6l2VSui9qaS0EKhgFdeeQUdOnTAyy+/jEaNGgn5zyslkYgCwFdffYWhQ4eie/fuGDJkiHA5ajIK8DunrgEjqU5eeRHByCaQSbYiPlUWC2H5pMUKr+5iWFwDbgzIMvZJZZJ2WXVpRaTPqtio+OTZ6VhYp2mFdy9MLhbCMi5pxYXEUqSOtHuoY5NPpN6stJJmU2xacdHeFZ0nlRFZF7iiFapORHyKxOa1Yj5pTUtCgyDAm2++ifXr12PGjBlF9TMtPEomEQWA999/H3vssQd22WUX9OvXT7icyqO6LESTQV07Y7LiSotDl1/diWhavawYdNWlw54Sl0uLd9UycWyddqgkuCYWxCZ1klZel1ayTMx0+HdN59EyLETuqa5+Y1onqn5Nb1TF64jjUr83bW9rs1J1LRQl7b6a0ElavUl+eO+r+tWlk7TyOrSiMja4ZJ+WhALAe++9h88//xxvv/02unfvLuQ77/B7SBGy00474amnnsJbb72FRYv+X3tnHqVFcf39L5vIajBsHkERURgRiOCCoARRQcV4UNGgKIpEXINGE+Oa/BKNnKNRjFER5bjGBRGNJoqMAiqIRAFFHMFBdmRAJ6jsDPA87z9vT5q2l+qqW0v3cz/n8A/Tde99um9V3W9V9fOsFG7nT564ThV3TbEg9vXe/mvq1E330wZB+/72aQaaODv+/5O1G/b5VAd/Ub9hq3L+fzrQZVfWvuj1URMqVZuwey7aT2TjC7YNxiHq228nrr+61k9Ex5+olXPduSyKiTh09SsgfSGuOqekjS+qPVU/8aOj/6W144/Fay/iN25OofIV1saV610hbh6Pe1ZRtmSIy8O0OR0WR/CzqdhVEaFp+1nSnCLiL22sLopQERYvXowlS5bgnXfeKRkRCpTYjqjHlClTMHz4cAwaNAht27ZN1TbqqG5UoRD8m+yko7oiKFvARtmjsElhV3UFU6RIC4oWmWfhygq2dz2gfxU72CbqHgefgUquqxZ1KjkdjENVPIbZ9dtP256iME96hrL+XMthW59BVx+Rbatj3BfJIQqbsuMIRTuReFzNSZeuD2sjMler9hPbfUSXXaq5hKKdzrkkTRtT1yfthq5cuRLvv/9+7RcUlRIlKUQBYPz48fjtb3+LM844A/vvv3+qtv6jun6SEtNEoZ3U4akHMoriIW5gEvm8FEI0Lr4wSrHIlvERpNT6CJWtuEJM9z3NQx+R9WHiM4Qhcs91itGoHNOxuKLDlup4kNZ32vsp48+1eUQ2piz0EZnnyX1Era1qH3F55zRJhFZVVaG8vBwvvvgihgwZImQ7T9S3HYAtrrrqKlRVVeHBBx/EGWecgWbNmoVeFyU6/YgmpbdLkjaZ/QNHVNu4ThjWPo3/MB/B/6NYAQwrtikHY5V4PMLiEmmX1m+cfarrVUS8h4jfND5kYwvmeNyzC4tJpI+J4G9LaSsq1rjrkv5Gga0+QmWDmrDcc6WPJCGywKHqO9gHTfSRuH5vQoQGr/H7FC2+04zvcXYor5eNScaOzOdQiU+0H8f1EVm/Ybao+lvQtneNjjkkbd+K2pAQue8uilBRNm7ciOnTp+OBBx4oSREKlPCOKAAUi0VceeWVmDJlCk477TQ0adIk9W6n7ERGOQGmtZV2RyXJh4o92R02/2Cvc2cgTTvRyUf0/ri0Q5T02ZL6h84iL6mtyUkqrI1p/1471/qH/+9x6OgfMm1Er1ft97KfJc6maFuZsVvGv67+IdqmFPuH6LX+NnnpHyrt/G1FxWdYe9Fr/ddH+aDsb6JtqDYtKOtiW/1Dtj8B8buh33//PaZOnYobb7wRf/zjH4Vt542S3REFgDp16mD8+PHYtm0bpk2bhtNOO22vv4uu4vh3AEQTVbadv61sZ0+zo+L/e9Q1ae3JEFxRplqNpSTu84qsgse1SbqXaVdhRXatkvyJXiezoquyEqzaP8JsiDzbqGtEV55F7cX5CPpRQbb/xrUTKS7S9g/qFWqZvurHRNHsUv8QHfdc7B8uidCov8n2D+9aSrEYvNZU/zBJ2Nxos3/osBfnw2/HlAAV9Zm0CRL1f6YI+o4ToZs2bcK0adNw5ZVX4g9/+IPu0JympHdEPfbs2YNhw4Zh1qxZGDRoEJ555pnav+nelfK3E20b1dFUVv+i7FCsbEXZVJ2QVO6DaiFiYjfGJLrzPKt9Iy4GHau+3DfErjeJqTzXfb919g2KXU6dNqPs+NHZN0y2c7V/lFrfiIohafczyV5YG5f6RtoYVNu52jfiROiWLVswdepUDB8+HA8++CDq1KljLC4XYSH6/9m1axfOOeccLFiwAAMHDsQ+++wT+Q25cejsjCIFbFq/UTY8O6qFcZRNilVRkUHe8xkVl8liO60/k21c/Tz+dlFtkyZ2CnEXjIG6v1H0taBd2QJIpfCLsxvXjtvQCxWRsZC6byT5k7FJ1TdE588oP6Z3UbnN/9pRz9OifYNyLFYRoCI2TfSNpPvpwrjnSpsoIbpt2zZMnToVQ4YMweOPP17yIhRgIboXO3fuxJlnnoklS5bg1FNPRYMGDfZ6Z9RG0Z128NIlSCmgtCtyf+NW91QmGdOFpsuDremJx2tro19Q2omyqWpX9P5GFWKmF2hk2+WxDaAuckQX4qh8B22I+pSxa6Lf6uoXaduaLtBd7Req7QDuF1R2wq5ViUN1R9PFGidJhG7fvh3Tpk3DKaecgmeffRZ1De7QugwL0QDbt2/HoEGDsGrVKgwYMGCvnVHATKcJtlVtr+pb1o5O2yrFng3fsu1cFpamxai/rYdN37Ix6LJLIfJt+Xa1EHZld1OknR+bvmXs6LRL9dls+HZxDHdpZzOuTRimNxNkfeu2ncXaNA8i9O2330afPn0wadIk1K9f0l/RsxcsREPYunUrzjzzTCxduhSnnHIKGjZsCABSR3UBtV0KD4rdTREbUbHqmpRl7arsaIb5TROD60LUpC/dhZZLfSJ4PeXpg7j+lqZPUMQShq7dgzwKURVfQLb7hP9v1LFQxigTS5BS7hOAW0JUR58Q9R0VQ1ju6uifaWyXUp+wIVyjROjWrVtRXl6Ofv364YUXXkCDBg2EbZcCLEQj2LFjB4YMGYKFCxdi4MCB2HfffQGAfHdUZDWbevCIsiHSAVWEI5Vt1UHdsxHWXmTFUWVCDdoSbZcHUSnSTnTFV+fEnuaaNNdFtXOhT8S1Fx2jTAk22XZZKbqD/kR3PHXmQFgs1H2C0rbORaKg/TA/LoylOn3Z7OtpdgWpFqxF8izuOhFbFLbjrlPtE0ntk+ItVRG6efNmlJeX4/TTT8dTTz2FevXqCdsuFViIxlBTU4Nhw4bhgw8+wMCBA9G4cWMA8mIUSDeIxrVVHUj8NlQ7rUi7tBOCztXFNPFQr7S6XgzbKqCCmF7dpdjpNFWkB9tR9QdRGyrPLMxWXoWoSrsgafKEOg9UFx+T2lD3t1LrD1nZeZXx5W8bRPTZqORBmA3Z/uBvq3OxP9hG96JMUix+TIpJ2XaUIvSHH35AeXk5zj//fDzyyCP8TmgELEQT2L17N0aMGIHy8nIMGjQITZs2rf2byFHdOCGT1FbEpumBXcSezt2rKB8yNinj8ZOUD3kuUJLa6RD2Ku3jYtKx26orXlNFt2g8HpQ7BBTtXBLLOucGinygiCcpprz1B9W5Qcav6d1QXe2o5wZRv6I2dMdE0ReCdlTt6ao1k+yZFJMU7cKE6HfffYdp06Zh1KhRuO+++/jbcWNgISpAoVDAFVdcgSlTpmDQoEFo3rx57d+Cu6Npj43E/T0OHRM4hbgL2qOYCJJ8yNqh3lEVKUJcLACi2qn6SjMJUYkhWxOuiM089gVRkRHEVl+wJUSz0heo54Qwu8F5ksIHRdxURXdW+oJsO5W+ICPUdY1Pom39UOZq2NiQt74Q1j5PfQEIF6HV1dUoLy/HddddhzvvvJNFaAIsRAUpFov4zW9+gyeeeAKnnnoqWrZsWfs3vxitvV7xOIUoMu3jigLZOCjiSmM3alJLcw+ohWjctaJQ76baWsH2MLGaKds+buFEJY4kHxRQ9WHb9zwKXTtHuoRonvuCawsnUXZVCnudIlTEZxQieZelXX6PtPfJ5lydlb4QlsMqfcGk+FftCy6J0HXr1mH69Om44447cMstt6SyW6qwEE1BsVjEPffcgz/96U846aST0K5du73+TvXuqC5BSnWNTEyUNkVXnKlFHVV7md3UOESLZJF4ZeKg3NEx3Q+irqPqB1H3k8qmSF9Iug+l1A909YGoGKjvT5q2YfGEXeMRl0uuzgVxttL2A9mYVNpH3V/ZHEyT3xSLK6Jx2OoHIu25H4jZUY1Dti1FTRLnU7YfhInQZcuWYfbs2Rg/fjxGjhwpECkDsBCV4plnnsHo0aPRt29fdOrUaa+/qYhRQN9gkNaujhVi1VVAVUEVjMWlAly0nS1MrTT621K3t9UH/O2p+oBo2zh/Nla+g+2z1A9M7jx5bWX9RrWXyT8dfdnkDqSJPiBrQ3VHxjQmP6O/PeVcLSsGqZ4VVf5RzWc2Bai/fVb6ABAuQisqKrBgwQK8/PLLOOOMMyxElV1YiEoybdo0nHPOOejRowe6dev2o7+7sjvqx9QgkzSwyBbj1IWrTSEq69/WERTTBQjFjiTV6rOu40267Ir4S+s3yp6tPmAjH7NahAexWfSasivSXsUOZSxZycc89QGZeNJ+Dl0nU/LSB2y3lW0XFKHFYhHz5s3D8uXLMW3aNBx33HGp7DIsRJWYN28eBg4ciIMOOgjHHnvsj15Itrk7qqPoFLGla7D2rlU9xhLmM8mvjlhsFRIybW2JUZX2No5AiV4j20b1Xob5E/GrIxabJwps7Gxy/qvZ9V+nYw6wtViclTy21Xdk2+vIf79dHYvsSddTLM6G2ZKxaXMX1WYNFBShhUIBs2fPxubNmzFjxgwcfvjhqWNiWIgq89VXX2HAgAFo1KgRTjjhBNSvX/9H15gSpFGDoOqkK+LD/zeqHSxK22F+ou5PmP8kGzIx2CpOs1Q4pWkvkv86i3HK/Ke2HWdLpiixnf9ZE7Gybb32aXPf789E/lOfYKC2HWcrbf5nWYSqtLW5o6mS/xQxBP1Ejc9hviltm8j/NPc6KzlMIXyDIrSmpgbvvvsumjRpgrfffhsHHHBAKrvM/2AhSsCGDRswePBgrF+/vlaUhiHyu6NRiBSpUX9Pe13aeKhsRtkuFgpkE4nfvuh98schakM1Bm4r1j7tjrpKDHF+RfzL2PZyn9p2mgWtsOttLKRQ+c5r7sf54NxPv6Mbdq3NItxrn6XcV/Eb115m8YC6fkjjP61tf+5T2FbdzEhjQzUGF9sGRejmzZvxzjvvoEePHpgyZcpeP+nIpIeFKBHbt2/HxRdfjJkzZ+Lkk09GixYtQq+j3B31I3usQjaOKHtUg32YbSr7aSelqHuuGo+tYj6Lbf3tg8g+S1PFLYVtCvsy919H7mexGLfZ1msfhsyzdD3vddh3IfezuJOk2tZrn5fc11GP6LQvm3O6cj+LAjYoQjds2IAZM2Zg+PDh+Pvf/x56CpJJBwtRQgqFAm6//XY88MADoT/v4kdmd5R6JY76OImuQdqbyNKugibZU40pClHbWRSiNnxTPXfVOJJi8tC566Rin6IYoyoKbS7g2GoLpBsboqB4fhSLoNQ7lkEfFLtCVILWthiyPd5z3tPHpNOHK3mf9cUXYG8h6v08yz333IMxY8aktsuEw0JUA08//TSuuOIKHHvssSgrK4u8Lml3NM0xoSgbIsjaET0ypmMCUREnVMd0gnbSTiZZKhCo2ia1F5n4dEyyFBOribio+6psbKp5X2q7qXHtRe+fzmcocn1YTMG/U8xBSffIVBGcZCdNkW47b2V96xrr43I+eL2u+Trp2riY/NfonINU+qorOS8bi0sitFgs4tNPP0VFRQUmT57MP89CDAtRTcyaNQu/+MUv0KFDBxxzzDGoGzPw+gVpGEmdSdfqV5StNP5URanI5JFWlJqe2NJMumn922qvc0dRxC5VzvttJeWMidh09C3KXas85Lzt/haF6H2l3HEXGeNFYrOR8yL91aRodzHnbc4R/vZRmM550TFeZ2w6+paO+TBtbGHY2M2lyllPhO7Zswdz5szBd999h2nTpqF79+5SdploWIhq5KuvvsJpp52GQqGAfv36oWHDhpHXqr47CpgRpLI+ZAf5tH5EfNlYYQ1rK4ouUW2iSBH5nDp2zGXtBG2ZKrD911PmO7UIVbElmvM6BYbu/kLxGVVjULFFsXAo2k5H3zK9QCVqIw7d+a7aniLfdcaQxk4wDlv5ntaX6A6lzt3ZtDaioFrwjWtPJUK3bduGmTNnonXr1njjjTf4m3E1wUJUM5s2bcL555+PefPmYcCAAZFfYuThkiAN2tJlU8dRpihfcT5lbOssdkxN8hTtk9C5W6drAYbCZtCu7l1L3Z+Bwo7oLlwctopainx36VmEoTs+3fMTpV2di2SuL1pQ9EeqfKcUokFMzuEu5ju1AM1ivvtj80ToN998g5kzZ+LMM8/ExIkTse+++0rFxSTDQtQAhUIBt912G/72t7+hX79+OPjggxPbuCRIqQfTKNu6dnLCfIX5lLFnu+BJUyzoxuYuD+d6tK8wn7L2bNrgXN/bjokFQQrbnl1KASriT9WWK/3FNlnPdR2L6WE+dO1UBv1Q2dUxZ6qKQNt4IrSyshIffvghxo4di+uvvx516tSxHFm+YSFqkEmTJmHkyJHo1q0bevTokZjcFGIUkB8oTBYTJiYLz0/YZ5Hx6dpE68LKuQtFS1o7UZO7DoEY5k+nj2JB/dumbT6bMBu22wPZXMCKygNTAlGHj2DsJo9aumzDhTy1OT8m5XqW89yzrdJvTe2C6rZBGcPo0aNRKBTw8ccfY8WKFZgyZQpOOeUUKZtMOliIGubTTz/F4MGD0aRJE5xwwglo0KBBYhvTgjTN0VmKuEzbTnMMVuQ+5aVAV4nBheIrrZ20eZ6lHI+zmda3KwsuFDZs9xMqG6J2RAtkHXluqjinyHPq3SEXbGQ9hjR20uZ51sbyOLtpcteVXVC/DReE8OjRo7Fjxw689957aNiwId58800ceuihUjaZ9LAQtcC3336LIUOGYNmyZejfvz/2228/oXa6BanMgEo9CFPu5MTZFr02zr9rQtS2DerjaK7kuO64dBy3kvlcYf4pC7c8CFGXbETZkR03deS4Z4tS6MrYiutjeRShFDbymONUcek+RaOa43H3y/b87IKI9dsYPXo0qqurMXPmTPTp0wcvvPACmjVrJm2XSQ8LUUvs2rULv/vd7/DYY4/hxBNPRIcOHYTa6RCjQWwfsxDdsZQ5jkLx2VTjiLLviqB1oQjyyFOOJ7VVFaSUK8xBXMhNz44L+enS/YjC9FE33ScMqItgPzaEQ5ydrI/hFHEE4wliWsSIjs8q9y8LOW47t6hF6Jdffom5c+fijjvuwC233BL7U4uMHliIWuall17CyJEj0blzZ/Tq1Uu4E1B/mZGqrTi7aVbjZXcrRdvpPHaWJpYwezxR/NiGrB2dxwLTxka9uh13vc4jZyr2Ob/D7bg2dgftu5bfaXyksali2zUR6oINzw7V2O1B+ex11xppr01jP61NFduu7IL67VDYuOyyy/Cf//wHX3/9NSZPnszvg1qEhagDLF68GGeddRZ27dqFfv36oVGjRsJt0wjSuEHVxGCoewUxzo+OQt2zG3UPk2IK2hG5TiQeVTuu2EhjJ2ni1V3IJuW2rN80u0w6czsslriYkmzJxiPqT6cNz44ruZ3GVhqSbJo4Ymeq38rmtosFdh5y29/Wdm7L+jbhQ9SmjKDWcTLJFSF7wQUX4N1330Xbtm3x2muvoX379tI2GXVYiDrC5s2bcckll2DmzJno378/Wrdunap9lCC1OQCJ2KScZESEtu5iXSSmYGyitkTjCbNtw47OWFQLR107h7qEr0iBYXpHTDS3XSqQqezojEUmt03mgc7c1uknjU3RZ+D6OOlSLLILtbYW2ihz22ReJ9kVqQldXGChsnP66afj/fffx/Dhw/Hggw+iYcOG0jYZGliIOkSxWMS4ceNw6623olevXujatWuq3y/yi9Ef2bZ45CjKJrVtW35cO37kekGiYieIy3lNaT/Jl2kRmtQ2DJfFn81YwtCxAyNLXsZsl/Na1Y6Liz1RyN5/zutk25S57ZJ4pOpjvXr1QkVFBSZMmIARI0Yo2WToYCHqILNnz8bQoUPRrFkz9O3bN/WKDdUXGnnYXsGj9kXpj3KCjJu8/Zja9TNth+rzi0JduHNOh9sSQcSfa0IU4JymRFdO6z6dEIVoTotem2THVN8Q/fxANsakrOc0hU1Xc5rSzsEHH4x69erh1VdfRffu3ZVsMrSwEHWU6upqXHjhhZg3bx5+/vOfpz6qC+gVpLI2k44xytoV8RnlT8Un9UptnL00BYCHa5NBsRD+szx+TB5BVLVn+shslG2qPqRLyKjmtJc3rghRvx2Rz2Dy6KGqPdM5rdOfjfFCNB9cLdjTEHcPTM2LIm2DBHNM924rVU7rPD4cZy9tbriwm+q31axZMwwePBiPP/44mjZtqmSToYeFqMMUCgXce++9+OMf/yh1VNfDFUEqMujrWulLO8Cm+UyuTLhe+6yQpeIyrk1cO9P5rOJTR1HG+SyGjnEEoM9nGduqPl3JZ2ph7Dqu5bNsLgPu5rOO/ikK9fFZF6lbty722WcfPPTQQ7jsssuk6mdGPyxEM8CcOXNw7rnnomnTplJHdT1sCVLZAY9qB1bFZ5Jf14Ro0BaQ/r6p7vDoiEm3Lb+9OJuqRXHadmE2dPUh22JIly1d+ezK55O1qZKTlDs7Ohd/bI+lOmzpyGcdY6nNXI67Nqq96R1KnfONql+TtpLyefTo0altbt26FbNmzUKDBg3wz3/+E0ceeaRUbIwZWIhmhP/+978YPnw4PvroI/Tr1w9t2rSRtmVSkFJMcDZXxJMmOJeLd8+eC8VTFmz57QVt6lo9FrFlwreLu6FBWwBdzrjWvzxbgF7xRFnYqopJHb5dF6GU9lwfR3XOi6rCM8m+6PWUvv12XBeg1PY8WzKiM8iaNWswa9YsnHXWWZgwYQIfxc0ALEQzhP9bdbt3744ePXqgrsKxCGpBCtBPEEn2bezwBKH04flxrejJgi0qe0Gb1LbD7Jvc3Qnzr8u+i4Wty7YA/c9Zlw/R4+KlnsdU9lzNYx32PJtBsnKCQNR3EBfnR107qqoidM+ePZg3bx6WLl2Khx9+GJdeeqmSPcYcLEQzyCeffIKhQ4di165dOPHEE5VXfCgFqSmxFuZL9w5Pkv+wOGTtuloU5F2MmszfMH+cw/rtudofqOyZzuGgT907lHG+/bi040htz1VbVPZs5LDfr65TBEl+g7hwdDbMHqUtil3Q7777DrNmzUKbNm0wefJkHHbYYco2GXOwEM0oW7duxZgxY/Diiy+iT58+6Nixo7JNWUEqUkzL2E2D7tXSKJ9BHxQTisvHfV0sWlTtiRy/Dvt/akzncNS9Uo0jC8d8XY1Nxp7ImJPlRQ0Rf67nMI/BydeHwTksF4PLu6B+e6oitFgsYvHixfj4448xZswY3HXXXdhnn32U42PMwkI040yZMgUjR45E+/btcdxxx6FBgwbKNkUEqcwgaWtlUeckIvO5PZLuravFsu3ChcKeTJ7Y2N3R7Yfzl8aezSOCHrbz1/TYK+ojTVw6j/m7bM9kX1URezqO/Pptp43HhB+b+avTnqoI3bFjB+bMmYNNmzbh+eefx8knn6waHmMJFqI5YM2aNRg2bBgqKytx4oknolWrViR2wwQpxWCta8APGzR1v9chay9pMnZ5VzRL9jyblEWyzmLVb9NkP5Ft74dzV8/YQrlLozt3/XZN9RMVG35bpSpCKe15NnXkbtA2BbZyV9Zu1vpamD2Ko7hff/01Zs+ejb59++Lpp59Gy5YtlW0y9mAhmhP27NmDsWPH4s4770SPHj2Uv8jIwy9GPUxMBCp20uwkqPrTNUkFoZoISkUgmDhiRV0Up9lFcFVEBymFo4ieTZ15C7hVYKbJR5P9RMWuHxfz1rPpoj0T85ffD/UiRNK1JvqJqm0q+zrnCFURunv3bsyfPx9ffvkl7rvvPlx11VX826A5gIVozliwYAGGDRuGbdu2oW/fvvjJT34i1C5McPrRtWLsQfE+hOw7FKZ8psErEJImeI80RyxdKQoobIoUQK7nbZp2Knlr6mimaN6miVvHc7NV0IveGxNjTFr7pvNdpV1a+5R568LYKGozzedJwruHunLWi8X1uV73Md8w+xSLWC4fxa2ursbs2bPRrl07vPjii/yFRDmChWgO2b59O37/+9/jsccewzHHHIOysrK9Vo3iRKfMpGSzuKeanNNOVq5MtmmFquu7olE2VVfcTRWzJmNJ2w9dETZpi/2sCFEg+lh1GLYETVr71OO9zCkA2302eH0YJo5JZiVndc+NSbFQ7xbKjG2cszS7oIVCAQsXLsTChQtx66234rbbbkP9+vUpQmQcgYVojpk+fTouuugiNG7cGMuXL//R36nFm2lBqqtIE5nEXBGiInZUoRQ4KvG4euxI1L7NnVkXBE0aOypQFsuq8bh6xFPEvsnxPWrRSfdnpvBhYkwzla8Azf2wIURdyFcdfuN8U9hLQ9qdVVUR+sMPP+CDDz5Aw4YN8eKLL+Loo49Wsse4CQvRnPP999/jqquuwr/+9S9s3bq19v91vqugeyDW7csF3zqLz6RCgaKYEcXEbneUXR22w3z4yXO+6j42mXSNCWzmq4nxJkge89X2uOJSvtqYX6h8hJG3fDW1eKkjX1VEqPezLPPmzcOoUaNw7733olGjRtL2GLdhIVoiTJ48GZdffjlat26NpUuX1v5/1op86iM3FP51xKBbiOqwrfP4GLVdk7Z1+XAlBpuLJi7ZzWKf9dv2k8dczeJYkqWxWrdtm+IzLoa8ClBZu6q7oJs3b8acOXOwc+dOPPPMMzj11FMpwmMcxtzSHGOV8847D5WVlSgrK0PTpk1rf3OpTt26pCu0xUJhr/cOqOz77fh9UPsRJS4GF45H2bIN0K74xx2BorCd5v0oEYLPX1d/EIkjKQaqfun5KHVM9FnKsTRpTDWBqXE9i4W9blyPNWqsCuaJyTjCYqAc0+P6g6u2/XZVd0G/+OILvPrqqxgwYACWLFnCIrRE4B3REmTy5MkYPXo0WrVqhd69e+PZZ5+t/Zvpd9fStBd9V1HWl2g8aeOQjUfnESdeaQ+3LWM/Td7Zeo8pKQ7ZeLKYo57trOWoiv20OzkmTwukzVPZz+7auCFqO0v579kGaHI0yY7J3Vdd47orc4KqbRUR6t8FffrppzFw4ECK8JiMwEK0RPnmm29w5ZVXory8HL1790bHjh3x+OOP1/7d9qStOnjqGNxNTrBeu7y+1+ei7TT2KfKLukCgFNMidlx5FrK2dcZt4n1O3QIuaEf1M1EuSorY0L1TmWURqsu2qH3KY7ZUn4dy0UOkPQvQvd8FvfDCCzFu3Dg0b96cIkQmQ7AQLXEmT56MK664Ai1btsRxxx2Hxo0b7/XzLibeSYo6dkZ5dETVLvXkLTIRu1DQlpptv/2gj1LPz7B7kcWFEhO2AbOFPpXwjPMna1NHQWw7P03Yz6LtKB+UwjPMl6wtG/3G1MktXfapROimTZvw4YcfoqamBk8//TQfwy1hWIgy+Pbbb3HNNdfg3//+N44++mh06dIFderUMS5IdfqK8yniz5QoDCPLxT6QvYk2zIduX2H+RPMyzfWy2OqrWcxNz34en0caP3nNTRa5yfbDcGVR1fa4rtNnFgRooVDAokWL8Omnn2LEiBH461//yrugJQ4LUaaWqVOn4le/+hXq1q2L448/Hi1atAAAUkEaJ7j86F6xBcQnJBO7P2GI3Cuq55HFokrnscEoTOWAiCjlvMy/fRP3Og0ifc6UAI3zGwXnZT7zEoj/bKbFZ5zfMCifh+65VkWEfvPNN5g7dy6aNm2Kp556Cn379qUIj8k4LESZvdiyZQtuv/12jB8/Ht26dcPPfvYz1KtXD4CcIE27GujShFEsFKwV+0D8yjXlBJflI8Ay9mV2n00cpxL1a6vQ98ejkpelkJOeD4qcBNwWfcGctB1L0jVhpNlJcyVnZO0D8juHQZLut83xyVYt4Y8jya/qSSiTJ4NUBOiuXbuwYMECLFmyBLfccgtuvvlmNGzYkCpEJuOwEGVCmT9/Pi699FJs2LABvXv3xgEHHFD7tyhBSn0ExZXi36TvYAxU9y6M4Lu5pt+51OFDJB9V4nCl4Dbt2+9fV04Gn53p99h02Aei34EPw5V3MGV8m/ZP8blFxwhTItSED9Ex0kMlJ23no8kYqPqCSE6afjVFRYSuXr0ac+fORVlZGZ588kl07tyZIjwmR7AQZSLZvXs3HnjgAdxxxx3o2LEjjj76aOy77761f/cLUg9T7+uZKFI9P66/8yJrWwbVyVXl88jGbeIe2np/2IR/fwx5yUfPb17yETArlvyY3hE1XYSLQpFLOhce49DVr02NS3GY7A95y0cVAbplyxZ8/PHHWL9+Pe6//35cdtllqKuYp0w+YSHKJLJixQpcffXVeP/999GzZ0906dJlrwElKEhNTz6U/lSOeVHHYXp3QfTdGldIitfGkW7TuRgWg644TO8s5CkfXbh3qjb92DjCbrNvq74iYRrOxR9frzMOF2oe6lyUFaF79uzBokWLsHDhQpx99tkYN24c2rZtSxobky9YiDLCvPHGG7j66quxa9cuHHvssWjTps1efzctSAE9x2HS2tAhTG0IUSDbO2thfkz4CvpT8alqh1qU5qF4jfNlMjeydA8p8siFsVkWkz5Njok2jsrazsOgnSy9lmEqD6mO4a5duxYfffQRWrVqhQkTJuDEE0+kCI/JOSxEmVTs2LED99xzD8aOHYuOHTuiV69eaNSo0Y+uy5Io1THYq4rTLBYNafwAZnPC9feETK3cy8SUxwURz1cec9DvM41fXYW2il2bIjRvueH6nKL7pJFLfSKNX5OLtrIidPPmzZg3bx6qqqrwl7/8BVdffTXq169PFSKTc1iIMlKsWrUK1157LaZPn46jjjoKRxxxROj5fxcEaZRfW4O9n7gjX7a+6CGPBZiHS4LU9vGuOJ95F6GevzyKm6DPKL82vthFNOdt99m8jYGeP5fmFBvfvRD0a+OIeRQ25wNZAbp7924sWrQIn332Gc4//3zce++9PzopxzBJsBBllJg2bRquuuoqbN26FT179kT79u1Rp06d0GtdEKWeTxuFoZ+4SdhWbFk8Qijjz5ZPz6+tVfYgSV88Uwr5l2ehHebXhviMIqlvuCTadflz4XsATPm1JTyjCD5zF3Y/TfilEKDFYhHLly/HJ598ggMPPBATJkzA8ccfTxUiU2KwEGWUqampwcMPP4z/+7//Q4sWLdCrVy+0bNky8nobghSwswOQhrgvG+DinNafLZ+mfYtiu0gshcLc9jFxD869cP959WfDpwtzmQg2x2bbc5GsCK2qqsL8+fOxa9cujB07Fpdeemntb80zjAwsRBkyvv/+e9x111146KGHcMghh6Bnz55o2rRpbJuo3ySlIG6SsV38RBEsGOImdA8d7xTmuUjy+6T2K1KAubIj6hF1L0wWk6WWdybGOo8s5B0gNubp6qt5yAHTPtPMTbZPIHm4UBNkVYB+//33mD9/PqqqqnDzzTfjxhtvROPGjalCbSZKKwAADQRJREFUZEoYFqIMOatWrcLNN9+MV155BV27dkX37t3RsGHD2DYUu6QUX8wi256CtJO1LpHq2rtEun3K+qUomG2KA1nf1ELBhSOrWfHLOfdjOOfE/FLnm0faZ2gz3zxU8o7iPmZJgG7btg2ffvopKisrMXLkSPz5z39G69atqUJkGBaijD4WLFiA66+/Hp988gm6deuGsrIyoW9SE90l1XmsxrQwpZ6kVQqIUizSPES/vMKPrmem8z7oWJVPyjnX8s3z7aLfPOWbLj8y98jWLqjft2v5ZvLUje57oHveTms/ywK0pqYGn3/+OT7//HOcfPLJuO+++9C5c2eqEBmmFhaijFaKxSLeeust3HDDDaiqqkLXrl3RpUuX1II00n4O3rdy6f0dP7YKJtu+48j6F1jYPhYWhc0vLHE11wC7X+jmmk0Zv1GUkgj1+48jq+/IuvKeZxQ2F1ZlRGhNTQ2++OILVFRUoEuXLhg3bhz/HiijFRaijBEKhQJee+013HbbbVi3bp2yIHXxXRMgfVw2V+jDEC3kRLFxbI7yM7j4TFSPhrnwmQA3npOKEHUhfkpU88zVL+Wiek6qecJ59j+oj6e78LlcyTNAXoBWVFTgiy++QFlZGe6++26ccsopkb+CwDBUsBBljFIoFPD666/j1ltvTS1IPfIkTG2vlEeh850i02TpnZ4k0sblogD10PWupC3yskAApIsrC33FBRFIgY0FF12I9v8sCU/beaYiQCsqKtC1a1fcfffdOPnkk1mAMsZgIcpYwROkt912G9auXYuuXbsKv0Pqx0VRCogJU1dFKOBG4eJKke5KHEHiBICrMQNuxcZ5Hk9UbK6KT8Ct++nKGO9CnocR9qxc+OLAKFwSxcFY0opQvwA98sgjcffdd2PAgAEsQBnjsBBlrFIsFmt3SNeuXYsuXbqgrKws8Vt2w3BVlAJuT65huFK4uFhUetiOx09W8sul5wm4k+eAO6IlDJcK8ChczC3AnVhciCMM18cu13Jf9Qjutm3b8MUXX+DLL7+sFaAnnXQSC1DGGixEGScoFot48803cffdd2P+/Pno3LkzunbtimbNmknbdEmYyhy9sT3ZuVIIAO4VdX5sP6e0uNAHXHiOAOd5XAxpcCVeV56lC8/RjwvxpM0r12K1/SxVBeh3332HiooKLF26FAMGDMAtt9yCfv36sQBlrMNClHGOefPmYezYsXj99dfRsWNHdO3aFa1atVKyaUOUyk5mLnwTn2sFOuBGMRXEZBGsunNg4idBRHy7+PxcjAmwl1Oivm3uZnFOiWMqpqS5S2WsMh27K89PRYAWi0VUVVVh8eLFWLNmDS644ALcdNNNOOKII6jDZBhpWIgyzrJy5Urcd999mDhxItq0aYOysjK0b9+eZAVPlzDVPYGaEqkuClHA/eLTQ1cuUdlO8kHpy9VnBrgpGgD6e2biOSf50vFzHa4+N9fiAmjHdNv5pOtzuPTcVARooVDAihUrsHjxYmzevBnXXHMNrrvuOrRt25Y6TIZRhoUo4zwbN27Eo48+inHjxqFu3bro3LkzOnXqhAYNGpDYVxWlrkxmlMWB6wWVh2vxqeSCS+9KUe2euvysPFxddAHk+qHNne8wKPLalTE2DpfHTCB9nrtwMicM6jHWteelIkB37tyJL7/8EpWVlWjUqBFuuukmXHbZZWjatCl1mAxDBgtRJjPs3LkTzz//PO69916sWrUKhx12GMrKytC8eXNSP0FhGjZRZaEw8pApKFwvqgD3Y0wSYS4JT1HSiJwsiFDAbSEKxOe5a6JTFNHcz8o46/pYBETnucndTWpEhGXWxCeQXoBu3LgRS5YswdKlS9G9e3fceOONOPfcc1P/CgHD2ICFKJM5isUi5syZg3HjxuG1117DQQcdhMMPP5zs2K6fsN3S2jgcm8xkSPMFEi5+XtcLwCwXeaKI5pCrn9VlIerqrhQ1Wf6cLo9BWR/f05DFsVZFgBYKBaxcuRKVlZVYv349hg0bhuuuuw49e/akDpNhtMJClMk069atw6OPPopHHnkEderUQadOndC5c2epn38RgYUpHa6/M5bFe2GTrN4vaiGa1ftgiyzfL2oRmuV7YYOs3i8VAbp9+/ba3c8mTZpgzJgxGDVqFH7605+SxccwJmEhyuSCmpoavPLKK7j//vvx2Wef1QrSli1bGvGfdYFq6gicycKBEhv3g/Mm2g81xUJBmw+T9ySLOeORpdzRmS9BPzrIyrF5D1u7nTqfcRrxWSwWsWHDBlRWVmLZsmXo06cPbrjhBgwePBj16tXTFiPDmICFKJM7PvnkEzz44IOYNGkS9t9/f3Ts2BGHHnoo9tlnH+OxuC5Qs/IOVhRZPtIXhcvvjmZV/PgplZxx4TNkfaHFT97zxoXYs3i8No6wz5NGgO7YsQNLly7F8uXLsW3bNlx88cX49a9/jS5dulCGyTBWYSHK5JZNmzbhhRdewMMPP4zKykp06tQJhx9+OFq2bGn9R5xtC9SsC9A4XCuuKHDl9xpN+jWFy+/4yWLrmbm8iEJBHscWwM58kKdFijBkj98Wi0WsX78eS5cuxbJly3DUUUfh2muvxdChQ9GoUSMdoTKMVViIMiXB/Pnz8eijj+K5555DixYt0LFjR3Tq1MnKLmkUceIU0PN7gnmY8KPIo8Dw0F3E5V18+slzngBmf4eR2r5L5D1PALO/h0zpwyVkf35lx44dtUdvd+7ciZEjR+KKK65AWVmZjjAZxhlYiDIlxZYtWzBp0iQ89NBDWLx4ce2x3QMOOMD6LmkUVAI1r6v5cZTSZ1YVp6W0SBHE5W/OpUZWmJaS6AxSCiI0SNqxs9QEpx/Z3c9CoYC1a9di+fLlWLFiBY455hhce+21OPvss7HvvvvqCJVhnIOFKFOyLFy4EE888QSeffZZ1KlTBx06dMBhhx2G/fbbz3ZoQogK1FISY2GU8udPEg+lLD79lJIQ9RMnSktZePopRRHqJ2z8zPuxWlFkdz83btyIpUuXYsWKFWjUqBEuvfRSjBw5Ep07d9YRJsM4DQtRpuTZtWsXpk6diokTJ+Ktt95C27Zt0aFDB2tfcKRKkkBl3EOleLP1TcR5KjjzJkRtfjt1Hu9jXj4TjxXqyO5+bt++HcuWLcOKFSuwceNGDBkyBKNGjcKAAQP4m2+ZkoaFKMP4qK6uxgsvvICJEyfWHt3t0KED2rVrVzKThUkhm7UCxfWfn9F5P019dhs5YVOIZvlnQAAzP61jGpunKLL625hBsvZzSEnI7H7u3r0bq1evxsqVK7Fy5Ur06tULl19+Oc477zw0b95cV6gMkylYiDJMBBUVFXjyySfx3HPPYdOmTejQoQMOOeQQHHDAAajruCBxlSyKXJ2FYdaEuA5cEGKiQtSFWPOObWErKkLzvDDjGrZErczu5549e/D111/Xis82bdpgxIgRuOSSS3DooYcqxcsweYSFKMMkUCgUMHfuXPzjH//ApEmTsHv3bhx88MHo2LEjWrdu7eyXHJUapo8kc4HoLiwSGNOnFzgX9GPjRIqI+CwUCqiqqsKKFSuwcuVKNG/eHMOHD8eFF16Io446imsEhomBhSjDpGD37t1477338Oyzz+KVV15BgwYN0L59exx88MFo3bo175TmFBvv3XJha468vQuYFVgsmsf11wtUSPOFQaoUCgWsW7cOa9aswapVq1C/fn388pe/xEUXXYTevXtzLcAwgrAQZRhJampqUF5ejpdeegmvv/46CoUC2rdvj/bt2+PAAw9E/fr1bYfIZATezbVP3r6wiAIWiuHkVcyZFHJZpKamBmvXrsXatWuxevVqNGnSBGeffTbOO+889O/fn+d8hpGAhSjDELB7927MmTMHr7zyCl5++WVUV1fjoIMOwoEHHoh27dqhcePGtkNkShgWuslkVYhmVSyymGOywJYtW7BmzRqsW7cOq1evxkEHHYShQ4finHPOwdFHH807nwyjCAtRhiGmWCxi0aJFePXVVzFlyhRUVFSgTZs2aN26NQ488EC0bduWV06ZXJEHoatLiOZVcOmExRxji5qaGlRVVWHdunXYsGEDqqur0bNnTwwdOhRDhgzh3/pkGGJYiDKMZqqrqzFjxgy8+eabKC8vR3V1Ndq1a4eGDRuiQYMGtsNjGOdZtGiR7RAyR7du3WyHwDCZoVgsYvPmzVi7di3atWuH0047Daeffjr69++P/fbbz3Z4DJNbWIgyjEGKxSIqKysxY8YMrF69Gjt37rQdEsMwDMOUPGVlZTj11FPRoUMH26EwTMnAQpRhGIZhGIZhGIYxCr+8wjAMwzAMwzAMwxiFhSjDMAzDMAzDMAxjFBaiDMMwDMMwDMMwjFFYiDIMwzAMwzAMwzBGYSHKMAzDMAzDMAzDGIWFKMMwDMMwDMMwDGMUFqIMwzAMwzAMwzCMUViIMgzDMAzDMAzDMEb5fwr+FTglFuDDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -647,13 +687,6 @@ "engine": 0 }, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:00<00:00, 6.65tasks/s]\n" - ] } ], "source": [ @@ -701,7 +734,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -715,7 +748,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHvCAYAAADgu7bYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+sUlEQVR4nOydeXwU9f3/X7ubY3OHAEm4wi2HnCJqQAGtgooHiuf3V5TWq4K22kq11haqrbbW1tbWs1qttdiqFQ+88AJFqCIKcgjKfSYBQu5sNtnd3x/LbGYnc3xm5jPX7vv5eOShJLMzn9157fvzfr0/x/hisVgMBEEQBEEQBEEQRErid7oBBEEQBEEQBEEQhHWQ6SMIgiAIgiAIgkhhyPQRBEEQBEEQBEGkMGT6CIIgCIIgCIIgUhgyfQRBEARBEARBECkMmT6CIAiCIAiCIIgUhkwfQRAEQRAEQRBECkOmjyAIgiAIgiAIIoUh00cQBEEQBEEQBJHCkOkjCIIgCIIgCIJIYcj0EQRBEARBEASRdjz66KMYM2YMCgsLUVhYiMrKSrz11luJv4dCIcyfPx/du3dHfn4+Zs+ejerq6qRz7NmzBzNnzkRubi5KS0uxYMECdHR02P1WNCHTRxAEQRAEQRBE2tG3b1/89re/xdq1a/H555/jjDPOwIUXXohNmzYBAG699Va8/vrrePHFF7FixQocOHAAF198ceL1kUgEM2fORDgcxqpVq/CPf/wDzzzzDH75y1869ZYU8cVisZjTjSAIgiAIgiAIgnCakpIS/P73v8cll1yCnj17YvHixbjkkksAAFu2bMGIESOwevVqnHLKKXjrrbdw3nnn4cCBAygrKwMAPPbYY7j99ttx6NAhZGVlOflWkshwugEEQRAEQRAEQaQXoVAI4XDYknPHYjH4fL6k32VnZyM7O1vxNZFIBC+++CKam5tRWVmJtWvXor29HWeeeWbimOHDh6OioiJh+lavXo3Ro0cnDB8AzJgxAzfeeCM2bdqE8ePH839zBiHTRxAEQRAEQRCEbYRCIQzsn4+qmogl58/Pz0dTU1PS7xYuXIhFixZ1OXbDhg2orKxEKBRCfn4+lixZgpEjR2LdunXIyspCcXFx0vFlZWWoqqoCAFRVVSUZPuHvwt/cBJk+giAIgiAIgiBsIxwOo6omgp1r+6OwgO8WIw2NUQycsBt79+5FYWFh4vdKo3zDhg3DunXrUF9fj5deeglXX301VqxYwbVNboBMH0EQBEEQBEEQtlNY4Odu+hLnPrYjpxZZWVkYMmQIAGDChAlYs2YN/vznP+Pyyy9HOBxGXV1d0mhfdXU1ysvLAQDl5eX47LPPks4n7O4pHOMWaPdOgiAIgiAIgiBsJxKLWvJjhmg0ira2NkyYMAGZmZl4//33E3/bunUr9uzZg8rKSgBAZWUlNmzYgJqamsQx7777LgoLCzFy5EhT7eANjfQRBEEQBEEQBJF2/OxnP8M555yDiooKNDY2YvHixVi+fDneeecdFBUV4ZprrsGPf/xjlJSUoLCwEDfffDMqKytxyimnAACmT5+OkSNHYs6cObj//vtRVVWFu+66C/Pnz1fdNMYJyPQRBEEQBEEQBGE7UcQQBd+nx+k5X01NDa666iocPHgQRUVFGDNmDN555x2cddZZAIAHH3wQfr8fs2fPRltbG2bMmIFHHnkk8fpAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvv5vqeeEDP6SMIgiAIgiAIwjYaGhpQVFSEqq0VlmzkUj5sD+rr65nW9KULNNJHEARBEARBEITtRBGFuRV48uckukIbuRAEQRAEQRAEQaQwNNJHEARBEARBEITtRGIxRDivNON9vlSBTB9BEARBEARBELbj9EYu6QRN7yQIgiAIgiAIgkhhaKSPIAiCIAiCIAjbiSKGCI302QKN9BEEQRAEQRAEQaQwNNJHEARBEARBEITt0Jo++6CRPoIgCIIgCIIgiBSGRvoIgiAIgiAIgrAdemSDfdBIH0EQBEEQBEEQRApDI30EQRAEQRAEQdhO9NgP73MSXSHTRxAEQRAEQRCE7UQseGQD7/OlCjS9kyAIwqPMnTsXAwYMSPqdz+fDokWLHGkPQRAEQRDuhEwfQRCETWzfvh033HADBg0ahGAwiMLCQkyePBl//vOf0dra6nTzCIIgCMJWIjFrfoiu0PROgiAIG3jjjTdw6aWXIjs7G1dddRVGjRqFcDiMlStXYsGCBdi0aROeeOIJp5tJEARBEEQKQqaPIAjCYnbu3IkrrrgC/fv3xwcffIBevXol/jZ//nxs27YNb7zxhoMtZKejowPRaBRZWVlON4UgCILwOLSRi33Q9E6CIAiLuf/++9HU1ISnnnoqyfAJDBkyBD/60Y+Sfvfcc89hwoQJyMnJQUlJCa644grs3buXS3vC4TB++ctfYsKECSgqKkJeXh5OO+00fPjhh0nH7dq1Cz6fDw888AD+9Kc/YfDgwcjOzsbmzZsBAFu2bMEll1yCkpISBINBnHjiiXjttdeSzlFbW4vbbrsNo0ePRn5+PgoLC3HOOedg/fr1XN4LQRAEQRDa0EgfQRCExbz++usYNGgQJk2axHT8b37zG/ziF7/AZZddhmuvvRaHDh3CX/7yF0yZMgVffvkliouLTbWnoaEBTz75JK688kpcd911aGxsxFNPPYUZM2bgs88+w7hx45KOf/rppxEKhXD99dcjOzsbJSUl2LRpEyZPnow+ffrgjjvuQF5eHl544QXMmjUL//3vf3HRRRcBAHbs2IFXXnkFl156KQYOHIjq6mo8/vjjmDp1KjZv3ozevXubei8EQRCEd4nChwh83M9JdIVMH0EQhIU0NDRg//79uPDCC5mO3717NxYuXIhf//rXuPPOOxO/v/jiizF+/Hg88sgjSb83Qrdu3bBr166kKZrXXXcdhg8fjr/85S946qmnko7ft28ftm3bhp49eyZ+d+aZZ6KiogJr1qxBdnY2AGDevHk49dRTcfvttydM3+jRo/HNN9/A7++cWDJnzhwMHz4cTz31FH7xi1+Yei8EQRAEQWhD0zsJgiAspKGhAQBQUFDAdPzLL7+MaDSKyy67DIcPH078lJeXY+jQoV2mYBohEAgkDF80GkVtbS06Ojpw4okn4osvvuhy/OzZs5MMX21tLT744ANcdtllaGxsTLTxyJEjmDFjBr799lvs378fAJCdnZ0wfJFIBEeOHEF+fj6GDRsmey2CIAgifYjGrPkhukIjfQRBEBZSWFgIAGhsbGQ6/ttvv0UsFsPQoUNl/56ZmcmlXf/4xz/whz/8AVu2bEF7e3vi9wMHDuxyrPR327ZtQywWwy9+8QvFkbqamhr06dMH0WgUf/7zn/HII49g586diEQiiWO6d+/O5b0QBEEQ3iRiwfRO3udLFcj0EQRBWEhhYSF69+6NjRs3Mh0fjUbh8/nw1ltvIRAIdPl7fn6+6TY999xzmDt3LmbNmoUFCxagtLQUgUAA9913H7Zv397l+JycnC5tBIDbbrsNM2bMkL3GkCFDAAD33nsvfvGLX+D73/8+7rnnHpSUlMDv9+OWW25JnIcgCIIgCGsh00cQBGEx5513Hp544gmsXr0alZWVqscOHjwYsVgMAwcOxHHHHWdJe1566SUMGjQIL7/8Mny+zorowoULmV4/aNAgAPFRxzPPPFPzWqeffnqXdYJ1dXXo0aOHzpYTBEEQqQSN9NkHrekjCIKwmJ/+9KfIy8vDtddei+rq6i5/3759O/785z8DiG/YEggE8Ktf/QqxWPLChFgshiNHjphujzCCKD7/p59+itWrVzO9vrS0FNOmTcPjjz+OgwcPdvn7oUOHkq4lfR8vvvhiYs0fQRAEQRDWQyN9BEEQFjN48GAsXrwYl19+OUaMGIGrrroKo0aNQjgcxqpVq/Diiy9i7ty5iWN//etf42c/+xl27dqFWbNmoaCgADt37sSSJUtw/fXX47bbbjPVnvPOOw8vv/wyLrroIsycORM7d+7EY489hpEjR6KpqYnpHA8//DBOPfVUjB49Gtdddx0GDRqE6upqrF69Gvv27Us8h++8887D3Xffje9973uYNGkSNmzYgH/961+J0UKCIAgifYnGfIjGOD+ygfP5UgUyfQRBEDZwwQUX4KuvvsLvf/97vPrqq3j00UeRnZ2NMWPG4A9/+AOuu+66xLF33HEHjjvuODz44IP41a9+BQDo168fpk+fjgsuuMB0W+bOnYuqqio8/vjjeOeddzBy5Eg899xzePHFF7F8+XKmc4wcORKff/45fvWrX+GZZ57BkSNHUFpaivHjx+OXv/xl4rg777wTzc3NWLx4Mf7zn//ghBNOwBtvvIE77rjD9PsgCIIgCIINX0w674YgCIIgCIIgCMIiGhoaUFRUhBUb+yC/gO9qs6bGKKaO2o/6+vrEDtoErekjCIIgCIIgCIJIaWh6J0EQBEEQBEEQthOBHxHOY1AR7UPSEjJ9BEEQBEEQBEHYTsyCjVxitJGLLDS9kyAIgiAIgiAIIoWhkT6CIAiCIAiCIGyHHs5uHzTSRxAEQRAEQRAEkcLQSB+Rchw+fBjvv/8+3nzzTezcudPp5hAEd3xohQ8h0W/CCkdmJf4vhiBiyLG0XQThZQYNGoRzzjkH3/nOd9CjRw+nm0MQaUEk5kckxnkjF3oYnSxk+gjP09HRgZUrV+Ltt9/GG2+8gc2bN6OsrAylpaUoKipyunlEGjJn1hanm5By/POV4U43gUhx1q1bh2XLlqG6uhojR47EzJkzcfbZZ+PUU09FRgalSwRBeBt6ODvhSZqbm7Fs2TK89NJLWLp0KQCgT58+KC8vR58+fZCbm+twCwm38+ivPnS6CUSacOPC051uAqGDlpYW7N+/H1VVVdi/fz8A4LzzzsMll1yC6dOnIy8vz+EWEoT3ER7O/sZXg5BXEOB67ubGCGaO2UEPZ5dApo/wDEePHsUrr7yCF154AR988AGKiorQp08f9O/fH6WlpfD5aOFuKkGmjCCcJ90NaywWQ01NDXbv3o39+/ejvr4eZ5xxBi677DLMmjUL3bp1c7qJBOFJyPTZD5k+wtU0NTXhtddew7PPPov3338fZWVl6N27NwYMGIDi4mIyeg5CpowgCLfD07TGYjHU1dVh165dOHDgAGpqavCd73wHc+bMwQUXXID8/Hxu1yKIVEcwfa99NdgS03fBmO1k+iSQ6SNcRygUwptvvol//vOfeOutt9CtWzf069cPgwcPpi+vTsiYEQRBGEfNNNbX12P79u3Yt28fjh49inPPPRdz5szBOeecg2AwaGMrCcJ7CKZvyfqhlpi+i8Z+S6ZPApk+whXEYjGsWrUKf//73/Gf//wHOTk5qKiowKBBg1BSUuJ08yyFjBlBEIT7UTOAtbW12L59O/bu3YvW1lZcfvnl+P73v49JkybRjBSCkIFMn/2Q6SMcZffu3Xj22Wfx5JNP4vDhwxg0aBCGDBmCnj17urKj/OOitwEAOb5sh1tC6KU11kb3jSAI06iZP2EN4Pbt27Fjxw707NkT11xzDa6++mpUVFTY2EqCcDeC6fvv+uMsMX2zx35Dpk8CmT7CdlpaWvDSSy/hb3/7G/73v/+hf//+GDhwICoqKlyzLbZg7tQgA+EtWmNtSf+m+0cQfBF/x9Ll+6VmADs6OrBnzx7s2LEDe/bswSmnnILrrrsOl1xyCe0wTaQ9ZPrsh0wfYRtfffUVHn30UTz33HPIy8vDwIEDMWTIEEc7PxZzp0W6JDdeQmrwtKB76B607h3dK/eh5/uWqvdPa8OYlpYWbNu2DTt37kRzczPmzJmDH/zgBxgzZoxNLSQIdyGYvhfXD0cuZ9PX0hjBpWO3kOmTQKaPsJTm5mb85z//wV//+lds2rQJgwcPxnHHHWf7IxZ4mDstUjWZcTt6DZ4WdB/tx+w9pHtmPzy/d6l2/1imf37zzTfYvn07jj/+eNx00024/PLL6fl/RFpBps9+yPQRlrBu3To88sgj+Ne//oXCwkIMHjwYQ4YMQXa2tZ27HeZOi1RLYNwGb5OnBt1La7D6HtJ9sw76/rGjNfrX1taGbdu2Yfv27WhoaMD/+3//D/PmzcO4cePsaSBBOIhg+v69bqQlpu+KcZvJ9Ekg00dwIxwO4+WXX8Yf//hHfPXVV4lRPSs2ZXGDudPCioRlf6SR+zn10idQYNu17EwwWfB6EuokTt9LunfmcPr+ibHzXvKIub+++wLVv8diMRw6dCgx+jd27Fj8+Mc/xsUXX4zMzEzT1ycIN0Kmz37I9BGmOXjwIB577DE88sgjiMViGDp0KIYNG8ZlVG/ez9/EkEw/h1Y6w7b2KEoCHU43w3XIGUc3JZUs8Eo8nTbyVpl4t99PK42Dk/eU9/10+30UI3dPnf5+idEyf0B89G/r1q349ttv4fP5MG/ePNx4440oLy+3oYUEYR+C6Vu8bpQlpu//xm1kMn333XcfXn75ZWzZsgU5OTmYNGkSfve732HYsGGJY6qqqrBgwQK8++67aGxsxLBhw/Dzn/8cs2fPThxTW1uLm2++Ga+//jr8fj9mz56NP//5z8jPz+f63sxApo8wRCwWw+rVq/HHP/4Rr776KioqKnDcccehX79+pkb15v38TdW/u9EAbmuPqv6dTF9XaiNdd2l1471Vgwx9V0r8WU43wRS10bDTTXAVtZEMz30vgeSY7NbvKMvo3969e/HNN99gz549mDVrFm699VZUVla68nFGBKEXwfT988vRlpi+OeM3MJm+s88+G1dccQUmTpyIjo4O3Hnnndi4cSM2b96cWGc7ffp01NXV4a9//St69OiBxYsXY+HChfj8888xfvx4AMA555yDgwcP4vHHH0d7ezu+973vYeLEiVi8eDHX92YGMn2ELjo6OvDf//4X9957L7799lscd9xxGD58OIqKigyfU8voKWF3MqJl7pRwa9LhBHJmTwm3JJtk6tlQurduuY9yKN1buqdx1L6vbrqvrLHZjfeVZfSvvr4eW7ZswTfffIOhQ4fizjvvxOzZs13ziCOCMIIdpm/v3r1Jpi87O1tzFtqhQ4dQWlqKFStWYMqUKQCA/Px8PProo5gzZ07iuO7du+N3v/sdrr32Wnz99dcYOXIk1qxZgxNPPBEA8Pbbb+Pcc8/Fvn370Lt3b67vzyhk+ggmmpqa8OSTT+L3v/89QqEQhg8fjmHDhhlab2DU5KnBKwExauzUcGOiYTd6zJ4SVieZZu59Ot9jI/fWCcNg5P6m830FjH9v7bi/PGK1m+4vi/lrb2/H1q1bE9PQFixYgGuuucZV08cIghXB9D3z5VhLTN/c8eu7/H7hwoVYtGiR6mu3bduGoUOHYsOGDRg1ahSA+EhfVlYWnn32WRQXF+OFF17ANddcg/Xr12PIkCH4+9//jp/85Cc4evRo4jwdHR0IBoN48cUXcdFFF3F9f0ahMhGhysGDB/HnP/8ZjzzyCAoLCzFy5EgMGDAAfr++Tt0KoydGnABoJRxWGDuiKzyMnhjpfTOTWPLWQG0kw1UJpF0Yvcdynz9vo8DjHgvvLx3vrRmUPnuz99iK762A0/f4rl++BkDd/GVmZmLUqFEYOXIkdu3ahd///vf4xS9+gXnz5uFHP/oRevXqZVdzCcITyI30qRGNRnHLLbdg8uTJCcMHAC+88AIuv/xydO/eHRkZGcjNzcWSJUswZMgQAPE1f6WlpUnnysjIQElJCaqqqji+I3OQ6SNk2bp1K37zm9/g3//+NyoqKjBt2jSUl5frWktgtdFTQkgMdnV0x4CMI460IZ3hbfaUYDGBdhr8dDN+Vpt6ARajYPV9JvPHB7X7pHSf7foOu8UAspg/v9+PQYMGYeDAgaiqqsJLL72EP/7xj7jiiivw85//PGkDCoJwO9GYH9EY36Jf9NgkxsLCQl27d86fPx8bN27EypUrk37/i1/8AnV1dXjvvffQo0cPvPLKK7jsssvw8ccfY/To0VzbbiVk+ogktm7dioULF+Lll1/G0KFDcdFFF6G4uJjptU6ZPIFdHd1lf0fGzx7sMntKvNfaDQAcvd/pYvzsvNduGpkn82cd0vssxHMnvs9uMIAs5s/n86FXr17o1asXjh49irVr12L06NGYPXs2Fi1aROaPIHRw0003YenSpfjoo4/Qt2/fxO+3b9+Ov/71r9i4cSOOP/54AMDYsWPx8ccf4+GHH8Zjjz2G8vJy1NTUJJ2vo6MDtbW1rtp5l0wfAQDYsmULFi1ahJdffhnHHXccLrnkEhQUaG/97aTRkzN5Ssd52fitCfELGBODfKcZOG30lIw+4Jz5S2Xj57b77eQ9BlLb/Dl5r8X32el7brUB1IrvM376GQDgnftPUj2uW7duOPXUUzFmzBhs2LABo0ePxsUXX4xf/epXZP4IVxOBHxHwHemLgH27klgshptvvhlLlizB8uXLMXDgwKS/t7S0AECXZU2BQADRaLxYVVlZibq6OqxduxYTJkwAAHzwwQeIRqM4+eSTzbwVrtBGLmnOli1bsHDhQixZsgTHHXccxowZo2r2Tv7JJgDAhOBuu5qYgNXkKWF3srA21B8AUBxotvW6ViKYRrckhCw4ZQx4JIhmDT9Pk+/2e+5kYYenGeBR5OFx352633q+32655zwLc1pomT+BxsZGfPXVV/jmm29w8cUXY9GiRRg+fLjFrSMIdoSNXP72xQRLNnK57oS1TI9smDdvHhYvXoxXX301qUBSVFSEnJwctLe3Y+TIkejVqxceeOABdO/eHa+88goWLFiApUuX4txzzwUQf2RDdXU1HnvsscQjG0488UR6ZAPhPLt378bPfvYzvPTSS7rMnhJWmECzJk8O3kmCYOzUSCXTVxfJ6/I7OwoAPLRgZ4K4NtQ/pe774MzDjlzX6H130gxsb+/h2LV5UhfJs72455XCnlzct/v7bsT8XXLJJfjtb3+LiooKi1tHENoIpu/xLyYgJ59vkam1qQM3MJo+pb0qnn76acydOxcA8O233+KOO+7AypUr0dTUhCFDhuC2225LeoRDbW0tbrrppqSHsz/00EOu2l2XTF+aUVdXh3vuuQcPP/wwBg0ahHHjxpkye0oYSRasMHly6E0MWIydEqmS+MuZPTV4JItW6YFnYqiljVS4/2r33ipTwPPeW2UE1O59qt93gP+9d2uRT2/8t/Pesxo/IG7+vvzyS+zcuRM33XQT7rrrLub1+gRhBYLpe/SLiZaYvhtPWMNk+tIJMn1pQjgcxsMPP4xFixahpKQEJ5xwAnr0kK9IGzV6asglCHaZPClyiYAZY6dGOiR/rLAkialm/NPx/psxA1bff6MmwMj9T8d7L6BXA2763vPqC9xq/g4fPoy1a9eirq4OixYtwrx585CVlWVh6whCHjJ99kOmL8WJxWJ48cUXcdtttyEcDmP8+PHo16+f7HC2FWZPzL5wCQBgbO4eS6+jxvqW+LSWvlm1ll/L60kfL7OnhJAYOmX+ga5JoBXm38s64KkBNSPghAaUDABPDXj53gP8Y4Cbin9ApwasKvoB7jR/sVgMe/fuxRdffIHs7Gw88MADuPTSS3U9kokgzCKYvr+uPdkS03fThE/J9Ekg05fCrFu3DjfccAO2bNmCcePG4bjjjuuy+5BdRk8Oq82fYPDkINOnjNVmD+iqCycKAXYVAEgHynTPaLL8Gloc6bB+vQVpQJl94RLHCoHiPiJV+gQ9o37RaBTffPMN1q1bh+HDh+OJJ57A2LFjLWwdQXRCps9+yPSlIEePHsWdd96Jv//97zj++OMxbtw4ZGZmJh1jpdlTM3py8Orw1UyelFTp4HljdZKnpQ0rkz8niwCkha7IacGu5F9OC6SBrjgVD5wsCAKpoQU95q+9vR3r1q3Dpk2bcM011+Dee++l9X6E5Qim76G1p1hi+n444X9k+iSQ6UshotEonn76aSxYsABFRUU46aSTkgK3k6N6Whjp5PWYPDms7Ni9luA5bfbk4JH4uaUQQHpIhkUPvBN/Vi2QDjpxgw4E7I4HQPqZv7q6Onz22Weor6/H73//e3zve9/rMjuIIHhBps9+yPSlCGvXrsX111+PnTt34sQTT8SAAQMS8/PdNKqnhVrHbtbkSXFDcreige9zk6YWbtH9GisTOx760JPsUSHAPG7Ug5mE36gmSAtx3KgHQL8mUjE2sPYfocfYk95YLIZdu3bh888/x6BBg/D4448nHjZNEDwRTN+Dn0+yxPTdeuIqMn0SyPR5nKamJtx55514/PHHMWrUKIwbNw4ZGfEvT+S6tqRjJxVu43JN3kZPytjcPdwNnhy8OvFVDUOS/j2pcBvWN/fjcm6raI5kJ/6fly7EWKURuUTPK8UAPYkdz2KAnkKAWxN8KVoJPy9NuCnRTzVN2FUwtKIvsUoXqxqG4Nxu67kXAwX0mL+Ojg6sW7cOGzduxA033IB7773XVc8bI7wPmT77IdPnYd544w1ce+21yMzMRGVlZWIqp9TsKaEn2bfa6AHAt82lif8fmldj+fX0dNxSY6dGXoDt83cSsemTw6gRtFon3zaXuk4bakh143ZtCLrgXQiwUhfiZN+qYhHvJF/Qhdv1AFhXIEqF4qEZXWj1KVZpQ4/xA+J7BPzvf/9DR0cH/va3v2HmzJmWtItIPwTT98Dnp1pi+m47cSWZPglk+jxIVVUV5s+fj7fffhsnnngihg0bBp/Px2z21BB36nYbPSlWJ/fiDluPqdPC7YmcluFTQynpc0IrdupDC1b9uFkbLLowkvTbpQ23FgOcSu55wRovqIiorA2j/YuV2tA75XPLli1Yu3Ytzj77bDz88MMoLy+3rG1EeiCYvvvXnGaJ6fvpxI/J9Ekg0+chotEonnzySdx2223o1asXTjrpJOTm5nIxe2KOtHVO5xlftJfrudVMnhy8O+sv65OnXXbP5ru2xs0JnBmzJ8eRtjzu+pCipRevFQZSWR9ySb8dI79yOFEQMKuPdNKGU7oA7DOAXigk6h31a2lpwWeffYaDBw/igQcewHXXXUfP9iMMQ6bPfsj0eYRdu3bhqquuwoYNG3DKKaegoqKCq9kTGz05zCT3eo2eGLMdtNTkieFt+AD3Jm5WGD4pPA2gm4oDPHXiVn0A3ioKsOrDqgRf0Ee6FI2sih9W6ENP7KCiYhy95m/Pnj343//+h9GjR+PZZ5/FgAEDLGkXkdoIpu+3a6YiyNn0hZo6cMfEFWT6JJDpcznRaBSPPfYYbrvtNgwaNAgTJ05EYD6/W6Zl9qSwdtJmjJ4U1o5ZzeDJ4ZUO2Sx2GD4pRpM5pwoEdhYH3KgTLxUFjGiER3KvpBHSh37UYojXCows/Y4XNKLX+IXDYaxZswY7d+7EAw88gBtuuIEe70Dogkyf/ZDpczE7d+7EVVddhU2bNqGyshK9ftWT27n1mj0pch0zT6MnRa5D1mvypHihIzYLz2TNqGa0kjjeumFJ3pwsEJBO4uhN7nnoRG9iz6oTiiX60BNL3FpoNNL/eEEnes3fvn37sHr1aowaNYpG/QhdCKbv3s9Ot8T03XnSh2T6JJDpcyHRaBSPPvooFixYgMGDB2P8X8cgKy/T9HnNGj058jPsSU6aOvhWmoHUTuSdGN1jQZzA2VkkMFsgAPjpJZW1YkYnasm9nYUBM1qhmMKGl4qObo4lgDuMnzDqt2PHDjzwwAP4wQ9+QKN+hCZk+uyHTJ/L2L9/P7773e9i/fr1OPmeE9Hn5N6mz8nb7O1vLOryu2Hd+K6N2Hq0awfep6Ce6zWc6ng/rRnAfOzJpbt0t8VNyZkUQTu89SJl69HSlNGL1fDSC0+tCEm9lYUBgaF5NVwSeQHSiTa844odxUcrYgrgfDFJqT8a+7L+nWqFUb+xY8fiueeeQ58+fQy1iUgPBNN3z2dnWGL6fnHSB2T6JJDpcxGLFy/GD37wA/Tt2xcnPjIOWflZps5nh9kTYzaRlzN6YtySxH9R0zfp31mBCI/mmCYcCST+/4TSfabOZcWosBPFArdoRoreBI2lUEAFAv0IenGrTgBjybzb9WJl32SFXrxShPyipi9O67VdV2FRC73mLxwO49NPP8W+ffvw+OOP48orr+TWFiK1INNnP2T6XEBtbS1uuOEGvP3226isrMTAgQMTfzOyQyfPDlXL6EnR2+FqGT0xdnWyUlOnhRtNnxIsZpCKBcqYSczEunKbZtxWJFDSDK+EXkkzbkvkBc24TS+AOc3Y2Ud5Kb4AbJph6aN4asbIqN/OnTuxatUqnHPOOXjiiSfQrVs3bu0hUgPB9P3q0zMtMX0LT36PTJ8EMn0Os2zZMsyZMwf5+fmYNGkScnNzNV8jZwRX7hkEABhRVs2lXXrNnhi1TlaPyZPCq3P9uroMAJAbDJs+lxuTMSOcULrPdrMnRU9ypldHdhk/1oKBl3Sjldw7oRujiTyrbuwsFHhJM3rijJpunCpMerEoqbcIKcZp49fS0oJVq1ahqakJzz33HM466yxu7SG8D5k++yHT5xBtbW1YsGAB/va3v2HixIkYPny4oYecrpghP2feiPkzY/SkiDtXM0ZPit6OVTB4cqSK6TNr+ACgJdQ5ldhs4cCsjtxeNNhdb75inSq66V90lENL4hjVDUsib0Q3vJN40k0nbteN2T7LrHbE/Zbb+im95i8Wi2HLli1Ys2YNrrvuOvz+979Hdjb/jdkI7yGYvl9+eiaC+eY3KxQTamrH3WT6ukCmzwG+/vprXHLJJTh69ChOO+00FBcX6z6HktmTQyuJ52n2BI7U56F7Ef+Hn2t1pmomT4zbOlKj8DZ8crCaQN46EpIyJ4sGgLymUkE/VmjHaMGAh3bkknge2jGTwEu1Y1Y3TmsGsC7mOFmodEORUqvvclPMMTLqV1dXh48//hjdunXDSy+9hBEjRnBpC+FdBNN31/+mW2L6fn3KMjJ9Esj02UgsFsMTTzyBW265BSNGjMAJJ5yAQEB/B6rH8EkROlarjJ4Yq00fq8GTw00dqFHMJl9aZk8OucTMSi3ZXThIp6KBHfphSeSt0I8VsCTwLPrxuvGzo9AkYHfB0qq4o6QdI32YW/RjxPhFIhF88cUX+Prrr/HnP/8Z1113naEZTkRqQKbPfsj02cSRI0cwd+5cfPTRRzjttNMMbWVsxuwJhJrjnW1pzwbT5wK6Gj0pvDrPmkPxL20wz3yyDbin4zSKE4ZPTKg5C+MH7bUs6RLDOwGrOVSI8YPijwRwsnDgpIbsTNzFSJN4q4tPdiTvXk7cjeJU/BHrx8uFSzNxB3BX0cnoox1WrlyJqVOn4plnnkFJSQmXthDeQjB9P1t9tiWm777Kt8n0SSDTZwMrV67EpZdeiry8PEyePBnBYFDX63maPTFGjZ+W0ZNipOMUTJ4UMn3OGz4gWU88CggsmuKRgPEsHpCGzFGYGzJ9DjFKGrIicW9o0RfD5SD9mMOLBUxxv5ZKMciI8QuFQvjkk0/Q3NyMF198EaeeeiqXthDegUyf/ZDps5BoNIr77rsP99xzDyZMmIDjjz9e11QGs2ZPzujJwdpp6jV7AqydpZLRE5NKHaURzCRbvM2eFCPJl9cLCGa0RDrqxGzibkfRQKojp/UDOKchN5k+MXYUMo3qyK1xCOCjIyPGLxaLYdOmTVi7di1++ctf4o477oDf7zfdFsIbCKbvjtXnIJuz6WtrasdvK98i0yeBTJ9F1NTU4Morr8S6deswdepU9OzZk/m1dpk9MUqdpVGjJ0Wuo2QxeVKc6CBr93dOIyrpU4/aagcCSIcPJX2MbyhhteGTopV8mdEVS9LFqi2zevKi6XNrwi6gN3G3unCgpqVUSdiN4LbCgRxuKGjaFYsAc1pK9HMZ9qeEbbv2IfzXf2H8+PF4/vnndeVLhHch02c/ZPosYMWKFbj00ktRXFyMyZMnIyuLrYNzwuxJKe3ZwM3oiele1GzI5EmxomMUmzpNHOgQAQAd6iPEaoaQx/o9o0iTLioiSPTmhJ5MFBDcVDwwqyWthF2PnpwsHtTuL3JMR4B67FHCbh0B9hc2jfZ3Vsckzf7OoT4u2tKK4J//hfr6erz44ouYMmWKI+0g7EMwfQtWzbTE9P1+0htk+iSQ6eNINBrFb37zG/zmN7/BiSeeiJEjRzJN53xnzHGJ/w/20j91hIfZQ2PngzED3bs+/N0okSOi5/EUdJg+n9EOMXTwWMeeFTXXAAeTK92E/Yb0JIaXtnhqSsAthQS5BIu5kOBCPXmhgMCzMCVO1s3oyUrj59ZEnSU2KenJSS0BqV/gNNXnOaSnWCyGfn9/HZ9//jnuuusu3HnnnTTdM4Uh02c/ZPo4cfToUVx55ZVYs2YNpk2bhh49emi+Rmz25NBK2HmbPTFmkvQkoyfGBtOX6OiUMGP6XJigKxKW7yhZTSAXbQHWFxM4aAowlmBxKSTYrSmjegJMFxF4aSqQxX86Y+RItqNaEggdyTF+YS/FJ8CUnnjHp1QpdMr2f16KT8eYsPRTLF++HCeddBKef/55Q88yJtyPYPp+8sl5lpi+P0xeSqZPgnzGT+hi3bp1uOCCC5CZmYnzzz8f2dkKpucYWmZPQBzAxZ2jlWZPIHIkW1dHqGj0LETT4HkdzoYP6PqZySVdVulL0IjRBEtWY40Z3JJ1LRT1FvabH0H2CCz6kX0dxyQ9Ar6JekJXnLQUas5iTtS5JukdPudG/Ayi9J0yO0OBCVGMEscWrgVP4RomdCV8d5Q0pdkPCv2BEV05pKm1552M8wsK8NFHH2HMmDF4/fXXMXbsWNvbQdhDBH5EwHdEl/f5UgUyfSZ55plncOONN2L06NEYN26c5nROVsMnJXQwD4HWY+cuM1hJ1jB6UrSMn26jZyKpClTHO75QDt9qEDNeGZFRMXxyCAlDoNWHiFFdSbG7oMAhWZcm6ilfUNCLgq7kPidpwm7FqDFgPlFXLCIA3PWU+D2LrswUEexO0jNi5kb7FGDRlVUY1ZVqnOJs/gzFJ6O6Eu6vzX3g8qkjMT0rC+vWrcMpp5yCxx57DFdffbWtbSCIVINMn0Ha2tpw8803Y/HixTj99NPRr18/1eONmj0AnWZP+PcxA8ScpOs0e2KkCbpdI3rCe+SKV0ZjbDJ8UsSfuSEDqENnLKN+urRm0vgFqrOcKyikGF0S0sJ2cydk0JWeUWQmXfFK0hsMaiqNRo9ZEeuKa5FKBVZdMccqk7oKVGehHVkIAIjkGDBhHhv1W1Y5BKgcgtNf7IH58+fjk08+wV/+8hfN2VSEt4jGfIjG+BaPeJ8vVSDTZ4Cqqiqcf/752L9/Py644AIUFBQoHsvT7HX5u5b5M2H2xNhh9Cwxebyws6NzwPDJ6UxXYcEtRQUdxk9Ob4FWn7FECvBGku6UtlpNFBMMzE4AlJN0u2YnSPVlOEH3SHLuBF0+Yz3aMqgroKu2DMUsneZPKV4B6aGtzZdOwwXFxVi6dCnWrVuH1157DeXl5ba3gyC8Dpk+nXz++ec477zz0K1bN5xzzjnIyFD+CI0aPi2z1+V4cYLOyegBQNbRzucwhbvx3TzB1SbPKVxi+JL+rjX6x0FvkSPZyDoa4KMxlSSdNGcvasUEgCFJN1lMADoTdNPFBEAzQVfTl+GCgheSc6NTPLOipmcniDFlAnXAtQgq1riMvlhilmHzZ3TUz6HpnqvOGodzcnLwySefYPz48Xj99ddx4okn2toGwhqi8CPKeQ0e7/OlCmT6dPDPf/4T119/PcaNG4fRo0crrt+zy+yJyWz2IXNHNkI9zSXOYqMn/b3ZpDx4KAAcCqA9z4EqtM6OLbgv/tWImXuONRO+CBDqa3AamcGkyYjWrCguiPXGy/gFd2QjNCie7Os1eqZG+4zg9lEZjkm5FFUDyElfgW258fNbVFDQo6+UNn4uRNEEWhC7uBWsAKCgw1CBypS+AGPm75i+sveyT2Nu69eu63gxK/uPwtRAAF999RVOO+00/O1vf8N3v/tdQ+ciiHSETB8DkUgECxYswOOPP666fs8psycmeCjeEek1f0pmzwxCW9yGYOi0sMPwCWi1SdYU2mj4BITiAqBfY2KsLC4A5kb17DR+wX0ZtuisrZc9O5wKGJ2tAACRXD7TZKUFBYBDci5s8d9i/Ltnt/HLPmhPN2+3xvQiaCyz2We6OCqFlwEUCqMADBVHrZryqdU/6YlhRg2fgM/nw9ixY1FSUoIbbrgBX375Je6//34EAu7MNwhtIjEfIpzX4PE+X6pAz+nToKGhAbNnz8b69etx+umnyz4v5uPuw5P+3dKHrXPmafbk0OrYjBg9rQ6NxeiZGelj7cxy9ycnZVED/Yxdps+nM0fwi/bFYNWagBWa05NAsWpOb+Ikpzs7dNYFSdLEUmCwazRZDTcVFcQYTc61dGY0MRfrzA36Avgm5GZgiWNddOZRjbHEMR4xDLBXZ0K/6eb+EgCm7d8CAKirq8OHH36IsWPH4r///S89j81jCM/pu/Hjiy15Tt+jp71Mz+mTQKZPhT179mDGjBkIhUKYNm0asrK6jh5IDZ8c0sTcarMnRq5DMzOqJ9eR6R3R49mJSc2dEm7txPQaPiDZ9ElRMoF2aE4teUqXAkMq6owKC5SQs2A2lunRmZXxLNWKpWo6U+s/3aozAcH4hcNhLF++HMFgEO+88w4qKirsawRhCsH03fDRbEtM3+NT/kumTwKZPgU+++wznHvuuejVqxdOOeUU+P3JwZHF7EkJHNv0q6WX/o9cr9kTE+oZ4Tp9M9wtYmrqppHOK/fgsWkrBtbQu7Xz4m345GjpE7W1yAAkJ01mdedkkUEuWdIqMqSL1txYXDCqNbWEnFVrlJDHMTNrQQk5rRnVmdmiKe94ZqQfNas11kKpgF6tOWH8otEo/ve//+HgwYN46623MHHiRPsaQRhGMH3Xr7gUWZxNX7ipHU9MfZFMnwRa0yfDiy++iKuuugrjx4/HqFGjumzYYsbwAZ0GhsX8mTF7AJDZAGQ2BNBWYuo0AIDsWuG/AbRb/B0SPqNUxQ7DBwAFOzo7eD3FBjO6Cx4KcCs0ZB0NILsWlutNjoIdft1FBn+7sYTcbWhpTS5xbCsxXj/Uoze5dctmtCa33k9vMp7Z7DO1Biu7Vt/3LVV0Fs20X2t6EOuAxzpAsdaMFk6NaC3enxornOrVmtC32WH+lvcZjmn7t8Dv96OyshIbN27ElClT8M9//hOXXHKJ9Q0gCI9Bpk9ELBbDb3/7W9x9992YOnUq+vfvn/R3s2ZPitjYSBNyHmZPTHYtDBk/wehZjZtMntWdlV2GT6o9Nb2J4VVoAIxpTgwP/bEmSW7SIE+M6M0IrPqSYlRvQtIc5dSLmS0w6E3GpXozMotBD76IvaMwViL97IzMntFLwXY+MU18LsCY3oTvjJrelOKZ0C/o0ZuRIoNdehOMn8/nw+jRo1FQUIA5c+Zg27ZtuP322xV3WSfcQwQ+RMB5IxfO50sVyPQdIxKJ4Oabb8a//vUvnHvuuejRo0fS33kbPilCgDYzoiE1elL0GD8rzZ7R5NquqZ1ug4fhk6KUoJsxfHL641VsyGww+d2QSchT1eSZhXeBAVBOynkWt8wk42K9mdGaVjLOU3NuTMRjAfuKDGJY9GZWawJirfCKbQA/88eqsUCbfuMH6B/1s9P4AcCAAQOQn5+P++67D3v37sVDDz1EO3sSxDHI9AEIhUK48sorsXLlSsycORMFBQWJv1lt9gQyQsn/bS1lf62W2ROjloTrMXp6E6OcmuR/dwTZX2snbhvls8LwSck96DOkOzFqGhR0xZIgqWnQrPED9CfdehMjQh65IoMVsxkA/Ym4nObMJOJAcpHBqiQcSJ1pnryR+8ytKKjqNYBa8Q0wbv5yavT3q3aM+jlh/Hr06IFzzz0XL7zwAg4ePIjFixcjGHRp0kEgGgOinB+xEKXdSmRJe9NXV1eHmTNnYvfu3Tj33HOTAoNew2fG7EkRTJJaEq7H7IkRGz+rRvSkJs8rFOzhHykaK+LBzGrDZ0R/QLIGWXQnhkfBwcpiA9D5nnLgs6XYkG6JuJEiAxDXnZNFBhbdGS005NQY05sdxi+VpnnqQdwnGdWdGlq6Y41zes2f+H0Jsdxq3ekd9ZOu82PpZxsrfLr74+UVncavsLAQ5557Lt5//32ceeaZeOONN1BUVKTrfASRaqT17p379+/HmWeeiXA4jKlTpyIzMx7B7B7d00LaQRk1ewLZ9fFb3lZkrrIi7ZT0GD0jybfeZCiaCeTv0yFvK2f7MTSjqW9nA5wwfHIoJUdmNJhdH0PDQJ+pgoNWQqSmRbu0x4qeRIgVuwoNAL/YZ0WhATBfaBBgScLldGeH3gDjuyx6UXc8+1st3ZmJdTyKq0q6Y+lvnYh1mn2uDbPqJwS2Jv6/vb098UiH9957D71797a+AQQTwu6dV394BbLyuz4SzQzhpjD+cfq/afdOCWlr+nbs2IEpU6agqKgIkyZNSjyS4cvQsC7HNvVRjlJWmj0pZkcpBLMnYNb0Afa+F6XOKH+/vIR1b/BgVWek8xvmlzy/WE1/gD0aFCdGXi862JkIMRcdHNKeuNAAOJt8i5FLxM3qjgdGE3AnjJ+jybcLi1xOFll59LVi7bmhwCrudxsG+NxTYD2G2PhFo1GsWrUK9fX1+PjjjzFw4EDrG0BoQqbPftLS9G3ZsgVTp05Fr169cNJJJ8Hn88maPTVae+iPWkYNUmZT5y0ycl2p2RNjpDPKOdx5vvZ8Y9HbSEckvi4LukyfwwmQgNTwKSEYQTuLDplNMUP6E5DToZlkKOdwzDb9aSVB0sJDKhQctIoNgH79GdFeaykfw8er2ADEE3AjU9h56w5I1l4q6A7gX+gyGvPMao93odXOmAck60+puCrGNX3uMcTGLxaL4dNPP0V1dTVWrFiBYcP05XwEfwTTN+fDKy0xff88/XkyfRL0PaUzBfjqq68wefJk9O3b17DhC4RjyD8QTfxokREy1ulkNsWSDB8QD/os5ie7Ppb40TqOBeG6eo2XUcSfL+vnLIbXNu6mscDwAfEOuGin/s/GbOHBqAaUdMaqPzHiNki/H1YhJJn5+2OyP1L03Eu3IG2z1ns1OqVYL4U7zMcdsc5Y4qIaOYdjKNxh7PV6v3/Sz1hLe67RncmEXkl7LMaDJ4L2ePV7rP2yHOKYZyTu6c1D8g9EUbQz3rewfu669GfzcIPP58PJJ5+MPn36YNKkSdiwYYO9DSAUicR8lvywct9992HixIkoKChAaWkpZs2aha1bt3Y5bvXq1TjjjDOQl5eHwsJCTJkyBa2trYm/19bW4v/9v/+HwsJCFBcX45prrkFTUxOXz4gXbkmNbeHzzz/Hd77zHQwbNgzjx48HID+dU4lAWD5KiZPupt6dPprHyJ4SOYflR13MJDNy19Ais8l45VGAxbREsiwsC7qg2q03WZNqUUmDYowWHuQQtKE18seiR9bpT0p6NKLBjJB25VuqS0s16CHy98eS9KekNylG46EAq+bEqOlP78ifVH9GYx+L9gQEDerRnr9DR9ErBltGXHhiVH9mEd9/Fg2yFly19KcW9wD9s23U9CfXFwvGj1WDbtLf2siwpNE+n8+HE088EYFAAKeeeio++OADTJgwwboGEJ5gxYoVmD9/PiZOnIiOjg7ceeedmD59OjZv3oy8vDwAccN39tln42c/+xn+8pe/ICMjA+vXr08sDQOA//f//h8OHjyId999F+3t7fje976H66+/HosXL3bqrXUhbaZ3rl69GtOnT8fo0aMxevRoQ6N7esgIxdDUW98WaUaqd0LnY9bsCR2PkYqm3k4n/0AEHUF9r9GbcLtimolFpk+PFo3oUIBVj7yKD0rJD4smeUx54l18cFyDJqfYqaGmQbkk3KoCmFryrUeDRhNvgO8UdzUNei4G2lj0kiLVIM+ClxQr4x9rf2xGg3pmingq/okQGz+BDRs2YMOGDVi2bBkqKyutbQAhizC984r3v2vJ9M5/f+c5Q9M7Dx06hNLSUqxYsQJTpkwBAJxyyik466yzcM8998i+5uuvv8bIkSOxZs0anHjiiQCAt99+G+eeey727dvnmg2E0mJ659q1azF9+nSMHTtWt+ELhGO6k+yMUPz4/AMR5B/Q3sbM6HQNACjeETFt+HKORFG8I2LZ1E3hc2D9PGwlhQ2fgN7PXa8exdOfzEydy66PoXhHJOmcrJo08v2Jfy7Gpg+nGjynBUqnZVs940FOI3o1qKRbFg2anW7HqkEj331H0RFbeU/HN7M0QC9SjZiJf+LX6umPjWgw/0AExTsiiXyFBT0a9HfoiCsxWDrdc22ka843evRojB07FtOnT8fatWutuzjhKA0NDUk/bW3a6xLq6+sBACUl8e13a2pq8Omnn6K0tBSTJk1CWVkZpk6dipUrVyZes3r1ahQXFycMHwCceeaZ8Pv9+PTTTzm/K+Ok/PTOr776CmeccQZGjx6N448/nst0TjnUAqeQcEtHXIwaveyG5E4s50gUrd31+/ecI3w6Q+k0J6eNnePr+Vxi+KSaFN8XpdE/M5rMPrbhgREtiineEUFbof5zsEy3k2ozIxTTPeqc7ujVIYvupOjVoZAgm30+opB0G3l0hZ7pnuLPRI/+AuGYJ6fZOY30e6+lQyNxMFH4ajDWHwtk18eQcyRqOAYC6iN/cv2znjgofP+9pkPpVE8AOP744xGNRnHGGWdg5cqVGD16tDUXJ1SJwsf/4ezHhNSvX7+k3y9cuBCLFi1Sfl00iltuuQWTJ0/GqFGjAMR3+weARYsW4YEHHsC4cePw7LPP4jvf+Q42btyIoUOHoqqqCqWlyVv/ZmRkoKSkBFVVVRzfmTmcTo8tZcuWLZg2bRqGDRuGjqGX4EvGirPZ5FoJIdgaCeZAV7MnhtX4qRm97AZjHQ3gvNHTS9HONtQPzEbh7jDX8zZUsE9RsNPwSZErRDhZhJDq0qgW5RJvntq0LOlOUewuPAgYTbrFOuRdeFDSod7CA2lQH3KxUK8JZEXQoKAjM8VY4Vw8zB9LDHSNDo8ZP5a+uaF/lr4+fFDXX40ePRodHR2YNm0aPvnkEwwfrv85zYR72bt3b9L0zuxs9S2R58+fj40bNyaN4kWj8e/iDTfcgO9973sAgPHjx+P999/H3//+d9x3330WtNwaUrY72L59O6ZOnRp/HsuIK5hfx2t0T/H8rRHktsYDcEsZW1lazeyJUUu2eY3qCeRWJ5fCIzl8Ok0zFOwOAX72TqtwD1/DB8TNJAuN/dgfwmVVEQKIJwMBnXoUcGsRQq/Jc8NoH+/iA8BegLB6erEScgaQZ+EB0Jd0yxUeAP1JtzjhZtWilQk3M8c+et5xUU8hzCmMjEZLkYuHYk0ZjYdmzF/R9vi9ZO2fhb5Dz6ifXuPH2kfGAtrn1Rs3v90xEEMH7ezy+/HjxyMSiWDq1KlYtWoVBg8erOu8hDli8CVG5nieEwAKCwuZ1/TddNNNWLp0KT766CP07ds38ftevXoBAEaOHJl0/IgRI7Bnzx4AQHl5OWpqkp/j09HRgdraWpSXlxt+H7xJSdN34MABTJkyBb169cKECRPg823VnNZpZWINIJFYixGMk1KyzWr2xIiTbSNGTy3Rlho9JyjYbXILQAvxRRg1EY0pvo/G/sm7O9ipSy09imHRplrizapNPcZPrE+vFSFYEhy9WFGA0INbig+AesKtpUUjxYfc6nagWp8OrSo+CKa+YC+/ZFsPrDpENNYl/jmBYJQA/VpUQ0uLLDoE2M2fOB4GWiOWaVFpuqdqX80QF32RmCVxUcn4TZgwIWH8PvvsM9dsvEFYTywWw80334wlS5Zg+fLl8cEiEQMGDEDv3r27PMbhm2++wTnnnAMAqKysRF1dHdauXZvYEfaDDz5ANBrFySefbM8bYSDldu+sq6tDZWUl/H4/Jk+eDJ9POWgIRrBoW0vS75sqchRfw8PsKSF0MEbMnpisunaEi413VuJORY/R05toq3Uq+Xtak/4dzWRMuhxMsvWYPhb87XEdqOlRDG9tyiU8RrVpphABKCc6avrkqccu5xYlOGaTG4C/Hpm1CCjq0UwBgpcWtZJuvXqUJtx69MiSbMvp0S4dCijq0e1a1IiLYj26TYtOxEWjxVmr9Ji/pxX1Q3LZC7MO9tUAZI1fLBZLTOtbvXo1ioqKLLk2EUfYvXP2e1cjM4/vjID25jD+e+Y/mHbvnDdvHhYvXoxXX30Vw4Z1DhAVFRUhJyeef/3pT3/CwoUL8dRTT2HcuHH4xz/+gQceeAAbN25MjAyfc845qK6uxmOPPZZ4ZMOJJ55Ij2ywilAohDPOOAPV1dU444wzkp6focSOjf1U/y5OuHXtcqXD7AmYGZ3Iqusa6M0YPzvaL3QmUoMnh9tNn1WGTw6pCbSyEAHwKUYI+uRRjLCqEKGV3Ih1mm56BOKaTIUChFnkkm0nEm1Bj8xaBBzRI48ChBRxfNTSpBXxUapHs7HRzXERkNejUr/tdj0KyJk+IL5+6/3330evXr3w/vvvIxh0fvQ5VRFM30Xvfs8S07fkrKeZTJ/S4NDTTz+NuXPnJv7929/+Fg8//DBqa2sxduxY3H///Tj11FMTf6+trcVNN92E119/HX6/H7Nnz8ZDDz2E/Px8Lu+JBylj+iKRCGbNmoUvv/wSM2bMQEaG+sxVLbMnxh/u7ARa+uZpHq83qc5s6rqoJtSTbcqVnNkTw9qZBA8lT8Fpz9c/85elI8nd15z4/2gWW8fj9k7EqgSb6bhwhEmTAkbMvKBPVk2K4VmMcFMhgrcm3W763FaEcEMBQu90d7OJtpom060IoRUf7SzWZjZ1GIqNQNf4aFSTwUNtlvXZYjqCPqYiLeB+TQLKxq+9vR3Lli3DCSecgCVLliAQcH65QCriFtOXTqSE6YvFYrj++uvx6quv4pxzztGszBg1fGLkEm0zCbUcah2JltkTUOtEpEZPit5ORK4DEZs8KdxNn5sTGosMnxQ1A8hDn6lejGDVJOBuXdqdZCeOS5MihKBLHjFSidx9zaRHBVj1COjTpNmCrR5NqsVIo/ER4B8jpX14qmhSQMn4hUIhvPXWW5g1axYef/xx1aVChDEE03fhsu9bYvpenf53Mn0SUmIjl/vuuw8vvvgiZs6cyc3wKZk9AXEgbOuuf/hfzewJBA+1delEWM2e+HhpB6Jl9owSaI0g+4h7N1qxAl1TlxgwY/iAZF2KEx0eo89Ap3bMFiS0pjQpaTSzqUN3UqO0iYFcQcIfjuhKajyNBQk20PVzVUq4zRYhWLQooKZJPSN/Ul3q1aPwnpWSbOlnl1Z6tAAhTrJq0ixifZiJkSyaVIuRgD7zJ42RasVa4TNl0aW/Pcpm/KIxxzZ3UdrYJRgM4qyzzsILL7yAgQMH4mc/+xnX6xKEE3je9D3//PO45557cO6552rOm+Vl+MT42toRPBAP0KHeBZrHs5g9MYLx02v2xGTVtetO3AC2hCZ4oDHp37FsfruduR0nR1NYyN3XDF8buzYFWAsSQHJiY1dBwojxA9QTmVSCdyGCFT2FCJ6zIrTMH6su1QoRaro0W4jQ0iWr8XNzgh0L+BzTpRxyJpBXYUxASZd64qSS+bMiTgZaIwgeaGTuw1NBl1rk5+fjO9/5Du6++24MHDgQV1zB/vgvgp2oBY9s4H2+VMHTpm/lypX4/ve/j2nTpqFHjx6Kx1ll9qQIBkguwdZr9gAg0BgfNcs79t/2klzd58is7dyZNFLAZ0Gy1Oh5BV4dhdUbE6geZ1CjatoUMKLRvB31hnQpkFXXjszaFt3aZE1oxFp1LJkhEgjJtq+t3bWFCKAzyWadFaF3dEXQpdsT7HRBXCAD9BXJtGAd/VNDrEs9M3VYdSmOk762dtfrkrfx2/btANnfDxm6Cz169MC0adPwve99D3379k3auIMgvIZnTd8333yDmTNnYuLEiaioqFA8zi7DJ0acYJsxe1Iya1uYEmyx0eOB602eAxtlaGLTGj4llDQqvpfixMaMTgW96TV/Yp0GGkPcjJ/r9SqD7QUJFxQjlLQoxcjsiEBjyFQxIm9HvaEimVYxQqpNRxNsBuwcVXETWto0Ei+BuK4A4wXczNr4/xuJlUCy+VOLk8J3lEWbrNM9hViiqU0hNmn063Zos9MMDkD/imycffa5+PLLtRg6dKil1003ojEfojHOI32cz5cqeNL0HTlyBGeddRYGDx6MESNGKB7H2/Bpmb2kY1vDyNl+BADQUcb2rBclsydGzfhpmT09iXVGdf2x/wKxHL4LbPXgtpEUnlOU9G5GwAqrToMHGuFrDTPrU4ycVs0WJYwYv5ztR9A6uDuT0bMiwdY+kQs7Hh0FCd54qRghnMdsMUJLm3p0yRWbR/uYpnj6fY7oUy1mSu+f0VFAccwUx0AjMdOMNjOq65n7dKuKEoC7+nYWbfbpczJCoVpMm3YGvvpqHbp3725T6wiCH54zfeFwGBdeeCGysrJw4oknKh7HYvisSKSBuOETIxgopeSaxeyJESfXPEf1hHa6BaZOwaOjfE4bPqBTp1r6FKOlVbVEm0WrRgoTekb2eCbYbkpaeGOVPlkQ7qeRgoRSMQLQTq55FiMymzoQaGDb2h5g1yVNPXYeoZgL8CnoaulTLW7qNX9CzPS1hnUZP4B91I/bxkMMRQm7150OGjQDmzYvxjnnnIdPPvkImZnps4eBldBIn314qleIxWKYN28etm/fjtNOO01xC12ehs/X1s6cSPtaw10Mn5iM6vokYxVoDOk2fALxqR76DZ/0ekKb1Ayf2nvqcizjZ6XVMVDCEteoXYUJoKs+pejRqliberWqdh05verRpxtJl+lzRgsSrMUoloKEkg5ZZkmw6F+sT63+QArr58PVZDMUqGzfgIWhkOeW/oGl/2SNm3L6ZI2bWvqUa6OV+mTRKFNhyWZ9asVin8+PEcMvw9atu3D99TcgBZ545goE08f7h+iKp0b6HnroIbzwwgs4//zzFSssvAyf2QRajYzqesRyjS3o9tU3Jf07VqS+Y6nS9Z2EWyXQ5lE+3s/jU0NvYsdTr9KRP6OFiaydNQCMaVQ6uqKlWb2Va62qNW2Tr43dBQkBudEVIwWJ9pJc3YUzpVE/raIZ7+l0LCMqbhztc9sunjzR0igrgiZ99U26Y6d05I+lr7dq1M9O7Fx7GghkYdTxV+Hf/34E48ePww9/+ENbrksQPPCM6Xv77bdx++234+yzz9Z8NINZrDR8aIlP+fEd+2+sR7H2NSRGzwi+w3XJv8jNMX1OOXgk025LVHhj5PEZcujRKWCgOLGzCgCbRrtcS6RZI8lL4vo6dKoneSHUiWb6uelUDywadbooIU6sWQtoVhi/dIdFo9GsgGZxwor+Xs+UednrHIufwn+NaNR3uI45fgrvi6f541aYcOHa02CwGMeP/C5+8pMFGDZsGGbMmGFT61ITmt5pH57Irrdv347LLrsMkyZNQllZmeJxvNfxqaF3agRaWhOGL+k8UjMm/lt9k6bh0/z74Tr5a8i0RfU8DO/V1kTFjaN8LsZocQJQ0ZDcdRQ0q6dwkXQ9nTplgRJqPrAUcPRMj9dLRnU9MnZWMWsz0SaJRo0U1XyH6xJFEebXWDCVzi7snEIHwN4k36p40NKa0KcejSrFT1addomfOmKo7rxGg1Sd5gkARUUVGDr0Qlx00Wzs2LGD27UJwkpcP9LX0tKCCy64AAMHDlTdJtfOaZ26zZ7W+Q7XJY2m6E1CpCMpepMgFniMoKT8KB+nDVycnn6spFlBV3Ijfyya1apaK+q2pVVXxZpG+7yJmbiqps2k4xR0yjqi0kWjQjsc0KdXR1K8ilkzJNaOkk5Zi7xWxlCAXae2jkq7cGOXXuXj0di4FzNmnIv1679Abq7xx8SkMzHwf5i6t8v01uFq0xeLxXDttdeioaFBdfjclYZP70iaEKwzjd0SQ0ZPZ0eghlOjfPUDFdZG8owfGtGjaCf7w3LtwlCCwqhZcZHC0CiJqEjBrFuOWtWC1vPZD69CmpWFCVWt6ixMAM4+CscTMDy+gdcUz1h2Jt/RVY1YKqdTXbMhJDpliqMGChSAeZ1auf7UDf3/kOi5WLf+SXzve9fg3/9erLjBIEG4AVebvkceeQRLly7FBRdcgEDA+USMKTExMB0t1pgc7H0lxeyvra1Lfm2BzrVTDMmKU6N8jf3lt6GOuky19QOz4Vd5nFjBbmNrjmxFr2537ov/V4dWpa93q1ZZ8GKC4sbiBMB/5gSQnFSnYmHCakirXYnlZHHPARI6bWwyFEt99U3xHEBPLNVp/jTbwDDaZ9T4yeUAbuv/GwfnoV+vuVjyyoN49NFHMW/ePKeb5DloTZ99+GIu3XP2s88+w5QpUzB9+nT06tVL8bivGo5L+nf+nq4Bl8conxWGT2r2kq6n0QFIzV7Sa/V0AAyBXyuRZhnlUwr4TRWd149kMWzVzRrwbaz0AVA1fQKBcPKJrNIqYN2INOBwkQJQ1ayVWk06hmeBwkVaFRco7JqKbIdW9Wg08dpjWuWt0cT5GQoUVmyMRVpVxg15gJviaeI6FsdVIQ/IPdimqM+kc7lQq40Ht2Pn+09i5ccf46STTuJ48dSloaEBRUVFOOONHyAjz9iO9kp0NLfhg5mPob6+HoWFhVzP7WVcVjOJ09DQgEsuuQTjxo3TZfiAZBMBAIXbGKb08JjWoSPQq5m9xDG1dV2Cv5rRswpeo3zS+yKFxfAxY3OwN4rcZ8KiVy3sGpFO/F5IjlWSFSXtxhqbjCUqDiHcM656dRHihEtcpJArUNiKSb2yaFR6rPQ8unRq06if2giK3oKaG4lmKBs/J7TKPNrHej6ZmMqqVbmYapVWtdb46RntU8sFWnpxTPxj4JcL+KCZCxT0GozSMWfiwlkX45utX6OgoIDTxVMfGumzD1eavhtvvBF+vx9jxoxRPEbO8MnR0jcv6d+5+5qT/s1l1IQxIWExe0nHHzN+es0ecyLNYaqcXKCXfuYdQT5fPrdN6xBgGeVjRUuvfC7Cz/AlHSOTrLBol5deeaNVqNDCrXo1gtxnYZsRtLFAoaZXNxcozGqVGZsTaSMofRb5e1r5PtjeJFoxVaxFIzEV0GH+OBQp1IyftF9TIxCOaRYp/B3ujK9lo0/H9gPf4NrrbsB//r3Y6eZ4BjJ99uG6r83zzz+PV199FbNmzTK9IDYj1LVHkQafvO11qufgUdXTa/YEIk1NQFP8tQGdzya0I0ERArxaQOdl+Jhx6SifdGqnHDz0yhsj2u3Ys8+QXgGD05OEc5gYlRZ/zrZr1qM0VeR00awlRYrcHO6FNan5Yy2s8dCpgJmdPK3Qq1sTabXRPoFIlk8zxrLolcuGLjr0yoqekeqk1zmkVz0mzyhMerW5SOHz+VFx2v/hlVcfwL///W9cccUVnC5OEHxwVYjfvXs3rr/+ekyePBl5ecpBg2WUTy6BlhJojSDUu3MIPnigka2hYjSCu96kOdIkf3ykqUlXIq0Z5E2M8gmfWSSHz+Y6XNfypTim9cqA0SIF0KlfvXq1GzuSknTElpFqBYzoNlZbZ0irTEU1jlM8Sa/WYESvPKZ4GtGq2SIwoJEXmNQra16QEYppFipYRvuYsdn4ZeUVoe+ky/D9a65FZWUl+vfvz+niqQuN9NmHa1LpaDSKK6+8EgMGDMCAAQMUj2Od1qlFoLXrNA8haAnJtNlpnXoCu5LZkx7jRCItNhpEMjyndupFzgDyXG+iBzn9RnQmKFaOTPMuVBBstPTNS4q1bipUiDVrmfEzASXR+mAZ7esI+lQLwoIJFDRrWK8ao32+gnxT+YHe2CqgqVkN4ycd7ZPLDQKtES5x1svTPLsNGI3G/V9j9qWX47P/rYLf7+HnDxMphWu+Lo888gi2bt2KCy+80PS5WEb51Aj1LkBmUwdQmIOM6nrT7VGDxexJj9cK9GZH+VoHd9duB0NQZ5l2lA4buBid2tnlPDKFCgGh881s6lDXrE0j09JjqFhBAPaMVLPAo0hhBaRZeVimeFqB9H4ImuW9oYsaajHWKc2a1SlLoYIrDhQq+px0ITa/8ns8+uijmD9/PqeLpyaxmA8xziNzvM+XKrjC9O3atQs//elPccYZZyAzU3kHKJ7TOlnpKCuKn1eaSHNInvUaPqsQ3qNbUavkNfXt/GLHOA7i+CQSyd/nyiebyCK+n1YWLfToVys5MVuoALQTEV6FCoIP4vuVs/2ILddkLVIA9iTSbjN5bh05cQvi+6VZYOMAa4zVo1mjo3168gQ3jfbpzREK9sTQWKHdD0hzBCA5TwhkZqPv5Mvw45/chpkzZ6rOYCMIu3A8vMdiMcydOxeDBg1Cnz59FI/jNa2ThcymriVFnom0GbPHa5TPjNGzepSvqU/y76PajwDiavjkEHccAn6Z9f75+91lDnkbQLcUKgTcXrBQwo5iBRUqkrFiVoVRhPeb2dSB9nzHu2FmBN3yjre8dMtjiicQ7+O0isPx+6aiW85TPFmwomBhVYw1O9pnJE9ggcXwAfHvgNT4SfMEf99hyKkeh/+bcxU++WiF6c0JU5UofIhynaoF7udLFRzvbZ588kmsX78es2bNUj2uqXfnnOj8A/IPYuU9yqdELDcbyM2G73Cd/N85B3JexHoUI1Kg/uBTOxIQ4V5GGB7JwyuQ60GugseKtCMKtAHCvBIl3fJCrlghpqOsCIFGZd1qYWWxQg9OGz21yrP4/jtdrJArVADuL1ZYYQCNapen8TOqWztGTfTq1hexTrtKugW6ajfVdWsULd1qjfbFcrNVcwWWYgWLblmMX2sPH1OuwIKVulWi51nn44vHfo8nn3wS1113nb0XJwgJjpq+6upq/PjHP8app56KrCzl3SJX5Q9P+rfYAAoU79DO1FkMn1biLCbWoxgAdCXRdo/yCW0EoGn4WNAzyid3n9IZuc8j/0DUtmJFoDEEIFkTRg2g3WglzHaNljT19nNLQNyEtFgBAIE2e4oVagj33UyxwkpYpsp1DCy3vB0syXMqateobnmN9imePxGvihBoDClqV2u0L5Cfb+vsCnHfYDdm8wV/u/1FYrnRPimBYA56zLwEP7r1VlxwwQUoKyuzp3EegnbvtA9HTd+tt96K3r17o6KiwvS5mnonm5H8A9Y8hFVInMWIzZ8bRvmMBm4zibP48+9g8JY8kw+7K3eA/GiJEZp6+5EhkZRV2pXDbdoV42QCAlDRQkDpc7DbDHqpWEHJsz5YkmdWItnxGRZ26LY9P4OpUOyEdvWMUsvpNdAYsnS0T0/OEGjjlzM4MdqXP3QkGvsNws0/+hFe+Pe/7b24B6CNXOzDMdO3YsUKLFmyBBdffLHqcdJRPjmkSTPQ1QQWbdfeaUvPKJ8csR7F8GVmKD7o19LpcQP7qm4oxXOUT/rZimExfKx4bWqnlPjUTv3YVcAQo6VdO3EiYRY+c576TXWkBQunihVugrRrLdFM8wU3wQw6VWyTateKtX1M7WhsAgb2te16ankDL1gLFjyNH2vBoseMWVjy2P1YsWIFpk6dyufiBKETR0xfOBzGddddh3HjxiFfxcywGD5WWso6I0FutbFeQ26UT4yv/tgDUEuKbUmefSXFif83u7JBrWInfHbt+XwqJ6k2xchqmnoHkNnUWbWW06/ZgoWAoClbzZ9GwYI3diQf6Yjc52p1Ip0wWT2KgZ37LL2WZhsMonczFzP69fqICU86gsnGT67YZmaKp0CkIKg6QwgAYNEUT6XRvkScN3TWTrS0y5o7ZITsHe3jDYvxyyzqhm6nnYWrvvd9bNu6RXWn+nSDpnfahyOm709/+hMaGhq4VDvkRvmkZDYlhzY5A8graRaQJs88R/nEZg8AYkXqo4B6R/nEn4/b8fLUToCffnljpX6l19FKPMyOUvMuWhDssBQseOFEwYJFv2ZpKctk0i5L4pwuCFM8zSCYQEG/StplneKpRlIB12L9iq/lq29SzR+0pnjKYWX+wGL8nBjtY6XbyVOxd/0aPPjgg/jpT39q78UJAg6YvurqavzqV7/CGWecAb9fee0Bz1E+NVrKMpHdEEUkJ4DgIeVegnWUr8vvhQBrcjG21OjxpH6w9jPQWJIOmtppP0IHm+1y/cqe0yLcULRwQr9ewGjBQmm0RA4588dzQwyr9Qt01XBmU8zWooXX1/VZgfSe8NRvrCg/aaYQwF+/Vuk2s6lDM4dg0S/PooVb9esLBNDjnNn45aJFmDt3LkpLS+1pnMuhNX32Ybvpu+uuu9C7d2/07t3b9LmMjJKoEerZWUISJ9CsyYYSsdq6xGiHnsAtvEYtWGuN8skhfp9249bpGbwxW2U2gpJ+eWBEv1KsTJa1jB6N8rkP8T3TKloYgdfoiTBFzqh+WUZL3FCoMIIToyU81vUJSKd4ytGe75PNI5LuWVkmirYrP5PPCDxH/9S0a3S0z6k8wutTlHMHDEF2xSDc/rOf4emnnrL34kTaY6vp27BhA5599llcdNFFqsfZNcoHANkN8jt5CQGNJRFRGiWRg6ViJ54OZzZRFoK1mQBtd8IsrtCF+qpMm8ngPLGqQ/19Bvdl2D61kwU5DVtlAI2YP6vMnvAe2wr57LJJU+Ocxcqiha+kGAEYK1poGT6tpFkJJ4tv6QCPKZ56kN5PnhoW9AsYKxzzQkmz2Q1RzTjs5GifWh6RfTADbf04duwaeQQAdD/zAvzziQfwk1tvxahRo/hd26PELFjTRyN98thm+mKxGH74wx9ixIgRKCoy/3Bl3qN8SkQz/YiW5MbPV9ti+nyAcuLMO0C3l+QiXKxeQXYqYW7po7JtdpZzzwVTI9S3Awirf165+/lu889Dw6Ge2cjKjLfLag3LHcMLrybJbilcBPc5+oQeXbilaJGKGjYyUkIa1o9Uw3qmeMohbBBnJPbGautMFS6imX7NXMJOxBo2m0u09eK7nwML0bHdkDvlZPzgpvlYuXyF7dcn0hfbIuiyZcuwZs0aXHLJJarHvTd0GKR7SuUeTO4EeI2Q6KVdxvxpjfKpTcvQfNi6xgiJNEgL7RNwOki39Eq+j5EcO/do1AlDdY4FoQMKtHY9n1THdpFV11nFlNOwGeRGrnkmyiyFCydRTDhcWLhIJO42Fy7MIiTPWZl+24oWdps9lpESq/CkhgFVHevRsJkpnqzYpWErCses8NKw0mifoXwi7Ldfxxkxpnyi6Lwz8dld92PZsmWYPn26DQ1zLzEAMc7poYuzTUexxfTFYjH89Kc/xahRo5Cdrb/SKf2yZzbHv1A5NcqvYQnQSlM7teCdOJtBT1A2dH6GqZ0NAx34evGuLnNEzvAB8jpW07CViHWjpWOt9SRau3Oqnluhumy1rvXgqeIFB3gXLswmzEnn0qFbFqSJM++CBU/MTI/zTMLMCSeKb22FfqacQk3DWqN9cthl9LLq2k0X4Fg3JJLq1XI6fLbnFIG8XOTNmIYf3fYTbF7/FXw+mo5IWI8tpu/111/Hrl27GEf52GmVbHzEO4EWj5AooRakzSy+1tq8hUdCYaQqJ/3MuePmJENjhEQPQuFC7vN0wggaSTZ4I6dpO0f5WBKNVDd8Wni1cKGFm82eXtIhYWYlkhPrYvzkPh+7dBwuzpSdeQGwadjMM4C1pnhK22MXcn1gZrMP7Xnqmgq0+twbjxlH+wpOn4Qd736EpUuX4vzzz7ehYe4kCh984PycPs7nSxUsN33RaBS33347jj/+eGRkmL+ckCzLIQSPzAagI+hDzmHlgGB0lE8OYbTC6qRZz2YBPJLl1h4+tBeaPg0AlyfLnKZ28iLVdSzGqQTZ8uJFGuGGwkV7SS4yYa92pdd3gpTUMWPCzBstHfMcsZYjMYMI9urYyCZESrBM8ewIgltewQTriLUDxQt/dhbyzjkdtyy4DTNnzlR9jFkqQ49ssA/LTd9///tfHDx4EJMmTVI9Tu8oHwutPZJvulryLIVllE+KOGnm9YBVngFZjFxgln5etgZmPbi0qmwVZnRsBDvMn1W6ViIlk2MXI/28tYoXrFPjtBDryo7EmVXHPKbGAfx07OpRElayotxmX7TnxWQLyk7oWChgCPDUsXi0z0gMNqpjaR/GC1frmHW0b+op2L/sI7z88suas+EIwiyWmr5YLIZf/vKXGDVqlOWjfIljGpT/JgSe4h3mnwCrNhUjVpQPX3sHYo0Gg/XAvqqLULWqyixBmVcQ1pqCoQs3T+1kRGk9H0/E9661R4CLnuVIJAVF+cDOffzOZwNWJRmEcbxcvJBOjbNLy6Rj92FWx9IpnlpICxlmpnhKzycls7bF9Kh1dkMUdYPUH36X2aBdVGaZ4smMi0f7fJmZyDv3dPz053di9uzZabm2Lxrzwcd5ZI73IyBSBUtN37Jly7B//35HRvnUaO2eXB3MOZIcDIyM8snhK4gHV1bzlziey9W7In3fduHaSpweOK7n40l2fSzpvlqhZd/hOkCnlgXsSI4pMfYm0vuWrVKwM0PC/JkpxMH6ZNmVOvbwZi4Ccuv6eGKXjgGRBg2YvlTNL1JhtC9v0kTse+1dvPvuu2m/kydhLZaavnvvvRfDhg2zbZSPhez6rsFBLWmWbYvGgmvf4brkf6skzMLfWNGTWCgF4bYi7c/StVM7eePA2hFeWpZDr5a10KNl2eNMt0AePQlG2mjZAZSmxRnBrHbbS3LVZ2D0KE4s7ddj/uzScnZ9jCk2a8F1hIQVF2/mwpP2QvXZRABQNyiQlGfwiMNSxHkDi5bFx/sO1yHWo1jxWK0ChniKp9VGL11G+/xZmcidVomF99yTlqYvFrPgkQ2pH44MYZnp+/LLL/Hpp5/i8ssvVz2O5yifVjBmIR7E4gGN14ifgK8gPxGglcyeWjDWIlycaWu1zcqpnSV96uUPC/CdyhiOKE9Dqd1fxPVaemDRslwBQwyLlo3ueqhk/vQUMfSOjMhpm0eSTLgP3sULKSzFC70FOT0YjdMs0+JSAtbNXGxY12cWuZlFWlM8mQoYxwpyPIvKLLDkGSwFDDdo2Q15BhDPNQpOn4w1P7sX69atw7hx47henyAELDN9v/vd73DcccchGJR5aJBOrBwZkSJOMIRqFk/zxzsIu/nB1UDy1M5gr2bF43KDYTuaowtxh9ASylI9NnQwz5b1fEYR64S3nmONTbK6NlPAAOwvYliJHcmFWwsYZunUgHXxWJwwW2X2SMv6SAc9W5VbKMVkM4j7kJwjUVfpWTrF06u5RujMMbj73l/j5RdecrhF9kK7d9qHJaavpqYGL7/8Mi6++GLV4945dSCArl/AQLV6gi0Hj5ERJcTBLm+HfIcnIJ0OxxNhZMSM0bNyamekrOu9DOa5L8BaQbBXM0LN8ro1omcrEesns9b8+XgmF04VMYyMWnspsdBbwHAzVhQwrDJ6bi7KsSbKbtMyoF/PVq/rM4qVxTjVvzNO8XSDfpWmeErzDZ65RjgS4FrEyApENEf7AKDnrIl4bd6TOHToEHr27Mnt+gQhYInpe+aZZ9CnTx8UFRmrxkm/zJHGeDODh7S/NFYTKYiPXAYaQ9zPrRaEIwVBVwRgAAj1jAAFHU43wza0kgot0lXPrCjp2g2VZCsTC7ciJP9yRQwnCxit3f1dpnpalTSbwS1xWg4jem4JZbnS+LHCW88s6/rainy6i8xddcM+xZM3PPINXlM8WfONUHOW5+NzsE935A/vg2eeeQYLFixwujm2QSN99sHd9MViMTz88MMYOnQonxM2djYx1LNr5SV4KMBlLR+gb+2IkCwD1iXM4muwwDtJlvu8rYA1obB7nr0lMOiZF27TsxS3JMfpVsQwg9xovluKGOHiTPjbg44VMNJdz7xHR+ygS0EOSMRoq/UsV8QQI+gZsCcm6803rMCOnMPtRYxu547Hg399CLfddlvaPL6BHtlgH9xN3/Lly1FbW4sBAwaoHhef2mmeUM8IohnJwTlbZsqa0amdYoKH2mR/LwTLjJ1Vpq/hVOBtK+n8/3A3PoHX61U3JxA6PbGm5fRsJVaO/jmdWNhVyGDBawmyFlYXMVixs4ChR89WrINS1HNjhucLGaxT4nKDYdOzMeRwi54Bd8Zks3oWcg5/B0NcdkDPTk3xLJo0DF8/ugwrVqzAtGnTuF2fIACA+/ypRx55BIMHD0Yg4FzVt60k+cc2cnPiPwZe1zGwXDX4hnpmm2hYHPFUC6XPiJfhI4yTdTT5uyN3r3gUMbTwtbQZ07OESEEw8WMnwucV6hlJ/BD2InzujsRjWKc9J/QMkJ7NwKMImUp69rW0qZ5HqcitB3E/pZRzRDkOPSitq/cS/swMFH9nNB555BGnm2IbwiMbeP+wct9992HixIkoKChAaWkpZs2aha1btyq0NYZzzjkHPp8Pr7zyStLf9uzZg5kzZyI3NxelpaVYsGABOjrcVXzjOtLX3NyMpUuXYubMmXxO2MiveYLhUUqWuW4LLiTKLa3ax3BCreImvHduHZTHK8hWYGdnE7+PnQbeqAFk7tTFWlXTtOQ1Tpg8wv1I75NdI9mRgiAyWnLYNSzzejshPbuXcLdIojgnd5+ya42t65MS6pmtPsOooBwZ1fX6NM0591CCe97BEdYpnk6N9nX7zmi8suBZNDc3Iy/P3RtrpQIrVqzA/PnzMXHiRHR0dODOO+/E9OnTsXnz5i6f/5/+9CfZabeRSAQzZ85EeXk5Vq1ahYMHD+Kqq65CZmYm7r33XrveiiZcTd/SpUtRWFiIkhL1bzmvqZ1A11ERLaQLi1mDslaCnFEts6unnPmzIeDSs8v4YcW0Id4Y1bQhtAoaNiUUQPx9uzGhcPN6ETfSeQ/VC3Pc0FvEOHZ8RnU9OsqUNycLHmrjMyNDQ9NZRwM0I8PlsGpaa10fMyyatiA2S6d4Wpp7pMCUZVZyBpYiq3sh3njjDVx22WVON8dy4iNzvDdyYT/27bffTvr3M888g9LSUqxduxZTpkxJ/H7dunX4wx/+gM8//xy9evVKes2yZcuwefNmvPfeeygrK8O4ceNwzz334Pbbb8eiRYuQleWOXJLr9M7nnnsO/fr189Ti07YiX/yn0MKdAoVpnwpBVy2RALSndrYV+jvfh8cMX1pt4mITtmpa6d8WINa413ROsGPrfVbTbRpoOhWmw3HHAmPhqKYt1rHW+2IZyddbvE91fD4fCqaOwFPPPuN0UzxPQ0ND0k9bm/YMp/r6+CCOeACrpaUF//d//4eHH34Y5eXlXV6zevVqjB49GmVlZYnfzZgxAw0NDdi0aROHd8IHbiN9DQ0NeOedd3DRRRfxOSHHqZ1a5ByOlwTESXJ2A8fpnhagN6FnGRHhWT22ehOXk0t36X7NpzUDuLfD7ViuaYsKGQCNWBNxxDrwt/tt1TFvvKppt0+H8xpu0bTR0WtLC4omYX10g1FNG8k9BD6tGcA+xXPKSLx/81NoaGhAYaHBhyd7BCsf2dCvX7+k3y9cuBCLFi1SfF00GsUtt9yCyZMnY9SoUYnf33rrrZg0aRIuvPBC2ddVVVUlGT4AiX9XVZnf5JEX3JzVG2+8gR49eqC4uFj1OLundhpdLyIOakXbja0B4YlakG3t4Z1EYkRZddK/u2crP+BaTF7A/KJycbBujrBNwzrS1nU+/dfVZTJHMmBjIUMOLxQ13JxMWI3RZCLdihle0LEY0rR+9Graqh087UJN02rr+oB4gU12eQlnUkHHTuYfQOf3gSn/KAUO9ivEm2++iSuuuILL9dORvXv3Jpnm7Gz1z37+/PnYuHEjVq5cmfjda6+9hg8++ABffvmlZe20C25Z6CuvvNJljqscpT2TH6pXc8j9FYz2/M6PKbOp69QPqwKucF1XBVuVqS/ie9unwPpOyCmkHQcA7G9MrpY6rWth9FqJtkI/Aq1xfclp2i7MaNvu9XzjB+1VNPxiTbg6kQDnQobDuNUAuipmm8ApXfMo0MlpOpgX5jalVbyZixJtJfoLz1LtOKnr9vwMTS3nHI7ZV3hWWdcnzj8aWoKy/bTXqDi1N5a8tiTlTV/s2A/vcwJAYWEh80jpTTfdhKVLl+Kjjz5C3759E7//4IMPsH379i6DWrNnz8Zpp52G5cuXo7y8HJ999lnS36ur4xqUmw7qFFxMX0dHB9566y2cccYZul8rNYEAcKQ+D+geH06PHDG/MJ4nWgZQL9KpFeLzu41A9zZ0L2Lr+NMJqeEDFHSdFU9K1DTtxNoG3ppmuZ5dSTGPKcvie5kKiYQcXihkaOF0IcNOXZslHQp0St9Vt+m6tYdPtUhnt66lOUhudTtayjJNnTO7ls8GRaw5SGGu9Q+zN0NeoI2pmNF3Uh+8c+c7iEaj8Pu9EVuMYOX0TrZjY7j55puxZMkSLF++HAMHJs9IvOOOO3Dttdcm/W706NF48MEHcf755wMAKisr8Zvf/AY1NTUoLS0FALz77rsoLCzEyJEjTb4bfnBxGKtXrwYA9OzZU/W4Ly/qrvvcge5dq4aRI9nckmOtERE1hOCYYTIPVDN6ZoMtoH9ERO4ztwK7R0T0IjciwgOlz5e1wGHlFvdiLZrVtdJ53QYVM9iQK2QA8WJGqhfnWK7jNgJZEdI1A7K67hkvPqeDrjOq69E6WH9uZiV25SBH2vKY8pDmSLYjeUjZ2FK0hlqxfv16jB8/3vbrpwvz58/H4sWL8eqrr6KgoCCxBq+oqAg5OTkoLy+XHa2rqKhIGMTp06dj5MiRmDNnDu6//35UVVXhrrvuwvz58zWnlNoJlx7rtddeQ9++fW2rRAS6tyGM5A9RzgTySI5zq9tV/x480IhYTud0EV8r2wYmwmucTBrEVbVA9zbwGmNye+WYdbqQ3bDqmgdaugZgSNdi3JYQ25VIpCNmCxlWkqxD8+ufSNfpg1d0bbRAJ47xTiHNQ7Q4Up+XNsUMf4YfvSf2whtvvJHaps/K+Z0MPProowCAadOmJf3+6aefxty5c5nOEQgEsHTpUtx4442orKxEXl4err76atx9993sDbEBLr3X66+/njT/1QnkpgVk19o/VU4IonJJshUBlnUuPT3XyZs4pevggcakf6vpWu44s4mx2TUiwudGCbGzCJ+/XcUMLdrzMxBoYNOylFhOlmldm13/RLp2B3bruqUsU7VQ1zq4eyJms8ZonrDqmvIQ/fSZ3Bv/WfIf3HXXXU43JWWJ6Xmon8pr+vfvjzfffJNHkyzDtOmrqqrCt99+i5NPPplHe+Lr+TjRLpmqnyk/O8kSnKygSd83r0CbLtU1tyO9v4B92lYa/XNS75RIeA+rihlaybEYlpHsdND1/sYiV8/OYF3/1D272bIp+azI37OApVPypbgpRov7Kj/DbNTIkWxuBY1U0XXfyj5Y/duXUVdXp7k7vmexYE0feJ8vRTBt+t577z306tULwWBQ9Tgj6/mUYJlaETzUNYGQJsuFO3iPJ+sj1LtA9e+s6/nkTADhLngWM+SQaiDnsKWXA+B8EkFmL7VI1yKdgPD+WXTNMzlON/oU1MtuvmWEQPc2zXwk3C0Cf0dyPuJEkc4MrJu5eDEXcfu6vvzyPBRXFOG9997DJZdcYvv1idTCtOl76623NDdwcSvt+cmVgMymZBPIWjG2G3G7tYJsqCclxumIlra9gheTCIIPcvfejmKGHajpOngo4Mq47fbk2Et0vf/qO3haTfBAo2YRWg49uQhhnD6Te2Pp0qUpa/pisfgP73MSXTFl+mKxGN59912cdNJJXBpj9WiIFtJEGRqLo6XrnqyiS7uO0VrK5/w8K8as0yncvnNnqiHWkJsNoNBOOxMImrbsHbyiYzmc0DZhnO5FzbblJO2FQEbIG9pWykfsJJ02cwGAvpP74PVFryMWi8Hnc/7zJ7yLKdO3detW1NXVoazMmw/21SKS0zklI9BqX+VVuK4bgqtTTCrcBgAoDvAN7HWRzk58VcMQ0+fjNU2IJzk16n9vz/ch0uCMtuXaQhBGcPtoNmmbMIoRbYd6F1hSiGbNR3Jq+BWiecFrXZ+QjwDO5CSlY0pRf7Qe33zzDYYNG8b1+m7A6ef0pROmTN+HH36I3r17IyND/TR2r+djQSsx7nJdzgZQPJVCfG63oreqNr5or+rf+2bZuLJdAXEgl7IvXIKKoHobv6zvx7U9Tm0DbqW2la6VzgmxVwoaXkPQlFDQsLuYEckJILshiqbe7o/nVkHatob2fB/q87OQf+DY7q0Wa9uqnIRl6rJV61W9npOsHl+ADz/8MCVNH2I+/huvkOmTxZTpe+edd5jW8w3rpu2wth7lVyKS28SFJ0JAjGVnwtdmbN2fVlB1a+KgdS+H5ul00x5mfNFe5Gdod07ppm2lc6YKXk8e9oVLNF/Pu6DBQqhnhKu+7ZipQdq2H9K2ddpW03P+gYgr85J0yUlGnlKIN99+DT/4wQ+cbgrhYQybvlgshhUrVmDKlCncGqM0muTEWj+hoqZE7r54W2PZnTtaqSXJ4uPcjNI9YDHuhDzDutVgK+SNn9PrWNVg1bYUrxY0AHWdp0rywIITBQ0rEWvSTEEjeKARzYOLObXKXkjbcXhrm2UHTysxo21xjM8+EkJLX3f2R5SXAMNPLsJjz61MyXV9tJGLfRg2fZs2bUJLS4stO3eKv/A1YUnC2Mjl+fJckCbJThs91WkUBfGH5pT2tHFfdKILXtW22t/djFzykE6JA2/SpaDhBX2ncmJcHGhOmuKpRN+sWqbRvqF5Nfi2Wd3U2a3t1lL9y07k8GysLuh8kF86bdLCqu2BY/LR0tKKzZs34/jjj7ehZUQqYjir/OCDD9C7d28EAupV+5bv85t6UHNIZtuzgq5P/Gxv8SOzWbkSwiOwamF1YGVaMC3z2bgBN0wR8gQy9y9U0IHgDnNVZa1RbC2EajIlD4QaXi5ouFbbQELfpG3nkH72Sfp2qbbtgHkzF43cpOZQIbeC9LfNpUwj2fvCJUy5SV0kj/uaVRYysvwYPDa+ri/lTF/s2A/vcxJdMBydli1bhtJS903tCVTHH0bantf1jqsZQa8j937thvcUIScCqxXwnAIXqM5yhbZdkRS7tKhBMKB07yxes6qFK3QNkLZdwrBuNfrjt4Pabumbl1h64hak/VWgxY+I/kcCEgBGTC7EG2+/iptuusnpphAexZDpi0aj+Pjjj3HGGWfwbo+lCMEnMxhPkDNCzrRDa9681pqnjqC9Ji8VpgelOmI9mNW325IGwB1FDcJ63FDQcAKn9c06GsKKU6MhbkbpHuvRd1PvgOmZGlZid26Sbgw/uQh/eWoVotEo/H6/083hBj2ywT4Mqearr75COBxGjx49uDTCqc0AOoJdfwD2TVzsQKmNhH5Y5s3rQWtNiNN4VTtC4iD+kRIpCzvQMsIoZqZqiXXQMDDmGR0rIdW2l5JklvVyhD7EOnB7nBbnRm7oX7yykZQWrAWS/sfnIRwOY8OGDRa3iEhVDJm+lStXonfv3pqVBp7r+ewiHrx8iR97ry1c11tJeqqRyomNk/pWbo/3jCnhLF7RjVfaSViPnkKVU7pRK2hL8xMvwbtAy7uAzEpGph+DxxZh5cqVjlzfUmKcfwhZDJm+Tz75BMXFxZyboo7sJi4GyD2oL9EVJ8i8k2Sj527ppa1oGgkhWLBS38rXowSY4E+nrpwraLDoW28fpASvPpFwD2p9u936trtvcANeKPgOPiEHn3zyidPN4IowvZP3D9EVQ2v6Vq9ejREjRvBui2mETVyspCPoQzSrc82dP8w+mim8zi0B1AuPa5gYrOJ2rnebB3M7F2+cKmpIMaNvpfPphaWoQRBayGkvI8RXW26J5YSzlPZssN2E89Y3r/wk96CPSwznuYOnVTiRnwwcW4Al9y3ndl0ivdBt+mpra7F7925MnTpV81iWZ+F4fU62OEEGkpNk6d8AoKkix/I2OcHQvBqMzd2jedyAjCPM5ywJ8N3BbkJwN9Nx3TOamI4bm7sHLx060UyTXI+avpWOd0sinE4JAwDURjKwNtSf6zlTDbNFDbv0HajO8vxsDaf0zfNZfV6jI+hDw5B85O9pBaCub7n8xC6c0DdLfgKw5yi885Oz8rajNqKdkg+cGMFDuw7i6NGj6NatG9c2OAY9ssE2dJu+NWvWoHv37ggG2eZmae0I1tTR+cyx/Y1FepvDnfwDUVOvdzKQ8qZPQT0AtkcxsAZUVngHVCtY31LB9NkIGjerbztGsrUQ9C0kE6mkdy14Jw1WwFLYYC1qAO7frMgsWgaQ9N0Vp/RdEujgXrhLJ30DqRe3+xTUo6kjG+OL9jrdFNso6R5Arz5BfPbZZ5gxY4bTzSE8hm7Tt27dOnTv3l3zuD43H9TdGMFkyNHQEjeZoWZnE1+hgmYVTb3t2YY3mBdW/bwF0imYWo0X9M1KKiUNvJ8vmUrYWdRwmlTRtBjStzosn83QvBp8Wd8PgDs03tTbb7g4zUPj+QeituQprDmKU9RGMhwrTg8bmYH169enkOnzHfvhfU5Cim7Tt3btWhQW2jt3/evqssT/B/OUpwSEcjIRaKUbDah/ToR7Ub1vg8Jo35FvX2M8jpsThlRE6/NuaAl6pqjhBdyeFKciqVS4UyJ/T6sty1DszlHWt1QwjWbv6uju6GwNFkaM9uOLL75wuhmEBzE00jdw4EAr2sKFSI78RN5Aq4/brmluQem9BnvRQ3FTkdDBPEDhngNIq4IHFTW8idZ9a4e3E2aekMa9CRWmk1HKUzIZXvt1dRlGlFXzbVAKMHR4Jh57Y7XTzeAHremzDV2mLxwOY8eOHZgwYYJV7TFM6KD6c1MiOTFEsuWDbaDNihbxIZKd/O+WPubWHBL2IkwLsgMljdupb94VYjMJA+E9lO43kLpFDas1/mV9P5qm7xKCvZpVcxWvalyap2TX+ihXsZDjRmRix/Z9CIfDyMqiQhnBji7Tt3XrVmRkZKCgoMCq9jiCOGBFsuJBNxC2t0wgXFcaPK0i3apnLLtipSpSTTmlcTWSvoMqiT+Rvgi6kBY29BY1mipyLF+bLaXLd5A0TsgQyYmhcVAMufuT18y5qTAdyfJxyVNCB/NoVpKEkkAHU67Su28AGZk+fPPNNxg1apQNLbMYGumzDV2Z8DfffIMePXrA5+NTjbJzFEQvQmLME2EUxIpzE3zY1aG9SREQXx/gRfL3d0ZCOR1abQR5JQwEIeC2ogbpO46TG12kGk5onPIU9+L3+9CvIjuFTJ8v/sP7nEQXdG3B9O233yI/X3sjCSM7d7oBcUKsRDTT3+WH9dhIlo8CKeFqIlk+Zn1rnUfuhyDswmoNksYJMU7MnlHSoN5p9nK5ipdw8wCCVVQM9OPbb791uhkEJ1pbW7F///4uv9+0aRPX6+jK6DZv3oy8PPW1c+mInBE0kiw39fFWoCXSAy1d6ylskMYJpzFS2NCjcZbioRthnb3AOhuCcA4WjZst7BHOLhsZNNSHzZs3O3Z9nsRi1vx4hZdeeglDhw7FzJkzMWbMGHz66aeJv82ZM4frtXR927/++msUFdn7nBrx4xqcpmB3yOkmuBK3P9SX4AuPkUCCcBNKhTvSOJEq8NQ0FTacp/+gDGz+eq3TzSA48Otf/xpr167FunXr8PTTT+Oaa67B4sWLAQAxzu5VV5li9+7dqKys5NoAInXQMnVDGDuaHB//RTElftaV8GzGdD28uaZPCypsyMNa2CAIwjuMzd3jyfXZTX18njVeboClAM2er/Dd2JA1Vzl5YBb+smcX12s7Rppv5NLe3o6ysvgA14QJE/DRRx/hoosuwrZt27jtoSLAbPo6Ojpw5MgRpjV9fbNqmc65J7tE9vdH2vRNIdV6XAOALrthEcl0z+66i9akwm1Mr03HETyeGnfTaDYhz4CMI0wP7Y0nCu5OFtK9sEGokwoJ8ZDMo9jWrv3IAC+M6DhBwe4QGvsHnW6GInL5Cmuf7PZ8JceXjdaYts779A7g8OEWRCIRBAIBG1pGWEVpaSm++uorjBkzBgBQUlKCd999F1dffTW++uorrtdiNn3V1dWIxWLIzc3l2gA5xF/o3KD2A2pDoHWGUrQ+N7mgSdiHXo23hOhZPDxI5WSBN3YX7wg+kMbZGZBxBEeytAvZpHHr0Or/dtd3wwml+2xqjXcoLw0gEomhuroavXv3dro55kjz3Tv/+c9/IiMj2Y5lZWXh+eefx0033cT1Wsymb9++fcjPz4ffz2fEbFXDEC7nAQBkaVf0opl++Nv5XdIxNN5rSZ96mxpC2EluMIxQFsuObOkzok2FDXcj/fy17hcVNuRR+9xI4/YwqXCbbM6iV+NA+hSpgzV+hPqqP7KD5fMi5MnK8qF7SSb27dvnfdOX5vTt21fxb5MnT+Z6LWbTt3//fs8/lD2aqfH3DMDv4GOFtNqnFUAJwu0aZ4KhiEPJQurBq7DhifVOpHFDsE59czUpUqTW6mtYqN1fRIVqE/Qqy5Dd5t9r+GLxH97n9DqhUAhfffUVampqEI0mx40LLrjA0Dl1jfTl5Gh3yCf/hO8zJewmqvaJ+H1A1KCS/D71cxOESYL72ARmmcZZrs0hUSDSGy9oyAttJNyN0wU8ylfcT+9efuzblwJTX9N8Ixc53n77bVx11VU4fPhwl7/5fD5EIhFD52WeC7Z3715kZ/PfVdFz+H2GfuoH0mdHeAQtPasQzVD/IQg7sFKHBbtDpHPCMDxHtlQ1qBGrzcR5ohMnR5779fVh7969jl2fsI6bb74Zl156KQ4ePIhoNJr0Y9TwATpM3+7du1P6wez5+zxeFtABLYomTEGJAuF1DBbv3KbzL2qU14IQhBc0zAuu+0R4hD69Ati9e7fTzTCPsJEL7x8PU11djR//+MeJRznwgtn07dmzJ6VNH0G4mdr9RU43gSAIgrABWr/vPCyP/HCa3uUB7N2z1elmEBZwySWXYPny5dzPyzwRpaqqCscffzz3BhAEQRAEQRCE1awN9ceEYAqMjiFu+qqqqpxuhnloTV8X/vrXv+LSSy/Fxx9/jNGjRyMzM3mR7w9/+END52U2ffX19QgG7X1Yp5umrhTttHbedlNfbw9FuxnP7/ZGEARBEAQholu3AOrrG51uBmEBzz//PJYtW4ZgMIjly5fD5+v0CD6fz1rTF4vF0NDQgKwseo4SYZ4cn72b2rBcj4xhejKpcJvTTSAIIkU4oXSfa4rV9QOzLS1W5++LpUWx2u58Rc81iwrb0dDQilgslmQKPAeN9HXh5z//OX71q1/hjjvu4PZ8dIDR9DU1NSEajTLt3lkcYHtYbF5AOxhlBZJ3qAlHAkznlsK6lX0qI/4sWT57gP1elgTY1h/k+Nz7nEchyJYE2KpmLJ/NiobhtuqccB7hOWJuThRKAo2ojVBMJMzjVp1TEc/7UM6iTa/iHHREomhubkZ+fr7TzSE4Eg6Hcfnll3M1fACj6aurq4PP53N8pE+aHANA1YFuQIa6pY8p5NA+47ueWo5smzXeJyD/GRHeQvYeMtx7L+qcN3oTBd5JAuBMIqwXlvfDs4AHJN8bKmyYw2mduz0ZzvFlcy3gAaRzLShnsZ+iwrghqKur87bpo5G+Llx99dX4z3/+gzvvvJPreZlM39GjR5GTk+Pt4WMZkoKUxluLBboe4Isoq6rL8ZrnV/87QRjFSp2bhRKF9ETx/hksbri9sNGlzaTxtMBLOpeL/ZS3uJtAwIeC/AwcPXoUffu6Y1qxIax4xILHH9kQiURw//3345133sGYMWO6bOTyxz/+0dB5mU2f3Zu4eAHZIJlmTAymwM5RhCpSnYtNIBU3CDfQRVc6ixtahQ3eOs/em4m2fu3qBxGEBD0FvPjx6jpXy2EK94TR0N8d+zh8WjMAJ5fucroZrqSwIG76iNRiw4YNGD9+PABg48aN3M7LPL2TTB+R6uyP0C5YLFCxg0g1SNOE12is8KFgj75ZGKTz1KO4MIC6ujqnm2EKXyz+w/ucXubDDz+05LxMKwSPHj3KtIkLKysahnM7F+EN+gTcvQaEIAiCIAjCSxQX+WmkLwV5/vnnFf+2YMECw+dlNn3S+aQEQRAEQRAEQThDcZHP+6YvZtGPh7nxxhvx1ltvdfn9rbfeiueee87weZlMX2trKwIBWoxDEACwJlTudBMIgiAIgkhz8nJ9aG1tdboZBGf+9a9/4corr8TKlSsTv7v55pvxwgsvmJr6yWT62tvbU27nTkKdqYVbnG4CQRAEQRAEoUBWZjxHJ4xz3333YeLEiSgoKEBpaSlmzZqFrVu3Jv5eW1uLm2++GcOGDUNOTg4qKirwwx/+EPX19Unn2bNnD2bOnInc3FyUlpZiwYIF6Ohgf9yTmJkzZ+KRRx7BBRdcgLVr12LevHl4+eWX8eGHH2L4cONL5Jg2cmEV1Iyffma4IQRBEARBxKk60A3lvT0+bYtIa2iXWuvJJNNnmhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLycODAARw4cAAPPPAARo4cid27d+MHP/gBDhw4gJdeeglA/BELM2fORHl5OVatWoWDBw/iqquuQmZmJu69915D7fq///s/1NXVYfLkyejZsydWrFiBIUOGmHqvTKYvHA5zfyo8QRAEQRAEQRDGyM6K5+hexgcLdu/Ucezbb7+d9O9nnnkGpaWlWLt2LaZMmYJRo0bhv//9b+LvgwcPxm9+8xt897vfRUdHBzIyMrBs2TJs3rwZ7733HsrKyjBu3Djcc889uP3227Fo0SJkZWk//uTHP/6x7O979uyJE044AY888kjid5Y+py8SoYfEEgRBEARBEPygEW1zZGX6DE8hTAcaGhqS/p2dna35NAJh2mZJSYnqMYWFhcjIiNuo1atXY/To0SgrK0scM2PGDNx4443YtGlT4pl7anz55Zeyvx8yZAgaGhoSfzez3I7J9NEmLgRBEARBEARPyPCZI9weQzCDKZV3LzFf/If3OQH069cv6dcLFy7EokWLFF8WjUZxyy23YPLkyRg1apTsMYcPH8Y999yD66+/PvG7qqqqJMMHIPHvqqoqpiZb9Ww+MUxKycrKQjQatbotBEEQBEEQBEEw0BYG09RBV2PFIxaOnW/v3r0oLCxM/FprlG/+/PnYuHFj0q6ZYhoaGjBz5kyMHDlS1Ty6FaaFeqzP6Hvn/pNMNYYgCIIgCBoBIbwPbeJiPe3t7Dl6OlJYWJj0o2b6brrpJixduhQffvgh+vbt2+XvjY2NOPvss1FQUIAlS5Ykfe7l5eWorq5OOl74d3m5ex7zxWz6YjGPP+mQ0MWKBuNbwhIEQRAEQRDWEk4F0+fww9ljsRhuuukmLFmyBB988AEGDhzY5ZiGhgZMnz4dWVlZeO211xAMBpP+XllZiQ0bNqCmpibxu3fffReFhYUYOXIke2Mshsn05eTk0GYuBHGMiUG2+dkEQRAEQRBW0dwSQ05OjtPN8DTz58/Hc889h8WLF6OgoABVVVWoqqpKPPReMHzNzc146qmn0NDQkDhG8EbTp0/HyJEjMWfOHKxfvx7vvPMO7rrrLsyfP19zSqmdMK3p69atGz0HhCAIgiAIgiBcQl19DN26dXO6GabwxSx4ZIOO8z366KMAgGnTpiX9/umnn8bcuXPxxRdf4NNPPwWALs/J27lzJwYMGIBAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvvNvU+eMNs+tra2rhddGrhFpo+mGbsjzSiT6DA6WYQBEEQBEGkBHX1Uc+bPqfRWr42bdo0piVu/fv3x5tvvmmoDUePHkUsFkNJSQkOHTqEjz/+GMOGDcPxxx9v6HxKME3vLC4uRigU4nphr+OLxFR/CO9BplQe0jZBEIS7KNhjPhZTbPc+dQ0RFBcXO90Mczi8ps9pnnzySUyYMAEnnngiHn30UVx00UV4//33ccUVV+DJJ5/kei3mkb5UM30+6RJFDYHoDYhdjtc8f9ffxTzweMQ1oXJa4+ZirNC5+JhYgPOzdQjCIdS0z1vntKsh4RRqOhf/rX5gtu68xaqc5eTSXdacOAVoaOygkT6P89BDD2HTpk1obW1FRUUFdu7ciZ49e6K+vh5Tp07Ftddey+1azKavtbUVsVjM1JPgzRCOqESTDvU2yRkqL9Cl3RrvE1D/nLICHv0g0gjF+8dw753QudnihhcKG4Q3SNKWy4p4pHOCB3o0Hj/e3uEOylnsJRKJobEpBUyfhc/p8wIZGRnIyclBTk4OhgwZgp49ewIAioqKuHsuJtNXXFyMWCyGcDisuQtNXSSP6cLNEe3dbFSN3jFKyhpQu7+I6ZrpjvB5snz2APu9rI0wyQgl/vi60Byfe3YyEtMaa2N+LyyfDevnzKLzVEXWqJpIFChJ8AZeK26YhZLh9CTddM4bylmUaY21obY+LhKvT+90eiMXpwkEAgiFQggGg1ixYkXi901NTdyvxaT8/Px8+P1+tLW1uWrrUVZCfTsQ3Mf2JSespzWmvikQ7wCrdT2rmFS4DasahmgfSHBDnGSxJApWJQmAixMFjoUNgIobTkA6V4d0TvDE7pyF5ZpAfBOXjIAfeXlsGibcyXvvvZfwVkVFnYNYLS0teOKJJ7heiykq+nw+FBYWIhwOc704QRCEk6xqGIJJhdssOXe6FDeI9EZNd04lw07xRU1fp5uQoGintZ9TU19az20VrBqvb4ihsDDHsWVX3Ij54j+8z+kRxEZPTGlpKUpLS7lei3n4q6ioyPbNXE4o3eeaIFo/MNvSIJq/L0ZB1CJyfNmuThQIgiAIgiD0cPRoBEVF+U43g+DM4cOH8fe//x2rV69GVVV8o8Ty8nJMmjQJc+fOTaz5MwLTIxuEC7a0tBi+EEEQBEEQBEE4xYTgbqebwI0DVRGUl5c73QzzpPkjG8SsWbMGxx13HB566CEUFRVhypQpmDJlCoqKivDQQw9h+PDh+Pzzzw2fn3mkr6KiArt27TJ8IYIgjFPSp542LCIIgkgDaA8C5xmSyTwm4hgHqiLoVzHM6WYQHLn55ptx6aWX4rHHHusybTcWi+EHP/gBbr75ZqxevdrQ+ZlV3b9/fzQ3Nxu6iBdgmloZjRn+KdrunuccumXKLOFStPRMEIQrOKF0n9NNILxKisV5q9Zmu5n9ByPo37+/080wjbB7J+8fL7J+/Xrceuutsus0fT4fbr31Vqxbt87w+ZnLSf369UNbW2qvi/J3ePv8BMGCqg5ZOnsPJgQE0QWDOm7sH+TcECKdsHXGholYTfkKG07uXrt3XwxjT+zn2PUJ/pSXl+Ozzz7D8OHDZf/+2WefoayszPD5mU1f37590draqnncp384Hif/ZJPhBlmFv93pFmij1cbcnRloGUiRmJAn1LcDuTvVv9JU2CDSBdPFDYPnjtLMPMImrNS45rU9kFOlOgcORtG3bwrM3Erzh7OLue2223D99ddj7dq1+M53vpMweNXV1Xj//ffxt7/9DQ888IDh8zN3T3369EFjY6PhC1lFSygLCLt/7jU3NN5r7c5uCPZqRm6QHq+RSqSKzilRIMyipaH8/c729v4O0rlVpMsuzCz68USBTaPPCvZqRksoi/IVgxys7kCfPn2cboZ5rJiO6VHTN3/+fPTo0QMPPvggHnnkEUQiEQDxB7hPmDABzzzzDC677DLD59c10tfU1IRoNAq/33zyqfTg6iNtyQ+ZbAllmb5WOqL1uUk/5+7Zqbte042IP3/SuAQGc0uJQoqSAoUNJkjjnkIuVzFMmmi8pU+U/Vid+QpAOUs4HMOR2vbUGOkjkrj88stx+eWXo729HYcPHwYA9OjRA5mZmabPzWz6ysrK4PP50NLSgvx89eeC7AuXMJ1T7otMOIPcvWC9j90zmgAAAzKOcG2TmyGNOw8VNtwNFfDMQ8mw+6ECnrWMKKuW/b1U++mWr1TVRBAI+Eyt73INNL1TlszMTPTq1Svpd3v37sXChQvx97//3dA5mU1fRkYGunfvjqamJk3TZzfBXs0IHVRPrlv6RJG7Pz0qbLz4sr4fxhftZT5+V0d3jSNYg2wrSgJ8567URtikrv0e+DOirBpfV6dA4HY5SgacJVlgTRS2tUc9sdU3C1TY8CZmC3heT4YB4L3WbkzvY1dHd6bPJt00ng6bFfHKV0oCfJc9seYqX+5pR48euQgEAlyvT7ib2tpa/OMf/7De9AHxxzY0NjamxsMgCYLoQmP/IAp2u+fxIm5hfUsFxubuYSwKuDtZcKKwQXiHVNA4wPY+1rdUmGmOYzi9bpVwnv17O9CvYoDTzeADjfQleO2111T/vmPHDlPn12X6RowYgU2b7N2Z002jIHIJsb9dfd56NEWq/moICbEWuzq6p0QVOd2QajwdNE0QBJGqyOUteuJ6Ux+G5xq7EJY8BfDG1M/dOzowcsQEp5tBcGbWrFnw+XyIxZRdq9wz/FjRlb2NHDkypR/QrkUgHIO/PZr0o4X42EA4hkBY+UZS9Y5wGhaN69G/FNI44UakmjejcUqICTeipWk9uQoRh/cyFD3s+DaGkSNHOnZ9ntDD2Tvp1asXXn75ZUSjUdmfL774wtT5dZm+oUOHoqmpSfO4/X/ppXmMGxE6ayHgSX94YfX5CUILXhqUJsikZcLt6C3ekcYJFtwyIwkAira1mC5eAN7JVfTsPZAq7NkZxdChQ51uBsGZCRMmYO3atYp/1xoF1ELX9M7jjjsOhw8fRiwWMzW8KDC+aC++rO9n+jxmCEge+2NlQMvf04qmihzltoRjCLR1/Vwj2ZY1iZAwIOMI01qQsbl7PLMeRKzx1h4+5B8wlgDouqbM9yiS5c0REMK7WBnPSePqODkKkk44YcKkeRNAeYqdRKMx7N3ThuOOO87pphCcWbBggeqMyiFDhuDDDz80fH5dpm/YsGHo6OhAY2MjCgsLDV/UbgKtx0bwPPpcV3G7C3b40dIrHuQjOcaD/dfVZYpbIaciJYEOXZsAeA0vaFxITqSFDUoWCLOIda+VBOfvabWuHVS4I0yitMu4Ho07QZcCemvn90AuVwn2St+lQkqw5igH9kXQ0R5LHdNHG7kkOO2001T/npeXh6lTpxo+v64sOCsrC4MGDUJtba3rTF+wVzPad7jrURJWIw6qYtp35CNzkPY0XMJ6eI9mK91zt6A1mi2HUrJgpqhBpCaBVp+rCxtKOKnxdJz65la0Hi3lVX1LEQrTAm7vt7zGN1+3Y9DgvsjKoudCEvrQPfQxbtw47Ny5EwMGDLCgOeqEmtUFrvW0kpZeMeQeTI/go/VZBfPCNrWE0IPafUu3jjPd3i+Rfvc83d5vukP3uxOtHAUAxg+igoUc325px/hxlU43gxtWbLzi1Y1crEa36ZswYQLWr1/PvSH7G4sU/1aYG0LNIXeNLHqdUHOW6mcOAH0K6m1qTXqg9nmzdIBEJ1TU8C6qhQ0b2+F2SOPexOv61jtTw0q0chSAPU9Jpd1pv94QxTlnnuB0MwgPYmik78gR7S/F/r/0Qsv3I9rHMXyp3URTRY7imhB/OIJoVgD+cPx9R7P0h/j8A1E09XbHc9D2NxZhf2MRhnWr0Tz22+ZSXNLzcxta5R6+bS5lOs5rGldC0DVgTNt2QkUNZ6DChn2Qxu1h6b5Ric/RDfo2uxGX2TjulvxEYH9jEfIztOfEspo+VpzcqGjr5g7c8ZOxjl3fEmhkzhZ0m76JEyfiyJEjCIVCCAaDVrTJUZp6+5mDqjh4yv1O+ne3J8pmGJpXw7Sb5XpUoG9WLdM5z8rbbrZZSawN9Wc6bl+4hOt1eREpCyNQbV/iLKdv8d+8rmchgWNJGAD+SYPbSbeiBuCtwgYLrAkx4H59W7ERV7ppXBrTUyFHYSlKA2DebftIFtveEMWB+EY0E4NVTMdrsSZUjrqI+ppPAGisbcfB/ftw0kkncbkukV7ojqIlJSXo378/ampqUFFhfsv6Yd1qsPUoW+B1moxQvBShlgyr4Q9HULitCS1941/sjmDqzO//trkUQ/PYgi8ra0LlXM9HqKNX325PGGoOFaK0ZwO381mRNPBKGADvFzWcQKuwIcZOfUfK7J+66fakmLe+WQ2f1xDPRNKbq/jDkUQ/AFiXozihb6vglaewGD4A2PFVI/oN6IVu3bpxua4roN07bcNQ6ayyshLffPMNF9PHE94jIeLgZwVy57fTCPJOignjlPZs4LJuVc9mRbz1LSQYwnmNajn3oK/L7m+pChU27CUjFDNVtBPOAaRW0c5K0kHjbtlzwIy+lc4nhkXzvGI35Sby7FzfiFMrpzndDMKjGJqcPXnyZNTV1XFuijq8AoBaQMoICT8xyw2fchtionbIH8OS1Ns5DZDwBnbrW7iOk98nIr2xUoNGz01JMaGE3t3F7Y6xLPmJl2FdeuIk279oxeTJk51uBleE3Tt5/xBdMWT6Tj31VBw4cADRqPrat9y/u2u6lxhx4HJzAPNKO1MJLwR+Ldyom87kxD1tIlIHaVHD7kID6ZtQw2wh1g59C0tP9LfJ3ZrnvfREmLpsNx3tUWxfX49TTz3VketbRsyiH6ILhkzfmDFjkJWVhcOHD3NpBOtCXDNkNvsSP1qBqam3ulnVGxh5kxFKfj+ZzTTNiAXegZp3R2IUqRbc2vHKYTRhoJFsb8Fr+lvhzs5Y54Vk0wtt1EMqFMS8ghu1o5UbAV37IyvzEztyRztgXc+3e1MzsrOyMXr0aItbRKQqhtb0+f1+nHbaaThw4ABKS923GNrtJih3X7Oqccw/EGEKrmLk3nPmjmyEBrHt3KbG1qOlKRNcvY4d2m7pm4fcfc5UMoXkRvw+2/OoZJfuiPXglgTYCELBTowb9J0qIyFeRI+28w/wW69nJ1LNe/NdOM+WT+sx6dRK+P3uemyGWejh7PZheA/k6dOn48EHH+TZFv00dm1+JDeKzGZnp5X62toT/x/LznSsHaGeEdnPCABQwP8ZM7x38KyL5KVE8mBoh1ql++YCfG3ttupayehS4pB6uL1gZwVy75m07Q547ixuh7a1inVCbpJOeUkq8fUnDZj33QudbgbhYQxnlmeccQYWLFiASCSCQEDZZOX+PcD0kHYljtR3jogFsiKIHMk2fC6B1lIgh/PAldjoKf2eZ6DNqYm/D8McC7o1jSUIdE8eDexeZK3R2hcuoWlCxxDr2y6j19Q7oLtirKRvR6HEwbtQUUMd0ra3cbG+AevyElM5CZD43ALd25L7RhjPS1gL0aw5iWPr+cJRbF/XgNOfOt2R61sKPbLBNgxHpuOPPx65ubk4dOgQysvNbcksVNOkX3K3ozcRtjtxDh4KxKtqOpG7D1vRGc1pqic7XtU2oK5X6d8cT5LFiBKuI1l8EgfCGAndeygJlv6btO08rGue7HxGH++CHe9CtIBW3uHKgp4ManmJl3MSPc/ny83LxciRIy1uEZHKGI5UPp8PU6dOxf79+zVNn1cevi5GaTQk0Br/XVv3IIIHjAdL4TwCkRz37nQqRe1+NnV0jsSOL9prR3Mc48v6ftjfWOR0M7gh1qSVBQ0ja1Z5kaqJg1NsPVqacgUNtWNDvQusaA4X5O5D96JmWpNtEFZt85h9xBsjRi7UuyCpD3B7TiIucqRDTrLlf/U47bRT4fOl4BR4GumzDVPlqRkzZuD+++/n1RZuhHpGEDzEL2BJDZoVSK+Rf4Btpyw382V9P8W/7clWr8hOKtzGuzldWNUwRPFvR9rcmch6QdteShzEaBWnhOTBy4kDK04UNHjqWg5Bl2ZHNoTzkLa9CWlb3zmBuNa9no8A7s5J1PIRAPh81Tbcde0FlraBSH1Mmb7TTz8dP/rRjzTX9Y1fcgRfXtTdzKUSBLq32bKuL7MpZqnZCx5oVK0aB1ojyGyK79DUnu98ZedIfZ6t04eEAJgXML/7qJjmCJt2umc32278eGlbCzu17eURbSXUEgfA+eQB8GZBwwqs1Lmctr2eGJO23UvR9nAiftpRiBYjzkcA4zkJy3IT6R4DdtA9Wzu3cTIn6WiLoOqrwzj99BRczwfavdNOTJm+YcOGobi4GFVVVejTpw+vNjlCZpN7FSJtmxtMoFfJC7QxGz8W+hTUu26Kp7Sg4SZtC8lKZpM/bXXsdEEjlbG6oKGG2wp1TkDathY1bQcPNNrWDnGfImjd9CYuFtCnoJ7r+ZzSdc1XNSgsLsRxxx3H9fqugaZ32oaph334fD6cc8452LdvH5fG2DmSlNkQD1zCjxGcWt8htLlwRwyZDebPx3N0idUAsVZkqbPXDw9t24G4jU6204tr0og4btGQFLe2i2DH6bjgFQ0l2tgALvkIC6m8aZEc+/93AOdOPzc11/MRtmJ6y6nzzjsP77zzDo+2WIqRYNRSloncavfvbCX33toL4/81uoMn4R3s6mitRpzYdAR9CQ0ThICbk1819GjbrfGaZQocwH80JB0o3OGsrnkWsKX9EcVx8xxcXYWfLrzD6WZYB4302YZp03fWWWfh0KFDaGpqQn5+vuJxdq/ri2YA2RqPXWnt4UPOYf7K8LWGFf8Wy8lK/L/Wur7c6na0lBnbLlwceKMZ8XUA4W7uTCbSge5Fzdwqx06aPLG2xVq2ArViBpEe2K11X2vYcl0D5hNjJ9Y9pQo8p+MbnSXjRAw3E7uN5iFA11zEbXmI24sZrUdDOLz9CM4880xHrk+kFqZNX3FxMcaNG4d9+/Zh+PDhphtkJDnOOuqOxfNqZk96jB2JhRS5z0lPALZ7MxfCHdpW0rUTWnZ7AkEYh0cibGZmhqDndNM173VPvGGd4u/WTVwKtjsbw+Xit53FO4G2Y3sAqeUhPIsZqaLrA2sOYtDQQSgrK7O4Rc5BG7nYB5cn5s6aNQvPPvssF9OnhVBZc0MyLMBi9pRek9nUgfZ847ch53AMrT2Mz/MWPscwOgMQVZHtx226jhTmIKOardO0IoFg1bXZQgbhDG7RuVrstkLXrLGadO1NrNK1VjFDuomLnpzE1xo2nYeYyUEAykPU2Pfxflx0/kVON4NIEbiYvpkzZ+Lee+9FNBqF329qb5gkzG4w0laiPcVTC6V1fZlNHQCOJccGTJ/cuQTMBF+jZB3trC6rfu4MI337G4tcXWXjvYOnHtzyIF8tXRuFVzHDDOLEi5II54kcyXaNycvZfsTQ64wU9nhDunYXbtI1D32KY79TsVuMUl9ZOshkUuchopEo9q8+gAt/fqHTTbEWWtNnG1y+2ePGjUNOTg6qq6vRq1cvxeOk6/pqDiksZGjUbla4W4RLwNWzrs9sQsyK+Dq5MDefHogb3zb1xysxo3jPAJT21Dc/60hbHtN8+uZItiPz6Y0+q8+MrlngUcwQY5WuvZJEUNLMB7cUNOTgpXG3aRpQ+dwL7OmvUpGaHSWJuJDquu4o67rG0Y06F+CZg7h9Pd+hTYfhj/lxyimnOHJ9IvXg8m32+/04++yz8fXXX6uaPkD9C5ugoINbgmyW7IaopWYvo7peNugKZDZ1IPvYA1nbCvmNolqB+N42tAQVjxtRVm1Hcyzh62r5efWhZj7Tv3gVM7SwWtdSnEoixCPYSkSOZKMmLP+Z600iUhmrixm8sVrfbk6MBZTuGem6E6XPyC6zp3czOTvjNgBEcgLIbogCMJ6DsBSdeUxfFu5lMC+smIO4If9gnWm0d+U+zJgxAxkZ7owvvHB6Td99992Hl19+GVu2bEFOTg4mTZqE3/3udxg2bFjimFAohJ/85Cf497//jba2NsyYMQOPPPJI0lrLPXv24MYbb8SHH36I/Px8XH311bjvvvtcdf+4teT888/H8uXLeZ3OUYQAx0pHWRHz+icziNvlmAFszDBdQRYbp9wg27SUrEByh3By6S7d1/20ZkDi/8MRNmPVErJ/wx0eyI1g69W1VfAqZPAcwVZCnBDWHCpEME9er25IJMwgV8zgVciwE7sTYul1s3MCri/OAWwFOq9rGuiqa56aZinO8ZiRYXeBTg25HMTsej5dcBi99lL+se3DN3H7vT/TfS3P4fD0zhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLis71uvfVWvPHGG3jxxRdRVFSEm266CRdffDE++eQTAEAkEsHMmTNRXl6OVatW4eDBg7jqqquQmZmJe++9l/ObMw430zdz5kxcffXVqKurQ3FxseJxM1buxDunDuRyTZZREdapcGoJcahnNoKH3DUFTNze7AagbpA71hbYhTiAegabR7DdYvLUcEUhgwNeSiS8WshQwm06T0VNA2y6lmoasEfXqaxprdzDjoKzHEIbW3ukV+4B2JN/hPYcRmj/UcycOdPya6UyDQ3Jsxqys7ORnZ080vr2228n/fuZZ55BaWkp1q5diylTpqC+vh5PPfUUFi9ejDPOOAMA8PTTT2PEiBH43//+h1NOOQXLli3D5s2b8d5776GsrAzjxo3DPffcg9tvvx2LFi1CVpY7YhS3DLSwsBAzZszAjh07cMIJJ5g/oQ0JcnZ9vBQQNbdkTp2W1q6/y83hfhnhvQi0FSVX31hGRVimwrESas5SHBUhrEOqA0sQa1pBy1rTloOH2hDqmRx4UyVZNoonCxkO4DaTp4a0rV5NkFkLGXKY0TVrIcPrWKpplXitFqMBdInRcmjlHnbDmncYLc6ZhVXTRz/ahO9MPwuFhWnwcFoLR/r69euX9OuFCxdi0aJFqi+tr48XUkpK4knz2rVr0d7envSsxOHDh6OiogKrV6/GKaecgtWrV2P06NFJ0z1nzJiBG2+8EZs2bcL48eM5vCnzcHVV3/3ud/HDH/4Q48ePh8/n7BdfDlsSYgE5syf927EAbCRB1sJtgViJllAWU/ANRwJcg29WIJISCYXjmm5ptaaI0RBFNLPT+LlVv4Q9CDp3KjkGtBNkFsTfVzdomgpzMtg0G8N2TYv/bUHMFpBq3K71fKlELBZD40dbcM0fH3a6KZ5n7969ScZZOsonJRqN4pZbbsHkyZMxatQoAEBVVRWysrK6zGIsKytDVVVV4hjpsxSFfwvHuAGu0e28887D3LlzUVtbi+7duyseZ+cUT2Fqp9nkWGuKZ2Jdn5rZk5J0rPmEQo34++9MMqxeC5Uq5AbDrpo6xEvPutDStM2JBOCOhFkJ1kIGoYzj+jagabsKc5QgexM5TeccscDwseQgiWPM5R2t3dVnZHDNO9JoN9rWnTVoP9KYNlM7fRCrhN85gfgsRD2jpfPnz8fGjRuxcuVKzi1yB1xNX15eHs477zx8++23qqaPGQNTPI0unG7t7jcVgAONIX2GT+71x4gUKO98qUTOkahmABYj9zkxB2QOm7mkGsG8sCUbX/B8NIMUtUJGoDGEWG42fIfr2E/IMO2TF50JVDy0UxHD22TXusDoqR1nsZ6B+PtvK/IlvvOkafeitZcALz1rrufbWdWpTQP5h5B3GMk5jCDtz5zSuOundr6/AReef0FiExHCHm666SYsXboUH330Efr27Zv4fXl5OcLhcJc9S6qrq1FeXp445rPPPks6X3V1deJvboH7wpl58+Zh+/btiESsr0YGDwUQPBSIB9haaxNkJQKNoSTDZhRxci2cU3xeHhvJaHVC2bVAwfZA4nMNHvL+9EevETwUgL9DW89WjXTx0jNaWvmchxFxDHAqFhBsOHqvWlqNFeeO6dlJTRPmsHI3WkfvlUFNx3oUJ/5fTtt6R67l0OqnsmsBfwe45RypMF052t6Buvc3YN68eU43xT5iFv2wXj4Ww0033YQlS5bggw8+wMCByTMRJ0yYgMzMTLz//vuJ323duhV79uxBZWUlAKCyshIbNmxATU1N4ph3330XhYWFGDlyJHtjLIb75PVp06ahpKQEu3btwuDBgxWP0zvF02wwaCvycZviqdTxx3oU6xsZYcDuSpwUuc891JPN0NNmLuq4xVRbmciaHcE2g5B8+TvinzOrbu2C9zpVNyJoPNPBx8Lx1rfRmKxnJoYcUj0DKppOgZkYbt2NNngokFJ6Vjy3hukzq2clZHOOQfbvnu7UKF/9qq3o3q0EU6dO5Xp9Qpn58+dj8eLFePXVV1FQUJBYg1dUVIScnBwUFRXhmmuuwY9//GOUlJSgsLAQN998MyorK3HKKacAAKZPn46RI0dizpw5uP/++1FVVYW77roL8+fP11xHaCfcTZ/P58P8+fPx6KOPqpo+JQLVXQN4ZrN6tai9kE9SoTXFM6uu3dZKr5hAYwhZoo0twsVdtxzVO8XTKMFDAbS3yF8nUqbf5KXyZi5G9MwLt+nZSQMIKJtst5lBr+KWIgZgbWIsdw0vFuV4kwoFjOCO7MTnZ7We9SwncSLvyKprByCfa9iNXD8KGMs33L7e+uibX+LnN/3QlZshWoXTD2d/9NFHAcQHrcQ8/fTTmDt3LgDgwQcfhN/vx+zZs5Mezi4QCASwdOlS3HjjjaisrEReXh6uvvpq3H333WbfClcs2aZq7ty5uOuuu1BfX4+iIvWFwkpfZrcgBD478B2uS5pyoYa4XU4E5cxmH9rzun6rpPczlNPZtmCvZsvbZQVam7mEDsbn3Qda3R+k7dSzGuIihpJ+nS5iGEko0gHpd9yuIoZWkuyWopzTSTJvPbs9STaLVM9aZo+lwMxjPV/eDvXn7/GeVaSE0VyDZQlCu8mnEYjvXSQnhlCDt/ON0P4jaNqyP2E00gaHH84ei2kfHAwG8fDDD+Phh5V3VO3fvz/efPNN9gs7gCWmr7S0FBdffDE2b96cmO8qx4yVO/He0GFcrsky2qdniqdSctxekovM2hbF16lN8Yw1NiX+31eQz9QOMZm1LWgvye3ye3FbW7urDyMLmwWoXqfBfDCWQzBHsn/LSt4ooaSPMw+cFVO7X1SwCHv3uXFWGT1Bz0a0LMbpAgYgX8SQK0ilQhFDCypimMNNIyRipHoWJ8mpqmUgrudAqw/uGYdWhqee1eKzVnFZLs8AnNG2XHGZBaV8gyXXsHNqpzjPOLL4A1xw0YXo2bMn1+sThIBlD6S54447cMopp2D8+PEIBs1NfWnPi9lSTRYqyVYkEmLDJ/232aRZTNH2tqSAbMdIiRqBVh8iOfqDdpLhEpPBuRzUwU9XkZyYaxJlO7WshJ6RawE3GEBWWIsYdhUwtKYrJ75THi5gANYWMXjG4lTUMkAFOd5YHaN5FeekCH2M0zkGAPYcI6vrbAHZXMOBPCPS2IzWVZ9j4Wdr+F7bK9i4eXM6Y5npGzduHE4++WRs3rwZJ5xwguJxZ3671dbRPimWPCdHBEuCLA7KRhJlNcTvj3dwVpriaYiwXzYgd6HDxz8guxAjI9dGtKw1ci1GSctGkwqlkWuBeDIUT5aVtMsycu00igUMwNVFDDeRcyRq+Yi19P/5G0B1LbNgxQwMvdhSkGPVMUfDZ+c0ZS0ta8VkltlEcn/jbfwA+RzDjqmdnoFRy40ffoKJJ5+MsWPHWtwgIp2xzPQBwJ133olLL70UY8aMQUaGuUvxGu1rK/KheIe5oXuWKZ7YuU/3eRMBu7EJGNhX9hitRFkNITjnHIn/u26Q8qiAVVM8XUdGzPZEmefIteVFCx1atiphBswVL9JGyw5gZaKsV9t6E2WtgpzVIyRAspZ5FS+4FeL0kAaFOMD4ej43FJcTxynkFgJa+YXaqLXwPv3tfrT2MK9nrlpmKSoDjmg5Gm5Hy/LV+NV/X7b92m7A6Y1c0glLTd/06dPRp08fbN26Fccff7zicTxH+5TIOcyugHBxpuGqsq8+HnzN6M1XUgzUi6rPRfyrc22F/i6fCY8gLYfRKZ6uIivqimlEenQMOKflRBLCcdRaQJpAtRV5YbUOoYVbEmPF16lo2WwhDuCXKHOFNVF2MXZPubdax4BxLQOdcR2wJrcQsCu/cHVuwVhQbl61Bn1798ZZZ51lcYOIdMdS0+fz+XD33Xfjuuuuw7Bhw2wZ7ROmxaklx22FfmQ3mAvM0tE+cSA1S6y2Lm78JOcWAjTLtDgja0ikn1l7oXbAcmSKp4vhva5Pr8njAU8tS7VrBXYlFwRf7NS2r76JWyHOLi2Tjr2DHi2bmabsq29CrLbO8Ovlzgd0atpo8UJMW6F8cVT8GTUMYpj+mUajfE1vfIDHn3wqrR7TkITDu3emE5aaPgCYPXs2fvnLX+Lrr7/G6NGjFY8zO9qXU9P5/5lN5u826wiJUoLsKynmGpy7XMtkcM5uiCoGZ4HCHTG05ycHodZSU5flQwqv6+OtY1Z4Gj2t81uZNANkAt2KWmJstggnh1WaNlLI4FGE46ljV4+OsOLgej4lLfPQsdw0ZV5aFheTZc9vYmqnHsT9HGA8r3C1jhlH+Zo++h/6lpfj4osvtrhBBGGD6fP7/fjd736HOXPmYMSIEdxG+6RBI+mYfJ9mwmx2tC+ztsXyRFnr+gJKj3GwYsc4uc+9faD261w9xdOBdX0C6ahjO0b/xOQcjiEj5MLiRYqTqgUM6XVIx5xx2WZEgo7t1DBgn47FCHmF0RE/rUIygC6FZMB4XsGEm0f52sJofutD/ONfi+H3O798xCloTZ99WG76AOD888/HwIEDsWnTJtWdieRG+3IPdg0QGTY9f1dutE9stmJF+aqBmWW0L9LUhEC+zHN0JFM8u5y7vilpuqeAnmDNMtrHQuFOHzoUnsrR0kvnN8/NUzxNrOtzUsdSpJVkLR1roaRhLXz1TRDKEmrPhaLihftRK17YgZNFOBYdWwWvERNTuHjWhd6p9lbrmGXXTjUdG80nAOVRvsS5RcULozkFLzqC8n2mOJ9wdRzWsWPn4AEDcd5551ncIJdD0zttwxbT5/P58Lvf/Q6zZ8/G8OHDkZ2t/ABxuS+6EXiPkrBua89KpKmpy/8bSZyliNsZLlbZKp71fE1dp3jqQXw/I9nJ52npY8LcuXSKZ+7+uCkMtDncEBmMalipeCHWsBKsxQunkwxAO8kgun5GLIULK0dIeMVlo4ULKWZHStRgicOZDUBmAycdu7X4xgEjOtbC6IwL3nsD8MwngM72NQ8yn0+YySUA5XzCVC4BOJJLRJpb0Pz2CvxpyZL0XctH2I4tpg+I7+R50kknYd26dTj55JMVj5vUtAWr8oernqsjaM8oSfBQG6KZfvXHM+gc7VNLlMV/C+Tn6xrtkyNvRz0iBZ1DcKGeymbbDgJtQETUBMEgSYlmdv4+1LfD6mbFYZjiGdyXAb81jwqzjOChuPsMNPL7wshp2KrChVMGUEDOCArJhulEw6W4uXABWFeAc1LDPGZcqCHVMdeE2Qk0Zlzo0bAThQsri8jS3/Eyf0JfopRH8NKw0qwhNZRzCQCI/822XIIhjwCA6nc+wEkTJ2L69Ol2tMrV0PRO+7DN9Pl8Pjz00EOYMGEChg8fjqIic1UjFuPHMtonhxDcAMDfzq9DZBkZkR6boTElQw/i9yUEbl5TPDNCxoK1FkKAlCPGead+n7nHN1qCEQ2L7zNPWPRrRZXZ3x4XltNFCylKiQbgUOGCAS8WLoC4pnkWLgBlPae6hiOSJriq+MYwLc6rGs7bUa/6d61RPqOzLSJNTcioUH82n9a6VHHxWC6PsBuphllQyiWcyCPCR2rQ+MVqPPbFF3wvThAa2Gb6AGDUqFG46qqrsHz5cpxxxhmKx7GM9vFCmOJpJlFmWROlx/CJ6dizL5F8aM3JlyPQGEoK2ALi9xs8BNQPzlE8h9kpnnrxtwsVOnV8Ef4BW4toJrglHLxGrHloWI1YbZ1u/fJOnAHlZIMKF524sXBhFCeLF+LjtDSsZyMXNyTMRrBLwzz16/RItdP6FSMYRiM5hBrCe1TLHwRYcgie8Zclh+ANq36PvPc65syZg1GjRlnbIK9Aa/psw1bTBwC//vWvMWjQIBw4cAC9e/c2dS6zo3251fHsPZKj3mtFCoKGqsy8H9kgF7i1pniy0J6fkfgsAKClzLpoKZ3imapEsq1POsT3LLOJfyWeh34jTU0IwLpkA2BLnu0uXBDGcFPhQvp6oxqWK7oBye+1rVA7aXYjdhfdAH5FN4Df1E5hPZ9V+gWMF47FRQu5HELPKJ8S4r4IsDaH4Jk/OKHfll3b0LZnJ3730Qf2X5xIe2w3fWVlZVi4cCH++Mc/4vzzz1fcptaq0T5pcAKAQKt2eUbL+IlH+3ibvS7XEp2fRzKd2dSB9vxOKcgFcJakmedICetoH09iAfePlMjplwWn9ctbs2KCh9oQaO3Ur5UJBytO6NeLCHrWKloYndop6M6M4ZOei7d+AWgW3ewuWLh5lMRN8NKv0kwhnvqVnpeXjsW5g4BUzzTKFycWieDwW//F3YsWorQ0FZ+3YhAa6bMN200fANxyyy148sknsXHjRowZM8bUuVhG+7IboprGrj0/g8toiVLCHMjPNxy41XaWi9XWAcI1B8rP21ea4slKYkS0obMs1tTbgRKZDKk+xTP/QFy3LIUJs6iZPZ761Zs869WvnVVnQh9GixZ6sbLwZqX5A7QNoBJWTE32KlbNspDTr1tnWTBdQyFnEDCTNwjkVrcncgezeQPLKB+r4XNilO/opyvQMz8Pt956q/0XJwg4ZPqysrLwt7/9DWeffTYGDRqEfAVDY3S0T0iUeaM2WuI7XGfJNVnxFeQDojbEehTrer10tE8Luc+4qXeAabQvXaZ4GsGods0ULQTt2l0YSyTPsPYB19KihVsKFulA/oGILQUL7NwHMDwXlSeJa3GYXq8Eb+16fWocT1imdhZtD5u+DusotZJ2zYzyaa1H9ZnIGQB17QqIl89I+zdBzywFCzfnDCyjfO31R3H043fx0rJlyMykQqQY2r3TPhwxfQAwdepUXHTRRfj8888xbdo0xeNYjF+wNoqMkPodjuQELBnt02P2rBrtA4BYY1Pc+Mm0K9aj2PRoHxAfbVJb/ygE9I5g51SOpt7GN9jw+hRPlnV9+Qe0tWsVThcqBGK1dfC1x793RhIPvSglHoR5rCq4qeE7XBefHWSj4ZNeHyDt2oGVu3Y6pt3GJkdmoonzBaEtgD06FpDmDGbyBcCZUT7WfOHwO6/golmzMGXKFH4XJwidOGb6AODBBx/EkCFDsGfPHlRUVDC9Jv+As88UEkb7lBJmX0E+Yo1859+bRWhrxmGgY2C54nF6R/tYULpfTb393Cp3Xpji6bRuxbhZu2Yrz0YQJ3u8ko90gAoWyaSKdt26HooVlqmdvLRrZHaFXdo1unOy0D61XAHQP8qnhLhIrNRP1g/kF4+dGKFu+mYz2vfuwF+Wv2v/xb0AremzDUdNX1lZGf74xz/ipz/9KcrLy5GVlSV73KSmLfiq4TjVc3UEfbaM9mVU1wMtrarnUMPO0T45Mqo7nxXUUab/WYlao30AkBGKJQVyOfIPRBHJkj+mqY93d1nM35+swUBYO/Lw0q4aiftuQrt2o6fyzLtgoVasSDe8ULBwCqV4m2hnbg7AYV2UFlqJczrqFlDWLovh4zEtOWNnFWI9ihV1q1Vk472Bix7M5go8kfarAuJcwa3FikioFYfffAl/efBBlJWVWd8oD+KLxeCL8XVpvM+XKjhq+gDg2muvxb/+9S+sWbMGkydPNnUuq5JncfADEO/IVZJnK0dMeD7/TC6oWzHapxdpgI+qNKepL3+DKJ3imb9PXlN+hiJvJMvHZPx4IC1YdNGtScwWLIRz6MV3uA4ZLfEt7R1PPo4lkXIFCyPFCidGqeWQS6rs0q0WZgttTiN8D41ql2W0RAveRTa3PKrB9bqF+woVgHKxIkFu8iNEpBq2YpRP8TwKugWS7z9LnmClbpXyhF2fvIYJY0bj2muvte7iBMGI46bP5/PhmWeewciRIzFgwAD06dNH9rgxhd9ojvbxQkieeSfNAtLEV08irfmgYK3RvpbWLgEdSDYIGdVA6+Duym3gNNoXCMdUAzoLSYGWp/9jyBuiGWzGz26s0q1ReD6g3U3VZylOFyvkkEtE3KhZKW7TMA/kzJ/TBTbAed0W7I51Oa9R3bIYPl6jfHIzgpJ0q1GoYCkMC7HTyRE/McL7a89Xzg9YYTF8rKhpFhDpyeYcoWH/N2jctR6L39kCn8+7M5gsh6Z32obzPQ6AAQMG4P7778fChQtx4YUXKu5sxGL8zI72BQ80xo/Relgux9E+1sDOM3nWQvgcACDUu8C268rh79AO6umOcL98reZ3m1NDbxLCqlkjxQq9BpBXsYIHThYr3EbO9iPoKCuy1OgZHaW2IuaK3yeP5JknjiTPUB4l8QJ2FCj06Fdzx06do3xSYjlZmvkBj9FpQH2UT4A5N7A5zkba27Bv1Qv44x8eQP/+/TlenCCM45pUet68eVi8eDHWrFmDSZMmmToXi/GTIg5iABBosH86kVpCrSf5MDrap4T0swn1LnDVaF+CGPgFdh+4JdAsUzyNFCuk94UJTsUKFvNnZ5Eio7oegYbONcFOFyoINgQN25U4A2wFC7u066bimptx0+h08ECj5cU1ObSMn53xVowRDdtRWEvCgcLa/s9excjhx+HGG2/kePHUhB7ZYB+uMX1+vx/PP/88Ro0ahd69e2PAgAGyx/Ga5ikk0GqJcywnSz24MyTQiXPpWOMnTU6cCuZKCJ9ZLDs+ItvSN8/J5jiKnVM8c/c1w9emvmWopmY5I5eIuEGvlEy7E0OFCs6oJc96tcuyeRYrcprNPhLSjK9m10XpxqUj01ZN7TSkWYY1qEbW/lsebxlG+dQIHmjklhdwHeWzmaO7NqBp70a8/PVm+P3puYkS4U5c9ZXp378/nnjiCVx33XXo2bMn8vLkg4bRaZ65+5q5tbXzpOrGT0BIDPSaP19Jcfx1Op5BxZSEaIz2+VrDmgFeQO5z1RPwWUb70nGKpyV6ZUBvMiIuUhjeJpxT4iyHOGmLZWemdZHCCdxg9KTwKqyp6lbHbAop4sJa7r5m0qyNaOnViVE+MYLxM7QplkV6FRAMH9C1/xI0nOpFinBzPfategH/ePop5keRpT20ps82XJdGX3nllVi6dClWrlyJ6dOnm1r8GqwJwR82t+0y75ETVvMnmD3pv516ALEcvrb2pCAvRhzwo1nxaaBNFeY7FU08PMWTRa+x7EzN0T4e6DV+vpJiZFhVoGA9F2OhQikZIcxjSaHColETwCKzxwhrUQ2wR7NuLarx2sBFDunnyiW26thp1ohuhVirNxcwq1k9epVD+KyjWQEuuQCTXm02fLFYFHs+XoxZF16IK664guPFCYIPvljMfQ+zaGxsxPHHH4/evXtj7NixisdJR/vy93QNtiymjyXQaxo/g1uKywV8qeGTfZ1CwDcU2FUqfCyBXsn4CQimT4mmihzmyp4bAz2gPzGR0yrAR69MRQodetVboEi8TiMp4a1VQFuvWloF2JISL+uVdToySyJduE07YTWtV52xlTWJluqWNYnWpVuLYyvAT69u1CrAz/Tx0CpgTS5gNMYCHOOsTbFVCUHDXt68peqr9xE5sB7fbPkaBQW0rECLhoYGFBUV4YQrf4NAFt/nmUbCIXzx/M9RX1+PwsJCruf2Mq6s7RUUFOCll17ClClTUFpail69eskeN6bwG+zY2E/1XNGsgD2jJ+KAqbPSB3QGfRbDJz1OCPpWJNF6pnkq4Q9HVIO9YICimclz3xv7GwwCLhrtK9gdSvy/v92eh1xbMTptpDihNjpthVZ5ImfKbRmpdilKRQo3ojV6oqRbrdkUVk5BNooQV9X0mnuwzXgsdRij66Wt0itTXGVc8pF0XoMxVjiGW4xVwGrDB8TvmTQHAEzkATYbvsaD21Hz1XtY+fHHZPj0QtM7bcOVpg8ATjrpJPzhD3/Az372M1xwwQWK6/sGjdpri/HTlUgLyaneaR49ioF6/VOUfCXFiBXlA3ofAsspiVab5mkGsWFKwt8ZzesHZnO/rh6KdrZ1/iOqHmWimX5N42drkcJocWJgX/h06FSaTDtp+MxoVZxIcitQuAzeRQou0+U4JdF6CmrSJNoJzZqNqeJimvi+ymnVrVM71RDeE4tOec34YcakZlm1mnitSLNOzPaxki55gD/ZzcnmADYZPqH/b2urx4a1z+JPDz6Ik046iePFCYIvrg718+bNw6pVq7BixQrMmDEDgQCfZ78YRfcICqP5i/Uo7vz/onjA1pNUC68Rn8en1wCqILxnM8Ffa7QPiHfecpU+NZJMl4RYgF/k90VSsGxkoDiBgX0NX86O4gSPkWkWpFr1VIFCozjhSgwW0pBprItLJN3tBoaabByRNoKsVhl0WrgnjIb+fL5bRTvaVL8PbtSq7tkTBoyf3oKa9LUA9MVXBq3+//bOPT6K8l7jT+4BQgLhFiIEQ+Qm1xhBIiAiWBSOR0WK+PHSHlSkVezxbmtboAfP0Wo9bVUKcurxKBVbUaoWr4DcESQCAuUmRgIIQYEkhJDb7p4/wiyzk9ndd2beuezm+X4+fDTJ7uwk8+z7e57f++470cZUGbN8QPNGmi6JzWu6ngdwsvb7/Y3Y9c/FuPGG63h7BpPwlg3O4cnP9KmpqanB0KFDkZycjOHDh4d9XLTZPkB+t89wEdApAOqgpvsaUQqAEvgiHkOvCBg0Jk58tg8QHPgB3cG/2fk4HfoEDIqTXWlD+jTQmAge30RjIuT5IubEBZ0C9pqUZufjQZ0CcrQqXaeAsJEOaYKZMNJqzQo30Qzo1Yklc0B869SNWT6Z4yrg0tgqcVxt6XV/3/530apVBbZv/wKtWnm74eM1lM/0Fd1sz2f6Sv7Kz/Rp8fwNRFq3bo13330XpaWl2L9/f9jH9RxwKOqxRAYfI0tqAq1Sjc0qaAbaaIEPaBrQRYJdxGN0bBf6WjYYaRFEiq9Tn3uzBYGCJFLcZOnUsDZ1dNFMO+qfCWoz3GOUY4d9H7ikU+Ishq9btA0ndDRlZAzV03VEnSrnJDHwieBk4CMmCaOJaGOf6LgabWzVPR+DOrU6yycNDwa+o8e24sSJHfjww2UMfFYI2PSPNMPzoQ8ACgoK8Oabb2LDhg0oLy8P+ziZwc9o+BOmdSs05ucIBb6Q1zg3wKsHeaNhUCkEjV2yDD1PFCduJRBEoAssc0mmzGLiJGYNdVSTq36NSOZDUKNeaUwQcazeDkeN1eAXtYGA6FoUaWKENdIGiEWtenGWTya2hheVPoyOq+G+b2Rc1TsPoecK6DRazY/nmejKyjLs3/8Oli59Cz179pT22oTYSUyEPgAYP348nn76aaxcuRLV1SbXvBvESPgTnfVTApevbTp8bc1NZ1uZ/VNes7FLVvCfk8T9bJ8ARj+3GA7Z2gTO6SI/x5Q21bo0q9FAx3ZozM8x9hwDJtrRznQMI+s9aFvzDABatzJkooHwujQ0E6i8psFZEyA2A59XkbW00yhGr2FjlyzDOg2+lqbJa2ZMbczPMTSmGqkXkd7fsToTLRL4amsrsOufi/C73z2D8ePHO3BW8Y/yuT5Z/4g+nt7IRcv999+PHTt2YNmyZbj22muRktJ8wBHdzVNBpCgY2S1RGSy16/7DhSvFXCedDrMRhA4N2a1Dvk45WSP8XD3U55ZcXhnyMzsMtcimLkL4A1ELQoIvIK0DGEhKiF4QEhOkdKlFdvEEjGsz3OdR9PTpa5tuSJcK9fmdAZjTpbopoaDVpBqa6JaJWh9mNGp1ybyvbTpwTquR9Bnymg43J2Q1l2Ti9IZYouOobLTjqdmxFGgaT62MpdpzCqdX2fqUVucFcHIlTmNjHXbuehVTp/4QM2fOdOx1CZGB5zdy0dLQ0IAxY8agvLwcY8aMQUKC/ptdZGMXBSNFwegHvo3OpEUrDNrApyVScTA6e5NcXmmbUYnnZR9ObkCgYHYjAlF9ihoWPX2KGpZo+tQzK/GgT0CeRp3UJyCuURkbZUTSqlFDrdapUUMdSadOGWogukZb+vgZfKwNGgXEG7tqvDCOAs40d+NRn4GAH7v++TouvDAL69at1p14IOIEN3L54Vwkp8jdyKWxoRYlb/6SG7lo8F4rMAopKSl45513UF9fjy1btoR9nMjn+xT8qUnCHSkjSz7PFnRAQ4axydRIyz6jBT7lMXqPM7Nc72xBB9TmtkVtrjs3GhUq7A5/tk8IBzd0UTC6jO5sQQdDDYlo+gmnu2g/Ez0+0HxJsl2zfE51p1sSVpZ5iixDFx3f9LQoMq4qrxHtdbTnanSzL1mGGojvZfJ2zGKanV018jEJq+NotGOLvg/UY6hn9emxwAcAX3/9EZKTq/D+++8x8ElE9tJOLvEMT0wt71To0KEDPvnkEwwdOhRt2rTBxRdfrPs4kaWeaowsBQm3rE4vICnBL6Va/J5P2mWfosYk+JrnHm916aeC9vdK//a0lOPGGkJLPCUiQ5MK2mvYkJFsSZPB4whqM5wmzTYkFES0yM/yGcOfkigUGuxaPne2oIMhbQKRl9BF02i08dKoRhu7ZKEhI9nQOCnTUAOCwUhgibws4uVep+px1KhGw2FkDJUxfjZkJKMhQ3wMlb1KAhDQp8e0eeTIJpw4uQ1ffFGCDh06RH08IV4kJkMfAPTu3RvLli3D1VdfjYyMDOTl5ek+zkzwA8Q/6wc0LQsRmQ0zE/7O9GzqyKVWmNsZsyG7NerbNZ1n+nfhb2RuFPXv63oAdPizfUIIfLbPDmOtF/wiadNo8APOm4zaTmmmdKk22GYNi5poWrTDsMQ0kj53ahS7mxJA8+BntVlmdrMtRaOi46RrTQkHN8lwumEmE5mrXRSNGtWmghL8rGpTTSSdym5GAN7bwEVPmxf1+ib4/2VlZThYtgrLly9Hr169HDuvFoMdt1iIzaHGdmI29AHAyJEj8fLLL2PatGmYMGECOnbsqPs4ZamnHbN+Nd3aAACSzop3u0XDX22ntOD/K8ENMBYA1c9THy9aADSyLFUpGL5WTYN+68NnhJ8bi8g0L3YFv5pubYQ1adRcq3Vklvp2Kahv19TQMNKMiKZLp5oRXtwkQzZONCWimWmzwc9sQyL4utmtTS2PjKRP5Xc1a6oBybN8pBlnCtqhzYEKAGJBz4w+azulARb0adfYGTy/3LZI//a0u7p0eMfOXj1Lw/7s+++/x6pVq/C///u/GDFihINnRYh8Yjr0AcAtt9yC0tJS/Pa3v8XEiRORkRF+VzaZs35K2FNQAo/R8BeuYEQy1kqQi1Y01IEv3PFlzf4pvz/Q/G/jlRDoxdk+QJ651tOkkeAHGGtEAOJa1HuO9pgyGxFAk3kx0oiIh1m+WJhNOVPQTto4qUXbKDNjrLX6FB0jjZhqhbQT4hvQxLqxdkuXRhu4dnyGXa+eG9WnXj2v7ZQmfdwEmt6jaiKNn27p0olaXl1djeXLl+PXv/41pk6davvrtVQS/E3/ZB+TNCfmdu/UIxAIYPr06XjnnXdw7bXXIj098rIHI8FPIbHe18xUR8KIqQFCzbbRmZRwhSNS6NNDKR5mioQ69EWj9eEzcVEohE2M4FI6MzsmimjSihYVRDVppRGhEM7EGN4UKYIm9UyM9OVJgOObEQByb34tY5dEPY0a1SQQuSERSZ+ixjqaNiOZaxnajHdj7dZ4CYg1bhVkalNk3JQxZgL6+pQ5ZgKhGnVrvATk6jLcLF9tbS0++OAD3HDDDViwYEHYneKJeZTdO4feaM/unZ8v5e6dWuIi9AGAz+fDjTfeiC+++AI/+MEPhHZWEgl/1Xnnb76bXGvsT2WmeBgJT1rUxcNo4NNi9NyNnndjeugAmlF2VvdxhpYpedVgA9KMjFk9mjUyZpZyympCAM40IlofPoOqizLCalCLlw0M4A1zbUczAmhuro3oM5K5NqJNrbmWbawVFIMdL+babV16tWkL6GvTyfHSbP0WGTO9rMlwga+hoQEff/wxLrnkEixduhRJSbG/CsSLBEPfDTaFvr8z9GmJm9AHNHVmrrrqKpSXl+Oqq65CYmL0wUYb/NSmOhx2hL+aLqEDfFqVO3PTdZnN/2aty6N3yq2GPj0yys5KD32At40MEGpmIunRziaEokcrOlSMjNUGRF1mopAG1djVhAC8bWIAd8y1otNYaowB1rTpxLnHi7kGnNWldty0W5c1XVKkjJWANU0q9dvIeCmzdmt16mVNhgt8fr8fK1asQNeuXbFixYqoK8eIeRj6nCeuQh8AVFRUoLi4GAkJCRg5cmTEKfmttX1Cvk6qN/ankFFItGFPi9FCcrZD6CDb6oSx5+uFPjV6xcSOwBdy/NTQx7c9GOZzMDFuZk73OD/oGdGizBm/cHo0a2jOdkg0rEE1Wj262YBQ8LKRAdxtRAD2GWy1Nq0abBmNCAVRgy1bl3ZqEoid5phXGrWAt5q1QGRt2lm3lZodtlarcWmc1At9gUAA69atAwBs3LgRWVni97IlxlFC37Dr7Ql9m99h6NMS8xu5aGnXrh1WrFiBYcOGYfPmzRg2bBgSEhKaBTw9lIFK1HA3picYKibqjTWihT0FZTAXKSbawKf+nojxjhb4gNDzNjr7Igt1ONLS9pC821KIIrx5xrmNXSKdvxmM6DDchkPR9FiXmWi6AWFEg9rX1OKW/hRjKdyAiAUENhpStGq0IWaESBsOhdOlGT0qVBY0Lb8z04yIpEmnDbaeJmXp0dENrwTRjptuaFK0bouiV7ON6DJaza7pkuJ4o1atx3C1LqhTjwW+zZs3o6qqCps3b2bgc5JAoOmf7GMaYM2aNXjmmWdQUlKCo0ePYunSpbjhhhuCP6+ursbjjz+Ov//97zhx4gTy8/Nx//33Y8aMGcHH1NbW4qGHHsIbb7yBuro6jB8/HvPmzUOXLl1k/VaWibvQBwC5ublYvXo1Lr/8cpSUlCBpwK2Gnu9LTTAU/ADxTqKvVRKqc5OQUm1MkNHCn17xCPdzKzMvapQC2JCRgIxv5d+g2QyV+WKfp8gsq3fttRMFNiI0okHAfAPCiIkRbUCE06ITDQi7Z521RDU1LmB0B0+RJoTRMdHozIoWEV0aDX5aXRqdhRYx2EDz8OeUwQai6NFDuyJGQnZTzCpGx0izDVr1z6LpUmR8VFDr0ulVOeGoLIh+jbNKmxq4TgQ+AEGzv2HDBuTm5kp9TeJ9zpw5g8GDB2PatGmYNGlSs58/+OCDWLlyJRYtWoQLL7wQH3/8MX76058iNzcX//qv/woAeOCBB7Bs2TK8+eabyMrKwn333YdJkyZh/fr1Tv86YYm75Z1q9uzZgxEjRqCgoACFhYVCs31aZC6zq85tPuAaDX8K6sISLfCFQ11YjBQRLQ0ZzQflSCHQrkICAH7RNoYdvkbwUoqEPgU7lhyrdShDf2qMaDGcsTGrRUWHRhoQVgx2JIR1CHsaEAm+gFATwm0tqjF73c02IdREMtl2nZcebusxq7ROusmu6pEaM2OjgpnGrBq7xkerYyMgPj66rUUA0ut0UdJe3e9v3boVBw4cwPr169G3b1+5L0rCoizvvOy6/7Bleeem935lanlnQkJCs5m+AQMG4Oabb8avfvWr4PeKiopw7bXXYu7cuaisrESnTp3w+uuvY/LkyQCaMki/fv2wceNGDB8+XMrvZZW4nOlT6Nu3L1atWoWRI0ciOTkZhQObf44vGlZn/fSCnhplMDY78+e3sNpEXYASTa6U0wt8QPPf2yszgUECkB/8EiBkbvzJ4uZG1oxfOB1a1Z9ibsw0HvRm/mSYGvXvKrP5YBdVPVLlH1T0I1Q2alEErS7NGO1wsytGNBludsWKHhsyxHSo4AU9VvY0vvNkVGKgraw3PjZkJFgKfgpmm7JqTcpsykYbHz3RlAXsaczq8OWXX2Lfvn1Yu3YtA18cUlVVFfJ1Wloa0tKMj3OXX3453n33XUybNg25ublYtWoV9u3bh//+7/8G0DRT3NDQgHHjxgWf07dvX+Tl5TH0OcnAgQOxcuVKXHnllUhMTERhf3PBDzD2WT8AqM0WH6jNmO+zHUNHxbRKcwWqLiv0OK2+l1+ltUU1/WTLvnOmU8EvWtNBwazBqctMxNmOCaa1B5w3RbIbD4B4ACTyMdqAAKzp0EoDQv28Vif80lc+xIzRbkGIjo1mqOiZZGlMVB/HbD2ONC4qKH8DRZOe0aENgU9vlm/Xrl3YuXMnVq9ejYEDB8p/USJGAPKbQ+eO17176A79s2bNwuzZsw0f7vnnn8f06dPRrVs3JCcnIzExEQsXLsQVV1wBADh27BhSU1PRrl27kOd16dIFx44dM/Mb2EKLKAdFRUX4+OOP8YMf/AB+vx+F597bsmf9qnObG4Vkgx/tEQ1/2sAHnA9vRoqNNvBpj21HAGxMb/63yvhWTghMbDRQXFyc7QPsCX7qv6sZ7ZltOtRlmQ9+TjQdgFCT15huTHNGzE08Y7YBYcRgmw1+FT2bXsOq2VaOY0aHRow20GS249loewk7Q56CHWPi2Y4JhrQookEtiuYBsXHR6Hjo6scuoB/4duzYgR07duCTTz7BJZdcYs8LE9c5dOhQyPJOM7N8QFPo++yzz/Duu++iR48eWLNmDe69917k5uaGzO55nRYR+gCguLgYq1atwlVXXYXGxkYUFhaiMH2v5Vk/vaCnpvHcMmWZ4U8v8KkxE/7CobyWXtExU1zCofd3lBUEHcfh4BdOg43p9jQdwunPjaaDGQ0q70n13y1mtRYOmzQoipXmAyAe/MI1v8yMfVotRhr7tJgdC+02265j4DLYqUHAPh1GqsdGtag3HqpfI5IWzWqwUfNRqmjjYqw1HfQC39atW7F3716sWrUKRUVF9rwwESYh0PRP9jEBIDMz0/ItG86ePYtf/OIXWLp0KSZOnAgAGDRoELZt24Znn30W48aNQ05ODurr61FRUREy21deXo6cnBxLry+TFhP6gKYZv3Xr1uHKK6+Ez+dDUVGRqeBXfUECgAQkGbg7gIzwFy3saVEXEL3CE67A6GH37J8e6uLjO9ecyTgSAx8QMYjR4Fd9gbj2rOhOa3ZE9Sca/kT0F4tNh3hfTqfXfIjU/DLTfAAiG26Rxpeo2Y6mw2iG2w6zDTTXn22zK0DMz/JFa77agdF6HAnRWqw36ydLf3poA2CsB75AIICSkhIcPHgQ69at45JOIkRDQwMaGhqQmBg6ziQlJcHvbxqni4qKkJKSghUrVuCmm24CAOzduxdlZWUoLi52/JzDEef2pDkDBw7Ehg0bMHr0aPh8PgwbNgyF6U0Dg174awp4+ihBxInwV9XzXPirivLAMNgx+9eQCbQ6bvlwhgh3PUyHQTuWeAKGZloiEUl/RrAy63e2szndRdKckYYD0LzpYKfRUVAMTzw3HMzQ1HQw9veXFfyMGG2RMc9o48stw+1LM6Y/Lxhuu1DGRDc0aCboRWpAGB0HlXNQdGhlpYMRfGlAZb5OYyyMJr2gP73At2nTJpSXl2P9+vXo08f4bu7EJjxwn77q6mp89dVXwa9LS0uxbds2ZGdnIy8vD6NHj8YjjzyCVq1aoUePHli9ejVeffVVPPfccwCArKws3HnnnXjwwQeRnZ2NzMxMzJw5E8XFxZ7ZxAWI81s2RKK0tBSjRo1CVlYWLr/88mCC31rbx5TRNhL8FEQK0NnO+t83G/5k0RBmtlwkBJotOkZQ72qacTiKxO00PYLvrupuTSdhZDMTuzSnoNaeDL0pxseM0VGjaM9Mw8EO7WmNjxcMDwDDTQe92eZIY6FR/Zkx3IC5a6ZFa7qtatDJ3yWS/vRMt+GZZrs0aFF/0eqw3eOfgtmmlxZZ4x9gfgy0u/ZmHAmg6sKE6DVXwcbxTx36/H4/NmzYgMrKSqxduxb5+fn2vTARRrllQ/G1v7Hllg0bP/i18C0bVq1ahTFjxjT7/o9+9CO88sorOHbsGH7+85/j448/xsmTJ9GjRw9Mnz4dDzzwABISzm3eeO7m7IsXLw65ObuXlne22NAHAN9++y3Gjh2L+vp6jB49GikpTUlhbQfz2/bKLEThAp8aUzMw2aFfp500foxwoU9NuILkdOgTIXDuozVty+S+HU7nJSDBwKaRRnewtMP4RNKdFfOj6M6M3hS83mwAWkbDAXC26QBYN95plQGphltB1Hg7qT8vmG4R/SnaA7ylP70x0Kr+6rKtjX2A+fHPazU343BAuvZO5zUdsG1ZICTwNTQ0YNWqVUhPT8fy5ct543UP4aXQ11Jo0aEPACoqKjBx4kQcPHgQY8eORXr6eeG5Ff5Ewp4W0YKkDXxaRIuSSOjTohQmrxUg4HzoswMjoQ9wxvwAzQ2QqO5kNBoA4wZIVHN6BsjsbFFLaTYA5m6ZIdt4R9Og6eXtKv2ZNd7R9BfJeLvRcBAhkGSP9gBj457b2rOrwQo412QFmmvQ6+OeHVx5ZE/w/2tra7F8+XLk5+dj2bJlyMrKsu+FiWGCoe8am0Lfhwx9Wlp86AOaBoZbbrkF69atw9VXX422bdsGf+Zk8Kvp2nQpUs6Yb4FFKkzRAp+aSIXJTOALeX6bAFofNbhNuUMGyC68asBrugZM603EBIloLl4aDYC3NAfERsPBaJPLiPkOpz+7Gg6AHOMd69rz6nhnRXcAm6t6eEl36sBXVVWF5cuXY9SoUVi8eLHprfqJfTD0OU+L28hFj/T0dCxZsgQzZ87EX/7yF4wbNw4dO3YEAIw60TSImAl/ohu9KGFPoaGN+fCnFAltcTIS+LSPt7okRQ/t7wzAcBCMJQJJxoyQP8W4EfKliRkhvb+9GcJpTUFUcyLLPs02Gs52Pv9+imd9uYWo5rSYMdwKDZnRzXc07YkuNTajO6ufhY114+1VZDRVI2GkxkZb6mmlsVqVf358Fx3z4kFz6sD3/fffY/ny5bjtttvw/PPPN9t1kXgLO2/ZQEJh6DtHUlISXnzxReTl5WHOnDkYPXo0evToEfz5qBN7TM/66YU/EeMtI/wB1reQlxkAld9JD+3fxGmTnuCztzC5Gfwi6c2KzgB9E260yaB+jlZjVgyQWm/qvwEDoPNoNWjFfIcLfmaaW+HGNBkrGhranP9aRHNOmO+WgqzmlhpZY53yPLX2ZOhNi8iYF2+B75tvvsGaNWswa9YsPPbYY8FNNgghDH0hJCQk4PHHH8dFF12E22+/HYWFhRgwYEBw0LAy6wc0Da512cYLkRVTXtvpfMpIPWV95D1dcP546d/ZO5Jri3baSWO/f2JD7BsiK8HPqOlpaGN+qadiWGo7+SzrTB3+rBqhcERrMLRU8+1UowGwpjcg1ICbNd7q5yoG3A7zDUQ34E5pzmtLimVhR8gLhxW9qTld4LNcRyM1UtUofx9Fe/GiNyXwBQIB7Ny5E1u3bsWiRYuC90ojMYA/0PRP9jFJMxj6dJg8eTLy8vIwYcIEnD59GsOHDw9ZHmAk/NVcoH+D56SzJmbvDIY/deADgPr2TV/LCH/a49sdAIHwf8vWR+Qt3fDabB8gbsS1fx8nNKag1kJ9e+vBr769D/Xtm/7frLZEzRBgvcHgVczozQpONhqAJtMsazyry27SnZWxzKgBB5pMuBkDboZ4WtbpZMgDzo9xtZ3k1FClHtd2Mqc5I+ObmpquAfhaqfQnWD+9HPj8fj8+++wzHDt2DGvWrMHQoUPtfWFCYhRu5BKBsrIyjB8/HrW1tbjyyiuRmpra7DF6wS9cONHDjDFXiGSWtIEvHEaKl1KkohGpgJktVABCClU0lELmxUIFmDPi2uAnojO79KUQTWdmzFEknYmaIzt0Fs0cxbPW9JDRZFCw0mQArJtwPc0ZNeJmNaenNxEjHi96i6Y1mY1TBbONUzVmNWd1fLO7huppz2vLOYHzga++vj54S4aPPvoIeXl59r84kYKykcvl4+bYspHLhuWzuJGLBoa+KFRVVWHy5MnYtm0bxowZg3bt2uk+7qNBvS29jswCJhr4tEQqYqKBT4u2iDkV+kJIbW4a0g9HnuT2kjmq7aa6a3G9uVlNs/oKZ46MaMyOxgLgreYCED8mHDDXYADsNeIimjNqxEX0Fs2IO6E1rRGPV6219IYpEF5vTtfO1kcSUZN/vvZEq5kKTga+iooKrFy5EoWFhXjrrbdCdl4n3kcJfSPGzUFysuTQ11iL9Qx9zWDoE8Dn8+HRRx/F/PnzMXr0aHTv3l33cVaDH2CtkPlaixfMSOgVM7OhT036d0meCX3RSDvqzMrnBJ8m1IngcPADzpsksw0FILpJammNBcBbRtzN5gIgp8EAiJlxM1rTM+Nua81LRhwQ01qz8c4DWrOjUQpYq5tqvbmts2goOnQy8JWVlWH16tX46U9/iqeffhpJSXG0drmFwNDnPAx9Bli0aBHuvvtuDB48GIMGDQq7K5Qb4c/Xpf78F6flBZbUU0lSAl+QtucLflJ58+WykXAy9AEAkh16azSaMC8OG6WgviRoy66mAgCgbaNhXalxVGPJAaQdcmb3l5bUXADsWbWgoJhxrxtxoMmMOxn4DGsMcE1nVjWmYNt4FmNjmROM/+wAAoEAvvzyS2zfvh3/8z//g1tvvdWR1ybyCYa+sbPtCX0rZjP0aeBGLga47bbb0LdvX/zLv/wLKioqMGLECCQnN/8Tjv9yHwBr4U8ZsKMVtpCwp6AKVlZNen17H5I61MF3QsJOA21DDYH23K0UuIjUJ5oPfl4l1W/KLPlaBQyZpWb6atsoRVPAebMkM/AB58/ZsaaCBeq6m7grtRnMNBZMYlRjwed1qYcPkNJY0Nu0SpbOans2bVVqdrxy0ozXdmv0dvPKYZSxQZbOAMB3UQ2SvmptS3NUPf6K6i1em6PjPzuAxsZGrF+/HpWVlVi3bh2KiooceW1C4gXesdIgl156KbZt24bMzEx88MEHOH36dNjHKuHPCr5WAd1B3NelXj/waWnb2CxsGSGpQ13wv8o/u1B+J+HfzW6cMjFmi6bJIh1OU8GfR7sGFjUVfJ2LauC7qMbycQDono9jWoq3hoKCA7+X7jWSoC2Fpl1gfdIbC4A5fcWrITeNyVk+UZyqKVLGMWVcDaP/aL9DtHE9Ih7X1/jPDuD06dP44IMPkJmZia1btzLwxRHKzdll/yPN4UyfCXJycrB27VrMnDkTr7/+Oq644oqwn/OTMesHnO+emy5cSiEx0N0MF/DU35cyAxiGZr9rVRzcCC0cyQFzIdPkjB8QOiNjSlcmZ/20urKsJ4GQEG1W2Y1Zvngm0myfcLPK4kyMVmeWxqooGhOZkYlXQw7AM7N8hsYxCxrTq42mV8QYbHLorWSIZ22N/+wADh06hDVr1uDWW2/FH//4R6SlOXSPE0LiDIY+k6SlpeGll17CiBEjMGPGDAwcOBBDhgwJ+zk/K+EvveuZ4P+nAKg9Y2EZpODST9EZPWHDLqF7r/47KNQebWP5uBFpTHCuwDkc/NR/T59ZTRlsJkTTlfJzYfNkUldqc5jeph4+u3XkNrHaVAAMG/NIzSrDptyEvrSm3FJDIQZMuZs4uSJEpCYa0pjFmpjSszr4/6bGrxjQ1g82foUvtm7Fzp07sWDBAtxxxx2OvTZxkMC5f7KPSZrBjVwksH37dlx33XVISUnBqFGjhLpQ0cKfXsDRw1IAVNCYKhlLOJsVPhmhr41YgQ8bBGOgyAEw3zWPYs6jacoOLSmY1ZTdjQSgua4MNRKsLIGME13poWhNiqYAoeBnRGNCxlzymGW4QUVthaAdv5zQllfHrUi1MKrOYqQOjl61C2vXroXP58O7776LwYMHO/r6xH6UjVxGjrFnI5d1n3IjFy0MfZI4deoUbrnlFnz++ee48sor0bFjx6jP0QY/0aCnhyzDbsdn9nwn0hwNfXrUHm3T4kyUGT15tYkAaIyUTYEvHNIbCUDsaAqIaM4daSYAuubcqrZ0zblD2opozlu4rtxsegKx3/hUaKaxGAl8Rf/YhE8//RSXXXYZFi9eHPb+yCS2UULfqCtn2RL61q6aw9CngaFPIn6/H//5n/+JuXPn4tJLL8XFF18cdrmnmo8G9bYU+NRYKYKdO1UF//9Epbzlbh2yzv9ux78z/+azEvoAoHV6+OefPJIV+cluLJcyYKayL6gM+bqm1poZkmGmOneqkqojhQ5ZZyzpSMFyEwFokebctWYCEDToMptTspsJZnUVk5oCLOvKC81OQK6mAHnjFGBtrNLWvai1TouDmgoEAuj253dRUlKCX/7yl/jFL36BxETuNxivBEPfFTaFvjUMfVoY+mxg9erVmDJlStP9R0aMQGqqWGFaPf4CaedgpBiqw54eVo27OvRpMVIUrYY+IHLwi8TJI1muGyptsIuGW8FPqye7GgiAN5sIQqbKrc9cCRp0Pa2xkRAdOzQlbNI9HPjCjV1ua0oZq2RrStY4ZWejU48QrTmsJ3/NWaT9fhGqqqrw5ptv4oorrnD09YnzMPQ5D0OfTXz33XeYOnUqtm3bhtGjR6NTp07Cz3Uy/EULfGrMFMZIgU+PSMXRzdAHAKlJEu/DZIB6n/m7K1s1VYC4sXKzeQCwgSDEOZNutIEAOKslNXq6kmXSw2nKjEl32qAD7pp0ADGnp0hjVDyNT1bqHGCu1h37tr3p16srPYz6F/+CwsJCLF682JBfIrGLEvquGPVrW0LfmrW/YejTwNBnI36/H0899RR+85vfoKioCP379xda7qlgZ/gzEvb0EC2QRkOfGm2RdDv0AQx+WszoqKU3D4DY1BHgnFEX1ZVZoy6qJxGjTj2ZwwktGR2fWvrYZEVHg98+afg5gUAA//znP7FlyxbMmjULjz32GJdztiAY+pyHoc8B1q1bhx/+8Ido06YNRowYgfR0Y+KWGf4AILN1rdTjhSuUVgKfHlU11geFWDVXgLcMu9WmASBmsGRoiM2DULxq1M1qyohRN6uncEa9JWvJS+ORGicamrLHpVjXkZnAV1tbi/Xr1+PMmTNYsmQJRowYYfr1SWwSDH0jbQp96xj6tDD0OcTJkyfx4x//GKtXr8aoUaNwwQXGg5zV8NevS3nI10dOG/xAtwDqgik79F3QNnQJ0e7yLqaOE6smC3DXaKn1I1M7TjUNjn+X6QlzBbRcDSnIbB4oRDLrMrWkmHUvaIk6SpWqIcA5HSn1zGwdU3BbQ2YC3+HDh7Fu3TqMHj0ar7zyCrKzsy2dA4lNGPqch6HPQQKBABYuXIif/exn6Nu3L4qKipCUZLxwGgl/2qCnhx3hzw60oU8PkQLqdpG0ipNmK5J+ZOvGzoYB4J2mARDbZh2Q0zywu+kE2K8jK4ad45A5DcV68xIIX8uM6MntcchM2PP5fCgpKcGePXvwxz/+EXfddZehj7yQ+CIY+kb8yp7Qt/4/GPo0MPS5wJ49ezB58mScPHkSo0aNMn0PmnDhTyTohUNGAe3T/niz7+091dnycUVCnx7aQup2sZSBnYbLqH5kmi5FOzL0okZUOy2haQA4Z9ijaclOw273SgMtThp2tzXkVOPAraZln/bHXRuDFMLpyQv1y0zgq6iowNq1a5GdnY0lS5agb9++ls6BxD4Mfc7D0OcSdXV1ePTRR/HSSy/h0ksvRb9+/Ux3vJTwZyXs6WGmmOoFPi1miqnZwBeOg5XmdxoD3DddgDzjJUM3Vo1XON242SwA4rNhANhn2s1oyY6mASC3cWBGQ3aZduqnOfHYrFSjaMkL2jEa+AKBAHbv3o0tW7Zg+vTp+O1vf4u0tLToTyRxjxL6Rl9uT+hbvYGhTwtDn8t88sknuO2224KbvLRu3Vroeb67I99I9kSdvPsOiRZUkcCnh0hhlR36OqRFngX44ni3qMeINfN1SefDut93QytqRHXjdrOgQ9oZIV1EI9Z0Ew5ZDQMFK8Y9koasGHdZ+tld3iVuGgaAHP30yDol4UyaMKudWBp7tBgdi9yY3aupqcGGDRtQXV2NRYsW4eqrr7Z0DiS+CIa+4l/aE/o2zmXo08DQ5wFOnTqFe+65B++//z4uv/xy5OfnB38WLdxFQ6ahB8IXV7OBT0u44up06IuEUmy9asDChbtIOKUTNVY0E6uNAsC7uomEEw0DwJh5N6ofI8bdSe0YMe9e0I6obqKNQ25pJ56ak3po9eTG7B4AfP3119i4cSMmTJiABQsWoH17a6trSPzB0Oc8DH0eYvHixbjnnnvQrVs3XDpvCFIzrO9upmBngZUV+LSoi6wXiqkebZKMh/JNxy8Uetxlnb8RPuYZn5zlMk4YMZl6iYUmARBqxLxg3AE5zQLAWfMuQzvRzLtXtGOHeZeBWjdmNQPEXkMSiJ3xBjBWmyLVJKOBr76+Hps2bcKRI0ewYMECTJ061dDzSctBCX1XXmZP6Fu1iaFPC0Ofxzhy5Ahuu+02bN++HZf9x6W44LJcqceXWWgLsw4BAPafkfuBdz16tTmOrZXdpR3PzdBnF7KCH2CPIbOrOaCgGDLZBgyIjSYB4E6jALDfwNuhHa2B96JxV5Bl4LUY0YtCLDSY7Bxr7Bpn3NJLOGrnGzfKhw8fxsaNGzFkyBC89tprpm5NRVoODH3Ow9DnQfx+P+bPn4+HH34YPXv2xCUvDJI666dgtugqYU8POwJgrzb6BdxKCPRagZWF14y8Vit2NwgUrXixQQB4SyuA9/SiJiPZmb9VdaP8TSXiVTNe1kth1iHHGpAKMsYZL2rFaOCrr6/H559/jtLSUjzzzDP4yU9+wlsxkKgEQ9+wJ+wJfZufZOjTwNDnYb755hvccccd2LlzJ4qLi9F1TidbXke0+EYKe3rIKMDhAl84RIuwFwutTNw0ZyI6kW3OounErDmTqRPAe1rxmonX045dRl5PM/Fq4mXhFb14pfGoYEY3XtSJldm9AQMG4NVXX8WFF14o5VxI/MPQ5zwMfR7H7/djwYIFeOihh9CzZ08MHToUSffac8nCFWGjYU8Ps4XYaOjTQ68gx7uZB5w1aGY14uXGAOBNYyYbrzcIALlGXlQvRo08xxRjGNFKLDQcATHNeFUnVmb3fve73+Gee+7h7B4xRDD0DbUp9H3O0KeFoS9GUGb9duzYgeHDhyMvL8/yzp7hUIqxjLCnh2hBlhH49Nha2d2zhVc2Mk0aEGrUZOvDqFGTpY9wRo0aMUckM29VM1bMvBW9RDPzLUErsaQTwJxWZNYcrWa8rBGjge/gwYPYtGkTBg0ahP/7v//j7B4xBUOf8zD0xRCBQAALFy7Eww8/jK5du2LYsGFo3bq1tPB3eeZXzb53uD5byrHDEa4w2xX4FLqlNt+RbEPVRZaO6UWjBsgza2p92KkLEbNmpz62VnbHdZ22W9aDFq/qA4it5gBgzNDboRXF0HvZyMvGLo3Y1VwE4nMscTPs1dTUYPPmzTh69Ch+97vf4a677uLsHjGNEvrGXPoLW0Lfp1v+k6FPA0NfDHLs2DHcd999+OCDD1BUVIS+ffsiISHBcPjTC3mRsDsAAk1F2u7AB+iHvkiIFO14Mmwi2nCjIeCWNmSYtnjShx5azbjVMAKc10m86wOwrhE3moqAt8YRNUY1I1sfRgJfIBDAnj17sGXLFkyYMAEvvPACcnJypJ4PaXkw9DkPQ18Ms2zZMtx9991ITk5GcXEx2rVrB0D/hu5GA1407CzWg1uXAQC21+TZ9hpGQ180lAIea8ZNhi5acjMAiP2GgIKoqTeiGadNvdc0Imrsva4PO7QBOKsPr2lDDz29uBn2AODUqVPYuHEjfD4fFi5ciIkTJ0o9H9JyCYa+op/bE/pK/ouhTwNDX4xTXV2NJ554AvPnz8eAAQMwZMgQJCcnA2gKf7LDnh6yCrcS9sIhMwTKDn0K7ZKMLfdaXdVX2muPztwj9LgKn9yt0hXsMHB6mrCrGWBXIwDwvqkH7GkIAM4Y+8Gty2xtEgFy9RHL2pBZU+zWhnr8iJVxQ0GklhitH0YCX0NDA7Zv346dO3dixowZePLJJ5GRkWHo9QiJRDD0XfJzJCdJDn2+Wnz6BUOfFoa+OKGkpATTp09HaWkpioqKkJ+fH1xrf9lDuxw5B7MFPFrYi4TZQm5XoQaMBz83sCv4AXKMnKgmZBk5L+lBZiMAEG8GALHTEIikD9nm3ivacKNBpOD18UJBZNzw+phhR/346LfDhB8bCARQWlqKLVu2oKCgAC+99BIuueQS6edECEOf8zD0xRF+vx+vvPIKHn74YWRlZWHYsGHBJZ+Ac+EPEC/kVgKfHqIF3StGzm28ZOasasGLDQCAelBjxeCb0YcVg09dnMdL44QapxuGsVg3jAS+iooKbN68GZWVlXj22Wfx4x//GImJibacFyFK6Luq8HFbQt/KrU8x9Glg6ItDTp06hSeeeAJ//vOf0b9/fwwZMgQpKSkhj3E7AMoOe+HQK+w0c6G4bfTt0oKIqaMWmuO2HtTI1IYRkx+L5t4u7NYDIKYJt8aJWB0jjIS9hoYGbNu2Dbt27cJdd92FJ598MqRhTIgdMPQ5D0NfHLN9+3bcc8892L17N4YMGYLevXs369o5Gf6ApuLuVOALx4lG+z+XEGvGDnDe7DupAzfCPxCbOgDcC35OaCKSyY9Vg28nboU+p+uEVhexqgUjYc/v92Pfvn3Ytm0b+vXrhwULFmDw4MG2nBchWoKhb8jjSE6Se0uYRl8dVm5j6NPC0BfnBAIBLFmyBA899BDq6upwySWXoHv37rr31rErABalHwz7s28aO9jympG4MPmE7vdLantIe41YNHcKdpg8rQbcuO5qLkw+IfV660ENREYx+m42gRSjzwZAeJzSgtvNwO01ebg+cysAubVAjd0aEA18gUAAhw4dwhdffIH09HQ8++yzmDx5Mu+5RxyFoc95GPpaCPX19Zg3bx5mzZqF9u3bo6ioCB07dtR9rNXwFynkRcPuMBAu8EXDjAmIVZMHWDN6Rq6/0+Ev0vWXbfRi+foDzoR/wL0GgJ4W7DD71EEoXmoCitYDq7rwStgDgO+//x4lJSWoqKjAnDlz8JOf/ASpqak2nh0h+gRD3+DH7Al9259m6NPA0NfCqKiowNy5c/HCCy8gPz8fhYWFaNu2bdjHiwRAKyEvGjJNgNnAF41whiDWzR4gZvhkXX87DZ+Va9/SAr8as4bfjCacMvxGtWDF8MeDDsxoIB4bf2pENeGlsHf69Gls3boVpaWlmDlzJp544gl+bo+4CkOf8zD0tVDKysrw+OOPY8mSJejduzcGDRokHP7sDHnRMGsI7Ap8kTjQoD+TGmuoTZ9T116W8bPzukcyfvFg9oHoht8OPdhh+u3QAa+/feNBLDT7tKj14KWwV1VVhS+//BL79+/H5MmT8dRTTyEvz957WhIiQjD0DbQp9O1g6NPC0NfC2bNnD2bPno23334bvXr1wqBBg6K+QX76xPsOnV10RMyBG4FPITupUcpxPq/NsXyMoenHLD3/pC/Z8jmYwYwBdPuay7heXqHC18aVRo9V4++GBkpqe8RN4APcu/ZAbDX4AGtjvZHxQjTwVVVVYceOHdi3bx9uuukmzJ49G3369DF7ioRIRwl9Ywc8akvoW7Hztwx9Ghj6CABg7969mD17Nt566y307t0bAwcOFHqjeCkAAs2NgpvmH5AX+ryEW+EPiG4E4+l6ywqOVsM+4O1rrsbtsG8VL11zBa9f+1i/5iJ8XptjKOwpM3sMe8TLMPQ5D0MfCUEd/nr16oX+/fujffv2Qs/1WgD0AvEY+hTcNIMAA74beDEA8Lrbi9fe50DLCHoKc3/zr0KPO3XqFHbt2hVcxjl79mz07t3b5rMjxDzB0Nf/EXtC365nhEPfmjVr8Mwzz6CkpARHjx7F0qVLccMNN4Q8Zvfu3XjsscewevVqNDY24uKLL8Zbb70VXC5dW1uLhx56CG+88Qbq6uowfvx4zJs3D126dJH6u1nB3dGceI4+ffpg8eLF2LdvH+bOnYs33ngDeXl56NevH7p27RpxS+d5T04I+dqNEHhRSmL0BwH4qsFv85nEP2rz44YxHNfqVPD/3b6e8W78FbKTGl0LAYrRV0IAw17LQXmvu/U+d+Nai4S9QCCAo0ePYvfu3SgrK8PUqVOxdOlShj1CDHLmzBkMHjwY06ZNw6RJk5r9/MCBAxg5ciTuvPNOzJkzB5mZmdi1axfS08/fVP6BBx7AsmXL8OabbyIrKwv33XcfJk2ahPXr1zv5q0SEM30kIkePHsUf/vAHzJs3D5mZmejbty/y8/Ob3eQ9GnYGQNGgJ4pMY9HSjKFdgcDsNXbCJLa0aww4G/JFrr2TYaClXW+nrrWZ97id192t6ywS9vx+P0pLS7Fnzx5UVVXh3nvvxf3334+uXbs6cIaEyCE403fxw/bM9P3zWVPLOxMSEprN9E2dOhUpKSl47bXXdJ9TWVmJTp064fXXX8fkyZMBNO2Z0a9fP2zcuBHDhw83/bvIhKGPCFFdXY0///nPeOaZZ3D27Fn07dsXffr0QUpKiqnjWQ2BsoOeCGYMRksziApWjaKd15ehXg52hAFZ192OMNBSr7Xs62zXe1vGNXfzGouEvYaGBuzduxd79uxBq1at8Oijj2LatGnIyMhw4AwJkYsToe/QoUMhoS8tLQ1paZFfSxv6/H4/srKy8Oijj2LdunXYunUr8vPz8fOf/zz4mJUrV2Ls2LE4depUyK1QevTogX//93/HAw88IPX3MwuXdxIhMjIy8LOf/Qz33nsv3n77bTz55JN444030KtXL/Tr1w9ZWVmGjqdeCioaAN0IeqKv7/byQq9hdOmnk9c23GsZvYYtNQQoKL+/2VBg5zXXO7bZ92hLv85mcXq8Vr+e6LX2wrUVCXuVlZXYvXs39u/fj169euFPf/oTJk2ahORkWjgSBwQCTf9kHxNA9+7dQ749a9YszJ4929Chjh8/jurqajz11FOYO3cunn76aXz44YeYNGkSPv30U4wePRrHjh1Dampqs3tfdunSBceOydtYyyocMYghkpOTMWXKFPzwhz/EZ599hueeey74QdbevXuje/fuET/3p0ekAOh20BMl3HmeZBbUDQdevK5GgoIXzKJXiPY5P69ca+15RAoGvL7niXR9vXJttUS61l64tqKf1zt06BD27duHsrIyTJo0CfPnz8fw4cMN11hCWip6M31G8fubxo/rr78+OGM3ZMgQbNiwAfPnz8fo0aPlnKwDMPQRUyQkJKC4uBhvvvkmjh49igULFuDFF1/E559/jl69eqFPnz6m3lzazWCem/2hrFN2lFYJTb/7BZKXLADAEd9p6cc0wgVJbU0+7/z/nw3USTobe1GbR+WaAu5fA6+RndSI7MRUt0/DEHqB5aS/3oUz8TYXJLUNvndj5X2rZWBqK0vPl/V+Fwl7dXV12Lt3L/bv34+EhATce++9mDFjBnJy4ufen4SE4Acgu49xrs+TmZlp+ZYNHTt2RHJyMi6++OKQ7/fr1w/r1q0DAOTk5KC+vh4VFRUhs33l5eWeeu8y9BHLdO3aFbNnz8YTTzyBt99+G8899xzeeOMNFBQUoHfv3ujUqZPpzuSDs6/R/b5Xw6A6GNiF2dDlJbR/J6+ayXDXU+Y1cDtA2qUnr15TNdrrK6NJ4/b1BOy7psrfy6vX1q7x1+zfU9FCtLAXCATw3XffYd++fThw4ACGDBmCefPm4cYbbzT9uXlCYoWEQAAJkpd3yjxeamoqhg4dir1794Z8f9++fejRowcAoKioCCkpKVixYgVuuukmAE23QCsrK0NxcbG0c7EKQx+RRkpKCm6++WbcfPPN2LZtG/70pz9h0aJFyMzMREFBAS666CJTs396eDEMOhH44hW9v50bxtKNaxgPIV4P9d/SCyHBqWsbr9dTjRfCXyyMt9HCXl1dHfbv34+vv/4ap0+fxq233orXX38dgwcPdugMCSFA02aFX331VfDr0tJSbNu2DdnZ2cjLy8MjjzyCm2++GVdccQXGjBmDDz/8EO+99x5WrVoFAMjKysKdd96JBx98ENnZ2cjMzMTMmTNRXFzsmZ07Ae7eSWzmzJkz+Nvf/oYXXngBO3fuREFBAXr16oUuXbo4+rkEO8NgLJiPeMEOk8nr5zxOhAVeV+ew83rG4nX8yawxYX8WCARQXl6O/fv348CBAxgwYADuu+8+TJkyBW3atHHwLAlxF2X3znG9HrBl987l+/9b+JYNq1atwpgxzd+3P/rRj/DKK68AAF5++WX813/9Fw4fPow+ffpgzpw5uP7664OPVW7Ovnjx4pCbs3tpeSdDH3GML7/8EvPnz8drr72G1q1bIz8/H7169ULr1q1dOycrYTAWzUi8YdZs8tp5B1mBgdfUG7TU92SkoAcANTU12L9/P0pLS1FTU4M77rgDM2bMwMCBAx06Q0K8hZdCX0uBoY84Tk1NDd566y0sXLgQGzduRF5eHvLz89GjRw/PbEEdKQzGujmJd8KZTl632EAkNPBaep+W8j6MFPYaGxtx8OBBlJaWBj/bc/fdd+Omm25ytdlJiBcIhr6Cf7cn9B34PUOfBoY+4iplZWV49dVXsXDhQnz//ffo2bMnCgoK0LlzZ09uS/2nOZ+6fQqEtBiU4BBvQYHENtGWbx4/fhxfffUVSktL0alTJ9x111244447kJeX5+BZEuJtGPqch6GPeIJAIICNGzfi5Zdfxl//+lekp6eje/fuKCgoQHZ2ttunZysMkoQQ4n0ihb2TJ0/iwIEDKCsrQ11dHW6++WZMmzYNxcXFnmxgEuI2wdDX82f2hL6v/8DQp4Ghj3iO2tpafPDBB3jttdfw/vvvo127dsEAmJWV5fbpxRQMlIQQYp5IQa+yshIHDhzAoUOHUFFRgYkTJ+L222/HNddcg/T0dAfPkpDYg6HPeRj6iKeprq7Ge++9h1dffRUrVqxAp06dcMEFF+DCCy9Eu3bt2EF1EQZKQojXibbBihECgQAqKirwzTff4MiRI/juu+8wduxY3HHHHbjuuuuQkZEh7bUIiXfOh777kZwoOfT567D86z8y9Glg6CMxw6lTp/DOO+/gb3/7G1asWIGsrCzk5uaiR48ejt8CgtgPQyUh7iMzNMUiyi0WDh48iG+//RaVlZUYO3YspkyZguuvvx7t27d3+xQJiUmCoS9/pj2hr/R5hj4NDH0kJjlz5gw++eQTLFmyBO+99x4AIDc3Fzk5OejWrRt3RiNRYagkTtHSg1OsUVNTg8OHD6O8vBxHjhwBAFx33XWYPHkyrr76at5PjxAJMPQ5D0MfiXkaGxuxfv16fPjhh1i2bBl27dqFzp07o0uXLmjTpo1nbgNBWha337DH7VOIK177e1+3T4HEOZWVlSgvL8fx48fRv39/TJw4Eddccw1GjBjBOkKIZIKhr8d99oS+gy8w9Glg6CNxx4kTJ7BixQqsXLkSe/bsgd/vd/uUCJFKAs4iAbWa79Zrvk4N+SqAdATQytbzIiSW6dmzJyZMmICxY8eiQ4cObp8OIXENQ5/zsHVF4o4OHTpgypQpmDJlitunQgghhBBCwhHwN/2TfUzSjES3T4AQQgghhBBCiH1wpo8QQgghhBDiPIFA0z/ZxyTN4EwfIYQQQgghhMQxnOkjhBBCCCGEOI8/AEDyzJyfM316MPQRQgghhBBCnIfLOx2DyzsJIYQQQgghJI7hTB8hhBBCCCHEeQKwYaZP7uHiBc70EUIIIYQQQkgcw5k+QgghhBBCiPPwM32OwZk+QgghhBBCCIljONNHCCGEEEIIcR6/H4DfhmMSLZzpI4QQQgghhJA4hjN9hBBCCCGEEOfhZ/ocg6GPEEIIIYQQ4jwMfY7B5Z2EEEIIIYQQEsdwpo8QQgghhBDiPP4ApN9N3c+ZPj0400cIIYQQQgghcQxn+gghhBBCCCGOEwj4EQjIvcWC7OPFC5zpI4QQQgghhJA4hjN9hBBCCCGEEOcJBOR/Bo+7d+rCmT5CCCGEEEIIiWM400cIIYQQQghxnoANu3dypk8Xhj5CCCGEEEKI8/j9QILkjVe4kYsuXN5JCCGEEEIIIXEMZ/oIIYQQQgghzsPlnY7BmT5CCCGEEEIIiWM400cIIYQQQghxnIDfj4Dkz/Tx5uz6cKaPEEIIIYQQQuIYzvQRQgghhBBCnIef6XMMzvQRQgghhBBCSBzDmT5CCCGEEEKI8/gDQAJn+pyAoY8QQgghhBDiPIEAANk3Z2fo04PLOwkhhBBCCCEkjuFMHyGEEEIIIcRxAv4AApKXdwY406cLZ/oIIYQQQgghJI7hTB8hhBBCCCHEeQJ+yP9MH2/Orgdn+gghhBBCCCEkjmHoI4QQQgghhDhOwB+w5Z8R1qxZg+uuuw65ublISEjA3//+97CPnTFjBhISEvD73/8+5PsnT57ErbfeiszMTLRr1w533nknqqurTfxF7IOhjxBCCCGEENIiOXPmDAYPHowXX3wx4uOWLl2Kzz77DLm5uc1+duutt2LXrl345JNP8I9//ANr1qzB9OnT7TplU/AzfYQQQgghhBDn8cBn+q699lpce+21ER9z5MgRzJw5Ex999BEmTpwY8rPdu3fjww8/xOeff45LL70UAPD8889jwoQJePbZZ3VDohsw9BFCCCGEEEIcpxENgOQ7LDSiAQBQVVUV8v20tDSkpaUZPp7f78ftt9+ORx55BP3792/2840bN6Jdu3bBwAcA48aNQ2JiIjZt2oQbb7zR8GvaAUMfIYQQQgghxDFSU1ORk5ODdcfet+X4GRkZ6N69e8j3Zs2ahdmzZxs+1tNPP43k5GTcf//9uj8/duwYOnfuHPK95ORkZGdn49ixY4Zfzy4Y+gghhBBCCCGOkZ6ejtLSUtTX19ty/EAggISEhJDvmZnlKykpwR/+8Ad88cUXzY4XazD0EUIIIYQQQhwlPT0d6enpbp9GRNauXYvjx48jLy8v+D2fz4eHHnoIv//97/HNN98gJycHx48fD3leY2MjTp48iZycHKdPOSwMfYQQQgghhBCi4fbbb8e4ceNCvjd+/Hjcfvvt+Ld/+zcAQHFxMSoqKlBSUoKioiIAwMqVK+H3+3HZZZc5fs7hYOgjhBBCCCGEtEiqq6vx1VdfBb8uLS3Ftm3bkJ2djby8PHTo0CHk8SkpKcjJyUGfPn0AAP369cM111yDu+++G/Pnz0dDQwPuu+8+TJ061TM7dwK8Tx8hhBBCCCGkhbJlyxYUFhaisLAQAPDggw+isLAQv/71r4WP8Ze//AV9+/bF2LFjMWHCBIwcORIvvfSSXadsioRAICB5o1RCCCGEEEIIIV6BM32EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxzP8DfXWh2MY7qRIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHvCAYAAADgu7bYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+sUlEQVR4nOydeXwU9f3/X7ubY3OHAEm4wi2HnCJqQAGtgooHiuf3V5TWq4K22kq11haqrbbW1tbWs1qttdiqFQ+88AJFqCIKcgjKfSYBQu5sNtnd3x/LbGYnc3xm5jPX7vv5eOShJLMzn9157fvzfr0/x/hisVgMBEEQBEEQBEEQRErid7oBBEEQBEEQBEEQhHWQ6SMIgiAIgiAIgkhhyPQRBEEQBEEQBEGkMGT6CIIgCIIgCIIgUhgyfQRBEARBEARBECkMmT6CIAiCIAiCIIgUhkwfQRAEQRAEQRBECkOmjyAIgiAIgiAIIoUh00cQBEEQBEEQBJHCkOkjCIIgCIIgCIJIYcj0EQRBEARBEASRdjz66KMYM2YMCgsLUVhYiMrKSrz11luJv4dCIcyfPx/du3dHfn4+Zs+ejerq6qRz7NmzBzNnzkRubi5KS0uxYMECdHR02P1WNCHTRxAEQRAEQRBE2tG3b1/89re/xdq1a/H555/jjDPOwIUXXohNmzYBAG699Va8/vrrePHFF7FixQocOHAAF198ceL1kUgEM2fORDgcxqpVq/CPf/wDzzzzDH75y1869ZYU8cVisZjTjSAIgiAIgiAIgnCakpIS/P73v8cll1yCnj17YvHixbjkkksAAFu2bMGIESOwevVqnHLKKXjrrbdw3nnn4cCBAygrKwMAPPbYY7j99ttx6NAhZGVlOflWkshwugEEQRAEQRAEQaQXoVAI4XDYknPHYjH4fL6k32VnZyM7O1vxNZFIBC+++CKam5tRWVmJtWvXor29HWeeeWbimOHDh6OioiJh+lavXo3Ro0cnDB8AzJgxAzfeeCM2bdqE8ePH839zBiHTRxAEQRAEQRCEbYRCIQzsn4+qmogl58/Pz0dTU1PS7xYuXIhFixZ1OXbDhg2orKxEKBRCfn4+lixZgpEjR2LdunXIyspCcXFx0vFlZWWoqqoCAFRVVSUZPuHvwt/cBJk+giAIgiAIgiBsIxwOo6omgp1r+6OwgO8WIw2NUQycsBt79+5FYWFh4vdKo3zDhg3DunXrUF9fj5deeglXX301VqxYwbVNboBMH0EQBEEQBEEQtlNY4Odu+hLnPrYjpxZZWVkYMmQIAGDChAlYs2YN/vznP+Pyyy9HOBxGXV1d0mhfdXU1ysvLAQDl5eX47LPPks4n7O4pHOMWaPdOgiAIgiAIgiBsJxKLWvJjhmg0ira2NkyYMAGZmZl4//33E3/bunUr9uzZg8rKSgBAZWUlNmzYgJqamsQx7777LgoLCzFy5EhT7eANjfQRBEEQBEEQBJF2/OxnP8M555yDiooKNDY2YvHixVi+fDneeecdFBUV4ZprrsGPf/xjlJSUoLCwEDfffDMqKytxyimnAACmT5+OkSNHYs6cObj//vtRVVWFu+66C/Pnz1fdNMYJyPQRBEEQBEEQBGE7UcQQBd+nx+k5X01NDa666iocPHgQRUVFGDNmDN555x2cddZZAIAHH3wQfr8fs2fPRltbG2bMmIFHHnkk8fpAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvv5vqeeEDP6SMIgiAIgiAIwjYaGhpQVFSEqq0VlmzkUj5sD+rr65nW9KULNNJHEARBEARBEITtRBGFuRV48uckukIbuRAEQRAEQRAEQaQwNNJHEARBEARBEITtRGIxRDivNON9vlSBTB9BEARBEARBELbj9EYu6QRN7yQIgiAIgiAIgkhhaKSPIAiCIAiCIAjbiSKGCI302QKN9BEEQRAEQRAEQaQwNNJHEARBEARBEITt0Jo++6CRPoIgCIIgCIIgiBSGRvoIgiAIgiAIgrAdemSDfdBIH0EQBEEQBEEQRApDI30EQRAEQRAEQdhO9NgP73MSXSHTRxAEQRAEQRCE7UQseGQD7/OlCjS9kyAIwqPMnTsXAwYMSPqdz+fDokWLHGkPQRAEQRDuhEwfQRCETWzfvh033HADBg0ahGAwiMLCQkyePBl//vOf0dra6nTzCIIgCMJWIjFrfoiu0PROgiAIG3jjjTdw6aWXIjs7G1dddRVGjRqFcDiMlStXYsGCBdi0aROeeOIJp5tJEARBEEQKQqaPIAjCYnbu3IkrrrgC/fv3xwcffIBevXol/jZ//nxs27YNb7zxhoMtZKejowPRaBRZWVlON4UgCILwOLSRi33Q9E6CIAiLuf/++9HU1ISnnnoqyfAJDBkyBD/60Y+Sfvfcc89hwoQJyMnJQUlJCa644grs3buXS3vC4TB++ctfYsKECSgqKkJeXh5OO+00fPjhh0nH7dq1Cz6fDw888AD+9Kc/YfDgwcjOzsbmzZsBAFu2bMEll1yCkpISBINBnHjiiXjttdeSzlFbW4vbbrsNo0ePRn5+PgoLC3HOOedg/fr1XN4LQRAEQRDa0EgfQRCExbz++usYNGgQJk2axHT8b37zG/ziF7/AZZddhmuvvRaHDh3CX/7yF0yZMgVffvkliouLTbWnoaEBTz75JK688kpcd911aGxsxFNPPYUZM2bgs88+w7hx45KOf/rppxEKhXD99dcjOzsbJSUl2LRpEyZPnow+ffrgjjvuQF5eHl544QXMmjUL//3vf3HRRRcBAHbs2IFXXnkFl156KQYOHIjq6mo8/vjjmDp1KjZv3ozevXubei8EQRCEd4nChwh83M9JdIVMH0EQhIU0NDRg//79uPDCC5mO3717NxYuXIhf//rXuPPOOxO/v/jiizF+/Hg88sgjSb83Qrdu3bBr166kKZrXXXcdhg8fjr/85S946qmnko7ft28ftm3bhp49eyZ+d+aZZ6KiogJr1qxBdnY2AGDevHk49dRTcfvttydM3+jRo/HNN9/A7++cWDJnzhwMHz4cTz31FH7xi1+Yei8EQRAEQWhD0zsJgiAspKGhAQBQUFDAdPzLL7+MaDSKyy67DIcPH078lJeXY+jQoV2mYBohEAgkDF80GkVtbS06Ojpw4okn4osvvuhy/OzZs5MMX21tLT744ANcdtllaGxsTLTxyJEjmDFjBr799lvs378fAJCdnZ0wfJFIBEeOHEF+fj6GDRsmey2CIAgifYjGrPkhukIjfQRBEBZSWFgIAGhsbGQ6/ttvv0UsFsPQoUNl/56ZmcmlXf/4xz/whz/8AVu2bEF7e3vi9wMHDuxyrPR327ZtQywWwy9+8QvFkbqamhr06dMH0WgUf/7zn/HII49g586diEQiiWO6d+/O5b0QBEEQ3iRiwfRO3udLFcj0EQRBWEhhYSF69+6NjRs3Mh0fjUbh8/nw1ltvIRAIdPl7fn6+6TY999xzmDt3LmbNmoUFCxagtLQUgUAA9913H7Zv397l+JycnC5tBIDbbrsNM2bMkL3GkCFDAAD33nsvfvGLX+D73/8+7rnnHpSUlMDv9+OWW25JnIcgCIIgCGsh00cQBGEx5513Hp544gmsXr0alZWVqscOHjwYsVgMAwcOxHHHHWdJe1566SUMGjQIL7/8Mny+zorowoULmV4/aNAgAPFRxzPPPFPzWqeffnqXdYJ1dXXo0aOHzpYTBEEQqQSN9NkHrekjCIKwmJ/+9KfIy8vDtddei+rq6i5/3759O/785z8DiG/YEggE8Ktf/QqxWPLChFgshiNHjphujzCCKD7/p59+itWrVzO9vrS0FNOmTcPjjz+OgwcPdvn7oUOHkq4lfR8vvvhiYs0fQRAEQRDWQyN9BEEQFjN48GAsXrwYl19+OUaMGIGrrroKo0aNQjgcxqpVq/Diiy9i7ty5iWN//etf42c/+xl27dqFWbNmoaCgADt37sSSJUtw/fXX47bbbjPVnvPOOw8vv/wyLrroIsycORM7d+7EY489hpEjR6KpqYnpHA8//DBOPfVUjB49Gtdddx0GDRqE6upqrF69Gvv27Us8h++8887D3Xffje9973uYNGkSNmzYgH/961+J0UKCIAgifYnGfIjGOD+ygfP5UgUyfQRBEDZwwQUX4KuvvsLvf/97vPrqq3j00UeRnZ2NMWPG4A9/+AOuu+66xLF33HEHjjvuODz44IP41a9+BQDo168fpk+fjgsuuMB0W+bOnYuqqio8/vjjeOeddzBy5Eg899xzePHFF7F8+XKmc4wcORKff/45fvWrX+GZZ57BkSNHUFpaivHjx+OXv/xl4rg777wTzc3NWLx4Mf7zn//ghBNOwBtvvIE77rjD9PsgCIIgCIINX0w674YgCIIgCIIgCMIiGhoaUFRUhBUb+yC/gO9qs6bGKKaO2o/6+vrEDtoErekjCIIgCIIgCIJIaWh6J0EQBEEQBEEQthOBHxHOY1AR7UPSEjJ9BEEQBEEQBEHYTsyCjVxitJGLLDS9kyAIgiAIgiAIIoWhkT6CIAiCIAiCIGyHHs5uHzTSRxAEQRAEQRAEkcLQSB+Rchw+fBjvv/8+3nzzTezcudPp5hAEd3xohQ8h0W/CCkdmJf4vhiBiyLG0XQThZQYNGoRzzjkH3/nOd9CjRw+nm0MQaUEk5kckxnkjF3oYnSxk+gjP09HRgZUrV+Ltt9/GG2+8gc2bN6OsrAylpaUoKipyunlEGjJn1hanm5By/POV4U43gUhx1q1bh2XLlqG6uhojR47EzJkzcfbZZ+PUU09FRgalSwRBeBt6ODvhSZqbm7Fs2TK89NJLWLp0KQCgT58+KC8vR58+fZCbm+twCwm38+ivPnS6CUSacOPC051uAqGDlpYW7N+/H1VVVdi/fz8A4LzzzsMll1yC6dOnIy8vz+EWEoT3ER7O/sZXg5BXEOB67ubGCGaO2UEPZ5dApo/wDEePHsUrr7yCF154AR988AGKiorQp08f9O/fH6WlpfD5aOFuKkGmjCCcJ90NaywWQ01NDXbv3o39+/ejvr4eZ5xxBi677DLMmjUL3bp1c7qJBOFJyPTZD5k+wtU0NTXhtddew7PPPov3338fZWVl6N27NwYMGIDi4mIyeg5CpowgCLfD07TGYjHU1dVh165dOHDgAGpqavCd73wHc+bMwQUXXID8/Hxu1yKIVEcwfa99NdgS03fBmO1k+iSQ6SNcRygUwptvvol//vOfeOutt9CtWzf069cPgwcPpi+vTsiYEQRBGEfNNNbX12P79u3Yt28fjh49inPPPRdz5szBOeecg2AwaGMrCcJ7CKZvyfqhlpi+i8Z+S6ZPApk+whXEYjGsWrUKf//73/Gf//wHOTk5qKiowKBBg1BSUuJ08yyFjBlBEIT7UTOAtbW12L59O/bu3YvW1lZcfvnl+P73v49JkybRjBSCkIFMn/2Q6SMcZffu3Xj22Wfx5JNP4vDhwxg0aBCGDBmCnj17urKj/OOitwEAOb5sh1tC6KU11kb3jSAI06iZP2EN4Pbt27Fjxw707NkT11xzDa6++mpUVFTY2EqCcDeC6fvv+uMsMX2zx35Dpk8CmT7CdlpaWvDSSy/hb3/7G/73v/+hf//+GDhwICoqKlyzLbZg7tQgA+EtWmNtSf+m+0cQfBF/x9Ll+6VmADs6OrBnzx7s2LEDe/bswSmnnILrrrsOl1xyCe0wTaQ9ZPrsh0wfYRtfffUVHn30UTz33HPIy8vDwIEDMWTIEEc7PxZzp0W6JDdeQmrwtKB76B607h3dK/eh5/uWqvdPa8OYlpYWbNu2DTt37kRzczPmzJmDH/zgBxgzZoxNLSQIdyGYvhfXD0cuZ9PX0hjBpWO3kOmTQKaPsJTm5mb85z//wV//+lds2rQJgwcPxnHHHWf7IxZ4mDstUjWZcTt6DZ4WdB/tx+w9pHtmPzy/d6l2/1imf37zzTfYvn07jj/+eNx00024/PLL6fl/RFpBps9+yPQRlrBu3To88sgj+Ne//oXCwkIMHjwYQ4YMQXa2tZ27HeZOi1RLYNwGb5OnBt1La7D6HtJ9sw76/rGjNfrX1taGbdu2Yfv27WhoaMD/+3//D/PmzcO4cePsaSBBOIhg+v69bqQlpu+KcZvJ9Ekg00dwIxwO4+WXX8Yf//hHfPXVV4lRPSs2ZXGDudPCioRlf6SR+zn10idQYNu17EwwWfB6EuokTt9LunfmcPr+ibHzXvKIub+++wLVv8diMRw6dCgx+jd27Fj8+Mc/xsUXX4zMzEzT1ycIN0Kmz37I9BGmOXjwIB577DE88sgjiMViGDp0KIYNG8ZlVG/ez9/EkEw/h1Y6w7b2KEoCHU43w3XIGUc3JZUs8Eo8nTbyVpl4t99PK42Dk/eU9/10+30UI3dPnf5+idEyf0B89G/r1q349ttv4fP5MG/ePNx4440oLy+3oYUEYR+C6Vu8bpQlpu//xm1kMn333XcfXn75ZWzZsgU5OTmYNGkSfve732HYsGGJY6qqqrBgwQK8++67aGxsxLBhw/Dzn/8cs2fPThxTW1uLm2++Ga+//jr8fj9mz56NP//5z8jPz+f63sxApo8wRCwWw+rVq/HHP/4Rr776KioqKnDcccehX79+pkb15v38TdW/u9EAbmuPqv6dTF9XaiNdd2l1471Vgwx9V0r8WU43wRS10bDTTXAVtZEMz30vgeSY7NbvKMvo3969e/HNN99gz549mDVrFm699VZUVla68nFGBKEXwfT988vRlpi+OeM3MJm+s88+G1dccQUmTpyIjo4O3Hnnndi4cSM2b96cWGc7ffp01NXV4a9//St69OiBxYsXY+HChfj8888xfvx4AMA555yDgwcP4vHHH0d7ezu+973vYeLEiVi8eDHX92YGMn2ELjo6OvDf//4X9957L7799lscd9xxGD58OIqKigyfU8voKWF3MqJl7pRwa9LhBHJmTwm3JJtk6tlQurduuY9yKN1buqdx1L6vbrqvrLHZjfeVZfSvvr4eW7ZswTfffIOhQ4fizjvvxOzZs13ziCOCMIIdpm/v3r1Jpi87O1tzFtqhQ4dQWlqKFStWYMqUKQCA/Px8PProo5gzZ07iuO7du+N3v/sdrr32Wnz99dcYOXIk1qxZgxNPPBEA8Pbbb+Pcc8/Fvn370Lt3b67vzyhk+ggmmpqa8OSTT+L3v/89QqEQhg8fjmHDhhlab2DU5KnBKwExauzUcGOiYTd6zJ4SVieZZu59Ot9jI/fWCcNg5P6m830FjH9v7bi/PGK1m+4vi/lrb2/H1q1bE9PQFixYgGuuucZV08cIghXB9D3z5VhLTN/c8eu7/H7hwoVYtGiR6mu3bduGoUOHYsOGDRg1ahSA+EhfVlYWnn32WRQXF+OFF17ANddcg/Xr12PIkCH4+9//jp/85Cc4evRo4jwdHR0IBoN48cUXcdFFF3F9f0ahMhGhysGDB/HnP/8ZjzzyCAoLCzFy5EgMGDAAfr++Tt0KoydGnABoJRxWGDuiKzyMnhjpfTOTWPLWQG0kw1UJpF0Yvcdynz9vo8DjHgvvLx3vrRmUPnuz99iK762A0/f4rl++BkDd/GVmZmLUqFEYOXIkdu3ahd///vf4xS9+gXnz5uFHP/oRevXqZVdzCcITyI30qRGNRnHLLbdg8uTJCcMHAC+88AIuv/xydO/eHRkZGcjNzcWSJUswZMgQAPE1f6WlpUnnysjIQElJCaqqqji+I3OQ6SNk2bp1K37zm9/g3//+NyoqKjBt2jSUl5frWktgtdFTQkgMdnV0x4CMI460IZ3hbfaUYDGBdhr8dDN+Vpt6ARajYPV9JvPHB7X7pHSf7foOu8UAspg/v9+PQYMGYeDAgaiqqsJLL72EP/7xj7jiiivw85//PGkDCoJwO9GYH9EY36Jf9NgkxsLCQl27d86fPx8bN27EypUrk37/i1/8AnV1dXjvvffQo0cPvPLKK7jsssvw8ccfY/To0VzbbiVk+ogktm7dioULF+Lll1/G0KFDcdFFF6G4uJjptU6ZPIFdHd1lf0fGzx7sMntKvNfaDQAcvd/pYvzsvNduGpkn82cd0vssxHMnvs9uMIAs5s/n86FXr17o1asXjh49irVr12L06NGYPXs2Fi1aROaPIHRw0003YenSpfjoo4/Qt2/fxO+3b9+Ov/71r9i4cSOOP/54AMDYsWPx8ccf4+GHH8Zjjz2G8vJy1NTUJJ2vo6MDtbW1rtp5l0wfAQDYsmULFi1ahJdffhnHHXccLrnkEhQUaG/97aTRkzN5Ssd52fitCfELGBODfKcZOG30lIw+4Jz5S2Xj57b77eQ9BlLb/Dl5r8X32el7brUB1IrvM376GQDgnftPUj2uW7duOPXUUzFmzBhs2LABo0ePxsUXX4xf/epXZP4IVxOBHxHwHemLgH27klgshptvvhlLlizB8uXLMXDgwKS/t7S0AECXZU2BQADRaLxYVVlZibq6OqxduxYTJkwAAHzwwQeIRqM4+eSTzbwVrtBGLmnOli1bsHDhQixZsgTHHXccxowZo2r2Tv7JJgDAhOBuu5qYgNXkKWF3srA21B8AUBxotvW6ViKYRrckhCw4ZQx4JIhmDT9Pk+/2e+5kYYenGeBR5OFx352633q+32655zwLc1pomT+BxsZGfPXVV/jmm29w8cUXY9GiRRg+fLjFrSMIdoSNXP72xQRLNnK57oS1TI9smDdvHhYvXoxXX301qUBSVFSEnJwctLe3Y+TIkejVqxceeOABdO/eHa+88goWLFiApUuX4txzzwUQf2RDdXU1HnvsscQjG0488UR6ZAPhPLt378bPfvYzvPTSS7rMnhJWmECzJk8O3kmCYOzUSCXTVxfJ6/I7OwoAPLRgZ4K4NtQ/pe774MzDjlzX6H130gxsb+/h2LV5UhfJs72455XCnlzct/v7bsT8XXLJJfjtb3+LiooKi1tHENoIpu/xLyYgJ59vkam1qQM3MJo+pb0qnn76acydOxcA8O233+KOO+7AypUr0dTUhCFDhuC2225LeoRDbW0tbrrppqSHsz/00EOu2l2XTF+aUVdXh3vuuQcPP/wwBg0ahHHjxpkye0oYSRasMHly6E0MWIydEqmS+MuZPTV4JItW6YFnYqiljVS4/2r33ipTwPPeW2UE1O59qt93gP+9d2uRT2/8t/Pesxo/IG7+vvzyS+zcuRM33XQT7rrrLub1+gRhBYLpe/SLiZaYvhtPWMNk+tIJMn1pQjgcxsMPP4xFixahpKQEJ5xwAnr0kK9IGzV6asglCHaZPClyiYAZY6dGOiR/rLAkialm/NPx/psxA1bff6MmwMj9T8d7L6BXA2763vPqC9xq/g4fPoy1a9eirq4OixYtwrx585CVlWVh6whCHjJ99kOmL8WJxWJ48cUXcdtttyEcDmP8+PHo16+f7HC2FWZPzL5wCQBgbO4eS6+jxvqW+LSWvlm1ll/L60kfL7OnhJAYOmX+ga5JoBXm38s64KkBNSPghAaUDABPDXj53gP8Y4Cbin9ApwasKvoB7jR/sVgMe/fuxRdffIHs7Gw88MADuPTSS3U9kokgzCKYvr+uPdkS03fThE/J9Ekg05fCrFu3DjfccAO2bNmCcePG4bjjjuuy+5BdRk8Oq82fYPDkINOnjNVmD+iqCycKAXYVAEgHynTPaLL8Gloc6bB+vQVpQJl94RLHCoHiPiJV+gQ9o37RaBTffPMN1q1bh+HDh+OJJ57A2LFjLWwdQXRCps9+yPSlIEePHsWdd96Jv//97zj++OMxbtw4ZGZmJh1jpdlTM3py8Orw1UyelFTp4HljdZKnpQ0rkz8niwCkha7IacGu5F9OC6SBrjgVD5wsCAKpoQU95q+9vR3r1q3Dpk2bcM011+Dee++l9X6E5Qim76G1p1hi+n444X9k+iSQ6UshotEonn76aSxYsABFRUU46aSTkgK3k6N6Whjp5PWYPDms7Ni9luA5bfbk4JH4uaUQQHpIhkUPvBN/Vi2QDjpxgw4E7I4HQPqZv7q6Onz22Weor6/H73//e3zve9/rMjuIIHhBps9+yPSlCGvXrsX111+PnTt34sQTT8SAAQMS8/PdNKqnhVrHbtbkSXFDcreige9zk6YWbtH9GisTOx760JPsUSHAPG7Ug5mE36gmSAtx3KgHQL8mUjE2sPYfocfYk95YLIZdu3bh888/x6BBg/D4448nHjZNEDwRTN+Dn0+yxPTdeuIqMn0SyPR5nKamJtx55514/PHHMWrUKIwbNw4ZGfEvT+S6tqRjJxVu43JN3kZPytjcPdwNnhy8OvFVDUOS/j2pcBvWN/fjcm6raI5kJ/6fly7EWKURuUTPK8UAPYkdz2KAnkKAWxN8KVoJPy9NuCnRTzVN2FUwtKIvsUoXqxqG4Nxu67kXAwX0mL+Ojg6sW7cOGzduxA033IB7773XVc8bI7wPmT77IdPnYd544w1ce+21yMzMRGVlZWIqp9TsKaEn2bfa6AHAt82lif8fmldj+fX0dNxSY6dGXoDt83cSsemTw6gRtFon3zaXuk4bakh143ZtCLrgXQiwUhfiZN+qYhHvJF/Qhdv1AFhXIEqF4qEZXWj1KVZpQ4/xA+J7BPzvf/9DR0cH/va3v2HmzJmWtItIPwTT98Dnp1pi+m47cSWZPglk+jxIVVUV5s+fj7fffhsnnngihg0bBp/Px2z21BB36nYbPSlWJ/fiDluPqdPC7YmcluFTQynpc0IrdupDC1b9uFkbLLowkvTbpQ23FgOcSu55wRovqIiorA2j/YuV2tA75XPLli1Yu3Ytzj77bDz88MMoLy+3rG1EeiCYvvvXnGaJ6fvpxI/J9Ekg0+chotEonnzySdx2223o1asXTjrpJOTm5nIxe2KOtHVO5xlftJfrudVMnhy8O+sv65OnXXbP5ru2xs0JnBmzJ8eRtjzu+pCipRevFQZSWR9ySb8dI79yOFEQMKuPdNKGU7oA7DOAXigk6h31a2lpwWeffYaDBw/igQcewHXXXUfP9iMMQ6bPfsj0eYRdu3bhqquuwoYNG3DKKaegoqKCq9kTGz05zCT3eo2eGLMdtNTkieFt+AD3Jm5WGD4pPA2gm4oDPHXiVn0A3ioKsOrDqgRf0Ee6FI2sih9W6ENP7KCiYhy95m/Pnj343//+h9GjR+PZZ5/FgAEDLGkXkdoIpu+3a6YiyNn0hZo6cMfEFWT6JJDpcznRaBSPPfYYbrvtNgwaNAgTJ05EYD6/W6Zl9qSwdtJmjJ4U1o5ZzeDJ4ZUO2Sx2GD4pRpM5pwoEdhYH3KgTLxUFjGiER3KvpBHSh37UYojXCows/Y4XNKLX+IXDYaxZswY7d+7EAw88gBtuuIEe70Dogkyf/ZDpczE7d+7EVVddhU2bNqGyshK9ftWT27n1mj0pch0zT6MnRa5D1mvypHihIzYLz2TNqGa0kjjeumFJ3pwsEJBO4uhN7nnoRG9iz6oTiiX60BNL3FpoNNL/eEEnes3fvn37sHr1aowaNYpG/QhdCKbv3s9Ot8T03XnSh2T6JJDpcyHRaBSPPvooFixYgMGDB2P8X8cgKy/T9HnNGj058jPsSU6aOvhWmoHUTuSdGN1jQZzA2VkkMFsgAPjpJZW1YkYnasm9nYUBM1qhmMKGl4qObo4lgDuMnzDqt2PHDjzwwAP4wQ9+QKN+hCZk+uyHTJ/L2L9/P7773e9i/fr1OPmeE9Hn5N6mz8nb7O1vLOryu2Hd+K6N2Hq0awfep6Ce6zWc6ng/rRnAfOzJpbt0t8VNyZkUQTu89SJl69HSlNGL1fDSC0+tCEm9lYUBgaF5NVwSeQHSiTa844odxUcrYgrgfDFJqT8a+7L+nWqFUb+xY8fiueeeQ58+fQy1iUgPBNN3z2dnWGL6fnHSB2T6JJDpcxGLFy/GD37wA/Tt2xcnPjIOWflZps5nh9kTYzaRlzN6YtySxH9R0zfp31mBCI/mmCYcCST+/4TSfabOZcWosBPFArdoRoreBI2lUEAFAv0IenGrTgBjybzb9WJl32SFXrxShPyipi9O67VdV2FRC73mLxwO49NPP8W+ffvw+OOP48orr+TWFiK1INNnP2T6XEBtbS1uuOEGvP3226isrMTAgQMTfzOyQyfPDlXL6EnR2+FqGT0xdnWyUlOnhRtNnxIsZpCKBcqYSczEunKbZtxWJFDSDK+EXkkzbkvkBc24TS+AOc3Y2Ud5Kb4AbJph6aN4asbIqN/OnTuxatUqnHPOOXjiiSfQrVs3bu0hUgPB9P3q0zMtMX0LT36PTJ8EMn0Os2zZMsyZMwf5+fmYNGkScnNzNV8jZwRX7hkEABhRVs2lXXrNnhi1TlaPyZPCq3P9uroMAJAbDJs+lxuTMSOcULrPdrMnRU9ypldHdhk/1oKBl3Sjldw7oRujiTyrbuwsFHhJM3rijJpunCpMerEoqbcIKcZp49fS0oJVq1ahqakJzz33HM466yxu7SG8D5k++yHT5xBtbW1YsGAB/va3v2HixIkYPny4oYecrpghP2feiPkzY/SkiDtXM0ZPit6OVTB4cqSK6TNr+ACgJdQ5ldhs4cCsjtxeNNhdb75inSq66V90lENL4hjVDUsib0Q3vJN40k0nbteN2T7LrHbE/Zbb+im95i8Wi2HLli1Ys2YNrrvuOvz+979Hdjb/jdkI7yGYvl9+eiaC+eY3KxQTamrH3WT6ukCmzwG+/vprXHLJJTh69ChOO+00FBcX6z6HktmTQyuJ52n2BI7U56F7Ef+Hn2t1pmomT4zbOlKj8DZ8crCaQN46EpIyJ4sGgLymUkE/VmjHaMGAh3bkknge2jGTwEu1Y1Y3TmsGsC7mOFmodEORUqvvclPMMTLqV1dXh48//hjdunXDSy+9hBEjRnBpC+FdBNN31/+mW2L6fn3KMjJ9Esj02UgsFsMTTzyBW265BSNGjMAJJ5yAQEB/B6rH8EkROlarjJ4Yq00fq8GTw00dqFHMJl9aZk8OucTMSi3ZXThIp6KBHfphSeSt0I8VsCTwLPrxuvGzo9AkYHfB0qq4o6QdI32YW/RjxPhFIhF88cUX+Prrr/HnP/8Z1113naEZTkRqQKbPfsj02cSRI0cwd+5cfPTRRzjttNMMbWVsxuwJhJrjnW1pzwbT5wK6Gj0pvDrPmkPxL20wz3yyDbin4zSKE4ZPTKg5C+MH7bUs6RLDOwGrOVSI8YPijwRwsnDgpIbsTNzFSJN4q4tPdiTvXk7cjeJU/BHrx8uFSzNxB3BX0cnoox1WrlyJqVOn4plnnkFJSQmXthDeQjB9P1t9tiWm777Kt8n0SSDTZwMrV67EpZdeiry8PEyePBnBYFDX63maPTFGjZ+W0ZNipOMUTJ4UMn3OGz4gWU88CggsmuKRgPEsHpCGzFGYGzJ9DjFKGrIicW9o0RfD5SD9mMOLBUxxv5ZKMciI8QuFQvjkk0/Q3NyMF198EaeeeiqXthDegUyf/ZDps5BoNIr77rsP99xzDyZMmIDjjz9e11QGs2ZPzujJwdpp6jV7AqydpZLRE5NKHaURzCRbvM2eFCPJl9cLCGa0RDrqxGzibkfRQKojp/UDOKchN5k+MXYUMo3qyK1xCOCjIyPGLxaLYdOmTVi7di1++ctf4o477oDf7zfdFsIbCKbvjtXnIJuz6WtrasdvK98i0yeBTJ9F1NTU4Morr8S6deswdepU9OzZk/m1dpk9MUqdpVGjJ0Wuo2QxeVKc6CBr93dOIyrpU4/aagcCSIcPJX2MbyhhteGTopV8mdEVS9LFqi2zevKi6XNrwi6gN3G3unCgpqVUSdiN4LbCgRxuKGjaFYsAc1pK9HMZ9qeEbbv2IfzXf2H8+PF4/vnndeVLhHch02c/ZPosYMWKFbj00ktRXFyMyZMnIyuLrYNzwuxJKe3ZwM3oiele1GzI5EmxomMUmzpNHOgQAQAd6iPEaoaQx/o9o0iTLioiSPTmhJ5MFBDcVDwwqyWthF2PnpwsHtTuL3JMR4B67FHCbh0B9hc2jfZ3Vsckzf7OoT4u2tKK4J//hfr6erz44ouYMmWKI+0g7EMwfQtWzbTE9P1+0htk+iSQ6eNINBrFb37zG/zmN7/BiSeeiJEjRzJN53xnzHGJ/w/20j91hIfZQ2PngzED3bs+/N0okSOi5/EUdJg+n9EOMXTwWMeeFTXXAAeTK92E/Yb0JIaXtnhqSsAthQS5BIu5kOBCPXmhgMCzMCVO1s3oyUrj59ZEnSU2KenJSS0BqV/gNNXnOaSnWCyGfn9/HZ9//jnuuusu3HnnnTTdM4Uh02c/ZPo4cfToUVx55ZVYs2YNpk2bhh49emi+Rmz25NBK2HmbPTFmkvQkoyfGBtOX6OiUMGP6XJigKxKW7yhZTSAXbQHWFxM4aAowlmBxKSTYrSmjegJMFxF4aSqQxX86Y+RItqNaEggdyTF+YS/FJ8CUnnjHp1QpdMr2f16KT8eYsPRTLF++HCeddBKef/55Q88yJtyPYPp+8sl5lpi+P0xeSqZPgnzGT+hi3bp1uOCCC5CZmYnzzz8f2dkKpucYWmZPQBzAxZ2jlWZPIHIkW1dHqGj0LETT4HkdzoYP6PqZySVdVulL0IjRBEtWY40Z3JJ1LRT1FvabH0H2CCz6kX0dxyQ9Ar6JekJXnLQUas5iTtS5JukdPudG/Ayi9J0yO0OBCVGMEscWrgVP4RomdCV8d5Q0pdkPCv2BEV05pKm1552M8wsK8NFHH2HMmDF4/fXXMXbsWNvbQdhDBH5EwHdEl/f5UgUyfSZ55plncOONN2L06NEYN26c5nROVsMnJXQwD4HWY+cuM1hJ1jB6UrSMn26jZyKpClTHO75QDt9qEDNeGZFRMXxyCAlDoNWHiFFdSbG7oMAhWZcm6ilfUNCLgq7kPidpwm7FqDFgPlFXLCIA3PWU+D2LrswUEexO0jNi5kb7FGDRlVUY1ZVqnOJs/gzFJ6O6Eu6vzX3g8qkjMT0rC+vWrcMpp5yCxx57DFdffbWtbSCIVINMn0Ha2tpw8803Y/HixTj99NPRr18/1eONmj0AnWZP+PcxA8ScpOs0e2KkCbpdI3rCe+SKV0ZjbDJ8UsSfuSEDqENnLKN+urRm0vgFqrOcKyikGF0S0sJ2cydk0JWeUWQmXfFK0hsMaiqNRo9ZEeuKa5FKBVZdMccqk7oKVGehHVkIAIjkGDBhHhv1W1Y5BKgcgtNf7IH58+fjk08+wV/+8hfN2VSEt4jGfIjG+BaPeJ8vVSDTZ4Cqqiqcf/752L9/Py644AIUFBQoHsvT7HX5u5b5M2H2xNhh9Cwxebyws6NzwPDJ6UxXYcEtRQUdxk9Ob4FWn7FECvBGku6UtlpNFBMMzE4AlJN0u2YnSPVlOEH3SHLuBF0+Yz3aMqgroKu2DMUsneZPKV4B6aGtzZdOwwXFxVi6dCnWrVuH1157DeXl5ba3gyC8Dpk+nXz++ec477zz0K1bN5xzzjnIyFD+CI0aPi2z1+V4cYLOyegBQNbRzucwhbvx3TzB1SbPKVxi+JL+rjX6x0FvkSPZyDoa4KMxlSSdNGcvasUEgCFJN1lMADoTdNPFBEAzQVfTl+GCgheSc6NTPLOipmcniDFlAnXAtQgq1riMvlhilmHzZ3TUz6HpnqvOGodzcnLwySefYPz48Xj99ddx4okn2toGwhqi8CPKeQ0e7/OlCmT6dPDPf/4T119/PcaNG4fRo0crrt+zy+yJyWz2IXNHNkI9zSXOYqMn/b3ZpDx4KAAcCqA9z4EqtM6OLbgv/tWImXuONRO+CBDqa3AamcGkyYjWrCguiPXGy/gFd2QjNCie7Os1eqZG+4zg9lEZjkm5FFUDyElfgW258fNbVFDQo6+UNn4uRNEEWhC7uBWsAKCgw1CBypS+AGPm75i+sveyT2Nu69eu63gxK/uPwtRAAF999RVOO+00/O1vf8N3v/tdQ+ciiHSETB8DkUgECxYswOOPP666fs8psycmeCjeEek1f0pmzwxCW9yGYOi0sMPwCWi1SdYU2mj4BITiAqBfY2KsLC4A5kb17DR+wX0ZtuisrZc9O5wKGJ2tAACRXD7TZKUFBYBDci5s8d9i/Ltnt/HLPmhPN2+3xvQiaCyz2We6OCqFlwEUCqMADBVHrZryqdU/6YlhRg2fgM/nw9ixY1FSUoIbbrgBX375Je6//34EAu7MNwhtIjEfIpzX4PE+X6pAz+nToKGhAbNnz8b69etx+umnyz4v5uPuw5P+3dKHrXPmafbk0OrYjBg9rQ6NxeiZGelj7cxy9ycnZVED/Yxdps+nM0fwi/bFYNWagBWa05NAsWpOb+Ikpzs7dNYFSdLEUmCwazRZDTcVFcQYTc61dGY0MRfrzA36Avgm5GZgiWNddOZRjbHEMR4xDLBXZ0K/6eb+EgCm7d8CAKirq8OHH36IsWPH4r///S89j81jCM/pu/Hjiy15Tt+jp71Mz+mTQKZPhT179mDGjBkIhUKYNm0asrK6jh5IDZ8c0sTcarMnRq5DMzOqJ9eR6R3R49mJSc2dEm7txPQaPiDZ9ElRMoF2aE4teUqXAkMq6owKC5SQs2A2lunRmZXxLNWKpWo6U+s/3aozAcH4hcNhLF++HMFgEO+88w4qKirsawRhCsH03fDRbEtM3+NT/kumTwKZPgU+++wznHvuuejVqxdOOeUU+P3JwZHF7EkJHNv0q6WX/o9cr9kTE+oZ4Tp9M9wtYmrqppHOK/fgsWkrBtbQu7Xz4m345GjpE7W1yAAkJ01mdedkkUEuWdIqMqSL1txYXDCqNbWEnFVrlJDHMTNrQQk5rRnVmdmiKe94ZqQfNas11kKpgF6tOWH8otEo/ve//+HgwYN46623MHHiRPsaQRhGMH3Xr7gUWZxNX7ipHU9MfZFMnwRa0yfDiy++iKuuugrjx4/HqFGjumzYYsbwAZ0GhsX8mTF7AJDZAGQ2BNBWYuo0AIDsWuG/AbRb/B0SPqNUxQ7DBwAFOzo7eD3FBjO6Cx4KcCs0ZB0NILsWlutNjoIdft1FBn+7sYTcbWhpTS5xbCsxXj/Uoze5dctmtCa33k9vMp7Z7DO1Biu7Vt/3LVV0Fs20X2t6EOuAxzpAsdaMFk6NaC3enxornOrVmtC32WH+lvcZjmn7t8Dv96OyshIbN27ElClT8M9//hOXXHKJ9Q0gCI9Bpk9ELBbDb3/7W9x9992YOnUq+vfvn/R3s2ZPitjYSBNyHmZPTHYtDBk/wehZjZtMntWdlV2GT6o9Nb2J4VVoAIxpTgwP/bEmSW7SIE+M6M0IrPqSYlRvQtIc5dSLmS0w6E3GpXozMotBD76IvaMwViL97IzMntFLwXY+MU18LsCY3oTvjJrelOKZ0C/o0ZuRIoNdehOMn8/nw+jRo1FQUIA5c+Zg27ZtuP322xV3WSfcQwQ+RMB5IxfO50sVyPQdIxKJ4Oabb8a//vUvnHvuuejRo0fS33kbPilCgDYzoiE1elL0GD8rzZ7R5NquqZ1ug4fhk6KUoJsxfHL641VsyGww+d2QSchT1eSZhXeBAVBOynkWt8wk42K9mdGaVjLOU3NuTMRjAfuKDGJY9GZWawJirfCKbQA/88eqsUCbfuMH6B/1s9P4AcCAAQOQn5+P++67D3v37sVDDz1EO3sSxDHI9AEIhUK48sorsXLlSsycORMFBQWJv1lt9gQyQsn/bS1lf62W2ROjloTrMXp6E6OcmuR/dwTZX2snbhvls8LwSck96DOkOzFqGhR0xZIgqWnQrPED9CfdehMjQh65IoMVsxkA/Ym4nObMJOJAcpHBqiQcSJ1pnryR+8ytKKjqNYBa8Q0wbv5yavT3q3aM+jlh/Hr06IFzzz0XL7zwAg4ePIjFixcjGHRp0kEgGgOinB+xEKXdSmRJe9NXV1eHmTNnYvfu3Tj33HOTAoNew2fG7EkRTJJaEq7H7IkRGz+rRvSkJs8rFOzhHykaK+LBzGrDZ0R/QLIGWXQnhkfBwcpiA9D5nnLgs6XYkG6JuJEiAxDXnZNFBhbdGS005NQY05sdxi+VpnnqQdwnGdWdGlq6Y41zes2f+H0Jsdxq3ekd9ZOu82PpZxsrfLr74+UVncavsLAQ5557Lt5//32ceeaZeOONN1BUVKTrfASRaqT17p379+/HmWeeiXA4jKlTpyIzMx7B7B7d00LaQRk1ewLZ9fFb3lZkrrIi7ZT0GD0jybfeZCiaCeTv0yFvK2f7MTSjqW9nA5wwfHIoJUdmNJhdH0PDQJ+pgoNWQqSmRbu0x4qeRIgVuwoNAL/YZ0WhATBfaBBgScLldGeH3gDjuyx6UXc8+1st3ZmJdTyKq0q6Y+lvnYh1mn2uDbPqJwS2Jv6/vb098UiH9957D71797a+AQQTwu6dV394BbLyuz4SzQzhpjD+cfq/afdOCWlr+nbs2IEpU6agqKgIkyZNSjyS4cvQsC7HNvVRjlJWmj0pZkcpBLMnYNb0Afa+F6XOKH+/vIR1b/BgVWek8xvmlzy/WE1/gD0aFCdGXi862JkIMRcdHNKeuNAAOJt8i5FLxM3qjgdGE3AnjJ+jybcLi1xOFll59LVi7bmhwCrudxsG+NxTYD2G2PhFo1GsWrUK9fX1+PjjjzFw4EDrG0BoQqbPftLS9G3ZsgVTp05Fr169cNJJJ8Hn88maPTVae+iPWkYNUmZT5y0ycl2p2RNjpDPKOdx5vvZ8Y9HbSEckvi4LukyfwwmQgNTwKSEYQTuLDplNMUP6E5DToZlkKOdwzDb9aSVB0sJDKhQctIoNgH79GdFeaykfw8er2ADEE3AjU9h56w5I1l4q6A7gX+gyGvPMao93odXOmAck60+puCrGNX3uMcTGLxaL4dNPP0V1dTVWrFiBYcP05XwEfwTTN+fDKy0xff88/XkyfRL0PaUzBfjqq68wefJk9O3b17DhC4RjyD8QTfxokREy1ulkNsWSDB8QD/os5ie7Ppb40TqOBeG6eo2XUcSfL+vnLIbXNu6mscDwAfEOuGin/s/GbOHBqAaUdMaqPzHiNki/H1YhJJn5+2OyP1L03Eu3IG2z1ns1OqVYL4U7zMcdsc5Y4qIaOYdjKNxh7PV6v3/Sz1hLe67RncmEXkl7LMaDJ4L2ePV7rP2yHOKYZyTu6c1D8g9EUbQz3rewfu669GfzcIPP58PJJ5+MPn36YNKkSdiwYYO9DSAUicR8lvywct9992HixIkoKChAaWkpZs2aha1bt3Y5bvXq1TjjjDOQl5eHwsJCTJkyBa2trYm/19bW4v/9v/+HwsJCFBcX45prrkFTUxOXz4gXbkmNbeHzzz/Hd77zHQwbNgzjx48HID+dU4lAWD5KiZPupt6dPprHyJ4SOYflR13MJDNy19Ais8l45VGAxbREsiwsC7qg2q03WZNqUUmDYowWHuQQtKE18seiR9bpT0p6NKLBjJB25VuqS0s16CHy98eS9KekNylG46EAq+bEqOlP78ifVH9GYx+L9gQEDerRnr9DR9ErBltGXHhiVH9mEd9/Fg2yFly19KcW9wD9s23U9CfXFwvGj1WDbtLf2siwpNE+n8+HE088EYFAAKeeeio++OADTJgwwboGEJ5gxYoVmD9/PiZOnIiOjg7ceeedmD59OjZv3oy8vDwAccN39tln42c/+xn+8pe/ICMjA+vXr08sDQOA//f//h8OHjyId999F+3t7fje976H66+/HosXL3bqrXUhbaZ3rl69GtOnT8fo0aMxevRoQ6N7esgIxdDUW98WaUaqd0LnY9bsCR2PkYqm3k4n/0AEHUF9r9GbcLtimolFpk+PFo3oUIBVj7yKD0rJD4smeUx54l18cFyDJqfYqaGmQbkk3KoCmFryrUeDRhNvgO8UdzUNei4G2lj0kiLVIM+ClxQr4x9rf2xGg3pmingq/okQGz+BDRs2YMOGDVi2bBkqKyutbQAhizC984r3v2vJ9M5/f+c5Q9M7Dx06hNLSUqxYsQJTpkwBAJxyyik466yzcM8998i+5uuvv8bIkSOxZs0anHjiiQCAt99+G+eeey727dvnmg2E0mJ659q1azF9+nSMHTtWt+ELhGO6k+yMUPz4/AMR5B/Q3sbM6HQNACjeETFt+HKORFG8I2LZ1E3hc2D9PGwlhQ2fgN7PXa8exdOfzEydy66PoXhHJOmcrJo08v2Jfy7Gpg+nGjynBUqnZVs940FOI3o1qKRbFg2anW7HqkEj331H0RFbeU/HN7M0QC9SjZiJf+LX6umPjWgw/0AExTsiiXyFBT0a9HfoiCsxWDrdc22ka843evRojB07FtOnT8fatWutuzjhKA0NDUk/bW3a6xLq6+sBACUl8e13a2pq8Omnn6K0tBSTJk1CWVkZpk6dipUrVyZes3r1ahQXFycMHwCceeaZ8Pv9+PTTTzm/K+Ok/PTOr776CmeccQZGjx6N448/nst0TjnUAqeQcEtHXIwaveyG5E4s50gUrd31+/ecI3w6Q+k0J6eNnePr+Vxi+KSaFN8XpdE/M5rMPrbhgREtiineEUFbof5zsEy3k2ozIxTTPeqc7ujVIYvupOjVoZAgm30+opB0G3l0hZ7pnuLPRI/+AuGYJ6fZOY30e6+lQyNxMFH4ajDWHwtk18eQcyRqOAYC6iN/cv2znjgofP+9pkPpVE8AOP744xGNRnHGGWdg5cqVGD16tDUXJ1SJwsf/4ezHhNSvX7+k3y9cuBCLFi1Sfl00iltuuQWTJ0/GqFGjAMR3+weARYsW4YEHHsC4cePw7LPP4jvf+Q42btyIoUOHoqqqCqWlyVv/ZmRkoKSkBFVVVRzfmTmcTo8tZcuWLZg2bRqGDRuGjqGX4EvGirPZ5FoJIdgaCeZAV7MnhtX4qRm97AZjHQ3gvNHTS9HONtQPzEbh7jDX8zZUsE9RsNPwSZErRDhZhJDq0qgW5RJvntq0LOlOUewuPAgYTbrFOuRdeFDSod7CA2lQH3KxUK8JZEXQoKAjM8VY4Vw8zB9LDHSNDo8ZP5a+uaF/lr4+fFDXX40ePRodHR2YNm0aPvnkEwwfrv85zYR72bt3b9L0zuxs9S2R58+fj40bNyaN4kWj8e/iDTfcgO9973sAgPHjx+P999/H3//+d9x3330WtNwaUrY72L59O6ZOnRp/HsuIK5hfx2t0T/H8rRHktsYDcEsZW1lazeyJUUu2eY3qCeRWJ5fCIzl8Ok0zFOwOAX72TqtwD1/DB8TNJAuN/dgfwmVVEQKIJwMBnXoUcGsRQq/Jc8NoH+/iA8BegLB6erEScgaQZ+EB0Jd0yxUeAP1JtzjhZtWilQk3M8c+et5xUU8hzCmMjEZLkYuHYk0ZjYdmzF/R9vi9ZO2fhb5Dz6ifXuPH2kfGAtrn1Rs3v90xEEMH7ezy+/HjxyMSiWDq1KlYtWoVBg8erOu8hDli8CVG5nieEwAKCwuZ1/TddNNNWLp0KT766CP07ds38ftevXoBAEaOHJl0/IgRI7Bnzx4AQHl5OWpqkp/j09HRgdraWpSXlxt+H7xJSdN34MABTJkyBb169cKECRPg823VnNZpZWINIJFYixGMk1KyzWr2xIiTbSNGTy3Rlho9JyjYbXILQAvxRRg1EY0pvo/G/sm7O9ipSy09imHRplrizapNPcZPrE+vFSFYEhy9WFGA0INbig+AesKtpUUjxYfc6nagWp8OrSo+CKa+YC+/ZFsPrDpENNYl/jmBYJQA/VpUQ0uLLDoE2M2fOB4GWiOWaVFpuqdqX80QF32RmCVxUcn4TZgwIWH8PvvsM9dsvEFYTywWw80334wlS5Zg+fLl8cEiEQMGDEDv3r27PMbhm2++wTnnnAMAqKysRF1dHdauXZvYEfaDDz5ANBrFySefbM8bYSDldu+sq6tDZWUl/H4/Jk+eDJ9POWgIRrBoW0vS75sqchRfw8PsKSF0MEbMnpisunaEi413VuJORY/R05toq3Uq+Xtak/4dzWRMuhxMsvWYPhb87XEdqOlRDG9tyiU8RrVpphABKCc6avrkqccu5xYlOGaTG4C/Hpm1CCjq0UwBgpcWtZJuvXqUJtx69MiSbMvp0S4dCijq0e1a1IiLYj26TYtOxEWjxVmr9Ji/pxX1Q3LZC7MO9tUAZI1fLBZLTOtbvXo1ioqKLLk2EUfYvXP2e1cjM4/vjID25jD+e+Y/mHbvnDdvHhYvXoxXX30Vw4Z1DhAVFRUhJyeef/3pT3/CwoUL8dRTT2HcuHH4xz/+gQceeAAbN25MjAyfc845qK6uxmOPPZZ4ZMOJJ55Ij2ywilAohDPOOAPV1dU444wzkp6focSOjf1U/y5OuHXtcqXD7AmYGZ3Iqusa6M0YPzvaL3QmUoMnh9tNn1WGTw6pCbSyEAHwKUYI+uRRjLCqEKGV3Ih1mm56BOKaTIUChFnkkm0nEm1Bj8xaBBzRI48ChBRxfNTSpBXxUapHs7HRzXERkNejUr/tdj0KyJk+IL5+6/3330evXr3w/vvvIxh0fvQ5VRFM30Xvfs8S07fkrKeZTJ/S4NDTTz+NuXPnJv7929/+Fg8//DBqa2sxduxY3H///Tj11FMTf6+trcVNN92E119/HX6/H7Nnz8ZDDz2E/Px8Lu+JBylj+iKRCGbNmoUvv/wSM2bMQEaG+sxVLbMnxh/u7ARa+uZpHq83qc5s6rqoJtSTbcqVnNkTw9qZBA8lT8Fpz9c/85elI8nd15z4/2gWW8fj9k7EqgSb6bhwhEmTAkbMvKBPVk2K4VmMcFMhgrcm3W763FaEcEMBQu90d7OJtpom060IoRUf7SzWZjZ1GIqNQNf4aFSTwUNtlvXZYjqCPqYiLeB+TQLKxq+9vR3Lli3DCSecgCVLliAQcH65QCriFtOXTqSE6YvFYrj++uvx6quv4pxzztGszBg1fGLkEm0zCbUcah2JltkTUOtEpEZPit5ORK4DEZs8KdxNn5sTGosMnxQ1A8hDn6lejGDVJOBuXdqdZCeOS5MihKBLHjFSidx9zaRHBVj1COjTpNmCrR5NqsVIo/ER4B8jpX14qmhSQMn4hUIhvPXWW5g1axYef/xx1aVChDEE03fhsu9bYvpenf53Mn0SUmIjl/vuuw8vvvgiZs6cyc3wKZk9AXEgbOuuf/hfzewJBA+1delEWM2e+HhpB6Jl9owSaI0g+4h7N1qxAl1TlxgwY/iAZF2KEx0eo89Ap3bMFiS0pjQpaTSzqUN3UqO0iYFcQcIfjuhKajyNBQk20PVzVUq4zRYhWLQooKZJPSN/Ul3q1aPwnpWSbOlnl1Z6tAAhTrJq0ixifZiJkSyaVIuRgD7zJ42RasVa4TNl0aW/Pcpm/KIxxzZ3UdrYJRgM4qyzzsILL7yAgQMH4mc/+xnX6xKEE3je9D3//PO45557cO6552rOm+Vl+MT42toRPBAP0KHeBZrHs5g9MYLx02v2xGTVtetO3AC2hCZ4oDHp37FsfruduR0nR1NYyN3XDF8buzYFWAsSQHJiY1dBwojxA9QTmVSCdyGCFT2FCJ6zIrTMH6su1QoRaro0W4jQ0iWr8XNzgh0L+BzTpRxyJpBXYUxASZd64qSS+bMiTgZaIwgeaGTuw1NBl1rk5+fjO9/5Du6++24MHDgQV1zB/vgvgp2oBY9s4H2+VMHTpm/lypX4/ve/j2nTpqFHjx6Kx1ll9qQIBkguwdZr9gAg0BgfNcs79t/2klzd58is7dyZNFLAZ0Gy1Oh5BV4dhdUbE6geZ1CjatoUMKLRvB31hnQpkFXXjszaFt3aZE1oxFp1LJkhEgjJtq+t3bWFCKAzyWadFaF3dEXQpdsT7HRBXCAD9BXJtGAd/VNDrEs9M3VYdSmOk762dtfrkrfx2/btANnfDxm6Cz169MC0adPwve99D3379k3auIMgvIZnTd8333yDmTNnYuLEiaioqFA8zi7DJ0acYJsxe1Iya1uYEmyx0eOB602eAxtlaGLTGj4llDQqvpfixMaMTgW96TV/Yp0GGkPcjJ/r9SqD7QUJFxQjlLQoxcjsiEBjyFQxIm9HvaEimVYxQqpNRxNsBuwcVXETWto0Ei+BuK4A4wXczNr4/xuJlUCy+VOLk8J3lEWbrNM9hViiqU0hNmn063Zos9MMDkD/imycffa5+PLLtRg6dKil1003ojEfojHOI32cz5cqeNL0HTlyBGeddRYGDx6MESNGKB7H2/Bpmb2kY1vDyNl+BADQUcb2rBclsydGzfhpmT09iXVGdf2x/wKxHL4LbPXgtpEUnlOU9G5GwAqrToMHGuFrDTPrU4ycVs0WJYwYv5ztR9A6uDuT0bMiwdY+kQs7Hh0FCd54qRghnMdsMUJLm3p0yRWbR/uYpnj6fY7oUy1mSu+f0VFAccwUx0AjMdOMNjOq65n7dKuKEoC7+nYWbfbpczJCoVpMm3YGvvpqHbp3725T6wiCH54zfeFwGBdeeCGysrJw4oknKh7HYvisSKSBuOETIxgopeSaxeyJESfXPEf1hHa6BaZOwaOjfE4bPqBTp1r6FKOlVbVEm0WrRgoTekb2eCbYbkpaeGOVPlkQ7qeRgoRSMQLQTq55FiMymzoQaGDb2h5g1yVNPXYeoZgL8CnoaulTLW7qNX9CzPS1hnUZP4B91I/bxkMMRQm7150OGjQDmzYvxjnnnIdPPvkImZnps4eBldBIn314qleIxWKYN28etm/fjtNOO01xC12ehs/X1s6cSPtaw10Mn5iM6vokYxVoDOk2fALxqR76DZ/0ekKb1Ayf2nvqcizjZ6XVMVDCEteoXYUJoKs+pejRqliberWqdh05verRpxtJl+lzRgsSrMUoloKEkg5ZZkmw6F+sT63+QArr58PVZDMUqGzfgIWhkOeW/oGl/2SNm3L6ZI2bWvqUa6OV+mTRKFNhyWZ9asVin8+PEcMvw9atu3D99TcgBZ545goE08f7h+iKp0b6HnroIbzwwgs4//zzFSssvAyf2QRajYzqesRyjS3o9tU3Jf07VqS+Y6nS9Z2EWyXQ5lE+3s/jU0NvYsdTr9KRP6OFiaydNQCMaVQ6uqKlWb2Va62qNW2Tr43dBQkBudEVIwWJ9pJc3YUzpVE/raIZ7+l0LCMqbhztc9sunjzR0igrgiZ99U26Y6d05I+lr7dq1M9O7Fx7GghkYdTxV+Hf/34E48ePww9/+ENbrksQPPCM6Xv77bdx++234+yzz9Z8NINZrDR8aIlP+fEd+2+sR7H2NSRGzwi+w3XJv8jNMX1OOXgk025LVHhj5PEZcujRKWCgOLGzCgCbRrtcS6RZI8lL4vo6dKoneSHUiWb6uelUDywadbooIU6sWQtoVhi/dIdFo9GsgGZxwor+Xs+UednrHIufwn+NaNR3uI45fgrvi6f541aYcOHa02CwGMeP/C5+8pMFGDZsGGbMmGFT61ITmt5pH57Irrdv347LLrsMkyZNQllZmeJxvNfxqaF3agRaWhOGL+k8UjMm/lt9k6bh0/z74Tr5a8i0RfU8DO/V1kTFjaN8LsZocQJQ0ZDcdRQ0q6dwkXQ9nTplgRJqPrAUcPRMj9dLRnU9MnZWMWsz0SaJRo0U1XyH6xJFEebXWDCVzi7snEIHwN4k36p40NKa0KcejSrFT1addomfOmKo7rxGg1Sd5gkARUUVGDr0Qlx00Wzs2LGD27UJwkpcP9LX0tKCCy64AAMHDlTdJtfOaZ26zZ7W+Q7XJY2m6E1CpCMpepMgFniMoKT8KB+nDVycnn6spFlBV3Ijfyya1apaK+q2pVVXxZpG+7yJmbiqps2k4xR0yjqi0kWjQjsc0KdXR1K8ilkzJNaOkk5Zi7xWxlCAXae2jkq7cGOXXuXj0di4FzNmnIv1679Abq7xx8SkMzHwf5i6t8v01uFq0xeLxXDttdeioaFBdfjclYZP70iaEKwzjd0SQ0ZPZ0eghlOjfPUDFdZG8owfGtGjaCf7w3LtwlCCwqhZcZHC0CiJqEjBrFuOWtWC1vPZD69CmpWFCVWt6ixMAM4+CscTMDy+gdcUz1h2Jt/RVY1YKqdTXbMhJDpliqMGChSAeZ1auf7UDf3/kOi5WLf+SXzve9fg3/9erLjBIEG4AVebvkceeQRLly7FBRdcgEDA+USMKTExMB0t1pgc7H0lxeyvra1Lfm2BzrVTDMmKU6N8jf3lt6GOuky19QOz4Vd5nFjBbmNrjmxFr2537ov/V4dWpa93q1ZZ8GKC4sbiBMB/5gSQnFSnYmHCakirXYnlZHHPARI6bWwyFEt99U3xHEBPLNVp/jTbwDDaZ9T4yeUAbuv/GwfnoV+vuVjyyoN49NFHMW/ePKeb5DloTZ99+GIu3XP2s88+w5QpUzB9+nT06tVL8bivGo5L+nf+nq4Bl8conxWGT2r2kq6n0QFIzV7Sa/V0AAyBXyuRZhnlUwr4TRWd149kMWzVzRrwbaz0AVA1fQKBcPKJrNIqYN2INOBwkQJQ1ayVWk06hmeBwkVaFRco7JqKbIdW9Wg08dpjWuWt0cT5GQoUVmyMRVpVxg15gJviaeI6FsdVIQ/IPdimqM+kc7lQq40Ht2Pn+09i5ccf46STTuJ48dSloaEBRUVFOOONHyAjz9iO9kp0NLfhg5mPob6+HoWFhVzP7WVcVjOJ09DQgEsuuQTjxo3TZfiAZBMBAIXbGKb08JjWoSPQq5m9xDG1dV2Cv5rRswpeo3zS+yKFxfAxY3OwN4rcZ8KiVy3sGpFO/F5IjlWSFSXtxhqbjCUqDiHcM656dRHihEtcpJArUNiKSb2yaFR6rPQ8unRq06if2giK3oKaG4lmKBs/J7TKPNrHej6ZmMqqVbmYapVWtdb46RntU8sFWnpxTPxj4JcL+KCZCxT0GozSMWfiwlkX45utX6OgoIDTxVMfGumzD1eavhtvvBF+vx9jxoxRPEbO8MnR0jcv6d+5+5qT/s1l1IQxIWExe0nHHzN+es0ecyLNYaqcXKCXfuYdQT5fPrdN6xBgGeVjRUuvfC7Cz/AlHSOTrLBol5deeaNVqNDCrXo1gtxnYZsRtLFAoaZXNxcozGqVGZsTaSMofRb5e1r5PtjeJFoxVaxFIzEV0GH+OBQp1IyftF9TIxCOaRYp/B3ujK9lo0/H9gPf4NrrbsB//r3Y6eZ4BjJ99uG6r83zzz+PV199FbNmzTK9IDYj1LVHkQafvO11qufgUdXTa/YEIk1NQFP8tQGdzya0I0ERArxaQOdl+Jhx6SifdGqnHDz0yhsj2u3Ys8+QXgGD05OEc5gYlRZ/zrZr1qM0VeR00awlRYrcHO6FNan5Yy2s8dCpgJmdPK3Qq1sTabXRPoFIlk8zxrLolcuGLjr0yoqekeqk1zmkVz0mzyhMerW5SOHz+VFx2v/hlVcfwL///W9cccUVnC5OEHxwVYjfvXs3rr/+ekyePBl5ecpBg2WUTy6BlhJojSDUu3MIPnigka2hYjSCu96kOdIkf3ykqUlXIq0Z5E2M8gmfWSSHz+Y6XNfypTim9cqA0SIF0KlfvXq1GzuSknTElpFqBYzoNlZbZ0irTEU1jlM8Sa/WYESvPKZ4GtGq2SIwoJEXmNQra16QEYppFipYRvuYsdn4ZeUVoe+ky/D9a65FZWUl+vfvz+niqQuN9NmHa1LpaDSKK6+8EgMGDMCAAQMUj2Od1qlFoLXrNA8haAnJtNlpnXoCu5LZkx7jRCItNhpEMjyndupFzgDyXG+iBzn9RnQmKFaOTPMuVBBstPTNS4q1bipUiDVrmfEzASXR+mAZ7esI+lQLwoIJFDRrWK8ao32+gnxT+YHe2CqgqVkN4ycd7ZPLDQKtES5x1svTPLsNGI3G/V9j9qWX47P/rYLf7+HnDxMphWu+Lo888gi2bt2KCy+80PS5WEb51Aj1LkBmUwdQmIOM6nrT7VGDxexJj9cK9GZH+VoHd9duB0NQZ5l2lA4buBid2tnlPDKFCgGh881s6lDXrE0j09JjqFhBAPaMVLPAo0hhBaRZeVimeFqB9H4ImuW9oYsaajHWKc2a1SlLoYIrDhQq+px0ITa/8ns8+uijmD9/PqeLpyaxmA8xziNzvM+XKrjC9O3atQs//elPccYZZyAzU3kHKJ7TOlnpKCuKn1eaSHNInvUaPqsQ3qNbUavkNfXt/GLHOA7i+CQSyd/nyiebyCK+n1YWLfToVys5MVuoALQTEV6FCoIP4vuVs/2ILddkLVIA9iTSbjN5bh05cQvi+6VZYOMAa4zVo1mjo3168gQ3jfbpzREK9sTQWKHdD0hzBCA5TwhkZqPv5Mvw45/chpkzZ6rOYCMIu3A8vMdiMcydOxeDBg1Cnz59FI/jNa2ThcymriVFnom0GbPHa5TPjNGzepSvqU/y76PajwDiavjkEHccAn6Z9f75+91lDnkbQLcUKgTcXrBQwo5iBRUqkrFiVoVRhPeb2dSB9nzHu2FmBN3yjre8dMtjiicQ7+O0isPx+6aiW85TPFmwomBhVYw1O9pnJE9ggcXwAfHvgNT4SfMEf99hyKkeh/+bcxU++WiF6c0JU5UofIhynaoF7udLFRzvbZ588kmsX78es2bNUj2uqXfnnOj8A/IPYuU9yqdELDcbyM2G73Cd/N85B3JexHoUI1Kg/uBTOxIQ4V5GGB7JwyuQ60GugseKtCMKtAHCvBIl3fJCrlghpqOsCIFGZd1qYWWxQg9OGz21yrP4/jtdrJArVADuL1ZYYQCNapen8TOqWztGTfTq1hexTrtKugW6ajfVdWsULd1qjfbFcrNVcwWWYgWLblmMX2sPH1OuwIKVulWi51nn44vHfo8nn3wS1113nb0XJwgJjpq+6upq/PjHP8app56KrCzl3SJX5Q9P+rfYAAoU79DO1FkMn1biLCbWoxgAdCXRdo/yCW0EoGn4WNAzyid3n9IZuc8j/0DUtmJFoDEEIFkTRg2g3WglzHaNljT19nNLQNyEtFgBAIE2e4oVagj33UyxwkpYpsp1DCy3vB0syXMqateobnmN9imePxGvihBoDClqV2u0L5Cfb+vsCnHfYDdm8wV/u/1FYrnRPimBYA56zLwEP7r1VlxwwQUoKyuzp3EegnbvtA9HTd+tt96K3r17o6KiwvS5mnonm5H8A9Y8hFVInMWIzZ8bRvmMBm4zibP48+9g8JY8kw+7K3eA/GiJEZp6+5EhkZRV2pXDbdoV42QCAlDRQkDpc7DbDHqpWEHJsz5YkmdWItnxGRZ26LY9P4OpUOyEdvWMUsvpNdAYsnS0T0/OEGjjlzM4MdqXP3QkGvsNws0/+hFe+Pe/7b24B6CNXOzDMdO3YsUKLFmyBBdffLHqcdJRPjmkSTPQ1QQWbdfeaUvPKJ8csR7F8GVmKD7o19LpcQP7qm4oxXOUT/rZimExfKx4bWqnlPjUTv3YVcAQo6VdO3EiYRY+c576TXWkBQunihVugrRrLdFM8wU3wQw6VWyTateKtX1M7WhsAgb2te16ankDL1gLFjyNH2vBoseMWVjy2P1YsWIFpk6dyufiBKETR0xfOBzGddddh3HjxiFfxcywGD5WWso6I0FutbFeQ26UT4yv/tgDUEuKbUmefSXFif83u7JBrWInfHbt+XwqJ6k2xchqmnoHkNnUWbWW06/ZgoWAoClbzZ9GwYI3diQf6Yjc52p1Ip0wWT2KgZ37LL2WZhsMonczFzP69fqICU86gsnGT67YZmaKp0CkIKg6QwgAYNEUT6XRvkScN3TWTrS0y5o7ZITsHe3jDYvxyyzqhm6nnYWrvvd9bNu6RXWn+nSDpnfahyOm709/+hMaGhq4VDvkRvmkZDYlhzY5A8graRaQJs88R/nEZg8AYkXqo4B6R/nEn4/b8fLUToCffnljpX6l19FKPMyOUvMuWhDssBQseOFEwYJFv2ZpKctk0i5L4pwuCFM8zSCYQEG/StplneKpRlIB12L9iq/lq29SzR+0pnjKYWX+wGL8nBjtY6XbyVOxd/0aPPjgg/jpT39q78UJAg6YvurqavzqV7/CGWecAb9fee0Bz1E+NVrKMpHdEEUkJ4DgIeVegnWUr8vvhQBrcjG21OjxpH6w9jPQWJIOmtppP0IHm+1y/cqe0yLcULRwQr9ewGjBQmm0RA4588dzQwyr9Qt01XBmU8zWooXX1/VZgfSe8NRvrCg/aaYQwF+/Vuk2s6lDM4dg0S/PooVb9esLBNDjnNn45aJFmDt3LkpLS+1pnMuhNX32Ybvpu+uuu9C7d2/07t3b9LmMjJKoEerZWUISJ9CsyYYSsdq6xGiHnsAtvEYtWGuN8skhfp9249bpGbwxW2U2gpJ+eWBEv1KsTJa1jB6N8rkP8T3TKloYgdfoiTBFzqh+WUZL3FCoMIIToyU81vUJSKd4ytGe75PNI5LuWVkmirYrP5PPCDxH/9S0a3S0z6k8wutTlHMHDEF2xSDc/rOf4emnnrL34kTaY6vp27BhA5599llcdNFFqsfZNcoHANkN8jt5CQGNJRFRGiWRg6ViJ54OZzZRFoK1mQBtd8IsrtCF+qpMm8ngPLGqQ/19Bvdl2D61kwU5DVtlAI2YP6vMnvAe2wr57LJJU+Ocxcqiha+kGAEYK1poGT6tpFkJJ4tv6QCPKZ56kN5PnhoW9AsYKxzzQkmz2Q1RzTjs5GifWh6RfTADbf04duwaeQQAdD/zAvzziQfwk1tvxahRo/hd26PELFjTRyN98thm+mKxGH74wx9ixIgRKCoy/3Bl3qN8SkQz/YiW5MbPV9ti+nyAcuLMO0C3l+QiXKxeQXYqYW7po7JtdpZzzwVTI9S3Awirf165+/lu889Dw6Ge2cjKjLfLag3LHcMLrybJbilcBPc5+oQeXbilaJGKGjYyUkIa1o9Uw3qmeMohbBBnJPbGautMFS6imX7NXMJOxBo2m0u09eK7nwML0bHdkDvlZPzgpvlYuXyF7dcn0hfbIuiyZcuwZs0aXHLJJarHvTd0GKR7SuUeTO4EeI2Q6KVdxvxpjfKpTcvQfNi6xgiJNEgL7RNwOki39Eq+j5EcO/do1AlDdY4FoQMKtHY9n1THdpFV11nFlNOwGeRGrnkmyiyFCydRTDhcWLhIJO42Fy7MIiTPWZl+24oWdps9lpESq/CkhgFVHevRsJkpnqzYpWErCses8NKw0mifoXwi7Ldfxxkxpnyi6Lwz8dld92PZsmWYPn26DQ1zLzEAMc7poYuzTUexxfTFYjH89Kc/xahRo5Cdrb/SKf2yZzbHv1A5NcqvYQnQSlM7teCdOJtBT1A2dH6GqZ0NAx34evGuLnNEzvAB8jpW07CViHWjpWOt9SRau3Oqnluhumy1rvXgqeIFB3gXLswmzEnn0qFbFqSJM++CBU/MTI/zTMLMCSeKb22FfqacQk3DWqN9cthl9LLq2k0X4Fg3JJLq1XI6fLbnFIG8XOTNmIYf3fYTbF7/FXw+mo5IWI8tpu/111/Hrl27GEf52GmVbHzEO4EWj5AooRakzSy+1tq8hUdCYaQqJ/3MuePmJENjhEQPQuFC7vN0wggaSTZ4I6dpO0f5WBKNVDd8Wni1cKGFm82eXtIhYWYlkhPrYvzkPh+7dBwuzpSdeQGwadjMM4C1pnhK22MXcn1gZrMP7Xnqmgq0+twbjxlH+wpOn4Qd736EpUuX4vzzz7ehYe4kCh984PycPs7nSxUsN33RaBS33347jj/+eGRkmL+ckCzLIQSPzAagI+hDzmHlgGB0lE8OYbTC6qRZz2YBPJLl1h4+tBeaPg0AlyfLnKZ28iLVdSzGqQTZ8uJFGuGGwkV7SS4yYa92pdd3gpTUMWPCzBstHfMcsZYjMYMI9urYyCZESrBM8ewIgltewQTriLUDxQt/dhbyzjkdtyy4DTNnzlR9jFkqQ49ssA/LTd9///tfHDx4EJMmTVI9Tu8oHwutPZJvulryLIVllE+KOGnm9YBVngFZjFxgln5etgZmPbi0qmwVZnRsBDvMn1W6ViIlk2MXI/28tYoXrFPjtBDryo7EmVXHPKbGAfx07OpRElayotxmX7TnxWQLyk7oWChgCPDUsXi0z0gMNqpjaR/GC1frmHW0b+op2L/sI7z88suas+EIwiyWmr5YLIZf/vKXGDVqlOWjfIljGpT/JgSe4h3mnwCrNhUjVpQPX3sHYo0Gg/XAvqqLULWqyixBmVcQ1pqCoQs3T+1kRGk9H0/E9661R4CLnuVIJAVF+cDOffzOZwNWJRmEcbxcvJBOjbNLy6Rj92FWx9IpnlpICxlmpnhKzycls7bF9Kh1dkMUdYPUH36X2aBdVGaZ4smMi0f7fJmZyDv3dPz053di9uzZabm2Lxrzwcd5ZI73IyBSBUtN37Jly7B//35HRvnUaO2eXB3MOZIcDIyM8snhK4gHV1bzlziey9W7In3fduHaSpweOK7n40l2fSzpvlqhZd/hOkCnlgXsSI4pMfYm0vuWrVKwM0PC/JkpxMH6ZNmVOvbwZi4Ccuv6eGKXjgGRBg2YvlTNL1JhtC9v0kTse+1dvPvuu2m/kydhLZaavnvvvRfDhg2zbZSPhez6rsFBLWmWbYvGgmvf4brkf6skzMLfWNGTWCgF4bYi7c/StVM7eePA2hFeWpZDr5a10KNl2eNMt0AePQlG2mjZAZSmxRnBrHbbS3LVZ2D0KE4s7ddj/uzScnZ9jCk2a8F1hIQVF2/mwpP2QvXZRABQNyiQlGfwiMNSxHkDi5bFx/sO1yHWo1jxWK0ChniKp9VGL11G+/xZmcidVomF99yTlqYvFrPgkQ2pH44MYZnp+/LLL/Hpp5/i8ssvVz2O5yifVjBmIR7E4gGN14ifgK8gPxGglcyeWjDWIlycaWu1zcqpnSV96uUPC/CdyhiOKE9Dqd1fxPVaemDRslwBQwyLlo3ueqhk/vQUMfSOjMhpm0eSTLgP3sULKSzFC70FOT0YjdMs0+JSAtbNXGxY12cWuZlFWlM8mQoYxwpyPIvKLLDkGSwFDDdo2Q15BhDPNQpOn4w1P7sX69atw7hx47henyAELDN9v/vd73DcccchGJR5aJBOrBwZkSJOMIRqFk/zxzsIu/nB1UDy1M5gr2bF43KDYTuaowtxh9ASylI9NnQwz5b1fEYR64S3nmONTbK6NlPAAOwvYliJHcmFWwsYZunUgHXxWJwwW2X2SMv6SAc9W5VbKMVkM4j7kJwjUVfpWTrF06u5RujMMbj73l/j5RdecrhF9kK7d9qHJaavpqYGL7/8Mi6++GLV4945dSCArl/AQLV6gi0Hj5ERJcTBLm+HfIcnIJ0OxxNhZMSM0bNyamekrOu9DOa5L8BaQbBXM0LN8ro1omcrEesns9b8+XgmF04VMYyMWnspsdBbwHAzVhQwrDJ6bi7KsSbKbtMyoF/PVq/rM4qVxTjVvzNO8XSDfpWmeErzDZ65RjgS4FrEyApENEf7AKDnrIl4bd6TOHToEHr27Mnt+gQhYInpe+aZZ9CnTx8UFRmrxkm/zJHGeDODh7S/NFYTKYiPXAYaQ9zPrRaEIwVBVwRgAAj1jAAFHU43wza0kgot0lXPrCjp2g2VZCsTC7ciJP9yRQwnCxit3f1dpnpalTSbwS1xWg4jem4JZbnS+LHCW88s6/rainy6i8xddcM+xZM3PPINXlM8WfONUHOW5+NzsE935A/vg2eeeQYLFixwujm2QSN99sHd9MViMTz88MMYOnQonxM2djYx1LNr5SV4KMBlLR+gb+2IkCwD1iXM4muwwDtJlvu8rYA1obB7nr0lMOiZF27TsxS3JMfpVsQwg9xovluKGOHiTPjbg44VMNJdz7xHR+ygS0EOSMRoq/UsV8QQI+gZsCcm6803rMCOnMPtRYxu547Hg399CLfddlvaPL6BHtlgH9xN3/Lly1FbW4sBAwaoHhef2mmeUM8IohnJwTlbZsqa0amdYoKH2mR/LwTLjJ1Vpq/hVOBtK+n8/3A3PoHX61U3JxA6PbGm5fRsJVaO/jmdWNhVyGDBawmyFlYXMVixs4ChR89WrINS1HNjhucLGaxT4nKDYdOzMeRwi54Bd8Zks3oWcg5/B0NcdkDPTk3xLJo0DF8/ugwrVqzAtGnTuF2fIACA+/ypRx55BIMHD0Yg4FzVt60k+cc2cnPiPwZe1zGwXDX4hnpmm2hYHPFUC6XPiJfhI4yTdTT5uyN3r3gUMbTwtbQZ07OESEEw8WMnwucV6hlJ/BD2InzujsRjWKc9J/QMkJ7NwKMImUp69rW0qZ5HqcitB3E/pZRzRDkOPSitq/cS/swMFH9nNB555BGnm2IbwiMbeP+wct9992HixIkoKChAaWkpZs2aha1btyq0NYZzzjkHPp8Pr7zyStLf9uzZg5kzZyI3NxelpaVYsGABOjrcVXzjOtLX3NyMpUuXYubMmXxO2MiveYLhUUqWuW4LLiTKLa3ax3BCreImvHduHZTHK8hWYGdnE7+PnQbeqAFk7tTFWlXTtOQ1Tpg8wv1I75NdI9mRgiAyWnLYNSzzejshPbuXcLdIojgnd5+ya42t65MS6pmtPsOooBwZ1fX6NM0591CCe97BEdYpnk6N9nX7zmi8suBZNDc3Iy/P3RtrpQIrVqzA/PnzMXHiRHR0dODOO+/E9OnTsXnz5i6f/5/+9CfZabeRSAQzZ85EeXk5Vq1ahYMHD+Kqq65CZmYm7r33XrveiiZcTd/SpUtRWFiIkhL1bzmvqZ1A11ERLaQLi1mDslaCnFEts6unnPmzIeDSs8v4YcW0Id4Y1bQhtAoaNiUUQPx9uzGhcPN6ETfSeQ/VC3Pc0FvEOHZ8RnU9OsqUNycLHmrjMyNDQ9NZRwM0I8PlsGpaa10fMyyatiA2S6d4Wpp7pMCUZVZyBpYiq3sh3njjDVx22WVON8dy4iNzvDdyYT/27bffTvr3M888g9LSUqxduxZTpkxJ/H7dunX4wx/+gM8//xy9evVKes2yZcuwefNmvPfeeygrK8O4ceNwzz334Pbbb8eiRYuQleWOXJLr9M7nnnsO/fr189Ti07YiX/yn0MKdAoVpnwpBVy2RALSndrYV+jvfh8cMX1pt4mITtmpa6d8WINa413ROsGPrfVbTbRpoOhWmw3HHAmPhqKYt1rHW+2IZyddbvE91fD4fCqaOwFPPPuN0UzxPQ0ND0k9bm/YMp/r6+CCOeACrpaUF//d//4eHH34Y5eXlXV6zevVqjB49GmVlZYnfzZgxAw0NDdi0aROHd8IHbiN9DQ0NeOedd3DRRRfxOSHHqZ1a5ByOlwTESXJ2A8fpnhagN6FnGRHhWT22ehOXk0t36X7NpzUDuLfD7ViuaYsKGQCNWBNxxDrwt/tt1TFvvKppt0+H8xpu0bTR0WtLC4omYX10g1FNG8k9BD6tGcA+xXPKSLx/81NoaGhAYaHBhyd7BCsf2dCvX7+k3y9cuBCLFi1SfF00GsUtt9yCyZMnY9SoUYnf33rrrZg0aRIuvPBC2ddVVVUlGT4AiX9XVZnf5JEX3JzVG2+8gR49eqC4uFj1OLundhpdLyIOakXbja0B4YlakG3t4Z1EYkRZddK/u2crP+BaTF7A/KJycbBujrBNwzrS1nU+/dfVZTJHMmBjIUMOLxQ13JxMWI3RZCLdihle0LEY0rR+9Graqh087UJN02rr+oB4gU12eQlnUkHHTuYfQOf3gSn/KAUO9ivEm2++iSuuuILL9dORvXv3Jpnm7Gz1z37+/PnYuHEjVq5cmfjda6+9hg8++ABffvmlZe20C25Z6CuvvNJljqscpT2TH6pXc8j9FYz2/M6PKbOp69QPqwKucF1XBVuVqS/ie9unwPpOyCmkHQcA7G9MrpY6rWth9FqJtkI/Aq1xfclp2i7MaNvu9XzjB+1VNPxiTbg6kQDnQobDuNUAuipmm8ApXfMo0MlpOpgX5jalVbyZixJtJfoLz1LtOKnr9vwMTS3nHI7ZV3hWWdcnzj8aWoKy/bTXqDi1N5a8tiTlTV/s2A/vcwJAYWEh80jpTTfdhKVLl+Kjjz5C3759E7//4IMPsH379i6DWrNnz8Zpp52G5cuXo7y8HJ999lnS36ur4xqUmw7qFFxMX0dHB9566y2cccYZul8rNYEAcKQ+D+geH06PHDG/MJ4nWgZQL9KpFeLzu41A9zZ0L2Lr+NMJqeEDFHSdFU9K1DTtxNoG3ppmuZ5dSTGPKcvie5kKiYQcXihkaOF0IcNOXZslHQp0St9Vt+m6tYdPtUhnt66lOUhudTtayjJNnTO7ls8GRaw5SGGu9Q+zN0NeoI2pmNF3Uh+8c+c7iEaj8Pu9EVuMYOX0TrZjY7j55puxZMkSLF++HAMHJs9IvOOOO3Dttdcm/W706NF48MEHcf755wMAKisr8Zvf/AY1NTUoLS0FALz77rsoLCzEyJEjTb4bfnBxGKtXrwYA9OzZU/W4Ly/qrvvcge5dq4aRI9nckmOtERE1hOCYYTIPVDN6ZoMtoH9ERO4ztwK7R0T0IjciwgOlz5e1wGHlFvdiLZrVtdJ53QYVM9iQK2QA8WJGqhfnWK7jNgJZEdI1A7K67hkvPqeDrjOq69E6WH9uZiV25SBH2vKY8pDmSLYjeUjZ2FK0hlqxfv16jB8/3vbrpwvz58/H4sWL8eqrr6KgoCCxBq+oqAg5OTkoLy+XHa2rqKhIGMTp06dj5MiRmDNnDu6//35UVVXhrrvuwvz58zWnlNoJlx7rtddeQ9++fW2rRAS6tyGM5A9RzgTySI5zq9tV/x480IhYTud0EV8r2wYmwmucTBrEVbVA9zbwGmNye+WYdbqQ3bDqmgdaugZgSNdi3JYQ25VIpCNmCxlWkqxD8+ufSNfpg1d0bbRAJ47xTiHNQ7Q4Up+XNsUMf4YfvSf2whtvvJHaps/K+Z0MPProowCAadOmJf3+6aefxty5c5nOEQgEsHTpUtx4442orKxEXl4err76atx9993sDbEBLr3X66+/njT/1QnkpgVk19o/VU4IonJJshUBlnUuPT3XyZs4pevggcakf6vpWu44s4mx2TUiwudGCbGzCJ+/XcUMLdrzMxBoYNOylFhOlmldm13/RLp2B3bruqUsU7VQ1zq4eyJms8ZonrDqmvIQ/fSZ3Bv/WfIf3HXXXU43JWWJ6Xmon8pr+vfvjzfffJNHkyzDtOmrqqrCt99+i5NPPplHe+Lr+TjRLpmqnyk/O8kSnKygSd83r0CbLtU1tyO9v4B92lYa/XNS75RIeA+rihlaybEYlpHsdND1/sYiV8/OYF3/1D272bIp+azI37OApVPypbgpRov7Kj/DbNTIkWxuBY1U0XXfyj5Y/duXUVdXp7k7vmexYE0feJ8vRTBt+t577z306tULwWBQ9Tgj6/mUYJlaETzUNYGQJsuFO3iPJ+sj1LtA9e+s6/nkTADhLngWM+SQaiDnsKWXA+B8EkFmL7VI1yKdgPD+WXTNMzlON/oU1MtuvmWEQPc2zXwk3C0Cf0dyPuJEkc4MrJu5eDEXcfu6vvzyPBRXFOG9997DJZdcYvv1idTCtOl76623NDdwcSvt+cmVgMymZBPIWjG2G3G7tYJsqCclxumIlra9gheTCIIPcvfejmKGHajpOngo4Mq47fbk2Et0vf/qO3haTfBAo2YRWg49uQhhnD6Te2Pp0qUpa/pisfgP73MSXTFl+mKxGN59912cdNJJXBpj9WiIFtJEGRqLo6XrnqyiS7uO0VrK5/w8K8as0yncvnNnqiHWkJsNoNBOOxMImrbsHbyiYzmc0DZhnO5FzbblJO2FQEbIG9pWykfsJJ02cwGAvpP74PVFryMWi8Hnc/7zJ7yLKdO3detW1NXVoazMmw/21SKS0zklI9BqX+VVuK4bgqtTTCrcBgAoDvAN7HWRzk58VcMQ0+fjNU2IJzk16n9vz/ch0uCMtuXaQhBGcPtoNmmbMIoRbYd6F1hSiGbNR3Jq+BWiecFrXZ+QjwDO5CSlY0pRf7Qe33zzDYYNG8b1+m7A6ef0pROmTN+HH36I3r17IyND/TR2r+djQSsx7nJdzgZQPJVCfG63oreqNr5or+rf+2bZuLJdAXEgl7IvXIKKoHobv6zvx7U9Tm0DbqW2la6VzgmxVwoaXkPQlFDQsLuYEckJILshiqbe7o/nVkHatob2fB/q87OQf+DY7q0Wa9uqnIRl6rJV61W9npOsHl+ADz/8MCVNH2I+/huvkOmTxZTpe+edd5jW8w3rpu2wth7lVyKS28SFJ0JAjGVnwtdmbN2fVlB1a+KgdS+H5ul00x5mfNFe5Gdod07ppm2lc6YKXk8e9oVLNF/Pu6DBQqhnhKu+7ZipQdq2H9K2ddpW03P+gYgr85J0yUlGnlKIN99+DT/4wQ+cbgrhYQybvlgshhUrVmDKlCncGqM0muTEWj+hoqZE7r54W2PZnTtaqSXJ4uPcjNI9YDHuhDzDutVgK+SNn9PrWNVg1bYUrxY0AHWdp0rywIITBQ0rEWvSTEEjeKARzYOLObXKXkjbcXhrm2UHTysxo21xjM8+EkJLX3f2R5SXAMNPLsJjz61MyXV9tJGLfRg2fZs2bUJLS4stO3eKv/A1YUnC2Mjl+fJckCbJThs91WkUBfGH5pT2tHFfdKILXtW22t/djFzykE6JA2/SpaDhBX2ncmJcHGhOmuKpRN+sWqbRvqF5Nfi2Wd3U2a3t1lL9y07k8GysLuh8kF86bdLCqu2BY/LR0tKKzZs34/jjj7ehZUQqYjir/OCDD9C7d28EAupV+5bv85t6UHNIZtuzgq5P/Gxv8SOzWbkSwiOwamF1YGVaMC3z2bgBN0wR8gQy9y9U0IHgDnNVZa1RbC2EajIlD4QaXi5ouFbbQELfpG3nkH72Sfp2qbbtgHkzF43cpOZQIbeC9LfNpUwj2fvCJUy5SV0kj/uaVRYysvwYPDa+ri/lTF/s2A/vcxJdMBydli1bhtJS903tCVTHH0bantf1jqsZQa8j937thvcUIScCqxXwnAIXqM5yhbZdkRS7tKhBMKB07yxes6qFK3QNkLZdwrBuNfrjt4Pabumbl1h64hak/VWgxY+I/kcCEgBGTC7EG2+/iptuusnpphAexZDpi0aj+Pjjj3HGGWfwbo+lCMEnMxhPkDNCzrRDa9681pqnjqC9Ji8VpgelOmI9mNW325IGwB1FDcJ63FDQcAKn9c06GsKKU6MhbkbpHuvRd1PvgOmZGlZid26Sbgw/uQh/eWoVotEo/H6/083hBj2ywT4Mqearr75COBxGjx49uDTCqc0AOoJdfwD2TVzsQKmNhH5Y5s3rQWtNiNN4VTtC4iD+kRIpCzvQMsIoZqZqiXXQMDDmGR0rIdW2l5JklvVyhD7EOnB7nBbnRm7oX7yykZQWrAWS/sfnIRwOY8OGDRa3iEhVDJm+lStXonfv3pqVBp7r+ewiHrx8iR97ry1c11tJeqqRyomNk/pWbo/3jCnhLF7RjVfaSViPnkKVU7pRK2hL8xMvwbtAy7uAzEpGph+DxxZh5cqVjlzfUmKcfwhZDJm+Tz75BMXFxZyboo7sJi4GyD2oL9EVJ8i8k2Sj527ppa1oGgkhWLBS38rXowSY4E+nrpwraLDoW28fpASvPpFwD2p9u936trtvcANeKPgOPiEHn3zyidPN4IowvZP3D9EVQ2v6Vq9ejREjRvBui2mETVyspCPoQzSrc82dP8w+mim8zi0B1AuPa5gYrOJ2rnebB3M7F2+cKmpIMaNvpfPphaWoQRBayGkvI8RXW26J5YSzlPZssN2E89Y3r/wk96CPSwznuYOnVTiRnwwcW4Al9y3ndl0ivdBt+mpra7F7925MnTpV81iWZ+F4fU62OEEGkpNk6d8AoKkix/I2OcHQvBqMzd2jedyAjCPM5ywJ8N3BbkJwN9Nx3TOamI4bm7sHLx060UyTXI+avpWOd0sinE4JAwDURjKwNtSf6zlTDbNFDbv0HajO8vxsDaf0zfNZfV6jI+hDw5B85O9pBaCub7n8xC6c0DdLfgKw5yi885Oz8rajNqKdkg+cGMFDuw7i6NGj6NatG9c2OAY9ssE2dJu+NWvWoHv37ggG2eZmae0I1tTR+cyx/Y1FepvDnfwDUVOvdzKQ8qZPQT0AtkcxsAZUVngHVCtY31LB9NkIGjerbztGsrUQ9C0kE6mkdy14Jw1WwFLYYC1qAO7frMgsWgaQ9N0Vp/RdEujgXrhLJ30DqRe3+xTUo6kjG+OL9jrdFNso6R5Arz5BfPbZZ5gxY4bTzSE8hm7Tt27dOnTv3l3zuD43H9TdGMFkyNHQEjeZoWZnE1+hgmYVTb3t2YY3mBdW/bwF0imYWo0X9M1KKiUNvJ8vmUrYWdRwmlTRtBjStzosn83QvBp8Wd8PgDs03tTbb7g4zUPj+QeituQprDmKU9RGMhwrTg8bmYH169enkOnzHfvhfU5Cim7Tt3btWhQW2jt3/evqssT/B/OUpwSEcjIRaKUbDah/ToR7Ub1vg8Jo35FvX2M8jpsThlRE6/NuaAl6pqjhBdyeFKciqVS4UyJ/T6sty1DszlHWt1QwjWbv6uju6GwNFkaM9uOLL75wuhmEBzE00jdw4EAr2sKFSI78RN5Aq4/brmluQem9BnvRQ3FTkdDBPEDhngNIq4IHFTW8idZ9a4e3E2aekMa9CRWmk1HKUzIZXvt1dRlGlFXzbVAKMHR4Jh57Y7XTzeAHremzDV2mLxwOY8eOHZgwYYJV7TFM6KD6c1MiOTFEsuWDbaDNihbxIZKd/O+WPubWHBL2IkwLsgMljdupb94VYjMJA+E9lO43kLpFDas1/mV9P5qm7xKCvZpVcxWvalyap2TX+ihXsZDjRmRix/Z9CIfDyMqiQhnBji7Tt3XrVmRkZKCgoMCq9jiCOGBFsuJBNxC2t0wgXFcaPK0i3apnLLtipSpSTTmlcTWSvoMqiT+Rvgi6kBY29BY1mipyLF+bLaXLd5A0TsgQyYmhcVAMufuT18y5qTAdyfJxyVNCB/NoVpKEkkAHU67Su28AGZk+fPPNNxg1apQNLbMYGumzDV2Z8DfffIMePXrA5+NTjbJzFEQvQmLME2EUxIpzE3zY1aG9SREQXx/gRfL3d0ZCOR1abQR5JQwEIeC2ogbpO46TG12kGk5onPIU9+L3+9CvIjuFTJ8v/sP7nEQXdG3B9O233yI/X3sjCSM7d7oBcUKsRDTT3+WH9dhIlo8CKeFqIlk+Zn1rnUfuhyDswmoNksYJMU7MnlHSoN5p9nK5ipdw8wCCVVQM9OPbb791uhkEJ1pbW7F///4uv9+0aRPX6+jK6DZv3oy8PPW1c+mInBE0kiw39fFWoCXSAy1d6ylskMYJpzFS2NCjcZbioRthnb3AOhuCcA4WjZst7BHOLhsZNNSHzZs3O3Z9nsRi1vx4hZdeeglDhw7FzJkzMWbMGHz66aeJv82ZM4frtXR927/++msUFdn7nBrx4xqcpmB3yOkmuBK3P9SX4AuPkUCCcBNKhTvSOJEq8NQ0FTacp/+gDGz+eq3TzSA48Otf/xpr167FunXr8PTTT+Oaa67B4sWLAQAxzu5VV5li9+7dqKys5NoAInXQMnVDGDuaHB//RTElftaV8GzGdD28uaZPCypsyMNa2CAIwjuMzd3jyfXZTX18njVeboClAM2er/Dd2JA1Vzl5YBb+smcX12s7Rppv5NLe3o6ysvgA14QJE/DRRx/hoosuwrZt27jtoSLAbPo6Ojpw5MgRpjV9fbNqmc65J7tE9vdH2vRNIdV6XAOALrthEcl0z+66i9akwm1Mr03HETyeGnfTaDYhz4CMI0wP7Y0nCu5OFtK9sEGokwoJ8ZDMo9jWrv3IAC+M6DhBwe4QGvsHnW6GInL5Cmuf7PZ8JceXjdaYts779A7g8OEWRCIRBAIBG1pGWEVpaSm++uorjBkzBgBQUlKCd999F1dffTW++uorrtdiNn3V1dWIxWLIzc3l2gA5xF/o3KD2A2pDoHWGUrQ+N7mgSdiHXo23hOhZPDxI5WSBN3YX7wg+kMbZGZBxBEeytAvZpHHr0Or/dtd3wwml+2xqjXcoLw0gEomhuroavXv3dro55kjz3Tv/+c9/IiMj2Y5lZWXh+eefx0033cT1Wsymb9++fcjPz4ffz2fEbFXDEC7nAQBkaVf0opl++Nv5XdIxNN5rSZ96mxpC2EluMIxQFsuObOkzok2FDXcj/fy17hcVNuRR+9xI4/YwqXCbbM6iV+NA+hSpgzV+hPqqP7KD5fMi5MnK8qF7SSb27dvnfdOX5vTt21fxb5MnT+Z6LWbTt3//fs8/lD2aqfH3DMDv4GOFtNqnFUAJwu0aZ4KhiEPJQurBq7DhifVOpHFDsE59czUpUqTW6mtYqN1fRIVqE/Qqy5Dd5t9r+GLxH97n9DqhUAhfffUVampqEI0mx40LLrjA0Dl1jfTl5Gh3yCf/hO8zJewmqvaJ+H1A1KCS/D71cxOESYL72ARmmcZZrs0hUSDSGy9oyAttJNyN0wU8ylfcT+9efuzblwJTX9N8Ixc53n77bVx11VU4fPhwl7/5fD5EIhFD52WeC7Z3715kZ/PfVdFz+H2GfuoH0mdHeAQtPasQzVD/IQg7sFKHBbtDpHPCMDxHtlQ1qBGrzcR5ohMnR5779fVh7969jl2fsI6bb74Zl156KQ4ePIhoNJr0Y9TwATpM3+7du1P6wez5+zxeFtABLYomTEGJAuF1DBbv3KbzL2qU14IQhBc0zAuu+0R4hD69Ati9e7fTzTCPsJEL7x8PU11djR//+MeJRznwgtn07dmzJ6VNH0G4mdr9RU43gSAIgrABWr/vPCyP/HCa3uUB7N2z1elmEBZwySWXYPny5dzPyzwRpaqqCscffzz3BhAEQRAEQRCE1awN9ceEYAqMjiFu+qqqqpxuhnloTV8X/vrXv+LSSy/Fxx9/jNGjRyMzM3mR7w9/+END52U2ffX19QgG7X1Yp5umrhTttHbedlNfbw9FuxnP7/ZGEARBEAQholu3AOrrG51uBmEBzz//PJYtW4ZgMIjly5fD5+v0CD6fz1rTF4vF0NDQgKwseo4SYZ4cn72b2rBcj4xhejKpcJvTTSAIIkU4oXSfa4rV9QOzLS1W5++LpUWx2u58Rc81iwrb0dDQilgslmQKPAeN9HXh5z//OX71q1/hjjvu4PZ8dIDR9DU1NSEajTLt3lkcYHtYbF5AOxhlBZJ3qAlHAkznlsK6lX0qI/4sWT57gP1elgTY1h/k+Nz7nEchyJYE2KpmLJ/NiobhtuqccB7hOWJuThRKAo2ojVBMJMzjVp1TEc/7UM6iTa/iHHREomhubkZ+fr7TzSE4Eg6Hcfnll3M1fACj6aurq4PP53N8pE+aHANA1YFuQIa6pY8p5NA+47ueWo5smzXeJyD/GRHeQvYeMtx7L+qcN3oTBd5JAuBMIqwXlvfDs4AHJN8bKmyYw2mduz0ZzvFlcy3gAaRzLShnsZ+iwrghqKur87bpo5G+Llx99dX4z3/+gzvvvJPreZlM39GjR5GTk+Pt4WMZkoKUxluLBboe4Isoq6rL8ZrnV/87QRjFSp2bhRKF9ETx/hksbri9sNGlzaTxtMBLOpeL/ZS3uJtAwIeC/AwcPXoUffu6Y1qxIax4xILHH9kQiURw//3345133sGYMWO6bOTyxz/+0dB5mU2f3Zu4eAHZIJlmTAymwM5RhCpSnYtNIBU3CDfQRVc6ixtahQ3eOs/em4m2fu3qBxGEBD0FvPjx6jpXy2EK94TR0N8d+zh8WjMAJ5fucroZrqSwIG76iNRiw4YNGD9+PABg48aN3M7LPL2TTB+R6uyP0C5YLFCxg0g1SNOE12is8KFgj75ZGKTz1KO4MIC6ujqnm2EKXyz+w/ucXubDDz+05LxMKwSPHj3KtIkLKysahnM7F+EN+gTcvQaEIAiCIAjCSxQX+WmkLwV5/vnnFf+2YMECw+dlNn3S+aQEQRAEQRAEQThDcZHP+6YvZtGPh7nxxhvx1ltvdfn9rbfeiueee87weZlMX2trKwIBWoxDEACwJlTudBMIgiAIgkhz8nJ9aG1tdboZBGf+9a9/4corr8TKlSsTv7v55pvxwgsvmJr6yWT62tvbU27nTkKdqYVbnG4CQRAEQRAEoUBWZjxHJ4xz3333YeLEiSgoKEBpaSlmzZqFrVu3Jv5eW1uLm2++GcOGDUNOTg4qKirwwx/+EPX19Unn2bNnD2bOnInc3FyUlpZiwYIF6Ohgf9yTmJkzZ+KRRx7BBRdcgLVr12LevHl4+eWX8eGHH2L4cONL5Jg2cmEV1Iyffma4IQRBEARBxKk60A3lvT0+bYtIa2iXWuvJJNNnmhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLycODAARw4cAAPPPAARo4cid27d+MHP/gBDhw4gJdeeglA/BELM2fORHl5OVatWoWDBw/iqquuQmZmJu69915D7fq///s/1NXVYfLkyejZsydWrFiBIUOGmHqvTKYvHA5zfyo8QRAEQRAEQRDGyM6K5+hexgcLdu/Ucezbb7+d9O9nnnkGpaWlWLt2LaZMmYJRo0bhv//9b+LvgwcPxm9+8xt897vfRUdHBzIyMrBs2TJs3rwZ7733HsrKyjBu3Djcc889uP3227Fo0SJkZWk//uTHP/6x7O979uyJE044AY888kjid5Y+py8SoYfEEgRBEARBEPygEW1zZGX6DE8hTAcaGhqS/p2dna35NAJh2mZJSYnqMYWFhcjIiNuo1atXY/To0SgrK0scM2PGDNx4443YtGlT4pl7anz55Zeyvx8yZAgaGhoSfzez3I7J9NEmLgRBEARBEARPyPCZI9weQzCDKZV3LzFf/If3OQH069cv6dcLFy7EokWLFF8WjUZxyy23YPLkyRg1apTsMYcPH8Y999yD66+/PvG7qqqqJMMHIPHvqqoqpiZb9Ww+MUxKycrKQjQatbotBEEQBEEQBEEw0BYG09RBV2PFIxaOnW/v3r0oLCxM/FprlG/+/PnYuHFj0q6ZYhoaGjBz5kyMHDlS1Ty6FaaFeqzP6Hvn/pNMNYYgCIIgCBoBIbwPbeJiPe3t7Dl6OlJYWJj0o2b6brrpJixduhQffvgh+vbt2+XvjY2NOPvss1FQUIAlS5Ykfe7l5eWorq5OOl74d3m5ex7zxWz6YjGPP+mQ0MWKBuNbwhIEQRAEQRDWEk4F0+fww9ljsRhuuukmLFmyBB988AEGDhzY5ZiGhgZMnz4dWVlZeO211xAMBpP+XllZiQ0bNqCmpibxu3fffReFhYUYOXIke2Mshsn05eTk0GYuBHGMiUG2+dkEQRAEQRBW0dwSQ05OjtPN8DTz58/Hc889h8WLF6OgoABVVVWoqqpKPPReMHzNzc146qmn0NDQkDhG8EbTp0/HyJEjMWfOHKxfvx7vvPMO7rrrLsyfP19zSqmdMK3p69atGz0HhCAIgiAIgiBcQl19DN26dXO6GabwxSx4ZIOO8z366KMAgGnTpiX9/umnn8bcuXPxxRdf4NNPPwWALs/J27lzJwYMGIBAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvvNvU+eMNs+tra2rhddGrhFpo+mGbsjzSiT6DA6WYQBEEQBEGkBHX1Uc+bPqfRWr42bdo0piVu/fv3x5tvvmmoDUePHkUsFkNJSQkOHTqEjz/+GMOGDcPxxx9v6HxKME3vLC4uRigU4nphr+OLxFR/CO9BplQe0jZBEIS7KNhjPhZTbPc+dQ0RFBcXO90Mczi8ps9pnnzySUyYMAEnnngiHn30UVx00UV4//33ccUVV+DJJ5/kei3mkb5UM30+6RJFDYHoDYhdjtc8f9ffxTzweMQ1oXJa4+ZirNC5+JhYgPOzdQjCIdS0z1vntKsh4RRqOhf/rX5gtu68xaqc5eTSXdacOAVoaOygkT6P89BDD2HTpk1obW1FRUUFdu7ciZ49e6K+vh5Tp07Ftddey+1azKavtbUVsVjM1JPgzRCOqESTDvU2yRkqL9Cl3RrvE1D/nLICHv0g0gjF+8dw753QudnihhcKG4Q3SNKWy4p4pHOCB3o0Hj/e3uEOylnsJRKJobEpBUyfhc/p8wIZGRnIyclBTk4OhgwZgp49ewIAioqKuHsuJtNXXFyMWCyGcDisuQtNXSSP6cLNEe3dbFSN3jFKyhpQu7+I6ZrpjvB5snz2APu9rI0wyQgl/vi60Byfe3YyEtMaa2N+LyyfDevnzKLzVEXWqJpIFChJ8AZeK26YhZLh9CTddM4bylmUaY21obY+LhKvT+90eiMXpwkEAgiFQggGg1ixYkXi901NTdyvxaT8/Px8+P1+tLW1uWrrUVZCfTsQ3Mf2JSespzWmvikQ7wCrdT2rmFS4DasahmgfSHBDnGSxJApWJQmAixMFjoUNgIobTkA6V4d0TvDE7pyF5ZpAfBOXjIAfeXlsGibcyXvvvZfwVkVFnYNYLS0teOKJJ7heiykq+nw+FBYWIhwOc704QRCEk6xqGIJJhdssOXe6FDeI9EZNd04lw07xRU1fp5uQoGintZ9TU19az20VrBqvb4ihsDDHsWVX3Ij54j+8z+kRxEZPTGlpKUpLS7lei3n4q6ioyPbNXE4o3eeaIFo/MNvSIJq/L0ZB1CJyfNmuThQIgiAIgiD0cPRoBEVF+U43g+DM4cOH8fe//x2rV69GVVV8o8Ty8nJMmjQJc+fOTaz5MwLTIxuEC7a0tBi+EEEQBEEQBEE4xYTgbqebwI0DVRGUl5c73QzzpPkjG8SsWbMGxx13HB566CEUFRVhypQpmDJlCoqKivDQQw9h+PDh+Pzzzw2fn3mkr6KiArt27TJ8IYIgjFPSp542LCIIgkgDaA8C5xmSyTwm4hgHqiLoVzHM6WYQHLn55ptx6aWX4rHHHusybTcWi+EHP/gBbr75ZqxevdrQ+ZlV3b9/fzQ3Nxu6iBdgmloZjRn+KdrunuccumXKLOFStPRMEIQrOKF0n9NNILxKisV5q9Zmu5n9ByPo37+/080wjbB7J+8fL7J+/Xrceuutsus0fT4fbr31Vqxbt87w+ZnLSf369UNbW2qvi/J3ePv8BMGCqg5ZOnsPJgQE0QWDOm7sH+TcECKdsHXGholYTfkKG07uXrt3XwxjT+zn2PUJ/pSXl+Ozzz7D8OHDZf/+2WefoayszPD5mU1f37590draqnncp384Hif/ZJPhBlmFv93pFmij1cbcnRloGUiRmJAn1LcDuTvVv9JU2CDSBdPFDYPnjtLMPMImrNS45rU9kFOlOgcORtG3bwrM3Erzh7OLue2223D99ddj7dq1+M53vpMweNXV1Xj//ffxt7/9DQ888IDh8zN3T3369EFjY6PhC1lFSygLCLt/7jU3NN5r7c5uCPZqRm6QHq+RSqSKzilRIMyipaH8/c729v4O0rlVpMsuzCz68USBTaPPCvZqRksoi/IVgxys7kCfPn2cboZ5rJiO6VHTN3/+fPTo0QMPPvggHnnkEUQiEQDxB7hPmDABzzzzDC677DLD59c10tfU1IRoNAq/33zyqfTg6iNtyQ+ZbAllmb5WOqL1uUk/5+7Zqbte042IP3/SuAQGc0uJQoqSAoUNJkjjnkIuVzFMmmi8pU+U/Vid+QpAOUs4HMOR2vbUGOkjkrj88stx+eWXo729HYcPHwYA9OjRA5mZmabPzWz6ysrK4PP50NLSgvx89eeC7AuXMJ1T7otMOIPcvWC9j90zmgAAAzKOcG2TmyGNOw8VNtwNFfDMQ8mw+6ECnrWMKKuW/b1U++mWr1TVRBAI+Eyt73INNL1TlszMTPTq1Svpd3v37sXChQvx97//3dA5mU1fRkYGunfvjqamJk3TZzfBXs0IHVRPrlv6RJG7Pz0qbLz4sr4fxhftZT5+V0d3jSNYg2wrSgJ8567URtikrv0e+DOirBpfV6dA4HY5SgacJVlgTRS2tUc9sdU3C1TY8CZmC3heT4YB4L3WbkzvY1dHd6bPJt00ng6bFfHKV0oCfJc9seYqX+5pR48euQgEAlyvT7ib2tpa/OMf/7De9AHxxzY0NjamxsMgCYLoQmP/IAp2u+fxIm5hfUsFxubuYSwKuDtZcKKwQXiHVNA4wPY+1rdUmGmOYzi9bpVwnv17O9CvYoDTzeADjfQleO2111T/vmPHDlPn12X6RowYgU2b7N2Z002jIHIJsb9dfd56NEWq/moICbEWuzq6p0QVOd2QajwdNE0QBJGqyOUteuJ6Ux+G5xq7EJY8BfDG1M/dOzowcsQEp5tBcGbWrFnw+XyIxZRdq9wz/FjRlb2NHDkypR/QrkUgHIO/PZr0o4X42EA4hkBY+UZS9Y5wGhaN69G/FNI44UakmjejcUqICTeipWk9uQoRh/cyFD3s+DaGkSNHOnZ9ntDD2Tvp1asXXn75ZUSjUdmfL774wtT5dZm+oUOHoqmpSfO4/X/ppXmMGxE6ayHgSX94YfX5CUILXhqUJsikZcLt6C3ekcYJFtwyIwkAira1mC5eAN7JVfTsPZAq7NkZxdChQ51uBsGZCRMmYO3atYp/1xoF1ELX9M7jjjsOhw8fRiwWMzW8KDC+aC++rO9n+jxmCEge+2NlQMvf04qmihzltoRjCLR1/Vwj2ZY1iZAwIOMI01qQsbl7PLMeRKzx1h4+5B8wlgDouqbM9yiS5c0REMK7WBnPSePqODkKkk44YcKkeRNAeYqdRKMx7N3ThuOOO87pphCcWbBggeqMyiFDhuDDDz80fH5dpm/YsGHo6OhAY2MjCgsLDV/UbgKtx0bwPPpcV3G7C3b40dIrHuQjOcaD/dfVZYpbIaciJYEOXZsAeA0vaFxITqSFDUoWCLOIda+VBOfvabWuHVS4I0yitMu4Ho07QZcCemvn90AuVwn2St+lQkqw5igH9kXQ0R5LHdNHG7kkOO2001T/npeXh6lTpxo+v64sOCsrC4MGDUJtba3rTF+wVzPad7jrURJWIw6qYtp35CNzkPY0XMJ6eI9mK91zt6A1mi2HUrJgpqhBpCaBVp+rCxtKOKnxdJz65la0Hi3lVX1LEQrTAm7vt7zGN1+3Y9DgvsjKoudCEvrQPfQxbtw47Ny5EwMGDLCgOeqEmtUFrvW0kpZeMeQeTI/go/VZBfPCNrWE0IPafUu3jjPd3i+Rfvc83d5vukP3uxOtHAUAxg+igoUc325px/hxlU43gxtWbLzi1Y1crEa36ZswYQLWr1/PvSH7G4sU/1aYG0LNIXeNLHqdUHOW6mcOAH0K6m1qTXqg9nmzdIBEJ1TU8C6qhQ0b2+F2SOPexOv61jtTw0q0chSAPU9Jpd1pv94QxTlnnuB0MwgPYmik78gR7S/F/r/0Qsv3I9rHMXyp3URTRY7imhB/OIJoVgD+cPx9R7P0h/j8A1E09XbHc9D2NxZhf2MRhnWr0Tz22+ZSXNLzcxta5R6+bS5lOs5rGldC0DVgTNt2QkUNZ6DChn2Qxu1h6b5Ric/RDfo2uxGX2TjulvxEYH9jEfIztOfEspo+VpzcqGjr5g7c8ZOxjl3fEmhkzhZ0m76JEyfiyJEjCIVCCAaDVrTJUZp6+5mDqjh4yv1O+ne3J8pmGJpXw7Sb5XpUoG9WLdM5z8rbbrZZSawN9Wc6bl+4hOt1eREpCyNQbV/iLKdv8d+8rmchgWNJGAD+SYPbSbeiBuCtwgYLrAkx4H59W7ERV7ppXBrTUyFHYSlKA2DebftIFtveEMWB+EY0E4NVTMdrsSZUjrqI+ppPAGisbcfB/ftw0kkncbkukV7ojqIlJSXo378/ampqUFFhfsv6Yd1qsPUoW+B1moxQvBShlgyr4Q9HULitCS1941/sjmDqzO//trkUQ/PYgi8ra0LlXM9HqKNX325PGGoOFaK0ZwO381mRNPBKGADvFzWcQKuwIcZOfUfK7J+66fakmLe+WQ2f1xDPRNKbq/jDkUQ/AFiXozihb6vglaewGD4A2PFVI/oN6IVu3bpxua4roN07bcNQ6ayyshLffPMNF9PHE94jIeLgZwVy57fTCPJOignjlPZs4LJuVc9mRbz1LSQYwnmNajn3oK/L7m+pChU27CUjFDNVtBPOAaRW0c5K0kHjbtlzwIy+lc4nhkXzvGI35Sby7FzfiFMrpzndDMKjGJqcPXnyZNTV1XFuijq8AoBaQMoICT8xyw2fchtionbIH8OS1Ns5DZDwBnbrW7iOk98nIr2xUoNGz01JMaGE3t3F7Y6xLPmJl2FdeuIk279oxeTJk51uBleE3Tt5/xBdMWT6Tj31VBw4cADRqPrat9y/u2u6lxhx4HJzAPNKO1MJLwR+Ldyom87kxD1tIlIHaVHD7kID6ZtQw2wh1g59C0tP9LfJ3ZrnvfREmLpsNx3tUWxfX49TTz3VketbRsyiH6ILhkzfmDFjkJWVhcOHD3NpBOtCXDNkNvsSP1qBqam3ulnVGxh5kxFKfj+ZzTTNiAXegZp3R2IUqRbc2vHKYTRhoJFsb8Fr+lvhzs5Y54Vk0wtt1EMqFMS8ghu1o5UbAV37IyvzEztyRztgXc+3e1MzsrOyMXr0aItbRKQqhtb0+f1+nHbaaThw4ABKS923GNrtJih3X7Oqccw/EGEKrmLk3nPmjmyEBrHt3KbG1qOlKRNcvY4d2m7pm4fcfc5UMoXkRvw+2/OoZJfuiPXglgTYCELBTowb9J0qIyFeRI+28w/wW69nJ1LNe/NdOM+WT+sx6dRK+P3uemyGWejh7PZheA/k6dOn48EHH+TZFv00dm1+JDeKzGZnp5X62toT/x/LznSsHaGeEdnPCABQwP8ZM7x38KyL5KVE8mBoh1ql++YCfG3ttupayehS4pB6uL1gZwVy75m07Q547ixuh7a1inVCbpJOeUkq8fUnDZj33QudbgbhYQxnlmeccQYWLFiASCSCQEDZZOX+PcD0kHYljtR3jogFsiKIHMk2fC6B1lIgh/PAldjoKf2eZ6DNqYm/D8McC7o1jSUIdE8eDexeZK3R2hcuoWlCxxDr2y6j19Q7oLtirKRvR6HEwbtQUUMd0ra3cbG+AevyElM5CZD43ALd25L7RhjPS1gL0aw5iWPr+cJRbF/XgNOfOt2R61sKPbLBNgxHpuOPPx65ubk4dOgQysvNbcksVNOkX3K3ozcRtjtxDh4KxKtqOpG7D1vRGc1pqic7XtU2oK5X6d8cT5LFiBKuI1l8EgfCGAndeygJlv6btO08rGue7HxGH++CHe9CtIBW3uHKgp4ManmJl3MSPc/ny83LxciRIy1uEZHKGI5UPp8PU6dOxf79+zVNn1cevi5GaTQk0Br/XVv3IIIHjAdL4TwCkRz37nQqRe1+NnV0jsSOL9prR3Mc48v6ftjfWOR0M7gh1qSVBQ0ja1Z5kaqJg1NsPVqacgUNtWNDvQusaA4X5O5D96JmWpNtEFZt85h9xBsjRi7UuyCpD3B7TiIucqRDTrLlf/U47bRT4fOl4BR4GumzDVPlqRkzZuD+++/n1RZuhHpGEDzEL2BJDZoVSK+Rf4Btpyw382V9P8W/7clWr8hOKtzGuzldWNUwRPFvR9rcmch6QdteShzEaBWnhOTBy4kDK04UNHjqWg5Bl2ZHNoTzkLa9CWlb3zmBuNa9no8A7s5J1PIRAPh81Tbcde0FlraBSH1Mmb7TTz8dP/rRjzTX9Y1fcgRfXtTdzKUSBLq32bKuL7MpZqnZCx5oVK0aB1ojyGyK79DUnu98ZedIfZ6t04eEAJgXML/7qJjmCJt2umc32278eGlbCzu17eURbSXUEgfA+eQB8GZBwwqs1Lmctr2eGJO23UvR9nAiftpRiBYjzkcA4zkJy3IT6R4DdtA9Wzu3cTIn6WiLoOqrwzj99BRczwfavdNOTJm+YcOGobi4GFVVVejTpw+vNjlCZpN7FSJtmxtMoFfJC7QxGz8W+hTUu26Kp7Sg4SZtC8lKZpM/bXXsdEEjlbG6oKGG2wp1TkDathY1bQcPNNrWDnGfImjd9CYuFtCnoJ7r+ZzSdc1XNSgsLsRxxx3H9fqugaZ32oaph334fD6cc8452LdvH5fG2DmSlNkQD1zCjxGcWt8htLlwRwyZDebPx3N0idUAsVZkqbPXDw9t24G4jU6204tr0og4btGQFLe2i2DH6bjgFQ0l2tgALvkIC6m8aZEc+/93AOdOPzc11/MRtmJ6y6nzzjsP77zzDo+2WIqRYNRSloncavfvbCX33toL4/81uoMn4R3s6mitRpzYdAR9CQ0ThICbk1819GjbrfGaZQocwH80JB0o3OGsrnkWsKX9EcVx8xxcXYWfLrzD6WZYB4302YZp03fWWWfh0KFDaGpqQn5+vuJxdq/ri2YA2RqPXWnt4UPOYf7K8LWGFf8Wy8lK/L/Wur7c6na0lBnbLlwceKMZ8XUA4W7uTCbSge5Fzdwqx06aPLG2xVq2ArViBpEe2K11X2vYcl0D5hNjJ9Y9pQo8p+MbnSXjRAw3E7uN5iFA11zEbXmI24sZrUdDOLz9CM4880xHrk+kFqZNX3FxMcaNG4d9+/Zh+PDhphtkJDnOOuqOxfNqZk96jB2JhRS5z0lPALZ7MxfCHdpW0rUTWnZ7AkEYh0cibGZmhqDndNM173VPvGGd4u/WTVwKtjsbw+Xit53FO4G2Y3sAqeUhPIsZqaLrA2sOYtDQQSgrK7O4Rc5BG7nYB5cn5s6aNQvPPvssF9OnhVBZc0MyLMBi9pRek9nUgfZ847ch53AMrT2Mz/MWPscwOgMQVZHtx226jhTmIKOardO0IoFg1bXZQgbhDG7RuVrstkLXrLGadO1NrNK1VjFDuomLnpzE1xo2nYeYyUEAykPU2Pfxflx0/kVON4NIEbiYvpkzZ+Lee+9FNBqF329qb5gkzG4w0laiPcVTC6V1fZlNHQCOJccGTJ/cuQTMBF+jZB3trC6rfu4MI337G4tcXWXjvYOnHtzyIF8tXRuFVzHDDOLEi5II54kcyXaNycvZfsTQ64wU9nhDunYXbtI1D32KY79TsVuMUl9ZOshkUuchopEo9q8+gAt/fqHTTbEWWtNnG1y+2ePGjUNOTg6qq6vRq1cvxeOk6/pqDiksZGjUbla4W4RLwNWzrs9sQsyK+Dq5MDefHogb3zb1xysxo3jPAJT21Dc/60hbHtN8+uZItiPz6Y0+q8+MrlngUcwQY5WuvZJEUNLMB7cUNOTgpXG3aRpQ+dwL7OmvUpGaHSWJuJDquu4o67rG0Y06F+CZg7h9Pd+hTYfhj/lxyimnOHJ9IvXg8m32+/04++yz8fXXX6uaPkD9C5ugoINbgmyW7IaopWYvo7peNugKZDZ1IPvYA1nbCvmNolqB+N42tAQVjxtRVm1Hcyzh62r5efWhZj7Tv3gVM7SwWtdSnEoixCPYSkSOZKMmLP+Z600iUhmrixm8sVrfbk6MBZTuGem6E6XPyC6zp3czOTvjNgBEcgLIbogCMJ6DsBSdeUxfFu5lMC+smIO4If9gnWm0d+U+zJgxAxkZ7owvvHB6Td99992Hl19+GVu2bEFOTg4mTZqE3/3udxg2bFjimFAohJ/85Cf497//jba2NsyYMQOPPPJI0lrLPXv24MYbb8SHH36I/Px8XH311bjvvvtcdf+4teT888/H8uXLeZ3OUYQAx0pHWRHz+icziNvlmAFszDBdQRYbp9wg27SUrEByh3By6S7d1/20ZkDi/8MRNmPVErJ/wx0eyI1g69W1VfAqZPAcwVZCnBDWHCpEME9er25IJMwgV8zgVciwE7sTYul1s3MCri/OAWwFOq9rGuiqa56aZinO8ZiRYXeBTg25HMTsej5dcBi99lL+se3DN3H7vT/TfS3P4fD0zhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLis71uvfVWvPHGG3jxxRdRVFSEm266CRdffDE++eQTAEAkEsHMmTNRXl6OVatW4eDBg7jqqquQmZmJe++9l/ObMw430zdz5kxcffXVqKurQ3FxseJxM1buxDunDuRyTZZREdapcGoJcahnNoKH3DUFTNze7AagbpA71hbYhTiAegabR7DdYvLUcEUhgwNeSiS8WshQwm06T0VNA2y6lmoasEfXqaxprdzDjoKzHEIbW3ukV+4B2JN/hPYcRmj/UcycOdPya6UyDQ3Jsxqys7ORnZ080vr2228n/fuZZ55BaWkp1q5diylTpqC+vh5PPfUUFi9ejDPOOAMA8PTTT2PEiBH43//+h1NOOQXLli3D5s2b8d5776GsrAzjxo3DPffcg9tvvx2LFi1CVpY7YhS3DLSwsBAzZszAjh07cMIJJ5g/oQ0JcnZ9vBQQNbdkTp2W1q6/y83hfhnhvQi0FSVX31hGRVimwrESas5SHBUhrEOqA0sQa1pBy1rTloOH2hDqmRx4UyVZNoonCxkO4DaTp4a0rV5NkFkLGXKY0TVrIcPrWKpplXitFqMBdInRcmjlHnbDmncYLc6ZhVXTRz/ahO9MPwuFhWnwcFoLR/r69euX9OuFCxdi0aJFqi+tr48XUkpK4knz2rVr0d7envSsxOHDh6OiogKrV6/GKaecgtWrV2P06NFJ0z1nzJiBG2+8EZs2bcL48eM5vCnzcHVV3/3ud/HDH/4Q48ePh8/n7BdfDlsSYgE5syf927EAbCRB1sJtgViJllAWU/ANRwJcg29WIJISCYXjmm5ptaaI0RBFNLPT+LlVv4Q9CDp3KjkGtBNkFsTfVzdomgpzMtg0G8N2TYv/bUHMFpBq3K71fKlELBZD40dbcM0fH3a6KZ5n7969ScZZOsonJRqN4pZbbsHkyZMxatQoAEBVVRWysrK6zGIsKytDVVVV4hjpsxSFfwvHuAGu0e28887D3LlzUVtbi+7duyseZ+cUT2Fqp9nkWGuKZ2Jdn5rZk5J0rPmEQo34++9MMqxeC5Uq5AbDrpo6xEvPutDStM2JBOCOhFkJ1kIGoYzj+jagabsKc5QgexM5TeccscDwseQgiWPM5R2t3dVnZHDNO9JoN9rWnTVoP9KYNlM7fRCrhN85gfgsRD2jpfPnz8fGjRuxcuVKzi1yB1xNX15eHs477zx8++23qqaPGQNTPI0unG7t7jcVgAONIX2GT+71x4gUKO98qUTOkahmABYj9zkxB2QOm7mkGsG8sCUbX/B8NIMUtUJGoDGEWG42fIfr2E/IMO2TF50JVDy0UxHD22TXusDoqR1nsZ6B+PtvK/IlvvOkafeitZcALz1rrufbWdWpTQP5h5B3GMk5jCDtz5zSuOundr6/AReef0FiExHCHm666SYsXboUH330Efr27Zv4fXl5OcLhcJc9S6qrq1FeXp445rPPPks6X3V1deJvboH7wpl58+Zh+/btiESsr0YGDwUQPBSIB9haaxNkJQKNoSTDZhRxci2cU3xeHhvJaHVC2bVAwfZA4nMNHvL+9EevETwUgL9DW89WjXTx0jNaWvmchxFxDHAqFhBsOHqvWlqNFeeO6dlJTRPmsHI3WkfvlUFNx3oUJ/5fTtt6R67l0OqnsmsBfwe45RypMF052t6Buvc3YN68eU43xT5iFv2wXj4Ww0033YQlS5bggw8+wMCByTMRJ0yYgMzMTLz//vuJ323duhV79uxBZWUlAKCyshIbNmxATU1N4ph3330XhYWFGDlyJHtjLIb75PVp06ahpKQEu3btwuDBgxWP0zvF02wwaCvycZviqdTxx3oU6xsZYcDuSpwUuc891JPN0NNmLuq4xVRbmciaHcE2g5B8+TvinzOrbu2C9zpVNyJoPNPBx8Lx1rfRmKxnJoYcUj0DKppOgZkYbt2NNngokFJ6Vjy3hukzq2clZHOOQfbvnu7UKF/9qq3o3q0EU6dO5Xp9Qpn58+dj8eLFePXVV1FQUJBYg1dUVIScnBwUFRXhmmuuwY9//GOUlJSgsLAQN998MyorK3HKKacAAKZPn46RI0dizpw5uP/++1FVVYW77roL8+fP11xHaCfcTZ/P58P8+fPx6KOPqpo+JQLVXQN4ZrN6tai9kE9SoTXFM6uu3dZKr5hAYwhZoo0twsVdtxzVO8XTKMFDAbS3yF8nUqbf5KXyZi5G9MwLt+nZSQMIKJtst5lBr+KWIgZgbWIsdw0vFuV4kwoFjOCO7MTnZ7We9SwncSLvyKprByCfa9iNXD8KGMs33L7e+uibX+LnN/3QlZshWoXTD2d/9NFHAcQHrcQ8/fTTmDt3LgDgwQcfhN/vx+zZs5Mezi4QCASwdOlS3HjjjaisrEReXh6uvvpq3H333WbfClcs2aZq7ty5uOuuu1BfX4+iIvWFwkpfZrcgBD478B2uS5pyoYa4XU4E5cxmH9rzun6rpPczlNPZtmCvZsvbZQVam7mEDsbn3Qda3R+k7dSzGuIihpJ+nS5iGEko0gHpd9yuIoZWkuyWopzTSTJvPbs9STaLVM9aZo+lwMxjPV/eDvXn7/GeVaSE0VyDZQlCu8mnEYjvXSQnhlCDt/ON0P4jaNqyP2E00gaHH84ei2kfHAwG8fDDD+Phh5V3VO3fvz/efPNN9gs7gCWmr7S0FBdffDE2b96cmO8qx4yVO/He0GFcrsky2qdniqdSctxekovM2hbF16lN8Yw1NiX+31eQz9QOMZm1LWgvye3ye3FbW7urDyMLmwWoXqfBfDCWQzBHsn/LSt4ooaSPMw+cFVO7X1SwCHv3uXFWGT1Bz0a0LMbpAgYgX8SQK0ilQhFDCypimMNNIyRipHoWJ8mpqmUgrudAqw/uGYdWhqee1eKzVnFZLs8AnNG2XHGZBaV8gyXXsHNqpzjPOLL4A1xw0YXo2bMn1+sThIBlD6S54447cMopp2D8+PEIBs1NfWnPi9lSTRYqyVYkEmLDJ/232aRZTNH2tqSAbMdIiRqBVh8iOfqDdpLhEpPBuRzUwU9XkZyYaxJlO7WshJ6RawE3GEBWWIsYdhUwtKYrJ75THi5gANYWMXjG4lTUMkAFOd5YHaN5FeekCH2M0zkGAPYcI6vrbAHZXMOBPCPS2IzWVZ9j4Wdr+F7bK9i4eXM6Y5npGzduHE4++WRs3rwZJ5xwguJxZ3671dbRPimWPCdHBEuCLA7KRhJlNcTvj3dwVpriaYiwXzYgd6HDxz8guxAjI9dGtKw1ci1GSctGkwqlkWuBeDIUT5aVtMsycu00igUMwNVFDDeRcyRq+Yi19P/5G0B1LbNgxQwMvdhSkGPVMUfDZ+c0ZS0ta8VkltlEcn/jbfwA+RzDjqmdnoFRy40ffoKJJ5+MsWPHWtwgIp2xzPQBwJ133olLL70UY8aMQUaGuUvxGu1rK/KheIe5oXuWKZ7YuU/3eRMBu7EJGNhX9hitRFkNITjnHIn/u26Q8qiAVVM8XUdGzPZEmefIteVFCx1atiphBswVL9JGyw5gZaKsV9t6E2WtgpzVIyRAspZ5FS+4FeL0kAaFOMD4ej43FJcTxynkFgJa+YXaqLXwPv3tfrT2MK9nrlpmKSoDjmg5Gm5Hy/LV+NV/X7b92m7A6Y1c0glLTd/06dPRp08fbN26Fccff7zicTxH+5TIOcyugHBxpuGqsq8+HnzN6M1XUgzUi6rPRfyrc22F/i6fCY8gLYfRKZ6uIivqimlEenQMOKflRBLCcdRaQJpAtRV5YbUOoYVbEmPF16lo2WwhDuCXKHOFNVF2MXZPubdax4BxLQOdcR2wJrcQsCu/cHVuwVhQbl61Bn1798ZZZ51lcYOIdMdS0+fz+XD33Xfjuuuuw7Bhw2wZ7ROmxaklx22FfmQ3mAvM0tE+cSA1S6y2Lm78JOcWAjTLtDgja0ikn1l7oXbAcmSKp4vhva5Pr8njAU8tS7VrBXYlFwRf7NS2r76JWyHOLi2Tjr2DHi2bmabsq29CrLbO8Ovlzgd0atpo8UJMW6F8cVT8GTUMYpj+mUajfE1vfIDHn3wqrR7TkITDu3emE5aaPgCYPXs2fvnLX+Lrr7/G6NGjFY8zO9qXU9P5/5lN5u826wiJUoLsKynmGpy7XMtkcM5uiCoGZ4HCHTG05ycHodZSU5flQwqv6+OtY1Z4Gj2t81uZNANkAt2KWmJstggnh1WaNlLI4FGE46ljV4+OsOLgej4lLfPQsdw0ZV5aFheTZc9vYmqnHsT9HGA8r3C1jhlH+Zo++h/6lpfj4osvtrhBBGGD6fP7/fjd736HOXPmYMSIEdxG+6RBI+mYfJ9mwmx2tC+ztsXyRFnr+gJKj3GwYsc4uc+9faD261w9xdOBdX0C6ahjO0b/xOQcjiEj5MLiRYqTqgUM6XVIx5xx2WZEgo7t1DBgn47FCHmF0RE/rUIygC6FZMB4XsGEm0f52sJofutD/ONfi+H3O798xCloTZ99WG76AOD888/HwIEDsWnTJtWdieRG+3IPdg0QGTY9f1dutE9stmJF+aqBmWW0L9LUhEC+zHN0JFM8u5y7vilpuqeAnmDNMtrHQuFOHzoUnsrR0kvnN8/NUzxNrOtzUsdSpJVkLR1roaRhLXz1TRDKEmrPhaLihftRK17YgZNFOBYdWwWvERNTuHjWhd6p9lbrmGXXTjUdG80nAOVRvsS5RcULozkFLzqC8n2mOJ9wdRzWsWPn4AEDcd5551ncIJdD0zttwxbT5/P58Lvf/Q6zZ8/G8OHDkZ2t/ABxuS+6EXiPkrBua89KpKmpy/8bSZyliNsZLlbZKp71fE1dp3jqQXw/I9nJ52npY8LcuXSKZ+7+uCkMtDncEBmMalipeCHWsBKsxQunkwxAO8kgun5GLIULK0dIeMVlo4ULKWZHStRgicOZDUBmAycdu7X4xgEjOtbC6IwL3nsD8MwngM72NQ8yn0+YySUA5XzCVC4BOJJLRJpb0Pz2CvxpyZL0XctH2I4tpg+I7+R50kknYd26dTj55JMVj5vUtAWr8oernqsjaM8oSfBQG6KZfvXHM+gc7VNLlMV/C+Tn6xrtkyNvRz0iBZ1DcKGeymbbDgJtQETUBMEgSYlmdv4+1LfD6mbFYZjiGdyXAb81jwqzjOChuPsMNPL7wshp2KrChVMGUEDOCArJhulEw6W4uXABWFeAc1LDPGZcqCHVMdeE2Qk0Zlzo0bAThQsri8jS3/Eyf0JfopRH8NKw0qwhNZRzCQCI/822XIIhjwCA6nc+wEkTJ2L69Ol2tMrV0PRO+7DN9Pl8Pjz00EOYMGEChg8fjqIic1UjFuPHMtonhxDcAMDfzq9DZBkZkR6boTElQw/i9yUEbl5TPDNCxoK1FkKAlCPGead+n7nHN1qCEQ2L7zNPWPRrRZXZ3x4XltNFCylKiQbgUOGCAS8WLoC4pnkWLgBlPae6hiOSJriq+MYwLc6rGs7bUa/6d61RPqOzLSJNTcioUH82n9a6VHHxWC6PsBuphllQyiWcyCPCR2rQ+MVqPPbFF3wvThAa2Gb6AGDUqFG46qqrsHz5cpxxxhmKx7GM9vFCmOJpJlFmWROlx/CJ6dizL5F8aM3JlyPQGEoK2ALi9xs8BNQPzlE8h9kpnnrxtwsVOnV8Ef4BW4toJrglHLxGrHloWI1YbZ1u/fJOnAHlZIMKF524sXBhFCeLF+LjtDSsZyMXNyTMRrBLwzz16/RItdP6FSMYRiM5hBrCe1TLHwRYcgie8Zclh+ANq36PvPc65syZg1GjRlnbIK9Aa/psw1bTBwC//vWvMWjQIBw4cAC9e/c2dS6zo3251fHsPZKj3mtFCoKGqsy8H9kgF7i1pniy0J6fkfgsAKClzLpoKZ3imapEsq1POsT3LLOJfyWeh34jTU0IwLpkA2BLnu0uXBDGcFPhQvp6oxqWK7oBye+1rVA7aXYjdhfdAH5FN4Df1E5hPZ9V+gWMF47FRQu5HELPKJ8S4r4IsDaH4Jk/OKHfll3b0LZnJ3730Qf2X5xIe2w3fWVlZVi4cCH++Mc/4vzzz1fcptaq0T5pcAKAQKt2eUbL+IlH+3ibvS7XEp2fRzKd2dSB9vxOKcgFcJakmedICetoH09iAfePlMjplwWn9ctbs2KCh9oQaO3Ur5UJBytO6NeLCHrWKloYndop6M6M4ZOei7d+AWgW3ewuWLh5lMRN8NKv0kwhnvqVnpeXjsW5g4BUzzTKFycWieDwW//F3YsWorQ0FZ+3YhAa6bMN200fANxyyy148sknsXHjRowZM8bUuVhG+7IboprGrj0/g8toiVLCHMjPNxy41XaWi9XWAcI1B8rP21ea4slKYkS0obMs1tTbgRKZDKk+xTP/QFy3LIUJs6iZPZ761Zs869WvnVVnQh9GixZ6sbLwZqX5A7QNoBJWTE32KlbNspDTr1tnWTBdQyFnEDCTNwjkVrcncgezeQPLKB+r4XNilO/opyvQMz8Pt956q/0XJwg4ZPqysrLwt7/9DWeffTYGDRqEfAVDY3S0T0iUeaM2WuI7XGfJNVnxFeQDojbEehTrer10tE8Luc+4qXeAabQvXaZ4GsGods0ULQTt2l0YSyTPsPYB19KihVsKFulA/oGILQUL7NwHMDwXlSeJa3GYXq8Eb+16fWocT1imdhZtD5u+DusotZJ2zYzyaa1H9ZnIGQB17QqIl89I+zdBzywFCzfnDCyjfO31R3H043fx0rJlyMykQqQY2r3TPhwxfQAwdepUXHTRRfj8888xbdo0xeNYjF+wNoqMkPodjuQELBnt02P2rBrtA4BYY1Pc+Mm0K9aj2PRoHxAfbVJb/ygE9I5g51SOpt7GN9jw+hRPlnV9+Qe0tWsVThcqBGK1dfC1x793RhIPvSglHoR5rCq4qeE7XBefHWSj4ZNeHyDt2oGVu3Y6pt3GJkdmoonzBaEtgD06FpDmDGbyBcCZUT7WfOHwO6/golmzMGXKFH4XJwidOGb6AODBBx/EkCFDsGfPHlRUVDC9Jv+As88UEkb7lBJmX0E+Yo1859+bRWhrxmGgY2C54nF6R/tYULpfTb393Cp3Xpji6bRuxbhZu2Yrz0YQJ3u8ko90gAoWyaSKdt26HooVlqmdvLRrZHaFXdo1unOy0D61XAHQP8qnhLhIrNRP1g/kF4+dGKFu+mYz2vfuwF+Wv2v/xb0AremzDUdNX1lZGf74xz/ipz/9KcrLy5GVlSV73KSmLfiq4TjVc3UEfbaM9mVU1wMtrarnUMPO0T45Mqo7nxXUUab/WYlao30AkBGKJQVyOfIPRBHJkj+mqY93d1nM35+swUBYO/Lw0q4aiftuQrt2o6fyzLtgoVasSDe8ULBwCqV4m2hnbg7AYV2UFlqJczrqFlDWLovh4zEtOWNnFWI9ihV1q1Vk472Bix7M5go8kfarAuJcwa3FikioFYfffAl/efBBlJWVWd8oD+KLxeCL8XVpvM+XKjhq+gDg2muvxb/+9S+sWbMGkydPNnUuq5JncfADEO/IVZJnK0dMeD7/TC6oWzHapxdpgI+qNKepL3+DKJ3imb9PXlN+hiJvJMvHZPx4IC1YdNGtScwWLIRz6MV3uA4ZLfEt7R1PPo4lkXIFCyPFCidGqeWQS6rs0q0WZgttTiN8D41ql2W0RAveRTa3PKrB9bqF+woVgHKxIkFu8iNEpBq2YpRP8TwKugWS7z9LnmClbpXyhF2fvIYJY0bj2muvte7iBMGI46bP5/PhmWeewciRIzFgwAD06dNH9rgxhd9ojvbxQkieeSfNAtLEV08irfmgYK3RvpbWLgEdSDYIGdVA6+Duym3gNNoXCMdUAzoLSYGWp/9jyBuiGWzGz26s0q1ReD6g3U3VZylOFyvkkEtE3KhZKW7TMA/kzJ/TBTbAed0W7I51Oa9R3bIYPl6jfHIzgpJ0q1GoYCkMC7HTyRE/McL7a89Xzg9YYTF8rKhpFhDpyeYcoWH/N2jctR6L39kCn8+7M5gsh6Z32obzPQ6AAQMG4P7778fChQtx4YUXKu5sxGL8zI72BQ80xo/Relgux9E+1sDOM3nWQvgcACDUu8C268rh79AO6umOcL98reZ3m1NDbxLCqlkjxQq9BpBXsYIHThYr3EbO9iPoKCuy1OgZHaW2IuaK3yeP5JknjiTPUB4l8QJ2FCj06Fdzx06do3xSYjlZmvkBj9FpQH2UT4A5N7A5zkba27Bv1Qv44x8eQP/+/TlenCCM45pUet68eVi8eDHWrFmDSZMmmToXi/GTIg5iABBosH86kVpCrSf5MDrap4T0swn1LnDVaF+CGPgFdh+4JdAsUzyNFCuk94UJTsUKFvNnZ5Eio7oegYbONcFOFyoINgQN25U4A2wFC7u066bimptx0+h08ECj5cU1ObSMn53xVowRDdtRWEvCgcLa/s9excjhx+HGG2/kePHUhB7ZYB+uMX1+vx/PP/88Ro0ahd69e2PAgAGyx/Ga5ikk0GqJcywnSz24MyTQiXPpWOMnTU6cCuZKCJ9ZLDs+ItvSN8/J5jiKnVM8c/c1w9emvmWopmY5I5eIuEGvlEy7E0OFCs6oJc96tcuyeRYrcprNPhLSjK9m10XpxqUj01ZN7TSkWYY1qEbW/lsebxlG+dQIHmjklhdwHeWzmaO7NqBp70a8/PVm+P3puYkS4U5c9ZXp378/nnjiCVx33XXo2bMn8vLkg4bRaZ65+5q5tbXzpOrGT0BIDPSaP19Jcfx1Op5BxZSEaIz2+VrDmgFeQO5z1RPwWUb70nGKpyV6ZUBvMiIuUhjeJpxT4iyHOGmLZWemdZHCCdxg9KTwKqyp6lbHbAop4sJa7r5m0qyNaOnViVE+MYLxM7QplkV6FRAMH9C1/xI0nOpFinBzPfategH/ePop5keRpT20ps82XJdGX3nllVi6dClWrlyJ6dOnm1r8GqwJwR82t+0y75ETVvMnmD3pv516ALEcvrb2pCAvRhzwo1nxaaBNFeY7FU08PMWTRa+x7EzN0T4e6DV+vpJiZFhVoGA9F2OhQikZIcxjSaHColETwCKzxwhrUQ2wR7NuLarx2sBFDunnyiW26thp1ohuhVirNxcwq1k9epVD+KyjWQEuuQCTXm02fLFYFHs+XoxZF16IK664guPFCYIPvljMfQ+zaGxsxPHHH4/evXtj7NixisdJR/vy93QNtiymjyXQaxo/g1uKywV8qeGTfZ1CwDcU2FUqfCyBXsn4CQimT4mmihzmyp4bAz2gPzGR0yrAR69MRQodetVboEi8TiMp4a1VQFuvWloF2JISL+uVdToySyJduE07YTWtV52xlTWJluqWNYnWpVuLYyvAT69u1CrAz/Tx0CpgTS5gNMYCHOOsTbFVCUHDXt68peqr9xE5sB7fbPkaBQW0rECLhoYGFBUV4YQrf4NAFt/nmUbCIXzx/M9RX1+PwsJCruf2Mq6s7RUUFOCll17ClClTUFpail69eskeN6bwG+zY2E/1XNGsgD2jJ+KAqbPSB3QGfRbDJz1OCPpWJNF6pnkq4Q9HVIO9YICimclz3xv7GwwCLhrtK9gdSvy/v92eh1xbMTptpDihNjpthVZ5ImfKbRmpdilKRQo3ojV6oqRbrdkUVk5BNooQV9X0mnuwzXgsdRij66Wt0itTXGVc8pF0XoMxVjiGW4xVwGrDB8TvmTQHAEzkATYbvsaD21Hz1XtY+fHHZPj0QtM7bcOVpg8ATjrpJPzhD3/Az372M1xwwQWK6/sGjdpri/HTlUgLyaneaR49ioF6/VOUfCXFiBXlA3ofAsspiVab5mkGsWFKwt8ZzesHZnO/rh6KdrZ1/iOqHmWimX5N42drkcJocWJgX/h06FSaTDtp+MxoVZxIcitQuAzeRQou0+U4JdF6CmrSJNoJzZqNqeJimvi+ymnVrVM71RDeE4tOec34YcakZlm1mnitSLNOzPaxki55gD/ZzcnmADYZPqH/b2urx4a1z+JPDz6Ik046iePFCYIvrg718+bNw6pVq7BixQrMmDEDgQCfZ78YRfcICqP5i/Uo7vz/onjA1pNUC68Rn8en1wCqILxnM8Ffa7QPiHfecpU+NZJMl4RYgF/k90VSsGxkoDiBgX0NX86O4gSPkWkWpFr1VIFCozjhSgwW0pBprItLJN3tBoaabByRNoKsVhl0WrgnjIb+fL5bRTvaVL8PbtSq7tkTBoyf3oKa9LUA9MVXBq3+//bOPT6K8l7jT+4BQgLhFiIEQ+Qm1xhBIiAiWBSOR0WK+PHSHlSkVezxbmtboAfP0Wo9bVUKcurxKBVbUaoWr4DcESQCAuUmRgIIQYEkhJDb7p4/wiyzk9ndd2beuezm+X4+fDTJ7uwk8+z7e57f++470cZUGbN8QPNGmi6JzWu6ngdwsvb7/Y3Y9c/FuPGG63h7BpPwlg3O4cnP9KmpqanB0KFDkZycjOHDh4d9XLTZPkB+t89wEdApAOqgpvsaUQqAEvgiHkOvCBg0Jk58tg8QHPgB3cG/2fk4HfoEDIqTXWlD+jTQmAge30RjIuT5IubEBZ0C9pqUZufjQZ0CcrQqXaeAsJEOaYKZMNJqzQo30Qzo1Yklc0B869SNWT6Z4yrg0tgqcVxt6XV/3/530apVBbZv/wKtWnm74eM1lM/0Fd1sz2f6Sv7Kz/Rp8fwNRFq3bo13330XpaWl2L9/f9jH9RxwKOqxRAYfI0tqAq1Sjc0qaAbaaIEPaBrQRYJdxGN0bBf6WjYYaRFEiq9Tn3uzBYGCJFLcZOnUsDZ1dNFMO+qfCWoz3GOUY4d9H7ikU+Ishq9btA0ndDRlZAzV03VEnSrnJDHwieBk4CMmCaOJaGOf6LgabWzVPR+DOrU6yycNDwa+o8e24sSJHfjww2UMfFYI2PSPNMPzoQ8ACgoK8Oabb2LDhg0oLy8P+ziZwc9o+BOmdSs05ucIBb6Q1zg3wKsHeaNhUCkEjV2yDD1PFCduJRBEoAssc0mmzGLiJGYNdVSTq36NSOZDUKNeaUwQcazeDkeN1eAXtYGA6FoUaWKENdIGiEWtenGWTya2hheVPoyOq+G+b2Rc1TsPoecK6DRazY/nmejKyjLs3/8Oli59Cz179pT22oTYSUyEPgAYP348nn76aaxcuRLV1SbXvBvESPgTnfVTApevbTp8bc1NZ1uZ/VNes7FLVvCfk8T9bJ8ARj+3GA7Z2gTO6SI/x5Q21bo0q9FAx3ZozM8x9hwDJtrRznQMI+s9aFvzDABatzJkooHwujQ0E6i8psFZEyA2A59XkbW00yhGr2FjlyzDOg2+lqbJa2ZMbczPMTSmGqkXkd7fsToTLRL4amsrsOufi/C73z2D8ePHO3BW8Y/yuT5Z/4g+nt7IRcv999+PHTt2YNmyZbj22muRktJ8wBHdzVNBpCgY2S1RGSy16/7DhSvFXCedDrMRhA4N2a1Dvk45WSP8XD3U55ZcXhnyMzsMtcimLkL4A1ELQoIvIK0DGEhKiF4QEhOkdKlFdvEEjGsz3OdR9PTpa5tuSJcK9fmdAZjTpbopoaDVpBqa6JaJWh9mNGp1ybyvbTpwTquR9Bnymg43J2Q1l2Ti9IZYouOobLTjqdmxFGgaT62MpdpzCqdX2fqUVucFcHIlTmNjHXbuehVTp/4QM2fOdOx1CZGB5zdy0dLQ0IAxY8agvLwcY8aMQUKC/ptdZGMXBSNFwegHvo3OpEUrDNrApyVScTA6e5NcXmmbUYnnZR9ObkCgYHYjAlF9ihoWPX2KGpZo+tQzK/GgT0CeRp3UJyCuURkbZUTSqlFDrdapUUMdSadOGWogukZb+vgZfKwNGgXEG7tqvDCOAs40d+NRn4GAH7v++TouvDAL69at1p14IOIEN3L54Vwkp8jdyKWxoRYlb/6SG7lo8F4rMAopKSl45513UF9fjy1btoR9nMjn+xT8qUnCHSkjSz7PFnRAQ4axydRIyz6jBT7lMXqPM7Nc72xBB9TmtkVtrjs3GhUq7A5/tk8IBzd0UTC6jO5sQQdDDYlo+gmnu2g/Ez0+0HxJsl2zfE51p1sSVpZ5iixDFx3f9LQoMq4qrxHtdbTnanSzL1mGGojvZfJ2zGKanV018jEJq+NotGOLvg/UY6hn9emxwAcAX3/9EZKTq/D+++8x8ElE9tJOLvEMT0wt71To0KEDPvnkEwwdOhRt2rTBxRdfrPs4kaWeaowsBQm3rE4vICnBL6Va/J5P2mWfosYk+JrnHm916aeC9vdK//a0lOPGGkJLPCUiQ5MK2mvYkJFsSZPB4whqM5wmzTYkFES0yM/yGcOfkigUGuxaPne2oIMhbQKRl9BF02i08dKoRhu7ZKEhI9nQOCnTUAOCwUhgibws4uVep+px1KhGw2FkDJUxfjZkJKMhQ3wMlb1KAhDQp8e0eeTIJpw4uQ1ffFGCDh06RH08IV4kJkMfAPTu3RvLli3D1VdfjYyMDOTl5ek+zkzwA8Q/6wc0LQsRmQ0zE/7O9GzqyKVWmNsZsyG7NerbNZ1n+nfhb2RuFPXv63oAdPizfUIIfLbPDmOtF/wiadNo8APOm4zaTmmmdKk22GYNi5poWrTDsMQ0kj53ahS7mxJA8+BntVlmdrMtRaOi46RrTQkHN8lwumEmE5mrXRSNGtWmghL8rGpTTSSdym5GAN7bwEVPmxf1+ib4/2VlZThYtgrLly9Hr169HDuvFoMdt1iIzaHGdmI29AHAyJEj8fLLL2PatGmYMGECOnbsqPs4ZamnHbN+Nd3aAACSzop3u0XDX22ntOD/K8ENMBYA1c9THy9aADSyLFUpGL5WTYN+68NnhJ8bi8g0L3YFv5pubYQ1adRcq3Vklvp2Kahv19TQMNKMiKZLp5oRXtwkQzZONCWimWmzwc9sQyL4utmtTS2PjKRP5Xc1a6oBybN8pBlnCtqhzYEKAGJBz4w+azulARb0adfYGTy/3LZI//a0u7p0eMfOXj1Lw/7s+++/x6pVq/C///u/GDFihINnRYh8Yjr0AcAtt9yC0tJS/Pa3v8XEiRORkRF+VzaZs35K2FNQAo/R8BeuYEQy1kqQi1Y01IEv3PFlzf4pvz/Q/G/jlRDoxdk+QJ651tOkkeAHGGtEAOJa1HuO9pgyGxFAk3kx0oiIh1m+WJhNOVPQTto4qUXbKDNjrLX6FB0jjZhqhbQT4hvQxLqxdkuXRhu4dnyGXa+eG9WnXj2v7ZQmfdwEmt6jaiKNn27p0olaXl1djeXLl+PXv/41pk6davvrtVQS/E3/ZB+TNCfmdu/UIxAIYPr06XjnnXdw7bXXIj098rIHI8FPIbHe18xUR8KIqQFCzbbRmZRwhSNS6NNDKR5mioQ69EWj9eEzcVEohE2M4FI6MzsmimjSihYVRDVppRGhEM7EGN4UKYIm9UyM9OVJgOObEQByb34tY5dEPY0a1SQQuSERSZ+ixjqaNiOZaxnajHdj7dZ4CYg1bhVkalNk3JQxZgL6+pQ5ZgKhGnVrvATk6jLcLF9tbS0++OAD3HDDDViwYEHYneKJeZTdO4feaM/unZ8v5e6dWuIi9AGAz+fDjTfeiC+++AI/+MEPhHZWEgl/1Xnnb76bXGvsT2WmeBgJT1rUxcNo4NNi9NyNnndjeugAmlF2VvdxhpYpedVgA9KMjFk9mjUyZpZyympCAM40IlofPoOqizLCalCLlw0M4A1zbUczAmhuro3oM5K5NqJNrbmWbawVFIMdL+babV16tWkL6GvTyfHSbP0WGTO9rMlwga+hoQEff/wxLrnkEixduhRJSbG/CsSLBEPfDTaFvr8z9GmJm9AHNHVmrrrqKpSXl+Oqq65CYmL0wUYb/NSmOhx2hL+aLqEDfFqVO3PTdZnN/2aty6N3yq2GPj0yys5KD32At40MEGpmIunRziaEokcrOlSMjNUGRF1mopAG1djVhAC8bWIAd8y1otNYaowB1rTpxLnHi7kGnNWldty0W5c1XVKkjJWANU0q9dvIeCmzdmt16mVNhgt8fr8fK1asQNeuXbFixYqoK8eIeRj6nCeuQh8AVFRUoLi4GAkJCRg5cmTEKfmttX1Cvk6qN/ankFFItGFPi9FCcrZD6CDb6oSx5+uFPjV6xcSOwBdy/NTQx7c9GOZzMDFuZk73OD/oGdGizBm/cHo0a2jOdkg0rEE1Wj262YBQ8LKRAdxtRAD2GWy1Nq0abBmNCAVRgy1bl3ZqEoid5phXGrWAt5q1QGRt2lm3lZodtlarcWmc1At9gUAA69atAwBs3LgRWVni97IlxlFC37Dr7Ql9m99h6NMS8xu5aGnXrh1WrFiBYcOGYfPmzRg2bBgSEhKaBTw9lIFK1HA3picYKibqjTWihT0FZTAXKSbawKf+nojxjhb4gNDzNjr7Igt1ONLS9pC821KIIrx5xrmNXSKdvxmM6DDchkPR9FiXmWi6AWFEg9rX1OKW/hRjKdyAiAUENhpStGq0IWaESBsOhdOlGT0qVBY0Lb8z04yIpEmnDbaeJmXp0dENrwTRjptuaFK0bouiV7ON6DJaza7pkuJ4o1atx3C1LqhTjwW+zZs3o6qqCps3b2bgc5JAoOmf7GMaYM2aNXjmmWdQUlKCo0ePYunSpbjhhhuCP6+ursbjjz+Ov//97zhx4gTy8/Nx//33Y8aMGcHH1NbW4qGHHsIbb7yBuro6jB8/HvPmzUOXLl1k/VaWibvQBwC5ublYvXo1Lr/8cpSUlCBpwK2Gnu9LTTAU/ADxTqKvVRKqc5OQUm1MkNHCn17xCPdzKzMvapQC2JCRgIxv5d+g2QyV+WKfp8gsq3fttRMFNiI0okHAfAPCiIkRbUCE06ITDQi7Z521RDU1LmB0B0+RJoTRMdHozIoWEV0aDX5aXRqdhRYx2EDz8OeUwQai6NFDuyJGQnZTzCpGx0izDVr1z6LpUmR8VFDr0ulVOeGoLIh+jbNKmxq4TgQ+AEGzv2HDBuTm5kp9TeJ9zpw5g8GDB2PatGmYNGlSs58/+OCDWLlyJRYtWoQLL7wQH3/8MX76058iNzcX//qv/woAeOCBB7Bs2TK8+eabyMrKwn333YdJkyZh/fr1Tv86YYm75Z1q9uzZgxEjRqCgoACFhYVCs31aZC6zq85tPuAaDX8K6sISLfCFQ11YjBQRLQ0ZzQflSCHQrkICAH7RNoYdvkbwUoqEPgU7lhyrdShDf2qMaDGcsTGrRUWHRhoQVgx2JIR1CHsaEAm+gFATwm0tqjF73c02IdREMtl2nZcebusxq7ROusmu6pEaM2OjgpnGrBq7xkerYyMgPj66rUUA0ut0UdJe3e9v3boVBw4cwPr169G3b1+5L0rCoizvvOy6/7Bleeem935lanlnQkJCs5m+AQMG4Oabb8avfvWr4PeKiopw7bXXYu7cuaisrESnTp3w+uuvY/LkyQCaMki/fv2wceNGDB8+XMrvZZW4nOlT6Nu3L1atWoWRI0ciOTkZhQObf44vGlZn/fSCnhplMDY78+e3sNpEXYASTa6U0wt8QPPf2yszgUECkB/8EiBkbvzJ4uZG1oxfOB1a1Z9ibsw0HvRm/mSYGvXvKrP5YBdVPVLlH1T0I1Q2alEErS7NGO1wsytGNBludsWKHhsyxHSo4AU9VvY0vvNkVGKgraw3PjZkJFgKfgpmm7JqTcpsykYbHz3RlAXsaczq8OWXX2Lfvn1Yu3YtA18cUlVVFfJ1Wloa0tKMj3OXX3453n33XUybNg25ublYtWoV9u3bh//+7/8G0DRT3NDQgHHjxgWf07dvX+Tl5TH0OcnAgQOxcuVKXHnllUhMTERhf3PBDzD2WT8AqM0WH6jNmO+zHUNHxbRKcwWqLiv0OK2+l1+ltUU1/WTLvnOmU8EvWtNBwazBqctMxNmOCaa1B5w3RbIbD4B4ACTyMdqAAKzp0EoDQv28Vif80lc+xIzRbkGIjo1mqOiZZGlMVB/HbD2ONC4qKH8DRZOe0aENgU9vlm/Xrl3YuXMnVq9ejYEDB8p/USJGAPKbQ+eO17176A79s2bNwuzZsw0f7vnnn8f06dPRrVs3JCcnIzExEQsXLsQVV1wBADh27BhSU1PRrl27kOd16dIFx44dM/Mb2EKLKAdFRUX4+OOP8YMf/AB+vx+F597bsmf9qnObG4Vkgx/tEQ1/2sAHnA9vRoqNNvBpj21HAGxMb/63yvhWTghMbDRQXFyc7QPsCX7qv6sZ7ZltOtRlmQ9+TjQdgFCT15huTHNGzE08Y7YBYcRgmw1+FT2bXsOq2VaOY0aHRow20GS249loewk7Q56CHWPi2Y4JhrQookEtiuYBsXHR6Hjo6scuoB/4duzYgR07duCTTz7BJZdcYs8LE9c5dOhQyPJOM7N8QFPo++yzz/Duu++iR48eWLNmDe69917k5uaGzO55nRYR+gCguLgYq1atwlVXXYXGxkYUFhaiMH2v5Vk/vaCnpvHcMmWZ4U8v8KkxE/7CobyWXtExU1zCofd3lBUEHcfh4BdOg43p9jQdwunPjaaDGQ0q70n13y1mtRYOmzQoipXmAyAe/MI1v8yMfVotRhr7tJgdC+02265j4DLYqUHAPh1GqsdGtag3HqpfI5IWzWqwUfNRqmjjYqw1HfQC39atW7F3716sWrUKRUVF9rwwESYh0PRP9jEBIDMz0/ItG86ePYtf/OIXWLp0KSZOnAgAGDRoELZt24Znn30W48aNQ05ODurr61FRUREy21deXo6cnBxLry+TFhP6gKYZv3Xr1uHKK6+Ez+dDUVGRqeBXfUECgAQkGbg7gIzwFy3saVEXEL3CE67A6GH37J8e6uLjO9ecyTgSAx8QMYjR4Fd9gbj2rOhOa3ZE9Sca/kT0F4tNh3hfTqfXfIjU/DLTfAAiG26Rxpeo2Y6mw2iG2w6zDTTXn22zK0DMz/JFa77agdF6HAnRWqw36ydLf3poA2CsB75AIICSkhIcPHgQ69at45JOIkRDQwMaGhqQmBg6ziQlJcHvbxqni4qKkJKSghUrVuCmm24CAOzduxdlZWUoLi52/JzDEef2pDkDBw7Ehg0bMHr0aPh8PgwbNgyF6U0Dg174awp4+ihBxInwV9XzXPirivLAMNgx+9eQCbQ6bvlwhgh3PUyHQTuWeAKGZloiEUl/RrAy63e2szndRdKckYYD0LzpYKfRUVAMTzw3HMzQ1HQw9veXFfyMGG2RMc9o48stw+1LM6Y/Lxhuu1DGRDc0aCboRWpAGB0HlXNQdGhlpYMRfGlAZb5OYyyMJr2gP73At2nTJpSXl2P9+vXo08f4bu7EJjxwn77q6mp89dVXwa9LS0uxbds2ZGdnIy8vD6NHj8YjjzyCVq1aoUePHli9ejVeffVVPPfccwCArKws3HnnnXjwwQeRnZ2NzMxMzJw5E8XFxZ7ZxAWI81s2RKK0tBSjRo1CVlYWLr/88mCC31rbx5TRNhL8FEQK0NnO+t83G/5k0RBmtlwkBJotOkZQ72qacTiKxO00PYLvrupuTSdhZDMTuzSnoNaeDL0pxseM0VGjaM9Mw8EO7WmNjxcMDwDDTQe92eZIY6FR/Zkx3IC5a6ZFa7qtatDJ3yWS/vRMt+GZZrs0aFF/0eqw3eOfgtmmlxZZ4x9gfgy0u/ZmHAmg6sKE6DVXwcbxTx36/H4/NmzYgMrKSqxduxb5+fn2vTARRrllQ/G1v7Hllg0bP/i18C0bVq1ahTFjxjT7/o9+9CO88sorOHbsGH7+85/j448/xsmTJ9GjRw9Mnz4dDzzwABISzm3eeO7m7IsXLw65ObuXlne22NAHAN9++y3Gjh2L+vp6jB49GikpTUlhbQfz2/bKLEThAp8aUzMw2aFfp500foxwoU9NuILkdOgTIXDuozVty+S+HU7nJSDBwKaRRnewtMP4RNKdFfOj6M6M3hS83mwAWkbDAXC26QBYN95plQGphltB1Hg7qT8vmG4R/SnaA7ylP70x0Kr+6rKtjX2A+fHPazU343BAuvZO5zUdsG1ZICTwNTQ0YNWqVUhPT8fy5ct543UP4aXQ11Jo0aEPACoqKjBx4kQcPHgQY8eORXr6eeG5Ff5Ewp4W0YKkDXxaRIuSSOjTohQmrxUg4HzoswMjoQ9wxvwAzQ2QqO5kNBoA4wZIVHN6BsjsbFFLaTYA5m6ZIdt4R9Og6eXtKv2ZNd7R9BfJeLvRcBAhkGSP9gBj457b2rOrwQo412QFmmvQ6+OeHVx5ZE/w/2tra7F8+XLk5+dj2bJlyMrKsu+FiWGCoe8am0Lfhwx9Wlp86AOaBoZbbrkF69atw9VXX422bdsGf+Zk8Kvp2nQpUs6Yb4FFKkzRAp+aSIXJTOALeX6bAFofNbhNuUMGyC68asBrugZM603EBIloLl4aDYC3NAfERsPBaJPLiPkOpz+7Gg6AHOMd69rz6nhnRXcAm6t6eEl36sBXVVWF5cuXY9SoUVi8eLHprfqJfTD0OU+L28hFj/T0dCxZsgQzZ87EX/7yF4wbNw4dO3YEAIw60TSImAl/ohu9KGFPoaGN+fCnFAltcTIS+LSPt7okRQ/t7wzAcBCMJQJJxoyQP8W4EfKliRkhvb+9GcJpTUFUcyLLPs02Gs52Pv9+imd9uYWo5rSYMdwKDZnRzXc07YkuNTajO6ufhY114+1VZDRVI2GkxkZb6mmlsVqVf358Fx3z4kFz6sD3/fffY/ny5bjtttvw/PPPN9t1kXgLO2/ZQEJh6DtHUlISXnzxReTl5WHOnDkYPXo0evToEfz5qBN7TM/66YU/EeMtI/wB1reQlxkAld9JD+3fxGmTnuCztzC5Gfwi6c2KzgB9E260yaB+jlZjVgyQWm/qvwEDoPNoNWjFfIcLfmaaW+HGNBkrGhranP9aRHNOmO+WgqzmlhpZY53yPLX2ZOhNi8iYF2+B75tvvsGaNWswa9YsPPbYY8FNNgghDH0hJCQk4PHHH8dFF12E22+/HYWFhRgwYEBw0LAy6wc0Da512cYLkRVTXtvpfMpIPWV95D1dcP546d/ZO5Jri3baSWO/f2JD7BsiK8HPqOlpaGN+qadiWGo7+SzrTB3+rBqhcERrMLRU8+1UowGwpjcg1ICbNd7q5yoG3A7zDUQ34E5pzmtLimVhR8gLhxW9qTld4LNcRyM1UtUofx9Fe/GiNyXwBQIB7Ny5E1u3bsWiRYuC90ojMYA/0PRP9jFJMxj6dJg8eTLy8vIwYcIEnD59GsOHDw9ZHmAk/NVcoH+D56SzJmbvDIY/deADgPr2TV/LCH/a49sdAIHwf8vWR+Qt3fDabB8gbsS1fx8nNKag1kJ9e+vBr769D/Xtm/7frLZEzRBgvcHgVczozQpONhqAJtMsazyry27SnZWxzKgBB5pMuBkDboZ4WtbpZMgDzo9xtZ3k1FClHtd2Mqc5I+ObmpquAfhaqfQnWD+9HPj8fj8+++wzHDt2DGvWrMHQoUPtfWFCYhRu5BKBsrIyjB8/HrW1tbjyyiuRmpra7DF6wS9cONHDjDFXiGSWtIEvHEaKl1KkohGpgJktVABCClU0lELmxUIFmDPi2uAnojO79KUQTWdmzFEknYmaIzt0Fs0cxbPW9JDRZFCw0mQArJtwPc0ZNeJmNaenNxEjHi96i6Y1mY1TBbONUzVmNWd1fLO7huppz2vLOYHzga++vj54S4aPPvoIeXl59r84kYKykcvl4+bYspHLhuWzuJGLBoa+KFRVVWHy5MnYtm0bxowZg3bt2uk+7qNBvS29jswCJhr4tEQqYqKBT4u2iDkV+kJIbW4a0g9HnuT2kjmq7aa6a3G9uVlNs/oKZ46MaMyOxgLgreYCED8mHDDXYADsNeIimjNqxEX0Fs2IO6E1rRGPV6219IYpEF5vTtfO1kcSUZN/vvZEq5kKTga+iooKrFy5EoWFhXjrrbdCdl4n3kcJfSPGzUFysuTQ11iL9Qx9zWDoE8Dn8+HRRx/F/PnzMXr0aHTv3l33cVaDH2CtkPlaixfMSOgVM7OhT036d0meCX3RSDvqzMrnBJ8m1IngcPADzpsksw0FILpJammNBcBbRtzN5gIgp8EAiJlxM1rTM+Nua81LRhwQ01qz8c4DWrOjUQpYq5tqvbmts2goOnQy8JWVlWH16tX46U9/iqeffhpJSXG0drmFwNDnPAx9Bli0aBHuvvtuDB48GIMGDQq7K5Qb4c/Xpf78F6flBZbUU0lSAl+QtucLflJ58+WykXAy9AEAkh16azSaMC8OG6WgviRoy66mAgCgbaNhXalxVGPJAaQdcmb3l5bUXADsWbWgoJhxrxtxoMmMOxn4DGsMcE1nVjWmYNt4FmNjmROM/+wAAoEAvvzyS2zfvh3/8z//g1tvvdWR1ybyCYa+sbPtCX0rZjP0aeBGLga47bbb0LdvX/zLv/wLKioqMGLECCQnN/8Tjv9yHwBr4U8ZsKMVtpCwp6AKVlZNen17H5I61MF3QsJOA21DDYH23K0UuIjUJ5oPfl4l1W/KLPlaBQyZpWb6atsoRVPAebMkM/AB58/ZsaaCBeq6m7grtRnMNBZMYlRjwed1qYcPkNJY0Nu0SpbOans2bVVqdrxy0ozXdmv0dvPKYZSxQZbOAMB3UQ2SvmptS3NUPf6K6i1em6PjPzuAxsZGrF+/HpWVlVi3bh2KiooceW1C4gXesdIgl156KbZt24bMzEx88MEHOH36dNjHKuHPCr5WAd1B3NelXj/waWnb2CxsGSGpQ13wv8o/u1B+J+HfzW6cMjFmi6bJIh1OU8GfR7sGFjUVfJ2LauC7qMbycQDono9jWoq3hoKCA7+X7jWSoC2Fpl1gfdIbC4A5fcWrITeNyVk+UZyqKVLGMWVcDaP/aL9DtHE9Ih7X1/jPDuD06dP44IMPkJmZia1btzLwxRHKzdll/yPN4UyfCXJycrB27VrMnDkTr7/+Oq644oqwn/OTMesHnO+emy5cSiEx0N0MF/DU35cyAxiGZr9rVRzcCC0cyQFzIdPkjB8QOiNjSlcmZ/20urKsJ4GQEG1W2Y1Zvngm0myfcLPK4kyMVmeWxqooGhOZkYlXQw7AM7N8hsYxCxrTq42mV8QYbHLorWSIZ22N/+wADh06hDVr1uDWW2/FH//4R6SlOXSPE0LiDIY+k6SlpeGll17CiBEjMGPGDAwcOBBDhgwJ+zk/K+EvveuZ4P+nAKg9Y2EZpODST9EZPWHDLqF7r/47KNQebWP5uBFpTHCuwDkc/NR/T59ZTRlsJkTTlfJzYfNkUldqc5jeph4+u3XkNrHaVAAMG/NIzSrDptyEvrSm3FJDIQZMuZs4uSJEpCYa0pjFmpjSszr4/6bGrxjQ1g82foUvtm7Fzp07sWDBAtxxxx2OvTZxkMC5f7KPSZrBjVwksH37dlx33XVISUnBqFGjhLpQ0cKfXsDRw1IAVNCYKhlLOJsVPhmhr41YgQ8bBGOgyAEw3zWPYs6jacoOLSmY1ZTdjQSgua4MNRKsLIGME13poWhNiqYAoeBnRGNCxlzymGW4QUVthaAdv5zQllfHrUi1MKrOYqQOjl61C2vXroXP58O7776LwYMHO/r6xH6UjVxGjrFnI5d1n3IjFy0MfZI4deoUbrnlFnz++ee48sor0bFjx6jP0QY/0aCnhyzDbsdn9nwn0hwNfXrUHm3T4kyUGT15tYkAaIyUTYEvHNIbCUDsaAqIaM4daSYAuubcqrZ0zblD2opozlu4rtxsegKx3/hUaKaxGAl8Rf/YhE8//RSXXXYZFi9eHPb+yCS2UULfqCtn2RL61q6aw9CngaFPIn6/H//5n/+JuXPn4tJLL8XFF18cdrmnmo8G9bYU+NRYKYKdO1UF//9Epbzlbh2yzv9ux78z/+azEvoAoHV6+OefPJIV+cluLJcyYKayL6gM+bqm1poZkmGmOneqkqojhQ5ZZyzpSMFyEwFokebctWYCEDToMptTspsJZnUVk5oCLOvKC81OQK6mAHnjFGBtrNLWvai1TouDmgoEAuj253dRUlKCX/7yl/jFL36BxETuNxivBEPfFTaFvjUMfVoY+mxg9erVmDJlStP9R0aMQGqqWGFaPf4CaedgpBiqw54eVo27OvRpMVIUrYY+IHLwi8TJI1muGyptsIuGW8FPqye7GgiAN5sIQqbKrc9cCRp0Pa2xkRAdOzQlbNI9HPjCjV1ua0oZq2RrStY4ZWejU48QrTmsJ3/NWaT9fhGqqqrw5ptv4oorrnD09YnzMPQ5D0OfTXz33XeYOnUqtm3bhtGjR6NTp07Cz3Uy/EULfGrMFMZIgU+PSMXRzdAHAKlJEu/DZIB6n/m7K1s1VYC4sXKzeQCwgSDEOZNutIEAOKslNXq6kmXSw2nKjEl32qAD7pp0ADGnp0hjVDyNT1bqHGCu1h37tr3p16srPYz6F/+CwsJCLF682JBfIrGLEvquGPVrW0LfmrW/YejTwNBnI36/H0899RR+85vfoKioCP379xda7qlgZ/gzEvb0EC2QRkOfGm2RdDv0AQx+WszoqKU3D4DY1BHgnFEX1ZVZoy6qJxGjTj2ZwwktGR2fWvrYZEVHg98+afg5gUAA//znP7FlyxbMmjULjz32GJdztiAY+pyHoc8B1q1bhx/+8Ido06YNRowYgfR0Y+KWGf4AILN1rdTjhSuUVgKfHlU11geFWDVXgLcMu9WmASBmsGRoiM2DULxq1M1qyohRN6uncEa9JWvJS+ORGicamrLHpVjXkZnAV1tbi/Xr1+PMmTNYsmQJRowYYfr1SWwSDH0jbQp96xj6tDD0OcTJkyfx4x//GKtXr8aoUaNwwQXGg5zV8NevS3nI10dOG/xAtwDqgik79F3QNnQJ0e7yLqaOE6smC3DXaKn1I1M7TjUNjn+X6QlzBbRcDSnIbB4oRDLrMrWkmHUvaIk6SpWqIcA5HSn1zGwdU3BbQ2YC3+HDh7Fu3TqMHj0ar7zyCrKzsy2dA4lNGPqch6HPQQKBABYuXIif/exn6Nu3L4qKipCUZLxwGgl/2qCnhx3hzw60oU8PkQLqdpG0ipNmK5J+ZOvGzoYB4J2mARDbZh2Q0zywu+kE2K8jK4ad45A5DcV68xIIX8uM6MntcchM2PP5fCgpKcGePXvwxz/+EXfddZehj7yQ+CIY+kb8yp7Qt/4/GPo0MPS5wJ49ezB58mScPHkSo0aNMn0PmnDhTyTohUNGAe3T/niz7+091dnycUVCnx7aQup2sZSBnYbLqH5kmi5FOzL0okZUOy2haQA4Z9ijaclOw273SgMtThp2tzXkVOPAraZln/bHXRuDFMLpyQv1y0zgq6iowNq1a5GdnY0lS5agb9++ls6BxD4Mfc7D0OcSdXV1ePTRR/HSSy/h0ksvRb9+/Ux3vJTwZyXs6WGmmOoFPi1miqnZwBeOg5XmdxoD3DddgDzjJUM3Vo1XON242SwA4rNhANhn2s1oyY6mASC3cWBGQ3aZduqnOfHYrFSjaMkL2jEa+AKBAHbv3o0tW7Zg+vTp+O1vf4u0tLToTyRxjxL6Rl9uT+hbvYGhTwtDn8t88sknuO2224KbvLRu3Vroeb67I99I9kSdvPsOiRZUkcCnh0hhlR36OqRFngX44ni3qMeINfN1SefDut93QytqRHXjdrOgQ9oZIV1EI9Z0Ew5ZDQMFK8Y9koasGHdZ+tld3iVuGgaAHP30yDol4UyaMKudWBp7tBgdi9yY3aupqcGGDRtQXV2NRYsW4eqrr7Z0DiS+CIa+4l/aE/o2zmXo08DQ5wFOnTqFe+65B++//z4uv/xy5OfnB38WLdxFQ6ahB8IXV7OBT0u44up06IuEUmy9asDChbtIOKUTNVY0E6uNAsC7uomEEw0DwJh5N6ofI8bdSe0YMe9e0I6obqKNQ25pJ56ak3po9eTG7B4AfP3119i4cSMmTJiABQsWoH17a6trSPzB0Oc8DH0eYvHixbjnnnvQrVs3XDpvCFIzrO9upmBngZUV+LSoi6wXiqkebZKMh/JNxy8Uetxlnb8RPuYZn5zlMk4YMZl6iYUmARBqxLxg3AE5zQLAWfMuQzvRzLtXtGOHeZeBWjdmNQPEXkMSiJ3xBjBWmyLVJKOBr76+Hps2bcKRI0ewYMECTJ061dDzSctBCX1XXmZP6Fu1iaFPC0Ofxzhy5Ahuu+02bN++HZf9x6W44LJcqceXWWgLsw4BAPafkfuBdz16tTmOrZXdpR3PzdBnF7KCH2CPIbOrOaCgGDLZBgyIjSYB4E6jALDfwNuhHa2B96JxV5Bl4LUY0YtCLDSY7Bxr7Bpn3NJLOGrnGzfKhw8fxsaNGzFkyBC89tprpm5NRVoODH3Ow9DnQfx+P+bPn4+HH34YPXv2xCUvDJI666dgtugqYU8POwJgrzb6BdxKCPRagZWF14y8Vit2NwgUrXixQQB4SyuA9/SiJiPZmb9VdaP8TSXiVTNe1kth1iHHGpAKMsYZL2rFaOCrr6/H559/jtLSUjzzzDP4yU9+wlsxkKgEQ9+wJ+wJfZufZOjTwNDnYb755hvccccd2LlzJ4qLi9F1TidbXke0+EYKe3rIKMDhAl84RIuwFwutTNw0ZyI6kW3OounErDmTqRPAe1rxmonX045dRl5PM/Fq4mXhFb14pfGoYEY3XtSJldm9AQMG4NVXX8WFF14o5VxI/MPQ5zwMfR7H7/djwYIFeOihh9CzZ08MHToUSffac8nCFWGjYU8Ps4XYaOjTQ68gx7uZB5w1aGY14uXGAOBNYyYbrzcIALlGXlQvRo08xxRjGNFKLDQcATHNeFUnVmb3fve73+Gee+7h7B4xRDD0DbUp9H3O0KeFoS9GUGb9duzYgeHDhyMvL8/yzp7hUIqxjLCnh2hBlhH49Nha2d2zhVc2Mk0aEGrUZOvDqFGTpY9wRo0aMUckM29VM1bMvBW9RDPzLUErsaQTwJxWZNYcrWa8rBGjge/gwYPYtGkTBg0ahP/7v//j7B4xBUOf8zD0xRCBQAALFy7Eww8/jK5du2LYsGFo3bq1tPB3eeZXzb53uD5byrHDEa4w2xX4FLqlNt+RbEPVRZaO6UWjBsgza2p92KkLEbNmpz62VnbHdZ22W9aDFq/qA4it5gBgzNDboRXF0HvZyMvGLo3Y1VwE4nMscTPs1dTUYPPmzTh69Ch+97vf4a677uLsHjGNEvrGXPoLW0Lfp1v+k6FPA0NfDHLs2DHcd999+OCDD1BUVIS+ffsiISHBcPjTC3mRsDsAAk1F2u7AB+iHvkiIFO14Mmwi2nCjIeCWNmSYtnjShx5azbjVMAKc10m86wOwrhE3moqAt8YRNUY1I1sfRgJfIBDAnj17sGXLFkyYMAEvvPACcnJypJ4PaXkw9DkPQ18Ms2zZMtx9991ITk5GcXEx2rVrB0D/hu5GA1407CzWg1uXAQC21+TZ9hpGQ180lAIea8ZNhi5acjMAiP2GgIKoqTeiGadNvdc0Imrsva4PO7QBOKsPr2lDDz29uBn2AODUqVPYuHEjfD4fFi5ciIkTJ0o9H9JyCYa+op/bE/pK/ouhTwNDX4xTXV2NJ554AvPnz8eAAQMwZMgQJCcnA2gKf7LDnh6yCrcS9sIhMwTKDn0K7ZKMLfdaXdVX2muPztwj9LgKn9yt0hXsMHB6mrCrGWBXIwDwvqkH7GkIAM4Y+8Gty2xtEgFy9RHL2pBZU+zWhnr8iJVxQ0GklhitH0YCX0NDA7Zv346dO3dixowZePLJJ5GRkWHo9QiJRDD0XfJzJCdJDn2+Wnz6BUOfFoa+OKGkpATTp09HaWkpioqKkJ+fH1xrf9lDuxw5B7MFPFrYi4TZQm5XoQaMBz83sCv4AXKMnKgmZBk5L+lBZiMAEG8GALHTEIikD9nm3ivacKNBpOD18UJBZNzw+phhR/346LfDhB8bCARQWlqKLVu2oKCgAC+99BIuueQS6edECEOf8zD0xRF+vx+vvPIKHn74YWRlZWHYsGHBJZ+Ac+EPEC/kVgKfHqIF3StGzm28ZOasasGLDQCAelBjxeCb0YcVg09dnMdL44QapxuGsVg3jAS+iooKbN68GZWVlXj22Wfx4x//GImJibacFyFK6Luq8HFbQt/KrU8x9Glg6ItDTp06hSeeeAJ//vOf0b9/fwwZMgQpKSkhj3E7AMoOe+HQK+w0c6G4bfTt0oKIqaMWmuO2HtTI1IYRkx+L5t4u7NYDIKYJt8aJWB0jjIS9hoYGbNu2Dbt27cJdd92FJ598MqRhTIgdMPQ5D0NfHLN9+3bcc8892L17N4YMGYLevXs369o5Gf6ApuLuVOALx4lG+z+XEGvGDnDe7DupAzfCPxCbOgDcC35OaCKSyY9Vg28nboU+p+uEVhexqgUjYc/v92Pfvn3Ytm0b+vXrhwULFmDw4MG2nBchWoKhb8jjSE6Se0uYRl8dVm5j6NPC0BfnBAIBLFmyBA899BDq6upwySWXoHv37rr31rErABalHwz7s28aO9jympG4MPmE7vdLantIe41YNHcKdpg8rQbcuO5qLkw+IfV660ENREYx+m42gRSjzwZAeJzSgtvNwO01ebg+cysAubVAjd0aEA18gUAAhw4dwhdffIH09HQ8++yzmDx5Mu+5RxyFoc95GPpaCPX19Zg3bx5mzZqF9u3bo6ioCB07dtR9rNXwFynkRcPuMBAu8EXDjAmIVZMHWDN6Rq6/0+Ev0vWXbfRi+foDzoR/wL0GgJ4W7DD71EEoXmoCitYDq7rwStgDgO+//x4lJSWoqKjAnDlz8JOf/ASpqak2nh0h+gRD3+DH7Al9259m6NPA0NfCqKiowNy5c/HCCy8gPz8fhYWFaNu2bdjHiwRAKyEvGjJNgNnAF41whiDWzR4gZvhkXX87DZ+Va9/SAr8as4bfjCacMvxGtWDF8MeDDsxoIB4bf2pENeGlsHf69Gls3boVpaWlmDlzJp544gl+bo+4CkOf8zD0tVDKysrw+OOPY8mSJejduzcGDRokHP7sDHnRMGsI7Ap8kTjQoD+TGmuoTZ9T116W8bPzukcyfvFg9oHoht8OPdhh+u3QAa+/feNBLDT7tKj14KWwV1VVhS+//BL79+/H5MmT8dRTTyEvz957WhIiQjD0DbQp9O1g6NPC0NfC2bNnD2bPno23334bvXr1wqBBg6K+QX76xPsOnV10RMyBG4FPITupUcpxPq/NsXyMoenHLD3/pC/Z8jmYwYwBdPuay7heXqHC18aVRo9V4++GBkpqe8RN4APcu/ZAbDX4AGtjvZHxQjTwVVVVYceOHdi3bx9uuukmzJ49G3369DF7ioRIRwl9Ywc8akvoW7Hztwx9Ghj6CABg7969mD17Nt566y307t0bAwcOFHqjeCkAAs2NgpvmH5AX+ryEW+EPiG4E4+l6ywqOVsM+4O1rrsbtsG8VL11zBa9f+1i/5iJ8XptjKOwpM3sMe8TLMPQ5D0MfCUEd/nr16oX+/fujffv2Qs/1WgD0AvEY+hTcNIMAA74beDEA8Lrbi9fe50DLCHoKc3/zr0KPO3XqFHbt2hVcxjl79mz07t3b5rMjxDzB0Nf/EXtC365nhEPfmjVr8Mwzz6CkpARHjx7F0qVLccMNN4Q8Zvfu3XjsscewevVqNDY24uKLL8Zbb70VXC5dW1uLhx56CG+88Qbq6uowfvx4zJs3D126dJH6u1nB3dGceI4+ffpg8eLF2LdvH+bOnYs33ngDeXl56NevH7p27RpxS+d5T04I+dqNEHhRSmL0BwH4qsFv85nEP2rz44YxHNfqVPD/3b6e8W78FbKTGl0LAYrRV0IAw17LQXmvu/U+d+Nai4S9QCCAo0ePYvfu3SgrK8PUqVOxdOlShj1CDHLmzBkMHjwY06ZNw6RJk5r9/MCBAxg5ciTuvPNOzJkzB5mZmdi1axfS08/fVP6BBx7AsmXL8OabbyIrKwv33XcfJk2ahPXr1zv5q0SEM30kIkePHsUf/vAHzJs3D5mZmejbty/y8/Ob3eQ9GnYGQNGgJ4pMY9HSjKFdgcDsNXbCJLa0aww4G/JFrr2TYaClXW+nrrWZ97id192t6ywS9vx+P0pLS7Fnzx5UVVXh3nvvxf3334+uXbs6cIaEyCE403fxw/bM9P3zWVPLOxMSEprN9E2dOhUpKSl47bXXdJ9TWVmJTp064fXXX8fkyZMBNO2Z0a9fP2zcuBHDhw83/bvIhKGPCFFdXY0///nPeOaZZ3D27Fn07dsXffr0QUpKiqnjWQ2BsoOeCGYMRksziApWjaKd15ehXg52hAFZ192OMNBSr7Xs62zXe1vGNXfzGouEvYaGBuzduxd79uxBq1at8Oijj2LatGnIyMhw4AwJkYsToe/QoUMhoS8tLQ1paZFfSxv6/H4/srKy8Oijj2LdunXYunUr8vPz8fOf/zz4mJUrV2Ls2LE4depUyK1QevTogX//93/HAw88IPX3MwuXdxIhMjIy8LOf/Qz33nsv3n77bTz55JN444030KtXL/Tr1w9ZWVmGjqdeCioaAN0IeqKv7/byQq9hdOmnk9c23GsZvYYtNQQoKL+/2VBg5zXXO7bZ92hLv85mcXq8Vr+e6LX2wrUVCXuVlZXYvXs39u/fj169euFPf/oTJk2ahORkWjgSBwQCTf9kHxNA9+7dQ749a9YszJ4929Chjh8/jurqajz11FOYO3cunn76aXz44YeYNGkSPv30U4wePRrHjh1Dampqs3tfdunSBceOydtYyyocMYghkpOTMWXKFPzwhz/EZ599hueeey74QdbevXuje/fuET/3p0ekAOh20BMl3HmeZBbUDQdevK5GgoIXzKJXiPY5P69ca+15RAoGvL7niXR9vXJttUS61l64tqKf1zt06BD27duHsrIyTJo0CfPnz8fw4cMN11hCWip6M31G8fubxo/rr78+OGM3ZMgQbNiwAfPnz8fo0aPlnKwDMPQRUyQkJKC4uBhvvvkmjh49igULFuDFF1/E559/jl69eqFPnz6m3lzazWCem/2hrFN2lFYJTb/7BZKXLADAEd9p6cc0wgVJbU0+7/z/nw3USTobe1GbR+WaAu5fA6+RndSI7MRUt0/DEHqB5aS/3oUz8TYXJLUNvndj5X2rZWBqK0vPl/V+Fwl7dXV12Lt3L/bv34+EhATce++9mDFjBnJy4ufen4SE4Acgu49xrs+TmZlp+ZYNHTt2RHJyMi6++OKQ7/fr1w/r1q0DAOTk5KC+vh4VFRUhs33l5eWeeu8y9BHLdO3aFbNnz8YTTzyBt99+G8899xzeeOMNFBQUoHfv3ujUqZPpzuSDs6/R/b5Xw6A6GNiF2dDlJbR/J6+ayXDXU+Y1cDtA2qUnr15TNdrrK6NJ4/b1BOy7psrfy6vX1q7x1+zfU9FCtLAXCATw3XffYd++fThw4ACGDBmCefPm4cYbbzT9uXlCYoWEQAAJkpd3yjxeamoqhg4dir1794Z8f9++fejRowcAoKioCCkpKVixYgVuuukmAE23QCsrK0NxcbG0c7EKQx+RRkpKCm6++WbcfPPN2LZtG/70pz9h0aJFyMzMREFBAS666CJTs396eDEMOhH44hW9v50bxtKNaxgPIV4P9d/SCyHBqWsbr9dTjRfCXyyMt9HCXl1dHfbv34+vv/4ap0+fxq233orXX38dgwcPdugMCSFA02aFX331VfDr0tJSbNu2DdnZ2cjLy8MjjzyCm2++GVdccQXGjBmDDz/8EO+99x5WrVoFAMjKysKdd96JBx98ENnZ2cjMzMTMmTNRXFzsmZ07Ae7eSWzmzJkz+Nvf/oYXXngBO3fuREFBAXr16oUuXbo4+rkEO8NgLJiPeMEOk8nr5zxOhAVeV+ew83rG4nX8yawxYX8WCARQXl6O/fv348CBAxgwYADuu+8+TJkyBW3atHHwLAlxF2X3znG9HrBl987l+/9b+JYNq1atwpgxzd+3P/rRj/DKK68AAF5++WX813/9Fw4fPow+ffpgzpw5uP7664OPVW7Ovnjx4pCbs3tpeSdDH3GML7/8EvPnz8drr72G1q1bIz8/H7169ULr1q1dOycrYTAWzUi8YdZs8tp5B1mBgdfUG7TU92SkoAcANTU12L9/P0pLS1FTU4M77rgDM2bMwMCBAx06Q0K8hZdCX0uBoY84Tk1NDd566y0sXLgQGzduRF5eHvLz89GjRw/PbEEdKQzGujmJd8KZTl632EAkNPBaep+W8j6MFPYaGxtx8OBBlJaWBj/bc/fdd+Omm25ytdlJiBcIhr6Cf7cn9B34PUOfBoY+4iplZWV49dVXsXDhQnz//ffo2bMnCgoK0LlzZ09uS/2nOZ+6fQqEtBiU4BBvQYHENtGWbx4/fhxfffUVSktL0alTJ9x111244447kJeX5+BZEuJtGPqch6GPeIJAIICNGzfi5Zdfxl//+lekp6eje/fuKCgoQHZ2ttunZysMkoQQ4n0ihb2TJ0/iwIEDKCsrQ11dHW6++WZMmzYNxcXFnmxgEuI2wdDX82f2hL6v/8DQp4Ghj3iO2tpafPDBB3jttdfw/vvvo127dsEAmJWV5fbpxRQMlIQQYp5IQa+yshIHDhzAoUOHUFFRgYkTJ+L222/HNddcg/T0dAfPkpDYg6HPeRj6iKeprq7Ge++9h1dffRUrVqxAp06dcMEFF+DCCy9Eu3bt2EF1EQZKQojXibbBihECgQAqKirwzTff4MiRI/juu+8wduxY3HHHHbjuuuuQkZEh7bUIiXfOh777kZwoOfT567D86z8y9Glg6CMxw6lTp/DOO+/gb3/7G1asWIGsrCzk5uaiR48ejt8CgtgPQyUh7iMzNMUiyi0WDh48iG+//RaVlZUYO3YspkyZguuvvx7t27d3+xQJiUmCoS9/pj2hr/R5hj4NDH0kJjlz5gw++eQTLFmyBO+99x4AIDc3Fzk5OejWrRt3RiNRYagkTtHSg1OsUVNTg8OHD6O8vBxHjhwBAFx33XWYPHkyrr76at5PjxAJMPQ5D0MfiXkaGxuxfv16fPjhh1i2bBl27dqFzp07o0uXLmjTpo1nbgNBWha337DH7VOIK177e1+3T4HEOZWVlSgvL8fx48fRv39/TJw4Eddccw1GjBjBOkKIZIKhr8d99oS+gy8w9Glg6CNxx4kTJ7BixQqsXLkSe/bsgd/vd/uUCJFKAs4iAbWa79Zrvk4N+SqAdATQytbzIiSW6dmzJyZMmICxY8eiQ4cObp8OIXENQ5/zsHVF4o4OHTpgypQpmDJlitunQgghhBBCwhHwN/2TfUzSjES3T4AQQgghhBBCiH1wpo8QQgghhBDiPIFA0z/ZxyTN4EwfIYQQQgghhMQxnOkjhBBCCCGEOI8/AEDyzJyfM316MPQRQgghhBBCnIfLOx2DyzsJIYQQQgghJI7hTB8hhBBCCCHEeQKwYaZP7uHiBc70EUIIIYQQQkgcw5k+QgghhBBCiPPwM32OwZk+QgghhBBCCIljONNHCCGEEEIIcR6/H4DfhmMSLZzpI4QQQgghhJA4hjN9hBBCCCGEEOfhZ/ocg6GPEEIIIYQQ4jwMfY7B5Z2EEEIIIYQQEsdwpo8QQgghhBDiPP4ApN9N3c+ZPj0400cIIYQQQgghcQxn+gghhBBCCCGOEwj4EQjIvcWC7OPFC5zpI4QQQgghhJA4hjN9hBBCCCGEEOcJBOR/Bo+7d+rCmT5CCCGEEEIIiWM400cIIYQQQghxnoANu3dypk8Xhj5CCCGEEEKI8/j9QILkjVe4kYsuXN5JCCGEEEIIIXEMZ/oIIYQQQgghzsPlnY7BmT5CCCGEEEIIiWM400cIIYQQQghxnIDfj4Dkz/Tx5uz6cKaPEEIIIYQQQuIYzvQRQgghhBBCnIef6XMMzvQRQgghhBBCSBzDmT5CCCGEEEKI8/gDQAJn+pyAoY8QQgghhBDiPIEAANk3Z2fo04PLOwkhhBBCCCEkjuFMHyGEEEIIIcRxAv4AApKXdwY406cLZ/oIIYQQQgghJI7hTB8hhBBCCCHEeQJ+yP9MH2/Orgdn+gghhBBCCCEkjmHoI4QQQgghhDhOwB+w5Z8R1qxZg+uuuw65ublISEjA3//+97CPnTFjBhISEvD73/8+5PsnT57ErbfeiszMTLRr1w533nknqqurTfxF7IOhjxBCCCGEENIiOXPmDAYPHowXX3wx4uOWLl2Kzz77DLm5uc1+duutt2LXrl345JNP8I9//ANr1qzB9OnT7TplU/AzfYQQQgghhBDn8cBn+q699lpce+21ER9z5MgRzJw5Ex999BEmTpwY8rPdu3fjww8/xOeff45LL70UAPD8889jwoQJePbZZ3VDohsw9BFCCCGEEEIcpxENgOQ7LDSiAQBQVVUV8v20tDSkpaUZPp7f78ftt9+ORx55BP3792/2840bN6Jdu3bBwAcA48aNQ2JiIjZt2oQbb7zR8GvaAUMfIYQQQgghxDFSU1ORk5ODdcfet+X4GRkZ6N69e8j3Zs2ahdmzZxs+1tNPP43k5GTcf//9uj8/duwYOnfuHPK95ORkZGdn49ixY4Zfzy4Y+gghhBBCCCGOkZ6ejtLSUtTX19ty/EAggISEhJDvmZnlKykpwR/+8Ad88cUXzY4XazD0EUIIIYQQQhwlPT0d6enpbp9GRNauXYvjx48jLy8v+D2fz4eHHnoIv//97/HNN98gJycHx48fD3leY2MjTp48iZycHKdPOSwMfYQQQgghhBCi4fbbb8e4ceNCvjd+/Hjcfvvt+Ld/+zcAQHFxMSoqKlBSUoKioiIAwMqVK+H3+3HZZZc5fs7hYOgjhBBCCCGEtEiqq6vx1VdfBb8uLS3Ftm3bkJ2djby8PHTo0CHk8SkpKcjJyUGfPn0AAP369cM111yDu+++G/Pnz0dDQwPuu+8+TJ061TM7dwK8Tx8hhBBCCCGkhbJlyxYUFhaisLAQAPDggw+isLAQv/71r4WP8Ze//AV9+/bF2LFjMWHCBIwcORIvvfSSXadsioRAICB5o1RCCCGEEEIIIV6BM32EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxzP8DfXWh2MY7qRIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -780,13 +813,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[stderr:2] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", + "[stderr:5] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", " np.sum(p * q, axis=-1)\n" ] }, @@ -796,20 +829,13 @@ { "data": { "text/plain": [ - "[stderr:5] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", + "[stderr:2] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", " np.sum(p * q, axis=-1)\n" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 83%|████████████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 5/6 [00:00<00:00, 49.86tasks/s]" - ] - }, { "data": { "text/plain": [ @@ -821,7 +847,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAH4CAYAAABQclA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wVxfn/P7dyL713qSJVEQFBRUQRQTHYe77YsSf5fmOMiRq7MYlRYw+xxpLYY4y9JYIVRVBEBREsiCIgvVzg7O8Pf3uzd5nZnWfazp4z79eLF3DOM888OzufmXlm9pxTFgRBAI/H4/F4PB6Px+PxeCxRnnUAHo/H4/F4PB6Px+MpLXwi6vF4PB6Px+PxeDweq/hE1OPxeDwej8fj8Xg8VvGJqMfj8Xg8Ho/H4/F4rOITUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYpPRD0ej8fj8Xg8Ho/HYxWfiHo8Ho/H4/F4PB6Pxyo+EfV4PB6Px+PxeDwej1V8IurxeJS45JJLUFZWhmXLlhmva8yYMRgzZozxeqIsWrQIZWVluOaaa6zWm3eyarcTTjgBPXr0ELZt2rSp2YA8UoTjSpQePXrghBNOyCYgi8Sv89///jfKysrw73//W2s9b7/9Nqqrq/H5559r9SvD+eefjxEjRmQdhsfjsYxPRD2eEmPBggU47bTT0KtXL9TU1KB58+bYY4898Kc//QkbNmzIOjyPRyvr16/HJZdcon0RXygUcPfdd2PSpEnYbrvt0KRJEwwaNAhXXHEFNm7cyCxzxx13oH///qipqUGfPn1w4403ao2Jxccff4zzzjsPO++8M5o1a4ZOnTph4sSJeOedd5j2ixcvxpFHHomWLVuiefPmOOigg/DZZ58Zj7PUeP3113HJJZdg5cqVmcVwwQUX4JhjjkH37t1J5R577DEcddRR6NWrFxo3boy+ffvi5z//Ofda/vnPf2KXXXZBTU0NunXrhosvvhhbtmxpYPOzn/0Ms2fPxj//+U/Zy/F4PDmkMusAPB6PPZ566ikcccQRaNSoESZPnoxBgwahrq4O06dPxy9+8Qt8+OGHmDp1atZhejzS/OUvf0GhUKj///r163HppZcCgNbT9PXr1+PEE0/EyJEjcfrpp6N9+/Z44403cPHFF+Oll17Cyy+/3OBE789//jNOP/10HHbYYfi///s/TJs2DT/5yU+wfv16/PKXv9QWV5zbb78dd9xxBw477DCceeaZWLVqFf785z9j5MiRePbZZ7HvvvvW265duxZ77703Vq1ahV//+teoqqrCddddh7322guzZs1CmzZtjMVZarz++uu49NJLccIJJ6Bly5YN3vvkk09QXm72nGDWrFl48cUX8frrr5PLTpkyBZ07d8aPf/xjdOvWDR988AFuuukmPP3005g5cyZqa2vrbZ955hkcfPDBGDNmDG688UZ88MEHuOKKK7B06VLceuut9XYdO3bEQQcdhGuuuQaTJk3Sco0ej8d9fCLq8ZQICxcuxNFHH43u3bvj5ZdfRqdOnerfO+uss/Dpp5/iqaeeyjDC0mbdunVo0qRJ1mHknqqqKiv1VFdX47XXXsPuu+9e/9qpp56KHj161CejYZK3YcMGXHDBBZg4cSIeeeSRettCoYDLL78cU6ZMQatWrYzEecwxx+CSSy5p8AjySSedhP79++OSSy5pkIjecsstmD9/Pt5++20MHz4cALD//vtj0KBB+OMf/4irrrrKSIzFiqymGzVqZCCahtx1113o1q0bRo4cSS77yCOPbLOpM3ToUBx//PG4//77ccopp9S/fu6552KnnXbC888/j8rKH5aczZs3x1VXXYWf/vSn6NevX73tkUceiSOOOAKfffYZevXqJXdhHo8nV/hHcz2eEuH3v/891q5dizvuuKNBEhqy/fbb46c//SmA/36+7+67797GrqysDJdccsk2ry9btgxHHnkkmjdvjjZt2uCnP/0p8xHF++67D0OHDkVtbS1at26No48+Gl9++eU2dlOnTkXv3r1RW1uLXXfdFdOmTRO+1s2bN+PSSy9Fnz59UFNTgzZt2mDUqFF44YUX6m3Czwd+9tlnGD9+PJo0aYLOnTvjsssuQxAETL9hTI0aNcLw4cMxY8aMbWw+/vhjHH744WjdujVqamowbNiwbR43u/vuu1FWVob//Oc/OPPMM9G+fXt07dq1/v1nnnkGe+65J5o0aYJmzZph4sSJ+PDDD1OvO/Q7ffp0/OQnP0G7du3QsmVLnHbaaairq8PKlSsxefJktGrVCq1atcJ55523zbUWCgVcf/31GDhwIGpqatChQwecdtpp+P777xvYvfPOOxg/fjzatm2L2tpa9OzZEyeddJJ0u0VZuXIlKioqcMMNN9S/tmzZMpSXl6NNmzYNYj7jjDPQsWPH+v9HPyO6aNEitGvXDgBw6aWXoqysjNl/Fy9ejIMPPhhNmzZFu3btcO6552Lr1q2JMVZXVzdIQkMOOeQQAMBHH31U/9orr7yC5cuX48wzz2xge9ZZZ2HdunWJG0AbNmxAv3790K9fvwaPzq9YsQKdOnXC7rvvnhjr0KFDt/kcbJs2bbDnnns2iBH4IcEYPnx4fRIKAP369cPYsWPx0EMPceuIct9992HXXXdF48aN0apVK4wePRrPP/98AxvZ/h1HROcsQp28+uqrOO2009CmTRs0b94ckydP3qafi8YbjicLFizAAQccgGbNmuG4445j1n/JJZfgF7/4BQCgZ8+e9f1y0aJFAMQ/C/vWW29hwoQJaNGiBRo3boy99toLr732Wmo5APjHP/6BffbZZ5vP4YbXu9dee6FZs2Zo3rw5hg8fjgceeKD+fdaTBax+P3fuXMydOxdTpkypT0IB4Mwzz0QQBPWbMiHhpsgTTzwhdA0ejyf/+ETU4ykRnnzySfTq1Yu5eNbBkUceiY0bN+K3v/0tDjjgANxwww2YMmVKA5srr7wSkydPRp8+fXDttdfiZz/7GV566SWMHj26weeL7rjjDpx22mno2LEjfv/732OPPfbApEmTmAkri0suuQSXXnop9t57b9x000244IIL0K1bN8ycObOB3datWzFhwgR06NABv//97zF06FBcfPHFuPjii7fx+cADD+APf/gDTjvtNFxxxRVYtGgRDj30UGzevLne5sMPP8TIkSPx0Ucf4fzzz8cf//hHNGnSBAcffDAef/zxbXyeeeaZmDt3Ln7zm9/g/PPPBwDce++9mDhxIpo2bYrf/e53uOiiizB37lyMGjWqfqGaxjnnnIP58+fj0ksvxaRJkzB16lRcdNFF+NGPfoStW7fiqquuwqhRo/CHP/wB9957b4Oyp512Gn7xi1/Uf274xBNPxP3334/x48fXX+vSpUux3377YdGiRTj//PNx44034rjjjsObb74p1W5xWrZsiUGDBuHVV1+tf2369OkoKyvDihUrMHfu3PrXp02bhj333JPpp127dvWP/x1yyCG49957ce+99+LQQw+tt9m6dSvGjx+PNm3a4JprrsFee+2FP/7xj9KPqH/zzTcAgLZt29a/9t577wEAhg0b1sB26NChKC8vr3+fRW1tLe655x58+umnuOCCC+pfP+uss7Bq1SrcfffdqKiokIozGmOhUMD777+/TYwAsOuuu2LBggVYs2ZNos9LL70U//M//4OqqipcdtlluPTSS7Hddtvh5ZdfrrfR0b9DRHXO4+yzz8ZHH32ESy65BJMnT8b999+Pgw8+uMFGByXeLVu2YPz48Wjfvj2uueYaHHbYYcx6Dz30UBxzzDEAgOuuu66+X4abJiK8/PLLGD16NFavXo2LL74YV111FVauXIl99tkHb7/9dmLZxYsX44svvsAuu+yyzXt33303Jk6ciBUrVuBXv/oVrr76auy888549tlnE31S+n3nzp3RtWvXbfp9ixYt0Lt3b+Fk2uPxFAGBx+MpelatWhUACA466CAh+4ULFwYAgrvuumub9wAEF198cf3/L7744gBAMGnSpAZ2Z555ZgAgmD17dhAEQbBo0aKgoqIiuPLKKxvYffDBB0FlZWX963V1dUH79u2DnXfeOdi0aVO93dSpUwMAwV577ZUa/+DBg4OJEycm2hx//PEBgOCcc86pf61QKAQTJ04Mqqurg++++65BW7Rp0yZYsWJFve0TTzwRAAiefPLJ+tfGjh0b7LjjjsHGjRsb+Nx9992DPn361L921113BQCCUaNGBVu2bKl/fc2aNUHLli2DU089tUGs33zzTdCiRYttXo8T+h0/fnxQKBTqX99tt92CsrKy4PTTT69/bcuWLUHXrl0btOe0adMCAMH999/fwO+zzz7b4PXHH388ABDMmDGDGwul3VicddZZQYcOHer//3//93/B6NGjg/bt2we33nprEARBsHz58qCsrCz405/+VG93/PHHB927d6///3fffbdNn43aAgguu+yyBq8PGTIkGDp0aGJ8PPbdd9+gefPmwffff9/gWioqKpj27dq1C44++uhUv7/61a+C8vLy4NVXXw0efvjhAEBw/fXXS8X46quvBmVlZcFFF11U/1rYTvG2CIIguPnmmwMAwccff8z1OX/+/KC8vDw45JBDgq1btzZ4L+yLlP4djitRunfvHhx//PH1/xfROYtQJ0OHDg3q6urqX//9738fAAieeOIJcrxhXzr//POFYvjDH/4QAAgWLly4zXvx63zllVcCAMErr7wSBMEP7dmnT59tdL5+/fqgZ8+ewbhx4xLrfvHFF5kaXLlyZdCsWbNgxIgRwYYNGxq8F62HxcknnxxUVFQE8+bN2+Yav/jii23shw8fHowcOXKb1/fbb7+gf//+iXV5PJ7iwZ+IejwlwOrVqwEAzZo1M1bHWWed1eD/55xzDgDg6aefBvDDNy0WCgUceeSRWLZsWf2fjh07ok+fPnjllVcA/PDI59KlS3H66aejurq63t8JJ5yAFi1aCMXSsmVLfPjhh5g/f36q7dlnn13/77KyMpx99tmoq6vDiy++2MDuqKOOavA5vvAULvxG0RUrVuDll1/GkUceiTVr1tRf3/LlyzF+/HjMnz8fixcvbuDz1FNPbXCa9cILL2DlypU45phjGrRRRUUFRowYUd9GaZx88skNHrkbMWIEgiDAySefXP9aRUUFhg0b1uAbUR9++GG0aNEC48aNa1B/+HhnWH/45Sr/+te/Ek82RdqNx5577olvv/0Wn3zyCYAfTj5Hjx6NPffcs/4x7enTpyMIAu6JqCinn376NnXLfFPsVVddhRdffBFXX311gy+g2bBhQ4O+HKWmpkbo26ovueQSDBw4EMcffzzOPPNM7LXXXvjJT35CjnHp0qU49thj0bNnT5x33nkNYgTYn0+sqalpYMPiH//4BwqFAn7zm99s80U7YV/U1b9DKDpnMWXKlAafKT7jjDNQWVlZP2bJxHvGGWdIxUJh1qxZmD9/Po499lgsX768Pq5169Zh7NixePXVVxt8YVec5cuXA8A2n0t+4YUXsGbNGpx//vn19zyE9QhvyAMPPIA77rgDP//5z9GnT5/619P6FKs/tWrVyspPgXk8HjfwX1bk8ZQAzZs3B4DUR+tUiC5AAKB3794oLy+vf3xt/vz5CIJgG7uQcEEY/qZd3K6qqmqbL7AIHwcLadGiBWpra3HZZZfhoIMOwg477IBBgwZhwoQJ+J//+R/stNNODezLy8u38bnDDjsAwDaP3XXr1q3B/8NFXPiZsk8//RRBEOCiiy7CRRddxLzGpUuXokuXLvX/79mzZ4P3wwX1Pvvswywf3sc04rGGCfx22223zevRz8TNnz8fq1atQvv27bnxA8Bee+2Fww47DJdeeimuu+46jBkzBgcffDCOPfbYbRadae3GI0wup02bVv8Y3xVXXIF27drV/zbptGnT0Lx5cwwePDjRVxI1NTXbPBLZqlWr1PjiPPjgg7jwwgtx8sknb5OM1NbWoq6ujllu48aNDb5llEd1dTXuvPNODB8+HDU1NbjrrrsSkwMW69atw4EHHog1a9Zg+vTpDT47GsawadMmZoxRGxYLFixAeXk5BgwYwLXR1b9DRHXOIz7GNG3aFJ06dWowZlHiraysbPBZb1OEcR1//PFcm1WrVqV+AVYQ+3z4ggULAACDBg0SjmXatGk4+eSTMX78eFx55ZUN3kvrU6z+FAQBuV97PJ784hNRj6cEaN68OTp37ow5c+YI2fMWAmlf4JLko1AooKysDM888wzzM23xL1QRIf6lS3fddRdOOOEEjB49GgsWLMATTzyB559/Hrfffjuuu+463HbbbQ2+0ZEC73N44WIuPIE499xzMX78eKbt9ttv3+D/8YVY6OPee+9t8AU8IdEv/JCJlfV6dDFaKBTQvn173H///czyYcJWVlaGRx55BG+++SaefPJJPPfcczjppJPwxz/+EW+++WaDe5nWbjw6d+6Mnj174tVXX0WPHj0QBAF22203tGvXDj/96U/x+eefY9q0adh9992VfupC5vOVcV544QVMnjwZEydOxG233bbN+506dcLWrVuxdOnSBkl+XV0dli9fjs6dOwvV89xzzwH4YRE/f/78bTYykqirq8Ohhx6K999/H88999w2yUbr1q3RqFEjLFmyZJuy4WuicfLQ1b9DTOhcJd5GjRoZ/9mVaFx/+MMfsPPOOzNtksbT8Gd4qJstcWbPno1JkyZh0KBBeOSRR7Zpj3B8XrJkyTabYEuWLMGuu+66jc/vv/++wedMPR5PceMTUY+nRDjwwAMxdepUvPHGG9htt90SbcOd9PgPlIenlSziC+NPP/0UhUKh/htMe/fujSAI0LNnz/pTRxbhj6vPnz+/wUnE5s2bsXDhwganX/Fvxxw4cGD9v1u3bo0TTzwRJ554ItauXYvRo0fjkksuabBALRQK+OyzzxrEM2/ePACoj1uU8GS1qqqqwU9iUOjduzcAoH379tI+VOjduzdefPFF7LHHHkKndCNHjsTIkSNx5ZVX4oEHHsBxxx2Hv//971qSAOCHU9FXX30VPXv2xM4774xmzZph8ODBaNGiBZ599lnMnDmz/jdCeZg+XXnrrbdwyCGHYNiwYXjooYeYyVSYLLzzzjs44IAD6l9/5513UCgUuMlElPfffx+XXXYZTjzxRMyaNQunnHIKPvjgA6HH1QuFAiZPnoyXXnoJDz30EPbaa69tbMrLy7HjjjvinXfeYV5jr169Eh/t7927NwqFAubOncu9HhP9W0TnPObPn4+99967/v9r167FkiVL6u+RST2q9MswrubNm0vFFf5kysKFC5l+58yZs82mWZwFCxZgwoQJaN++PZ5++mlm4hvt99Gk8+uvv8ZXX321zZfZhTGpPOHg8Xjyhf+MqMdTIpx33nlo0qQJTjnlFHz77bfbvL9gwQL86U9/AvDDAqdt27YNvrUU+OF3BnncfPPNDf5/4403AvjhdwiBH74psqKiApdeeuk2p2FBENR/bmnYsGFo164dbrvttgaPM959993bJMb77rtvgz/hDnzoK6Rp06bYfvvtmY+I3XTTTQ3iuOmmm1BVVYWxY8dyr5VF+/btMWbMGPz5z39mnip99913qT7Gjx9f/xt7rM9eivhQ4cgjj8TWrVtx+eWXb/Peli1b6tv/+++/3+YehotOVhvLsueee2LRokV48MEH6x/VLS8vx+67745rr70WmzdvTv18aOPGjQFsu6mig48++ggTJ05Ejx498K9//YubvO+zzz5o3bp1/Tf4htx6661o3LgxJk6cmFjP5s2bccIJJ6Bz587405/+hLvvvhvffvst/vd//1coznPOOQcPPvggbrnllgbfGBzn8MMPx4wZMxoko5988glefvllHHHEEYl1HHzwwSgvL8dll122zecTw76iu39TdM5i6tSpDeK49dZbsWXLlvoxy6Qew98XlemXQ4cORe/evXHNNddg7dq15Li6dOmC7bbbbptNh/322w/NmjXDb3/7221+eiuq92+++Qb77bcfysvL8dxzz3G/7XfgwIHo168fpk6d2uBpmltvvRVlZWU4/PDDG9ivWrUKCxYsMPbN7h6Pxz38iajHUyL07t0bDzzwAI466ij0798fkydPxqBBg1BXV4fXX38dDz/8cIPfrjvllFNw9dVX45RTTsGwYcPw6quv1p8Wsli4cCEmTZqECRMm4I033sB9992HY489tn53u3fv3rjiiivwq1/9CosWLcLBBx+MZs2aYeHChXj88ccxZcoUnHvuuaiqqsIVV1yB0047Dfvssw+OOuooLFy4EHfddZfwj5wPGDAAY8aMwdChQ9G6dWu88847eOSRRxp8MRHww+cDn332WRx//PEYMWIEnnnmGTz11FP49a9/TfophZCbb74Zo0aNwo477ohTTz0VvXr1wrfffos33ngDX331FWbPnp1Yvnnz5rj11lvxP//zP9hll11w9NFHo127dvjiiy/w1FNPYY899miQOOtmr732wmmnnYbf/va3mDVrFvbbbz9UVVVh/vz5ePjhh/GnP/0Jhx9+OO655x7ccsstOOSQQ9C7d2+sWbMGf/nLX9C8efMGJ36qhEnmJ598gquuuqr+9dGjR+OZZ56p/13SJGprazFgwAA8+OCD2GGHHdC6dWsMGjSI9Dk4FmvWrMH48ePx/fff4xe/+MU2vwXau3fv+icPamtrcfnll+Oss87CEUccgfHjx2PatGm47777cOWVV6J169aJdV1xxRWYNWsWXnrpJTRr1gw77bQTfvOb3+DCCy/E4Ycfntjm119/PW655RbstttuaNy4Me67774G7x9yyCH1SdGZZ56Jv/zlL5g4cWK9Fq+99lp06NABP//5zxNj3H777XHBBRfg8ssvx5577olDDz0UjRo1wowZM9C5c2f89re/1d6/RXXOo66uDmPHjsWRRx6JTz75BLfccgtGjRqFSZMmATCrx6FDhwIALrjgAhx99NGoqqrCj370o/p7kUR5eTluv/127L///hg4cCBOPPFEdOnSBYsXL8Yrr7yC5s2b48knn0z0cdBBB+Hxxx9v8JnM5s2b47rrrsMpp5yC4cOH49hjj0WrVq0we/ZsrF+/Hvfccw8AYMKECfjss89w3nnnYfr06Zg+fXq93w4dOmDcuHH1///DH/6ASZMmYb/99sPRRx+NOXPm4KabbsIpp5yC/v37N4jpxRdfRBAEOOigg8Qa0ePx5B/L39Lr8XgyZt68ecGpp54a9OjRI6iurg6aNWsW7LHHHsGNN97Y4GdH1q9fH5x88slBixYtgmbNmgVHHnlksHTpUu7Pt8ydOzc4/PDDg2bNmgWtWrUKzj777G1+AiAIguDRRx8NRo0aFTRp0iRo0qRJ0K9fv+Css84KPvnkkwZ2t9xyS9CzZ8+gUaNGwbBhw4JXX3012GuvvYR+vuWKK64Idt1116Bly5ZBbW1t0K9fv+DKK69s8FMNxx9/fNCkSZNgwYIFwX777Rc0btw46NChQ3DxxRc3+PmJ8GdI/vCHP2xTT7wtgiAIFixYEEyePDno2LFjUFVVFXTp0iU48MADg0ceeaTeJvz5CN7Pn7zyyivB+PHjgxYtWgQ1NTVB7969gxNOOCF45513Eq+b5ze8R+FP0sTbIM7UqVODoUOHBrW1tUGzZs2CHXfcMTjvvPOCr7/+OgiCIJg5c2ZwzDHHBN26dQsaNWoUtG/fPjjwwAMbxEdtNx7t27cPAATffvtt/WvTp08PAAR77rnnNvbxn28JgiB4/fXXg6FDhwbV1dUN6uZdP+unQ+KE18f7E/35jZCpU6cGffv2Daqrq4PevXsH1113XerPYrz77rtBZWVlg58ZCoIffn5n+PDhQefOnRv8VEyc8GdFeH/iPx/y5ZdfBocffnjQvHnzoGnTpsGBBx4YzJ8/PzHGKHfeeWcwZMiQoFGjRkGrVq2CvfbaK3jhhRca2Ij0b5GfbxHROYtQJ//5z3+CKVOmBK1atQqaNm0aHHfcccHy5cu3sReJl9eXkrj88suDLl26BOXl5Q3uRdrPt4S89957waGHHhq0adMmaNSoUdC9e/fgyCOPDF566aXUumfOnBkACKZNm7bNe//85z+D3XffPaitrQ2aN28e7LrrrsHf/va3+veT+hNrfH788ceDnXfeOWjUqFHQtWvX4MILL2Teo6OOOioYNWpUauwej6d4KAuClG+M8Hg8niLkhBNOwCOPPMJ8tM3j8RQvd999N0488UTMmDEDw4YNyzqczBg7diw6d+6Me++9N+tQ8M0336Bnz574+9//7k9EPZ4Swn9G1OPxeDwej6fEuOqqq/Dggw8mfgmdLa6//nrsuOOOPgn1eEoM/xlRj8fj8Xg8nhJjxIgR3N+3tc3VV1+ddQgejycD/Imox+PxeDwej8fj8Xis4j8j6vF4PB6Px+PxeDweq/gTUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYr/siKPxyJBEOCTTz7BCy+8gIULF2Ydjsfj8Xg8HgD9+vXDuHHj0LNnz6xD8XhKBv8ZUY/HMMuWLcNLL72Ep59+Gs8//zyWL1+Orl27okmTJigrK8s6PI/HeT744IOsQ8gdO+64Y9YheDy5IQgCrFmzBl999RW6dOmCCRMmYP/998fee++NFi1aZB2ex1O0+ETU49FMEAR4//338fjjj+PRRx/F3Llz0aFDB7Rv3x5dunRBx44dUVnpH0bwFA9Tp061Wl9QKFitz1XKyovz0zVTpkzJOgRPiVJXV4clS5bg66+/xrfffotly5ZhyJAhOPzww3HIIYegb9++WYfo8RQVPhH1eDSwZcsWvPbaa3jsscfw6KOPYtmyZejevTs6d+6Mrl27onHjxlmH6ClhfKLocQ2fRHvywNq1a/HVV19h8eLF+OKLL7Dddtvh8MMPx6GHHorhw4ejvEj7scdjC5+IejySbNq0Cc8//zweeughPPnkkygUCthuu+3QrVs3dO7c2Z96eoTxiaLHkx+KNYkGfCKdxObNm/Hll1/iq6++whdffIHGjRvjkEMOwZFHHokxY8b4Od/jkcAnoh4PgS1btuDf//437r33Xjz++OOoqqrCdttth+7du6N9+/Z+d7RI8Ymix+MpBnwSrYdCoYAlS5bgiy++wOeff47KykoceeSR+PGPf4zddtvNrwU8HkF8IurxpFAoFPDGG2/gvvvuw0MPPYQtW7age/fu6NWrF9q3b++/cMgRfLLo8XhKkWJOLrNGJLktFAr45ptvsHDhQixatAjNmjXDsccei2OPPRa77LKLXyN4PAn4RNTj4TBnzhzcfffduP/++7F69Wr07NkTPXv2RMeOHf1upyQ2k8WkRDG6cEtLKE0u8nwyW7r45MHjMq6MTVmOv/G6RZLSrVu3YvHixVi0aBEWLVqEDh06YPLkyTj++OPRu3dvpXg9nmLEJ6IeT4Rly5bhgQcewO23345PPvmkPvns0qULKioqsg7PCq4kiyagJKA2YvB4bGCyr5vuz1noNMtxwub4kMd+4cK4LfoI8JYtW/DFF1/UJ6W77LILTj31VBxxxBH+J2E8nv+PT0Q9Jc/mzZvx9NNP4/bbb8dzzz2HTp06oUePHujVqxeqq6uzDo+M7kTSlZ1xVVxIQk2QVWJbbG1YbNeTFcXYjsVyTX6sUEfmlBQANm7ciE8//RSLFi3CsmXLcPDBB+Pkk0/G2LFjS2aT2+Nh4RNRT8kye/Zs3H777bjvvvtQXl6OHj16oE+fPrnZqUxLOMPJv1gTMFFK+fp5C09W34i+XmoUWyIqCqt/8PpG/P1SodiSUSqs8TMpoS2ldpI5JQWAFStWYP78+Vi4cCFqampwwgkn4KSTTvK/UeopSXwi6ikp1q5di7///e+46aab8PHHH6NXr17o3bs3OnXq5OwXCogmnGmUYkJWStesujgs5aS0lBLRpOSTWk60bN4pxWSUOnamnbYWc9vJnpIWCgV89dVX+Oyzz7Bw4UIMGzYMZ599Ng499FDU1NSYCNXjcQ6fiHpKgnfffRe33norHnjgAbRs2RK9e/fG9ttv79Sjt7oSziRKKdko5sWj6RMJ2WQljxRzPwHM3stSSk6LvZ8AZuaHUktQZU9JN27ciHnz5uGzzz7Dxo0bccIJJ+C0007DgAEDTITp8TiDT0Q9Rcvq1atx//3345ZbbsGnn36K3r17Y4cddkC7du0yjctGwplGMSekxXgKmuWCv9iT0mJMMLK6Z8WemBbj2AJkMx8U++O9sqekQRDgm2++wfz587FgwQLsvPPOOPvss3HEEUegtrbWRKgeT6b4RNRTdMycORM33HADHnzwQbRp06b+8Vvbp58uJJxp5D0hFfnyjWK5JheuoxiS0lLpMy5cQzElG8Xeb1yIvdhOT1nXQz0lDRPSDRs24H/+539wzjnnoF+/fjrD9HgyxSeinqKgrq4Ojz76KK699lp88MEH6NOnD3bYYQe0bdvWeN15SDjTsJGQ5vlnS0zdw7wv1G1tZNj4iZC8/dyEq8lnGrY3WkzcV5P9JV6PCVxLQNPIKkHVeY/jfYaSkAZBgG+//Rbz5s3DggULsNtuu+H//u//cOCBB/pv3PXkHp+IenLN119/jVtvvRW33norysrK6hPQRo0aGakvKenMw4SeRh5/w87UoiqPbZEleW0v3V9UlNd2yIo8t5fux7rz3BZZkNf2kn1sFwA2bNiAjz/+GPPnz0fjxo3xk5/8BKeccgratGmjLT6PxyY+EfXkjiAI8Nprr+G6667DP//5T3Tv3h077LADunbtqv2bb33i+V9cvF7XP99XbI+asRDtQ65eq8vfmFuMj4OyyPN1ujwG5X18p5DHsVYlIS0UCvj8888xb948LFmyBEcddRR+9rOfYZdddtEdpsdjFJ+IenLDpk2bcP/99+Oaa67B559/jj59+qB///5o3ry51nriySdrAsvTZytlFnkuL65CXI8x7aTW5c+C8qA8SpyXx/9cTkSB5H6e10e7Rft+XsZZ18cigN/P85jAhYg8np6HR9hVElLgh98lDU9Jd9xxR5x77rk47LDDUFlZqTNMj8cIPhH1OM+KFStw66234rrrrkNFRQX69u2LPn36aBtkWaeelInKlYlO54LC5YWVywmOysLZpcRUV4Lj8r0KcTkRldGha8mpjn6dh4TU5TEToPdzV0+pdY+xrt0v2c+RAj9s1s+bNw+ffPIJamtr8Ytf/AInn3wymjZtqjtMj0cbPhH1OMvChQvxxz/+EXfccQc6dOiA/v37Y7vtttPy+K1q8snD9ERna3Hg6uLc1cTG5u/v2exPuq/DpXsGuJs86G4zm6depvut709y6BzTs+5Ppq7DpfumkpAWCgUsXLgQH330EdasWYMzzzwTP/3pT9GpUyfdYXo8yvhE1OMc77zzDq666io8+eST6N27NwYMGKD825+mEs8kZCdQF3aiXUxEXVzk2VwUqy7wszwpczV58H1KrU+48vu2Lt6/UoxJ19yVxcmlq0mpSkIa/ibp3Llz8cUXX+CYY47BL3/5SwwYMEB3mB6PND4R9ThBEAR46qmncNVVV2HmzJno27cvBg4ciGbNmkn7zCL55CHz7X5ZToSuJaIuLe5cWrDkqV+5mDj4fs6PgYIr8bpyL124j1FciIfar1yLNet7qZKQAsD333+PuXPnYt68edh7773xq1/9CnvttZf2L3j0eKj4RNSTKUEQ4IknnsAFF1yAr776Cv369UP//v2lfn7FpcQzjkuf/xPBlQW6S4tMlxLQOHnpXy7dT8Cdfg64kSzwcHFhHsfFvgW4E4sLcbBwfexyre+rJqTr16/H3Llz8fHHH2PQoEG46qqrsM8++/iE1JMZPhH1ZEKhUMATTzyBCy+8EF999RUGDRqEfv36kb+AyNXkU2RydWmhEseFhYsrC0tX4oiTlBi7GjPgVmy+nyfDiy0vmzJZx+XKGO9CP2fBulcuJ6YuJaWq37RbV1eHDz/8EHPnzsWAAQNw1VVXYezYsT4h9VjHJ6Ieq4QJ6AUXXIDFixdLJaAiP69iG9nJ05WFShzZhYvMY32m0XEdrtwfalwuLcrjqPT9YuxnLt0fSlx50IpsTK71M5XrcOW+hIjq36XkL46uvq+rn8mckMYT0iuvvBL77ruvT0g91vCJqMcKhUIB//jHP3DBBRdgyZIlGDhwoHAC6uKpp65dW9cWoroXXiqL86wndZUYdKJjseNaPwPcuE8qC3QX4teJaj9zNWHQdZ9U+4nvZ/9F9yaUC9flSj8D5BPSuXPn4sMPP0T//v1x5ZVXYty4cT4h9RjHJ6IeowRBgGeeeQY///nPtSSg2/i3NAGZfFzI9qmo6ISZxeSe5QmxC99WHGLqlCmLhNSldo2T1UmRSxo00deyOiV1qV2jZP3ki0sa1N0WWSamLrVriK6EdO7cuejbty+uu+467LnnnjpD9Hga4BNRjzFmzpyJn/70p3jvvfew0047oX///uQENGkQt/n7Yrr98+ozHX8UXl1ZLZqyrjepbhs/fWJz8W4iIU3rc671t7BuF+stpv5mY1MljoiOS2V8C+uWGdtCdN8zW30tJKt1gQsbMjLJKPDfR3Y/+OAD7LPPPrj22mvRt29fXSF6PPX4RNSjnc8//xy//OUv8fjjj2PgwIHYaaedUr8FV8fnPlUSUxe+IIE6SZtaQGSxOM9ikaa6KNWRLGT5+TrZunUnSVlvQOSpXt/ntsX3ObF6TX0Wm3oPs+xvISr9Lk/fOaAjIV2/fj1mzZqFefPm4YQTTsBll12GDh066ArR4/GJqEcf33//Pa644grcfPPN6NWrF4YMGYKmTZsmlhE9/ZQhaRJxIfFkEZ+sbT/6k+ViIU9JqIjfOLx76kqfA8T7nSmtlkq/szHWheSh3wFifc+UVouhD9iukzI3Zf1ocogLa4KsPx4hm5CuXLkSM2fOxNdff41f/vKXOPfcc9G4cWNdIXpKGJ+IepTZtGkTbr75Zlx66aVo3bo1dtllF7Rt25Zrn9W33rr6JQchthZgaTHkfYEkUl9WddquW5SsN2ayWpyXSl+P4vseu/5irS+LOl2Yy0Rw5fOleUpIlyxZgpkzZ6Kurg5XXXUVTjzxRFRUVOgK0VOC+ETUo8Rzzz2H008/HRs2bMCQIUOw3Xbbcb9lLYsENG3X3bUvjwgKhZJ5bKwUk9Do/bUdSxzXtJFFfyjmZIBVr0ubImnaKIYnJNLqK+aNl3i9WW84xInfcxcen7VRr45kNAgCfPbZZ5g1axY6deqEqVOnYrfddtMVoqfE8ImoR4pFixbh7LPPxssvv4whQ4ZgwIABKGdMNC4kn7x6bS4+ZL7koJgTgSzqslVfvE5evVkuQNLqLJVTm2LddInWyas3i6RUtM9nrdliGwPD+lyaU7JKTEXucxZJaR4T0i1btuCDDz7A+++/jyOOOALXXHON//yoh4xPRD0kNm7ciN/97ne4+uqr0atXLwwdOhS1tbXb2LmQgMp8IYGuOHV8SUJevtBCph6geBd7UbLsg6x4ZGIq1mS0GPt7vE5KvaYWwip+s0xIi61vuD6nmE5MXdIEpd48JKRr1qzBO++8gyVLluCKK67AWWedJfQLCR4P4BNRD4GnnnoKZ555JjZv3oxdd911m52vPCWfSX6oPkxMoMX62KDtemzUFa9PpU5VP7pPuYr5ce1iTUR11KejH7kwNsuSRSJgox6XE1Fe+Tgy/nTcz6xPSU3WpyMZBYCvvvoKM2bMQJs2bfDnP/8Zo0eP1hGep8jxiagnlYULF+KMM87AtGnTsMsuu6Bfv34NHsO1nYCanBBkHtsxFYcLnx9K+tKJrMn6cet4fbrrFL0W049YupRI5bU/utB2qj6jZPFIY5baps4FWeP74rb2JuNwYc2juy/KJqRbt27FnDlzMHv2bBx00EG4/vrr0bFjR62xeYoLn4h6uGzZsgXXXXcdfvOb36BXr14YNmwYampq6t+PJ6CAuQE5q4E/qy9ZMLloUJmwVHeTVa9HJnYbbWhrt5pHnk9tsuiPYb26T2tEMD1G2u6Ltr/oxUZCanucUb13qkmIKV1n9d0LUWzqodj6o8rp6Nq1azFjxgx88803+OMf/4iTTz6Z+T0iHo9PRD1M3n33XZxwwgn49ttvMXLkSHTq1Kn+Pd5vf+pO2Fz4fIbtuuMxmFyYhL5NL2BtLhxF+qNKHFn1yazrjtZvqk/G713eH1WMt5epRXMWj66y6rZdv4nHLaOwxpK8bj5G6xAdI0NU+mTW/dFmDKY+nsHyaXszRiUh/eKLL/DWW2+hX79+uPPOO9GvXz8d4XmKCJ+Iehqwdu1aXHDBBbjtttuw0047YfDgwfW/EcVLQJOgJqdZTSRpO/22J1QgeaGscwFhe0GetX+ZBNWVTZH46ZNryaiufpn3PhnWoaNPAmLtnWUS6HpCKtu+LB+u9BlZ/wDtepNIa+8sx6c8JKWqm6U2E1KVZHTz5s2YOXMmPv74Y5x//vn41a9+hUaNGukK0ZNzfCLqqefpp5/GqaeeioqKCowcORKtWrUCIJeA8hB9xCTL5JNn58Lubhxd98OVJFHGtw7/LvVLgPaZIN8vi9d/1o8exqEmfVk+McDC98vi7JcA/bPlWa0xWOi8H6bnWpWE9LvvvsMbb7yBpk2b4q677sKoUaN0hOfJOT4R9eC7777DmWeeiaeeegrDhg1Dv379UFZWpjUBZZHlZy+p9dnaqWaR1x34vCShInWYrotVnys74vF6ovi+yfdfjPeDUk+x9s28JItJ/ovpfkTrlD3pLZb2MKk5XclooVDABx98gFmzZmHy5Mm45ppr0Lx5cx0henKKT0RLnIcffhhTpkxB27ZtMXLkSDRu3NhqApr0eRVddevwq3txIDI5ufSYVqn4jvqP11Hq/TOLz8zlcTGeRaJicnGturg1sTjOun/mOVk0Pa+w6jCZjKnciyx0Y+Mx9jwkpKtXr8Ybb7yBuro63HPPPRg3bpyO8Dw5xCeiJcrSpUsxZcoUvPTSSxgxYgR69eqFv/zlL/XvZz046lz8yPrg+aT6kp2EbSSieUsUXVlg6kweZcvr9CfTR125F7K+87rQF2kXXQtsk4+/6+ijom2Q9Xwm67tYx1CdianJx41V+yilDUwmjK4mo0EQ4KOPPsI777yDY445Btdff70/HS1BfCJaYgRBgIcffhinnXYa2rVrh5EjR+Lee+/97/sGBywZ/7LJq0xdovFQ45CNJ4+nNnldQOlM4vKw+CjlPhr6zlsfVfHvUhKnoheZeFwdN0R956n/h76BfG+GqeiFGo8rc4Kqb5WEdM2aNXj99dexadMm3HPPPdhvv/10hOfJCT4RLSG+/fZbTJkyBS+//DJGjhyJF198sf491xLQJH+hL9uf9YjWmRSDrjjydmpjasKzdbKh+1Qy6tPGJgkvDpN6yesjinnzG/oGzJ78mNZaUiw2+qkOX1n4NuE3j/006tfGxwN4cZjSSx77qc7T0Y8//hgzZszA0Ucfjeuvvx4tWrTQEaLHcXwiWiI8/PDDOPXUU9GhQwfMmzev/vW8DHYs/ybrodRvIoY8niya8JvHiTnu21QdrsSQx5MbkxsxeWzjOMXYV/M4luRprDbt29bcS40hryftun2HflWSUaDh6ehf//pX/9nREsAnokXOypUrcfrpp+Nf//oX1q1bV/+6qWRBt29eHSbrcqHuLBf3vOs1QdaPXZk+FYhTzP01q0VtqfRXG+NNnGLsr1mPKy7117xs8rDqYJFVvabqdiEhle2vuj47etJJJ+EPf/gDGjduLO3P4zY+ES1iXnrpJRx33HFo0qQJPvvss23e1/3ojO3He7P8fIjpyVaXf9VFj0gMlPugEo/rjz6l+c/yc3eufnaR50cW0fpF9WUrHpEYbN+7rD67ZnujKMs+61p/BfS0RxabtC70VxP1JtWtwx8FSn8F1E9HV69ejenTp6O6uhoPPvgghg0bpuTP4yY+ES1CNmzYgPPOOw+33347hg0bhv79+6OsrKz+/ejPs8SRmeyy/Hypjc9N8exdSERFJ5ToZ1pcf3SM5TPtOtPqzzIBNRULVYeuJKMifTZ+713/jFz82qnXKOpXNzInzrY+r+mSZuP2LEx9bjDqM+s+KxJDVokoyyaKjrE2T/NM3J6FjT6rmowWCgW8//77mDVrFn71q1/hwgsvRGVlpY4QPY7gE9EiY+bMmTjqqKOwYcMGjBo1SvjD3knJKfDD4JTliY5IWZkyNuukEE7muhYHoU9RWxFsJaEi9jzy0G8p5VT6ra1Fkmi/1X0aRMFEIqqrzwIN2zDrjQNWmRDT/V2lHNW/zn7rwtgo6lP3hqcrm7RR+zi21xc25h0djw2bPHlVTUiXLVuG6dOno2vXrvjb3/6GHXbYQTU8jyP4RLRI2Lp1K37729/i8ssvx+DBgzF48GCUa3hMh5WgmphcVX2LDKA6d0lNJXU8dE0KLi+MdPrjtaepvmuy38btbNQn6zOOi4+mZrmgF/HDw8T90tGP0vzY1ImK3ygu9tvQp4v+bMxf0Xp09dskX7Z1oupbl3+XT0e3bNmCd999F5988gmuueYanHnmmQ2e9vPkE5+IFgFffvkljjrqKMyfPx977rkn2rVrp8VvNAnlPb4jM1CZGpxZA6jpiUDnhAjk5xHavPgLfZrYhFDxIeLTpk5ky0fxfdfM2KIzWbKxEWHjcT8Vn7yxIA+P1LruL/Rpou/Gfesgq74r6zdvWmP5U01GAWDx4sWYPn06dt99d/z1r39F27ZtlX16ssMnojnn0UcfxYknnohu3bph1113RVVVlbJPVgIaR2ZQNf24CqsOU/WEdak81pTWtq4kzSxfgLuLIRF/Mv3E9COC8Tps1OP7rx5/NhNv2cW9rUdcKTHpqIty3WllSjUZtalVleTU5GO/tsde0Xqy7L8uP6q7ceNGvP7661i1ahX+9re/YezYsarheTLCJ6I5Zd26dTjnnHPw4IMPYvfdd0evXr2UfYokoCySBtasBneTdUXrjNehYwfY5ROlPCyqqP7S+o6NBFQkDlP1ifRhmfZ0ORF1NTYZfyJjjol7IhOHqfpc78N+DE63Z+H7sFwMeUlIVZPRIAjw8ccf4+2338Y555yDK6+8EtXV1crxeeziE9Ec8t577+Hwww/H5s2bseeee6Jp06ZK/mQTUBY2B3KRBDiPk1bWC9s0X4B7CypdE2WWC5F4Pb4Pm/Hnqh50+bPdh+N12t7EMdmHdfgx4c9VX7r8ZdGHo/Xa3kw33Yd1+Ir6cykZBYDvv/8e06ZNQ4cOHfDwww+jT58+yj499vCJaI4oFAq47rrrcMEFF2CnnXZS/kIinQloiOlTHcqkYPrzJCIxyNbj0qIgL750+Yv71O2b5d/mo4Ks+k35dzV5dNUXYP4+m6pD9HHMUu/Huvy52o9N+At9xsnykfi86NTl01Gdj+pu3boV77zzDubNm4ebb74ZJ5xwgv8io5zgE9GcsHz5chx33HF4++23MXr0aHTo0EHal+4E1PSpjuwEYGpnNn59ri98XE0cXfMV9Rf3aerEVfRzUabrzsPjtEBxL+BtJD06F9My/dJEXzZ9AutqMur6OGpyXtSdlKo+Tqy7L5tIevOQkOo4Hf3yyy8xbdo0/OhHP8LUqVOVnxj0mMcnojng9ddfx2GHHYamTZtijz32QKNGjaT82ExAeXayn3Oglo36UKkzrV6Xd5JlFxdJn9kJkY3R9cVTiO5dcV19mVrWhScIsr7XpvqzK9cn61OlT6ouQlWT2KRyriejqr5M9Oe8JaK896NQ+7OOsUW3hlxPSHX4SuvPMsnpunXrMG3aNFRVVeEf//gHBg0aJBWbxw4+EXWYQqGA3//+97jkkkswdOhQDBw4UOpRg6wSUF450Ue4KL5l61R9JMalRFRkgeISOq4zq4lZZlFM8Z9WrwkNuXgqmqc+rXqdWW4CUDcsKL5V63SlP9tYdLuEa/1Zti8D7vbnLE5gVeJI8+Ma5eXlqK6uxo033oiTTz7ZP6rrKD4RdZRly5bhmGOOwbvvvou99toL7du3J/swmYDqTCJMfvYi6t/EYz02J1yZAd+Vx7+iftKuQzTJcqFP8/quiVMZVp26NWT7MUTRPh32G5cezQ39qJ5Qufbop+0+bbK+LMYL0f7g2iO6OucX1zdo433M5BjNqk+2zqwSUmrf0P2osqqvZs2a4YADDsDtt9/uH9V1EJ+IOsj06dNx2GGHoXnz5lKP4rqYgCb51OlXpC6d9Zl4lDaNtPpcXeCI+DH5WDCvLt+nt/XtWp8OfbmSiIr2HZ3XL4Lv08l+TTwRxIMy3unoj7a0QUlK8jAm5b1P6/Dpap/W6adbt26orKzE448/jp122knJp0cvPhF1iCAIcO211+KCCy6QehQ3moBu41tx983kwtTERGCzHh07m1FcGMBdnUziuNyvdfpPqyvLxzpZZVnkabFtMxYWKm1v+nTHRB026nG5X6v6cTGh5SHb/r5fp/vW2bddONXUvX4YNmwY5syZg9tuuw3HH3+8kk+PPnwi6ghr1qzB8ccfj1deeQVjxowhP4rLOwWVGQRNL9RZ8Zma/Gw8giP6KCkvNlFfovGwfGfhx2QsspOniX6Q9qisyR1w049L6ujbLi6SXY5Fpm/b7Ae2Hne1OQ8l2UXh3StXx0mXYpFNTm3N3SYfe7XZr9P8iqwJXUokdcey//7749VXX8Wxxx6LG2+8UfrLPz368ImoA3z00Uf40Y9+hC1btmD06NGora0VLkt5DFckURP1JYKoT9071Sw/NiYzlV3gYluM2L6etIVjVota1XpFNJTVQi0ppjRfsvGI1mfSR+jHlb5N8UUhzafOvm2qDlGfqhtbIrYifrL2EfrJum9Hy2bdt2XrtlGHqM8sDyR0+NEdyzHHHIP//Oc/6NChA/7xj3+gW7du0j496vhENGMeeughnHjiiejbty+GDh2K8oSBOYqOz4GaemREZoClTDaycet8vMfFR49cWcy4sAtq63Eoan8VjUG2DlMnvZRYeL58/97Wj2tjd9y/a/2bUgfFp4rvYktGs+7fuudWXh2m1xpUW4p/qk8V3y4mkjp8nHTSSXjrrbewePFiPPzww9h3332lfXrU8IloRmzevBnnnnsu/vKXv2DPPfdEjx49hMrp+iIiE4O9ruQh6dQnCrUO3Qs/2Th4/l1ZqLsyUej0EyeLPp5WVnVBotr2Jvt41otbnXG4otWoHxa2F52U03tV/7r7uM77kPf+6YpW4/HEUe0DJvq3iv94Ha728az7lk4fU6ZMwSeffII333wTF154IX79618LHwZ59OET0Qz47rvvcPDBB2PBggUYM2YMWrRoIVTORBKa9OhdFrt50UFG966/6qlrvKzuxaQrg7PtCZ7lw5Qf2f5qMi6dGqLegzSN6Txp1ZXAuZBEuuCD50f1FEfUXsRP6EvniabKaSqrnGtJpCs+irGP64qLN2ab2GDSMUeZnlez8qErGV22bBn+/e9/Y7fddsPf/vY3NGvWTNqvh45PRC0za9YsHHDAAWjatClGjRqFqqqq1DKmE9AkO56ticdJbPkWPXFNq9u1RLRYklBb7Wn6BEe1blXfaTv2onW7dEKSdSKat34uumA30c91byTy/Ovo58WYjOY9Boofaj/P21ie5JfSd11MSF1IaKdMmYKNGzfiP//5Dxo1aoSnn34avXv3lvLpoeMTUYs8+OCDOPHEE7Hjjjti8ODBqT/NYjsBFSlna2Gu23+0Ht5JFLVOVxboWSeRLkxKKn5M726n1WeyDh1PFhTbhksxLNB19POwvKkxPalOE/5ZfZ1al0uJpIoPF/pplvNjWl/Pcz8Pfavo1rWTTVkfupPRQqGAGTNmYOHChXjkkUcwbtw4KZ8eGj4RtUChUMCvf/1r3HDDDRg9ejS6d++eWkb3lxHpftRKB0l+bexcqvrPakHJKu8CWS+aVOOI+1H1leQ7j309ax++rzf0Y+rxQh3Y3MTU7duFvh71kTV57+u2Nv5YY7ru+nT6deV01JV+DvyQjALAvHnz8Oabb+LKK6/E//7v/6YeGnnU8ImoYVatWoWjjjoK77zzDvbZZx+0atUq0d6lBDTuy5RPk4/QyDxyS/FtctFDGaBdOA1NIu2xItcm1Cg6+6DJdojXFcWFxXnoR/RRyiRU+quN5CDpGl26FyxMx2d6ftLp12QyqtqXVOsXLS+C6f6ua75mYXMOd7G/2zrZdLm/R2MLk9GlS5filVdewcSJE3HHHXegpqZGKi5POj4RNcinn36KCRMmoFAoYPTo0Yk/nOtSAipyUkmtQ2ZAlh1Y0urSObFlOcnrisFkeZHrzPrkIeon7svm408m+rvO09asNy10xZB1f0/zoRqDii+bj7aa0JarJ6NJmO7vquV19HeTMVD8xOPIqr9T6xLp71SfonXI+uAh2p9UEkrV+MNkdP369XjllVfQvn17PPXUU+jUqZOUX08yPhE1xKuvvopJkyahR48eGD58eOJXQkeTUBZporL9WCKlPh0DPbWOtHpsJ6Jpg7PLiaTpunnY6vNRX7omSFvJK1Wvvs+7sXHDQ7RdbWwqUMftLPq8yQROxo+Lfd6FRDYJ232emlSL9EfdG+VJ9rafMpBZe0VRPZ10IRndunUrXnvtNaxcuRLPPvssBg8eLOXXw8cnoga45557cNppp2HXXXdF//79uXZpp6BpA6Ou3TBZPzzBm9ilS6uDUo+piS1pUE66v3lbVJtc3Ig8emRi44Xa51llbMSlW6uysan2+7wmoqr3ldLnATOn21Q/aX1O90lKWhvp0KqO2ETGqrhtKY711D4fr8/2xnFomxRT1MbkHKSiVVf6vGwsWfXbaNxhMhoEAWbPno05c+bgoYcewsSJE8l+PXx8IqqRQqGACy64ADfccAPGjBmDrl27cm3DJFT28YwothNQlo+goP6NhUl1sPzL1qFjYqMuvnXHkfXiwmbduu67ahxpMYXoPLHS6V/3wkk2JlMJnetlAfnkL4qJjT2ZmKJjss6xnuVftg4TC/MoMuNYnhblYXnf7/XHZLIOV/p9MSWjALBgwQJMnz4dv//97/GTn/yE7NfDpjLrAIqFDRs24Mc//jH+/e9/Y+LEidwvJVL5LCgvGaNOFDoTxjAm3QuSkNCvKf+UGFhkEU+WZDExhPbR+yA7wemaoFkx6ewLJjd2KJhcGJaadijXm3TqqNr3Zds9fjJiYkyO6kqH/7g/HRu/qjHJ9P3oPGuzbIhsWd6aJcmeVXf07yRbE4g+/aGjDl3XqKojXX1fRX9hedlr0FE2Tu/evdG0aVNceOGFmDt3Lm666SZUVvo0ShV/IqqBb7/9FgcccAC+/fZb7LPPPqitrWXayZyChiQtPkQHL50Due7T2STf4aCge/dRtJ2icYj6UI3BlxUrT+nTOhfOtvq/7lMnEV+ij6VldTKbxYI6D30/qQ7f98US+LQ2zfKEJyyfp76vUm9SeepTMibWD5T6qb51PA3A8pvmK2k+zfLphKzLRk9FAWDNmjV46aWXsOOOO+Kxxx5D8+bNSX49DfGJqCLz58/HPvvsg8aNG2PUqFHM3RHVb8RVHURMJqAmkjMTvln18NqHVX+aD5kYbC/kiy0J5dmFmDi1FNkQ0tH/dftO8kVd1OmIJ4sFtUrZrPs/te9H67PR/3XUYdJ3ki+ZpEYlnjyOw1npVbS8yAaCyY08HWssEd82+j+lrfPSh00ko3V1dfj3v/+Nxo0b48UXX/TfqKuAT0QVmDFjBsaPH4/u3btj+PDh2/zora0ENK2sSgw8f7p23qknWqZ29GXa1/TkyisHZDOIu5yE8spFsbGrLKNZ6kaTzusQqddELHlMJvO46RTF9392nTI+87gYD8vmpU6V8ib6f9Sv6Ik6VQMmN0B4vmR8unA6msUaKJ6MFgoFTJ8+vf6EtG/fvuSYPAD7KMiTyrPPPosxY8agX79+2HXXXbUmoWXlDZ9r1zEIy8KKJSmetFPGqE+KXxWi9cUHQJP1JsVjm7wlofH+QYVVRrbdKXqMvp9WH1Xnon5F6mPFS8HUhlCxoeMaZe8P62RFpe+IxBPv/yIaEPEbfV/1OnScXvFObKnlVcrKkpc6VWDN7bx1gCgi81G8XpH6ROc5qrbS6ov7pqAai4p+dNQrWy7+U4vl5eXYc8890b59e4wYMQJvvfUWya/nB/yJqAR//etfMWXKFOyxxx7YfvvtG7yX5SloUnmqXxM7vrp2oanxs+rL6kRTpWyWC/csEljd5bPSQLS87ZOYpPqyOq2Ols+TDrI4SZWtl1depv+Z0LLNE0UbGpD1ofPE2wa2NyTD8jrnatlETNe90tX/dM1nWZ5uRsvnRQPAtiejAPDhhx9i5syZePjhh/3PuxDxiSiBIAjwu9/9Dpdddhn22WcfdOnSpcH7qqegsmVFy+uykYlJp0/R0660x1xcSURVB9S0OFQTeGoMLiahPBuenS4d8NpTl08RLaS1gys6iMZERbRvm9QAK44sNqzCsqx4WDYhSX3J1bkgyRdVB7Ix6RjvbOtAxLYYdCBS3utAzI9qHLJlTZ3gq+qAlYx+9tlnmDZtGm655RacdNJJApF6AJ+IChMEAX72s5/hrrvuwrhx49C2bdv69+LH9YC4ELMQf7yM6imNrrgofllxU+qymYhSBlLdybPqbiNlAmdBqdf2CR2r3+vutya0FferouGs25yHSL+T6dOmTjWLWQsm+qwJv6ynDmzPwzL3OAmRfmfzpJ6a1PGgtlOWc3VetMDqwypasDX2RMskYWpOUCnHSka//vprvPTSS7jooovwq1/9iuS3VPGJqACFQgFTpkzBY489hvHjxzf4qub4KSjlBMTUDpKMDxU/Sf5cHcBNTG5pg6lKe2RRTrWupPbgtZ3NyY9VXsVHms9i1ILsiU5WWshq0Z4XLWSxceLKho/JZDTt/hfzvBAtJzIu6KozLMvzK1o2is6+qpIsivhX8WnygKSYtACwk9Hly5fjueeew09+8hNcccUV23yHjKchPhFNYcuWLZg8eTJeeOEF7LfffmjatGn9eyK/Cyoz8Kahc5BQjYXlz9TCKqkOGZ8644mi+1RTtpyLAzplQU6pU7Z8UkwmklpT8apuquiOJ8S1Xew8nR7ZOpnj+dART1pMxaYH1blBpl6VE6hinhtE6xX1YTomnRuLcbLaoFWdG6j1upSMfv/993juuedw0kkn4dprr/XJaALb/uilp566ujocddRReP311zFhwgQ0btwYAO2zoGmDDUUAugeF+I4cdcElGo/ITmiS77j/svJy5RNN2Th4MWUVQxouLTRY70evjdq/dS5i4/0r/Fu3HqJaoPg3qYcwJlEfuhZmMuOCSjkZZOsRKZeWmMn2b91JWLS/Uvyb1EOS/1LTgwzUa4yXMxUTizBOUXtZO1EfsnpIK8Naj1H8p+mBGms8JpX5ihVXWr0y40K0X8vUp3Nd2apVK+y///645557sH79etx6660ot6TvvOFPRDls3LgRBx98MN5//32MGzcONTU1AOS/kChpkIhj+hQlacBPq0N2106nb127nGkLQV4sKickcV+i5Uppl5yiCRt6SKvH5O6tLU2Inlrx4nDttFFnGcDu6Wu8PtFFnck+wIpFtyZ0+ja1ScXyz6rHlbHUVF1Zap2S5KgmFmltRFkPqSSWor6T7HQeZIhoQtf4pNK3ZcvJlGGdigLA2rVr8dxzz2H//ffH3XffjYqKCmHfpYJPRBmsW7cOEydOxIIFCzB27Fg0atQIgNijuCxEO7eJ0zfZU6a05MDUIosySOuYYFiI3Cebi2eRmLKqy/Tk4pIm4vYmF7sqC3kd7RJH9D653r9dXnQXgyai7+mORWeMMrHEKWVNAG4lsCY0IVo3LwYdGxMs3yp6KyVNuJSMrlu3Ds8//zxGjx6Nv/3tb6iqqhL2XQr4RDTGhg0bMH78eHz++efYZ599UF1drf0UlFpWtbxq3bJ+TPpWmUCzqFu2nK3k0MUkNKlsSJZ1y8Zgyq/q/ciybpcX3XloizhZ1i3jx6RfXdeWRd0ujuEuJqKsMixszm8qdZv2nce1aRaJpc5kdMOGDXjhhRew++6748EHH0Rlpf9kZAh/a6ME2bRpEyZNmoSFCxdi7NixWpLQoFAgl+OdHCbtRPHK6xj8dPlhDWAqvtPaI2yLeNuF9em6LhFE7h0PlwddmwtenbqQIV7OVP+R9RuWobSHjh1ylbK29GcbmxskrDpZ99dE3TY1oNrHRNoj3m7ROGTGcJWyNupSGWdcJhqjrC5U6mb1Xx116tJFvF+rrC2p7SmrKdYJM6WcrTKsn3MEgNraWowbNw7Tp0/H5MmTUciBjmzhE9H/z+bNm3H44Ydj7ty52HfffVFVVdXgUVzK4xmyC3uWyOODGk/0OhJQ3sJUZQBlTezRv2XhlectsFmTg43FgQo247OxuNCxw5ymC542omVkY4/Hr7qg0ZEcx0nSLG+RHR9vVHBdU8UGa1xljXMi2lCNIf6abm3o2swTiTfehraTUZsJrGw9tsqowNIFa84weYoZ9aMjEdY5D6muLVU2amR1YTux1J2M7rfffnj++ecxZcoU+AdSf8CfDQPYunUrjj32WMyYMQPjx4/H3XffXf+ezVOitLJpA4auk0WWn7Jy+W80ZPmk+hOth1WXK8i2n2sTfhYnqEllRU5IdS20owub8HUVbcQn9TB+1ZMx1XaQiSHaJiaJtrtsWVPoSpZ0lGONuaa0wTv9kelHLJ/xPq1ykifbDrr0KYpMfUnaT0O2jKvzbRKi2tBZVzyx0TGPsvp01tqgxKCjnKva4NG4cWOMHz8ejz32GGpqanDjjTeW/E+7lPxnRAuFAiZPnoznn38eEyZMwL333lv/HmXRRi2jUi5eVqY8xYdonJSYVAZNndeuY5FEKSeLSH2UQdlGPPG6bLV1tGyIqg/Rfq/TzuTGkogPW+Vs9UXR2GxqI1pfXvWho89TbHXqo9jnDup84Ko+bI9hcVzShy5/aeVVfdjQh825Q8Q+Hg/v86IAsHr1ajzzzDOYMmUKfve735V0MlrSiWgQBDj99NPx6KOPYsKECWjSpAn3SF01SdNVLlqW9eiAzERCLcPb/ZbxJ5s4RU9fXBksRQdF3UllWlw66ki7tjR9ZLHIltWHTP2i+rBRf1jONX1E30/ChD5kyuhOXJPaJCt9yC48XdGHaJlS1IeobbRMsehDpVy0rGxSqmP81uVPtoyugxKd6+Ks9KGSJCcloytXrsQzzzyDn//857j44ouFfRcbJZ2I/uY3v8ENN9yAAw44AM2aNWPa8BLTKFmcgspM5qq7XUmDgO7JXHQC0DHZUMukwbo3riyao/aAnoFYNknVFZtoWapGdC7yTSx2RfSc5WI7CVWN5ElTuhZPInWplBOdH3SdxLqgEZ0bwtRySagmImEZl+YQXh0m9MGrS7Qcq05KUqpad9S/Tr3J2Ojo57JrZB5ZbvbqTkZXrFiBp59+Gtdccw3OOOMMYd/FRMkmorfccgt+8Ytf4IADDkDr1q1JZamnpiE2BM2yVZ3sef5V/SWdXIn6N5mI6kq8s0wSddir1BGn1DSiy1fUD1WDpk5vWLFQ4or7yWIRnLU9D5E2N7m5wOtjKnXz/JvwpToeUOumtqdMfa7NI7Ix5UEjMvfTa0StrKpGXExGRRJRAFiyZAmef/55/O1vf8Mhhxwi5LuYKMlE9NFHH8Vxxx2H8ePHo2PHjqSy0W/SjSIyMLHKJaFL/DLl0/zp8KnDr65EVHTCc/UkxsUFSrxM2kTjws6rjo2V0I+JBUnUP7W8jsRFZLFga0FLqcPVRXm8DlMakS1rYtzXkZSJ+LR9wpl2H1VPOV1NFE3P1/EyInO16UQ0bs+LQwVb2rOxJk1LhHnx2Nw0zzoZXbRoEV599VU899xzGD16tJDvYqHkEtH//Oc/GD9+PPbaay/06NFDuBzl90R1ToqqZWV9sPyoDhA8v7J+ZONQOcXJ+4LZpdPTLBePuupn+dKlk7hfHX506ETEh9eJWBnRtmRhazOCFYPOfqjj5CdLnbDqF/FRTIvsrHWiMqez/LjYD3X4zuPa1OWTTt3J6EcffYRZs2bhtddew4477ijkuxjgq7cIef/993HggQdixIgRxpJQnk1ZudjvR0VtggLtdw/j/qPl0+oV9RN9Tadfih9WHCL1sto/jIHa1rpjtOnfhSQ0tGGdEojoRDa+eNl4HKJ1R/0k6VVFJyy/qjoRHX94CwbTfVkUG3GY0hVAu4+8dqfMKdT4eOV16SSKCf1R/URjCcuL1Js0p+iqi1XGFXtXSJrHk+4Vz5cMSf2Q2qdZccSvTcVvUoKbBlVnaXOKSH3UWKnasmWfRv/+/dGvXz+MHTsWixYtEipTDJTMieiXX36JYcOGoXv37hgyZIhwOd6juEnwBpKkHS3VXeG08iKLEZkdtzS/Ij51LJREBivW/ZDZ0TNx6iFj7+qunwmtRG10aUWkz6rYqPjk2elIvtO0wrsXpk8WXNOK6dgp8STVkXYPZca5uG+RerPSSppNsWnFRXtXdJ5URmRd4IpWqDoR8SkSm9eKOfvQNu1UNAgCvPnmm1i3bh1mzJhB/g6bPFISiejq1asxYsQIVFRUYPfddxf+vR5qEkoRtGiyZKpOXUmwyCAkKlLVCSCOSHu4lIiaXAC4NCBTyxSbVlR96lhgx8mbVqj2LulWNh6ROnRpRaVOVt82oRVKbLa1Qq3TpWSxWBNRlg2LPGuF55Mam2oM1Dpd04qovazvtGS0UCjglVdeQYcOHfDyyy+jUaNGQv7zStEnops3b8b48eOxaNEijB07FuUcwUShPooLqAkqiomkN61Oqg8TPmUFLVtf6MO1ATCvvin2qmWiFItedGwAUeqj1mkr2SqFRNRGW0briWJ7PqP6MOFTdqNHR52u9AnX5gsXElFWmTimrolXH6VOUZ8mN2x11CkzN5dCMrp582Y8++yzGD16NP72t78JH6DlkaJORIMgwEknnYRnnnkG+++/P6qrq1PLmDwFZZWj7l6p7Frp9MHypeovaTBPGuxUdhJNLy5YtrwJKAvi8bmehFJPR3TrRcWPzpiifkT7WB70wrJ3WS+AnYSbVzeljGg/VjlFpNRj0x91bo3a6Zzjbdm7rBkX9cKqx5Ze4nV5vZhZe+dFL9EEdf369Xjqqadwxhln4Morr8wwKrMUdSJ6xRVX4JprrsHEiRPRtGnTVHsbSahssqk6ULEGDZUBlOdP58KastNmY9c0zV5mMJNJDlQTYmqcOidgE2V0T4gsv1G96PanuuCX1Qu1bhOnNip90dSJqEi7pqG73XWPbWma0bXJqaIZ3fqL+uTdW90bwLqTUVW9UGOxNcckxZXVxg3r/SjRPqRr3aOaRJqes+KvJfm1McfIJMxpyGpGxTYtxqqqKtx222046aSTUn3nkaJNRB944AGcfPLJmDhxItq0aZNoS30U11QCmlSGWpbnQ+UETKcvEf8UX7YSURFkkgxbi2qKLeV6dcciW0bXaUySXnVOll4zP5BXzcR9i1xv1otqnn2IriSPV4fqHKt7U1ZHTKbK8JDdOCgVzciuk2TWQaLlKPXKaFKn/pLKU3zkXTO6N5JUbCsrK/HMM89g3333FYolTxRlIvrmm29izJgx2HvvvdGtW7dU+2giGkWXoFV3U9NiEikrsjtOPXGS8ZXmm1I27kfXojptUBMdOLIevGzEwSKpTW0twkViSisveqKkeoqi6zpNLr5EylD7hGo8Li6qRfyyyFIzvNh01ysyj+jUn0gMKuV19ScdY1aedECxlZmLbWywRcuJxKRSL2WuUdWfSDlK2biPPM41LiWutbW1eO+999C3b18h/3mh6BLRL774Arvssgv69u2LQYMGpdqzHsfVkYjE/eiY7KiLX0q9aadhOgfXpIFNdSGl87SG1fYuLKhdiSNtFzdOFroxuYnCK2NisRr3y6vTRd2Y6H8mfedVN9RY4vUnzYEmNx9ZWtU5VujWjYkTG1afyGPfFvWtaqtTM6G/vOvG5CEFqz5KnbLlTOtGNBZXktGKykp06NABc+bMKaqfdSmqRHTdunUYMWIEAAj9TAvlM6HUXSEbk6rsAChSvw4/aRNH0jWaWFCr7Dy7sDDI8yIiismTDpXFKLVOnm9VP2mJisquuEwZF3Vj0rfLJ0E2NlKS4uD1TRd0Ey9vQzdp5WSvsdjnBZk4XNJNWkxp99013cR9qKxFRevNo26yjqNQKKC2cWMMGTIE06ZNQ1VVVWqZPJC83ZAjCoUCjj76aKxZswYjR440koQGhcI2Yg3/xF9j2YvUkRZT1CerfkqdvPpV/IRl0+KT9Z1WZ0i07qR7ojK5qdpSYqDiShyhX16/jWsnai+KyECepl2dfVKnbuLxmdINawxLGltM9RVRZPp3noi2M6/f8rSjO4407ar2d10xxuNjvZ8UB6VPxesMsandaCwuoCupUrGNz+28fiu6SSEbC+ue69RN2maljB/qnJi06ZNWb7Q+Xv3xGCj3X7ctFVNxlJeXY9l332HWrFk47bTT1IJ0iKKZzS+88EK8/vrrGDNmDCoqKhJtZZPQkOggwxIVNQGVKRe3U0lAWfWriJOX1MruOFPskxJfVpuJ+qXELrP5oNs3BZtxJE3QVL8y5XQuCE1oJ47MmCBbP0U7xY5r18u7F6xFtSiuakeXflzRjgym+5/odZpMLk3MqSxbEe2Y3Nji9QUdaywd2pFdG6nUnzT/s9pLJrGjxGEicTXlu1mzZti0aRPuu+8+3HzzzUKxuE5RJKJ///vfcf3112Ps2LGoqamxXj9rgEkTpcppDGsBTh2EkuqXmZR17faJlk07tUlqU1OTjsmELo9Jq45dYxHfsrvZsju6otpR8SmLqHZlteNxg7TFtah+ZLUTLSvT1+M+wn+rzD2suCiIXg+vjbPWTt6SS6pvXbYi2tGd8PDKUuqLxhmvXyUh1bGepGiX51u3bkxuiJhYQ1IT182bN+NnP/sZXnnlFe2x2Cb3nxH98MMPMXz4cIwePRrdu3dPtVc9DU2yTVrY8t6jJqC8ciI+k2JKslfxF28XUVgDY5x4m5q4p6K2lBjy7tuGrYh+dCyiRd4TiSnJXtafSmJqSj95tM2rb1f1wxvnWXVRfKj4Y9npnGeLcf4x2ceB/FyjyFjJel+Xfijziin9qGhapFySfkz1F9P90BXfTZs2xUcffYSuXbsK+XeRXCeiq1atwpAhQ9C6dWsMHTo01d5kEppkq7r7QxkQWLFQF9A6/elIGtLqcmFwynNiadK3C/oRqYNVl87NI9v6YdWT5McvpN3zrcu2GPQj60+23njZNB+u9wGWLZDPOUXUN9XWpH5E49G9gZQn/YjW4Up/EbU17bu6USP06dMHM2fORKNGjYTKuEZl1gHIEgQBfvzjHyMIAgwZMiTVPqskNHwvLkoRMckMAmFdKsmnTn+sa+ehMuBnPdBEbVWuV5d9km38mqiDqW7btBhY7ap7Z5hVlw4N6dIPNVGk1uMaIv0nK/0A+WpX1gJUdXMzrS6d+lHxFy9vUkPUDQwTRGPQrSHdeov3S5faLkr8NZm+KKqheJuoaki3fkTLUeuirBND/7r7C2uuTYspyzkI+CHm1atWoWWrVjjjjDNw5513kuJxhdwmoldffTVee+01/OhHP0J5yg2jJKEUZJOV+GIg6ZSP6p9Xpww6F7W8gYNXh+yiwTRJ9Ykm0lntLrMWoaz/J9Unk5jrhqohHXHovBaZxUTSQjpJQyLo3DQQsbWtIaq9aQ1lTbx/mNAQb/NIV5uoaIhVXlVDVFT7Yx40lFQvK07eNUV9UBIWyiYeNRGKl0lar7mgIZnr48VCXbdSN4FE75UOW16bUDTEe0/FNsmetSEPAPfeey/GjBmDyZMnC/l3iVw+mvvyyy/jgAMOwAEHHIB27dql2md5GppmFxeuSgLKGwSovliTsuqiPhwIRAROvQcm7lUasru5ugajJHsV36K7cLri0HGvk2KW6a+6NKlLj3F/LB2pLDRN6i0JVr8zdfqkKxEVsbetIYotJRHT0VfjvmT8xePQOUem6SjLuSgeLwtWvK7OLVTfOnRkKlEQjVeXjlT7vk49xv3FUdUQxTZvc5HJ9V9ZeTmqqqowY8YMDB48WMi/K+QuEf32228xYMAADBo0CP369Uu1D5NQHrIdULdgdCegrPdVY5AdUEV3l6L2pjcNdC4WRW1D+yx2oXX55qGiI13xiiRnaf6TyrqmI5E4TN8D6kI5yS/V3tVENM02CZUNLl3jlUkdUeY5XX6S/KaVtzmW6dhQc20RbXqBzqOYdJS2+aqSjLumIx1rcNs6Mp1cUnyXV1SgQ4cOmD9/Ppo2bSpUxgXkz+ozoFAo4LjjjkPbtm3Rt2/fVPvoSWj8T0hZOf1nR3TuaPLKiJSLx82LJyn5Yl2/jJ80v1EflME7Deo9iMfE6xsyu4S6kek7uiZynm9RHelGZuPApI6StETxIwJPR2lldBP6ZN3rpL7haQhFR7rvo8h94cUkQlr/j76uoiMRP0l+o36SMNmPo/c6fr0u6kgmFtF+I3udJnSkS3Mqc2TaGpPV/3laovoRwZSOKHMj6/rTdGRiXqT6pvR1qu/NdXX4/vvvccoppwjX4QK5SkRvuOEGzJw5E7vtthvKysqEyqQJMGmwUN1ZkdkFisfCsxdZ8LLi5V2fjB9eXLxdNupglERa24gMTGk7hKKYTv5c9q2SnJrYdIjHFI0jLQbqIj2emMXfT/MTrz8eF8+vrcVp2lihe7Fs6rpMbY7oRFRHtq9FdMEbvh+WkfEb9UHxE6+fFRdrHjCB6LwUIqojkwmdS/pQjSVpnuetDWTrocZLTR6pPuN+deiRFRtrTpJNYHmxJJWX1ZHJBNDGJo2IfUVFBTZt2oTHHnsMDz30EDmmrMjNo7nvv/8+dt11V4wfPx4dO3ZMtVf9XCjrpgcF2vP+ZeVqj8bFhUadpHl16fIRj4nnVyYhF7FLIi5eStJFTdBc8e1CLF5Laj7SfKq2Q5KtqJZN9TFKG7qiU5lYVGyTtKQ7Bq8lml3UNk1LpsfrPGrJpu+0NYTsXJdkS9GyqN+kuHT6sK0lyhpTdX2iI15Z3yZjqa2txccff4xu3boJlcmSXCSiGzZswODBg9G8efPMfi80LgbdSZXobqjugUWHvyQ/OpMN3uQhUiaPg1ReFxMyGwk67yGlD6nuZNrUUmira8I3eR9EY5CxlfENuKO9LLVEicGGlqJ+dCS1prQk4iuOrvsgYytSvy3fLsQiew9Fyuio30UtxePSMTeYXG9n1W9U7U35rqquxo477ogZM2agoqJCqExWuPNMRgL/+7//iw0bNgj9XmiIrPDS/EV31MI/cXSLklVG1DYaY1DY9vE+FX9xnyrw2pHXzmG9InVT4qMOChR098kQk7HI+JapO0lPvDIsH9S6Zfp/6Ic3Jsj4i/s0gYiePG6R1p+S+iG1P1KJ9xmV/h+9BhU9xeOjlqFQTFoSbQfqdenYTNDhW3SdwLp3aXrSoTGelmT6vw4tRf2JIHovktadSXoSweRaxZQ+ZHyL2q/8/nvMnTsXV111FTkm2zh/Ivriiy/iRz/6EQ4++GA0b9481d72T7WwRKNzpzW0Y3VCHbtrMjt1pne/4sQHaBGfJm1D+zzuIlPtbbY371SBoieqnU49UXePo3YisVPbN74rzopNxqcIrvVhU75NxqJ6b1zVU9SOqhNRO1t64rV5nvTk0vzkim8X5ied67ioDdXO1HrPhJ5M2Ib2edVTZWUl3n33Xey0005CZbLA6UR07dq16NevH3r06IGBAwem2lOSUIA2MKT5pe7iqIpbZKBUEUKSL5kEOq1uXl0yPm3YAm4MNFR704OeTlsZTelYtPN04IKe0uxc0lNa3bK+ZWIphUQ0zTbveqL40pkc6E4IZGxDexf6vEvzX5ZtKDPWptnw7HTMH2m+0vQkGnuW87qIP6pfWd+uxFJRWYnevXvjww8/RFVVlVAZ21RmHUASv/zlL1FeXo4BAwYIl5EVoyrx3R2RCVc0VpZdWJ9s8qnqSybBTHqdMtCIYMo2hDpBmY6JssDLSiNUZDSVRlr/06Epnp5kfImUV9GUSXTWz7pGW3oCsm9LHcQXnDr0JFKXDj3p8iWKrHZZpzw6bGWgJlKqGqHa69ggM92GaXWHiGhKNFaWXbwuFR0kjQNUXyx4905lPhTpD9F5V3cCKOpbRVOm9LR+3Tq0aNkSV199NS666CJSHbZw9kR02rRpGDduHA4++GC0aNEi1d72I7kitmk7T7pPQHQsznXEFNrx2iFantq+Weww6ZjoTO+kycaYxe6+yj0vVk1R2yIPmpLdrBLF9OmQKU2ZGAuy1pTuU5A0HzY0JXvq5DXFty/VeSr0Y2qeEo0zyYeJtV9SHa5oKi0GmT5LudeUWOL2FE1VVFTggw8+QP/+/YXsbeJkIrp+/XoMGDAAnTt3xo477phqb+qRXIotNZnRKfo4lHipZWUnw6R2yXICidpTMD1hm7CPtgtl157qW7etLk2l+eP5FfUtW5aqgTTfWS6Eo7aihP3R9IQtiulFtkl969YUYL//JpUT7Su650+XFs0iUDUlG4sri2wZ3zptk65PVlMUO4pv2bImYsp6/SejKVHfoX9XNFVZVYV+/fph9uzZzn2LrpOP5l500UXYsmWL0OdCo4gsTCkdj5qgJHWI+K4rdZJgEe+IIr6Tdr9Vd1tlk21RKO0lc+91LzKoUNtDJYEW3QGkTCqq94cKq9/r9h36pWw08U5YZFBZaNhCh66ouNYGgPh4J7sJaAPWiYXoqYFI/FTNUk5sKFDnKmpSpCPZSaov675CbQ8ZqGsSEwmQqG1SeyRpihejbBJucq4SicnU5jB1o49nqzpXyfR7ytgY3j8T9mtWr0ar1q1x/fXX4+c//7lQ7LZw7kT0gw8+wLBhwzBp0iS0bt061Z51Gqor4dBtyzuRipeT8Zf2uq76eGXj6EzqdO9wxdvFlR0rl0560voQC5u7zDyfNvo5RVeyOmBN6Cr+dNkmYVNXpvq9aXvKGBpiQldUn0kLTJ3zB2thbFJXvDpE/fHsKD6TkL12ahxU36btdcydrq8D02JyUVdpa87wPZm5W8SO4jMJ27qi2pv0XV1djQULFqBr165CZWzgVCJaKBSw2267YfPmzRg+fHiqvcznQuOk7RqZFhJvd0p2QGD5jftn2com0XG/qkk01VZ0UFeNQdY+zxN7segqfE9lYuf5TfKXha5E603zqaIrSgxpcaj6ds1eR+Kv0t+ifmXuY9IC16aukt5n1WcqsZWxtZEMy9jneT7UkaS4pKvQj+paMC+6Eqk3zaeqrkRt0+LQ4dukfaOaGowdOxZPP/20kL0NzD5bQeSee+7BvHnzsPPOOxurIyjwfzg4vKE6d17idnGf0XiiMagSrSd+zay4RIleB8+vqCAok1I4KLPuVzSe+L91o7qIzMoeoLU31We8P/Duk+k4ov+XTeTS6jHRz0R0ZRIRXYX/99iB18+StGUjJhNzlql+Fo0vC11FY2DFEr3HFH8msNE2puY56loi+m/enBWtWyQOavuxxlnWnJVWd1K9lH5G7YMiujLRV6PtIjJniSDT96l907S9KHV1dXjxxRfx7LPPksqZxJkT0RUrVqB3794YPnw4evbsmWqv+wuKKDtHFL9x/6K7W0m2Ir5kdreSYhH1ZcIujuqOXtTelV0q105tgHxpi7pplEdtmRpnROIw3d9c6fum7XX7ltGWrhMIXgymtZVm46K20q6nFOYVqn2W8zl1fBT1G7fNs7ayXh+LxOFKf7MRC9W+Q4cOWLRoEWpqaoTKmMSZE9Hzzz8frVu3Ro8ePbT7Ft3Nit/EtF1n0R0L2QQtqW4du5cs36ydW0p9KnGl7XCJ7HRRhUvBxi6bCUxeK0Vb8d3eJH2Z3vXPQlvxemVOQ1TiUdWWxz1ktKX7Psf7cZK2RH3J2LimrbB+6iZZEiZPblzDxilV0vsua8vUnE7RFnX9K0sxaYsaiyn7LZs3Y+XKlbj66quF7E3jxAj17rvv4p577sGuu+6KsrKyVHvqaaiMbXwQiouBugNBjTM++LH+LepLxIa3QDU12IS+WYmvzKLYRmIpiqnBSdbeFZLuMS9JEvVJsWPpmgp1J5TVx00hoi2T9ee1f9rCZPukzV2m703SnGmKJG3pnL9ExivXNnRcWlzL2oti41p1a4vSP3lzZhiXTnhrTlMHE/FEStfcleVmhm17ChUVFdi0aROuvPJKLFy40Fg9omS+YgiCAGeffTYGDhyI5s2bi5czcPKVdEISH3yoPkVPQ1n1hu+r+OLZiCSBugYdXiKfNMC4MKnbWFjneVBTmRh4C+fo36bQkZCmwUuATcBqNxcXxx578DZ9on+brDdep05sbu6E9UX/Tpq7TC+WTeHSvBLiwsYWb22SNHelxS27ruIlw9H6kxCNS0RfJg4qRA8ldKzt4+R544aanwSFAsrKynDOOeeQ4jFB5gp//PHHMXfuXAwePFjIPjwNpaBzUoi/L7IbpprIyUzqSeIVXaiqDjK83UJTi2MTmxNU37L2rpD1pM/b9XVNX0nYTATzcjLjyR5eUmry1DIpEZZFdHNHxwZqkr6yJOtxWhYb86jJpCPNX5K+ktZJuutMsk/D9uapjL5cOxXN6ynq5s2b8dxzz+H1118nldNNpl9WtGnTJvTp0wc9e/ZEv379Uu1lvqBI1F7FNt4J46+LnmBSTzqTkkdWwhxHZ1xJgqS2h0nbeLwqvl1bDFD6Aw9dbaPim+U3SWOiPqn6iseQ5ktEnyx7il1ajNT7l7Vtmr1LGkuKMWvNqNra0FdSPSK+qPqixpU2n1P8mbaNxyVr75K+AFp/4OFCu6fpK/Rjeo3IKkPpD5S1n0hcrDmM1U7FskaMvu8CrBjLKyrQr18/zJkzB+UZxVqZSa3/nxtvvBF1dXXYYYcdtPumdjxRW5Zf1g4YxacIrOSXd428AZC6uGD55sUles2mdrKogwb1/bRyMm2rwz4aV1KMMos4nagOxkka0010skxbUKRtQunExLhiG1V9hba2NJYXfamSpC9q+4nWlTSHReHNYbrjEtWX7nqpfnkbUlE/lNejfqN2thJjEY3JbKSLYuN+suYQyhyRds+T7OPtzfLF05gIMklbtB5e3DqR8UvdIM3zHLZgwQL8/e9/x7HHHitch04yOxH97rvv0KtXL4wePRpdu3ZNtXf1NDTNLiStQ8vsiMVFzetkMjtO1F1UE7vmunevqAM5xTc1lizsRa/ftd3kNJ8hOjTG2z0Oy+vWGGWi8xqjxZKFfdYaM30/bWlM18kJRWNZnsLI2KaR1cJXt31S4pqGzjHTlK0rGuOV8Rrjk9XmjQn71q1b46uvvkJtba1QGZ1kdiJ6+eWXo3379kJJaBSdC0Fe+bS6Rf1Sd35F/SX5T7JXqY/n38QClYLqzpTpWHTaU6FOAmk7tTr7k07Cfpi22yrrGzCnsTise+Y1lh9UNSbiIwtsa8xEPSE8jYlg88TGa+wH0hImFibnMmrSLYpOjcVjNK2xeH08jYm0nU2NAXp0Ro3ZNfutW7agSdOmuPHGG3HeeecJl9NFJieiixcvRu/evTFx4kS0bds21T7pNFR1Qjexo8Kzkx0URerVsXsV98VCNuG3sZMYR3aHr5TtqRoT9W/q/qdpjJrI6dIPpb60DQOqHnTeD5l779Jpimv2SfdIx1xmaozVpTPK/GNyLlOZG2zPZUl9RXccxW6vOpeZWC+Gtjo1llavTo1F7fI6l/HK6xrb82LfpEkTLFmyBM2aNRMqowuzRzIcLr/8cnTr1k0oCU0jKPC/Qj3cgeGdZkR9UOpTjVW2rKqNyA4J79SHF7vukxqebfxexnfzWH90QPWTd3ueDxWd6bj/MrFG/ZnYYVUhHpeufqtSPklj8Rh1aszzA0ntm3ZvTMaUFGs0vjzgQr+lzmU66y0lexZpawWRMZBSF4Wk8Tb6vo6N4bhPSlxpdlnMD7x1h+hcRvXNwrW1HNW+sHUrtm7diuuvv55UTgfWT0Q///xz7LDDDpg0aRJat26daq/rs6E6dpsptjIJmsrOp8puNC/5TMPU7hYPlV3s0D4Pu7ZZ2OtqS5dPdZLisKEz0Vhk6qTYseJIismlfpp3ex0607Gp6nUmVyfFjhVHUkyu9btSs6foTNS3jTWSrM50aJGqMxPraFYcSTF53STb19bU4OslS9CyZUuhMjqwvo15ySWXoGfPnkJJqCysRk/aARHdYVZNpFh2rN04ar2yu1qs3VhRqLuTSQOZys6wjoHK2+tDRGc6YlPpf7IxyMYdv26bO8WsGGR05tGDjvZNumdJpwA2iJ/g2IyBpbOstRYiqjNT7eXa6Ytr9kDyiaTKfKZrbcmKjRKHSp1x37I6o15n0jXZ0Jlr/dSGfSEIcM0115DKqWJ1plqwYAHuv/9+DB48mFTOVLIR+mYJOurLlMBDu6TFhO46eZN1tLzOQYU3gCUlwa4shm1Mfi5hIn6dfVwG3iQVjSEeq65603Qm6ke1flYbhP/2FAe88TOrxJQ3r5roc0l93BTx9YErSbDHLPHxk7d2NL3pyOtnMjqjjAtpfZx6EJME6xrS5jQRdGxSFLP9pk2bcM0112D58uWkOlSwmoheffXV6N27t/CRb/hYLgXZDpm0uyzqV1WEphaqSTt9VF+y8Bblskmw7KaDS7i2GyaKSj9h3XfTO7osu3j9uurkaU3GF4Ww3rQdYtcwPQGXKrz7Hu0fNtqSVb9OVDd6VOtO2uiiYmOB7Bqu6F+l3+jUmuz1seZUFX9x31FfWemMt35U8SuCa+s0G/ZlZWW44YYbSOVUsDaKLV26FH/9618xcOBAUjkTiUmabdKgIlJWFV2Tt6mdYtHHJXQPHHFcSbTyvhgwiUmt6SDphJSCyVMZnp+k3WFXE09PNqQtlk1rjbf5JIPJJxnS6qRqzTUNunTyYgPTm+ssZLWmsrHKqz+tXpGNVVGt6Yo/TWtpZXXEoOK7GOw3btyIP/7xj1i/fj2pDlmsjRo33ngjunTpgjZt2gjZmz4NpfpNE7bu05z4SazoAMZ7NETXIBG3S0o8KWQxYWSFSwOOjD2QrdZMQV0kq2pNhqRNHhdwTWueZHhas5GYxutMg6U1kyQtiF3AlThCXDzZoWKy32ettWi9ceKvqWhN5vRXh9ZM6qHUtBZ+g+4999xDKieLlW/NXb9+PTp37oxRo0ahS5cuQmWmTp1KPg2l2Ouwld1hErWL28RFGvUVjyU++OiMiwWrnK525sVgwresvQ3y2D5Zak20flZ7sXaBQ1+qWqPaxUlqI4rPvGrTBqbHi6zbPsnWpNZYdiw9RW14JzIqcynPLo6q1kza2rI3jSvXm8U6krKeYpXTMbfx1pGs9aeuuOJx8OqU9WlqHqTau6Y1gBZ/x44d8dVXX6GiosJoTJVGvf9/7rzzTjRu3BidO3cWsjd5Gkq52Wm2rIlSpPPJ7q7wTmyoiwpqXLILE5Porp+1I6gDSoKeVic1JupA6DKsidTk6Uia1kzVG69DtK68nUTy2lQV3uZd0qYeCxmtseqxCWuTRNZPFNZJhU54JzZpdVKul7LJlfWYaWLcNqE3XXObrNZ4MciiSz/UOqOY6Pu8Ok3MbSJxuaI3k/ebdR9VEdWbzrltxYoVeOKJJ3DooYcKl5HBeCJaKBTw+9//Hv3790dZWZlwOROJJdW3jG3SpE2ZNEXqEY1RRui8xbDK7rIOWyqyA4KpXTKZOlV21nS3rUsJjy69xcuxXjedaPAm57xuJuhoe55fk1qTqcOk3kxBXYTxFq+mktIs9ZY3TM1toW/TcxslJpkNY5NjqO7T7ugaSzQpFfHHey8am4h/yvpP5KkHEUzZRmMTuSbWekM0Jt2xyNYno7ff/OY3+U9EX3jhBaxatQq9evUSsg9PQ0XEQ8VkchTGxdvdpSJ6nToG2KRkzbVFMK89RdpZZgAVIa+PX4gsoHm7sVmjW2824enN5ASkYstCp96KAZN6c4k0vbm4ccJbQLoWJ8BfSOdJb5Q+ILMhIrMZTtGbK3047cmE8DVbsVLvVZreZPzpTPrTyqch2gdlNjaz2Cxi8f2KFWjbrh1mz55N/tlNCsZHpZtvvhm9e/dGOXGwif8JCW9sHhad8dhN+E9CdLcw7pPV7qL+KPFRbeMTC6sfsOI3fR+omExcZU+iKHrTdbIva8sja72JkKQ314jf87zqzRVYbSSqNxfnOl3zhGl4mtPtV4etjN7C13XHImPvku5l9Ra+LuKfEgsF3qGArN7SbEzPmy71CxaiemNtgGeJyUMTAGjZsiXKy8tx2223kcpRMTpjLFmyBM888wz69u2r7CspOQW27Ug6dpx17TCK7GxR/FHg7fjxBCfjTzese5k2OORhsJPF9HWx/Ke1b1Z6E/XDi9UkSZqW0ZvNBX3a/SwlvWWBSPuKai4LKHOcjD8qKnOcLWTmuDhZzA3FgMgaIiu9ia7DROc43fcwbZ7jxUj1F0XHOkJmjlPFdKIoC6Uvb968GXfddZfRn3Ixqqy77roL2223HZo3by5kL/slRdTdrjRMn/yF9kmC0Bkfqy6Tk7JMW1N2o0zEYcPeFjYWJ6z74uIimRejDVxeCFNPXDzZYWKOM0H0tCBtjjMBb44z0Y9lFsase2V7c6dYNG26P1HmOJNrS2qs8RippJVJ2hyLxiLiSwZqW5tYV1LjcM2eer2FrVtRVlaGhx56iFSOgjE1FwoF3HrrrejduzepnK5dCNWJ2/TkxYtLxheLeIIXrdOG8Fh1UHeAVWOQweREnfVCUZU0vdhITlVPWWwskG0thimxiCyAi2WRGqcYr8t2cirjJ2kTSKfuXNvwoWjO8wOm50Yd/l3dEOKto6Jxxe101JmkOdG+rUsDJpNO21BjNH1NZWVl2LhxI/7w+98bq8OYYl555RWsWrUKPXr0MOJfx8QY+pEdQETtRRfwVL+8upIGJl4MJhAZHEzWb9q3af95T1yB5N3arE5xXNCcKFQfopozGYNHL6J9Mzqeuqq5KKpxmNKcTBy6NZd3TPYxGwt1E5qTGctF6+e9x9Icz69IfKb6N/VaTWiOes9FsaV/06eun8ybh7lz55LKiGJstLjvvvvQo0cP4S8psv3boUk7W7wyKjGIwtrJisKLi2VvKrak+uPtp3tHKu+TukuJq+xmjiwimlOdfOM+ReOi1B+tw7TmKDH4kxdPHF2a0xlPFGpyzFt86iQtFt4pk07NFcMmpCjFNj7p0JzONqEmpCxkxwld/diG5mRicsmegkwyXVFRgQceeMBIPEautK6uDo8++ih69uxJKpflyRjrhE7nLjLl2lg7ayxf8dioYtRxCsRrG5FYTArNJdGrkNdJWjShZF1fFic3vN3stNhsT4Is3cV35T0eHrz+avPElNdfk+rmnXyE75kkqW1KZbNHZmMvr5jYwM9ac7xYWPXHE2bTcx3Pn+r6MvShEkNW2Dp1pfS7uro63HHHHQiCQKquJIz8juiLL76IyspKdOjQQcieehpqQ7Qqp6Qy8MQWvscaKKI2slDEnBRj1JaadIvgWqLoWjwhrj42IoLqrm2aP0oZVp83eQrDQ0RzHo8sLM1F/w5tbO3Om5zrKIjOdSaQaW/qvEu19ySjuu5Rnetk7qfpuU62H7NiTLLRWb8oVN+mx9AQk7pev24dmrdogVmzZmHIkCFafRtpmfvuuw/dunVDWVmZCfcAzCQwPNuk43+Rx3hUYdWbtiOkozOm7QC7PpG5lJS5mriaRHVDIm0n2SSsum31+1I+efFkC2t8j5+Q2Kg/7TUZkmK3MdfldQ5wdczJ41NPvLbk9TXdJ6ZJp4umdJcWTzwRznKus/F0hSl70+vd2tpalJeXG3k8tyzQfM66ceNGtGnTBuPHj0e7du2EykydOtXYbh7VFhA/JWTtcsieEIrYicYnWydvkDLZ3iZsTdlnOZHp6kO27E3b2tadzvbXrTvKuEWJk2pryr6UdefKvU3apJXxaVt3rHa0qTuT99GUvcu6k2lP0/a6bZPaX0Z3OtePFF9xOx26c+U+Un2L2Ge9YZIUX1l5Odq0aYPvvvtO60Gj9kdzX3zxRdTW1qJt27ZC9q49lksdIFi7VxRfVHR1YtbjGKJ1qNZNtdVJ2q44BdMLhaT/i5YD9J2Ou4Rt3enChO5k6s8CXt1ed/mAtfh1bVxIoxTuU5w86C4ej27dsTYvXYeXnMnqjtIGafeP2p66dSfTv3ST1gZZ6U62DO//cVatWoV3330Xw4YNE64jDe2J6BNPPIHOnTuTs2VKA6ru4pqCtzhOE43NOKkDgknR6IYqqDBWHeI1gcoAJDqpy1x7VoicylB0ZyO2JJs8tLkIsroLbV3THSC/6KbqjlqXS/BOOVwbU1xIPk0kQq7rTmb8VUl2kzb54jZpdbmcuJa67ij3RuY+Up8WMK07G+sYiv+a2lr861//cjcRDYIA//znP8kBRjsL5XEEnehOuOICSBsAdV4bawdNxE7Uny6oGwqUe+RSX8kC6sm5yDW5MsElEU8IknRn4z7aWgS70N8pj1cVKzKP3KXNeXkabyhzngiy/Ym16aO7b9q4N6LjcqnrDhB/5FRmPSEC5R7oul8yutN92snyz4tTpKwL/di1pwUocZgekzZt2oQHHngAl1xyiTafWhPR2bNnY/Xq1ejUqRO5rMipHG8ASROVjhhkSduxM3W6mzYYuLq40ZEQyT62kndM7D6n7fzxJjpTyOo5/jiTzcRNRndZtCFlZ9ejhugYlrRodvV+6JrzqOSpjaKIPMLnwnVQFtAub6ConnbZvhci7c7ajLAx58WTe1ZdLvQDXhuqznkyCSv1QMXWhrlo/1j67bfo0LEjvvnmG3Ts2FFL/Vqv8F//+he22247VFRUCNmLfj40KDT8jc/oH+C/gov/MYGK33jcVH/UxYuOOkWh+IzGybtn8bhZ15ElLj5OaIK0e6CqO1t9kTVmmCD6eJRL/TVK2njJ057HHiLjn605T4Wk+UdHvKJznitQdBd9zcPGxHxjWne27qdLc56OAwYZn3F73XOeq9rUmVfEadeuHWpqavD0009Tw+Ki9UT0scceI5+Gqt7ItE4vcnqaRWIWHxxkd65M7tjpapckP64K2ZOMyKka5ckFm5jSnivXF8Wm9lxMhIqRNO25cIrDIikZVV2EunB9UfIw5xXLCadJom2U1FamtKer3WVOSkVPEUVPa3WS5FOH9ijasIFrWt2wYQMeeOABnHTSSVr8aYt2xYoVmD17Nrp166bLpTSmd5F1d1BejDziscd3ckTrNAGvfW2dsrg6WZbSCWr4t6j2TPQDig50aU83MovzLLXnyZa8nZ7GT2vSFsg2tUeFctIigsx1uXBPVTF5kmOyrxSb9uKUkvZkYzBpbwNqTNOnT8eWLVu01K3tRPSll15C+/bt0bhxYyF72z/bIrKzo3thrDJQsgaGLHaBRXYBKWWomBasiwOCa5jWnuyJpE5c1F4SpscuG3jtmcdrTz/FoL1SPeGkoNpGOp7Wo0I9yXNRe0nXoKI90bYxrQ2qfxe1unXLFtTU1mLGjBnYbbfdlP1pu7pnn30W7du31+WOicmTyKQdrOjrtuDtOLF23GyQdtqSFLNtTO6U2uoDJmNyYVDj9RsXdo5d0x6QvOsbjc3jSUNUe1nozxXtxed917WXdf06KIZrSNNMvK+IrDtNwPLP01ia9kRjFbFLegqCt2mWdb/Jun4eJp8uKC8vR1lZGV544QVqWGx/OpwEQYBnn30WXbp0oZUzdAMpN4B3lM+aoLOIU3Sy0zkYRO2SHneIto9JXBV6KWHr9J2nvawWxax/myauvfimj61FuQsbFh478PpVtP/pnmNE4gn/nQUmtFdqmiq16xUlPrfo0J5onxQ9FaT41AVl3UmhGNaQJhNLGerq6vDII49o8aXl0dxPP/0US5culfrZFlPouhHxgSH6N68u1wfftEdG0mxVcL1tRMj7CWpe4O2OJtnYiEM3trRngzzG7NkW3pzm2mOyOigm/XmyQ9cjlC5pL+1xVtFrTrLjnc6q+NQB9TFnk/amrzWEEtNnCxZg+z59sHbtWjRt2lSpXi1X9uKLL6Jr166orBTLa21/PjQNSudJ2rmS+bxNmp2pXZCkx2xN7zj5CT57XHgaQcZv0olpnjY5eGOGC4/5eTws0ua+LD8iQH0KSqf+8jTu2CSLx6hN2GdN/Km4Ypr7dKw9TWA6Dhe1QY2pZ8+eqKqqwquvvkoNaxu0nIg+++yzaNu2rQ5XXLLuoCK7NqxHKbKOOyT+mRcgPTZXYhclqwlJxI/fdddP0tMK1N1J08jorxTQ0QZp+kt6v9TvgaxO0p4CclV/MpvFurB1qmES1n0tdv251pcBO2tPnf2VGpupNjflN0ttZ6m/zZs346mnnsIBBxyg5Ec5ES0UCnj11VcxevRoUjkXTmR0d5zoThWrDtlrlimX98Ef0H9/KI+GyPiRwVRMebjH1GtMe0Qo7jepTUxPGsWgP0BvrKw2kbkPXn/ukTb3RW1sUCz600le9KcjJt49dm0zQFdiJKM/nUlZ3JeK/qj3yMWNAhY6+rqNNTG1jsceeww333yzUhzKieiHH36IDRs2kL8xVzRBk2l4U51SxC9rx4e3MNZFkn/Ti2/Tg7rMo8siMYWDncznPU1/bkC2jqRJiFcPtS4RspwUSk1/WcM6CRNBRn+hf68/d2HdV9P6i9cTjyfpfVWy/pyaqv7Cf+uKR4e9bEyy+kuqz7XENQ2vPz22IV5/ySxfvhzt2rfHN998g44dOwrXE0c5EX3ppZfQuXNnlAvegPDzodEbkaXQbSwCkh5lUdnNSRO+SCyifnUgc1ptemHrIjIDB6VcfOL2+pOPIeuTsCxPdqMUk/5kyaP+bJCmP5aNKFnrzwamNlaLDVn9ha+JlKH4T8PWyZ9N/SX5yltSH0LRX/hvl6D0G+o9atOmDWpqavDSSy/huOOOkw1RPRF99tln0a5dO6mylKRI5ajfNqKPHoR/85IJymlflm2gcxDT5dsUrsVDhZq45lF/aYjqj4VqO7jUVpQk06MfXfoT9eUKaY8RUjUomoS5uBDWPQfmPRm1eY8oiWX0bxVfLkDVH++ENWqf136nU3/UvuvieCTDhg0b8I9//CO7RHTr1q147bXXsO+++5LKUTssz543QOjemTDZWeICF0k+k3a4TMSlgsz1JJXNE65NqLrrSNMfr5xpKHUm6Y81YfPKuTwJpz0+lKQ/l6+rFEhb5LE0mLX+KIg+Qpjnk0+Rx/eymANtLYSLYRyRXYMmlaXWb2OdJ7sGNYHOfpN2+p2nNajJE05ZXnzxRQRBgLKyMqnySono7NmzsWXLFuPfmMsjaeeGJ6iwHPXm6BSeyKlm3iZekR17kxOSiwNGsZD0qE0c0ccOXezPaZtCLsYcInpiVgyLQtPkqX1k58CwrEvjJm/+c/WRtzhZz4Gu3U+X0XUfin0OTHrfdBwyjy2LnFr7OTAdShutW7sWzZo3x8KFC9GrVy+p+pQS0Zdfflnq86GiqAyqSTscpnaPdU4CopOWaJ26YkvbLcvDKbQN/yEuDnhZnaAC2+4gu3p6k+WkldY3ZR8Ry/siNe/x20a3Bm1qwfVFo2tPgbhKsZy6yviX0V9SOQqi8SbZUTWo2y7NB+813f2AGq9Jext6otbRuHFj1NTU4D//+Y90Iqp0Rc899xz523Kp6O5UQeG/P5ob/Tfw3yQ1+kfGv047nVDrTGqPqK+wHbOegLOu35NOvK9E/61DfzrJuv4whjQNuqI/jxuInMzFNRgt65IGs4bVHtEFr9dg/sj6HrH6St41aHLdmzYH8tbzecBWvKb70Pr16/HSSy9Jl5c+Ed2yZQtef/11TJgwgVTOxUczeY9XsP52sePo2kFj/T/LE07TbU3dtTJNHiacJExoMI+P6MliWoMeDw/qE0Q2+6TNU1FTT0sVE66dUps+JbJ1qiuiQZE+KRqvq49yu6RBahu52Ka2Ynr22Wely0onojNnzgQAtG7dWrpyl4me0oT/5+1OuTQoi8DrlDKfYcnbtXvyg9egx5MtpazB8N8m6s1bW9km720kGr9IkuCCBk3dD69BOWzET6lj9apVaNGyJb744gt069aNXJd0Ijp9+nR06tRJ+POhVEyeoFF9sx5hivqJ7+Do+pyW7pNOF3aX8oyN+EuljWR36HRoUKU+GXga1OWfQt77lyd7bGtQF6w4Aa8JTz5ISs54GmTZZolJDbo45ohCid3FU9dmzZqhtrYWr732mlQiKn0106dPR6tWrYTtqV9UZBodHZb3uRBbz/ezfCfV7T/HUly4NhiZJOkxJFa/zvIzNqIa9Dr0FAOiGrSpQ5HPlXkN0vGbselktclvaj2q8hEmlfWoqXaU/ZyqSXsbmD4E27hxI9544w1yOUDhRPTNN9/EkCFDSGWoF5e3AUlkl4plp0qafxdFkUSpid4WxdCuIvAmYpOIPCaV1/b0eGQ+KxWFNxfqrDdLDep8FNM2eT5J8iQT3xiK/h19Xef9z2I96qKuRMlz7FEKhQKef/55qbJSieg333yDb775xvg35ori6k3UnZgmPU9PjUUV19pcZdeO95qMjWoZ0c+L8P6fJ2z1SREdqvafPN8HV1BJOGzb+/tNw8QmrUkdFsviUAYTc6GJuVP1XlMTsLwn7KzYs5gL86YtmU041evLy3oU+O/9/uTjjzFg4EDU1dWhurqaVI9UIvrWW2+hffv25MryJmTdYgk7aPzD5/FBIG33OFre5E5WllCTc92iZC2cTE9a8TIiCbPsdVM+j1CsRHWUtCAW0WGpI6tDymJTh6Zk7E3oMG9zoW5E5sLQLiRp0VvM7Sl6babmQkBNh6FvFR26MBfmCdFkiKXDUpkLTd17W3Nh/DUR/6q6TdNhZWUlZs+ejeHDhwvXA0gmom+++Sbp23Kjnw811VFVTxWzQPQRQlcHShNtrjKZUuJxtU2jpMUoO7DE/62zjjySpEPZneK8I6vDYjxh0KlDGQ1S68gjaSemMguvYqLUdSiiQRG7uH383yLlTCUvLtwDF+fCrNvGxTWpjVNlVh1pMTZu0gRvvfWWnUT07bffJn1RUYiNUy6dcYjaUhb1InVlKTyT9VIfb6D4dSVul+sA5B67oTyekTU6TnopOtSlfVuYXtB6komfQIhA1WEx3AfVk3CbyLS5KR26eO9d7JNUHbq0iWtTD/GTTpd1CIi3TXj/TerQ9NM7MpiuY8OGDXjnnXfI5aQS0Tlz5mDEiBGkMtSLpy4AkzqU6+IpBnQmma5NWqWM6L0SWSx7HZrH67A40aVDr0E7iGpH50a3xxyiiavoujTqx8VEPU5WMarWq0uHph/7zkMfEOW1114jlyEnoitWrMDSpUtJj+aaIG3HNGkHy8QjBrY/c5fFSYzIIMu6Ptd3tD3yuKbDUsDr0BNHVIdpn/HJc/8Q7d+6dOCiDotpQUvBletOO0FU1aEr16mDYtahi9jqO4sWLcLWrVtRUVEhXIaciH7wwQdo1aoVGjVqRC1qBOrOb9j5TD/+m1coj3+VmoiLoQ5TeB3qxevQoxOvQzm8Dj0y8Bb9paBDE1rIWofUJK5UNww219WhUU0NFixYgB122EG4DnIi+v7776NNmzbUYs6R1LBJpzg2nuEWReUUVvTzqixMCsz0Z208biGrw7SyNslKhx6PLopBhyp4HdIohs+zuYhuHdp+SkAUXqLmdUjDNY1UVlaipqYG77//PikRJa/iZ82ahaZNmwrbR78xVwSZxEL3B/lDf0Gh0OBP6CP+x1Wiu2usmOPXFn3N4zYu9ztdRPsiq6+y+rTL7ZI0dsSvz+vQ4wrFpkOAHTPgdehxFxkdZhGjCLy1adSPDR26Pk4l4epTeps3b8bs2bNJZcgnoh9++CFatmxJLVYUJD1WQX00UaaeJJIEZepRBVNQfVPsbQw8eR7cVLA1USTpkFpGN7Z16PFkhcs65NWfRRwej0lkdBgtZ/oxUq9DcVw74ZRh8+bNmDt3LqkMufd9+umnaNGiBamMycSCiqln11mnp+H7OneK476SdpJcaPdSTco82WBLh1EfunXo8eSdeP9nPVEU/b8K8UcWeU/9eC3qwdWTGE9Dkp7sA/I1J/p1pD5stOV7771HsiediK5ZswbLly8nJ6KlSFxoss/3U+rwuINrk7VLn721Oakk6SpJh/H3Sm1X16X+4ikO/JzocQ3qCZTJEytbp2Gyc2L4Pm+OTKvDFqLtKHMSbLK/mD6ZtlUHACxevBhBEKCsrEzInpSIzp8/H02aNEFNTY1UcMUKpaPFYQ0A8Y6SNIHnAdcWB67F40nG1qPlrNOZ+I4uq0xW5G0c8HhY8OY3ypzIsvF4ihUTSaurc6Kt5MnDh9Lf1q9bh8ZNmuCbb75Bp06dhMqQ7u68efMy//3QKMXQOVmPK+h6lKgY2sfjsQVLc/6RPo/HLibnRFfwc3P2uPDRJddJ06JruPSxPhe+lyILamtrUVNTg/nz5wuXIZ2Ifvrpp2jSpAk5MI8na9IeA6OUN2GvUofKibxOe1d8e9xGRYuua9f3a0+eUPl8oMvazZsOS/XUrxi+nEcHxbY+ra2txaefforRo0cL2ZMS0c8++wy1tbXC9uFPt4hcgKwQRTsxxXceBgRTyYcr2LhfIm0jM7HJfI6AGk/aa6JlWeS1z+gmi3Zwbeyx9VlR0b4v8yUXprTrtcjHLzD1Y2sNY0KLJudRFR1SbGX6s6lHaF2bJ+IUu/5dWZ+G/k1/zpmqxS2bN+Pzzz8X9k9ORCm/IRrCuwDeLgD1JhdLh3d9cKEiu9sq8nmgqK0rXzZgg+gXBei8bpb+iq0/ljK67mnaWO61mI7XogdQX8wmadF0kugS8S/P0aVF3mcjvRaLC78+1UdUi5999plwOVIi+sUXX6Bfv35SgYm8J7sbbWJgyHNnMInsYGzi9NHWhFAKfUGHFkt1AylrXNCiRx+yWvSbudli6okuf3/E0H1SyPsiHq/FZETvg8mT3TxrsVjqmDNnjrCtcCIaBAGWLFmCYcOGSQWlm7ATmxwUsiDLxwEpbWPqsYFSJc9t5IIWXdc1FRe0mOc+WYpQT2jzNC9mhYlNntCvK/qy8ahnHh4n1YlLWqTE4EqfZOE3XPPF4sWLhW2FE9Hly5dj48aNUo/mZo3oQrlYJ2adi1rXByuP23gtFq8WXYrFk47XYvFq0ZMvvBaz0WKpbZAAdq55/rx56Ne/PwqFAsoF6hJORL/++mvU1taiqqpKKUCXEdnFYt1A3k2Nf3bBBGm+o+/r+kyJSVyJw5MtojvKvM/xJPkzRbFp0eMBzGkxy0fzRLWY9L7HY5s8ajGp/vh7xajFUkyMu3Tpgq1bt2LZsmVo3759qr1wIrp06dJcnobqJtqheB2M96gr5UPOvDIUX6WwqC326/Mkk/ZFFTq1yCrHe03lM7ceTx7xWjQHNeY8XqNHH2nr1GLXosn+77WVTm1tLSorK/Hdd9/pT0QpP91iGpd3DdLElvSZzKTron7uIGtcu0euxeMxD28Cji+ai12LHk/WpG2Wei16PHbImxaL5aQwz1DvaWVlJZYuXYqBAwem24o6Xbp0Kaqrq4WD8PBReSzPi9Ft/P3JDpmJzz8i6/G4Qd61mJc484Rv02woxkdkdUBNiG0l0C7qpKysDEuXLhWyFW6hb775xieiHo8D+GTX4/G4imsLIo/HUzr48Uc/Mm26detW/Yno119/jZqaGuEgpk6dKmwLyC2uTT1bXgy4ch2uDQquxVMMuNLXRPF9wOPxFCt+fPN4SgdX9V5XV4dvvvlGyFZ4BblkyRKnPiNKIW8LZU++cXVg8JQufgz0eGj4cdxjG9fHaa8JD4Wvv/5ayE6418t8WZHvtGbw7erxeDweT/Hj6nxvOmmydd3U63AlWXQlDlWK5To82/Lpp58K2Ql/WdGyZcvQrVs36YBEcGXAdSUOVYrlOqiI/maVDn9Z1cErU6r33OMuOvWYN/16PXpcohTmRq9FN3DxC3RcohS0uHjxYiE74UR0xYoV5BNR0w1D+QYv1wVRTLtC0Wux1QcomPw9NpnBl1KG8kPt1LI67F3XWamR9jtxlLK67UMofd+ktmTtZd53aW70qCP67ZjFMjfK9K9SnRtF28r/RIldikWLoX+Zect0HStXrhSyFUpE161bh40bNxp9NFdlwKFOADpjyTtJvxeVVkYUUwtNG0mia4STlSsLctlEx0+4fExqERDTo2sbMK4io0eT9n5u1IefG/OFrBbDspQyfm7UA3UDpxTmxmK5/+/Pno1dR4wQshVKRJctW4aysjI0atRIKTBdUAccEVsTg4bpgV1lB5CHSDuZPMHw5AtTC3GZ3UqXtShqE0W3FkV8evKNnxvT6xZ5n4WfGz0U/NwoVr/I+3H83KiGjdP3du3aYePGjairq0v96U+hRHTVqlWora1FWVmZlgBdJOyEqpMJb5DQuRvGsmHF4SdFD5DPHTaqHrPSIs9OVo9eix7XcGFuzEKLVFuPxwZ+bvTkgRYtWgAAVq9ejbZt2ybaCiWiq1evJv2GaCnDEoroLpcXo1vkMYHz/BdZLYraleJOqscji8rcyCtP9eXRQ7F8nrFYroOK6bmRYudpSLH0yZqaGpSVlQklokJXu3r16tSj1VKjGDoKlVK8Zo/H4/F4PB6PxyNGWVkZKisrsXr16lRbn4iWOD659MTxfcLj8Xg8HnX8fOo2/tTWHBUVFXoT0aqqKuWgShE/CHk8Hk9D/Ljo8Xg8nlKgWOY76nWUl5frS0TXrl2LiooKUgAeD4ViEapHH75PeDwej8djBz/nenRShh/yxzSEet3mzZtR7juox+PxeDwej8fjKVF8wi5GAKCuri7VTqg16+rqnPrpFlc6QSk+W+7KNdvqA65cr8fj8Xg8Hk+p4sra3yPO5s2bU22ET0RdSkQ9Hg8NVxJqP5Fkhyt9wOPxeEzh5xiPRz8y64cgCHwi6hHDL1Czw0+axY+/xx6Px+PJilKcg1y5Zlvra1euN47Io7mVIo5kE1Fqw5i0N2Gr26fuerO6jlK2t1XGtetwQbulZmfS1oa9r8MN+6xtddrlSWMu9QEZe1frkCnjkn3Wti6vVV2xddHe1Tq0nYh6PB6Px+PxeDwej8eTRk2jRkJ2QieiVVVVCIKAHATlSLqsvFzYPszIKfa6bSl2QHqsJurVaUe1lfEN0O4pxZ4aj4y9bB2AW9dhWl+ivqm2tu0o2haxo8Rn0taWPWC238vG5Vodpsdd1+fRrOZQV2xdtHe5DsCd+dSVtapIDHlYq4rER7WlxCDjm+pf1t50TDJlGjdpgqqqqlQ7oRNR2UTUkw9kjuc9evCfzy1+/D32eDweT1aU4hzkyjXbWl+7cr1xqqurU218IurxlACubDa4OliWAq70AY/H4zGFn2M8Hv1IfZ60rEzfiWh1dbVTiagrA00pLuxcueZS/yYyj8fj8Xg8nlLBlbW/Rxytj+YWfAfweDwej8fj8Xg8JYpPiMUog8ZHc5s2bYqtW7eqxuTxcPHC9sTxfcLj8Xg8Hjv4OdejkwA/5I9pCCWizZs3F/otGM+2eGF7PB5PQ/y46PF4PJ5SoFjmO+p1FAoFNG/ePNVOOBGtq6sjBeDJB8UiEI8+fJ/weDwej0cdP5+6jf8eEHNs3brVJ6ImKcXBpRSv2ePxeDwej8fj8YgRBAG2bNkilIhWijhs3rw5Nm7cqBxYKcDbXRHZdRHdmWHZ+SRRP0Gh4HfLcoyKFlXtvB49nobY0KPXoh2KZV4sluug4udGdymWPrlx40YEQaAvEW3RogU2bNiAIAhQVlamHKCLRG8+pSMk2YaCKysvTxVf6EfELuo3KQ6Z6/CDRPGRx4RaRo+6tChrp0uPXosel3BhbsxKi1Fbr0ePC+Rhboxrxs+NpceqVasAQF8i2rZtWwRBgE2bNqGmpkYtOg2EnVHXpMhC52LVFEl1UwaVpP+LlEmz9YNG8SKjRap9HrQI6Nejbi1S4vDkDxMJI4s86NHPjZ6s8XPjf/Fzo1vYOJj47rvvUFNTI/TzLUKJaJMmTVBTU4MNGzaQElGTAoyia0eValsMhKdlOttHZgKXsZW1z/P9lZ3cZMrI1KF7YszbSa4OdI9Vsnq00V/yrEfZxM+GfYifG+Xxc2O+KKW5sVjmRRObYKFfqhYp8fi5MZnwekVOQwHBRBQAWrdujQ0bNqBVq1bCwVAakdropu1tk8fHJ3lQH/UI0WWf1o4uLhp13Xte+5m8F/5xGbeJji2mko4ke516dHWRyYM3PpXyXFeMiPYZPze6NTfKjItUe7/p6iZZazF8L60spR4qpvXbpk0bITvhRLRt27bGv7DIlQnUlThUKZbroKIrGZMpY6sOwCd+nnyQxeaIy3V4PFmhU4tJ/nTUIRuX16Ib+PuQjo6NSpkyNvRbVl6OLl26CNkKp7ft27fHhg0bhIMIA/Hox7erx+PxeDzFT6nO97aum7rodyXBciUOVYrlOvKGjXbffvvtheyEld6pUydyIuoKvqN7bFKqCwePu/gx0OOh4cfxZPyYoh/X29RrwkOhc+fOQnbCvapz586kR3OnTJkibAvICdCEKFwfCERx5TpcG7hci6cYcKWvieL7gMfjKVb8+ObxlA6u6r26uhodO3YUshW+go4dO6Kurk46KI/Ho4e8JX4ej6d0cHVh5PF4ih8//uhHpk0rKirQvn17IVvhLytq3769T0Q1kXRTk94LCoWi+nbdYsTfn+yQ/ZC/zHt+M8Dj0UvetehKHMWEb9NskP0212K/X1l+A3sSLrZ7EARmElGXPiPq8oJf9PeJ4p0n7SvXoz7i/pzsiI7dI9fi8ZiHd7/T9KOiRZY/j6fU8Vr0eNwgb1r067bsod67LVu2mElE165dSwqkGIkLQmSnVvXnNpIGA9YAwIuvGCdk/3XtpYvohg9gV4sisfk+6ykmZLQY2pjQYrT+YtBiXr/Z1ZMNouvUYtWiyf7vtZXOhg0bsGXLFrRr107IXjgR7dy5MzZs2IDNmzejqqpKOkCXSVtI8kjrmCZP4pLqDgeDtGQ1+l7WIvOJpQfwWkzz5/HYwpQWTZ9ypP1mpogWo/YeT9Z4LeZPizK/75l3Fi9ejIqKCrRt21bIXjgRbdOmDWpqarB27Vq0atVKOsAsEO3kUUQ7Tx46DmUQErmePA4GHjcwpcU86BAobi26FIsnHa/F4tWiJ194LWajxby0j05sXHOfHXZAu3btUC5Yl3AiWlZWhk6dOjmTiMoIF3BfvFlMZuGOFKVtKG3kJ+h08txGLmix2D7/64IW89wnSxHZ0xLA/XkxK6gb0nmcF23c11LrOy5pUbSPudAXkygFLRYTXbp0EbYVTkQBoFu3buTPiSbdYMrnSpIwMYn6jslGJmmN/5tSLqwzKRbTlEJf0KFFn+Bkgwta9OjDazGfyDxFJXpfWXb+vjVE91qA589rMRmVPq0Lm1rUfc9s9AEbdQwaNEjYlpSI9urVC7NmzaLGI3SDo0lFqQk3pBhPdaj3KP6ZgfC1tDIU8vwZPJWdVurpYil+tqFYod5T2UVYqWgxfp1eix4q1HUOpc/J9AGvxWR0jaEet3B1fUqNzQWisffq1Uu4HDkRfeONN4Ttp0yZgqlTp5IeDTB1cknxnYeEkHIqmbfODOjfjFA9ZTA1uamWAcRPxPLYD7Iky8fkXYG66DKtRRu6Uml/r8UfKPbrywITG/TFqkVXDjNM+HZpfuBR7Pq3sT5Nel3WTtaeWqa2thbdu3cXticlottvvz3WrVtHKeLxOEE4GMhMPLKnuqVYhwu+PW4jq0VX+7zvy568InPiDripqzzrMA/JpQnyer90ozInRsuLljFdR23jxth+++2F7UmJ6A477IAVK1ZQihjFtdMDGUR2JGXFWgzt4/HYIk2LftL0eMxjck50hbzHXwzYfFIir+RtTjR5j1ztL67dgw0bNmDjxo3o06ePcBlSItqnTx+sW7cOGzduRE1NDTnAYkX1+B1g74iE9nkfAF3bqXQtHk8yJu4XT1Nx7UX/75oO/UaTpxgQ0WKxzYkejwo2H/nNek70Ws8eSn9r3KQJqqur0bFjR+EypES0WbNmaNOmDVatWuUT0RREks40WHZpH5L2CZYb2Eh2KXVQkxaTSY7NBEpWh/EYk7RYjDp0qb94ioMs5sS869BjFmr/yNvnSVmo6DD6vqtzoskvkzLZX4opqe/SpQvKysqE7UmJKPDD50RXrVqFDh06CJdx6Vl/3b7DBVjabpKuunnPkuvYKTbR7n6B6rGJLR2GPik69CfxnlIhCx2y/Pu5Rz/FtGAuZtLWhC7MiRS/Hj3YaMshQ4aQ7MmJ6MCBAzFz5kxqsaJAx46uaD06dl4oAxEVlzYLTJ4MylCqybetjYy0ts1y0uLVbVKLHk8WuKxDXv1eh55iQ1WHNtZDvDq9DhtSDNddVVWFAQMGkMqQe+DOO++MtWvXCttPmTKF5F/mRogKiXpkH+6oRndWg0Jhmz+uEsbGizl+bdHXPG7jcr/TRbQvsvoqq0+73C5JY0f8+rwOPa5QbDoE2DEDXoced5HRYRYxisBbm0b92NCh6+NUEq4+mVBVVYXBgweTypBPRHfaaScsX76cWsw5dCevuqCcpomeQLHsZD5/KhMjFf/ZtNLCVR1SyFKHHo8OikGHKngd0rBxzaXYrrp1qNtOF5STUK9DPq5d85YtW7Bx40bstNNOpHLkRHTHHXfE999/j02bNqFRo0bU4trhJSJJHTa+iyRiVyqItIcLH0i3jY3P9+X5M4Reh3rxOvToxOtQDq9Djww8rZSCDk30+ax1SG1z1+8RBUrbVVVXo7KyEr179ybVQU5EW7dujfbt22PFihXo1KkTtbg2KJ8bM/GhbFY8sqciMoieBOo8MUxqx7Rn/kUHWU++ENVh/J7nOenOGq9DTxyvQ/unPy7qsJgWwBRcuW7TOnTlOnWgW4fRj8+FiOqwWMbAJGz1nR49eqCiooJUhpyIAsCgQYOwfPlyUiJKnfCojVYKHcll0nasoglxMQ2mxQ7lUaFiWtTmFcpOutdhfvA6zBdeh8WF7NqlWJLLrGJUrVdUh1l//jQPfUCUPfbYg1xGKhHddddd8cQTT5DLmUouZY7NKb7TbHWdTvKEYXNR4cKJcfRv3f5lsPE5VFufdZWpI0+LWtUnE5IWiSz7LJ5MUIE6proQczGh0q7FsqgVgadDF8cik2NqMejQxdht6NDkesQWedIhQNcVdUyl9BdqHyiGz13X1tZi2LBh5HJSiejIkSNx1113CdtPmTIFU6dOBZB9cunKghDgP8uetmPqyiBgos2pO/oqg4RILFkiEqNsX856MnWJJB0mneQXc9vI6lD3Z2lcaGNTOtS5GZp3kh5hjOqwlDQYxeSCWcQ+63YWvR7TGzzFkFwm4eJcmHXbuLImZT1ybBJWHWn1VlZWYsSIEeS6pBLRESNGYOnSpairq0N1dbVwuaw7FBXdSauoiHkdn1Ve5yLFtSSdkuTKPAaRJmzVR6hk2pI6GKlet0iZvOlWFNGnDkR0WOrI6tC0BmXKUBflqtddisgsaFntbmoudAnKZ19dnQtlyrg2F+YJauJeinOh6SfoVOcEEc25tCadN28eBgwcSP7pFkAyEe3YsSM6duyIpUuXomvXrjIutOJSAhUlaZdXBtFBgPfIoU7hudbmlOtjxZ5W1tWkL8+LL1t90oYOeTvJHnFENChiFy/jk8Ts0a3BeFndJzUuzW22MTEXujivUf3nfVxI6tM65kJRDeZNWzaSPRZJ98TF9Wjffv3Qt29f0uFkiFQiCvzweO6XX35JSkSLfVEgMtmGi1bdC/C4/zxDTXJdS4qB4ojJxWsQQSQp1H1dIhOyx5NXdC3GqI+XUcereFlbGjT1kSMb5GmN5aGRNheaWGNnsR51UVei5Dn2KOXl5dhvv/3kyspWOmrUKKxcuVLYfsqUKbJVGUHHzQ9FxtoBiv4xBct3Ut3ReIul85cypbSA4PVXXp+2pUEWXoOeUkJUg67o0GtQHp9UpJNF/El9WlWDKptBonOhar0UZPwWw+m5zAkqhZqaGuy2227kcoBCIrrHHntgyZIlCIJA1kUiJgUj85hI+HfShCvi23RnYNUXjS3LCdlPMG7UYRJTGoz6V9UgtT5VvAY9xYRtDerCFQ16PDJE+6aoBl3ToUkNunatFGznBbpZvXo1NmzYgFGjRkmVl340d5dddkGhUMCKFSvQpk0bWTfOEr/ZMs9YuwrvM6SsRwqL4Xo9+cRrkG/r8diglDUY/p9nq7NeT0Py3kY6H9V2QYOm6vIalMNG/JQ6WrRsiXbt2mG77baTqks6Ea2qqsKuu+6KJUuWkBJRE8+kA2qfZ0sqF/rN4rEi0evRER/rcwNJu1OhvWjdMvfHdLtT/Nv4vGReP5MZYkKD1H6WZ6LXGv5fRIMeTxTdTxNFdZ1Fn8tiwR2dA8P/ZxmXS7h23abnTFtzsq51KGXd6CIuaVBmzeoatmKaOHGidFmlCMeNG4dly5apuEhFdyPGTx10f6bF5UGAWmdSe/AeE8mSrOv3pBPvK9F/Z/2ZsjhZ1x/GkKZBV/TnyQcsDYa4psGsYbVHdKHsNZg/sr5HrL6Sdw2aXPemzYG89XwesBWv6T5UU1ODcePGSZdXaoUxY8aQPidK/cIilcaLP3MeX/BG69AldhOfTUsTF+VETwesASHpWX/ZwcG0cGwN7i4OjDZiSusH8c+KuDbZZjnBpbVFUpuJjnt5pJQ1K4NuDdrsP64vMG3MgcVAsSy0ZQ8lqPrTuU5TtaNq0OZalNVe8Q0iXfqjxmvS3tbajcL333+PTZs2Ye+995auU/rRXAAYPnw46urqsHLlSrRq1UrFlRSsBmMJnQX1MULRxyJE4NWdFI/odWUFL6b4rrupxyvy/liry/D6Pq+9Xe+rPOLXE+9TLl+X6IIi/L9oWY/bqMyBro2XvHhYj6i72GezngNdu58uo6v/FPscyHvftUdiWRtCcX9+DhSH0h6t27RBhw4d0KlTJ+n6lBLR6upqjBw5EosXLyYlotSkjrITozNhjPo3NcgnCYIlelu7q7raMel6kibmYsBWcmyiz7Pq4GFaf1QoMYhMSLzHYWXrtA3v/ojoz+XrKgVEx8joPc3T/UpLykTmQNevN2l8zHIOLJbTShtQ9Bf9v636dfp1RX86/fLGxzyuQV07QQWg9FguoJiIAj98QPXPf/4zBg0aRC5LaaQ8DWZpi4F45+fZshIZlohEfJlEdvFDaSMVXzrJ20IvTrRPFav+0hDVH4u4bVyDab5c6j8isUb/VvHl2ZZS118UWQ3GHx/M0wkwoG8OTDsRygs275HsqVveoeov/l6S/tJ8uYZO/VH7k4vjkQw1NTX40Y9+pORDuSXGjRuHxYsXoyDY+cLPicZ3VHh/TGPrxCr6J4rKNbLaKKmu8H0RvyaQWWwk9Q3ezpbIH5eRXaBSrl1Uf649giNbhwn9scrb7mem708p6k+WPOrPBmn6U50DRevKK15/YsjqD0hvY5XNyqR4KcjqxKb+4vXFX88jFP2F/3ZJfyZPUJctW4ZNmzZhzJgxxKgaonwiutNOO6GmpgZLly5Fx44dhcuJNo7sToOJCVzEbxivyK6Trg4Z1pnFIwcy94dCWpuzrplnHx8s4q9RYjJpr6OOtJ0+kwtc0/6TENWfzj6bpf6yJn7NoidSXn/5TzBZJN1XU/pL8m9afzbmV9H3ZfQX/7cIpaS/vI3fXn96bEO8/tLp2LEj2rdvT64jinIiWl5ejr333htffPEFKRE1NRlTEiPdSZRI8inrl+onKelNS9hcQff94bUJdceItwuoI6akOqgxuQ71/iZdJ1V7pjdQikF/gN6+xWoTqm9WGZX7aHJMKCVMzX2yFIv+dKKqP1676dafjpjS7F1BVx+U0Z/O/h/3laY/0YRNpm5X0dHXXVt7VlRWYtKkSVL1R9GiyokTJ2Lp0qU6XHHJegBJewQhPiC69lgV6zGTtMcFsm5zKqrJumrdSY9upL3vocPquzKPUtlARn+lgI7rTnt0SuTRqlJFtg3S+q5rbcsaF2zrrxg0zrqvxa4/F+O0sfY0cQggOveZanNTfrPUdpZrz0aNGmHChAnKfrS03r777ouvv/4adXV1QvY2f09UBOqpDGvxG7+5oj7T7GR2B0VgdUqVSdn0IxIevZi6B6YnENbkm7eFDcAfM0o5KfW4Tdrcl/VGIMVWp/7yNO7YxNY4lmW/s0H0Mddim/t0rD1N4NIjxSqYyh8A4KuvvsLGjRuVfj80RPnRXADo3r07unTpgiVLlqB79+46XCqj63Ep2UceXBEUC1bbsB4biP7Ns6PietuIQOlbtq63GB8PdOWkxXTb2tKeDYqxH5YivDGrGO+tiP6K8bo9etE1z7ukvbQ6dRy4sA5wROY+0+sq0xscJpNEWSgxbdetG/r374+WLVsq16vt6saPH4+vv/6aVMaFU5mkR3XiO09ZxBnfDVPxJWOXtGts67M2eU9ciwFbyXTSrq9t4p9rsQXrkbYwBpuPE/rFd+nA61fxRyxF0LUBzFuU2sKE9kpNU6V2vaLE5xYd2tP1FF7Uxrb2KOtOCsWwhnQtca2ursYRRxyhxZe2aCdMmJC7z4nyJrukZ61twRNcVo8w8J4xj7ehC4KnxkB9pNkGJmNyYXHA6zcuPG7kmvaA5McJo7F5PGmIai+rzR8XtBef913XXtb166AYrkHkBJG3wWlTe7wTRlZfTtOezg0q1klokvZYZWyTdf08TCau4c917rfffqRyPLS14N57743vvvsO69atE7K3/TlRkR1N3QOATEKUdBrE2yUySdopLKvNdJ7cZDEgexpiWntZJ56Am9pLghVfNK4sk2ZRvPbM47Wnn2LQnsuxuYJqG1G0p0t/VD887cVjjNubJOkaVLQn2jZZrql12NugorISZWVl2HXXXbX40/IZUQBo1aoVBg8ejC+//BL9+vXT5VYK1ilnCG8niOrfZMKa5jtpYBCNTfc1sGKL1sXaZePZq9bvonAp7e3qNYggoz0TfZGigygq2tMNtV2y1p4nW0zPe7qJnwYlvR+3cS3Ro2hP52OWaTHkDZOnOKbHal4dedRenDxpj3cvTK15WTHotrcBNaZRo0ahqqpKS93aElEAOPTQQ/HXv/6VlIiqdo40QYiKTLew0nxSF8BJ9cR9UgeZJN862oU3UMT/nVTG4xYi/cLVe2hKe7p0pxOb2svzBkqe0DHnZYHKKQWvnO45TyeiC2SevWlMJn3FAu9xUBF7Hehqd5k5j2fD0x7P3kTfSfKpY85zZQwJcU2rjRs3xrHHHqvNn9aIDzzwQHz55ZfYunWrkL3o47nRRR7r+D3+iIPJR41Uk+akxyBEyovExlogm56oZU5uku5ZPG7XHneixOHaoEYh7R6o6s72qbzp00DWo0KukTZe8rTnsYfI+GdrzlMhaf7REa/onOcKFN1FX/OwMTHfmNadrfvp0pxn4ikAmXuve85zVZsmE9fvvvsOGzZswAEHHEANi4vWE9HBgwejefPmWLJkCbp27UoqK7rbRD1BpdibOLrXtQtMPW1IOyl1FZHHWEztsLm4kKMgow0Kor5NnoxR9RzF1v3V8RhTFm2Ypr28nsS5iOi9lZnzskbnySeFpDnP5fbj6S46BlBOgEzh2qmMLHnbRKYkcbbnvKSNIJdIO90NMb3WpPqz1Y6UftK+Qwf06dMHHTt21Fa/1kS0rKwMkyZNwltvvUVKRF14rIa68EtbHFAHBJ2Ljbgv3uMlopO0qYWQqF/RxRhl0Rz6lcFkkqAL3UlmOLm4MDEnQdGdjftoa3Fs8t6I6k50w8v1PqSCCd3lAVPJp8oYHRI/6dAVm417I7LG8Lr7AeoJlm7tyTwVpoqM7kyPOdET0rhP1dhsQW0jykaRyWu0MSY1atRI62O5gOZEFAAOOuggPP744wiCAGVlZcLlTJxy2k4YWItgkVhtxpk0SMRtZGLLMlmJLz54cfAmbtcWfTLxUCamPCSWUXh9UVZ3OhHRSdwmqxNb3RSb7gA9O9fFojsevDZy7dpY2rS9+W2ij7uuO5l2dUV3Lo5JIaWuO+p6lIpobhH6N60718anyspKHHjggXrrD4Ig0Olw48aNaNOmDcaPH4927doJlZk6daoTj9tSdkvjj86EsI76Kf50xCdbJ29QN9neph6bNmGf5eSkqw/Zsjdta1t3Ottft+6opzxed+JkrTtX7q3o4tdV3bHa0abuTN5HU/Yu606mPU3b67alnLLZXj9SfMXtdOjOlftI9S1i77ru2rRpg++++4500JiG9hPRmpoaHHTQQZg7d65wIgqY3SXW7Tu+05H1QlYXrMGNeq0myfokgTWYmhq0wjKu7XJmBesk0WbbmLwXqrqz+URFFoie/LCQuW9ed/+FcuJkot60e6HS79N0RzkZyRIdp4gsbOrORc1leXpKPenVXa/I/RBtn7gdax1F1R0Fk/fR5DrcxpqRal9dXY0TTzxRaxIKaP7W3JAf//jH+OKLL6D5sLUBMoOprG04QUUnKlH/Ojoqq17Wa/H3VQkK234jXFJbuIapCVoG1yZZG1Dak2WbpDnT7cmq21a/z7vuPPmF1c/CvmhTd2mvyUCdq3VrLq9zgKvjDbU9XWh/Xlvy+lqoOV2xs/zw+rjtuS6agGU1z5nuIyb7rOn17oYNG1AoFLR/PhQwlIjuu+++2LJlC7799lshe9GfcQmxtSObNCjY2LWJLwZYCwJV0YqUi9cb39GKx6CagCTF4AquxRPiUvJNhbcIltWczLXxNB/+m2dnCt71+6TUowORBbDpPsbTfPzfNvu86FxnAhsnM67OX3lFZm7SOdfJ3E+W5ln/lu3vsv2Yp3lqHC5p1NY8bVLXjZs0Qdu2bbHzzjtr96390Vzgh+Pbww47DO+++y7pK35NHMuL+o6ffAB6byrl2niDQ9yX6mChsshg7R6z/p/VI4VU364+3mhSEyYRaU/e+1lcb5rmWO9lkQiKPMbLsvN4ADc0x9uwFNFdFn09aa4rFc2ZPJlxDd3xu6C5EBHN2d54FWkfmfWlyPtpMWSFrUSX0gcbNWqEU045RftjuYChE1Hgh8dzFy1ahK1btwrZU09FAbXTtKSdYF4ZlRhEYe0KR+HFxXucz0RsSfUnPWahYzBzbcCgYjJ+W7uosohoTiQmyim+aFyU+qN1mNYcJYYsTm88bqNLczrjiUI9AeKdVOpEZHFrWnPFnNTGKbbxSYfmdLZJ0tMOosiOE7r6sYvznOn1lskxQCbR3bJlC4455hgj8Rg5EQWAvffeGy1atMDnn3+OXr16afcvc4LFsle52aIxJNmZiCnqV2TH1tSpG2+Rztrdyuok3GX/rp7SUqCcetjCBc2JQu1fopozGYNHL9RN0VLQXFjehacBTGgu77i2iKZiQnMyT6yJ1i/6nuhTgUkxmdAc9VpNaM7U4ZOtccB0otu3b18MGDCAVEYUYy1UXl6OM844AwsWLCCV03HTkk7hortBqqKUiSseYzwuGV8sWLtvKjtH1E7LGwR57S9ycmpjgeHSiaVrpOmFdf9E9aYjhjR4celGl+Z0xhK/Xtb9KtaFczFel445joLs0xMszcn6S4qNNZdkBUVznh8wPTfq8G9bc6Lw1lHRuOJ2OupM0pxo39alAZV1pWu4lugGQYCamhr84he/MFaH9t8RjfLNN99gu+22w+GHH47mzZsLlaH8pqhoMha1p/im7NLIPGqRtGsm4k/WRjbJM9F+LFvqfdUVR7HYA7TdPV0bIDb0RrGlaE6X3lh1qOiNYqvSfro0l3c92Iopb3Ocbb2J2mU1x1G1ybKljKVp/qn9yZX+7ao9Dz/H8ftPPBY/x7lrD9Cut6amBsuXL0fjxo2F66Fg7NFcAOjYsSP2339/fPLJJxg+fLiSryw6kYhtUKB/KUuSTxF/FFjXwEr6dCbAqvD8x2OllM0zptvclUFb13XKTIg64GlXVm+6x4Ik0hYWvDiKUW9ZIHKfXW5r3ZpT7fcqc5wtkjQnqjfT40MeTpBkcFlvIrFR9Kb7HvLqCl+n6k024abaysxxtsexLOd7HlVVVTjhhBOMJaGAwUdzQ8466ywsWLAABWLGHv8TwjuCd5F47Cb8JyHSPqyJjdXuov4o8VFto/Xz+gEr/qzvg4o9tc1ld34pehOtgxKLrgTUpfvMIklvrhG/567oLa+w2khUby7OdbrmCdPwNKfbrw5bGb2Fr+uORcbeJd3L6i18XcQ/JRYKvKRJVm+iJ50myMN8IKo3kcMQm5hOdFeuXIlCoYDTTz+dVI6K0UdzAaBQKKBHjx7o06cPtt9+e6EyMo/nuvB4BOsEg7Uzq/L4Q9xGxE7msQfe7pBMm+i0ZcUq4puKqf4XlrHx6AWFUtebDk2K+mLZlbLebGghz3ozFbtMX03Tm0zf59nE/ev0xbsOndcgaxuPVcSegotzlUvzuYl7RbVlzW3x8rb1prJ+ZelNpk1E8HpLtqfEVFZejoEDB2LOnDnCdchg9NFc4IcvLTrvvPNw1VVXoXfv3sK/QSPawDzB6vAtYxvGxEI01jS7+Htp9VI7a9xXfBdIxB/lvsjcQ1FEF/O8NhWFZ69rQWtyAqbupru2G6iqt9AXbxea93+dJz+qenMNit507urqWlC4ojdTqLS5yb5IndtkYZ165BVqn3NtbpOJSTQG02MnxTflPunSG3VNITKnihC3U9GbKdsQkxsPMjGp6k2kPtGYqqurcdlllwnZqmD8RBQA1q9fj86dO2PUqFHo0qWLUJk8nIqm7VgllZEZQOODE+VkSGdcLHiLeFd2sVw7EZEhj+2TpdZE60/bwY2fltg6FYrHwapPxWdetWkDV3axszihMak1lh3vtIR1CssqpysZMaE1k7a27E3jyvVmsY6UTTqo67WkuY23jmStP3XFFY+DV6esT1PzINXeNa0BtPg7duyIr776ChUVFUZjMn4iCgCNGzfGOeecg/vvv184EQXcORWNl4vXzXqdh8wpDW9wiA8i0TiooqGe1vLqi9dpYhK2cb9l+ofJAc00JneOdWuN9Z4K0f4kshOtqjWZ+ELiu8kydcroxyQmtSbj36W2sUXSotBUeyTpmxdHllozWa8NZE9mvNa2hRJ33DZNa7Knjkl2qlrTfZ/S1q3xGCl9ypQtxd5VrQn3mf//ky2/+c1vjCehgIUvKwo555xzsHjxYixfvlzIfsqUKeQ6TE6YcWGGf0KoHTot1rhA4/XxfMVjYwlcJa64XbQ+1iAmiskJ3rXFg8lFtw17IFutmUJEa1FUtSYDT2uuLOhc05onGZ7WTN9HGX2ztGYSVmwuac2VOEJkF9+u2APmHzvPUmvReuPEX1PRmkwirUNrJvVQalorr6hARUUFTjjhBFI5Way1bvv27TF58mR8+OGHpHKUk0ZRRB4vYJ08iAwaOjqsjlOPsJyJSTQpnqTEVPckbmpwsJHIlQomtaYD1uJABpMLVp6fpMnbpQWzJ3t4/cLmYtik1kwjqzXXNOjipqZJstjgltWarsMCymauyIGIqNZ0xZ+mtbSyOmJQ8V0M9jU1Nfj5z3+O2tpaUh2yWB0lzz//fCxYsAArV64Usjd9Khq1TRo4RP3K7ATF4zGx+xS34Yna9KDNS0zj90HUHxXXFgVUbOwIi6DST1j3XXYxrDLxxevXVSdPazK+KIT15i0xzftC11XSFsPhv23FEa1fJ1k+GSC7WObh2gmeDVzRv0q/0ak12etjzakq/uK+o76y0pnugw1TSWsx2AdBgJ/85CekcipYXZn07t0bxx13HN5//31SOdPJCWtBHH9sgOqTYqdjl5rSRjxRU33JJOe8Npap3zSuDRCmMRGPzj4uQ9JC0WT9IjoT9aNaP++k1rX+55GHN37y+oGNeFjzqok+Z/JphKQ64/Wz9O4pLuLjJ2/tSDnAkIHXz2R0RhkX0vq4zoSbdQ1pc5oI/jQ0mZqaGpx77rlo06YNqQ4VrI+Ul1xyCT777DOsWLHCWB1JJyA88cgKIw5ViLwdNEq9MqeirPpMDV5JvtMWzGkLeFObFKVmrwsRnemITaX/mdQZr5yNxYloDDI68+hBR/sm3bOsEs94bNFYbOFKMqiiM1dO/ErNHkh+ckxlPtO1tmTFRolDpU7egUI8Fp11suplxWBSZ671Uxv2ZQDOPfdcUjlVrI/S3bt3x4knnojZs2cL2YeP58oKVWTXSgSdIuctHnTUKxNXmqCzIGmXWSUuv9BmI9PPeIO+6mJY1z3KUmc8sji9SYslbTIPX/Nkg6tJZzy2eEw80mLV0deoOjPZvyk6E8XrMR2ZNZuozmzrzYTOROtNQuYwQ3dinrbusL3R6tohg/Dh2P//ptxf/frXaNmyJakOVTIZzS666CJ88cUXWLZsmbIv0R2rpJsh0+lVYpUtq2oje3KaJGJdA0+abdImAish0pnMlJI9z4eKzkxu+CTFGvWX1UKdRzwuXf1WpXzaRp0pjXl+IKl9VTZRVWNKijUaXx5wod9S5zKd9ZaSPYu0tYLIGEipi0LSeBt9X8dGTtwnJa40uyzmB966Q8dcViqnp+E35f7sZz8jldNBJiNyly5dMGXKFMyaNUvIPnoqKjKAUDAxgfI6ffge66RPJcZoeRFhidaXNlHK7DjqtI3Wb2InzLXFlY14KJO0rZiSCOPjxRq3U6knXpeKxqKwxgMbE7kJjWW9yM8LlLksa42FsBbG4R+dG168/8dtReHNuaaTaWqM8Vijflh9xZV+4SpUjdlYC/LiZMUcj9NVjaXNu9F5kwK17UT9mdwEcm0zRtS+UCjU/25os2bNSHXooCwIgsB6rQCWLVuGnj17YvTo0ejatWuq/dSpUwHQdyconVmnbbwT8+yp/niL66SBilVGpj5Wvaw6knzqvh8yfkWILlgo4nfZXvT6dbd7tG4T/SREh8aSdsBNaCwtZl4dMj5Z/r3G9NpnrTHT99OWxlhaM62xrNYKsrZpxNvLVc2I2AIgayxaRmcsxaoxXhmvMT7xPmliPWTLvnXr1vjqq6+s/WRLlMy2r9u2bYuLL74Y7777LgoCjSX7WVERdO6E8Xbe0uqmXhdrAOHtqsrsoqbFnLSbpIqpnd6o3/iuWNpOXtqfrBCJixVj2vVT6jdBkl9ZjVHqjWsm7iOpv8jUx4o5zxoT6V8UjWWFqPZ5fVJVX1nAaneR+KnXJ6MxnfDmSZ31mLjnohrj9dE0jamsRWTsKXGJakxUb5TYddmyrk90jBBJCln1ROuI+2OtE2Xq48UrM4fpTiwpfuP2ouvE6P9F5jCZWGTsReaw6upq3HjjjZkkoUCGJ6IAsGnTJuywww7o0aMH+vXrl2rv6qkoT7yiPql28XpEfMkIgRJXUkIts2tkyjYer4rvLBfILCj9gYeutlHxzfKbpDFRnzKTKq9NRfqDbt0HBfaJbLydTN1rE7Zp9i5pLCnGrDWjamtDX0n1iPii6osaV9p8TvFn2jYel6y9S/oCaP2Bhwvtnqav0I/pNSKrDKU/UNZ+InGx5jBWOxXLGjH6vguwYiyvqED//v0xZ84clJWVZRBVxokoADz22GM48cQTceihh6K6ujrVXiYZNbVQjqMyiFIXykm2lIVdmp80myQ7Sjvx/GY9oVB9593epYVynDzoi+JHNK4kO5WdVq8v+/ZeX/y6RH15fXl9JdkC7tyjOJSkkFq3bX3pSKKLRV9Ue5f0UllZif/85z/YfffdhevQTeap+iGHHIIBAwaQf86FAmVHIs2WlciFf1Tr59mVldO/VCFpIIzvQMX9U+pJsou2jWidKoj6o4ia6lvW3hVk2kYnrL7uor6SsNHXo3XZ0pcn37D6hYi+TNSpAquv8+oWjTGpLp6+siTrcVoWG/OoarIoS5q+ktZJuutMsk/DZl+X1ZfONT0vLopvU33OtH1VVRXGjx+faRIKOJCIlpWV4aabbsKHH36I1atXi5czkHQknSJGxSHjMy1e3m5RtE4VXzybuF/WIKBjQo/XxaqTVT7rCR+wM+m7NkCZ8s3qWzx9mW53nr50YntS59XpwuLZY5+khapJfelOPlmw5i6TUOYu0wtlU7g0r4S4kHTz1iZJcxflBJNix6qTomnKCWaavlQPK5Js0+YtHWv7OCaTVtP2MklxEAS48cYbSfGYwIkRcOjQoTj++OPx9ttvQ+RJYZkvLqLa8sTOmox0EvrjTeLUI3pRG96ulImBJvTP2i2UXTTbOOUUxZWByTWS7jFvZ1TUJ8VORwJK6Tu8Pm4KnraiddtIiD1sbCSAvLkri80d03UmaUvn/CUyXrm24ZPnhTUVG9eqW1uU/smbM8O4dMJbc7LWp0lQ7eKJvOiBhWr9UfJ6uklh69ataNSoES644AL07NnTWD2iODNiXn311VixYgUWLVqk3bfoJBO/8boeqaCeZIosknV0UpZv1gBAqU8lLpHFc5p/0fptJK6uLEhMXitFW7yFHK8fmiBLbcXrpWpLNR5VbXncQ0ZbpjdPVeZMyuYpy7dL2grr17mhZiPZcoUskwjeuOiKtkzN6RRtmTqk4NVdDNqixmLKvrKqCq1atcL5558vZG8aZ1YerVu3xrXXXosZM2Zg8+bNqfaqp6JJAw0VHYMPJQ6RxJayU5Y2+CSdZLHqTINiF90hi8bL2/mnYjJxpeJKoqt6rUmnMjr8y8YSj4OFSGw64uclhEnonHSTdrx5Oje5qPdJcDpJ416W2gqxcfopgoy2KL5FbXSc6LiMK/OVDkTWgzrXN0ltkZQAq9arakPRFfXwgjJ2iMxZWW5kqNrLQIm9qqoKd911F2pqagxHJYZTI8Pxxx+Pvn37YtasWcbqENnhoiRxqqeilEUyBVbSnRSXKCJJKXUAErWN3yveoGhysjeVuJq2B8wMhvE2Z+3csnYyTcUR/T9rQaFat6l+JrrZYwoRXYX/95gnqZ+lncrYiEv3nGWqn7GSQduw7le8HSlxmbrnLi2WqfbUtUT037w5i5qEUtuPl0zF30+rm5LU6kgcw5hEdGWir8Y3enRsPNlIWk3bi1JdXY19990XEyZMIJUzSeY/3xLngw8+wLBhwzBp0iS0bt061Z71cy5pN4YyqOi0jdrxdt1k/aW9rqs+0aRCtN1M3Ysk4u3i2oBCsacM9KrXqkNXlDio912nrpL6OUVXsjqIt3V4bTp1JWObhE1dmer3pu0pY2iICV1RfbL6Y9RGJE7Rfh5/3aSueHWI+uPZUXwmIXvt1Diovk3b65g7XV8HpsXkoq7S1pzhezJzt4gdxWcStnVFtTfpu7q6GgsWLEDXrl2FytjAue3tHXfcEWeffTbeeOMNFAQaN/qIbtrOMUuMPGRsqT55u8mUuqPEd/fiPnm7sdTJhOWXurii2FHi4+2WJe0+iu6gUXf3TOwGxpHZyaP4pOhKN9TBWFRXVJImb5aueGUpsPqsij9duKCrvBJvl6x0JQpPVzri4l076/+i/Sjun4UL7coiaa3C0hXFrwuYGrfifYO1trGpKZkkNCk2qj/etbP8xdtNFF6cMutWar+grgVF5iqTupJNWk2wfv16NGrUCFdddZVTSSgA905EAWDDhg0YMGAAOnXqhB133DHVnnUqmoTqDjbPLimGpB1lGX88vyJleOVE69MZk8ndMJPiN9HXTNtH20X0mk0MuLp2S6maSvPH8yvqW7YsVQNpvk2MbzK2ooT90YUdZhV73ZqixkLpR6KaAuz336Ryon1F9/ypa8xStRWFqinZWExr1lRyYHP9J6spih3Ft2xZEzFlvf6T0ZSo79C/K5qqrKpCv379MHv2bFRUVAiVsYWTiSgATJs2DePGjcPBBx+MFi1apNpTklHTnZq3MxR/XcdgFJ+kZaD4oMSetENGbYu4T922STHo2KVyacIWjcuWTtJsebu4UR8y/TItPtEYVX3IJBB50JTMgoWC6UTUlKZc29yxrSnROJN82NAUq428psRjYdmX6jwV+jG19hONM8mHibVfUh2uaCotBpk+K5u0Uu0pmqqoqMAHH3yA/v37C9nbxNlEFADOOussPPnkk5gwYQLKyspS7adOnZrpJM/rELxdsix2r5PqEfWlsiNNaSNRnzZtQ3vdA5dOslgIy/hW2bGU1ZTMpoPqBJ/mS3XBr6qpLO+vqH0xacqFRDROKc5RSXYqcbugKVMLbJ2k9RkX2pDa3lFc15SpOSrNR1pdsnWbtBW1z1JTvLg2bdqEFi1b4oILLsBFF11kOSoxnE5E165di379+qFHjx4YOHBgqr2pR3RN7E6pCpv1uuwOGdWXyZ3yNL8uTTouJHRU+zxN8jKakp3k03ZtReqPlzGhpzQ7l/SUVresb5lYTPk2GYvuRVXe9UTxpWPBz6qHVRfLNosNUFlbGd+AG/Nflm0oM9am2fDsdMwfab7S9CQae5bzuog/ql9Z367EUlFZid69e+PDDz9EVVWVUBnbZLsllkLTpk1xzz334N1338Xq1atT7VV/W5QHS6jR8jKTa5JPlh2rvvh7QUH+twl1+Eryz4O3cxb9Q/Vp2lZ2R5+CqZ01nTunum1Z9z2M11Sbx+ti6YBlK+Ir7ifqP8lWhWgd8bp06MnjLry5wjU9ic59VF/Ufkwd71l6UkU2edCJDf2bvE4TvpPWejw9icRBWR+y6kqao2T0FPXF0xM1gRZFRE+m+qaNfuZKny8vL8cjjzzibBIKOJ6IAsDYsWNx/PHHY9q0aaRv0RVBVMBR29A+TdS6BZQ2KcdjFVlAiwiGtYCOl08qS7Fj1ReNX3ag020bYipxNZ0smkI2btZmjujEzvJHqTdaHw8RbVM2o2QX0DLtoVNPYVnRel3CBX3YQLeeqPVG60sirf/b0JMoSW2ZlJzoxoWkNcQ1fYtCjTtNT5T5hmLHqi8J0cMSUV+UtTErDoq9Dj2Zso3aU3AhaV23bh0aNWqE3/zmN9hpp52Ey2VBLmbn6667Do0bN8Z7770nXMbUZJS2OxW+JxKDjNipyZXqLleSv7hPFXjtyGtnymJadSeUhY1k0YVYTCw4WHWnLZapm0Widcv0/9APb0yQ8Rf3aQIRPXncQuQUImluspV8RusVhbXgpS6a4/7i8VHLUCgmLZlalNtYxOuy5a0p0vSkQ2M6No90ainqTwRqop223pPxbXKtksektWWrVhgwYAB+/etfk2OyTS5Gy9raWjzyyCOYM2cOlixZkmpPeUSXlwyq7nSK2ibZseqWneRYk76scFnlkwbxaBlR3yx4g2n8XskuAvKW0MVxIXFl2aZpSXS3VwVe3a5oKerD1kI2eh1JO9Lx+DzZkaQl04lnPIZo3eHrMrC0pDpG6dYS5RRJREum9e2SVl1YxLPqShvr0vohNV6RzXSZwwlWHTq0RF176ljz8mx1acnkWt61pLWqqgpPPPGEcz/VwiIXiSgA7LTTTrj66qsxffp0bNq0KdVe9hHdtJ0pqqhlEjDeThbvREY2FtXELRqTSFIq4otqx9utVLkuFxI6lxYSFHhasnVKE8e0lnT5SIrLdD8OYd0jHRs8Hnl4iadtLfFiiP9bRgOqWjKlcSq8dYOqnk3GbXoxbAqVMTHtPumGt+5ixZBULq0OHRseMlqSWeOKEK87aY1pMrGk4ELSGiahd999N7bbbjvhclni9LfmxgmCAOPGjcOXX36JvfbaK/UnXZK+RZd3Y0U6BqUTidqy4qGUEbVNG+xk/STFZsJ/aEu5B6LxiPqN+qbYF5Nv1R1S6j00oSNZ/0la0t3P43gdufHNtrp829IRxZY6N0TL2NYR1Va0TFjOxD1gUWw6MhWL6Homion+m/X4naZRHXqUqZdXxtT6Ok7SGKs7Bll7E763bt2KJk2b4uCDD8bf//53If8ukKtEFAC+/fZbDBgwAIMGDUK/fv1S7cNklEd8lyX+Gg/dCz3qQEApq2swktl9ivtN8h+1N70hILLDZGrAyvPEz0NFR7rilZkceeXzoCOROEzfA0q/SPNLtc9rIppEvG1NJZdZ6UhXkqlrvkwrb3MsU02ioj6yXhDb8J1EMekobeNKJal1TUc61uC2dWQyaaX6Lq+oQIcOHTB//nw0bdpUqIwL5C4RBYCXX34ZBxxwAA444AC0a9cu1Z7y+6ImOomoYIJCQdvAEE+4qAsrXlzUmKI+49cXjzVefxa7bCIJatyPjQnX1uSvM0G3taGjY+Lh+VPRpC49xv2xdMRrlyw21aI+k5DdvKDEIWOv6tu2hii2MnNRlhqK+mJtIqrOkWk6ynIuisfLghWvq3ML1bcOHZla9IvGq0tHqn1fpx7j/uKoaohim7e5yHTSWlVVhRkzZmDw4MFC/l1BbNXtGPvssw8uvvhivPLKK9i4caNW3yzB6/ZZVs7/tsHov+N2IvWwylIHmqifaNwqSWjcNytW2XooA43IxB6tnxUvK+bo/+PvseLIAl5srNfi1x3tnzqRvdesPsPrWyoxxf1T/ejQYzyOqG+ehrKGFWeahuKvuXQ9Ibz4stQQlaRxlxWnrIZ0JI6seOP+RWHFweuTrPpFfZtARENJc1GSX9uIaChtzSBz/0Wg3uu0eHXFo9r3dc1ponOujB50btCwUJ2LVOPQlYTy1pqVlZW4/fbbc5eEAjk9EQWAIAgwadIkzJkzB/vuuy/KUzqEK6eiUShlZHe/ZMrr9ie6YyRbD9W/btt4DK4tnuPEB2BTu3MUW1P9wwUN6dCPaBmZRXRYzmtIHBUNZWmroqG8z0GiZVQSUZ3jnYxtNIa8aMjkvGLSNorrGtKlH9FyshpyYQ6K2udBQxs3bkTLVq1w7LHH4s4778w6JClym4gCwKpVqzBkyBC0bt0aQ4cOTbXPKhm1OQiwYpFdnOrwJzMAs+pIqsulycnGAiNPvl3Qj0gdrLp4fT4P+mHVk+THlUWACdu8+tZlWwz6kfUnW2+8bJoP1/sAyxbI55wi6lvX5oCuhFAknqS5QTWZdV0/onW40l9EbU37rm7UCDvssANmzpyJ6upqoTKu4Xa6n0KLFi3w5JNPYu7cufj8889T7XX8vmiSbZSy8uTHnqLvifhPKxevi1eeUrcufyo74by6VAZIE+hKFPLgWzey+pGpQ1Q/rD7Psk1CVT86klAR/VCgxOJC3ypVTOonqb5oXfHylLqp/pL0E41fhKS6VfVDKSdbhygu6FPmGnWPQfEYovc43odk9ZNWf5JWo/WL1q1Dj7b0I5OkicZB9WtCE6Z9N2rUCM8++2xuk1Ag54koAAwcOBB33nknXn31VXz//fep9qaS0dAuafCK+6X4jvuK1iM6YFCSYRHx8Pyx4pIhWne0LpX6ZDYYTCweXEsuTS2QqLbUCVlFP3EfrLp45aM+eNcRjTXJX5Kmde28i+gnb+Q1blOYWNDyysnoh+eDdR1Uf6y4RH2w6o77ZrWlrH5MbOaY1ILpZNFEHDIx89Zu8fsue21Jc0+0PoqPpGuQ1SPVR7x+Vrkk/cj41mkbjTHrOKi+Kysr8c9//hNdu3YV8u8qRTGTH3300fjZz36Gl156SfuXF4kQFxNvAcCyCcurLqipA0ZS/bIi1rVjKJokpi0OeH5M7QTnObkURefAnrRxQ12AUmD1URPaUfEpi6h2ZbXjcQPevaLqRyWJUunrcR/hv1XmHlZcFKgbUnGbrLVjMml1wbcuWxHtUJIMGdI2i5JgaVcledSxnqRol+dbt25M9FmVDWKdvsvKf/iG3Ouvvx5777239lhsk+vPiEYpFAo46KCD8P7772PcuHGoqKhItFf5vCir46oubqnldCdZrGRaBZX4ysppn9FilUur39SulswOmCs7cabiSEsaZe6JSjwsVPq7Tu2o6kamfpHxLf6+qX5log+65lvGVud4Fq9DtJzXTnq5pPEtfN+F8dsVLYj6VrHVOZ6pxMOrXxZd2tGhG2r9rHK61gYu2Jr0vWbNGrRr3z7XX04Up2gSUQBYt24dRowYAQDYfffdUVZWlmgvk4xGSSonI1CRMjwbHYMS9RrT/IgmIKzyJiYGW8mxC5OxK3HY0I1ITEn6kK2T51vVD+ukRcS3zGI6r7ox6duFJECmzU3c/7S+p3JCoFs38fI2dJNWTvYai31ekInDJd2kxSSyISFTp4hvWT/UOdHUXM2KTbSOPCaWFNtCoYDaxo0xZMgQTJs2DVVVVall8kBRJaIA8OWXX2LIkCHo27cvBg0alGrPSkZ5g1mIzsSSUo46OFDqTdtF1LlA1LXzxfIp284sZCeOUl0YuKgbSj/WtZBX2YSi6EbHwsaGbnwimmyrSzfUWOL1y25syi7o4r5tbN7G7UwmoUkxxGH1iTz2bVHfqrY6NRP6y7tuVP2k2aroVLacad2IxuJKgltRWYmOHTtizpw5aNWqlZD/PFB0iSgAvPnmmxgzZgz23ntvdOvWLdU+TEbjsDqGqckyrZxqeZUB0ebgSikb96Nr8tExybkwINqIg0VSm+reORWNS7dWde4Y67pOm0koVTcu9O2sF+uuaoYXm+lTDpX51fU5lVVGdH6V8Z8nHVBsZeZinWsBkXIiManUS5lrVPUnUo5SNu4jj3ONK0loWXk5amtr8d5776Fv375C/vNCsspzysiRI3HnnXfi3//+N5YvX04qGxSSPzxO2ZVTKaOD6HWUlcv/RES8PVR88Xyz/NtsK15MafGx/kTtROujxEZFth1FrjGMSVQ3lFhkyrB8yPTHsN60fi6qG52a4dUtoxmZ/pR0j1U1k3dErjGpnaLY0gxPzxTS6mVdP8+PqGai9VLj5PlLQiUJTYuJqhlq7LLovM6ksjKakRm70uKgxsuKT0e98TpE5hqer/jrMnOiLPFr0FUmqR+IasZEYkmBGkf4DbnFloQCRXoiGnLFFVfgmmuuwcSJE9G0adNUe8pnRgFzp6MsG5XJl+dXRWSsxYvsrmLcZ9KgmtRmpndB0+xlJuP4tZradVPZDFHZhbVRhtUX46+r9vGoXnT7U9WzrF6odcuW0amZeD+W1UCabbQuFV2n+RaNR/fYlqYZ3XOMjE/d+ov65N1bypwsU5+qvapeqLHYmmOS4pKZp5P8yZRJGlt1rntE+2OaL5Y/HXNW/LUkvzbmGOp6WgRZzajYpsVYVVWF2267DSeddFKq7zxS1IloEAQ46aST8Mwzz2D//fcX+sFXG8lotBxv8NY9Ier2wfKl6i9pQE+bCGTqNj3B8fyb3sWmwNpNZL3OI8tkVKTv6daLih+dMUX9iPaxPOiFZe+yXgD9G1ose17dlDImF5Cs8mn12PQns2BV3dAyPZZS9Z8VLD27phdWPbb0Eq/L68XM2jsvepkyZUr9v9evX4+nnnoKZ5xxBq688soMozJLUSeiALB582aMHz8eixYtwtixY1Eu0OGinxm1sSCPYisBlq3XlE+VQUimvtCHawuLvPqm2KuWiVIsepHd+balFxsneSbtTfsGzOtF5XQkxPZ8RvVhwqfsglVHna70CdfmCxt937ZedNRHqVPUp+qpquk6ZebmLDd5dPmOJpwsNm/ejOeeew6jR4/GAw88kPorIHmm6BNRAFi9ejVGjBiB8vJy7LHHHsI31OTpqK5BSLZO6klsmk+ZncS4H1078KL12pjgXJnQXRq4qWWKTStJPimxqe50U+t0SStUe5d0KxuPSB06F7eydbL6dqlphVpnqWxy2rAXLVOMWuH5pMZmK6l2VSui9qaS0EKhgFdeeQUdOnTAyy+/jEaNGgn5zyslkYgCwFdffYWhQ4eie/fuGDJkiHA5ajIK8DunrgEjqU5eeRHByCaQSbYiPlUWC2H5pMUKr+5iWFwDbgzIMvZJZZJ2WXVpRaTPqtio+OTZ6VhYp2mFdy9MLhbCMi5pxYXEUqSOtHuoY5NPpN6stJJmU2xacdHeFZ0nlRFZF7iiFapORHyKxOa1Yj5pTUtCgyDAm2++ifXr12PGjBlF9TMtPEomEQWA999/H3vssQd22WUX9OvXT7icyqO6LESTQV07Y7LiSotDl1/diWhavawYdNWlw54Sl0uLd9UycWyddqgkuCYWxCZ1klZel1ayTMx0+HdN59EyLETuqa5+Y1onqn5Nb1TF64jjUr83bW9rs1J1LRQl7b6a0ElavUl+eO+r+tWlk7TyOrSiMja4ZJ+WhALAe++9h88//xxvv/02unfvLuQ77/B7SBGy00474amnnsJbb72FRYv+X3tnHqVFcf39L5vIajBsHkERURgRiOCCoARRQcV4UNGgKIpEXINGE+Oa/BKNnKNRjFER5bjGBRGNJoqMAiqIRAFFHMFBdmRAJ6jsDPA87z9vT5q2l+qqW0v3cz/n8A/Tde99um9V3W9V9fOsFG7nT564ThV3TbEg9vXe/mvq1E330wZB+/72aQaaODv+/5O1G/b5VAd/Ub9hq3L+fzrQZVfWvuj1URMqVZuwey7aT2TjC7YNxiHq228nrr+61k9Ex5+olXPduSyKiTh09SsgfSGuOqekjS+qPVU/8aOj/6W144/Fay/iN25OofIV1saV610hbh6Pe1ZRtmSIy8O0OR0WR/CzqdhVEaFp+1nSnCLiL22sLopQERYvXowlS5bgnXfeKRkRCpTYjqjHlClTMHz4cAwaNAht27ZN1TbqqG5UoRD8m+yko7oiKFvARtmjsElhV3UFU6RIC4oWmWfhygq2dz2gfxU72CbqHgefgUquqxZ1KjkdjENVPIbZ9dtP256iME96hrL+XMthW59BVx+Rbatj3BfJIQqbsuMIRTuReFzNSZeuD2sjMler9hPbfUSXXaq5hKKdzrkkTRtT1yfthq5cuRLvv/9+7RcUlRIlKUQBYPz48fjtb3+LM844A/vvv3+qtv6jun6SEtNEoZ3U4akHMoriIW5gEvm8FEI0Lr4wSrHIlvERpNT6CJWtuEJM9z3NQx+R9WHiM4Qhcs91itGoHNOxuKLDlup4kNZ32vsp48+1eUQ2piz0EZnnyX1Era1qH3F55zRJhFZVVaG8vBwvvvgihgwZImQ7T9S3HYAtrrrqKlRVVeHBBx/EGWecgWbNmoVeFyU6/YgmpbdLkjaZ/QNHVNu4ThjWPo3/MB/B/6NYAQwrtikHY5V4PMLiEmmX1m+cfarrVUS8h4jfND5kYwvmeNyzC4tJpI+J4G9LaSsq1rjrkv5Gga0+QmWDmrDcc6WPJCGywKHqO9gHTfSRuH5vQoQGr/H7FC2+04zvcXYor5eNScaOzOdQiU+0H8f1EVm/Ybao+lvQtneNjjkkbd+K2pAQue8uilBRNm7ciOnTp+OBBx4oSREKlPCOKAAUi0VceeWVmDJlCk477TQ0adIk9W6n7ERGOQGmtZV2RyXJh4o92R02/2Cvc2cgTTvRyUf0/ri0Q5T02ZL6h84iL6mtyUkqrI1p/1471/qH/+9x6OgfMm1Er1ft97KfJc6maFuZsVvGv67+IdqmFPuH6LX+NnnpHyrt/G1FxWdYe9Fr/ddH+aDsb6JtqDYtKOtiW/1Dtj8B8buh33//PaZOnYobb7wRf/zjH4Vt542S3REFgDp16mD8+PHYtm0bpk2bhtNOO22vv4uu4vh3AEQTVbadv61sZ0+zo+L/e9Q1ae3JEFxRplqNpSTu84qsgse1SbqXaVdhRXatkvyJXiezoquyEqzaP8JsiDzbqGtEV55F7cX5CPpRQbb/xrUTKS7S9g/qFWqZvurHRNHsUv8QHfdc7B8uidCov8n2D+9aSrEYvNZU/zBJ2Nxos3/osBfnw2/HlAAV9Zm0CRL1f6YI+o4ToZs2bcK0adNw5ZVX4g9/+IPu0JympHdEPfbs2YNhw4Zh1qxZGDRoEJ555pnav+nelfK3E20b1dFUVv+i7FCsbEXZVJ2QVO6DaiFiYjfGJLrzPKt9Iy4GHau+3DfErjeJqTzXfb919g2KXU6dNqPs+NHZN0y2c7V/lFrfiIohafczyV5YG5f6RtoYVNu52jfiROiWLVswdepUDB8+HA8++CDq1KljLC4XYSH6/9m1axfOOeccLFiwAAMHDsQ+++wT+Q25cejsjCIFbFq/UTY8O6qFcZRNilVRkUHe8xkVl8liO60/k21c/Tz+dlFtkyZ2CnEXjIG6v1H0taBd2QJIpfCLsxvXjtvQCxWRsZC6byT5k7FJ1TdE588oP6Z3UbnN/9pRz9OifYNyLFYRoCI2TfSNpPvpwrjnSpsoIbpt2zZMnToVQ4YMweOPP17yIhRgIboXO3fuxJlnnoklS5bg1FNPRYMGDfZ6Z9RG0Z128NIlSCmgtCtyf+NW91QmGdOFpsuDremJx2tro19Q2omyqWpX9P5GFWKmF2hk2+WxDaAuckQX4qh8B22I+pSxa6Lf6uoXaduaLtBd7Req7QDuF1R2wq5ViUN1R9PFGidJhG7fvh3Tpk3DKaecgmeffRZ1De7QugwL0QDbt2/HoEGDsGrVKgwYMGCvnVHATKcJtlVtr+pb1o5O2yrFng3fsu1cFpamxai/rYdN37Ix6LJLIfJt+Xa1EHZld1OknR+bvmXs6LRL9dls+HZxDHdpZzOuTRimNxNkfeu2ncXaNA8i9O2330afPn0wadIk1K9f0l/RsxcsREPYunUrzjzzTCxduhSnnHIKGjZsCABSR3UBtV0KD4rdTREbUbHqmpRl7arsaIb5TROD60LUpC/dhZZLfSJ4PeXpg7j+lqZPUMQShq7dgzwKURVfQLb7hP9v1LFQxigTS5BS7hOAW0JUR58Q9R0VQ1ju6uifaWyXUp+wIVyjROjWrVtRXl6Ofv364YUXXkCDBg2EbZcCLEQj2LFjB4YMGYKFCxdi4MCB2HfffQGAfHdUZDWbevCIsiHSAVWEI5Vt1UHdsxHWXmTFUWVCDdoSbZcHUSnSTnTFV+fEnuaaNNdFtXOhT8S1Fx2jTAk22XZZKbqD/kR3PHXmQFgs1H2C0rbORaKg/TA/LoylOn3Z7OtpdgWpFqxF8izuOhFbFLbjrlPtE0ntk+ItVRG6efNmlJeX4/TTT8dTTz2FevXqCdsuFViIxlBTU4Nhw4bhgw8+wMCBA9G4cWMA8mIUSDeIxrVVHUj8NlQ7rUi7tBOCztXFNPFQr7S6XgzbKqCCmF7dpdjpNFWkB9tR9QdRGyrPLMxWXoWoSrsgafKEOg9UFx+T2lD3t1LrD1nZeZXx5W8bRPTZqORBmA3Z/uBvq3OxP9hG96JMUix+TIpJ2XaUIvSHH35AeXk5zj//fDzyyCP8TmgELEQT2L17N0aMGIHy8nIMGjQITZs2rf2byFHdOCGT1FbEpumBXcSezt2rKB8yNinj8ZOUD3kuUJLa6RD2Ku3jYtKx26orXlNFt2g8HpQ7BBTtXBLLOucGinygiCcpprz1B9W5Qcav6d1QXe2o5wZRv6I2dMdE0ReCdlTt6ao1k+yZFJMU7cKE6HfffYdp06Zh1KhRuO+++/jbcWNgISpAoVDAFVdcgSlTpmDQoEFo3rx57d+Cu6Npj43E/T0OHRM4hbgL2qOYCJJ8yNqh3lEVKUJcLACi2qn6SjMJUYkhWxOuiM089gVRkRHEVl+wJUSz0heo54Qwu8F5ksIHRdxURXdW+oJsO5W+ICPUdY1Pom39UOZq2NiQt74Q1j5PfQEIF6HV1dUoLy/HddddhzvvvJNFaAIsRAUpFov4zW9+gyeeeAKnnnoqWrZsWfs3vxitvV7xOIUoMu3jigLZOCjiSmM3alJLcw+ohWjctaJQ76baWsH2MLGaKds+buFEJY4kHxRQ9WHb9zwKXTtHuoRonvuCawsnUXZVCnudIlTEZxQieZelXX6PtPfJ5lydlb4QlsMqfcGk+FftCy6J0HXr1mH69Om44447cMstt6SyW6qwEE1BsVjEPffcgz/96U846aST0K5du73+TvXuqC5BSnWNTEyUNkVXnKlFHVV7md3UOESLZJF4ZeKg3NEx3Q+irqPqB1H3k8qmSF9Iug+l1A909YGoGKjvT5q2YfGEXeMRl0uuzgVxttL2A9mYVNpH3V/ZHEyT3xSLK6Jx2OoHIu25H4jZUY1Dti1FTRLnU7YfhInQZcuWYfbs2Rg/fjxGjhwpECkDsBCV4plnnsHo0aPRt29fdOrUaa+/qYhRQN9gkNaujhVi1VVAVUEVjMWlAly0nS1MrTT621K3t9UH/O2p+oBo2zh/Nla+g+2z1A9M7jx5bWX9RrWXyT8dfdnkDqSJPiBrQ3VHxjQmP6O/PeVcLSsGqZ4VVf5RzWc2Bai/fVb6ABAuQisqKrBgwQK8/PLLOOOMMyxElV1YiEoybdo0nHPOOejRowe6dev2o7+7sjvqx9QgkzSwyBbj1IWrTSEq69/WERTTBQjFjiTV6rOu40267Ir4S+s3yp6tPmAjH7NahAexWfSasivSXsUOZSxZycc89QGZeNJ+Dl0nU/LSB2y3lW0XFKHFYhHz5s3D8uXLMW3aNBx33HGp7DIsRJWYN28eBg4ciIMOOgjHHnvsj15Itrk7qqPoFLGla7D2rlU9xhLmM8mvjlhsFRIybW2JUZX2No5AiV4j20b1Xob5E/GrIxabJwps7Gxy/qvZ9V+nYw6wtViclTy21Xdk2+vIf79dHYvsSddTLM6G2ZKxaXMX1WYNFBShhUIBs2fPxubNmzFjxgwcfvjhqWNiWIgq89VXX2HAgAFo1KgRTjjhBNSvX/9H15gSpFGDoOqkK+LD/zeqHSxK22F+ou5PmP8kGzIx2CpOs1Q4pWkvkv86i3HK/Ke2HWdLpiixnf9ZE7Gybb32aXPf789E/lOfYKC2HWcrbf5nWYSqtLW5o6mS/xQxBP1Ejc9hviltm8j/NPc6KzlMIXyDIrSmpgbvvvsumjRpgrfffhsHHHBAKrvM/2AhSsCGDRswePBgrF+/vlaUhiHyu6NRiBSpUX9Pe13aeKhsRtkuFgpkE4nfvuh98schakM1Bm4r1j7tjrpKDHF+RfzL2PZyn9p2mgWtsOttLKRQ+c5r7sf54NxPv6Mbdq3NItxrn6XcV/Eb115m8YC6fkjjP61tf+5T2FbdzEhjQzUGF9sGRejmzZvxzjvvoEePHpgyZcpeP+nIpIeFKBHbt2/HxRdfjJkzZ+Lkk09GixYtQq+j3B31I3usQjaOKHtUg32YbSr7aSelqHuuGo+tYj6Lbf3tg8g+S1PFLYVtCvsy919H7mexGLfZ1msfhsyzdD3vddh3IfezuJOk2tZrn5fc11GP6LQvm3O6cj+LAjYoQjds2IAZM2Zg+PDh+Pvf/x56CpJJBwtRQgqFAm6//XY88MADoT/v4kdmd5R6JY76OImuQdqbyNKugibZU40pClHbWRSiNnxTPXfVOJJi8tC566Rin6IYoyoKbS7g2GoLpBsboqB4fhSLoNQ7lkEfFLtCVILWthiyPd5z3tPHpNOHK3mf9cUXYG8h6v08yz333IMxY8aktsuEw0JUA08//TSuuOIKHHvssSgrK4u8Lml3NM0xoSgbIsjaET0ypmMCUREnVMd0gnbSTiZZKhCo2ia1F5n4dEyyFBOribio+6psbKp5X2q7qXHtRe+fzmcocn1YTMG/U8xBSffIVBGcZCdNkW47b2V96xrr43I+eL2u+Trp2riY/NfonINU+qorOS8bi0sitFgs4tNPP0VFRQUmT57MP89CDAtRTcyaNQu/+MUv0KFDBxxzzDGoGzPw+gVpGEmdSdfqV5StNP5URanI5JFWlJqe2NJMumn922qvc0dRxC5VzvttJeWMidh09C3KXas85Lzt/haF6H2l3HEXGeNFYrOR8yL91aRodzHnbc4R/vZRmM550TFeZ2w6+paO+TBtbGHY2M2lyllPhO7Zswdz5szBd999h2nTpqF79+5SdploWIhq5KuvvsJpp52GQqGAfv36oWHDhpHXqr47CpgRpLI+ZAf5tH5EfNlYYQ1rK4ouUW2iSBH5nDp2zGXtBG2ZKrD911PmO7UIVbElmvM6BYbu/kLxGVVjULFFsXAo2k5H3zK9QCVqIw7d+a7aniLfdcaQxk4wDlv5ntaX6A6lzt3ZtDaioFrwjWtPJUK3bduGmTNnonXr1njjjTf4m3E1wUJUM5s2bcL555+PefPmYcCAAZFfYuThkiAN2tJlU8dRpihfcT5lbOssdkxN8hTtk9C5W6drAYbCZtCu7l1L3Z+Bwo7oLlwctopainx36VmEoTs+3fMTpV2di2SuL1pQ9EeqfKcUokFMzuEu5ju1AM1ivvtj80ToN998g5kzZ+LMM8/ExIkTse+++0rFxSTDQtQAhUIBt912G/72t7+hX79+OPjggxPbuCRIqQfTKNu6dnLCfIX5lLFnu+BJUyzoxuYuD+d6tK8wn7L2bNrgXN/bjokFQQrbnl1KASriT9WWK/3FNlnPdR2L6WE+dO1UBv1Q2dUxZ6qKQNt4IrSyshIffvghxo4di+uvvx516tSxHFm+YSFqkEmTJmHkyJHo1q0bevTokZjcFGIUkB8oTBYTJiYLz0/YZ5Hx6dpE68LKuQtFS1o7UZO7DoEY5k+nj2JB/dumbT6bMBu22wPZXMCKygNTAlGHj2DsJo9aumzDhTy1OT8m5XqW89yzrdJvTe2C6rZBGcPo0aNRKBTw8ccfY8WKFZgyZQpOOeUUKZtMOliIGubTTz/F4MGD0aRJE5xwwglo0KBBYhvTgjTN0VmKuEzbTnMMVuQ+5aVAV4nBheIrrZ20eZ6lHI+zmda3KwsuFDZs9xMqG6J2RAtkHXluqjinyHPq3SEXbGQ9hjR20uZ51sbyOLtpcteVXVC/DReE8OjRo7Fjxw689957aNiwId58800ceuihUjaZ9LAQtcC3336LIUOGYNmyZejfvz/2228/oXa6BanMgEo9CFPu5MTZFr02zr9rQtS2DerjaK7kuO64dBy3kvlcYf4pC7c8CFGXbETZkR03deS4Z4tS6MrYiutjeRShFDbymONUcek+RaOa43H3y/b87IKI9dsYPXo0qqurMXPmTPTp0wcvvPACmjVrJm2XSQ8LUUvs2rULv/vd7/DYY4/hxBNPRIcOHYTa6RCjQWwfsxDdsZQ5jkLx2VTjiLLviqB1oQjyyFOOJ7VVFaSUK8xBXMhNz44L+enS/YjC9FE33ScMqItgPzaEQ5ydrI/hFHEE4wliWsSIjs8q9y8LOW47t6hF6Jdffom5c+fijjvuwC233BL7U4uMHliIWuall17CyJEj0blzZ/Tq1Uu4E1B/mZGqrTi7aVbjZXcrRdvpPHaWJpYwezxR/NiGrB2dxwLTxka9uh13vc4jZyr2Ob/D7bg2dgftu5bfaXyksali2zUR6oINzw7V2O1B+ex11xppr01jP61NFduu7IL67VDYuOyyy/Cf//wHX3/9NSZPnszvg1qEhagDLF68GGeddRZ27dqFfv36oVGjRsJt0wjSuEHVxGCoewUxzo+OQt2zG3UPk2IK2hG5TiQeVTuu2EhjJ2ni1V3IJuW2rN80u0w6czsslriYkmzJxiPqT6cNz44ruZ3GVhqSbJo4Ymeq38rmtosFdh5y29/Wdm7L+jbhQ9SmjKDWcTLJFSF7wQUX4N1330Xbtm3x2muvoX379tI2GXVYiDrC5s2bcckll2DmzJno378/Wrdunap9lCC1OQCJ2KScZESEtu5iXSSmYGyitkTjCbNtw47OWFQLR107h7qEr0iBYXpHTDS3XSqQqezojEUmt03mgc7c1uknjU3RZ+D6OOlSLLILtbYW2ihz22ReJ9kVqQldXGChsnP66afj/fffx/Dhw/Hggw+iYcOG0jYZGliIOkSxWMS4ceNw6623olevXujatWuq3y/yi9Ef2bZ45CjKJrVtW35cO37kekGiYieIy3lNaT/Jl2kRmtQ2DJfFn81YwtCxAyNLXsZsl/Na1Y6Liz1RyN5/zutk25S57ZJ4pOpjvXr1QkVFBSZMmIARI0Yo2WToYCHqILNnz8bQoUPRrFkz9O3bN/WKDdUXGnnYXsGj9kXpj3KCjJu8/Zja9TNth+rzi0JduHNOh9sSQcSfa0IU4JymRFdO6z6dEIVoTotem2THVN8Q/fxANsakrOc0hU1Xc5rSzsEHH4x69erh1VdfRffu3ZVsMrSwEHWU6upqXHjhhZg3bx5+/vOfpz6qC+gVpLI2k44xytoV8RnlT8Un9UptnL00BYCHa5NBsRD+szx+TB5BVLVn+shslG2qPqRLyKjmtJc3rghRvx2Rz2Dy6KGqPdM5rdOfjfFCNB9cLdjTEHcPTM2LIm2DBHNM924rVU7rPD4cZy9tbriwm+q31axZMwwePBiPP/44mjZtqmSToYeFqMMUCgXce++9+OMf/yh1VNfDFUEqMujrWulLO8Cm+UyuTLhe+6yQpeIyrk1cO9P5rOJTR1HG+SyGjnEEoM9nGduqPl3JZ2ph7Dqu5bNsLgPu5rOO/ikK9fFZF6lbty722WcfPPTQQ7jsssuk6mdGPyxEM8CcOXNw7rnnomnTplJHdT1sCVLZAY9qB1bFZ5Jf14Ro0BaQ/r6p7vDoiEm3Lb+9OJuqRXHadmE2dPUh22JIly1d+ezK55O1qZKTlDs7Ohd/bI+lOmzpyGcdY6nNXI67Nqq96R1KnfONql+TtpLyefTo0altbt26FbNmzUKDBg3wz3/+E0ceeaRUbIwZWIhmhP/+978YPnw4PvroI/Tr1w9t2rSRtmVSkFJMcDZXxJMmOJeLd8+eC8VTFmz57QVt6lo9FrFlwreLu6FBWwBdzrjWvzxbgF7xRFnYqopJHb5dF6GU9lwfR3XOi6rCM8m+6PWUvv12XBeg1PY8WzKiM8iaNWswa9YsnHXWWZgwYQIfxc0ALEQzhP9bdbt3744ePXqgrsKxCGpBCtBPEEn2bezwBKH04flxrejJgi0qe0Gb1LbD7Jvc3Qnzr8u+i4Wty7YA/c9Zlw/R4+KlnsdU9lzNYx32PJtBsnKCQNR3EBfnR107qqoidM+ePZg3bx6WLl2Khx9+GJdeeqmSPcYcLEQzyCeffIKhQ4di165dOPHEE5VXfCgFqSmxFuZL9w5Pkv+wOGTtuloU5F2MmszfMH+cw/rtudofqOyZzuGgT907lHG+/bi040htz1VbVPZs5LDfr65TBEl+g7hwdDbMHqUtil3Q7777DrNmzUKbNm0wefJkHHbYYco2GXOwEM0oW7duxZgxY/Diiy+iT58+6Nixo7JNWUEqUkzL2E2D7tXSKJ9BHxQTisvHfV0sWlTtiRy/Dvt/akzncNS9Uo0jC8d8XY1Nxp7ImJPlRQ0Rf67nMI/BydeHwTksF4PLu6B+e6oitFgsYvHixfj4448xZswY3HXXXdhnn32U42PMwkI040yZMgUjR45E+/btcdxxx6FBgwbKNkUEqcwgaWtlUeckIvO5PZLuravFsu3ChcKeTJ7Y2N3R7Yfzl8aezSOCHrbz1/TYK+ojTVw6j/m7bM9kX1URezqO/Pptp43HhB+b+avTnqoI3bFjB+bMmYNNmzbh+eefx8knn6waHmMJFqI5YM2aNRg2bBgqKytx4oknolWrViR2wwQpxWCta8APGzR1v9chay9pMnZ5VzRL9jyblEWyzmLVb9NkP5Ft74dzV8/YQrlLozt3/XZN9RMVG35bpSpCKe15NnXkbtA2BbZyV9Zu1vpamD2Ko7hff/01Zs+ejb59++Lpp59Gy5YtlW0y9mAhmhP27NmDsWPH4s4770SPHj2Uv8jIwy9GPUxMBCp20uwkqPrTNUkFoZoISkUgmDhiRV0Up9lFcFVEBymFo4ieTZ15C7hVYKbJR5P9RMWuHxfz1rPpoj0T85ffD/UiRNK1JvqJqm0q+zrnCFURunv3bsyfPx9ffvkl7rvvPlx11VX826A5gIVozliwYAGGDRuGbdu2oW/fvvjJT34i1C5McPrRtWLsQfE+hOw7FKZ8psErEJImeI80RyxdKQoobIoUQK7nbZp2Knlr6mimaN6miVvHc7NV0IveGxNjTFr7pvNdpV1a+5R568LYKGozzedJwruHunLWi8X1uV73Md8w+xSLWC4fxa2ursbs2bPRrl07vPjii/yFRDmChWgO2b59O37/+9/jsccewzHHHIOysrK9Vo3iRKfMpGSzuKeanNNOVq5MtmmFquu7olE2VVfcTRWzJmNJ2w9dETZpi/2sCFEg+lh1GLYETVr71OO9zCkA2302eH0YJo5JZiVndc+NSbFQ7xbKjG2cszS7oIVCAQsXLsTChQtx66234rbbbkP9+vUpQmQcgYVojpk+fTouuugiNG7cGMuXL//R36nFm2lBqqtIE5nEXBGiInZUoRQ4KvG4euxI1L7NnVkXBE0aOypQFsuq8bh6xFPEvsnxPWrRSfdnpvBhYkwzla8Azf2wIURdyFcdfuN8U9hLQ9qdVVUR+sMPP+CDDz5Aw4YN8eKLL+Loo49Wsse4CQvRnPP999/jqquuwr/+9S9s3bq19v91vqugeyDW7csF3zqLz6RCgaKYEcXEbneUXR22w3z4yXO+6j42mXSNCWzmq4nxJkge89X2uOJSvtqYX6h8hJG3fDW1eKkjX1VEqPezLPPmzcOoUaNw7733olGjRtL2GLdhIVoiTJ48GZdffjlat26NpUuX1v5/1op86iM3FP51xKBbiOqwrfP4GLVdk7Z1+XAlBpuLJi7ZzWKf9dv2k8dczeJYkqWxWrdtm+IzLoa8ClBZu6q7oJs3b8acOXOwc+dOPPPMMzj11FMpwmMcxtzSHGOV8847D5WVlSgrK0PTpk1rf3OpTt26pCu0xUJhr/cOqOz77fh9UPsRJS4GF45H2bIN0K74xx2BorCd5v0oEYLPX1d/EIkjKQaqfun5KHVM9FnKsTRpTDWBqXE9i4W9blyPNWqsCuaJyTjCYqAc0+P6g6u2/XZVd0G/+OILvPrqqxgwYACWLFnCIrRE4B3REmTy5MkYPXo0WrVqhd69e+PZZ5+t/Zvpd9fStBd9V1HWl2g8aeOQjUfnESdeaQ+3LWM/Td7Zeo8pKQ7ZeLKYo57trOWoiv20OzkmTwukzVPZz+7auCFqO0v579kGaHI0yY7J3Vdd47orc4KqbRUR6t8FffrppzFw4ECK8JiMwEK0RPnmm29w5ZVXory8HL1790bHjh3x+OOP1/7d9qStOnjqGNxNTrBeu7y+1+ei7TT2KfKLukCgFNMidlx5FrK2dcZt4n1O3QIuaEf1M1EuSorY0L1TmWURqsu2qH3KY7ZUn4dy0UOkPQvQvd8FvfDCCzFu3Dg0b96cIkQmQ7AQLXEmT56MK664Ai1btsRxxx2Hxo0b7/XzLibeSYo6dkZ5dETVLvXkLTIRu1DQlpptv/2gj1LPz7B7kcWFEhO2AbOFPpXwjPMna1NHQWw7P03Yz6LtKB+UwjPMl6wtG/3G1MktXfapROimTZvw4YcfoqamBk8//TQfwy1hWIgy+Pbbb3HNNdfg3//+N44++mh06dIFderUMS5IdfqK8yniz5QoDCPLxT6QvYk2zIduX2H+RPMyzfWy2OqrWcxNz34en0caP3nNTRa5yfbDcGVR1fa4rtNnFgRooVDAokWL8Omnn2LEiBH461//yrugJQ4LUaaWqVOn4le/+hXq1q2L448/Hi1atAAAUkEaJ7j86F6xBcQnJBO7P2GI3Cuq55HFokrnscEoTOWAiCjlvMy/fRP3Og0ifc6UAI3zGwXnZT7zEoj/bKbFZ5zfMCifh+65VkWEfvPNN5g7dy6aNm2Kp556Cn379qUIj8k4LESZvdiyZQtuv/12jB8/Ht26dcPPfvYz1KtXD4CcIE27GujShFEsFKwV+0D8yjXlBJflI8Ay9mV2n00cpxL1a6vQ98ejkpelkJOeD4qcBNwWfcGctB1L0jVhpNlJcyVnZO0D8juHQZLut83xyVYt4Y8jya/qSSiTJ4NUBOiuXbuwYMECLFmyBLfccgtuvvlmNGzYkCpEJuOwEGVCmT9/Pi699FJs2LABvXv3xgEHHFD7tyhBSn0ExZXi36TvYAxU9y6M4Lu5pt+51OFDJB9V4nCl4Dbt2+9fV04Gn53p99h02Aei34EPw5V3MGV8m/ZP8blFxwhTItSED9Ex0kMlJ23no8kYqPqCSE6afjVFRYSuXr0ac+fORVlZGZ588kl07tyZIjwmR7AQZSLZvXs3HnjgAdxxxx3o2LEjjj76aOy77761f/cLUg9T7+uZKFI9P66/8yJrWwbVyVXl88jGbeIe2np/2IR/fwx5yUfPb17yETArlvyY3hE1XYSLQpFLOhce49DVr02NS3GY7A95y0cVAbplyxZ8/PHHWL9+Pe6//35cdtllqKuYp0w+YSHKJLJixQpcffXVeP/999GzZ0906dJlrwElKEhNTz6U/lSOeVHHYXp3QfTdGldIitfGkW7TuRgWg644TO8s5CkfXbh3qjb92DjCbrNvq74iYRrOxR9frzMOF2oe6lyUFaF79uzBokWLsHDhQpx99tkYN24c2rZtSxobky9YiDLCvPHGG7j66quxa9cuHHvssWjTps1efzctSAE9x2HS2tAhTG0IUSDbO2thfkz4CvpT8alqh1qU5qF4jfNlMjeydA8p8siFsVkWkz5Njok2jsrazsOgnSy9lmEqD6mO4a5duxYfffQRWrVqhQkTJuDEE0+kCI/JOSxEmVTs2LED99xzD8aOHYuOHTuiV69eaNSo0Y+uy5Io1THYq4rTLBYNafwAZnPC9feETK3cy8SUxwURz1cec9DvM41fXYW2il2bIjRvueH6nKL7pJFLfSKNX5OLtrIidPPmzZg3bx6qqqrwl7/8BVdffTXq169PFSKTc1iIMlKsWrUK1157LaZPn46jjjoKRxxxROj5fxcEaZRfW4O9n7gjX7a+6CGPBZiHS4LU9vGuOJ95F6GevzyKm6DPKL82vthFNOdt99m8jYGeP5fmFBvfvRD0a+OIeRQ25wNZAbp7924sWrQIn332Gc4//3zce++9PzopxzBJsBBllJg2bRquuuoqbN26FT179kT79u1Rp06d0GtdEKWeTxuFoZ+4SdhWbFk8Qijjz5ZPz6+tVfYgSV88Uwr5l2ehHebXhviMIqlvuCTadflz4XsATPm1JTyjCD5zF3Y/TfilEKDFYhHLly/HJ598ggMPPBATJkzA8ccfTxUiU2KwEGWUqampwcMPP4z/+7//Q4sWLdCrVy+0bNky8nobghSwswOQhrgvG+DinNafLZ+mfYtiu0gshcLc9jFxD869cP959WfDpwtzmQg2x2bbc5GsCK2qqsL8+fOxa9cujB07Fpdeemntb80zjAwsRBkyvv/+e9x111146KGHcMghh6Bnz55o2rRpbJuo3ySlIG6SsV38RBEsGOImdA8d7xTmuUjy+6T2K1KAubIj6hF1L0wWk6WWdybGOo8s5B0gNubp6qt5yAHTPtPMTbZPIHm4UBNkVYB+//33mD9/PqqqqnDzzTfjxhtvROPGjalCbSZKKwAADQRJREFUZEoYFqIMOatWrcLNN9+MV155BV27dkX37t3RsGHD2DYUu6QUX8wi256CtJO1LpHq2rtEun3K+qUomG2KA1nf1ELBhSOrWfHLOfdjOOfE/FLnm0faZ2gz3zxU8o7iPmZJgG7btg2ffvopKisrMXLkSPz5z39G69atqUJkGBaijD4WLFiA66+/Hp988gm6deuGsrIyoW9SE90l1XmsxrQwpZ6kVQqIUizSPES/vMKPrmem8z7oWJVPyjnX8s3z7aLfPOWbLj8y98jWLqjft2v5ZvLUje57oHveTms/ywK0pqYGn3/+OT7//HOcfPLJuO+++9C5c2eqEBmmFhaijFaKxSLeeust3HDDDaiqqkLXrl3RpUuX1II00n4O3rdy6f0dP7YKJtu+48j6F1jYPhYWhc0vLHE11wC7X+jmmk0Zv1GUkgj1+48jq+/IuvKeZxQ2F1ZlRGhNTQ2++OILVFRUoEuXLhg3bhz/HiijFRaijBEKhQJee+013HbbbVi3bp2yIHXxXRMgfVw2V+jDEC3kRLFxbI7yM7j4TFSPhrnwmQA3npOKEHUhfkpU88zVL+Wiek6qecJ59j+oj6e78LlcyTNAXoBWVFTgiy++QFlZGe6++26ccsopkb+CwDBUsBBljFIoFPD666/j1ltvTS1IPfIkTG2vlEeh850i02TpnZ4k0sblogD10PWupC3yskAApIsrC33FBRFIgY0FF12I9v8sCU/beaYiQCsqKtC1a1fcfffdOPnkk1mAMsZgIcpYwROkt912G9auXYuuXbsKv0Pqx0VRCogJU1dFKOBG4eJKke5KHEHiBICrMQNuxcZ5Hk9UbK6KT8Ct++nKGO9CnocR9qxc+OLAKFwSxcFY0opQvwA98sgjcffdd2PAgAEsQBnjsBBlrFIsFmt3SNeuXYsuXbqgrKws8Vt2w3BVlAJuT65huFK4uFhUetiOx09W8sul5wm4k+eAO6IlDJcK8ChczC3AnVhciCMM18cu13Jf9Qjutm3b8MUXX+DLL7+sFaAnnXQSC1DGGixEGScoFot48803cffdd2P+/Pno3LkzunbtimbNmknbdEmYyhy9sT3ZuVIIAO4VdX5sP6e0uNAHXHiOAOd5XAxpcCVeV56lC8/RjwvxpM0r12K1/SxVBeh3332HiooKLF26FAMGDMAtt9yCfv36sQBlrMNClHGOefPmYezYsXj99dfRsWNHdO3aFa1atVKyaUOUyk5mLnwTn2sFOuBGMRXEZBGsunNg4idBRHy7+PxcjAmwl1Oivm3uZnFOiWMqpqS5S2WsMh27K89PRYAWi0VUVVVh8eLFWLNmDS644ALcdNNNOOKII6jDZBhpWIgyzrJy5Urcd999mDhxItq0aYOysjK0b9+eZAVPlzDVPYGaEqkuClHA/eLTQ1cuUdlO8kHpy9VnBrgpGgD6e2biOSf50vFzHa4+N9fiAmjHdNv5pOtzuPTcVARooVDAihUrsHjxYmzevBnXXHMNrrvuOrRt25Y6TIZRhoUo4zwbN27Eo48+inHjxqFu3bro3LkzOnXqhAYNGpDYVxWlrkxmlMWB6wWVh2vxqeSCS+9KUe2euvysPFxddAHk+qHNne8wKPLalTE2DpfHTCB9nrtwMicM6jHWteelIkB37tyJL7/8EpWVlWjUqBFuuukmXHbZZWjatCl1mAxDBgtRJjPs3LkTzz//PO69916sWrUKhx12GMrKytC8eXNSP0FhGjZRZaEw8pApKFwvqgD3Y0wSYS4JT1HSiJwsiFDAbSEKxOe5a6JTFNHcz8o46/pYBETnucndTWpEhGXWxCeQXoBu3LgRS5YswdKlS9G9e3fceOONOPfcc1P/CgHD2ICFKJM5isUi5syZg3HjxuG1117DQQcdhMMPP5zs2K6fsN3S2jgcm8xkSPMFEi5+XtcLwCwXeaKI5pCrn9VlIerqrhQ1Wf6cLo9BWR/f05DFsVZFgBYKBaxcuRKVlZVYv349hg0bhuuuuw49e/akDpNhtMJClMk069atw6OPPopHHnkEderUQadOndC5c2epn38RgYUpHa6/M5bFe2GTrN4vaiGa1ftgiyzfL2oRmuV7YYOs3i8VAbp9+/ba3c8mTZpgzJgxGDVqFH7605+SxccwJmEhyuSCmpoavPLKK7j//vvx2Wef1QrSli1bGvGfdYFq6gicycKBEhv3g/Mm2g81xUJBmw+T9ySLOeORpdzRmS9BPzrIyrF5D1u7nTqfcRrxWSwWsWHDBlRWVmLZsmXo06cPbrjhBgwePBj16tXTFiPDmICFKJM7PvnkEzz44IOYNGkS9t9/f3Ts2BGHHnoo9tlnH+OxuC5Qs/IOVhRZPtIXhcvvjmZV/PgplZxx4TNkfaHFT97zxoXYs3i8No6wz5NGgO7YsQNLly7F8uXLsW3bNlx88cX49a9/jS5dulCGyTBWYSHK5JZNmzbhhRdewMMPP4zKykp06tQJhx9+OFq2bGn9R5xtC9SsC9A4XCuuKHDl9xpN+jWFy+/4yWLrmbm8iEJBHscWwM58kKdFijBkj98Wi0WsX78eS5cuxbJly3DUUUfh2muvxdChQ9GoUSMdoTKMVViIMiXB/Pnz8eijj+K5555DixYt0LFjR3Tq1MnKLmkUceIU0PN7gnmY8KPIo8Dw0F3E5V18+slzngBmf4eR2r5L5D1PALO/h0zpwyVkf35lx44dtUdvd+7ciZEjR+KKK65AWVmZjjAZxhlYiDIlxZYtWzBp0iQ89NBDWLx4ce2x3QMOOMD6LmkUVAI1r6v5cZTSZ1YVp6W0SBHE5W/OpUZWmJaS6AxSCiI0SNqxs9QEpx/Z3c9CoYC1a9di+fLlWLFiBY455hhce+21OPvss7HvvvvqCJVhnIOFKFOyLFy4EE888QSeffZZ1KlTBx06dMBhhx2G/fbbz3ZoQogK1FISY2GU8udPEg+lLD79lJIQ9RMnSktZePopRRHqJ2z8zPuxWlFkdz83btyIpUuXYsWKFWjUqBEuvfRSjBw5Ep07d9YRJsM4DQtRpuTZtWsXpk6diokTJ+Ktt95C27Zt0aFDB2tfcKRKkkBl3EOleLP1TcR5KjjzJkRtfjt1Hu9jXj4TjxXqyO5+bt++HcuWLcOKFSuwceNGDBkyBKNGjcKAAQP4m2+ZkoaFKMP4qK6uxgsvvICJEyfWHt3t0KED2rVrVzKThUkhm7UCxfWfn9F5P019dhs5YVOIZvlnQAAzP61jGpunKLL625hBsvZzSEnI7H7u3r0bq1evxsqVK7Fy5Ur06tULl19+Oc477zw0b95cV6gMkylYiDJMBBUVFXjyySfx3HPPYdOmTejQoQMOOeQQHHDAAajruCBxlSyKXJ2FYdaEuA5cEGKiQtSFWPOObWErKkLzvDDjGrZErczu5549e/D111/Xis82bdpgxIgRuOSSS3DooYcqxcsweYSFKMMkUCgUMHfuXPzjH//ApEmTsHv3bhx88MHo2LEjWrdu7eyXHJUapo8kc4HoLiwSGNOnFzgX9GPjRIqI+CwUCqiqqsKKFSuwcuVKNG/eHMOHD8eFF16Io446imsEhomBhSjDpGD37t1477338Oyzz+KVV15BgwYN0L59exx88MFo3bo175TmFBvv3XJha468vQuYFVgsmsf11wtUSPOFQaoUCgWsW7cOa9aswapVq1C/fn388pe/xEUXXYTevXtzLcAwgrAQZRhJampqUF5ejpdeegmvv/46CoUC2rdvj/bt2+PAAw9E/fr1bYfIZATezbVP3r6wiAIWiuHkVcyZFHJZpKamBmvXrsXatWuxevVqNGnSBGeffTbOO+889O/fn+d8hpGAhSjDELB7927MmTMHr7zyCl5++WVUV1fjoIMOwoEHHoh27dqhcePGtkNkShgWuslkVYhmVSyymGOywJYtW7BmzRqsW7cOq1evxkEHHYShQ4finHPOwdFHH807nwyjCAtRhiGmWCxi0aJFePXVVzFlyhRUVFSgTZs2aN26NQ488EC0bduWV06ZXJEHoatLiOZVcOmExRxji5qaGlRVVWHdunXYsGEDqqur0bNnTwwdOhRDhgzh3/pkGGJYiDKMZqqrqzFjxgy8+eabKC8vR3V1Ndq1a4eGDRuiQYMGtsNjGOdZtGiR7RAyR7du3WyHwDCZoVgsYvPmzVi7di3atWuH0047Daeffjr69++P/fbbz3Z4DJNbWIgyjEGKxSIqKysxY8YMrF69Gjt37rQdEsMwDMOUPGVlZTj11FPRoUMH26EwTMnAQpRhGIZhGIZhGIYxCr+8wjAMwzAMwzAMwxiFhSjDMAzDMAzDMAxjFBaiDMMwDMMwDMMwjFFYiDIMwzAMwzAMwzBGYSHKMAzDMAzDMAzDGIWFKMMwDMMwDMMwDGMUFqIMwzAMwzAMwzCMUViIMgzDMAzDMAzDMEb5fwr+FTglFuDDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAH4CAYAAABQclA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wVxfn/P7dyL713qSJVEQFBRUQRQTHYe77YsSf5fmOMiRq7MYlRYw+xxpLYY4y9JYIVRVBEBREsiCIgvVzg7O8Pf3uzd5nZnWfazp4z79eLF3DOM888OzufmXlm9pxTFgRBAI/H4/F4PB6Px+PxeCxRnnUAHo/H4/F4PB6Px+MpLXwi6vF4PB6Px+PxeDweq/hE1OPxeDwej8fj8Xg8VvGJqMfj8Xg8Ho/H4/F4rOITUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYpPRD0ej8fj8Xg8Ho/HYxWfiHo8Ho/H4/F4PB6Pxyo+EfV4PB6Px+PxeDwej1V8IurxeJS45JJLUFZWhmXLlhmva8yYMRgzZozxeqIsWrQIZWVluOaaa6zWm3eyarcTTjgBPXr0ELZt2rSp2YA8UoTjSpQePXrghBNOyCYgi8Sv89///jfKysrw73//W2s9b7/9Nqqrq/H5559r9SvD+eefjxEjRmQdhsfjsYxPRD2eEmPBggU47bTT0KtXL9TU1KB58+bYY4898Kc//QkbNmzIOjyPRyvr16/HJZdcon0RXygUcPfdd2PSpEnYbrvt0KRJEwwaNAhXXHEFNm7cyCxzxx13oH///qipqUGfPn1w4403ao2Jxccff4zzzjsPO++8M5o1a4ZOnTph4sSJeOedd5j2ixcvxpFHHomWLVuiefPmOOigg/DZZ58Zj7PUeP3113HJJZdg5cqVmcVwwQUX4JhjjkH37t1J5R577DEcddRR6NWrFxo3boy+ffvi5z//Ofda/vnPf2KXXXZBTU0NunXrhosvvhhbtmxpYPOzn/0Ms2fPxj//+U/Zy/F4PDmkMusAPB6PPZ566ikcccQRaNSoESZPnoxBgwahrq4O06dPxy9+8Qt8+OGHmDp1atZhejzS/OUvf0GhUKj///r163HppZcCgNbT9PXr1+PEE0/EyJEjcfrpp6N9+/Z44403cPHFF+Oll17Cyy+/3OBE789//jNOP/10HHbYYfi///s/TJs2DT/5yU+wfv16/PKXv9QWV5zbb78dd9xxBw477DCceeaZWLVqFf785z9j5MiRePbZZ7HvvvvW265duxZ77703Vq1ahV//+teoqqrCddddh7322guzZs1CmzZtjMVZarz++uu49NJLccIJJ6Bly5YN3vvkk09QXm72nGDWrFl48cUX8frrr5PLTpkyBZ07d8aPf/xjdOvWDR988AFuuukmPP3005g5cyZqa2vrbZ955hkcfPDBGDNmDG688UZ88MEHuOKKK7B06VLceuut9XYdO3bEQQcdhGuuuQaTJk3Sco0ej8d9fCLq8ZQICxcuxNFHH43u3bvj5ZdfRqdOnerfO+uss/Dpp5/iqaeeyjDC0mbdunVo0qRJ1mHknqqqKiv1VFdX47XXXsPuu+9e/9qpp56KHj161CejYZK3YcMGXHDBBZg4cSIeeeSRettCoYDLL78cU6ZMQatWrYzEecwxx+CSSy5p8AjySSedhP79++OSSy5pkIjecsstmD9/Pt5++20MHz4cALD//vtj0KBB+OMf/4irrrrKSIzFiqymGzVqZCCahtx1113o1q0bRo4cSS77yCOPbLOpM3ToUBx//PG4//77ccopp9S/fu6552KnnXbC888/j8rKH5aczZs3x1VXXYWf/vSn6NevX73tkUceiSOOOAKfffYZevXqJXdhHo8nV/hHcz2eEuH3v/891q5dizvuuKNBEhqy/fbb46c//SmA/36+7+67797GrqysDJdccsk2ry9btgxHHnkkmjdvjjZt2uCnP/0p8xHF++67D0OHDkVtbS1at26No48+Gl9++eU2dlOnTkXv3r1RW1uLXXfdFdOmTRO+1s2bN+PSSy9Fnz59UFNTgzZt2mDUqFF44YUX6m3Czwd+9tlnGD9+PJo0aYLOnTvjsssuQxAETL9hTI0aNcLw4cMxY8aMbWw+/vhjHH744WjdujVqamowbNiwbR43u/vuu1FWVob//Oc/OPPMM9G+fXt07dq1/v1nnnkGe+65J5o0aYJmzZph4sSJ+PDDD1OvO/Q7ffp0/OQnP0G7du3QsmVLnHbaaairq8PKlSsxefJktGrVCq1atcJ55523zbUWCgVcf/31GDhwIGpqatChQwecdtpp+P777xvYvfPOOxg/fjzatm2L2tpa9OzZEyeddJJ0u0VZuXIlKioqcMMNN9S/tmzZMpSXl6NNmzYNYj7jjDPQsWPH+v9HPyO6aNEitGvXDgBw6aWXoqysjNl/Fy9ejIMPPhhNmzZFu3btcO6552Lr1q2JMVZXVzdIQkMOOeQQAMBHH31U/9orr7yC5cuX48wzz2xge9ZZZ2HdunWJG0AbNmxAv3790K9fvwaPzq9YsQKdOnXC7rvvnhjr0KFDt/kcbJs2bbDnnns2iBH4IcEYPnx4fRIKAP369cPYsWPx0EMPceuIct9992HXXXdF48aN0apVK4wePRrPP/98AxvZ/h1HROcsQp28+uqrOO2009CmTRs0b94ckydP3qafi8YbjicLFizAAQccgGbNmuG4445j1n/JJZfgF7/4BQCgZ8+e9f1y0aJFAMQ/C/vWW29hwoQJaNGiBRo3boy99toLr732Wmo5APjHP/6BffbZZ5vP4YbXu9dee6FZs2Zo3rw5hg8fjgceeKD+fdaTBax+P3fuXMydOxdTpkypT0IB4Mwzz0QQBPWbMiHhpsgTTzwhdA0ejyf/+ETU4ykRnnzySfTq1Yu5eNbBkUceiY0bN+K3v/0tDjjgANxwww2YMmVKA5srr7wSkydPRp8+fXDttdfiZz/7GV566SWMHj26weeL7rjjDpx22mno2LEjfv/732OPPfbApEmTmAkri0suuQSXXnop9t57b9x000244IIL0K1bN8ycObOB3datWzFhwgR06NABv//97zF06FBcfPHFuPjii7fx+cADD+APf/gDTjvtNFxxxRVYtGgRDj30UGzevLne5sMPP8TIkSPx0Ucf4fzzz8cf//hHNGnSBAcffDAef/zxbXyeeeaZmDt3Ln7zm9/g/PPPBwDce++9mDhxIpo2bYrf/e53uOiiizB37lyMGjWqfqGaxjnnnIP58+fj0ksvxaRJkzB16lRcdNFF+NGPfoStW7fiqquuwqhRo/CHP/wB9957b4Oyp512Gn7xi1/Uf274xBNPxP3334/x48fXX+vSpUux3377YdGiRTj//PNx44034rjjjsObb74p1W5xWrZsiUGDBuHVV1+tf2369OkoKyvDihUrMHfu3PrXp02bhj333JPpp127dvWP/x1yyCG49957ce+99+LQQw+tt9m6dSvGjx+PNm3a4JprrsFee+2FP/7xj9KPqH/zzTcAgLZt29a/9t577wEAhg0b1sB26NChKC8vr3+fRW1tLe655x58+umnuOCCC+pfP+uss7Bq1SrcfffdqKiokIozGmOhUMD777+/TYwAsOuuu2LBggVYs2ZNos9LL70U//M//4OqqipcdtlluPTSS7Hddtvh5ZdfrrfR0b9DRHXO4+yzz8ZHH32ESy65BJMnT8b999+Pgw8+uMFGByXeLVu2YPz48Wjfvj2uueYaHHbYYcx6Dz30UBxzzDEAgOuuu66+X4abJiK8/PLLGD16NFavXo2LL74YV111FVauXIl99tkHb7/9dmLZxYsX44svvsAuu+yyzXt33303Jk6ciBUrVuBXv/oVrr76auy888549tlnE31S+n3nzp3RtWvXbfp9ixYt0Lt3b+Fk2uPxFAGBx+MpelatWhUACA466CAh+4ULFwYAgrvuumub9wAEF198cf3/L7744gBAMGnSpAZ2Z555ZgAgmD17dhAEQbBo0aKgoqIiuPLKKxvYffDBB0FlZWX963V1dUH79u2DnXfeOdi0aVO93dSpUwMAwV577ZUa/+DBg4OJEycm2hx//PEBgOCcc86pf61QKAQTJ04Mqqurg++++65BW7Rp0yZYsWJFve0TTzwRAAiefPLJ+tfGjh0b7LjjjsHGjRsb+Nx9992DPn361L921113BQCCUaNGBVu2bKl/fc2aNUHLli2DU089tUGs33zzTdCiRYttXo8T+h0/fnxQKBTqX99tt92CsrKy4PTTT69/bcuWLUHXrl0btOe0adMCAMH999/fwO+zzz7b4PXHH388ABDMmDGDGwul3VicddZZQYcOHer//3//93/B6NGjg/bt2we33nprEARBsHz58qCsrCz405/+VG93/PHHB927d6///3fffbdNn43aAgguu+yyBq8PGTIkGDp0aGJ8PPbdd9+gefPmwffff9/gWioqKpj27dq1C44++uhUv7/61a+C8vLy4NVXXw0efvjhAEBw/fXXS8X46quvBmVlZcFFF11U/1rYTvG2CIIguPnmmwMAwccff8z1OX/+/KC8vDw45JBDgq1btzZ4L+yLlP4djitRunfvHhx//PH1/xfROYtQJ0OHDg3q6urqX//9738fAAieeOIJcrxhXzr//POFYvjDH/4QAAgWLly4zXvx63zllVcCAMErr7wSBMEP7dmnT59tdL5+/fqgZ8+ewbhx4xLrfvHFF5kaXLlyZdCsWbNgxIgRwYYNGxq8F62HxcknnxxUVFQE8+bN2+Yav/jii23shw8fHowcOXKb1/fbb7+gf//+iXV5PJ7iwZ+IejwlwOrVqwEAzZo1M1bHWWed1eD/55xzDgDg6aefBvDDNy0WCgUceeSRWLZsWf2fjh07ok+fPnjllVcA/PDI59KlS3H66aejurq63t8JJ5yAFi1aCMXSsmVLfPjhh5g/f36q7dlnn13/77KyMpx99tmoq6vDiy++2MDuqKOOavA5vvAULvxG0RUrVuDll1/GkUceiTVr1tRf3/LlyzF+/HjMnz8fixcvbuDz1FNPbXCa9cILL2DlypU45phjGrRRRUUFRowYUd9GaZx88skNHrkbMWIEgiDAySefXP9aRUUFhg0b1uAbUR9++GG0aNEC48aNa1B/+HhnWH/45Sr/+te/Ek82RdqNx5577olvv/0Wn3zyCYAfTj5Hjx6NPffcs/4x7enTpyMIAu6JqCinn376NnXLfFPsVVddhRdffBFXX311gy+g2bBhQ4O+HKWmpkbo26ovueQSDBw4EMcffzzOPPNM7LXXXvjJT35CjnHp0qU49thj0bNnT5x33nkNYgTYn0+sqalpYMPiH//4BwqFAn7zm99s80U7YV/U1b9DKDpnMWXKlAafKT7jjDNQWVlZP2bJxHvGGWdIxUJh1qxZmD9/Po499lgsX768Pq5169Zh7NixePXVVxt8YVec5cuXA8A2n0t+4YUXsGbNGpx//vn19zyE9QhvyAMPPIA77rgDP//5z9GnT5/619P6FKs/tWrVyspPgXk8HjfwX1bk8ZQAzZs3B4DUR+tUiC5AAKB3794oLy+vf3xt/vz5CIJgG7uQcEEY/qZd3K6qqmqbL7AIHwcLadGiBWpra3HZZZfhoIMOwg477IBBgwZhwoQJ+J//+R/stNNODezLy8u38bnDDjsAwDaP3XXr1q3B/8NFXPiZsk8//RRBEOCiiy7CRRddxLzGpUuXokuXLvX/79mzZ4P3wwX1Pvvswywf3sc04rGGCfx22223zevRz8TNnz8fq1atQvv27bnxA8Bee+2Fww47DJdeeimuu+46jBkzBgcffDCOPfbYbRadae3GI0wup02bVv8Y3xVXXIF27drV/zbptGnT0Lx5cwwePDjRVxI1NTXbPBLZqlWr1PjiPPjgg7jwwgtx8sknb5OM1NbWoq6ujllu48aNDb5llEd1dTXuvPNODB8+HDU1NbjrrrsSkwMW69atw4EHHog1a9Zg+vTpDT47GsawadMmZoxRGxYLFixAeXk5BgwYwLXR1b9DRHXOIz7GNG3aFJ06dWowZlHiraysbPBZb1OEcR1//PFcm1WrVqV+AVYQ+3z4ggULAACDBg0SjmXatGk4+eSTMX78eFx55ZUN3kvrU6z+FAQBuV97PJ784hNRj6cEaN68OTp37ow5c+YI2fMWAmlf4JLko1AooKysDM888wzzM23xL1QRIf6lS3fddRdOOOEEjB49GgsWLMATTzyB559/Hrfffjuuu+463HbbbQ2+0ZEC73N44WIuPIE499xzMX78eKbt9ttv3+D/8YVY6OPee+9t8AU8IdEv/JCJlfV6dDFaKBTQvn173H///czyYcJWVlaGRx55BG+++SaefPJJPPfcczjppJPwxz/+EW+++WaDe5nWbjw6d+6Mnj174tVXX0WPHj0QBAF22203tGvXDj/96U/x+eefY9q0adh9992VfupC5vOVcV544QVMnjwZEydOxG233bbN+506dcLWrVuxdOnSBkl+XV0dli9fjs6dOwvV89xzzwH4YRE/f/78bTYykqirq8Ohhx6K999/H88999w2yUbr1q3RqFEjLFmyZJuy4WuicfLQ1b9DTOhcJd5GjRoZ/9mVaFx/+MMfsPPOOzNtksbT8Gd4qJstcWbPno1JkyZh0KBBeOSRR7Zpj3B8XrJkyTabYEuWLMGuu+66jc/vv/++wedMPR5PceMTUY+nRDjwwAMxdepUvPHGG9htt90SbcOd9PgPlIenlSziC+NPP/0UhUKh/htMe/fujSAI0LNnz/pTRxbhj6vPnz+/wUnE5s2bsXDhwganX/Fvxxw4cGD9v1u3bo0TTzwRJ554ItauXYvRo0fjkksuabBALRQK+OyzzxrEM2/ePACoj1uU8GS1qqqqwU9iUOjduzcAoH379tI+VOjduzdefPFF7LHHHkKndCNHjsTIkSNx5ZVX4oEHHsBxxx2Hv//971qSAOCHU9FXX30VPXv2xM4774xmzZph8ODBaNGiBZ599lnMnDmz/jdCeZg+XXnrrbdwyCGHYNiwYXjooYeYyVSYLLzzzjs44IAD6l9/5513UCgUuMlElPfffx+XXXYZTjzxRMyaNQunnHIKPvjgA6HH1QuFAiZPnoyXXnoJDz30EPbaa69tbMrLy7HjjjvinXfeYV5jr169Eh/t7927NwqFAubOncu9HhP9W0TnPObPn4+99967/v9r167FkiVL6u+RST2q9MswrubNm0vFFf5kysKFC5l+58yZs82mWZwFCxZgwoQJaN++PZ5++mlm4hvt99Gk8+uvv8ZXX321zZfZhTGpPOHg8Xjyhf+MqMdTIpx33nlo0qQJTjnlFHz77bfbvL9gwQL86U9/AvDDAqdt27YNvrUU+OF3BnncfPPNDf5/4403AvjhdwiBH74psqKiApdeeuk2p2FBENR/bmnYsGFo164dbrvttgaPM959993bJMb77rtvgz/hDnzoK6Rp06bYfvvtmY+I3XTTTQ3iuOmmm1BVVYWxY8dyr5VF+/btMWbMGPz5z39mnip99913qT7Gjx9f/xt7rM9eivhQ4cgjj8TWrVtx+eWXb/Peli1b6tv/+++/3+YehotOVhvLsueee2LRokV48MEH6x/VLS8vx+67745rr70WmzdvTv18aOPGjQFsu6mig48++ggTJ05Ejx498K9//YubvO+zzz5o3bp1/Tf4htx6661o3LgxJk6cmFjP5s2bccIJJ6Bz587405/+hLvvvhvffvst/vd//1coznPOOQcPPvggbrnllgbfGBzn8MMPx4wZMxoko5988glefvllHHHEEYl1HHzwwSgvL8dll122zecTw76iu39TdM5i6tSpDeK49dZbsWXLlvoxy6Qew98XlemXQ4cORe/evXHNNddg7dq15Li6dOmC7bbbbptNh/322w/NmjXDb3/7221+eiuq92+++Qb77bcfysvL8dxzz3G/7XfgwIHo168fpk6d2uBpmltvvRVlZWU4/PDDG9ivWrUKCxYsMPbN7h6Pxz38iajHUyL07t0bDzzwAI466ij0798fkydPxqBBg1BXV4fXX38dDz/8cIPfrjvllFNw9dVX45RTTsGwYcPw6quv1p8Wsli4cCEmTZqECRMm4I033sB9992HY489tn53u3fv3rjiiivwq1/9CosWLcLBBx+MZs2aYeHChXj88ccxZcoUnHvuuaiqqsIVV1yB0047Dfvssw+OOuooLFy4EHfddZfwj5wPGDAAY8aMwdChQ9G6dWu88847eOSRRxp8MRHww+cDn332WRx//PEYMWIEnnnmGTz11FP49a9/TfophZCbb74Zo0aNwo477ohTTz0VvXr1wrfffos33ngDX331FWbPnp1Yvnnz5rj11lvxP//zP9hll11w9NFHo127dvjiiy/w1FNPYY899miQOOtmr732wmmnnYbf/va3mDVrFvbbbz9UVVVh/vz5ePjhh/GnP/0Jhx9+OO655x7ccsstOOSQQ9C7d2+sWbMGf/nLX9C8efMGJ36qhEnmJ598gquuuqr+9dGjR+OZZ56p/13SJGprazFgwAA8+OCD2GGHHdC6dWsMGjSI9Dk4FmvWrMH48ePx/fff4xe/+MU2vwXau3fv+icPamtrcfnll+Oss87CEUccgfHjx2PatGm47777cOWVV6J169aJdV1xxRWYNWsWXnrpJTRr1gw77bQTfvOb3+DCCy/E4Ycfntjm119/PW655RbstttuaNy4Me67774G7x9yyCH1SdGZZ56Jv/zlL5g4cWK9Fq+99lp06NABP//5zxNj3H777XHBBRfg8ssvx5577olDDz0UjRo1wowZM9C5c2f89re/1d6/RXXOo66uDmPHjsWRRx6JTz75BLfccgtGjRqFSZMmATCrx6FDhwIALrjgAhx99NGoqqrCj370o/p7kUR5eTluv/127L///hg4cCBOPPFEdOnSBYsXL8Yrr7yC5s2b48knn0z0cdBBB+Hxxx9v8JnM5s2b47rrrsMpp5yC4cOH49hjj0WrVq0we/ZsrF+/Hvfccw8AYMKECfjss89w3nnnYfr06Zg+fXq93w4dOmDcuHH1///DH/6ASZMmYb/99sPRRx+NOXPm4KabbsIpp5yC/v37N4jpxRdfRBAEOOigg8Qa0ePx5B/L39Lr8XgyZt68ecGpp54a9OjRI6iurg6aNWsW7LHHHsGNN97Y4GdH1q9fH5x88slBixYtgmbNmgVHHnlksHTpUu7Pt8ydOzc4/PDDg2bNmgWtWrUKzj777G1+AiAIguDRRx8NRo0aFTRp0iRo0qRJ0K9fv+Css84KPvnkkwZ2t9xyS9CzZ8+gUaNGwbBhw4JXX3012GuvvYR+vuWKK64Idt1116Bly5ZBbW1t0K9fv+DKK69s8FMNxx9/fNCkSZNgwYIFwX777Rc0btw46NChQ3DxxRc3+PmJ8GdI/vCHP2xTT7wtgiAIFixYEEyePDno2LFjUFVVFXTp0iU48MADg0ceeaTeJvz5CN7Pn7zyyivB+PHjgxYtWgQ1NTVB7969gxNOOCF45513Eq+b5ze8R+FP0sTbIM7UqVODoUOHBrW1tUGzZs2CHXfcMTjvvPOCr7/+OgiCIJg5c2ZwzDHHBN26dQsaNWoUtG/fPjjwwAMbxEdtNx7t27cPAATffvtt/WvTp08PAAR77rnnNvbxn28JgiB4/fXXg6FDhwbV1dUN6uZdP+unQ+KE18f7E/35jZCpU6cGffv2Daqrq4PevXsH1113XerPYrz77rtBZWVlg58ZCoIffn5n+PDhQefOnRv8VEyc8GdFeH/iPx/y5ZdfBocffnjQvHnzoGnTpsGBBx4YzJ8/PzHGKHfeeWcwZMiQoFGjRkGrVq2CvfbaK3jhhRca2Ij0b5GfbxHROYtQJ//5z3+CKVOmBK1atQqaNm0aHHfcccHy5cu3sReJl9eXkrj88suDLl26BOXl5Q3uRdrPt4S89957waGHHhq0adMmaNSoUdC9e/fgyCOPDF566aXUumfOnBkACKZNm7bNe//85z+D3XffPaitrQ2aN28e7LrrrsHf/va3+veT+hNrfH788ceDnXfeOWjUqFHQtWvX4MILL2Teo6OOOioYNWpUauwej6d4KAuClG+M8Hg8niLkhBNOwCOPPMJ8tM3j8RQvd999N0488UTMmDEDw4YNyzqczBg7diw6d+6Me++9N+tQ8M0336Bnz574+9//7k9EPZ4Swn9G1OPxeDwej6fEuOqqq/Dggw8mfgmdLa6//nrsuOOOPgn1eEoM/xlRj8fj8Xg8nhJjxIgR3N+3tc3VV1+ddQgejycD/Imox+PxeDwej8fj8Xis4j8j6vF4PB6Px+PxeDweq/gTUY/H4/F4PB6Px+PxWMUnoh6Px+PxeDwej8fjsYr/siKPxyJBEOCTTz7BCy+8gIULF2Ydjsfj8Xg8HgD9+vXDuHHj0LNnz6xD8XhKBv8ZUY/HMMuWLcNLL72Ep59+Gs8//zyWL1+Orl27okmTJigrK8s6PI/HeT744IOsQ8gdO+64Y9YheDy5IQgCrFmzBl999RW6dOmCCRMmYP/998fee++NFi1aZB2ex1O0+ETU49FMEAR4//338fjjj+PRRx/F3Llz0aFDB7Rv3x5dunRBx44dUVnpH0bwFA9Tp061Wl9QKFitz1XKyovz0zVTpkzJOgRPiVJXV4clS5bg66+/xrfffotly5ZhyJAhOPzww3HIIYegb9++WYfo8RQVPhH1eDSwZcsWvPbaa3jsscfw6KOPYtmyZejevTs6d+6Mrl27onHjxlmH6ClhfKLocQ2fRHvywNq1a/HVV19h8eLF+OKLL7Dddtvh8MMPx6GHHorhw4ejvEj7scdjC5+IejySbNq0Cc8//zweeughPPnkkygUCthuu+3QrVs3dO7c2Z96eoTxiaLHkx+KNYkGfCKdxObNm/Hll1/iq6++whdffIHGjRvjkEMOwZFHHokxY8b4Od/jkcAnoh4PgS1btuDf//437r33Xjz++OOoqqrCdttth+7du6N9+/Z+d7RI8Ymix+MpBnwSrYdCoYAlS5bgiy++wOeff47KykoceeSR+PGPf4zddtvNrwU8HkF8IurxpFAoFPDGG2/gvvvuw0MPPYQtW7age/fu6NWrF9q3b++/cMgRfLLo8XhKkWJOLrNGJLktFAr45ptvsHDhQixatAjNmjXDsccei2OPPRa77LKLXyN4PAn4RNTj4TBnzhzcfffduP/++7F69Wr07NkTPXv2RMeOHf1upyQ2k8WkRDG6cEtLKE0u8nwyW7r45MHjMq6MTVmOv/G6RZLSrVu3YvHixVi0aBEWLVqEDh06YPLkyTj++OPRu3dvpXg9nmLEJ6IeT4Rly5bhgQcewO23345PPvmkPvns0qULKioqsg7PCq4kiyagJKA2YvB4bGCyr5vuz1noNMtxwub4kMd+4cK4LfoI8JYtW/DFF1/UJ6W77LILTj31VBxxxBH+J2E8nv+PT0Q9Jc/mzZvx9NNP4/bbb8dzzz2HTp06oUePHujVqxeqq6uzDo+M7kTSlZ1xVVxIQk2QVWJbbG1YbNeTFcXYjsVyTX6sUEfmlBQANm7ciE8//RSLFi3CsmXLcPDBB+Pkk0/G2LFjS2aT2+Nh4RNRT8kye/Zs3H777bjvvvtQXl6OHj16oE+fPrnZqUxLOMPJv1gTMFFK+fp5C09W34i+XmoUWyIqCqt/8PpG/P1SodiSUSqs8TMpoS2ldpI5JQWAFStWYP78+Vi4cCFqampwwgkn4KSTTvK/UeopSXwi6ikp1q5di7///e+46aab8PHHH6NXr17o3bs3OnXq5OwXCogmnGmUYkJWStesujgs5aS0lBLRpOSTWk60bN4pxWSUOnamnbYWc9vJnpIWCgV89dVX+Oyzz7Bw4UIMGzYMZ599Ng499FDU1NSYCNXjcQ6fiHpKgnfffRe33norHnjgAbRs2RK9e/fG9ttv79Sjt7oSziRKKdko5sWj6RMJ2WQljxRzPwHM3stSSk6LvZ8AZuaHUktQZU9JN27ciHnz5uGzzz7Dxo0bccIJJ+C0007DgAEDTITp8TiDT0Q9Rcvq1atx//3345ZbbsGnn36K3r17Y4cddkC7du0yjctGwplGMSekxXgKmuWCv9iT0mJMMLK6Z8WemBbj2AJkMx8U++O9sqekQRDgm2++wfz587FgwQLsvPPOOPvss3HEEUegtrbWRKgeT6b4RNRTdMycORM33HADHnzwQbRp06b+8Vvbp58uJJxp5D0hFfnyjWK5JheuoxiS0lLpMy5cQzElG8Xeb1yIvdhOT1nXQz0lDRPSDRs24H/+539wzjnnoF+/fjrD9HgyxSeinqKgrq4Ojz76KK699lp88MEH6NOnD3bYYQe0bdvWeN15SDjTsJGQ5vlnS0zdw7wv1G1tZNj4iZC8/dyEq8lnGrY3WkzcV5P9JV6PCVxLQNPIKkHVeY/jfYaSkAZBgG+//Rbz5s3DggULsNtuu+H//u//cOCBB/pv3PXkHp+IenLN119/jVtvvRW33norysrK6hPQRo0aGakvKenMw4SeRh5/w87UoiqPbZEleW0v3V9UlNd2yIo8t5fux7rz3BZZkNf2kn1sFwA2bNiAjz/+GPPnz0fjxo3xk5/8BKeccgratGmjLT6PxyY+EfXkjiAI8Nprr+G6667DP//5T3Tv3h077LADunbtqv2bb33i+V9cvF7XP99XbI+asRDtQ65eq8vfmFuMj4OyyPN1ujwG5X18p5DHsVYlIS0UCvj8888xb948LFmyBEcddRR+9rOfYZdddtEdpsdjFJ+IenLDpk2bcP/99+Oaa67B559/jj59+qB///5o3ry51nriySdrAsvTZytlFnkuL65CXI8x7aTW5c+C8qA8SpyXx/9cTkSB5H6e10e7Rft+XsZZ18cigN/P85jAhYg8np6HR9hVElLgh98lDU9Jd9xxR5x77rk47LDDUFlZqTNMj8cIPhH1OM+KFStw66234rrrrkNFRQX69u2LPn36aBtkWaeelInKlYlO54LC5YWVywmOysLZpcRUV4Lj8r0KcTkRldGha8mpjn6dh4TU5TEToPdzV0+pdY+xrt0v2c+RAj9s1s+bNw+ffPIJamtr8Ytf/AInn3wymjZtqjtMj0cbPhH1OMvChQvxxz/+EXfccQc6dOiA/v37Y7vtttPy+K1q8snD9ERna3Hg6uLc1cTG5u/v2exPuq/DpXsGuJs86G4zm6depvut709y6BzTs+5Ppq7DpfumkpAWCgUsXLgQH330EdasWYMzzzwTP/3pT9GpUyfdYXo8yvhE1OMc77zzDq666io8+eST6N27NwYMGKD825+mEs8kZCdQF3aiXUxEXVzk2VwUqy7wszwpczV58H1KrU+48vu2Lt6/UoxJ19yVxcmlq0mpSkIa/ibp3Llz8cUXX+CYY47BL3/5SwwYMEB3mB6PND4R9ThBEAR46qmncNVVV2HmzJno27cvBg4ciGbNmkn7zCL55CHz7X5ZToSuJaIuLe5cWrDkqV+5mDj4fs6PgYIr8bpyL124j1FciIfar1yLNet7qZKQAsD333+PuXPnYt68edh7773xq1/9CnvttZf2L3j0eKj4RNSTKUEQ4IknnsAFF1yAr776Cv369UP//v2lfn7FpcQzjkuf/xPBlQW6S4tMlxLQOHnpXy7dT8Cdfg64kSzwcHFhHsfFvgW4E4sLcbBwfexyre+rJqTr16/H3Llz8fHHH2PQoEG46qqrsM8++/iE1JMZPhH1ZEKhUMATTzyBCy+8EF999RUGDRqEfv36kb+AyNXkU2RydWmhEseFhYsrC0tX4oiTlBi7GjPgVmy+nyfDiy0vmzJZx+XKGO9CP2fBulcuJ6YuJaWq37RbV1eHDz/8EHPnzsWAAQNw1VVXYezYsT4h9VjHJ6Ieq4QJ6AUXXIDFixdLJaAiP69iG9nJ05WFShzZhYvMY32m0XEdrtwfalwuLcrjqPT9YuxnLt0fSlx50IpsTK71M5XrcOW+hIjq36XkL46uvq+rn8mckMYT0iuvvBL77ruvT0g91vCJqMcKhUIB//jHP3DBBRdgyZIlGDhwoHAC6uKpp65dW9cWoroXXiqL86wndZUYdKJjseNaPwPcuE8qC3QX4teJaj9zNWHQdZ9U+4nvZ/9F9yaUC9flSj8D5BPSuXPn4sMPP0T//v1x5ZVXYty4cT4h9RjHJ6IeowRBgGeeeQY///nPtSSg2/i3NAGZfFzI9qmo6ISZxeSe5QmxC99WHGLqlCmLhNSldo2T1UmRSxo00deyOiV1qV2jZP3ki0sa1N0WWSamLrVriK6EdO7cuejbty+uu+467LnnnjpD9Hga4BNRjzFmzpyJn/70p3jvvfew0047oX///uQENGkQt/n7Yrr98+ozHX8UXl1ZLZqyrjepbhs/fWJz8W4iIU3rc671t7BuF+stpv5mY1MljoiOS2V8C+uWGdtCdN8zW30tJKt1gQsbMjLJKPDfR3Y/+OAD7LPPPrj22mvRt29fXSF6PPX4RNSjnc8//xy//OUv8fjjj2PgwIHYaaedUr8FV8fnPlUSUxe+IIE6SZtaQGSxOM9ikaa6KNWRLGT5+TrZunUnSVlvQOSpXt/ntsX3ObF6TX0Wm3oPs+xvISr9Lk/fOaAjIV2/fj1mzZqFefPm4YQTTsBll12GDh066ArR4/GJqEcf33//Pa644grcfPPN6NWrF4YMGYKmTZsmlhE9/ZQhaRJxIfFkEZ+sbT/6k+ViIU9JqIjfOLx76kqfA8T7nSmtlkq/szHWheSh3wFifc+UVouhD9iukzI3Zf1ocogLa4KsPx4hm5CuXLkSM2fOxNdff41f/vKXOPfcc9G4cWNdIXpKGJ+IepTZtGkTbr75Zlx66aVo3bo1dtllF7Rt25Zrn9W33rr6JQchthZgaTHkfYEkUl9WddquW5SsN2ayWpyXSl+P4vseu/5irS+LOl2Yy0Rw5fOleUpIlyxZgpkzZ6Kurg5XXXUVTjzxRFRUVOgK0VOC+ETUo8Rzzz2H008/HRs2bMCQIUOw3Xbbcb9lLYsENG3X3bUvjwgKhZJ5bKwUk9Do/bUdSxzXtJFFfyjmZIBVr0ubImnaKIYnJNLqK+aNl3i9WW84xInfcxcen7VRr45kNAgCfPbZZ5g1axY6deqEqVOnYrfddtMVoqfE8ImoR4pFixbh7LPPxssvv4whQ4ZgwIABKGdMNC4kn7x6bS4+ZL7koJgTgSzqslVfvE5evVkuQNLqLJVTm2LddInWyas3i6RUtM9nrdliGwPD+lyaU7JKTEXucxZJaR4T0i1btuCDDz7A+++/jyOOOALXXHON//yoh4xPRD0kNm7ciN/97ne4+uqr0atXLwwdOhS1tbXb2LmQgMp8IYGuOHV8SUJevtBCph6geBd7UbLsg6x4ZGIq1mS0GPt7vE5KvaYWwip+s0xIi61vuD6nmE5MXdIEpd48JKRr1qzBO++8gyVLluCKK67AWWedJfQLCR4P4BNRD4GnnnoKZ555JjZv3oxdd911m52vPCWfSX6oPkxMoMX62KDtemzUFa9PpU5VP7pPuYr5ce1iTUR11KejH7kwNsuSRSJgox6XE1Fe+Tgy/nTcz6xPSU3WpyMZBYCvvvoKM2bMQJs2bfDnP/8Zo0eP1hGep8jxiagnlYULF+KMM87AtGnTsMsuu6Bfv34NHsO1nYCanBBkHtsxFYcLnx9K+tKJrMn6cet4fbrrFL0W049YupRI5bU/utB2qj6jZPFIY5baps4FWeP74rb2JuNwYc2juy/KJqRbt27FnDlzMHv2bBx00EG4/vrr0bFjR62xeYoLn4h6uGzZsgXXXXcdfvOb36BXr14YNmwYampq6t+PJ6CAuQE5q4E/qy9ZMLloUJmwVHeTVa9HJnYbbWhrt5pHnk9tsuiPYb26T2tEMD1G2u6Ltr/oxUZCanucUb13qkmIKV1n9d0LUWzqodj6o8rp6Nq1azFjxgx88803+OMf/4iTTz6Z+T0iHo9PRD1M3n33XZxwwgn49ttvMXLkSHTq1Kn+Pd5vf+pO2Fz4fIbtuuMxmFyYhL5NL2BtLhxF+qNKHFn1yazrjtZvqk/G713eH1WMt5epRXMWj66y6rZdv4nHLaOwxpK8bj5G6xAdI0NU+mTW/dFmDKY+nsHyaXszRiUh/eKLL/DWW2+hX79+uPPOO9GvXz8d4XmKCJ+Iehqwdu1aXHDBBbjtttuw0047YfDgwfW/EcVLQJOgJqdZTSRpO/22J1QgeaGscwFhe0GetX+ZBNWVTZH46ZNryaiufpn3PhnWoaNPAmLtnWUS6HpCKtu+LB+u9BlZ/wDtepNIa+8sx6c8JKWqm6U2E1KVZHTz5s2YOXMmPv74Y5x//vn41a9+hUaNGukK0ZNzfCLqqefpp5/GqaeeioqKCowcORKtWrUCIJeA8hB9xCTL5JNn58Lubhxd98OVJFHGtw7/LvVLgPaZIN8vi9d/1o8exqEmfVk+McDC98vi7JcA/bPlWa0xWOi8H6bnWpWE9LvvvsMbb7yBpk2b4q677sKoUaN0hOfJOT4R9eC7777DmWeeiaeeegrDhg1Dv379UFZWpjUBZZHlZy+p9dnaqWaR1x34vCShInWYrotVnys74vF6ovi+yfdfjPeDUk+x9s28JItJ/ovpfkTrlD3pLZb2MKk5XclooVDABx98gFmzZmHy5Mm45ppr0Lx5cx0henKKT0RLnIcffhhTpkxB27ZtMXLkSDRu3NhqApr0eRVddevwq3txIDI5ufSYVqn4jvqP11Hq/TOLz8zlcTGeRaJicnGturg1sTjOun/mOVk0Pa+w6jCZjKnciyx0Y+Mx9jwkpKtXr8Ybb7yBuro63HPPPRg3bpyO8Dw5xCeiJcrSpUsxZcoUvPTSSxgxYgR69eqFv/zlL/XvZz046lz8yPrg+aT6kp2EbSSieUsUXVlg6kweZcvr9CfTR125F7K+87rQF2kXXQtsk4+/6+ijom2Q9Xwm67tYx1CdianJx41V+yilDUwmjK4mo0EQ4KOPPsI777yDY445Btdff70/HS1BfCJaYgRBgIcffhinnXYa2rVrh5EjR+Lee+/97/sGBywZ/7LJq0xdovFQ45CNJ4+nNnldQOlM4vKw+CjlPhr6zlsfVfHvUhKnoheZeFwdN0R956n/h76BfG+GqeiFGo8rc4Kqb5WEdM2aNXj99dexadMm3HPPPdhvv/10hOfJCT4RLSG+/fZbTJkyBS+//DJGjhyJF198sf491xLQJH+hL9uf9YjWmRSDrjjydmpjasKzdbKh+1Qy6tPGJgkvDpN6yesjinnzG/oGzJ78mNZaUiw2+qkOX1n4NuE3j/006tfGxwN4cZjSSx77qc7T0Y8//hgzZszA0Ucfjeuvvx4tWrTQEaLHcXwiWiI8/PDDOPXUU9GhQwfMmzev/vW8DHYs/ybrodRvIoY8niya8JvHiTnu21QdrsSQx5MbkxsxeWzjOMXYV/M4luRprDbt29bcS40hryftun2HflWSUaDh6ehf//pX/9nREsAnokXOypUrcfrpp+Nf//oX1q1bV/+6qWRBt29eHSbrcqHuLBf3vOs1QdaPXZk+FYhTzP01q0VtqfRXG+NNnGLsr1mPKy7117xs8rDqYJFVvabqdiEhle2vuj47etJJJ+EPf/gDGjduLO3P4zY+ES1iXnrpJRx33HFo0qQJPvvss23e1/3ojO3He7P8fIjpyVaXf9VFj0gMlPugEo/rjz6l+c/yc3eufnaR50cW0fpF9WUrHpEYbN+7rD67ZnujKMs+61p/BfS0RxabtC70VxP1JtWtwx8FSn8F1E9HV69ejenTp6O6uhoPPvgghg0bpuTP4yY+ES1CNmzYgPPOOw+33347hg0bhv79+6OsrKz+/ejPs8SRmeyy/Hypjc9N8exdSERFJ5ToZ1pcf3SM5TPtOtPqzzIBNRULVYeuJKMifTZ+713/jFz82qnXKOpXNzInzrY+r+mSZuP2LEx9bjDqM+s+KxJDVokoyyaKjrE2T/NM3J6FjT6rmowWCgW8//77mDVrFn71q1/hwgsvRGVlpY4QPY7gE9EiY+bMmTjqqKOwYcMGjBo1SvjD3knJKfDD4JTliY5IWZkyNuukEE7muhYHoU9RWxFsJaEi9jzy0G8p5VT6ra1Fkmi/1X0aRMFEIqqrzwIN2zDrjQNWmRDT/V2lHNW/zn7rwtgo6lP3hqcrm7RR+zi21xc25h0djw2bPHlVTUiXLVuG6dOno2vXrvjb3/6GHXbYQTU8jyP4RLRI2Lp1K37729/i8ssvx+DBgzF48GCUa3hMh5WgmphcVX2LDKA6d0lNJXU8dE0KLi+MdPrjtaepvmuy38btbNQn6zOOi4+mZrmgF/HDw8T90tGP0vzY1ImK3ygu9tvQp4v+bMxf0Xp09dskX7Z1oupbl3+XT0e3bNmCd999F5988gmuueYanHnmmQ2e9vPkE5+IFgFffvkljjrqKMyfPx977rkn2rVrp8VvNAnlPb4jM1CZGpxZA6jpiUDnhAjk5xHavPgLfZrYhFDxIeLTpk5ky0fxfdfM2KIzWbKxEWHjcT8Vn7yxIA+P1LruL/Rpou/Gfesgq74r6zdvWmP5U01GAWDx4sWYPn06dt99d/z1r39F27ZtlX16ssMnojnn0UcfxYknnohu3bph1113RVVVlbJPVgIaR2ZQNf24CqsOU/WEdak81pTWtq4kzSxfgLuLIRF/Mv3E9COC8Tps1OP7rx5/NhNv2cW9rUdcKTHpqIty3WllSjUZtalVleTU5GO/tsde0Xqy7L8uP6q7ceNGvP7661i1ahX+9re/YezYsarheTLCJ6I5Zd26dTjnnHPw4IMPYvfdd0evXr2UfYokoCySBtasBneTdUXrjNehYwfY5ROlPCyqqP7S+o6NBFQkDlP1ifRhmfZ0ORF1NTYZfyJjjol7IhOHqfpc78N+DE63Z+H7sFwMeUlIVZPRIAjw8ccf4+2338Y555yDK6+8EtXV1crxeeziE9Ec8t577+Hwww/H5s2bseeee6Jp06ZK/mQTUBY2B3KRBDiPk1bWC9s0X4B7CypdE2WWC5F4Pb4Pm/Hnqh50+bPdh+N12t7EMdmHdfgx4c9VX7r8ZdGHo/Xa3kw33Yd1+Ir6cykZBYDvv/8e06ZNQ4cOHfDwww+jT58+yj499vCJaI4oFAq47rrrcMEFF2CnnXZS/kIinQloiOlTHcqkYPrzJCIxyNbj0qIgL750+Yv71O2b5d/mo4Ks+k35dzV5dNUXYP4+m6pD9HHMUu/Huvy52o9N+At9xsnykfi86NTl01Gdj+pu3boV77zzDubNm4ebb74ZJ5xwgv8io5zgE9GcsHz5chx33HF4++23MXr0aHTo0EHal+4E1PSpjuwEYGpnNn59ri98XE0cXfMV9Rf3aerEVfRzUabrzsPjtEBxL+BtJD06F9My/dJEXzZ9AutqMur6OGpyXtSdlKo+Tqy7L5tIevOQkOo4Hf3yyy8xbdo0/OhHP8LUqVOVnxj0mMcnojng9ddfx2GHHYamTZtijz32QKNGjaT82ExAeXayn3Oglo36UKkzrV6Xd5JlFxdJn9kJkY3R9cVTiO5dcV19mVrWhScIsr7XpvqzK9cn61OlT6ouQlWT2KRyriejqr5M9Oe8JaK896NQ+7OOsUW3hlxPSHX4SuvPMsnpunXrMG3aNFRVVeEf//gHBg0aJBWbxw4+EXWYQqGA3//+97jkkkswdOhQDBw4UOpRg6wSUF450Ue4KL5l61R9JMalRFRkgeISOq4zq4lZZlFM8Z9WrwkNuXgqmqc+rXqdWW4CUDcsKL5V63SlP9tYdLuEa/1Zti8D7vbnLE5gVeJI8+Ma5eXlqK6uxo033oiTTz7ZP6rrKD4RdZRly5bhmGOOwbvvvou99toL7du3J/swmYDqTCJMfvYi6t/EYz02J1yZAd+Vx7+iftKuQzTJcqFP8/quiVMZVp26NWT7MUTRPh32G5cezQ39qJ5Qufbop+0+bbK+LMYL0f7g2iO6OucX1zdo433M5BjNqk+2zqwSUmrf0P2osqqvZs2a4YADDsDtt9/uH9V1EJ+IOsj06dNx2GGHoXnz5lKP4rqYgCb51OlXpC6d9Zl4lDaNtPpcXeCI+DH5WDCvLt+nt/XtWp8OfbmSiIr2HZ3XL4Lv08l+TTwRxIMy3unoj7a0QUlK8jAm5b1P6/Dpap/W6adbt26orKzE448/jp122knJp0cvPhF1iCAIcO211+KCCy6QehQ3moBu41tx983kwtTERGCzHh07m1FcGMBdnUziuNyvdfpPqyvLxzpZZVnkabFtMxYWKm1v+nTHRB026nG5X6v6cTGh5SHb/r5fp/vW2bddONXUvX4YNmwY5syZg9tuuw3HH3+8kk+PPnwi6ghr1qzB8ccfj1deeQVjxowhP4rLOwWVGQRNL9RZ8Zma/Gw8giP6KCkvNlFfovGwfGfhx2QsspOniX6Q9qisyR1w049L6ujbLi6SXY5Fpm/b7Ae2Hne1OQ8l2UXh3StXx0mXYpFNTm3N3SYfe7XZr9P8iqwJXUokdcey//7749VXX8Wxxx6LG2+8UfrLPz368ImoA3z00Uf40Y9+hC1btmD06NGora0VLkt5DFckURP1JYKoT9071Sw/NiYzlV3gYluM2L6etIVjVota1XpFNJTVQi0ppjRfsvGI1mfSR+jHlb5N8UUhzafOvm2qDlGfqhtbIrYifrL2EfrJum9Hy2bdt2XrtlGHqM8sDyR0+NEdyzHHHIP//Oc/6NChA/7xj3+gW7du0j496vhENGMeeughnHjiiejbty+GDh2K8oSBOYqOz4GaemREZoClTDaycet8vMfFR49cWcy4sAtq63Eoan8VjUG2DlMnvZRYeL58/97Wj2tjd9y/a/2bUgfFp4rvYktGs+7fuudWXh2m1xpUW4p/qk8V3y4mkjp8nHTSSXjrrbewePFiPPzww9h3332lfXrU8IloRmzevBnnnnsu/vKXv2DPPfdEjx49hMrp+iIiE4O9ruQh6dQnCrUO3Qs/2Th4/l1ZqLsyUej0EyeLPp5WVnVBotr2Jvt41otbnXG4otWoHxa2F52U03tV/7r7uM77kPf+6YpW4/HEUe0DJvq3iv94Ha728az7lk4fU6ZMwSeffII333wTF154IX79618LHwZ59OET0Qz47rvvcPDBB2PBggUYM2YMWrRoIVTORBKa9OhdFrt50UFG966/6qlrvKzuxaQrg7PtCZ7lw5Qf2f5qMi6dGqLegzSN6Txp1ZXAuZBEuuCD50f1FEfUXsRP6EvniabKaSqrnGtJpCs+irGP64qLN2ab2GDSMUeZnlez8qErGV22bBn+/e9/Y7fddsPf/vY3NGvWTNqvh45PRC0za9YsHHDAAWjatClGjRqFqqqq1DKmE9AkO56ticdJbPkWPXFNq9u1RLRYklBb7Wn6BEe1blXfaTv2onW7dEKSdSKat34uumA30c91byTy/Ovo58WYjOY9Boofaj/P21ie5JfSd11MSF1IaKdMmYKNGzfiP//5Dxo1aoSnn34avXv3lvLpoeMTUYs8+OCDOPHEE7Hjjjti8ODBqT/NYjsBFSlna2Gu23+0Ht5JFLVOVxboWSeRLkxKKn5M726n1WeyDh1PFhTbhksxLNB19POwvKkxPalOE/5ZfZ1al0uJpIoPF/pplvNjWl/Pcz8Pfavo1rWTTVkfupPRQqGAGTNmYOHChXjkkUcwbtw4KZ8eGj4RtUChUMCvf/1r3HDDDRg9ejS6d++eWkb3lxHpftRKB0l+bexcqvrPakHJKu8CWS+aVOOI+1H1leQ7j309ax++rzf0Y+rxQh3Y3MTU7duFvh71kTV57+u2Nv5YY7ru+nT6deV01JV+DvyQjALAvHnz8Oabb+LKK6/E//7v/6YeGnnU8ImoYVatWoWjjjoK77zzDvbZZx+0atUq0d6lBDTuy5RPk4/QyDxyS/FtctFDGaBdOA1NIu2xItcm1Cg6+6DJdojXFcWFxXnoR/RRyiRU+quN5CDpGl26FyxMx2d6ftLp12QyqtqXVOsXLS+C6f6ua75mYXMOd7G/2zrZdLm/R2MLk9GlS5filVdewcSJE3HHHXegpqZGKi5POj4RNcinn36KCRMmoFAoYPTo0Yk/nOtSAipyUkmtQ2ZAlh1Y0urSObFlOcnrisFkeZHrzPrkIeon7svm408m+rvO09asNy10xZB1f0/zoRqDii+bj7aa0JarJ6NJmO7vquV19HeTMVD8xOPIqr9T6xLp71SfonXI+uAh2p9UEkrV+MNkdP369XjllVfQvn17PPXUU+jUqZOUX08yPhE1xKuvvopJkyahR48eGD58eOJXQkeTUBZporL9WCKlPh0DPbWOtHpsJ6Jpg7PLiaTpunnY6vNRX7omSFvJK1Wvvs+7sXHDQ7RdbWwqUMftLPq8yQROxo+Lfd6FRDYJ232emlSL9EfdG+VJ9rafMpBZe0VRPZ10IRndunUrXnvtNaxcuRLPPvssBg8eLOXXw8cnoga45557cNppp2HXXXdF//79uXZpp6BpA6Ou3TBZPzzBm9ilS6uDUo+piS1pUE66v3lbVJtc3Ig8emRi44Xa51llbMSlW6uysan2+7wmoqr3ldLnATOn21Q/aX1O90lKWhvp0KqO2ETGqrhtKY711D4fr8/2xnFomxRT1MbkHKSiVVf6vGwsWfXbaNxhMhoEAWbPno05c+bgoYcewsSJE8l+PXx8IqqRQqGACy64ADfccAPGjBmDrl27cm3DJFT28YwothNQlo+goP6NhUl1sPzL1qFjYqMuvnXHkfXiwmbduu67ahxpMYXoPLHS6V/3wkk2JlMJnetlAfnkL4qJjT2ZmKJjss6xnuVftg4TC/MoMuNYnhblYXnf7/XHZLIOV/p9MSWjALBgwQJMnz4dv//97/GTn/yE7NfDpjLrAIqFDRs24Mc//jH+/e9/Y+LEidwvJVL5LCgvGaNOFDoTxjAm3QuSkNCvKf+UGFhkEU+WZDExhPbR+yA7wemaoFkx6ewLJjd2KJhcGJaadijXm3TqqNr3Zds9fjJiYkyO6kqH/7g/HRu/qjHJ9P3oPGuzbIhsWd6aJcmeVXf07yRbE4g+/aGjDl3XqKojXX1fRX9hedlr0FE2Tu/evdG0aVNceOGFmDt3Lm666SZUVvo0ShV/IqqBb7/9FgcccAC+/fZb7LPPPqitrWXayZyChiQtPkQHL50Due7T2STf4aCge/dRtJ2icYj6UI3BlxUrT+nTOhfOtvq/7lMnEV+ij6VldTKbxYI6D30/qQ7f98US+LQ2zfKEJyyfp76vUm9SeepTMibWD5T6qb51PA3A8pvmK2k+zfLphKzLRk9FAWDNmjV46aWXsOOOO+Kxxx5D8+bNSX49DfGJqCLz58/HPvvsg8aNG2PUqFHM3RHVb8RVHURMJqAmkjMTvln18NqHVX+aD5kYbC/kiy0J5dmFmDi1FNkQ0tH/dftO8kVd1OmIJ4sFtUrZrPs/te9H67PR/3XUYdJ3ki+ZpEYlnjyOw1npVbS8yAaCyY08HWssEd82+j+lrfPSh00ko3V1dfj3v/+Nxo0b48UXX/TfqKuAT0QVmDFjBsaPH4/u3btj+PDh2/zora0ENK2sSgw8f7p23qknWqZ29GXa1/TkyisHZDOIu5yE8spFsbGrLKNZ6kaTzusQqddELHlMJvO46RTF9392nTI+87gYD8vmpU6V8ib6f9Sv6Ik6VQMmN0B4vmR8unA6msUaKJ6MFgoFTJ8+vf6EtG/fvuSYPAD7KMiTyrPPPosxY8agX79+2HXXXbUmoWXlDZ9r1zEIy8KKJSmetFPGqE+KXxWi9cUHQJP1JsVjm7wlofH+QYVVRrbdKXqMvp9WH1Xnon5F6mPFS8HUhlCxoeMaZe8P62RFpe+IxBPv/yIaEPEbfV/1OnScXvFObKnlVcrKkpc6VWDN7bx1gCgi81G8XpH6ROc5qrbS6ov7pqAai4p+dNQrWy7+U4vl5eXYc8890b59e4wYMQJvvfUWya/nB/yJqAR//etfMWXKFOyxxx7YfvvtG7yX5SloUnmqXxM7vrp2oanxs+rL6kRTpWyWC/csEljd5bPSQLS87ZOYpPqyOq2Ols+TDrI4SZWtl1depv+Z0LLNE0UbGpD1ofPE2wa2NyTD8jrnatlETNe90tX/dM1nWZ5uRsvnRQPAtiejAPDhhx9i5syZePjhh/3PuxDxiSiBIAjwu9/9Dpdddhn22WcfdOnSpcH7qqegsmVFy+uykYlJp0/R0660x1xcSURVB9S0OFQTeGoMLiahPBuenS4d8NpTl08RLaS1gys6iMZERbRvm9QAK44sNqzCsqx4WDYhSX3J1bkgyRdVB7Ix6RjvbOtAxLYYdCBS3utAzI9qHLJlTZ3gq+qAlYx+9tlnmDZtGm655RacdNJJApF6AJ+IChMEAX72s5/hrrvuwrhx49C2bdv69+LH9YC4ELMQf7yM6imNrrgofllxU+qymYhSBlLdybPqbiNlAmdBqdf2CR2r3+vutya0FferouGs25yHSL+T6dOmTjWLWQsm+qwJv6ynDmzPwzL3OAmRfmfzpJ6a1PGgtlOWc3VetMDqwypasDX2RMskYWpOUCnHSka//vprvPTSS7jooovwq1/9iuS3VPGJqACFQgFTpkzBY489hvHjxzf4qub4KSjlBMTUDpKMDxU/Sf5cHcBNTG5pg6lKe2RRTrWupPbgtZ3NyY9VXsVHms9i1ILsiU5WWshq0Z4XLWSxceLKho/JZDTt/hfzvBAtJzIu6KozLMvzK1o2is6+qpIsivhX8WnygKSYtACwk9Hly5fjueeew09+8hNcccUV23yHjKchPhFNYcuWLZg8eTJeeOEF7LfffmjatGn9eyK/Cyoz8Kahc5BQjYXlz9TCKqkOGZ8644mi+1RTtpyLAzplQU6pU7Z8UkwmklpT8apuquiOJ8S1Xew8nR7ZOpnj+dART1pMxaYH1blBpl6VE6hinhtE6xX1YTomnRuLcbLaoFWdG6j1upSMfv/993juuedw0kkn4dprr/XJaALb/uilp566ujocddRReP311zFhwgQ0btwYAO2zoGmDDUUAugeF+I4cdcElGo/ITmiS77j/svJy5RNN2Th4MWUVQxouLTRY70evjdq/dS5i4/0r/Fu3HqJaoPg3qYcwJlEfuhZmMuOCSjkZZOsRKZeWmMn2b91JWLS/Uvyb1EOS/1LTgwzUa4yXMxUTizBOUXtZO1EfsnpIK8Naj1H8p+mBGms8JpX5ihVXWr0y40K0X8vUp3Nd2apVK+y///645557sH79etx6660ot6TvvOFPRDls3LgRBx98MN5//32MGzcONTU1AOS/kChpkIhj+hQlacBPq0N2106nb127nGkLQV4sKickcV+i5Uppl5yiCRt6SKvH5O6tLU2Inlrx4nDttFFnGcDu6Wu8PtFFnck+wIpFtyZ0+ja1ScXyz6rHlbHUVF1Zap2S5KgmFmltRFkPqSSWor6T7HQeZIhoQtf4pNK3ZcvJlGGdigLA2rVr8dxzz2H//ffH3XffjYqKCmHfpYJPRBmsW7cOEydOxIIFCzB27Fg0atQIgNijuCxEO7eJ0zfZU6a05MDUIosySOuYYFiI3Cebi2eRmLKqy/Tk4pIm4vYmF7sqC3kd7RJH9D653r9dXnQXgyai7+mORWeMMrHEKWVNAG4lsCY0IVo3LwYdGxMs3yp6KyVNuJSMrlu3Ds8//zxGjx6Nv/3tb6iqqhL2XQr4RDTGhg0bMH78eHz++efYZ599UF1drf0UlFpWtbxq3bJ+TPpWmUCzqFu2nK3k0MUkNKlsSJZ1y8Zgyq/q/ciybpcX3XloizhZ1i3jx6RfXdeWRd0ujuEuJqKsMixszm8qdZv2nce1aRaJpc5kdMOGDXjhhRew++6748EHH0Rlpf9kZAh/a6ME2bRpEyZNmoSFCxdi7NixWpLQoFAgl+OdHCbtRPHK6xj8dPlhDWAqvtPaI2yLeNuF9em6LhFE7h0PlwddmwtenbqQIV7OVP+R9RuWobSHjh1ylbK29GcbmxskrDpZ99dE3TY1oNrHRNoj3m7ROGTGcJWyNupSGWdcJhqjrC5U6mb1Xx116tJFvF+rrC2p7SmrKdYJM6WcrTKsn3MEgNraWowbNw7Tp0/H5MmTUciBjmzhE9H/z+bNm3H44Ydj7ty52HfffVFVVdXgUVzK4xmyC3uWyOODGk/0OhJQ3sJUZQBlTezRv2XhlectsFmTg43FgQo247OxuNCxw5ymC542omVkY4/Hr7qg0ZEcx0nSLG+RHR9vVHBdU8UGa1xljXMi2lCNIf6abm3o2swTiTfehraTUZsJrGw9tsqowNIFa84weYoZ9aMjEdY5D6muLVU2amR1YTux1J2M7rfffnj++ecxZcoU+AdSf8CfDQPYunUrjj32WMyYMQPjx4/H3XffXf+ezVOitLJpA4auk0WWn7Jy+W80ZPmk+hOth1WXK8i2n2sTfhYnqEllRU5IdS20owub8HUVbcQn9TB+1ZMx1XaQiSHaJiaJtrtsWVPoSpZ0lGONuaa0wTv9kelHLJ/xPq1ykifbDrr0KYpMfUnaT0O2jKvzbRKi2tBZVzyx0TGPsvp01tqgxKCjnKva4NG4cWOMHz8ejz32GGpqanDjjTeW/E+7lPxnRAuFAiZPnoznn38eEyZMwL333lv/HmXRRi2jUi5eVqY8xYdonJSYVAZNndeuY5FEKSeLSH2UQdlGPPG6bLV1tGyIqg/Rfq/TzuTGkogPW+Vs9UXR2GxqI1pfXvWho89TbHXqo9jnDup84Ko+bI9hcVzShy5/aeVVfdjQh825Q8Q+Hg/v86IAsHr1ajzzzDOYMmUKfve735V0MlrSiWgQBDj99NPx6KOPYsKECWjSpAn3SF01SdNVLlqW9eiAzERCLcPb/ZbxJ5s4RU9fXBksRQdF3UllWlw66ki7tjR9ZLHIltWHTP2i+rBRf1jONX1E30/ChD5kyuhOXJPaJCt9yC48XdGHaJlS1IeobbRMsehDpVy0rGxSqmP81uVPtoyugxKd6+Ks9KGSJCcloytXrsQzzzyDn//857j44ouFfRcbJZ2I/uY3v8ENN9yAAw44AM2aNWPa8BLTKFmcgspM5qq7XUmDgO7JXHQC0DHZUMukwbo3riyao/aAnoFYNknVFZtoWapGdC7yTSx2RfSc5WI7CVWN5ElTuhZPInWplBOdH3SdxLqgEZ0bwtRySagmImEZl+YQXh0m9MGrS7Qcq05KUqpad9S/Tr3J2Ojo57JrZB5ZbvbqTkZXrFiBp59+Gtdccw3OOOMMYd/FRMkmorfccgt+8Ytf4IADDkDr1q1JZamnpiE2BM2yVZ3sef5V/SWdXIn6N5mI6kq8s0wSddir1BGn1DSiy1fUD1WDpk5vWLFQ4or7yWIRnLU9D5E2N7m5wOtjKnXz/JvwpToeUOumtqdMfa7NI7Ix5UEjMvfTa0StrKpGXExGRRJRAFiyZAmef/55/O1vf8Mhhxwi5LuYKMlE9NFHH8Vxxx2H8ePHo2PHjqSy0W/SjSIyMLHKJaFL/DLl0/zp8KnDr65EVHTCc/UkxsUFSrxM2kTjws6rjo2V0I+JBUnUP7W8jsRFZLFga0FLqcPVRXm8DlMakS1rYtzXkZSJ+LR9wpl2H1VPOV1NFE3P1/EyInO16UQ0bs+LQwVb2rOxJk1LhHnx2Nw0zzoZXbRoEV599VU899xzGD16tJDvYqHkEtH//Oc/GD9+PPbaay/06NFDuBzl90R1ToqqZWV9sPyoDhA8v7J+ZONQOcXJ+4LZpdPTLBePuupn+dKlk7hfHX506ETEh9eJWBnRtmRhazOCFYPOfqjj5CdLnbDqF/FRTIvsrHWiMqez/LjYD3X4zuPa1OWTTt3J6EcffYRZs2bhtddew4477ijkuxjgq7cIef/993HggQdixIgRxpJQnk1ZudjvR0VtggLtdw/j/qPl0+oV9RN9Tadfih9WHCL1sto/jIHa1rpjtOnfhSQ0tGGdEojoRDa+eNl4HKJ1R/0k6VVFJyy/qjoRHX94CwbTfVkUG3GY0hVAu4+8dqfMKdT4eOV16SSKCf1R/URjCcuL1Js0p+iqi1XGFXtXSJrHk+4Vz5cMSf2Q2qdZccSvTcVvUoKbBlVnaXOKSH3UWKnasmWfRv/+/dGvXz+MHTsWixYtEipTDJTMieiXX36JYcOGoXv37hgyZIhwOd6juEnwBpKkHS3VXeG08iKLEZkdtzS/Ij51LJREBivW/ZDZ0TNx6iFj7+qunwmtRG10aUWkz6rYqPjk2elIvtO0wrsXpk8WXNOK6dgp8STVkXYPZca5uG+RerPSSppNsWnFRXtXdJ5URmRd4IpWqDoR8SkSm9eKOfvQNu1UNAgCvPnmm1i3bh1mzJhB/g6bPFISiejq1asxYsQIVFRUYPfddxf+vR5qEkoRtGiyZKpOXUmwyCAkKlLVCSCOSHu4lIiaXAC4NCBTyxSbVlR96lhgx8mbVqj2LulWNh6ROnRpRaVOVt82oRVKbLa1Qq3TpWSxWBNRlg2LPGuF55Mam2oM1Dpd04qovazvtGS0UCjglVdeQYcOHfDyyy+jUaNGQv7zStEnops3b8b48eOxaNEijB07FuUcwUShPooLqAkqiomkN61Oqg8TPmUFLVtf6MO1ATCvvin2qmWiFItedGwAUeqj1mkr2SqFRNRGW0briWJ7PqP6MOFTdqNHR52u9AnX5gsXElFWmTimrolXH6VOUZ8mN2x11CkzN5dCMrp582Y8++yzGD16NP72t78JH6DlkaJORIMgwEknnYRnnnkG+++/P6qrq1PLmDwFZZWj7l6p7Frp9MHypeovaTBPGuxUdhJNLy5YtrwJKAvi8bmehFJPR3TrRcWPzpiifkT7WB70wrJ3WS+AnYSbVzeljGg/VjlFpNRj0x91bo3a6Zzjbdm7rBkX9cKqx5Ze4nV5vZhZe+dFL9EEdf369Xjqqadwxhln4Morr8wwKrMUdSJ6xRVX4JprrsHEiRPRtGnTVHsbSahssqk6ULEGDZUBlOdP58KastNmY9c0zV5mMJNJDlQTYmqcOidgE2V0T4gsv1G96PanuuCX1Qu1bhOnNip90dSJqEi7pqG73XWPbWma0bXJqaIZ3fqL+uTdW90bwLqTUVW9UGOxNcckxZXVxg3r/SjRPqRr3aOaRJqes+KvJfm1McfIJMxpyGpGxTYtxqqqKtx222046aSTUn3nkaJNRB944AGcfPLJmDhxItq0aZNoS30U11QCmlSGWpbnQ+UETKcvEf8UX7YSURFkkgxbi2qKLeV6dcciW0bXaUySXnVOll4zP5BXzcR9i1xv1otqnn2IriSPV4fqHKt7U1ZHTKbK8JDdOCgVzciuk2TWQaLlKPXKaFKn/pLKU3zkXTO6N5JUbCsrK/HMM89g3333FYolTxRlIvrmm29izJgx2HvvvdGtW7dU+2giGkWXoFV3U9NiEikrsjtOPXGS8ZXmm1I27kfXojptUBMdOLIevGzEwSKpTW0twkViSisveqKkeoqi6zpNLr5EylD7hGo8Li6qRfyyyFIzvNh01ysyj+jUn0gMKuV19ScdY1aedECxlZmLbWywRcuJxKRSL2WuUdWfSDlK2biPPM41LiWutbW1eO+999C3b18h/3mh6BLRL774Arvssgv69u2LQYMGpdqzHsfVkYjE/eiY7KiLX0q9aadhOgfXpIFNdSGl87SG1fYuLKhdiSNtFzdOFroxuYnCK2NisRr3y6vTRd2Y6H8mfedVN9RY4vUnzYEmNx9ZWtU5VujWjYkTG1afyGPfFvWtaqtTM6G/vOvG5CEFqz5KnbLlTOtGNBZXktGKykp06NABc+bMKaqfdSmqRHTdunUYMWIEAAj9TAvlM6HUXSEbk6rsAChSvw4/aRNH0jWaWFCr7Dy7sDDI8yIiismTDpXFKLVOnm9VP2mJisquuEwZF3Vj0rfLJ0E2NlKS4uD1TRd0Ey9vQzdp5WSvsdjnBZk4XNJNWkxp99013cR9qKxFRevNo26yjqNQKKC2cWMMGTIE06ZNQ1VVVWqZPJC83ZAjCoUCjj76aKxZswYjR440koQGhcI2Yg3/xF9j2YvUkRZT1CerfkqdvPpV/IRl0+KT9Z1WZ0i07qR7ojK5qdpSYqDiShyhX16/jWsnai+KyECepl2dfVKnbuLxmdINawxLGltM9RVRZPp3noi2M6/f8rSjO4407ar2d10xxuNjvZ8UB6VPxesMsandaCwuoCupUrGNz+28fiu6SSEbC+ue69RN2maljB/qnJi06ZNWb7Q+Xv3xGCj3X7ctFVNxlJeXY9l332HWrFk47bTT1IJ0iKKZzS+88EK8/vrrGDNmDCoqKhJtZZPQkOggwxIVNQGVKRe3U0lAWfWriJOX1MruOFPskxJfVpuJ+qXELrP5oNs3BZtxJE3QVL8y5XQuCE1oJ47MmCBbP0U7xY5r18u7F6xFtSiuakeXflzRjgym+5/odZpMLk3MqSxbEe2Y3Nji9QUdaywd2pFdG6nUnzT/s9pLJrGjxGEicTXlu1mzZti0aRPuu+8+3HzzzUKxuE5RJKJ///vfcf3112Ps2LGoqamxXj9rgEkTpcppDGsBTh2EkuqXmZR17faJlk07tUlqU1OTjsmELo9Jq45dYxHfsrvZsju6otpR8SmLqHZlteNxg7TFtah+ZLUTLSvT1+M+wn+rzD2suCiIXg+vjbPWTt6SS6pvXbYi2tGd8PDKUuqLxhmvXyUh1bGepGiX51u3bkxuiJhYQ1IT182bN+NnP/sZXnnlFe2x2Cb3nxH98MMPMXz4cIwePRrdu3dPtVc9DU2yTVrY8t6jJqC8ciI+k2JKslfxF28XUVgDY5x4m5q4p6K2lBjy7tuGrYh+dCyiRd4TiSnJXtafSmJqSj95tM2rb1f1wxvnWXVRfKj4Y9npnGeLcf4x2ceB/FyjyFjJel+Xfijziin9qGhapFySfkz1F9P90BXfTZs2xUcffYSuXbsK+XeRXCeiq1atwpAhQ9C6dWsMHTo01d5kEppkq7r7QxkQWLFQF9A6/elIGtLqcmFwynNiadK3C/oRqYNVl87NI9v6YdWT5McvpN3zrcu2GPQj60+23njZNB+u9wGWLZDPOUXUN9XWpH5E49G9gZQn/YjW4Up/EbU17bu6USP06dMHM2fORKNGjYTKuEZl1gHIEgQBfvzjHyMIAgwZMiTVPqskNHwvLkoRMckMAmFdKsmnTn+sa+ehMuBnPdBEbVWuV5d9km38mqiDqW7btBhY7ap7Z5hVlw4N6dIPNVGk1uMaIv0nK/0A+WpX1gJUdXMzrS6d+lHxFy9vUkPUDQwTRGPQrSHdeov3S5faLkr8NZm+KKqheJuoaki3fkTLUeuirBND/7r7C2uuTYspyzkI+CHm1atWoWWrVjjjjDNw5513kuJxhdwmoldffTVee+01/OhHP0J5yg2jJKEUZJOV+GIg6ZSP6p9Xpww6F7W8gYNXh+yiwTRJ9Ykm0lntLrMWoaz/J9Unk5jrhqohHXHovBaZxUTSQjpJQyLo3DQQsbWtIaq9aQ1lTbx/mNAQb/NIV5uoaIhVXlVDVFT7Yx40lFQvK07eNUV9UBIWyiYeNRGKl0lar7mgIZnr48VCXbdSN4FE75UOW16bUDTEe0/FNsmetSEPAPfeey/GjBmDyZMnC/l3iVw+mvvyyy/jgAMOwAEHHIB27dql2md5GppmFxeuSgLKGwSovliTsuqiPhwIRAROvQcm7lUasru5ugajJHsV36K7cLri0HGvk2KW6a+6NKlLj3F/LB2pLDRN6i0JVr8zdfqkKxEVsbetIYotJRHT0VfjvmT8xePQOUem6SjLuSgeLwtWvK7OLVTfOnRkKlEQjVeXjlT7vk49xv3FUdUQxTZvc5HJ9V9ZeTmqqqowY8YMDB48WMi/K+QuEf32228xYMAADBo0CP369Uu1D5NQHrIdULdgdCegrPdVY5AdUEV3l6L2pjcNdC4WRW1D+yx2oXX55qGiI13xiiRnaf6TyrqmI5E4TN8D6kI5yS/V3tVENM02CZUNLl3jlUkdUeY5XX6S/KaVtzmW6dhQc20RbXqBzqOYdJS2+aqSjLumIx1rcNs6Mp1cUnyXV1SgQ4cOmD9/Ppo2bSpUxgXkz+ozoFAo4LjjjkPbtm3Rt2/fVPvoSWj8T0hZOf1nR3TuaPLKiJSLx82LJyn5Yl2/jJ80v1EflME7Deo9iMfE6xsyu4S6kek7uiZynm9RHelGZuPApI6StETxIwJPR2lldBP6ZN3rpL7haQhFR7rvo8h94cUkQlr/j76uoiMRP0l+o36SMNmPo/c6fr0u6kgmFtF+I3udJnSkS3Mqc2TaGpPV/3laovoRwZSOKHMj6/rTdGRiXqT6pvR1qu/NdXX4/vvvccoppwjX4QK5SkRvuOEGzJw5E7vtthvKysqEyqQJMGmwUN1ZkdkFisfCsxdZ8LLi5V2fjB9eXLxdNupglERa24gMTGk7hKKYTv5c9q2SnJrYdIjHFI0jLQbqIj2emMXfT/MTrz8eF8+vrcVp2lihe7Fs6rpMbY7oRFRHtq9FdMEbvh+WkfEb9UHxE6+fFRdrHjCB6LwUIqojkwmdS/pQjSVpnuetDWTrocZLTR6pPuN+deiRFRtrTpJNYHmxJJWX1ZHJBNDGJo2IfUVFBTZt2oTHHnsMDz30EDmmrMjNo7nvv/8+dt11V4wfPx4dO3ZMtVf9XCjrpgcF2vP+ZeVqj8bFhUadpHl16fIRj4nnVyYhF7FLIi5eStJFTdBc8e1CLF5Laj7SfKq2Q5KtqJZN9TFKG7qiU5lYVGyTtKQ7Bq8lml3UNk1LpsfrPGrJpu+0NYTsXJdkS9GyqN+kuHT6sK0lyhpTdX2iI15Z3yZjqa2txccff4xu3boJlcmSXCSiGzZswODBg9G8efPMfi80LgbdSZXobqjugUWHvyQ/OpMN3uQhUiaPg1ReFxMyGwk67yGlD6nuZNrUUmira8I3eR9EY5CxlfENuKO9LLVEicGGlqJ+dCS1prQk4iuOrvsgYytSvy3fLsQiew9Fyuio30UtxePSMTeYXG9n1W9U7U35rqquxo477ogZM2agoqJCqExWuPNMRgL/+7//iw0bNgj9XmiIrPDS/EV31MI/cXSLklVG1DYaY1DY9vE+FX9xnyrw2pHXzmG9InVT4qMOChR098kQk7HI+JapO0lPvDIsH9S6Zfp/6Ic3Jsj4i/s0gYiePG6R1p+S+iG1P1KJ9xmV/h+9BhU9xeOjlqFQTFoSbQfqdenYTNDhW3SdwLp3aXrSoTGelmT6vw4tRf2JIHovktadSXoSweRaxZQ+ZHyL2q/8/nvMnTsXV111FTkm2zh/Ivriiy/iRz/6EQ4++GA0b9481d72T7WwRKNzpzW0Y3VCHbtrMjt1pne/4sQHaBGfJm1D+zzuIlPtbbY371SBoieqnU49UXePo3YisVPbN74rzopNxqcIrvVhU75NxqJ6b1zVU9SOqhNRO1t64rV5nvTk0vzkim8X5ied67ioDdXO1HrPhJ5M2Ib2edVTZWUl3n33Xey0005CZbLA6UR07dq16NevH3r06IGBAwem2lOSUIA2MKT5pe7iqIpbZKBUEUKSL5kEOq1uXl0yPm3YAm4MNFR704OeTlsZTelYtPN04IKe0uxc0lNa3bK+ZWIphUQ0zTbveqL40pkc6E4IZGxDexf6vEvzX5ZtKDPWptnw7HTMH2m+0vQkGnuW87qIP6pfWd+uxFJRWYnevXvjww8/RFVVlVAZ21RmHUASv/zlL1FeXo4BAwYIl5EVoyrx3R2RCVc0VpZdWJ9s8qnqSybBTHqdMtCIYMo2hDpBmY6JssDLSiNUZDSVRlr/06Epnp5kfImUV9GUSXTWz7pGW3oCsm9LHcQXnDr0JFKXDj3p8iWKrHZZpzw6bGWgJlKqGqHa69ggM92GaXWHiGhKNFaWXbwuFR0kjQNUXyx4905lPhTpD9F5V3cCKOpbRVOm9LR+3Tq0aNkSV199NS666CJSHbZw9kR02rRpGDduHA4++GC0aNEi1d72I7kitmk7T7pPQHQsznXEFNrx2iFantq+Weww6ZjoTO+kycaYxe6+yj0vVk1R2yIPmpLdrBLF9OmQKU2ZGAuy1pTuU5A0HzY0JXvq5DXFty/VeSr0Y2qeEo0zyYeJtV9SHa5oKi0GmT5LudeUWOL2FE1VVFTggw8+QP/+/YXsbeJkIrp+/XoMGDAAnTt3xo477phqb+qRXIotNZnRKfo4lHipZWUnw6R2yXICidpTMD1hm7CPtgtl157qW7etLk2l+eP5FfUtW5aqgTTfWS6Eo7aihP3R9IQtiulFtkl969YUYL//JpUT7Su650+XFs0iUDUlG4sri2wZ3zptk65PVlMUO4pv2bImYsp6/SejKVHfoX9XNFVZVYV+/fph9uzZzn2LrpOP5l500UXYsmWL0OdCo4gsTCkdj5qgJHWI+K4rdZJgEe+IIr6Tdr9Vd1tlk21RKO0lc+91LzKoUNtDJYEW3QGkTCqq94cKq9/r9h36pWw08U5YZFBZaNhCh66ouNYGgPh4J7sJaAPWiYXoqYFI/FTNUk5sKFDnKmpSpCPZSaov675CbQ8ZqGsSEwmQqG1SeyRpihejbBJucq4SicnU5jB1o49nqzpXyfR7ytgY3j8T9mtWr0ar1q1x/fXX4+c//7lQ7LZw7kT0gw8+wLBhwzBp0iS0bt061Z51Gqor4dBtyzuRipeT8Zf2uq76eGXj6EzqdO9wxdvFlR0rl0560voQC5u7zDyfNvo5RVeyOmBN6Cr+dNkmYVNXpvq9aXvKGBpiQldUn0kLTJ3zB2thbFJXvDpE/fHsKD6TkL12ahxU36btdcydrq8D02JyUVdpa87wPZm5W8SO4jMJ27qi2pv0XV1djQULFqBr165CZWzgVCJaKBSw2267YfPmzRg+fHiqvcznQuOk7RqZFhJvd0p2QGD5jftn2com0XG/qkk01VZ0UFeNQdY+zxN7segqfE9lYuf5TfKXha5E603zqaIrSgxpcaj6ds1eR+Kv0t+ifmXuY9IC16aukt5n1WcqsZWxtZEMy9jneT7UkaS4pKvQj+paMC+6Eqk3zaeqrkRt0+LQ4dukfaOaGowdOxZPP/20kL0NzD5bQeSee+7BvHnzsPPOOxurIyjwfzg4vKE6d17idnGf0XiiMagSrSd+zay4RIleB8+vqCAok1I4KLPuVzSe+L91o7qIzMoeoLU31We8P/Duk+k4ov+XTeTS6jHRz0R0ZRIRXYX/99iB18+StGUjJhNzlql+Fo0vC11FY2DFEr3HFH8msNE2puY56loi+m/enBWtWyQOavuxxlnWnJVWd1K9lH5G7YMiujLRV6PtIjJniSDT96l907S9KHV1dXjxxRfx7LPPksqZxJkT0RUrVqB3794YPnw4evbsmWqv+wuKKDtHFL9x/6K7W0m2Ir5kdreSYhH1ZcIujuqOXtTelV0q105tgHxpi7pplEdtmRpnROIw3d9c6fum7XX7ltGWrhMIXgymtZVm46K20q6nFOYVqn2W8zl1fBT1G7fNs7ayXh+LxOFKf7MRC9W+Q4cOWLRoEWpqaoTKmMSZE9Hzzz8frVu3Ro8ePbT7Ft3Nit/EtF1n0R0L2QQtqW4du5cs36ydW0p9KnGl7XCJ7HRRhUvBxi6bCUxeK0Vb8d3eJH2Z3vXPQlvxemVOQ1TiUdWWxz1ktKX7Psf7cZK2RH3J2LimrbB+6iZZEiZPblzDxilV0vsua8vUnE7RFnX9K0sxaYsaiyn7LZs3Y+XKlbj66quF7E3jxAj17rvv4p577sGuu+6KsrKyVHvqaaiMbXwQiouBugNBjTM++LH+LepLxIa3QDU12IS+WYmvzKLYRmIpiqnBSdbeFZLuMS9JEvVJsWPpmgp1J5TVx00hoi2T9ee1f9rCZPukzV2m703SnGmKJG3pnL9ExivXNnRcWlzL2oti41p1a4vSP3lzZhiXTnhrTlMHE/FEStfcleVmhm17ChUVFdi0aROuvPJKLFy40Fg9omS+YgiCAGeffTYGDhyI5s2bi5czcPKVdEISH3yoPkVPQ1n1hu+r+OLZiCSBugYdXiKfNMC4MKnbWFjneVBTmRh4C+fo36bQkZCmwUuATcBqNxcXxx578DZ9on+brDdep05sbu6E9UX/Tpq7TC+WTeHSvBLiwsYWb22SNHelxS27ruIlw9H6kxCNS0RfJg4qRA8ldKzt4+R544aanwSFAsrKynDOOeeQ4jFB5gp//PHHMXfuXAwePFjIPjwNpaBzUoi/L7IbpprIyUzqSeIVXaiqDjK83UJTi2MTmxNU37L2rpD1pM/b9XVNX0nYTATzcjLjyR5eUmry1DIpEZZFdHNHxwZqkr6yJOtxWhYb86jJpCPNX5K+ktZJuutMsk/D9uapjL5cOxXN6ynq5s2b8dxzz+H1118nldNNpl9WtGnTJvTp0wc9e/ZEv379Uu1lvqBI1F7FNt4J46+LnmBSTzqTkkdWwhxHZ1xJgqS2h0nbeLwqvl1bDFD6Aw9dbaPim+U3SWOiPqn6iseQ5ktEnyx7il1ajNT7l7Vtmr1LGkuKMWvNqNra0FdSPSK+qPqixpU2n1P8mbaNxyVr75K+AFp/4OFCu6fpK/Rjeo3IKkPpD5S1n0hcrDmM1U7FskaMvu8CrBjLKyrQr18/zJkzB+UZxVqZSa3/nxtvvBF1dXXYYYcdtPumdjxRW5Zf1g4YxacIrOSXd428AZC6uGD55sUles2mdrKogwb1/bRyMm2rwz4aV1KMMos4nagOxkka0010skxbUKRtQunExLhiG1V9hba2NJYXfamSpC9q+4nWlTSHReHNYbrjEtWX7nqpfnkbUlE/lNejfqN2thJjEY3JbKSLYuN+suYQyhyRds+T7OPtzfLF05gIMklbtB5e3DqR8UvdIM3zHLZgwQL8/e9/x7HHHitch04yOxH97rvv0KtXL4wePRpdu3ZNtXf1NDTNLiStQ8vsiMVFzetkMjtO1F1UE7vmunevqAM5xTc1lizsRa/ftd3kNJ8hOjTG2z0Oy+vWGGWi8xqjxZKFfdYaM30/bWlM18kJRWNZnsLI2KaR1cJXt31S4pqGzjHTlK0rGuOV8Rrjk9XmjQn71q1b46uvvkJtba1QGZ1kdiJ6+eWXo3379kJJaBSdC0Fe+bS6Rf1Sd35F/SX5T7JXqY/n38QClYLqzpTpWHTaU6FOAmk7tTr7k07Cfpi22yrrGzCnsTise+Y1lh9UNSbiIwtsa8xEPSE8jYlg88TGa+wH0hImFibnMmrSLYpOjcVjNK2xeH08jYm0nU2NAXp0Ro3ZNfutW7agSdOmuPHGG3HeeecJl9NFJieiixcvRu/evTFx4kS0bds21T7pNFR1Qjexo8Kzkx0URerVsXsV98VCNuG3sZMYR3aHr5TtqRoT9W/q/qdpjJrI6dIPpb60DQOqHnTeD5l779Jpimv2SfdIx1xmaozVpTPK/GNyLlOZG2zPZUl9RXccxW6vOpeZWC+Gtjo1llavTo1F7fI6l/HK6xrb82LfpEkTLFmyBM2aNRMqowuzRzIcLr/8cnTr1k0oCU0jKPC/Qj3cgeGdZkR9UOpTjVW2rKqNyA4J79SHF7vukxqebfxexnfzWH90QPWTd3ueDxWd6bj/MrFG/ZnYYVUhHpeufqtSPklj8Rh1aszzA0ntm3ZvTMaUFGs0vjzgQr+lzmU66y0lexZpawWRMZBSF4Wk8Tb6vo6N4bhPSlxpdlnMD7x1h+hcRvXNwrW1HNW+sHUrtm7diuuvv55UTgfWT0Q///xz7LDDDpg0aRJat26daq/rs6E6dpsptjIJmsrOp8puNC/5TMPU7hYPlV3s0D4Pu7ZZ2OtqS5dPdZLisKEz0Vhk6qTYseJIismlfpp3ex0607Gp6nUmVyfFjhVHUkyu9btSs6foTNS3jTWSrM50aJGqMxPraFYcSTF53STb19bU4OslS9CyZUuhMjqwvo15ySWXoGfPnkJJqCysRk/aARHdYVZNpFh2rN04ar2yu1qs3VhRqLuTSQOZys6wjoHK2+tDRGc6YlPpf7IxyMYdv26bO8WsGGR05tGDjvZNumdJpwA2iJ/g2IyBpbOstRYiqjNT7eXa6Ytr9kDyiaTKfKZrbcmKjRKHSp1x37I6o15n0jXZ0Jlr/dSGfSEIcM0115DKqWJ1plqwYAHuv/9+DB48mFTOVLIR+mYJOurLlMBDu6TFhO46eZN1tLzOQYU3gCUlwa4shm1Mfi5hIn6dfVwG3iQVjSEeq65603Qm6ke1flYbhP/2FAe88TOrxJQ3r5roc0l93BTx9YErSbDHLPHxk7d2NL3pyOtnMjqjjAtpfZx6EJME6xrS5jQRdGxSFLP9pk2bcM0112D58uWkOlSwmoheffXV6N27t/CRb/hYLgXZDpm0uyzqV1WEphaqSTt9VF+y8Bblskmw7KaDS7i2GyaKSj9h3XfTO7osu3j9uurkaU3GF4Ww3rQdYtcwPQGXKrz7Hu0fNtqSVb9OVDd6VOtO2uiiYmOB7Bqu6F+l3+jUmuz1seZUFX9x31FfWemMt35U8SuCa+s0G/ZlZWW44YYbSOVUsDaKLV26FH/9618xcOBAUjkTiUmabdKgIlJWFV2Tt6mdYtHHJXQPHHFcSbTyvhgwiUmt6SDphJSCyVMZnp+k3WFXE09PNqQtlk1rjbf5JIPJJxnS6qRqzTUNunTyYgPTm+ssZLWmsrHKqz+tXpGNVVGt6Yo/TWtpZXXEoOK7GOw3btyIP/7xj1i/fj2pDlmsjRo33ngjunTpgjZt2gjZmz4NpfpNE7bu05z4SazoAMZ7NETXIBG3S0o8KWQxYWSFSwOOjD2QrdZMQV0kq2pNhqRNHhdwTWueZHhas5GYxutMg6U1kyQtiF3AlThCXDzZoWKy32ettWi9ceKvqWhN5vRXh9ZM6qHUtBZ+g+4999xDKieLlW/NXb9+PTp37oxRo0ahS5cuQmWmTp1KPg2l2Ouwld1hErWL28RFGvUVjyU++OiMiwWrnK525sVgwresvQ3y2D5Zak20flZ7sXaBQ1+qWqPaxUlqI4rPvGrTBqbHi6zbPsnWpNZYdiw9RW14JzIqcynPLo6q1kza2rI3jSvXm8U6krKeYpXTMbfx1pGs9aeuuOJx8OqU9WlqHqTau6Y1gBZ/x44d8dVXX6GiosJoTJVGvf9/7rzzTjRu3BidO3cWsjd5Gkq52Wm2rIlSpPPJ7q7wTmyoiwpqXLILE5Porp+1I6gDSoKeVic1JupA6DKsidTk6Uia1kzVG69DtK68nUTy2lQV3uZd0qYeCxmtseqxCWuTRNZPFNZJhU54JzZpdVKul7LJlfWYaWLcNqE3XXObrNZ4MciiSz/UOqOY6Pu8Ok3MbSJxuaI3k/ebdR9VEdWbzrltxYoVeOKJJ3DooYcKl5HBeCJaKBTw+9//Hv3790dZWZlwOROJJdW3jG3SpE2ZNEXqEY1RRui8xbDK7rIOWyqyA4KpXTKZOlV21nS3rUsJjy69xcuxXjedaPAm57xuJuhoe55fk1qTqcOk3kxBXYTxFq+mktIs9ZY3TM1toW/TcxslJpkNY5NjqO7T7ugaSzQpFfHHey8am4h/yvpP5KkHEUzZRmMTuSbWekM0Jt2xyNYno7ff/OY3+U9EX3jhBaxatQq9evUSsg9PQ0XEQ8VkchTGxdvdpSJ6nToG2KRkzbVFMK89RdpZZgAVIa+PX4gsoHm7sVmjW2824enN5ASkYstCp96KAZN6c4k0vbm4ccJbQLoWJ8BfSOdJb5Q+ILMhIrMZTtGbK3047cmE8DVbsVLvVZreZPzpTPrTyqch2gdlNjaz2Cxi8f2KFWjbrh1mz55N/tlNCsZHpZtvvhm9e/dGOXGwif8JCW9sHhad8dhN+E9CdLcw7pPV7qL+KPFRbeMTC6sfsOI3fR+omExcZU+iKHrTdbIva8sja72JkKQ314jf87zqzRVYbSSqNxfnOl3zhGl4mtPtV4etjN7C13XHImPvku5l9Ra+LuKfEgsF3qGArN7SbEzPmy71CxaiemNtgGeJyUMTAGjZsiXKy8tx2223kcpRMTpjLFmyBM888wz69u2r7CspOQW27Ug6dpx17TCK7GxR/FHg7fjxBCfjTzese5k2OORhsJPF9HWx/Ke1b1Z6E/XDi9UkSZqW0ZvNBX3a/SwlvWWBSPuKai4LKHOcjD8qKnOcLWTmuDhZzA3FgMgaIiu9ia7DROc43fcwbZ7jxUj1F0XHOkJmjlPFdKIoC6Uvb968GXfddZfRn3Ixqqy77roL2223HZo3by5kL/slRdTdrjRMn/yF9kmC0Bkfqy6Tk7JMW1N2o0zEYcPeFjYWJ6z74uIimRejDVxeCFNPXDzZYWKOM0H0tCBtjjMBb44z0Y9lFsase2V7c6dYNG26P1HmOJNrS2qs8RippJVJ2hyLxiLiSwZqW5tYV1LjcM2eer2FrVtRVlaGhx56iFSOgjE1FwoF3HrrrejduzepnK5dCNWJ2/TkxYtLxheLeIIXrdOG8Fh1UHeAVWOQweREnfVCUZU0vdhITlVPWWwskG0thimxiCyAi2WRGqcYr8t2cirjJ2kTSKfuXNvwoWjO8wOm50Yd/l3dEOKto6Jxxe101JmkOdG+rUsDJpNO21BjNH1NZWVl2LhxI/7w+98bq8OYYl555RWsWrUKPXr0MOJfx8QY+pEdQETtRRfwVL+8upIGJl4MJhAZHEzWb9q3af95T1yB5N3arE5xXNCcKFQfopozGYNHL6J9Mzqeuqq5KKpxmNKcTBy6NZd3TPYxGwt1E5qTGctF6+e9x9Icz69IfKb6N/VaTWiOes9FsaV/06eun8ybh7lz55LKiGJstLjvvvvQo0cP4S8psv3boUk7W7wyKjGIwtrJisKLi2VvKrak+uPtp3tHKu+TukuJq+xmjiwimlOdfOM+ReOi1B+tw7TmKDH4kxdPHF2a0xlPFGpyzFt86iQtFt4pk07NFcMmpCjFNj7p0JzONqEmpCxkxwld/diG5mRicsmegkwyXVFRgQceeMBIPEautK6uDo8++ih69uxJKpflyRjrhE7nLjLl2lg7ayxf8dioYtRxCsRrG5FYTArNJdGrkNdJWjShZF1fFic3vN3stNhsT4Is3cV35T0eHrz+avPElNdfk+rmnXyE75kkqW1KZbNHZmMvr5jYwM9ac7xYWPXHE2bTcx3Pn+r6MvShEkNW2Dp1pfS7uro63HHHHQiCQKquJIz8juiLL76IyspKdOjQQcieehpqQ7Qqp6Qy8MQWvscaKKI2slDEnBRj1JaadIvgWqLoWjwhrj42IoLqrm2aP0oZVp83eQrDQ0RzHo8sLM1F/w5tbO3Om5zrKIjOdSaQaW/qvEu19ySjuu5Rnetk7qfpuU62H7NiTLLRWb8oVN+mx9AQk7pev24dmrdogVmzZmHIkCFafRtpmfvuuw/dunVDWVmZCfcAzCQwPNuk43+Rx3hUYdWbtiOkozOm7QC7PpG5lJS5mriaRHVDIm0n2SSsum31+1I+efFkC2t8j5+Q2Kg/7TUZkmK3MdfldQ5wdczJ41NPvLbk9TXdJ6ZJp4umdJcWTzwRznKus/F0hSl70+vd2tpalJeXG3k8tyzQfM66ceNGtGnTBuPHj0e7du2EykydOtXYbh7VFhA/JWTtcsieEIrYicYnWydvkDLZ3iZsTdlnOZHp6kO27E3b2tadzvbXrTvKuEWJk2pryr6UdefKvU3apJXxaVt3rHa0qTuT99GUvcu6k2lP0/a6bZPaX0Z3OtePFF9xOx26c+U+Un2L2Ge9YZIUX1l5Odq0aYPvvvtO60Gj9kdzX3zxRdTW1qJt27ZC9q49lksdIFi7VxRfVHR1YtbjGKJ1qNZNtdVJ2q44BdMLhaT/i5YD9J2Ou4Rt3enChO5k6s8CXt1ed/mAtfh1bVxIoxTuU5w86C4ej27dsTYvXYeXnMnqjtIGafeP2p66dSfTv3ST1gZZ6U62DO//cVatWoV3330Xw4YNE64jDe2J6BNPPIHOnTuTs2VKA6ru4pqCtzhOE43NOKkDgknR6IYqqDBWHeI1gcoAJDqpy1x7VoicylB0ZyO2JJs8tLkIsroLbV3THSC/6KbqjlqXS/BOOVwbU1xIPk0kQq7rTmb8VUl2kzb54jZpdbmcuJa67ij3RuY+Up8WMK07G+sYiv+a2lr861//cjcRDYIA//znP8kBRjsL5XEEnehOuOICSBsAdV4bawdNxE7Uny6oGwqUe+RSX8kC6sm5yDW5MsElEU8IknRn4z7aWgS70N8pj1cVKzKP3KXNeXkabyhzngiy/Ym16aO7b9q4N6LjcqnrDhB/5FRmPSEC5R7oul8yutN92snyz4tTpKwL/di1pwUocZgekzZt2oQHHngAl1xyiTafWhPR2bNnY/Xq1ejUqRO5rMipHG8ASROVjhhkSduxM3W6mzYYuLq40ZEQyT62kndM7D6n7fzxJjpTyOo5/jiTzcRNRndZtCFlZ9ejhugYlrRodvV+6JrzqOSpjaKIPMLnwnVQFtAub6ConnbZvhci7c7ajLAx58WTe1ZdLvQDXhuqznkyCSv1QMXWhrlo/1j67bfo0LEjvvnmG3Ts2FFL/Vqv8F//+he22247VFRUCNmLfj40KDT8jc/oH+C/gov/MYGK33jcVH/UxYuOOkWh+IzGybtn8bhZ15ElLj5OaIK0e6CqO1t9kTVmmCD6eJRL/TVK2njJ057HHiLjn605T4Wk+UdHvKJznitQdBd9zcPGxHxjWne27qdLc56OAwYZn3F73XOeq9rUmVfEadeuHWpqavD0009Tw+Ki9UT0scceI5+Gqt7ItE4vcnqaRWIWHxxkd65M7tjpapckP64K2ZOMyKka5ckFm5jSnivXF8Wm9lxMhIqRNO25cIrDIikZVV2EunB9UfIw5xXLCadJom2U1FamtKer3WVOSkVPEUVPa3WS5FOH9ijasIFrWt2wYQMeeOABnHTSSVr8aYt2xYoVmD17Nrp166bLpTSmd5F1d1BejDziscd3ckTrNAGvfW2dsrg6WZbSCWr4t6j2TPQDig50aU83MovzLLXnyZa8nZ7GT2vSFsg2tUeFctIigsx1uXBPVTF5kmOyrxSb9uKUkvZkYzBpbwNqTNOnT8eWLVu01K3tRPSll15C+/bt0bhxYyF72z/bIrKzo3thrDJQsgaGLHaBRXYBKWWomBasiwOCa5jWnuyJpE5c1F4SpscuG3jtmcdrTz/FoL1SPeGkoNpGOp7Wo0I9yXNRe0nXoKI90bYxrQ2qfxe1unXLFtTU1mLGjBnYbbfdlP1pu7pnn30W7du31+WOicmTyKQdrOjrtuDtOLF23GyQdtqSFLNtTO6U2uoDJmNyYVDj9RsXdo5d0x6QvOsbjc3jSUNUe1nozxXtxed917WXdf06KIZrSNNMvK+IrDtNwPLP01ia9kRjFbFLegqCt2mWdb/Jun4eJp8uKC8vR1lZGV544QVqWGx/OpwEQYBnn30WXbp0oZUzdAMpN4B3lM+aoLOIU3Sy0zkYRO2SHneIto9JXBV6KWHr9J2nvawWxax/myauvfimj61FuQsbFh478PpVtP/pnmNE4gn/nQUmtFdqmiq16xUlPrfo0J5onxQ9FaT41AVl3UmhGNaQJhNLGerq6vDII49o8aXl0dxPP/0US5culfrZFlPouhHxgSH6N68u1wfftEdG0mxVcL1tRMj7CWpe4O2OJtnYiEM3trRngzzG7NkW3pzm2mOyOigm/XmyQ9cjlC5pL+1xVtFrTrLjnc6q+NQB9TFnk/amrzWEEtNnCxZg+z59sHbtWjRt2lSpXi1X9uKLL6Jr166orBTLa21/PjQNSudJ2rmS+bxNmp2pXZCkx2xN7zj5CT57XHgaQcZv0olpnjY5eGOGC4/5eTws0ua+LD8iQH0KSqf+8jTu2CSLx6hN2GdN/Km4Ypr7dKw9TWA6Dhe1QY2pZ8+eqKqqwquvvkoNaxu0nIg+++yzaNu2rQ5XXLLuoCK7NqxHKbKOOyT+mRcgPTZXYhclqwlJxI/fdddP0tMK1N1J08jorxTQ0QZp+kt6v9TvgaxO0p4CclV/MpvFurB1qmES1n0tdv251pcBO2tPnf2VGpupNjflN0ttZ6m/zZs346mnnsIBBxyg5Ec5ES0UCnj11VcxevRoUjkXTmR0d5zoThWrDtlrlimX98Ef0H9/KI+GyPiRwVRMebjH1GtMe0Qo7jepTUxPGsWgP0BvrKw2kbkPXn/ukTb3RW1sUCz600le9KcjJt49dm0zQFdiJKM/nUlZ3JeK/qj3yMWNAhY6+rqNNTG1jsceeww333yzUhzKieiHH36IDRs2kL8xVzRBk2l4U51SxC9rx4e3MNZFkn/Ti2/Tg7rMo8siMYWDncznPU1/bkC2jqRJiFcPtS4RspwUSk1/WcM6CRNBRn+hf68/d2HdV9P6i9cTjyfpfVWy/pyaqv7Cf+uKR4e9bEyy+kuqz7XENQ2vPz22IV5/ySxfvhzt2rfHN998g44dOwrXE0c5EX3ppZfQuXNnlAvegPDzodEbkaXQbSwCkh5lUdnNSRO+SCyifnUgc1ptemHrIjIDB6VcfOL2+pOPIeuTsCxPdqMUk/5kyaP+bJCmP5aNKFnrzwamNlaLDVn9ha+JlKH4T8PWyZ9N/SX5yltSH0LRX/hvl6D0G+o9atOmDWpqavDSSy/huOOOkw1RPRF99tln0a5dO6mylKRI5ajfNqKPHoR/85IJymlflm2gcxDT5dsUrsVDhZq45lF/aYjqj4VqO7jUVpQk06MfXfoT9eUKaY8RUjUomoS5uBDWPQfmPRm1eY8oiWX0bxVfLkDVH++ENWqf136nU3/UvuvieCTDhg0b8I9//CO7RHTr1q147bXXsO+++5LKUTssz543QOjemTDZWeICF0k+k3a4TMSlgsz1JJXNE65NqLrrSNMfr5xpKHUm6Y81YfPKuTwJpz0+lKQ/l6+rFEhb5LE0mLX+KIg+Qpjnk0+Rx/eymANtLYSLYRyRXYMmlaXWb2OdJ7sGNYHOfpN2+p2nNajJE05ZXnzxRQRBgLKyMqnySono7NmzsWXLFuPfmMsjaeeGJ6iwHPXm6BSeyKlm3iZekR17kxOSiwNGsZD0qE0c0ccOXezPaZtCLsYcInpiVgyLQtPkqX1k58CwrEvjJm/+c/WRtzhZz4Gu3U+X0XUfin0OTHrfdBwyjy2LnFr7OTAdShutW7sWzZo3x8KFC9GrVy+p+pQS0Zdfflnq86GiqAyqSTscpnaPdU4CopOWaJ26YkvbLcvDKbQN/yEuDnhZnaAC2+4gu3p6k+WkldY3ZR8Ry/siNe/x20a3Bm1qwfVFo2tPgbhKsZy6yviX0V9SOQqi8SbZUTWo2y7NB+813f2AGq9Jext6otbRuHFj1NTU4D//+Y90Iqp0Rc899xz523Kp6O5UQeG/P5ob/Tfw3yQ1+kfGv047nVDrTGqPqK+wHbOegLOu35NOvK9E/61DfzrJuv4whjQNuqI/jxuInMzFNRgt65IGs4bVHtEFr9dg/sj6HrH6St41aHLdmzYH8tbzecBWvKb70Pr16/HSSy9Jl5c+Ed2yZQtef/11TJgwgVTOxUczeY9XsP52sePo2kFj/T/LE07TbU3dtTJNHiacJExoMI+P6MliWoMeDw/qE0Q2+6TNU1FTT0sVE66dUps+JbJ1qiuiQZE+KRqvq49yu6RBahu52Ka2Ynr22Wely0onojNnzgQAtG7dWrpyl4me0oT/5+1OuTQoi8DrlDKfYcnbtXvyg9egx5MtpazB8N8m6s1bW9km720kGr9IkuCCBk3dD69BOWzET6lj9apVaNGyJb744gt069aNXJd0Ijp9+nR06tRJ+POhVEyeoFF9sx5hivqJ7+Do+pyW7pNOF3aX8oyN+EuljWR36HRoUKU+GXga1OWfQt77lyd7bGtQF6w4Aa8JTz5ISs54GmTZZolJDbo45ohCid3FU9dmzZqhtrYWr732mlQiKn0106dPR6tWrYTtqV9UZBodHZb3uRBbz/ezfCfV7T/HUly4NhiZJOkxJFa/zvIzNqIa9Dr0FAOiGrSpQ5HPlXkN0vGbselktclvaj2q8hEmlfWoqXaU/ZyqSXsbmD4E27hxI9544w1yOUDhRPTNN9/EkCFDSGWoF5e3AUlkl4plp0qafxdFkUSpid4WxdCuIvAmYpOIPCaV1/b0eGQ+KxWFNxfqrDdLDep8FNM2eT5J8iQT3xiK/h19Xef9z2I96qKuRMlz7FEKhQKef/55qbJSieg333yDb775xvg35ori6k3UnZgmPU9PjUUV19pcZdeO95qMjWoZ0c+L8P6fJ2z1SREdqvafPN8HV1BJOGzb+/tNw8QmrUkdFsviUAYTc6GJuVP1XlMTsLwn7KzYs5gL86YtmU041evLy3oU+O/9/uTjjzFg4EDU1dWhurqaVI9UIvrWW2+hffv25MryJmTdYgk7aPzD5/FBIG33OFre5E5WllCTc92iZC2cTE9a8TIiCbPsdVM+j1CsRHWUtCAW0WGpI6tDymJTh6Zk7E3oMG9zoW5E5sLQLiRp0VvM7Sl6babmQkBNh6FvFR26MBfmCdFkiKXDUpkLTd17W3Nh/DUR/6q6TdNhZWUlZs+ejeHDhwvXA0gmom+++Sbp23Kjnw811VFVTxWzQPQRQlcHShNtrjKZUuJxtU2jpMUoO7DE/62zjjySpEPZneK8I6vDYjxh0KlDGQ1S68gjaSemMguvYqLUdSiiQRG7uH383yLlTCUvLtwDF+fCrNvGxTWpjVNlVh1pMTZu0gRvvfWWnUT07bffJn1RUYiNUy6dcYjaUhb1InVlKTyT9VIfb6D4dSVul+sA5B67oTyekTU6TnopOtSlfVuYXtB6komfQIhA1WEx3AfVk3CbyLS5KR26eO9d7JNUHbq0iWtTD/GTTpd1CIi3TXj/TerQ9NM7MpiuY8OGDXjnnXfI5aQS0Tlz5mDEiBGkMtSLpy4AkzqU6+IpBnQmma5NWqWM6L0SWSx7HZrH67A40aVDr0E7iGpH50a3xxyiiavoujTqx8VEPU5WMarWq0uHph/7zkMfEOW1114jlyEnoitWrMDSpUtJj+aaIG3HNGkHy8QjBrY/c5fFSYzIIMu6Ptd3tD3yuKbDUsDr0BNHVIdpn/HJc/8Q7d+6dOCiDotpQUvBletOO0FU1aEr16mDYtahi9jqO4sWLcLWrVtRUVEhXIaciH7wwQdo1aoVGjVqRC1qBOrOb9j5TD/+m1coj3+VmoiLoQ5TeB3qxevQoxOvQzm8Dj0y8Bb9paBDE1rIWofUJK5UNww219WhUU0NFixYgB122EG4DnIi+v7776NNmzbUYs6R1LBJpzg2nuEWReUUVvTzqixMCsz0Z208biGrw7SyNslKhx6PLopBhyp4HdIohs+zuYhuHdp+SkAUXqLmdUjDNY1UVlaipqYG77//PikRJa/iZ82ahaZNmwrbR78xVwSZxEL3B/lDf0Gh0OBP6CP+x1Wiu2usmOPXFn3N4zYu9ztdRPsiq6+y+rTL7ZI0dsSvz+vQ4wrFpkOAHTPgdehxFxkdZhGjCLy1adSPDR26Pk4l4epTeps3b8bs2bNJZcgnoh9++CFatmxJLVYUJD1WQX00UaaeJJIEZepRBVNQfVPsbQw8eR7cVLA1USTpkFpGN7Z16PFkhcs65NWfRRwej0lkdBgtZ/oxUq9DcVw74ZRh8+bNmDt3LqkMufd9+umnaNGiBamMycSCiqln11mnp+H7OneK476SdpJcaPdSTco82WBLh1EfunXo8eSdeP9nPVEU/b8K8UcWeU/9eC3qwdWTGE9Dkp7sA/I1J/p1pD5stOV7771HsiediK5ZswbLly8nJ6KlSFxoss/3U+rwuINrk7VLn721Oakk6SpJh/H3Sm1X16X+4ikO/JzocQ3qCZTJEytbp2Gyc2L4Pm+OTKvDFqLtKHMSbLK/mD6ZtlUHACxevBhBEKCsrEzInpSIzp8/H02aNEFNTY1UcMUKpaPFYQ0A8Y6SNIHnAdcWB67F40nG1qPlrNOZ+I4uq0xW5G0c8HhY8OY3ypzIsvF4ihUTSaurc6Kt5MnDh9Lf1q9bh8ZNmuCbb75Bp06dhMqQ7u68efMy//3QKMXQOVmPK+h6lKgY2sfjsQVLc/6RPo/HLibnRFfwc3P2uPDRJddJ06JruPSxPhe+lyILamtrUVNTg/nz5wuXIZ2Ifvrpp2jSpAk5MI8na9IeA6OUN2GvUofKibxOe1d8e9xGRYuua9f3a0+eUPl8oMvazZsOS/XUrxi+nEcHxbY+ra2txaefforRo0cL2ZMS0c8++wy1tbXC9uFPt4hcgKwQRTsxxXceBgRTyYcr2LhfIm0jM7HJfI6AGk/aa6JlWeS1z+gmi3Zwbeyx9VlR0b4v8yUXprTrtcjHLzD1Y2sNY0KLJudRFR1SbGX6s6lHaF2bJ+IUu/5dWZ+G/k1/zpmqxS2bN+Pzzz8X9k9ORCm/IRrCuwDeLgD1JhdLh3d9cKEiu9sq8nmgqK0rXzZgg+gXBei8bpb+iq0/ljK67mnaWO61mI7XogdQX8wmadF0kugS8S/P0aVF3mcjvRaLC78+1UdUi5999plwOVIi+sUXX6Bfv35SgYm8J7sbbWJgyHNnMInsYGzi9NHWhFAKfUGHFkt1AylrXNCiRx+yWvSbudli6okuf3/E0H1SyPsiHq/FZETvg8mT3TxrsVjqmDNnjrCtcCIaBAGWLFmCYcOGSQWlm7ATmxwUsiDLxwEpbWPqsYFSJc9t5IIWXdc1FRe0mOc+WYpQT2jzNC9mhYlNntCvK/qy8ahnHh4n1YlLWqTE4EqfZOE3XPPF4sWLhW2FE9Hly5dj48aNUo/mZo3oQrlYJ2adi1rXByuP23gtFq8WXYrFk47XYvFq0ZMvvBaz0WKpbZAAdq55/rx56Ne/PwqFAsoF6hJORL/++mvU1taiqqpKKUCXEdnFYt1A3k2Nf3bBBGm+o+/r+kyJSVyJw5MtojvKvM/xJPkzRbFp0eMBzGkxy0fzRLWY9L7HY5s8ajGp/vh7xajFUkyMu3Tpgq1bt2LZsmVo3759qr1wIrp06dJcnobqJtqheB2M96gr5UPOvDIUX6WwqC326/Mkk/ZFFTq1yCrHe03lM7ceTx7xWjQHNeY8XqNHH2nr1GLXosn+77WVTm1tLSorK/Hdd9/pT0QpP91iGpd3DdLElvSZzKTron7uIGtcu0euxeMxD28Cji+ai12LHk/WpG2Wei16PHbImxaL5aQwz1DvaWVlJZYuXYqBAwem24o6Xbp0Kaqrq4WD8PBReSzPi9Ft/P3JDpmJzz8i6/G4Qd61mJc484Rv02woxkdkdUBNiG0l0C7qpKysDEuXLhWyFW6hb775xieiHo8D+GTX4/G4imsLIo/HUzr48Uc/Mm26detW/Yno119/jZqaGuEgpk6dKmwLyC2uTT1bXgy4ch2uDQquxVMMuNLXRPF9wOPxFCt+fPN4SgdX9V5XV4dvvvlGyFZ4BblkyRKnPiNKIW8LZU++cXVg8JQufgz0eGj4cdxjG9fHaa8JD4Wvv/5ayE6418t8WZHvtGbw7erxeDweT/Hj6nxvOmmydd3U63AlWXQlDlWK5To82/Lpp58K2Ql/WdGyZcvQrVs36YBEcGXAdSUOVYrlOqiI/maVDn9Z1cErU6r33OMuOvWYN/16PXpcohTmRq9FN3DxC3RcohS0uHjxYiE74UR0xYoV5BNR0w1D+QYv1wVRTLtC0Wux1QcomPw9NpnBl1KG8kPt1LI67F3XWamR9jtxlLK67UMofd+ktmTtZd53aW70qCP67ZjFMjfK9K9SnRtF28r/RIldikWLoX+Zect0HStXrhSyFUpE161bh40bNxp9NFdlwKFOADpjyTtJvxeVVkYUUwtNG0mia4STlSsLctlEx0+4fExqERDTo2sbMK4io0eT9n5u1IefG/OFrBbDspQyfm7UA3UDpxTmxmK5/+/Pno1dR4wQshVKRJctW4aysjI0atRIKTBdUAccEVsTg4bpgV1lB5CHSDuZPMHw5AtTC3GZ3UqXtShqE0W3FkV8evKNnxvT6xZ5n4WfGz0U/NwoVr/I+3H83KiGjdP3du3aYePGjairq0v96U+hRHTVqlWora1FWVmZlgBdJOyEqpMJb5DQuRvGsmHF4SdFD5DPHTaqHrPSIs9OVo9eix7XcGFuzEKLVFuPxwZ+bvTkgRYtWgAAVq9ejbZt2ybaCiWiq1evJv2GaCnDEoroLpcXo1vkMYHz/BdZLYraleJOqscji8rcyCtP9eXRQ7F8nrFYroOK6bmRYudpSLH0yZqaGpSVlQklokJXu3r16tSj1VKjGDoKlVK8Zo/H4/F4PB6PxyNGWVkZKisrsXr16lRbn4iWOD659MTxfcLj8Xg8HnX8fOo2/tTWHBUVFXoT0aqqKuWgShE/CHk8Hk9D/Ljo8Xg8nlKgWOY76nWUl5frS0TXrl2LiooKUgAeD4ViEapHH75PeDwej8djBz/nenRShh/yxzSEet3mzZtR7juox+PxeDwej8fjKVF8wi5GAKCuri7VTqg16+rqnPrpFlc6QSk+W+7KNdvqA65cr8fj8Xg8Hk+p4sra3yPO5s2bU22ET0RdSkQ9Hg8NVxJqP5Fkhyt9wOPxeEzh5xiPRz8y64cgCHwi6hHDL1Czw0+axY+/xx6Px+PJilKcg1y5Zlvra1euN47Io7mVIo5kE1Fqw5i0N2Gr26fuerO6jlK2t1XGtetwQbulZmfS1oa9r8MN+6xtddrlSWMu9QEZe1frkCnjkn3Wti6vVV2xddHe1Tq0nYh6PB6Px+PxeDwej8eTRk2jRkJ2QieiVVVVCIKAHATlSLqsvFzYPszIKfa6bSl2QHqsJurVaUe1lfEN0O4pxZ4aj4y9bB2AW9dhWl+ivqm2tu0o2haxo8Rn0taWPWC238vG5Vodpsdd1+fRrOZQV2xdtHe5DsCd+dSVtapIDHlYq4rER7WlxCDjm+pf1t50TDJlGjdpgqqqqlQ7oRNR2UTUkw9kjuc9evCfzy1+/D32eDweT1aU4hzkyjXbWl+7cr1xqqurU218IurxlACubDa4OliWAq70AY/H4zGFn2M8Hv1IfZ60rEzfiWh1dbVTiagrA00pLuxcueZS/yYyj8fj8Xg8nlLBlbW/Rxytj+YWfAfweDwej8fj8Xg8JYpPiMUog8ZHc5s2bYqtW7eqxuTxcPHC9sTxfcLj8Xg8Hjv4OdejkwA/5I9pCCWizZs3F/otGM+2eGF7PB5PQ/y46PF4PJ5SoFjmO+p1FAoFNG/ePNVOOBGtq6sjBeDJB8UiEI8+fJ/weDwej0cdP5+6jf8eEHNs3brVJ6ImKcXBpRSv2ePxeDwej8fj8YgRBAG2bNkilIhWijhs3rw5Nm7cqBxYKcDbXRHZdRHdmWHZ+SRRP0Gh4HfLcoyKFlXtvB49nobY0KPXoh2KZV4sluug4udGdymWPrlx40YEQaAvEW3RogU2bNiAIAhQVlamHKCLRG8+pSMk2YaCKysvTxVf6EfELuo3KQ6Z6/CDRPGRx4RaRo+6tChrp0uPXosel3BhbsxKi1Fbr0ePC+Rhboxrxs+NpceqVasAQF8i2rZtWwRBgE2bNqGmpkYtOg2EnVHXpMhC52LVFEl1UwaVpP+LlEmz9YNG8SKjRap9HrQI6Nejbi1S4vDkDxMJI4s86NHPjZ6s8XPjf/Fzo1vYOJj47rvvUFNTI/TzLUKJaJMmTVBTU4MNGzaQElGTAoyia0eValsMhKdlOttHZgKXsZW1z/P9lZ3cZMrI1KF7YszbSa4OdI9Vsnq00V/yrEfZxM+GfYifG+Xxc2O+KKW5sVjmRRObYKFfqhYp8fi5MZnwekVOQwHBRBQAWrdujQ0bNqBVq1bCwVAakdropu1tk8fHJ3lQH/UI0WWf1o4uLhp13Xte+5m8F/5xGbeJji2mko4ke516dHWRyYM3PpXyXFeMiPYZPze6NTfKjItUe7/p6iZZazF8L60spR4qpvXbpk0bITvhRLRt27bGv7DIlQnUlThUKZbroKIrGZMpY6sOwCd+nnyQxeaIy3V4PFmhU4tJ/nTUIRuX16Ib+PuQjo6NSpkyNvRbVl6OLl26CNkKp7ft27fHhg0bhIMIA/Hox7erx+PxeDzFT6nO97aum7rodyXBciUOVYrlOvKGjXbffvvtheyEld6pUydyIuoKvqN7bFKqCwePu/gx0OOh4cfxZPyYoh/X29RrwkOhc+fOQnbCvapz586kR3OnTJkibAvICdCEKFwfCERx5TpcG7hci6cYcKWvieL7gMfjKVb8+ObxlA6u6r26uhodO3YUshW+go4dO6Kurk46KI/Ho4e8JX4ej6d0cHVh5PF4ih8//uhHpk0rKirQvn17IVvhLytq3769T0Q1kXRTk94LCoWi+nbdYsTfn+yQ/ZC/zHt+M8Dj0UvetehKHMWEb9NskP0212K/X1l+A3sSLrZ7EARmElGXPiPq8oJf9PeJ4p0n7SvXoz7i/pzsiI7dI9fi8ZiHd7/T9KOiRZY/j6fU8Vr0eNwgb1r067bsod67LVu2mElE165dSwqkGIkLQmSnVvXnNpIGA9YAwIuvGCdk/3XtpYvohg9gV4sisfk+6ykmZLQY2pjQYrT+YtBiXr/Z1ZMNouvUYtWiyf7vtZXOhg0bsGXLFrRr107IXjgR7dy5MzZs2IDNmzejqqpKOkCXSVtI8kjrmCZP4pLqDgeDtGQ1+l7WIvOJpQfwWkzz5/HYwpQWTZ9ypP1mpogWo/YeT9Z4LeZPizK/75l3Fi9ejIqKCrRt21bIXjgRbdOmDWpqarB27Vq0atVKOsAsEO3kUUQ7Tx46DmUQErmePA4GHjcwpcU86BAobi26FIsnHa/F4tWiJ194LWajxby0j05sXHOfHXZAu3btUC5Yl3AiWlZWhk6dOjmTiMoIF3BfvFlMZuGOFKVtKG3kJ+h08txGLmix2D7/64IW89wnSxHZ0xLA/XkxK6gb0nmcF23c11LrOy5pUbSPudAXkygFLRYTXbp0EbYVTkQBoFu3buTPiSbdYMrnSpIwMYn6jslGJmmN/5tSLqwzKRbTlEJf0KFFn+Bkgwta9OjDazGfyDxFJXpfWXb+vjVE91qA589rMRmVPq0Lm1rUfc9s9AEbdQwaNEjYlpSI9urVC7NmzaLGI3SDo0lFqQk3pBhPdaj3KP6ZgfC1tDIU8vwZPJWdVurpYil+tqFYod5T2UVYqWgxfp1eix4q1HUOpc/J9AGvxWR0jaEet3B1fUqNzQWisffq1Uu4HDkRfeONN4Ttp0yZgqlTp5IeDTB1cknxnYeEkHIqmbfODOjfjFA9ZTA1uamWAcRPxPLYD7Iky8fkXYG66DKtRRu6Uml/r8UfKPbrywITG/TFqkVXDjNM+HZpfuBR7Pq3sT5Nel3WTtaeWqa2thbdu3cXticlottvvz3WrVtHKeLxOEE4GMhMPLKnuqVYhwu+PW4jq0VX+7zvy568InPiDripqzzrMA/JpQnyer90ozInRsuLljFdR23jxth+++2F7UmJ6A477IAVK1ZQihjFtdMDGUR2JGXFWgzt4/HYIk2LftL0eMxjck50hbzHXwzYfFIir+RtTjR5j1ztL67dgw0bNmDjxo3o06ePcBlSItqnTx+sW7cOGzduRE1NDTnAYkX1+B1g74iE9nkfAF3bqXQtHk8yJu4XT1Nx7UX/75oO/UaTpxgQ0WKxzYkejwo2H/nNek70Ws8eSn9r3KQJqqur0bFjR+EypES0WbNmaNOmDVatWuUT0RREks40WHZpH5L2CZYb2Eh2KXVQkxaTSY7NBEpWh/EYk7RYjDp0qb94ioMs5sS869BjFmr/yNvnSVmo6DD6vqtzoskvkzLZX4opqe/SpQvKysqE7UmJKPDD50RXrVqFDh06CJdx6Vl/3b7DBVjabpKuunnPkuvYKTbR7n6B6rGJLR2GPik69CfxnlIhCx2y/Pu5Rz/FtGAuZtLWhC7MiRS/Hj3YaMshQ4aQ7MmJ6MCBAzFz5kxqsaJAx46uaD06dl4oAxEVlzYLTJ4MylCqybetjYy0ts1y0uLVbVKLHk8WuKxDXv1eh55iQ1WHNtZDvDq9DhtSDNddVVWFAQMGkMqQe+DOO++MtWvXCttPmTKF5F/mRogKiXpkH+6oRndWg0Jhmz+uEsbGizl+bdHXPG7jcr/TRbQvsvoqq0+73C5JY0f8+rwOPa5QbDoE2DEDXoced5HRYRYxisBbm0b92NCh6+NUEq4+mVBVVYXBgweTypBPRHfaaScsX76cWsw5dCevuqCcpomeQLHsZD5/KhMjFf/ZtNLCVR1SyFKHHo8OikGHKngd0rBxzaXYrrp1qNtOF5STUK9DPq5d85YtW7Bx40bstNNOpHLkRHTHHXfE999/j02bNqFRo0bU4trhJSJJHTa+iyRiVyqItIcLH0i3jY3P9+X5M4Reh3rxOvToxOtQDq9Djww8rZSCDk30+ax1SG1z1+8RBUrbVVVXo7KyEr179ybVQU5EW7dujfbt22PFihXo1KkTtbg2KJ8bM/GhbFY8sqciMoieBOo8MUxqx7Rn/kUHWU++ENVh/J7nOenOGq9DTxyvQ/unPy7qsJgWwBRcuW7TOnTlOnWgW4fRj8+FiOqwWMbAJGz1nR49eqCiooJUhpyIAsCgQYOwfPlyUiJKnfCojVYKHcll0nasoglxMQ2mxQ7lUaFiWtTmFcpOutdhfvA6zBdeh8WF7NqlWJLLrGJUrVdUh1l//jQPfUCUPfbYg1xGKhHddddd8cQTT5DLmUouZY7NKb7TbHWdTvKEYXNR4cKJcfRv3f5lsPE5VFufdZWpI0+LWtUnE5IWiSz7LJ5MUIE6proQczGh0q7FsqgVgadDF8cik2NqMejQxdht6NDkesQWedIhQNcVdUyl9BdqHyiGz13X1tZi2LBh5HJSiejIkSNx1113CdtPmTIFU6dOBZB9cunKghDgP8uetmPqyiBgos2pO/oqg4RILFkiEqNsX856MnWJJB0mneQXc9vI6lD3Z2lcaGNTOtS5GZp3kh5hjOqwlDQYxeSCWcQ+63YWvR7TGzzFkFwm4eJcmHXbuLImZT1ybBJWHWn1VlZWYsSIEeS6pBLRESNGYOnSpairq0N1dbVwuaw7FBXdSauoiHkdn1Ve5yLFtSSdkuTKPAaRJmzVR6hk2pI6GKlet0iZvOlWFNGnDkR0WOrI6tC0BmXKUBflqtddisgsaFntbmoudAnKZ19dnQtlyrg2F+YJauJeinOh6SfoVOcEEc25tCadN28eBgwcSP7pFkAyEe3YsSM6duyIpUuXomvXrjIutOJSAhUlaZdXBtFBgPfIoU7hudbmlOtjxZ5W1tWkL8+LL1t90oYOeTvJHnFENChiFy/jk8Ts0a3BeFndJzUuzW22MTEXujivUf3nfVxI6tM65kJRDeZNWzaSPRZJ98TF9Wjffv3Qt29f0uFkiFQiCvzweO6XX35JSkSLfVEgMtmGi1bdC/C4/zxDTXJdS4qB4ojJxWsQQSQp1H1dIhOyx5NXdC3GqI+XUcereFlbGjT1kSMb5GmN5aGRNheaWGNnsR51UVei5Dn2KOXl5dhvv/3kyspWOmrUKKxcuVLYfsqUKbJVGUHHzQ9FxtoBiv4xBct3Ut3ReIul85cypbSA4PVXXp+2pUEWXoOeUkJUg67o0GtQHp9UpJNF/El9WlWDKptBonOhar0UZPwWw+m5zAkqhZqaGuy2227kcoBCIrrHHntgyZIlCIJA1kUiJgUj85hI+HfShCvi23RnYNUXjS3LCdlPMG7UYRJTGoz6V9UgtT5VvAY9xYRtDerCFQ16PDJE+6aoBl3ToUkNunatFGznBbpZvXo1NmzYgFGjRkmVl340d5dddkGhUMCKFSvQpk0bWTfOEr/ZMs9YuwrvM6SsRwqL4Xo9+cRrkG/r8diglDUY/p9nq7NeT0Py3kY6H9V2QYOm6vIalMNG/JQ6WrRsiXbt2mG77baTqks6Ea2qqsKuu+6KJUuWkBJRE8+kA2qfZ0sqF/rN4rEi0evRER/rcwNJu1OhvWjdMvfHdLtT/Nv4vGReP5MZYkKD1H6WZ6LXGv5fRIMeTxTdTxNFdZ1Fn8tiwR2dA8P/ZxmXS7h23abnTFtzsq51KGXd6CIuaVBmzeoatmKaOHGidFmlCMeNG4dly5apuEhFdyPGTx10f6bF5UGAWmdSe/AeE8mSrOv3pBPvK9F/Z/2ZsjhZ1x/GkKZBV/TnyQcsDYa4psGsYbVHdKHsNZg/sr5HrL6Sdw2aXPemzYG89XwesBWv6T5UU1ODcePGSZdXaoUxY8aQPidK/cIilcaLP3MeX/BG69AldhOfTUsTF+VETwesASHpWX/ZwcG0cGwN7i4OjDZiSusH8c+KuDbZZjnBpbVFUpuJjnt5pJQ1K4NuDdrsP64vMG3MgcVAsSy0ZQ8lqPrTuU5TtaNq0OZalNVe8Q0iXfqjxmvS3tbajcL333+PTZs2Ye+995auU/rRXAAYPnw46urqsHLlSrRq1UrFlRSsBmMJnQX1MULRxyJE4NWdFI/odWUFL6b4rrupxyvy/liry/D6Pq+9Xe+rPOLXE+9TLl+X6IIi/L9oWY/bqMyBro2XvHhYj6i72GezngNdu58uo6v/FPscyHvftUdiWRtCcX9+DhSH0h6t27RBhw4d0KlTJ+n6lBLR6upqjBw5EosXLyYlotSkjrITozNhjPo3NcgnCYIlelu7q7raMel6kibmYsBWcmyiz7Pq4GFaf1QoMYhMSLzHYWXrtA3v/ojoz+XrKgVEx8joPc3T/UpLykTmQNevN2l8zHIOLJbTShtQ9Bf9v636dfp1RX86/fLGxzyuQV07QQWg9FguoJiIAj98QPXPf/4zBg0aRC5LaaQ8DWZpi4F45+fZshIZlohEfJlEdvFDaSMVXzrJ20IvTrRPFav+0hDVH4u4bVyDab5c6j8isUb/VvHl2ZZS118UWQ3GHx/M0wkwoG8OTDsRygs275HsqVveoeov/l6S/tJ8uYZO/VH7k4vjkQw1NTX40Y9+pORDuSXGjRuHxYsXoyDY+cLPicZ3VHh/TGPrxCr6J4rKNbLaKKmu8H0RvyaQWWwk9Q3ezpbIH5eRXaBSrl1Uf649giNbhwn9scrb7mem708p6k+WPOrPBmn6U50DRevKK15/YsjqD0hvY5XNyqR4KcjqxKb+4vXFX88jFP2F/3ZJfyZPUJctW4ZNmzZhzJgxxKgaonwiutNOO6GmpgZLly5Fx44dhcuJNo7sToOJCVzEbxivyK6Trg4Z1pnFIwcy94dCWpuzrplnHx8s4q9RYjJpr6OOtJ0+kwtc0/6TENWfzj6bpf6yJn7NoidSXn/5TzBZJN1XU/pL8m9afzbmV9H3ZfQX/7cIpaS/vI3fXn96bEO8/tLp2LEj2rdvT64jinIiWl5ejr333htffPEFKRE1NRlTEiPdSZRI8inrl+onKelNS9hcQff94bUJdceItwuoI6akOqgxuQ71/iZdJ1V7pjdQikF/gN6+xWoTqm9WGZX7aHJMKCVMzX2yFIv+dKKqP1676dafjpjS7F1BVx+U0Z/O/h/3laY/0YRNpm5X0dHXXVt7VlRWYtKkSVL1R9GiyokTJ2Lp0qU6XHHJegBJewQhPiC69lgV6zGTtMcFsm5zKqrJumrdSY9upL3vocPquzKPUtlARn+lgI7rTnt0SuTRqlJFtg3S+q5rbcsaF2zrrxg0zrqvxa4/F+O0sfY0cQggOveZanNTfrPUdpZrz0aNGmHChAnKfrS03r777ouvv/4adXV1QvY2f09UBOqpDGvxG7+5oj7T7GR2B0VgdUqVSdn0IxIevZi6B6YnENbkm7eFDcAfM0o5KfW4Tdrcl/VGIMVWp/7yNO7YxNY4lmW/s0H0Mddim/t0rD1N4NIjxSqYyh8A4KuvvsLGjRuVfj80RPnRXADo3r07unTpgiVLlqB79+46XCqj63Ep2UceXBEUC1bbsB4biP7Ns6PietuIQOlbtq63GB8PdOWkxXTb2tKeDYqxH5YivDGrGO+tiP6K8bo9etE1z7ukvbQ6dRy4sA5wROY+0+sq0xscJpNEWSgxbdetG/r374+WLVsq16vt6saPH4+vv/6aVMaFU5mkR3XiO09ZxBnfDVPxJWOXtGts67M2eU9ciwFbyXTSrq9t4p9rsQXrkbYwBpuPE/rFd+nA61fxRyxF0LUBzFuU2sKE9kpNU6V2vaLE5xYd2tP1FF7Uxrb2KOtOCsWwhnQtca2ursYRRxyhxZe2aCdMmJC7z4nyJrukZ61twRNcVo8w8J4xj7ehC4KnxkB9pNkGJmNyYXHA6zcuPG7kmvaA5McJo7F5PGmIai+rzR8XtBef913XXtb166AYrkHkBJG3wWlTe7wTRlZfTtOezg0q1klokvZYZWyTdf08TCau4c917rfffqRyPLS14N57743vvvsO69atE7K3/TlRkR1N3QOATEKUdBrE2yUySdopLKvNdJ7cZDEgexpiWntZJ56Am9pLghVfNK4sk2ZRvPbM47Wnn2LQnsuxuYJqG1G0p0t/VD887cVjjNubJOkaVLQn2jZZrql12NugorISZWVl2HXXXbX40/IZUQBo1aoVBg8ejC+//BL9+vXT5VYK1ilnCG8niOrfZMKa5jtpYBCNTfc1sGKL1sXaZePZq9bvonAp7e3qNYggoz0TfZGigygq2tMNtV2y1p4nW0zPe7qJnwYlvR+3cS3Ro2hP52OWaTHkDZOnOKbHal4dedRenDxpj3cvTK15WTHotrcBNaZRo0ahqqpKS93aElEAOPTQQ/HXv/6VlIiqdo40QYiKTLew0nxSF8BJ9cR9UgeZJN862oU3UMT/nVTG4xYi/cLVe2hKe7p0pxOb2svzBkqe0DHnZYHKKQWvnO45TyeiC2SevWlMJn3FAu9xUBF7Hehqd5k5j2fD0x7P3kTfSfKpY85zZQwJcU2rjRs3xrHHHqvNn9aIDzzwQHz55ZfYunWrkL3o47nRRR7r+D3+iIPJR41Uk+akxyBEyovExlogm56oZU5uku5ZPG7XHneixOHaoEYh7R6o6s72qbzp00DWo0KukTZe8rTnsYfI+GdrzlMhaf7REa/onOcKFN1FX/OwMTHfmNadrfvp0pxn4ikAmXuve85zVZsmE9fvvvsOGzZswAEHHEANi4vWE9HBgwejefPmWLJkCbp27UoqK7rbRD1BpdibOLrXtQtMPW1IOyl1FZHHWEztsLm4kKMgow0Kor5NnoxR9RzF1v3V8RhTFm2Ypr28nsS5iOi9lZnzskbnySeFpDnP5fbj6S46BlBOgEzh2qmMLHnbRKYkcbbnvKSNIJdIO90NMb3WpPqz1Y6UftK+Qwf06dMHHTt21Fa/1kS0rKwMkyZNwltvvUVKRF14rIa68EtbHFAHBJ2Ljbgv3uMlopO0qYWQqF/RxRhl0Rz6lcFkkqAL3UlmOLm4MDEnQdGdjftoa3Fs8t6I6k50w8v1PqSCCd3lAVPJp8oYHRI/6dAVm417I7LG8Lr7AeoJlm7tyTwVpoqM7kyPOdET0rhP1dhsQW0jykaRyWu0MSY1atRI62O5gOZEFAAOOuggPP744wiCAGVlZcLlTJxy2k4YWItgkVhtxpk0SMRtZGLLMlmJLz54cfAmbtcWfTLxUCamPCSWUXh9UVZ3OhHRSdwmqxNb3RSb7gA9O9fFojsevDZy7dpY2rS9+W2ij7uuO5l2dUV3Lo5JIaWuO+p6lIpobhH6N60718anyspKHHjggXrrD4Ig0Olw48aNaNOmDcaPH4927doJlZk6daoTj9tSdkvjj86EsI76Kf50xCdbJ29QN9neph6bNmGf5eSkqw/Zsjdta1t3Ottft+6opzxed+JkrTtX7q3o4tdV3bHa0abuTN5HU/Yu606mPU3b67alnLLZXj9SfMXtdOjOlftI9S1i77ru2rRpg++++4500JiG9hPRmpoaHHTQQZg7d65wIgqY3SXW7Tu+05H1QlYXrMGNeq0myfokgTWYmhq0wjKu7XJmBesk0WbbmLwXqrqz+URFFoie/LCQuW9ed/+FcuJkot60e6HS79N0RzkZyRIdp4gsbOrORc1leXpKPenVXa/I/RBtn7gdax1F1R0Fk/fR5DrcxpqRal9dXY0TTzxRaxIKaP7W3JAf//jH+OKLL6D5sLUBMoOprG04QUUnKlH/Ojoqq17Wa/H3VQkK234jXFJbuIapCVoG1yZZG1Dak2WbpDnT7cmq21a/z7vuPPmF1c/CvmhTd2mvyUCdq3VrLq9zgKvjDbU9XWh/Xlvy+lqoOV2xs/zw+rjtuS6agGU1z5nuIyb7rOn17oYNG1AoFLR/PhQwlIjuu+++2LJlC7799lshe9GfcQmxtSObNCjY2LWJLwZYCwJV0YqUi9cb39GKx6CagCTF4AquxRPiUvJNhbcIltWczLXxNB/+m2dnCt71+6TUowORBbDpPsbTfPzfNvu86FxnAhsnM67OX3lFZm7SOdfJ3E+W5ln/lu3vsv2Yp3lqHC5p1NY8bVLXjZs0Qdu2bbHzzjtr96390Vzgh+Pbww47DO+++y7pK35NHMuL+o6ffAB6byrl2niDQ9yX6mChsshg7R6z/p/VI4VU364+3mhSEyYRaU/e+1lcb5rmWO9lkQiKPMbLsvN4ADc0x9uwFNFdFn09aa4rFc2ZPJlxDd3xu6C5EBHN2d54FWkfmfWlyPtpMWSFrUSX0gcbNWqEU045RftjuYChE1Hgh8dzFy1ahK1btwrZU09FAbXTtKSdYF4ZlRhEYe0KR+HFxXucz0RsSfUnPWahYzBzbcCgYjJ+W7uosohoTiQmyim+aFyU+qN1mNYcJYYsTm88bqNLczrjiUI9AeKdVOpEZHFrWnPFnNTGKbbxSYfmdLZJ0tMOosiOE7r6sYvznOn1lskxQCbR3bJlC4455hgj8Rg5EQWAvffeGy1atMDnn3+OXr16afcvc4LFsle52aIxJNmZiCnqV2TH1tSpG2+Rztrdyuok3GX/rp7SUqCcetjCBc2JQu1fopozGYNHL9RN0VLQXFjehacBTGgu77i2iKZiQnMyT6yJ1i/6nuhTgUkxmdAc9VpNaM7U4ZOtccB0otu3b18MGDCAVEYUYy1UXl6OM844AwsWLCCV03HTkk7hortBqqKUiSseYzwuGV8sWLtvKjtH1E7LGwR57S9ycmpjgeHSiaVrpOmFdf9E9aYjhjR4celGl+Z0xhK/Xtb9KtaFczFel445joLs0xMszcn6S4qNNZdkBUVznh8wPTfq8G9bc6Lw1lHRuOJ2OupM0pxo39alAZV1pWu4lugGQYCamhr84he/MFaH9t8RjfLNN99gu+22w+GHH47mzZsLlaH8pqhoMha1p/im7NLIPGqRtGsm4k/WRjbJM9F+LFvqfdUVR7HYA7TdPV0bIDb0RrGlaE6X3lh1qOiNYqvSfro0l3c92Iopb3Ocbb2J2mU1x1G1ybKljKVp/qn9yZX+7ao9Dz/H8ftPPBY/x7lrD9Cut6amBsuXL0fjxo2F66Fg7NFcAOjYsSP2339/fPLJJxg+fLiSryw6kYhtUKB/KUuSTxF/FFjXwEr6dCbAqvD8x2OllM0zptvclUFb13XKTIg64GlXVm+6x4Ik0hYWvDiKUW9ZIHKfXW5r3ZpT7fcqc5wtkjQnqjfT40MeTpBkcFlvIrFR9Kb7HvLqCl+n6k024abaysxxtsexLOd7HlVVVTjhhBOMJaGAwUdzQ8466ywsWLAABWLGHv8TwjuCd5F47Cb8JyHSPqyJjdXuov4o8VFto/Xz+gEr/qzvg4o9tc1ld34pehOtgxKLrgTUpfvMIklvrhG/567oLa+w2khUby7OdbrmCdPwNKfbrw5bGb2Fr+uORcbeJd3L6i18XcQ/JRYKvKRJVm+iJ50myMN8IKo3kcMQm5hOdFeuXIlCoYDTTz+dVI6K0UdzAaBQKKBHjx7o06cPtt9+e6EyMo/nuvB4BOsEg7Uzq/L4Q9xGxE7msQfe7pBMm+i0ZcUq4puKqf4XlrHx6AWFUtebDk2K+mLZlbLebGghz3ozFbtMX03Tm0zf59nE/ev0xbsOndcgaxuPVcSegotzlUvzuYl7RbVlzW3x8rb1prJ+ZelNpk1E8HpLtqfEVFZejoEDB2LOnDnCdchg9NFc4IcvLTrvvPNw1VVXoXfv3sK/QSPawDzB6vAtYxvGxEI01jS7+Htp9VI7a9xXfBdIxB/lvsjcQ1FEF/O8NhWFZ69rQWtyAqbupru2G6iqt9AXbxea93+dJz+qenMNit507urqWlC4ojdTqLS5yb5IndtkYZ165BVqn3NtbpOJSTQG02MnxTflPunSG3VNITKnihC3U9GbKdsQkxsPMjGp6k2kPtGYqqurcdlllwnZqmD8RBQA1q9fj86dO2PUqFHo0qWLUJk8nIqm7VgllZEZQOODE+VkSGdcLHiLeFd2sVw7EZEhj+2TpdZE60/bwY2fltg6FYrHwapPxWdetWkDV3axszihMak1lh3vtIR1CssqpysZMaE1k7a27E3jyvVmsY6UTTqo67WkuY23jmStP3XFFY+DV6esT1PzINXeNa0BtPg7duyIr776ChUVFUZjMn4iCgCNGzfGOeecg/vvv184EQXcORWNl4vXzXqdh8wpDW9wiA8i0TiooqGe1vLqi9dpYhK2cb9l+ofJAc00JneOdWuN9Z4K0f4kshOtqjWZ+ELiu8kydcroxyQmtSbj36W2sUXSotBUeyTpmxdHllozWa8NZE9mvNa2hRJ33DZNa7Knjkl2qlrTfZ/S1q3xGCl9ypQtxd5VrQn3mf//ky2/+c1vjCehgIUvKwo555xzsHjxYixfvlzIfsqUKeQ6TE6YcWGGf0KoHTot1rhA4/XxfMVjYwlcJa64XbQ+1iAmiskJ3rXFg8lFtw17IFutmUJEa1FUtSYDT2uuLOhc05onGZ7WTN9HGX2ztGYSVmwuac2VOEJkF9+u2APmHzvPUmvReuPEX1PRmkwirUNrJvVQalorr6hARUUFTjjhBFI5Way1bvv27TF58mR8+OGHpHKUk0ZRRB4vYJ08iAwaOjqsjlOPsJyJSTQpnqTEVPckbmpwsJHIlQomtaYD1uJABpMLVp6fpMnbpQWzJ3t4/cLmYtik1kwjqzXXNOjipqZJstjgltWarsMCymauyIGIqNZ0xZ+mtbSyOmJQ8V0M9jU1Nfj5z3+O2tpaUh2yWB0lzz//fCxYsAArV64Usjd9Khq1TRo4RP3K7ATF4zGx+xS34Yna9KDNS0zj90HUHxXXFgVUbOwIi6DST1j3XXYxrDLxxevXVSdPazK+KIT15i0xzftC11XSFsPhv23FEa1fJ1k+GSC7WObh2gmeDVzRv0q/0ak12etjzakq/uK+o76y0pnugw1TSWsx2AdBgJ/85CekcipYXZn07t0bxx13HN5//31SOdPJCWtBHH9sgOqTYqdjl5rSRjxRU33JJOe8Npap3zSuDRCmMRGPzj4uQ9JC0WT9IjoT9aNaP++k1rX+55GHN37y+oGNeFjzqok+Z/JphKQ64/Wz9O4pLuLjJ2/tSDnAkIHXz2R0RhkX0vq4zoSbdQ1pc5oI/jQ0mZqaGpx77rlo06YNqQ4VrI+Ul1xyCT777DOsWLHCWB1JJyA88cgKIw5ViLwdNEq9MqeirPpMDV5JvtMWzGkLeFObFKVmrwsRnemITaX/mdQZr5yNxYloDDI68+hBR/sm3bOsEs94bNFYbOFKMqiiM1dO/ErNHkh+ckxlPtO1tmTFRolDpU7egUI8Fp11suplxWBSZ671Uxv2ZQDOPfdcUjlVrI/S3bt3x4knnojZs2cL2YeP58oKVWTXSgSdIuctHnTUKxNXmqCzIGmXWSUuv9BmI9PPeIO+6mJY1z3KUmc8sji9SYslbTIPX/Nkg6tJZzy2eEw80mLV0deoOjPZvyk6E8XrMR2ZNZuozmzrzYTOROtNQuYwQ3dinrbusL3R6tohg/Dh2P//ptxf/frXaNmyJakOVTIZzS666CJ88cUXWLZsmbIv0R2rpJsh0+lVYpUtq2oje3KaJGJdA0+abdImAish0pnMlJI9z4eKzkxu+CTFGvWX1UKdRzwuXf1WpXzaRp0pjXl+IKl9VTZRVWNKijUaXx5wod9S5zKd9ZaSPYu0tYLIGEipi0LSeBt9X8dGTtwnJa40uyzmB966Q8dcViqnp+E35f7sZz8jldNBJiNyly5dMGXKFMyaNUvIPnoqKjKAUDAxgfI6ffge66RPJcZoeRFhidaXNlHK7DjqtI3Wb2InzLXFlY14KJO0rZiSCOPjxRq3U6knXpeKxqKwxgMbE7kJjWW9yM8LlLksa42FsBbG4R+dG168/8dtReHNuaaTaWqM8Vijflh9xZV+4SpUjdlYC/LiZMUcj9NVjaXNu9F5kwK17UT9mdwEcm0zRtS+UCjU/25os2bNSHXooCwIgsB6rQCWLVuGnj17YvTo0ejatWuq/dSpUwHQdyconVmnbbwT8+yp/niL66SBilVGpj5Wvaw6knzqvh8yfkWILlgo4nfZXvT6dbd7tG4T/SREh8aSdsBNaCwtZl4dMj5Z/r3G9NpnrTHT99OWxlhaM62xrNYKsrZpxNvLVc2I2AIgayxaRmcsxaoxXhmvMT7xPmliPWTLvnXr1vjqq6+s/WRLlMy2r9u2bYuLL74Y7777LgoCjSX7WVERdO6E8Xbe0uqmXhdrAOHtqsrsoqbFnLSbpIqpnd6o3/iuWNpOXtqfrBCJixVj2vVT6jdBkl9ZjVHqjWsm7iOpv8jUx4o5zxoT6V8UjWWFqPZ5fVJVX1nAaneR+KnXJ6MxnfDmSZ31mLjnohrj9dE0jamsRWTsKXGJakxUb5TYddmyrk90jBBJCln1ROuI+2OtE2Xq48UrM4fpTiwpfuP2ouvE6P9F5jCZWGTsReaw6upq3HjjjZkkoUCGJ6IAsGnTJuywww7o0aMH+vXrl2rv6qkoT7yiPql28XpEfMkIgRJXUkIts2tkyjYer4rvLBfILCj9gYeutlHxzfKbpDFRnzKTKq9NRfqDbt0HBfaJbLydTN1rE7Zp9i5pLCnGrDWjamtDX0n1iPii6osaV9p8TvFn2jYel6y9S/oCaP2Bhwvtnqav0I/pNSKrDKU/UNZ+InGx5jBWOxXLGjH6vguwYiyvqED//v0xZ84clJWVZRBVxokoADz22GM48cQTceihh6K6ujrVXiYZNbVQjqMyiFIXykm2lIVdmp80myQ7Sjvx/GY9oVB9593epYVynDzoi+JHNK4kO5WdVq8v+/ZeX/y6RH15fXl9JdkC7tyjOJSkkFq3bX3pSKKLRV9Ue5f0UllZif/85z/YfffdhevQTeap+iGHHIIBAwaQf86FAmVHIs2WlciFf1Tr59mVldO/VCFpIIzvQMX9U+pJsou2jWidKoj6o4ia6lvW3hVk2kYnrL7uor6SsNHXo3XZ0pcn37D6hYi+TNSpAquv8+oWjTGpLp6+siTrcVoWG/OoarIoS5q+ktZJuutMsk/DZl+X1ZfONT0vLopvU33OtH1VVRXGjx+faRIKOJCIlpWV4aabbsKHH36I1atXi5czkHQknSJGxSHjMy1e3m5RtE4VXzybuF/WIKBjQo/XxaqTVT7rCR+wM+m7NkCZ8s3qWzx9mW53nr50YntS59XpwuLZY5+khapJfelOPlmw5i6TUOYu0wtlU7g0r4S4kHTz1iZJcxflBJNix6qTomnKCWaavlQPK5Js0+YtHWv7OCaTVtP2MklxEAS48cYbSfGYwIkRcOjQoTj++OPx9ttvQ+RJYZkvLqLa8sTOmox0EvrjTeLUI3pRG96ulImBJvTP2i2UXTTbOOUUxZWByTWS7jFvZ1TUJ8VORwJK6Tu8Pm4KnraiddtIiD1sbCSAvLkri80d03UmaUvn/CUyXrm24ZPnhTUVG9eqW1uU/smbM8O4dMJbc7LWp0lQ7eKJvOiBhWr9UfJ6uklh69ataNSoES644AL07NnTWD2iODNiXn311VixYgUWLVqk3bfoJBO/8boeqaCeZIosknV0UpZv1gBAqU8lLpHFc5p/0fptJK6uLEhMXitFW7yFHK8fmiBLbcXrpWpLNR5VbXncQ0ZbpjdPVeZMyuYpy7dL2grr17mhZiPZcoUskwjeuOiKtkzN6RRtmTqk4NVdDNqixmLKvrKqCq1atcL5558vZG8aZ1YerVu3xrXXXosZM2Zg8+bNqfaqp6JJAw0VHYMPJQ6RxJayU5Y2+CSdZLHqTINiF90hi8bL2/mnYjJxpeJKoqt6rUmnMjr8y8YSj4OFSGw64uclhEnonHSTdrx5Oje5qPdJcDpJ416W2gqxcfopgoy2KL5FbXSc6LiMK/OVDkTWgzrXN0ltkZQAq9arakPRFfXwgjJ2iMxZWW5kqNrLQIm9qqoKd911F2pqagxHJYZTI8Pxxx+Pvn37YtasWcbqENnhoiRxqqeilEUyBVbSnRSXKCJJKXUAErWN3yveoGhysjeVuJq2B8wMhvE2Z+3csnYyTcUR/T9rQaFat6l+JrrZYwoRXYX/95gnqZ+lncrYiEv3nGWqn7GSQduw7le8HSlxmbrnLi2WqfbUtUT037w5i5qEUtuPl0zF30+rm5LU6kgcw5hEdGWir8Y3enRsPNlIWk3bi1JdXY19990XEyZMIJUzSeY/3xLngw8+wLBhwzBp0iS0bt061Z71cy5pN4YyqOi0jdrxdt1k/aW9rqs+0aRCtN1M3Ysk4u3i2oBCsacM9KrXqkNXlDio912nrpL6OUVXsjqIt3V4bTp1JWObhE1dmer3pu0pY2iICV1RfbL6Y9RGJE7Rfh5/3aSueHWI+uPZUXwmIXvt1Diovk3b65g7XV8HpsXkoq7S1pzhezJzt4gdxWcStnVFtTfpu7q6GgsWLEDXrl2FytjAue3tHXfcEWeffTbeeOMNFAQaN/qIbtrOMUuMPGRsqT55u8mUuqPEd/fiPnm7sdTJhOWXurii2FHi4+2WJe0+iu6gUXf3TOwGxpHZyaP4pOhKN9TBWFRXVJImb5aueGUpsPqsij9duKCrvBJvl6x0JQpPVzri4l076/+i/Sjun4UL7coiaa3C0hXFrwuYGrfifYO1trGpKZkkNCk2qj/etbP8xdtNFF6cMutWar+grgVF5iqTupJNWk2wfv16NGrUCFdddZVTSSgA905EAWDDhg0YMGAAOnXqhB133DHVnnUqmoTqDjbPLimGpB1lGX88vyJleOVE69MZk8ndMJPiN9HXTNtH20X0mk0MuLp2S6maSvPH8yvqW7YsVQNpvk2MbzK2ooT90YUdZhV73ZqixkLpR6KaAuz336Ryon1F9/ypa8xStRWFqinZWExr1lRyYHP9J6spih3Ft2xZEzFlvf6T0ZSo79C/K5qqrKpCv379MHv2bFRUVAiVsYWTiSgATJs2DePGjcPBBx+MFi1apNpTklHTnZq3MxR/XcdgFJ+kZaD4oMSetENGbYu4T922STHo2KVyacIWjcuWTtJsebu4UR8y/TItPtEYVX3IJBB50JTMgoWC6UTUlKZc29yxrSnROJN82NAUq428psRjYdmX6jwV+jG19hONM8mHibVfUh2uaCotBpk+K5u0Uu0pmqqoqMAHH3yA/v37C9nbxNlEFADOOussPPnkk5gwYQLKyspS7adOnZrpJM/rELxdsix2r5PqEfWlsiNNaSNRnzZtQ3vdA5dOslgIy/hW2bGU1ZTMpoPqBJ/mS3XBr6qpLO+vqH0xacqFRDROKc5RSXYqcbugKVMLbJ2k9RkX2pDa3lFc15SpOSrNR1pdsnWbtBW1z1JTvLg2bdqEFi1b4oILLsBFF11kOSoxnE5E165di379+qFHjx4YOHBgqr2pR3RN7E6pCpv1uuwOGdWXyZ3yNL8uTTouJHRU+zxN8jKakp3k03ZtReqPlzGhpzQ7l/SUVresb5lYTPk2GYvuRVXe9UTxpWPBz6qHVRfLNosNUFlbGd+AG/Nflm0oM9am2fDsdMwfab7S9CQae5bzuog/ql9Z367EUlFZid69e+PDDz9EVVWVUBnbZLsllkLTpk1xzz334N1338Xq1atT7VV/W5QHS6jR8jKTa5JPlh2rvvh7QUH+twl1+Eryz4O3cxb9Q/Vp2lZ2R5+CqZ01nTunum1Z9z2M11Sbx+ti6YBlK+Ir7ifqP8lWhWgd8bp06MnjLry5wjU9ic59VF/Ufkwd71l6UkU2edCJDf2bvE4TvpPWejw9icRBWR+y6kqao2T0FPXF0xM1gRZFRE+m+qaNfuZKny8vL8cjjzzibBIKOJ6IAsDYsWNx/PHHY9q0aaRv0RVBVMBR29A+TdS6BZQ2KcdjFVlAiwiGtYCOl08qS7Fj1ReNX3ag020bYipxNZ0smkI2btZmjujEzvJHqTdaHw8RbVM2o2QX0DLtoVNPYVnRel3CBX3YQLeeqPVG60sirf/b0JMoSW2ZlJzoxoWkNcQ1fYtCjTtNT5T5hmLHqi8J0cMSUV+UtTErDoq9Dj2Zso3aU3AhaV23bh0aNWqE3/zmN9hpp52Ey2VBLmbn6667Do0bN8Z7770nXMbUZJS2OxW+JxKDjNipyZXqLleSv7hPFXjtyGtnymJadSeUhY1k0YVYTCw4WHWnLZapm0Widcv0/9APb0yQ8Rf3aQIRPXncQuQUImluspV8RusVhbXgpS6a4/7i8VHLUCgmLZlalNtYxOuy5a0p0vSkQ2M6No90ainqTwRqop223pPxbXKtksektWWrVhgwYAB+/etfk2OyTS5Gy9raWjzyyCOYM2cOlixZkmpPeUSXlwyq7nSK2ibZseqWneRYk76scFnlkwbxaBlR3yx4g2n8XskuAvKW0MVxIXFl2aZpSXS3VwVe3a5oKerD1kI2eh1JO9Lx+DzZkaQl04lnPIZo3eHrMrC0pDpG6dYS5RRJREum9e2SVl1YxLPqShvr0vohNV6RzXSZwwlWHTq0RF176ljz8mx1acnkWt61pLWqqgpPPPGEcz/VwiIXiSgA7LTTTrj66qsxffp0bNq0KdVe9hHdtJ0pqqhlEjDeThbvREY2FtXELRqTSFIq4otqx9utVLkuFxI6lxYSFHhasnVKE8e0lnT5SIrLdD8OYd0jHRs8Hnl4iadtLfFiiP9bRgOqWjKlcSq8dYOqnk3GbXoxbAqVMTHtPumGt+5ixZBULq0OHRseMlqSWeOKEK87aY1pMrGk4ELSGiahd999N7bbbjvhclni9LfmxgmCAOPGjcOXX36JvfbaK/UnXZK+RZd3Y0U6BqUTidqy4qGUEbVNG+xk/STFZsJ/aEu5B6LxiPqN+qbYF5Nv1R1S6j00oSNZ/0la0t3P43gdufHNtrp829IRxZY6N0TL2NYR1Va0TFjOxD1gUWw6MhWL6Homion+m/X4naZRHXqUqZdXxtT6Ok7SGKs7Bll7E763bt2KJk2b4uCDD8bf//53If8ukKtEFAC+/fZbDBgwAIMGDUK/fv1S7cNklEd8lyX+Gg/dCz3qQEApq2swktl9ivtN8h+1N70hILLDZGrAyvPEz0NFR7rilZkceeXzoCOROEzfA0q/SPNLtc9rIppEvG1NJZdZ6UhXkqlrvkwrb3MsU02ioj6yXhDb8J1EMekobeNKJal1TUc61uC2dWQyaaX6Lq+oQIcOHTB//nw0bdpUqIwL5C4RBYCXX34ZBxxwAA444AC0a9cu1Z7y+6ImOomoYIJCQdvAEE+4qAsrXlzUmKI+49cXjzVefxa7bCIJatyPjQnX1uSvM0G3taGjY+Lh+VPRpC49xv2xdMRrlyw21aI+k5DdvKDEIWOv6tu2hii2MnNRlhqK+mJtIqrOkWk6ynIuisfLghWvq3ML1bcOHZla9IvGq0tHqn1fpx7j/uKoaohim7e5yHTSWlVVhRkzZmDw4MFC/l1BbNXtGPvssw8uvvhivPLKK9i4caNW3yzB6/ZZVs7/tsHov+N2IvWwylIHmqifaNwqSWjcNytW2XooA43IxB6tnxUvK+bo/+PvseLIAl5srNfi1x3tnzqRvdesPsPrWyoxxf1T/ejQYzyOqG+ehrKGFWeahuKvuXQ9Ibz4stQQlaRxlxWnrIZ0JI6seOP+RWHFweuTrPpFfZtARENJc1GSX9uIaChtzSBz/0Wg3uu0eHXFo9r3dc1ponOujB50btCwUJ2LVOPQlYTy1pqVlZW4/fbbc5eEAjk9EQWAIAgwadIkzJkzB/vuuy/KUzqEK6eiUShlZHe/ZMrr9ie6YyRbD9W/btt4DK4tnuPEB2BTu3MUW1P9wwUN6dCPaBmZRXRYzmtIHBUNZWmroqG8z0GiZVQSUZ3jnYxtNIa8aMjkvGLSNorrGtKlH9FyshpyYQ6K2udBQxs3bkTLVq1w7LHH4s4778w6JClym4gCwKpVqzBkyBC0bt0aQ4cOTbXPKhm1OQiwYpFdnOrwJzMAs+pIqsulycnGAiNPvl3Qj0gdrLp4fT4P+mHVk+THlUWACdu8+tZlWwz6kfUnW2+8bJoP1/sAyxbI55wi6lvX5oCuhFAknqS5QTWZdV0/onW40l9EbU37rm7UCDvssANmzpyJ6upqoTKu4Xa6n0KLFi3w5JNPYu7cufj8889T7XX8vmiSbZSy8uTHnqLvifhPKxevi1eeUrcufyo74by6VAZIE+hKFPLgWzey+pGpQ1Q/rD7Psk1CVT86klAR/VCgxOJC3ypVTOonqb5oXfHylLqp/pL0E41fhKS6VfVDKSdbhygu6FPmGnWPQfEYovc43odk9ZNWf5JWo/WL1q1Dj7b0I5OkicZB9WtCE6Z9N2rUCM8++2xuk1Ag54koAAwcOBB33nknXn31VXz//fep9qaS0dAuafCK+6X4jvuK1iM6YFCSYRHx8Pyx4pIhWne0LpX6ZDYYTCweXEsuTS2QqLbUCVlFP3EfrLp45aM+eNcRjTXJX5Kmde28i+gnb+Q1blOYWNDyysnoh+eDdR1Uf6y4RH2w6o77ZrWlrH5MbOaY1ILpZNFEHDIx89Zu8fsue21Jc0+0PoqPpGuQ1SPVR7x+Vrkk/cj41mkbjTHrOKi+Kysr8c9//hNdu3YV8u8qRTGTH3300fjZz36Gl156SfuXF4kQFxNvAcCyCcurLqipA0ZS/bIi1rVjKJokpi0OeH5M7QTnObkURefAnrRxQ12AUmD1URPaUfEpi6h2ZbXjcQPevaLqRyWJUunrcR/hv1XmHlZcFKgbUnGbrLVjMml1wbcuWxHtUJIMGdI2i5JgaVcledSxnqRol+dbt25M9FmVDWKdvsvKf/iG3Ouvvx5777239lhsk+vPiEYpFAo46KCD8P7772PcuHGoqKhItFf5vCir46oubqnldCdZrGRaBZX4ysppn9FilUur39SulswOmCs7cabiSEsaZe6JSjwsVPq7Tu2o6kamfpHxLf6+qX5log+65lvGVud4Fq9DtJzXTnq5pPEtfN+F8dsVLYj6VrHVOZ6pxMOrXxZd2tGhG2r9rHK61gYu2Jr0vWbNGrRr3z7XX04Up2gSUQBYt24dRowYAQDYfffdUVZWlmgvk4xGSSonI1CRMjwbHYMS9RrT/IgmIKzyJiYGW8mxC5OxK3HY0I1ITEn6kK2T51vVD+ukRcS3zGI6r7ox6duFJECmzU3c/7S+p3JCoFs38fI2dJNWTvYai31ekInDJd2kxSSyISFTp4hvWT/UOdHUXM2KTbSOPCaWFNtCoYDaxo0xZMgQTJs2DVVVVall8kBRJaIA8OWXX2LIkCHo27cvBg0alGrPSkZ5g1mIzsSSUo46OFDqTdtF1LlA1LXzxfIp284sZCeOUl0YuKgbSj/WtZBX2YSi6EbHwsaGbnwimmyrSzfUWOL1y25syi7o4r5tbN7G7UwmoUkxxGH1iTz2bVHfqrY6NRP6y7tuVP2k2aroVLacad2IxuJKgltRWYmOHTtizpw5aNWqlZD/PFB0iSgAvPnmmxgzZgz23ntvdOvWLdU+TEbjsDqGqckyrZxqeZUB0ebgSikb96Nr8tExybkwINqIg0VSm+reORWNS7dWde4Y67pOm0koVTcu9O2sF+uuaoYXm+lTDpX51fU5lVVGdH6V8Z8nHVBsZeZinWsBkXIiManUS5lrVPUnUo5SNu4jj3ONK0loWXk5amtr8d5776Fv375C/vNCsspzysiRI3HnnXfi3//+N5YvX04qGxSSPzxO2ZVTKaOD6HWUlcv/RES8PVR88Xyz/NtsK15MafGx/kTtROujxEZFth1FrjGMSVQ3lFhkyrB8yPTHsN60fi6qG52a4dUtoxmZ/pR0j1U1k3dErjGpnaLY0gxPzxTS6mVdP8+PqGai9VLj5PlLQiUJTYuJqhlq7LLovM6ksjKakRm70uKgxsuKT0e98TpE5hqer/jrMnOiLPFr0FUmqR+IasZEYkmBGkf4DbnFloQCRXoiGnLFFVfgmmuuwcSJE9G0adNUe8pnRgFzp6MsG5XJl+dXRWSsxYvsrmLcZ9KgmtRmpndB0+xlJuP4tZradVPZDFHZhbVRhtUX46+r9vGoXnT7U9WzrF6odcuW0amZeD+W1UCabbQuFV2n+RaNR/fYlqYZ3XOMjE/d+ov65N1bypwsU5+qvapeqLHYmmOS4pKZp5P8yZRJGlt1rntE+2OaL5Y/HXNW/LUkvzbmGOp6WgRZzajYpsVYVVWF2267DSeddFKq7zxS1IloEAQ46aST8Mwzz2D//fcX+sFXG8lotBxv8NY9Ier2wfKl6i9pQE+bCGTqNj3B8fyb3sWmwNpNZL3OI8tkVKTv6daLih+dMUX9iPaxPOiFZe+yXgD9G1ose17dlDImF5Cs8mn12PQns2BV3dAyPZZS9Z8VLD27phdWPbb0Eq/L68XM2jsvepkyZUr9v9evX4+nnnoKZ5xxBq688soMozJLUSeiALB582aMHz8eixYtwtixY1Eu0OGinxm1sSCPYisBlq3XlE+VQUimvtCHawuLvPqm2KuWiVIsepHd+balFxsneSbtTfsGzOtF5XQkxPZ8RvVhwqfsglVHna70CdfmCxt937ZedNRHqVPUp+qpquk6ZebmLDd5dPmOJpwsNm/ejOeeew6jR4/GAw88kPorIHmm6BNRAFi9ejVGjBiB8vJy7LHHHsI31OTpqK5BSLZO6klsmk+ZncS4H1078KL12pjgXJnQXRq4qWWKTStJPimxqe50U+t0SStUe5d0KxuPSB06F7eydbL6dqlphVpnqWxy2rAXLVOMWuH5pMZmK6l2VSui9qaS0EKhgFdeeQUdOnTAyy+/jEaNGgn5zyslkYgCwFdffYWhQ4eie/fuGDJkiHA5ajIK8DunrgEjqU5eeRHByCaQSbYiPlUWC2H5pMUKr+5iWFwDbgzIMvZJZZJ2WXVpRaTPqtio+OTZ6VhYp2mFdy9MLhbCMi5pxYXEUqSOtHuoY5NPpN6stJJmU2xacdHeFZ0nlRFZF7iiFapORHyKxOa1Yj5pTUtCgyDAm2++ifXr12PGjBlF9TMtPEomEQWA999/H3vssQd22WUX9OvXT7icyqO6LESTQV07Y7LiSotDl1/diWhavawYdNWlw54Sl0uLd9UycWyddqgkuCYWxCZ1klZel1ayTMx0+HdN59EyLETuqa5+Y1onqn5Nb1TF64jjUr83bW9rs1J1LRQl7b6a0ElavUl+eO+r+tWlk7TyOrSiMja4ZJ+WhALAe++9h88//xxvv/02unfvLuQ77/B7SBGy00474amnnsJbb72FRYv+X3tnHqVFcf39L5vIajBsHkERURgRiOCCoARRQcV4UNGgKIpEXINGE+Oa/BKNnKNRjFER5bjGBRGNJoqMAiqIRAFFHMFBdmRAJ6jsDPA87z9vT5q2l+qqW0v3cz/n8A/Tde99um9V3W9V9fOsFG7nT564ThV3TbEg9vXe/mvq1E330wZB+/72aQaaODv+/5O1G/b5VAd/Ub9hq3L+fzrQZVfWvuj1URMqVZuwey7aT2TjC7YNxiHq228nrr+61k9Ex5+olXPduSyKiTh09SsgfSGuOqekjS+qPVU/8aOj/6W144/Fay/iN25OofIV1saV610hbh6Pe1ZRtmSIy8O0OR0WR/CzqdhVEaFp+1nSnCLiL22sLopQERYvXowlS5bgnXfeKRkRCpTYjqjHlClTMHz4cAwaNAht27ZN1TbqqG5UoRD8m+yko7oiKFvARtmjsElhV3UFU6RIC4oWmWfhygq2dz2gfxU72CbqHgefgUquqxZ1KjkdjENVPIbZ9dtP256iME96hrL+XMthW59BVx+Rbatj3BfJIQqbsuMIRTuReFzNSZeuD2sjMler9hPbfUSXXaq5hKKdzrkkTRtT1yfthq5cuRLvv/9+7RcUlRIlKUQBYPz48fjtb3+LM844A/vvv3+qtv6jun6SEtNEoZ3U4akHMoriIW5gEvm8FEI0Lr4wSrHIlvERpNT6CJWtuEJM9z3NQx+R9WHiM4Qhcs91itGoHNOxuKLDlup4kNZ32vsp48+1eUQ2piz0EZnnyX1Era1qH3F55zRJhFZVVaG8vBwvvvgihgwZImQ7T9S3HYAtrrrqKlRVVeHBBx/EGWecgWbNmoVeFyU6/YgmpbdLkjaZ/QNHVNu4ThjWPo3/MB/B/6NYAQwrtikHY5V4PMLiEmmX1m+cfarrVUS8h4jfND5kYwvmeNyzC4tJpI+J4G9LaSsq1rjrkv5Gga0+QmWDmrDcc6WPJCGywKHqO9gHTfSRuH5vQoQGr/H7FC2+04zvcXYor5eNScaOzOdQiU+0H8f1EVm/Ybao+lvQtneNjjkkbd+K2pAQue8uilBRNm7ciOnTp+OBBx4oSREKlPCOKAAUi0VceeWVmDJlCk477TQ0adIk9W6n7ERGOQGmtZV2RyXJh4o92R02/2Cvc2cgTTvRyUf0/ri0Q5T02ZL6h84iL6mtyUkqrI1p/1471/qH/+9x6OgfMm1Er1ft97KfJc6maFuZsVvGv67+IdqmFPuH6LX+NnnpHyrt/G1FxWdYe9Fr/ddH+aDsb6JtqDYtKOtiW/1Dtj8B8buh33//PaZOnYobb7wRf/zjH4Vt542S3REFgDp16mD8+PHYtm0bpk2bhtNOO22vv4uu4vh3AEQTVbadv61sZ0+zo+L/e9Q1ae3JEFxRplqNpSTu84qsgse1SbqXaVdhRXatkvyJXiezoquyEqzaP8JsiDzbqGtEV55F7cX5CPpRQbb/xrUTKS7S9g/qFWqZvurHRNHsUv8QHfdc7B8uidCov8n2D+9aSrEYvNZU/zBJ2Nxos3/osBfnw2/HlAAV9Zm0CRL1f6YI+o4ToZs2bcK0adNw5ZVX4g9/+IPu0JympHdEPfbs2YNhw4Zh1qxZGDRoEJ555pnav+nelfK3E20b1dFUVv+i7FCsbEXZVJ2QVO6DaiFiYjfGJLrzPKt9Iy4GHau+3DfErjeJqTzXfb919g2KXU6dNqPs+NHZN0y2c7V/lFrfiIohafczyV5YG5f6RtoYVNu52jfiROiWLVswdepUDB8+HA8++CDq1KljLC4XYSH6/9m1axfOOeccLFiwAAMHDsQ+++wT+Q25cejsjCIFbFq/UTY8O6qFcZRNilVRkUHe8xkVl8liO60/k21c/Tz+dlFtkyZ2CnEXjIG6v1H0taBd2QJIpfCLsxvXjtvQCxWRsZC6byT5k7FJ1TdE588oP6Z3UbnN/9pRz9OifYNyLFYRoCI2TfSNpPvpwrjnSpsoIbpt2zZMnToVQ4YMweOPP17yIhRgIboXO3fuxJlnnoklS5bg1FNPRYMGDfZ6Z9RG0Z128NIlSCmgtCtyf+NW91QmGdOFpsuDremJx2tro19Q2omyqWpX9P5GFWKmF2hk2+WxDaAuckQX4qh8B22I+pSxa6Lf6uoXaduaLtBd7Req7QDuF1R2wq5ViUN1R9PFGidJhG7fvh3Tpk3DKaecgmeffRZ1De7QugwL0QDbt2/HoEGDsGrVKgwYMGCvnVHATKcJtlVtr+pb1o5O2yrFng3fsu1cFpamxai/rYdN37Ix6LJLIfJt+Xa1EHZld1OknR+bvmXs6LRL9dls+HZxDHdpZzOuTRimNxNkfeu2ncXaNA8i9O2330afPn0wadIk1K9f0l/RsxcsREPYunUrzjzzTCxduhSnnHIKGjZsCABSR3UBtV0KD4rdTREbUbHqmpRl7arsaIb5TROD60LUpC/dhZZLfSJ4PeXpg7j+lqZPUMQShq7dgzwKURVfQLb7hP9v1LFQxigTS5BS7hOAW0JUR58Q9R0VQ1ju6uifaWyXUp+wIVyjROjWrVtRXl6Ofv364YUXXkCDBg2EbZcCLEQj2LFjB4YMGYKFCxdi4MCB2HfffQGAfHdUZDWbevCIsiHSAVWEI5Vt1UHdsxHWXmTFUWVCDdoSbZcHUSnSTnTFV+fEnuaaNNdFtXOhT8S1Fx2jTAk22XZZKbqD/kR3PHXmQFgs1H2C0rbORaKg/TA/LoylOn3Z7OtpdgWpFqxF8izuOhFbFLbjrlPtE0ntk+ItVRG6efNmlJeX4/TTT8dTTz2FevXqCdsuFViIxlBTU4Nhw4bhgw8+wMCBA9G4cWMA8mIUSDeIxrVVHUj8NlQ7rUi7tBOCztXFNPFQr7S6XgzbKqCCmF7dpdjpNFWkB9tR9QdRGyrPLMxWXoWoSrsgafKEOg9UFx+T2lD3t1LrD1nZeZXx5W8bRPTZqORBmA3Z/uBvq3OxP9hG96JMUix+TIpJ2XaUIvSHH35AeXk5zj//fDzyyCP8TmgELEQT2L17N0aMGIHy8nIMGjQITZs2rf2byFHdOCGT1FbEpumBXcSezt2rKB8yNinj8ZOUD3kuUJLa6RD2Ku3jYtKx26orXlNFt2g8HpQ7BBTtXBLLOucGinygiCcpprz1B9W5Qcav6d1QXe2o5wZRv6I2dMdE0ReCdlTt6ao1k+yZFJMU7cKE6HfffYdp06Zh1KhRuO+++/jbcWNgISpAoVDAFVdcgSlTpmDQoEFo3rx57d+Cu6Npj43E/T0OHRM4hbgL2qOYCJJ8yNqh3lEVKUJcLACi2qn6SjMJUYkhWxOuiM089gVRkRHEVl+wJUSz0heo54Qwu8F5ksIHRdxURXdW+oJsO5W+ICPUdY1Pom39UOZq2NiQt74Q1j5PfQEIF6HV1dUoLy/HddddhzvvvJNFaAIsRAUpFov4zW9+gyeeeAKnnnoqWrZsWfs3vxitvV7xOIUoMu3jigLZOCjiSmM3alJLcw+ohWjctaJQ76baWsH2MLGaKds+buFEJY4kHxRQ9WHb9zwKXTtHuoRonvuCawsnUXZVCnudIlTEZxQieZelXX6PtPfJ5lydlb4QlsMqfcGk+FftCy6J0HXr1mH69Om44447cMstt6SyW6qwEE1BsVjEPffcgz/96U846aST0K5du73+TvXuqC5BSnWNTEyUNkVXnKlFHVV7md3UOESLZJF4ZeKg3NEx3Q+irqPqB1H3k8qmSF9Iug+l1A909YGoGKjvT5q2YfGEXeMRl0uuzgVxttL2A9mYVNpH3V/ZHEyT3xSLK6Jx2OoHIu25H4jZUY1Dti1FTRLnU7YfhInQZcuWYfbs2Rg/fjxGjhwpECkDsBCV4plnnsHo0aPRt29fdOrUaa+/qYhRQN9gkNaujhVi1VVAVUEVjMWlAly0nS1MrTT621K3t9UH/O2p+oBo2zh/Nla+g+2z1A9M7jx5bWX9RrWXyT8dfdnkDqSJPiBrQ3VHxjQmP6O/PeVcLSsGqZ4VVf5RzWc2Bai/fVb6ABAuQisqKrBgwQK8/PLLOOOMMyxElV1YiEoybdo0nHPOOejRowe6dev2o7+7sjvqx9QgkzSwyBbj1IWrTSEq69/WERTTBQjFjiTV6rOu40267Ir4S+s3yp6tPmAjH7NahAexWfSasivSXsUOZSxZycc89QGZeNJ+Dl0nU/LSB2y3lW0XFKHFYhHz5s3D8uXLMW3aNBx33HGp7DIsRJWYN28eBg4ciIMOOgjHHnvsj15Itrk7qqPoFLGla7D2rlU9xhLmM8mvjlhsFRIybW2JUZX2No5AiV4j20b1Xob5E/GrIxabJwps7Gxy/qvZ9V+nYw6wtViclTy21Xdk2+vIf79dHYvsSddTLM6G2ZKxaXMX1WYNFBShhUIBs2fPxubNmzFjxgwcfvjhqWNiWIgq89VXX2HAgAFo1KgRTjjhBNSvX/9H15gSpFGDoOqkK+LD/zeqHSxK22F+ou5PmP8kGzIx2CpOs1Q4pWkvkv86i3HK/Ke2HWdLpiixnf9ZE7Gybb32aXPf789E/lOfYKC2HWcrbf5nWYSqtLW5o6mS/xQxBP1Ejc9hviltm8j/NPc6KzlMIXyDIrSmpgbvvvsumjRpgrfffhsHHHBAKrvM/2AhSsCGDRswePBgrF+/vlaUhiHyu6NRiBSpUX9Pe13aeKhsRtkuFgpkE4nfvuh98schakM1Bm4r1j7tjrpKDHF+RfzL2PZyn9p2mgWtsOttLKRQ+c5r7sf54NxPv6Mbdq3NItxrn6XcV/Eb115m8YC6fkjjP61tf+5T2FbdzEhjQzUGF9sGRejmzZvxzjvvoEePHpgyZcpeP+nIpIeFKBHbt2/HxRdfjJkzZ+Lkk09GixYtQq+j3B31I3usQjaOKHtUg32YbSr7aSelqHuuGo+tYj6Lbf3tg8g+S1PFLYVtCvsy919H7mexGLfZ1msfhsyzdD3vddh3IfezuJOk2tZrn5fc11GP6LQvm3O6cj+LAjYoQjds2IAZM2Zg+PDh+Pvf/x56CpJJBwtRQgqFAm6//XY88MADoT/v4kdmd5R6JY76OImuQdqbyNKugibZU40pClHbWRSiNnxTPXfVOJJi8tC566Rin6IYoyoKbS7g2GoLpBsboqB4fhSLoNQ7lkEfFLtCVILWthiyPd5z3tPHpNOHK3mf9cUXYG8h6v08yz333IMxY8aktsuEw0JUA08//TSuuOIKHHvssSgrK4u8Lml3NM0xoSgbIsjaET0ypmMCUREnVMd0gnbSTiZZKhCo2ia1F5n4dEyyFBOribio+6psbKp5X2q7qXHtRe+fzmcocn1YTMG/U8xBSffIVBGcZCdNkW47b2V96xrr43I+eL2u+Trp2riY/NfonINU+qorOS8bi0sitFgs4tNPP0VFRQUmT57MP89CDAtRTcyaNQu/+MUv0KFDBxxzzDGoGzPw+gVpGEmdSdfqV5StNP5URanI5JFWlJqe2NJMumn922qvc0dRxC5VzvttJeWMidh09C3KXas85Lzt/haF6H2l3HEXGeNFYrOR8yL91aRodzHnbc4R/vZRmM550TFeZ2w6+paO+TBtbGHY2M2lyllPhO7Zswdz5szBd999h2nTpqF79+5SdploWIhq5KuvvsJpp52GQqGAfv36oWHDhpHXqr47CpgRpLI+ZAf5tH5EfNlYYQ1rK4ouUW2iSBH5nDp2zGXtBG2ZKrD911PmO7UIVbElmvM6BYbu/kLxGVVjULFFsXAo2k5H3zK9QCVqIw7d+a7aniLfdcaQxk4wDlv5ntaX6A6lzt3ZtDaioFrwjWtPJUK3bduGmTNnonXr1njjjTf4m3E1wUJUM5s2bcL555+PefPmYcCAAZFfYuThkiAN2tJlU8dRpihfcT5lbOssdkxN8hTtk9C5W6drAYbCZtCu7l1L3Z+Bwo7oLlwctopainx36VmEoTs+3fMTpV2di2SuL1pQ9EeqfKcUokFMzuEu5ju1AM1ivvtj80ToN998g5kzZ+LMM8/ExIkTse+++0rFxSTDQtQAhUIBt912G/72t7+hX79+OPjggxPbuCRIqQfTKNu6dnLCfIX5lLFnu+BJUyzoxuYuD+d6tK8wn7L2bNrgXN/bjokFQQrbnl1KASriT9WWK/3FNlnPdR2L6WE+dO1UBv1Q2dUxZ6qKQNt4IrSyshIffvghxo4di+uvvx516tSxHFm+YSFqkEmTJmHkyJHo1q0bevTokZjcFGIUkB8oTBYTJiYLz0/YZ5Hx6dpE68LKuQtFS1o7UZO7DoEY5k+nj2JB/dumbT6bMBu22wPZXMCKygNTAlGHj2DsJo9aumzDhTy1OT8m5XqW89yzrdJvTe2C6rZBGcPo0aNRKBTw8ccfY8WKFZgyZQpOOeUUKZtMOliIGubTTz/F4MGD0aRJE5xwwglo0KBBYhvTgjTN0VmKuEzbTnMMVuQ+5aVAV4nBheIrrZ20eZ6lHI+zmda3KwsuFDZs9xMqG6J2RAtkHXluqjinyHPq3SEXbGQ9hjR20uZ51sbyOLtpcteVXVC/DReE8OjRo7Fjxw689957aNiwId58800ceuihUjaZ9LAQtcC3336LIUOGYNmyZejfvz/2228/oXa6BanMgEo9CFPu5MTZFr02zr9rQtS2DerjaK7kuO64dBy3kvlcYf4pC7c8CFGXbETZkR03deS4Z4tS6MrYiutjeRShFDbymONUcek+RaOa43H3y/b87IKI9dsYPXo0qqurMXPmTPTp0wcvvPACmjVrJm2XSQ8LUUvs2rULv/vd7/DYY4/hxBNPRIcOHYTa6RCjQWwfsxDdsZQ5jkLx2VTjiLLviqB1oQjyyFOOJ7VVFaSUK8xBXMhNz44L+enS/YjC9FE33ScMqItgPzaEQ5ydrI/hFHEE4wliWsSIjs8q9y8LOW47t6hF6Jdffom5c+fijjvuwC233BL7U4uMHliIWuall17CyJEj0blzZ/Tq1Uu4E1B/mZGqrTi7aVbjZXcrRdvpPHaWJpYwezxR/NiGrB2dxwLTxka9uh13vc4jZyr2Ob/D7bg2dgftu5bfaXyksali2zUR6oINzw7V2O1B+ex11xppr01jP61NFduu7IL67VDYuOyyy/Cf//wHX3/9NSZPnszvg1qEhagDLF68GGeddRZ27dqFfv36oVGjRsJt0wjSuEHVxGCoewUxzo+OQt2zG3UPk2IK2hG5TiQeVTuu2EhjJ2ni1V3IJuW2rN80u0w6czsslriYkmzJxiPqT6cNz44ruZ3GVhqSbJo4Ymeq38rmtosFdh5y29/Wdm7L+jbhQ9SmjKDWcTLJFSF7wQUX4N1330Xbtm3x2muvoX379tI2GXVYiDrC5s2bcckll2DmzJno378/Wrdunap9lCC1OQCJ2KScZESEtu5iXSSmYGyitkTjCbNtw47OWFQLR107h7qEr0iBYXpHTDS3XSqQqezojEUmt03mgc7c1uknjU3RZ+D6OOlSLLILtbYW2ihz22ReJ9kVqQldXGChsnP66afj/fffx/Dhw/Hggw+iYcOG0jYZGliIOkSxWMS4ceNw6623olevXujatWuq3y/yi9Ef2bZ45CjKJrVtW35cO37kekGiYieIy3lNaT/Jl2kRmtQ2DJfFn81YwtCxAyNLXsZsl/Na1Y6Liz1RyN5/zutk25S57ZJ4pOpjvXr1QkVFBSZMmIARI0Yo2WToYCHqILNnz8bQoUPRrFkz9O3bN/WKDdUXGnnYXsGj9kXpj3KCjJu8/Zja9TNth+rzi0JduHNOh9sSQcSfa0IU4JymRFdO6z6dEIVoTotem2THVN8Q/fxANsakrOc0hU1Xc5rSzsEHH4x69erh1VdfRffu3ZVsMrSwEHWU6upqXHjhhZg3bx5+/vOfpz6qC+gVpLI2k44xytoV8RnlT8Un9UptnL00BYCHa5NBsRD+szx+TB5BVLVn+shslG2qPqRLyKjmtJc3rghRvx2Rz2Dy6KGqPdM5rdOfjfFCNB9cLdjTEHcPTM2LIm2DBHNM924rVU7rPD4cZy9tbriwm+q31axZMwwePBiPP/44mjZtqmSToYeFqMMUCgXce++9+OMf/yh1VNfDFUEqMujrWulLO8Cm+UyuTLhe+6yQpeIyrk1cO9P5rOJTR1HG+SyGjnEEoM9nGduqPl3JZ2ph7Dqu5bNsLgPu5rOO/ikK9fFZF6lbty722WcfPPTQQ7jsssuk6mdGPyxEM8CcOXNw7rnnomnTplJHdT1sCVLZAY9qB1bFZ5Jf14Ro0BaQ/r6p7vDoiEm3Lb+9OJuqRXHadmE2dPUh22JIly1d+ezK55O1qZKTlDs7Ohd/bI+lOmzpyGcdY6nNXI67Nqq96R1KnfONql+TtpLyefTo0altbt26FbNmzUKDBg3wz3/+E0ceeaRUbIwZWIhmhP/+978YPnw4PvroI/Tr1w9t2rSRtmVSkFJMcDZXxJMmOJeLd8+eC8VTFmz57QVt6lo9FrFlwreLu6FBWwBdzrjWvzxbgF7xRFnYqopJHb5dF6GU9lwfR3XOi6rCM8m+6PWUvv12XBeg1PY8WzKiM8iaNWswa9YsnHXWWZgwYQIfxc0ALEQzhP9bdbt3744ePXqgrsKxCGpBCtBPEEn2bezwBKH04flxrejJgi0qe0Gb1LbD7Jvc3Qnzr8u+i4Wty7YA/c9Zlw/R4+KlnsdU9lzNYx32PJtBsnKCQNR3EBfnR107qqoidM+ePZg3bx6WLl2Khx9+GJdeeqmSPcYcLEQzyCeffIKhQ4di165dOPHEE5VXfCgFqSmxFuZL9w5Pkv+wOGTtuloU5F2MmszfMH+cw/rtudofqOyZzuGgT907lHG+/bi040htz1VbVPZs5LDfr65TBEl+g7hwdDbMHqUtil3Q7777DrNmzUKbNm0wefJkHHbYYco2GXOwEM0oW7duxZgxY/Diiy+iT58+6Nixo7JNWUEqUkzL2E2D7tXSKJ9BHxQTisvHfV0sWlTtiRy/Dvt/akzncNS9Uo0jC8d8XY1Nxp7ImJPlRQ0Rf67nMI/BydeHwTksF4PLu6B+e6oitFgsYvHixfj4448xZswY3HXXXdhnn32U42PMwkI040yZMgUjR45E+/btcdxxx6FBgwbKNkUEqcwgaWtlUeckIvO5PZLuravFsu3ChcKeTJ7Y2N3R7Yfzl8aezSOCHrbz1/TYK+ojTVw6j/m7bM9kX1URezqO/Pptp43HhB+b+avTnqoI3bFjB+bMmYNNmzbh+eefx8knn6waHmMJFqI5YM2aNRg2bBgqKytx4oknolWrViR2wwQpxWCta8APGzR1v9chay9pMnZ5VzRL9jyblEWyzmLVb9NkP5Ft74dzV8/YQrlLozt3/XZN9RMVG35bpSpCKe15NnXkbtA2BbZyV9Zu1vpamD2Ko7hff/01Zs+ejb59++Lpp59Gy5YtlW0y9mAhmhP27NmDsWPH4s4770SPHj2Uv8jIwy9GPUxMBCp20uwkqPrTNUkFoZoISkUgmDhiRV0Up9lFcFVEBymFo4ieTZ15C7hVYKbJR5P9RMWuHxfz1rPpoj0T85ffD/UiRNK1JvqJqm0q+zrnCFURunv3bsyfPx9ffvkl7rvvPlx11VX826A5gIVozliwYAGGDRuGbdu2oW/fvvjJT34i1C5McPrRtWLsQfE+hOw7FKZ8psErEJImeI80RyxdKQoobIoUQK7nbZp2Knlr6mimaN6miVvHc7NV0IveGxNjTFr7pvNdpV1a+5R568LYKGozzedJwruHunLWi8X1uV73Md8w+xSLWC4fxa2ursbs2bPRrl07vPjii/yFRDmChWgO2b59O37/+9/jsccewzHHHIOysrK9Vo3iRKfMpGSzuKeanNNOVq5MtmmFquu7olE2VVfcTRWzJmNJ2w9dETZpi/2sCFEg+lh1GLYETVr71OO9zCkA2302eH0YJo5JZiVndc+NSbFQ7xbKjG2cszS7oIVCAQsXLsTChQtx66234rbbbkP9+vUpQmQcgYVojpk+fTouuugiNG7cGMuXL//R36nFm2lBqqtIE5nEXBGiInZUoRQ4KvG4euxI1L7NnVkXBE0aOypQFsuq8bh6xFPEvsnxPWrRSfdnpvBhYkwzla8Azf2wIURdyFcdfuN8U9hLQ9qdVVUR+sMPP+CDDz5Aw4YN8eKLL+Loo49Wsse4CQvRnPP999/jqquuwr/+9S9s3bq19v91vqugeyDW7csF3zqLz6RCgaKYEcXEbneUXR22w3z4yXO+6j42mXSNCWzmq4nxJkge89X2uOJSvtqYX6h8hJG3fDW1eKkjX1VEqPezLPPmzcOoUaNw7733olGjRtL2GLdhIVoiTJ48GZdffjlat26NpUuX1v5/1op86iM3FP51xKBbiOqwrfP4GLVdk7Z1+XAlBpuLJi7ZzWKf9dv2k8dczeJYkqWxWrdtm+IzLoa8ClBZu6q7oJs3b8acOXOwc+dOPPPMMzj11FMpwmMcxtzSHGOV8847D5WVlSgrK0PTpk1rf3OpTt26pCu0xUJhr/cOqOz77fh9UPsRJS4GF45H2bIN0K74xx2BorCd5v0oEYLPX1d/EIkjKQaqfun5KHVM9FnKsTRpTDWBqXE9i4W9blyPNWqsCuaJyTjCYqAc0+P6g6u2/XZVd0G/+OILvPrqqxgwYACWLFnCIrRE4B3REmTy5MkYPXo0WrVqhd69e+PZZ5+t/Zvpd9fStBd9V1HWl2g8aeOQjUfnESdeaQ+3LWM/Td7Zeo8pKQ7ZeLKYo57trOWoiv20OzkmTwukzVPZz+7auCFqO0v579kGaHI0yY7J3Vdd47orc4KqbRUR6t8FffrppzFw4ECK8JiMwEK0RPnmm29w5ZVXory8HL1790bHjh3x+OOP1/7d9qStOnjqGNxNTrBeu7y+1+ei7TT2KfKLukCgFNMidlx5FrK2dcZt4n1O3QIuaEf1M1EuSorY0L1TmWURqsu2qH3KY7ZUn4dy0UOkPQvQvd8FvfDCCzFu3Dg0b96cIkQmQ7AQLXEmT56MK664Ai1btsRxxx2Hxo0b7/XzLibeSYo6dkZ5dETVLvXkLTIRu1DQlpptv/2gj1LPz7B7kcWFEhO2AbOFPpXwjPMna1NHQWw7P03Yz6LtKB+UwjPMl6wtG/3G1MktXfapROimTZvw4YcfoqamBk8//TQfwy1hWIgy+Pbbb3HNNdfg3//+N44++mh06dIFderUMS5IdfqK8yniz5QoDCPLxT6QvYk2zIduX2H+RPMyzfWy2OqrWcxNz34en0caP3nNTRa5yfbDcGVR1fa4rtNnFgRooVDAokWL8Omnn2LEiBH461//yrugJQ4LUaaWqVOn4le/+hXq1q2L448/Hi1atAAAUkEaJ7j86F6xBcQnJBO7P2GI3Cuq55HFokrnscEoTOWAiCjlvMy/fRP3Og0ifc6UAI3zGwXnZT7zEoj/bKbFZ5zfMCifh+65VkWEfvPNN5g7dy6aNm2Kp556Cn379qUIj8k4LESZvdiyZQtuv/12jB8/Ht26dcPPfvYz1KtXD4CcIE27GujShFEsFKwV+0D8yjXlBJflI8Ay9mV2n00cpxL1a6vQ98ejkpelkJOeD4qcBNwWfcGctB1L0jVhpNlJcyVnZO0D8juHQZLut83xyVYt4Y8jya/qSSiTJ4NUBOiuXbuwYMECLFmyBLfccgtuvvlmNGzYkCpEJuOwEGVCmT9/Pi699FJs2LABvXv3xgEHHFD7tyhBSn0ExZXi36TvYAxU9y6M4Lu5pt+51OFDJB9V4nCl4Dbt2+9fV04Gn53p99h02Aei34EPw5V3MGV8m/ZP8blFxwhTItSED9Ex0kMlJ23no8kYqPqCSE6afjVFRYSuXr0ac+fORVlZGZ588kl07tyZIjwmR7AQZSLZvXs3HnjgAdxxxx3o2LEjjj76aOy77761f/cLUg9T7+uZKFI9P66/8yJrWwbVyVXl88jGbeIe2np/2IR/fwx5yUfPb17yETArlvyY3hE1XYSLQpFLOhce49DVr02NS3GY7A95y0cVAbplyxZ8/PHHWL9+Pe6//35cdtllqKuYp0w+YSHKJLJixQpcffXVeP/999GzZ0906dJlrwElKEhNTz6U/lSOeVHHYXp3QfTdGldIitfGkW7TuRgWg644TO8s5CkfXbh3qjb92DjCbrNvq74iYRrOxR9frzMOF2oe6lyUFaF79uzBokWLsHDhQpx99tkYN24c2rZtSxobky9YiDLCvPHGG7j66quxa9cuHHvssWjTps1efzctSAE9x2HS2tAhTG0IUSDbO2thfkz4CvpT8alqh1qU5qF4jfNlMjeydA8p8siFsVkWkz5Njok2jsrazsOgnSy9lmEqD6mO4a5duxYfffQRWrVqhQkTJuDEE0+kCI/JOSxEmVTs2LED99xzD8aOHYuOHTuiV69eaNSo0Y+uy5Io1THYq4rTLBYNafwAZnPC9feETK3cy8SUxwURz1cec9DvM41fXYW2il2bIjRvueH6nKL7pJFLfSKNX5OLtrIidPPmzZg3bx6qqqrwl7/8BVdffTXq169PFSKTc1iIMlKsWrUK1157LaZPn46jjjoKRxxxROj5fxcEaZRfW4O9n7gjX7a+6CGPBZiHS4LU9vGuOJ95F6GevzyKm6DPKL82vthFNOdt99m8jYGeP5fmFBvfvRD0a+OIeRQ25wNZAbp7924sWrQIn332Gc4//3zce++9PzopxzBJsBBllJg2bRquuuoqbN26FT179kT79u1Rp06d0GtdEKWeTxuFoZ+4SdhWbFk8Qijjz5ZPz6+tVfYgSV88Uwr5l2ehHebXhviMIqlvuCTadflz4XsATPm1JTyjCD5zF3Y/TfilEKDFYhHLly/HJ598ggMPPBATJkzA8ccfTxUiU2KwEGWUqampwcMPP4z/+7//Q4sWLdCrVy+0bNky8nobghSwswOQhrgvG+DinNafLZ+mfYtiu0gshcLc9jFxD869cP959WfDpwtzmQg2x2bbc5GsCK2qqsL8+fOxa9cujB07Fpdeemntb80zjAwsRBkyvv/+e9x111146KGHcMghh6Bnz55o2rRpbJuo3ySlIG6SsV38RBEsGOImdA8d7xTmuUjy+6T2K1KAubIj6hF1L0wWk6WWdybGOo8s5B0gNubp6qt5yAHTPtPMTbZPIHm4UBNkVYB+//33mD9/PqqqqnDzzTfjxhtvROPGjalCbSZKKwAADQRJREFUZEoYFqIMOatWrcLNN9+MV155BV27dkX37t3RsGHD2DYUu6QUX8wi256CtJO1LpHq2rtEun3K+qUomG2KA1nf1ELBhSOrWfHLOfdjOOfE/FLnm0faZ2gz3zxU8o7iPmZJgG7btg2ffvopKisrMXLkSPz5z39G69atqUJkGBaijD4WLFiA66+/Hp988gm6deuGsrIyoW9SE90l1XmsxrQwpZ6kVQqIUizSPES/vMKPrmem8z7oWJVPyjnX8s3z7aLfPOWbLj8y98jWLqjft2v5ZvLUje57oHveTms/ywK0pqYGn3/+OT7//HOcfPLJuO+++9C5c2eqEBmmFhaijFaKxSLeeust3HDDDaiqqkLXrl3RpUuX1II00n4O3rdy6f0dP7YKJtu+48j6F1jYPhYWhc0vLHE11wC7X+jmmk0Zv1GUkgj1+48jq+/IuvKeZxQ2F1ZlRGhNTQ2++OILVFRUoEuXLhg3bhz/HiijFRaijBEKhQJee+013HbbbVi3bp2yIHXxXRMgfVw2V+jDEC3kRLFxbI7yM7j4TFSPhrnwmQA3npOKEHUhfkpU88zVL+Wiek6qecJ59j+oj6e78LlcyTNAXoBWVFTgiy++QFlZGe6++26ccsopkb+CwDBUsBBljFIoFPD666/j1ltvTS1IPfIkTG2vlEeh850i02TpnZ4k0sblogD10PWupC3yskAApIsrC33FBRFIgY0FF12I9v8sCU/beaYiQCsqKtC1a1fcfffdOPnkk1mAMsZgIcpYwROkt912G9auXYuuXbsKv0Pqx0VRCogJU1dFKOBG4eJKke5KHEHiBICrMQNuxcZ5Hk9UbK6KT8Ct++nKGO9CnocR9qxc+OLAKFwSxcFY0opQvwA98sgjcffdd2PAgAEsQBnjsBBlrFIsFmt3SNeuXYsuXbqgrKws8Vt2w3BVlAJuT65huFK4uFhUetiOx09W8sul5wm4k+eAO6IlDJcK8ChczC3AnVhciCMM18cu13Jf9Qjutm3b8MUXX+DLL7+sFaAnnXQSC1DGGixEGScoFot48803cffdd2P+/Pno3LkzunbtimbNmknbdEmYyhy9sT3ZuVIIAO4VdX5sP6e0uNAHXHiOAOd5XAxpcCVeV56lC8/RjwvxpM0r12K1/SxVBeh3332HiooKLF26FAMGDMAtt9yCfv36sQBlrMNClHGOefPmYezYsXj99dfRsWNHdO3aFa1atVKyaUOUyk5mLnwTn2sFOuBGMRXEZBGsunNg4idBRHy7+PxcjAmwl1Oivm3uZnFOiWMqpqS5S2WsMh27K89PRYAWi0VUVVVh8eLFWLNmDS644ALcdNNNOOKII6jDZBhpWIgyzrJy5Urcd999mDhxItq0aYOysjK0b9+eZAVPlzDVPYGaEqkuClHA/eLTQ1cuUdlO8kHpy9VnBrgpGgD6e2biOSf50vFzHa4+N9fiAmjHdNv5pOtzuPTcVARooVDAihUrsHjxYmzevBnXXHMNrrvuOrRt25Y6TIZRhoUo4zwbN27Eo48+inHjxqFu3bro3LkzOnXqhAYNGpDYVxWlrkxmlMWB6wWVh2vxqeSCS+9KUe2euvysPFxddAHk+qHNne8wKPLalTE2DpfHTCB9nrtwMicM6jHWteelIkB37tyJL7/8EpWVlWjUqBFuuukmXHbZZWjatCl1mAxDBgtRJjPs3LkTzz//PO69916sWrUKhx12GMrKytC8eXNSP0FhGjZRZaEw8pApKFwvqgD3Y0wSYS4JT1HSiJwsiFDAbSEKxOe5a6JTFNHcz8o46/pYBETnucndTWpEhGXWxCeQXoBu3LgRS5YswdKlS9G9e3fceOONOPfcc1P/CgHD2ICFKJM5isUi5syZg3HjxuG1117DQQcdhMMPP5zs2K6fsN3S2jgcm8xkSPMFEi5+XtcLwCwXeaKI5pCrn9VlIerqrhQ1Wf6cLo9BWR/f05DFsVZFgBYKBaxcuRKVlZVYv349hg0bhuuuuw49e/akDpNhtMJClMk069atw6OPPopHHnkEderUQadOndC5c2epn38RgYUpHa6/M5bFe2GTrN4vaiGa1ftgiyzfL2oRmuV7YYOs3i8VAbp9+/ba3c8mTZpgzJgxGDVqFH7605+SxccwJmEhyuSCmpoavPLKK7j//vvx2Wef1QrSli1bGvGfdYFq6gicycKBEhv3g/Mm2g81xUJBmw+T9ySLOeORpdzRmS9BPzrIyrF5D1u7nTqfcRrxWSwWsWHDBlRWVmLZsmXo06cPbrjhBgwePBj16tXTFiPDmICFKJM7PvnkEzz44IOYNGkS9t9/f3Ts2BGHHnoo9tlnH+OxuC5Qs/IOVhRZPtIXhcvvjmZV/PgplZxx4TNkfaHFT97zxoXYs3i8No6wz5NGgO7YsQNLly7F8uXLsW3bNlx88cX49a9/jS5dulCGyTBWYSHK5JZNmzbhhRdewMMPP4zKykp06tQJhx9+OFq2bGn9R5xtC9SsC9A4XCuuKHDl9xpN+jWFy+/4yWLrmbm8iEJBHscWwM58kKdFijBkj98Wi0WsX78eS5cuxbJly3DUUUfh2muvxdChQ9GoUSMdoTKMVViIMiXB/Pnz8eijj+K5555DixYt0LFjR3Tq1MnKLmkUceIU0PN7gnmY8KPIo8Dw0F3E5V18+slzngBmf4eR2r5L5D1PALO/h0zpwyVkf35lx44dtUdvd+7ciZEjR+KKK65AWVmZjjAZxhlYiDIlxZYtWzBp0iQ89NBDWLx4ce2x3QMOOMD6LmkUVAI1r6v5cZTSZ1YVp6W0SBHE5W/OpUZWmJaS6AxSCiI0SNqxs9QEpx/Z3c9CoYC1a9di+fLlWLFiBY455hhce+21OPvss7HvvvvqCJVhnIOFKFOyLFy4EE888QSeffZZ1KlTBx06dMBhhx2G/fbbz3ZoQogK1FISY2GU8udPEg+lLD79lJIQ9RMnSktZePopRRHqJ2z8zPuxWlFkdz83btyIpUuXYsWKFWjUqBEuvfRSjBw5Ep07d9YRJsM4DQtRpuTZtWsXpk6diokTJ+Ktt95C27Zt0aFDB2tfcKRKkkBl3EOleLP1TcR5KjjzJkRtfjt1Hu9jXj4TjxXqyO5+bt++HcuWLcOKFSuwceNGDBkyBKNGjcKAAQP4m2+ZkoaFKMP4qK6uxgsvvICJEyfWHt3t0KED2rVrVzKThUkhm7UCxfWfn9F5P019dhs5YVOIZvlnQAAzP61jGpunKLL625hBsvZzSEnI7H7u3r0bq1evxsqVK7Fy5Ur06tULl19+Oc477zw0b95cV6gMkylYiDJMBBUVFXjyySfx3HPPYdOmTejQoQMOOeQQHHDAAajruCBxlSyKXJ2FYdaEuA5cEGKiQtSFWPOObWErKkLzvDDjGrZErczu5549e/D111/Xis82bdpgxIgRuOSSS3DooYcqxcsweYSFKMMkUCgUMHfuXPzjH//ApEmTsHv3bhx88MHo2LEjWrdu7eyXHJUapo8kc4HoLiwSGNOnFzgX9GPjRIqI+CwUCqiqqsKKFSuwcuVKNG/eHMOHD8eFF16Io446imsEhomBhSjDpGD37t1477338Oyzz+KVV15BgwYN0L59exx88MFo3bo175TmFBvv3XJha468vQuYFVgsmsf11wtUSPOFQaoUCgWsW7cOa9aswapVq1C/fn388pe/xEUXXYTevXtzLcAwgrAQZRhJampqUF5ejpdeegmvv/46CoUC2rdvj/bt2+PAAw9E/fr1bYfIZATezbVP3r6wiAIWiuHkVcyZFHJZpKamBmvXrsXatWuxevVqNGnSBGeffTbOO+889O/fn+d8hpGAhSjDELB7927MmTMHr7zyCl5++WVUV1fjoIMOwoEHHoh27dqhcePGtkNkShgWuslkVYhmVSyymGOywJYtW7BmzRqsW7cOq1evxkEHHYShQ4finHPOwdFHH807nwyjCAtRhiGmWCxi0aJFePXVVzFlyhRUVFSgTZs2aN26NQ488EC0bduWV06ZXJEHoatLiOZVcOmExRxji5qaGlRVVWHdunXYsGEDqqur0bNnTwwdOhRDhgzh3/pkGGJYiDKMZqqrqzFjxgy8+eabKC8vR3V1Ndq1a4eGDRuiQYMGtsNjGOdZtGiR7RAyR7du3WyHwDCZoVgsYvPmzVi7di3atWuH0047Daeffjr69++P/fbbz3Z4DJNbWIgyjEGKxSIqKysxY8YMrF69Gjt37rQdEsMwDMOUPGVlZTj11FPRoUMH26EwTMnAQpRhGIZhGIZhGIYxCr+8wjAMwzAMwzAMwxiFhSjDMAzDMAzDMAxjFBaiDMMwDMMwDMMwjFFYiDIMwzAMwzAMwzBGYSHKMAzDMAzDMAzDGIWFKMMwDMMwDMMwDGMUFqIMwzAMwzAMwzCMUViIMgzDMAzDMAzDMEb5fwr+FTglFuDDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -842,7 +868,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHvCAYAAADgu7bYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+sUlEQVR4nOydeXwU9f3/X7ubY3OHAEm4wi2HnCJqQAGtgooHiuf3V5TWq4K22kq11haqrbbW1tbWs1qttdiqFQ+88AJFqCIKcgjKfSYBQu5sNtnd3x/LbGYnc3xm5jPX7vv5eOShJLMzn9157fvzfr0/x/hisVgMBEEQBEEQBEEQRErid7oBBEEQBEEQBEEQhHWQ6SMIgiAIgiAIgkhhyPQRBEEQBEEQBEGkMGT6CIIgCIIgCIIgUhgyfQRBEARBEARBECkMmT6CIAiCIAiCIIgUhkwfQRAEQRAEQRBECkOmjyAIgiAIgiAIIoUh00cQBEEQBEEQBJHCkOkjCIIgCIIgCIJIYcj0EQRBEARBEASRdjz66KMYM2YMCgsLUVhYiMrKSrz11luJv4dCIcyfPx/du3dHfn4+Zs+ejerq6qRz7NmzBzNnzkRubi5KS0uxYMECdHR02P1WNCHTRxAEQRAEQRBE2tG3b1/89re/xdq1a/H555/jjDPOwIUXXohNmzYBAG699Va8/vrrePHFF7FixQocOHAAF198ceL1kUgEM2fORDgcxqpVq/CPf/wDzzzzDH75y1869ZYU8cVisZjTjSAIgiAIgiAIgnCakpIS/P73v8cll1yCnj17YvHixbjkkksAAFu2bMGIESOwevVqnHLKKXjrrbdw3nnn4cCBAygrKwMAPPbYY7j99ttx6NAhZGVlOflWkshwugEEQRAEQRAEQaQXoVAI4XDYknPHYjH4fL6k32VnZyM7O1vxNZFIBC+++CKam5tRWVmJtWvXor29HWeeeWbimOHDh6OioiJh+lavXo3Ro0cnDB8AzJgxAzfeeCM2bdqE8ePH839zBiHTRxAEQRAEQRCEbYRCIQzsn4+qmogl58/Pz0dTU1PS7xYuXIhFixZ1OXbDhg2orKxEKBRCfn4+lixZgpEjR2LdunXIyspCcXFx0vFlZWWoqqoCAFRVVSUZPuHvwt/cBJk+giAIgiAIgiBsIxwOo6omgp1r+6OwgO8WIw2NUQycsBt79+5FYWFh4vdKo3zDhg3DunXrUF9fj5deeglXX301VqxYwbVNboBMH0EQBEEQBEEQtlNY4Odu+hLnPrYjpxZZWVkYMmQIAGDChAlYs2YN/vznP+Pyyy9HOBxGXV1d0mhfdXU1ysvLAQDl5eX47LPPks4n7O4pHOMWaPdOgiAIgiAIgiBsJxKLWvJjhmg0ira2NkyYMAGZmZl4//33E3/bunUr9uzZg8rKSgBAZWUlNmzYgJqamsQx7777LgoLCzFy5EhT7eANjfQRBEEQBEEQBJF2/OxnP8M555yDiooKNDY2YvHixVi+fDneeecdFBUV4ZprrsGPf/xjlJSUoLCwEDfffDMqKytxyimnAACmT5+OkSNHYs6cObj//vtRVVWFu+66C/Pnz1fdNMYJyPQRBEEQBEEQBGE7UcQQBd+nx+k5X01NDa666iocPHgQRUVFGDNmDN555x2cddZZAIAHH3wQfr8fs2fPRltbG2bMmIFHHnkk8fpAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvv5vqeeEDP6SMIgiAIgiAIwjYaGhpQVFSEqq0VlmzkUj5sD+rr65nW9KULNNJHEARBEARBEITtRBGFuRV48uckukIbuRAEQRAEQRAEQaQwNNJHEARBEARBEITtRGIxRDivNON9vlSBTB9BEARBEARBELbj9EYu6QRN7yQIgiAIgiAIgkhhaKSPIAiCIAiCIAjbiSKGCI302QKN9BEEQRAEQRAEQaQwNNJHEARBEARBEITt0Jo++6CRPoIgCIIgCIIgiBSGRvoIgiAIgiAIgrAdemSDfdBIH0EQBEEQBEEQRApDI30EQRAEQRAEQdhO9NgP73MSXSHTRxAEQRAEQRCE7UQseGQD7/OlCjS9kyAIwqPMnTsXAwYMSPqdz+fDokWLHGkPQRAEQRDuhEwfQRCETWzfvh033HADBg0ahGAwiMLCQkyePBl//vOf0dra6nTzCIIgCMJWIjFrfoiu0PROgiAIG3jjjTdw6aWXIjs7G1dddRVGjRqFcDiMlStXYsGCBdi0aROeeOIJp5tJEARBEEQKQqaPIAjCYnbu3IkrrrgC/fv3xwcffIBevXol/jZ//nxs27YNb7zxhoMtZKejowPRaBRZWVlON4UgCILwOLSRi33Q9E6CIAiLuf/++9HU1ISnnnoqyfAJDBkyBD/60Y+Sfvfcc89hwoQJyMnJQUlJCa644grs3buXS3vC4TB++ctfYsKECSgqKkJeXh5OO+00fPjhh0nH7dq1Cz6fDw888AD+9Kc/YfDgwcjOzsbmzZsBAFu2bMEll1yCkpISBINBnHjiiXjttdeSzlFbW4vbbrsNo0ePRn5+PgoLC3HOOedg/fr1XN4LQRAEQRDa0EgfQRCExbz++usYNGgQJk2axHT8b37zG/ziF7/AZZddhmuvvRaHDh3CX/7yF0yZMgVffvkliouLTbWnoaEBTz75JK688kpcd911aGxsxFNPPYUZM2bgs88+w7hx45KOf/rppxEKhXD99dcjOzsbJSUl2LRpEyZPnow+ffrgjjvuQF5eHl544QXMmjUL//3vf3HRRRcBAHbs2IFXXnkFl156KQYOHIjq6mo8/vjjmDp1KjZv3ozevXubei8EQRCEd4nChwh83M9JdIVMH0EQhIU0NDRg//79uPDCC5mO3717NxYuXIhf//rXuPPOOxO/v/jiizF+/Hg88sgjSb83Qrdu3bBr166kKZrXXXcdhg8fjr/85S946qmnko7ft28ftm3bhp49eyZ+d+aZZ6KiogJr1qxBdnY2AGDevHk49dRTcfvttydM3+jRo/HNN9/A7++cWDJnzhwMHz4cTz31FH7xi1+Yei8EQRAEQWhD0zsJgiAspKGhAQBQUFDAdPzLL7+MaDSKyy67DIcPH078lJeXY+jQoV2mYBohEAgkDF80GkVtbS06Ojpw4okn4osvvuhy/OzZs5MMX21tLT744ANcdtllaGxsTLTxyJEjmDFjBr799lvs378fAJCdnZ0wfJFIBEeOHEF+fj6GDRsmey2CIAgifYjGrPkhukIjfQRBEBZSWFgIAGhsbGQ6/ttvv0UsFsPQoUNl/56ZmcmlXf/4xz/whz/8AVu2bEF7e3vi9wMHDuxyrPR327ZtQywWwy9+8QvFkbqamhr06dMH0WgUf/7zn/HII49g586diEQiiWO6d+/O5b0QBEEQ3iRiwfRO3udLFcj0EQRBWEhhYSF69+6NjRs3Mh0fjUbh8/nw1ltvIRAIdPl7fn6+6TY999xzmDt3LmbNmoUFCxagtLQUgUAA9913H7Zv397l+JycnC5tBIDbbrsNM2bMkL3GkCFDAAD33nsvfvGLX+D73/8+7rnnHpSUlMDv9+OWW25JnIcgCIIgCGsh00cQBGEx5513Hp544gmsXr0alZWVqscOHjwYsVgMAwcOxHHHHWdJe1566SUMGjQIL7/8Mny+zorowoULmV4/aNAgAPFRxzPPPFPzWqeffnqXdYJ1dXXo0aOHzpYTBEEQqQSN9NkHrekjCIKwmJ/+9KfIy8vDtddei+rq6i5/3759O/785z8DiG/YEggE8Ktf/QqxWPLChFgshiNHjphujzCCKD7/p59+itWrVzO9vrS0FNOmTcPjjz+OgwcPdvn7oUOHkq4lfR8vvvhiYs0fQRAEQRDWQyN9BEEQFjN48GAsXrwYl19+OUaMGIGrrroKo0aNQjgcxqpVq/Diiy9i7ty5iWN//etf42c/+xl27dqFWbNmoaCgADt37sSSJUtw/fXX47bbbjPVnvPOOw8vv/wyLrroIsycORM7d+7EY489hpEjR6KpqYnpHA8//DBOPfVUjB49Gtdddx0GDRqE6upqrF69Gvv27Us8h++8887D3Xffje9973uYNGkSNmzYgH/961+J0UKCIAgifYnGfIjGOD+ygfP5UgUyfQRBEDZwwQUX4KuvvsLvf/97vPrqq3j00UeRnZ2NMWPG4A9/+AOuu+66xLF33HEHjjvuODz44IP41a9+BQDo168fpk+fjgsuuMB0W+bOnYuqqio8/vjjeOeddzBy5Eg899xzePHFF7F8+XKmc4wcORKff/45fvWrX+GZZ57BkSNHUFpaivHjx+OXv/xl4rg777wTzc3NWLx4Mf7zn//ghBNOwBtvvIE77rjD9PsgCIIgCIINX0w674YgCIIgCIIgCMIiGhoaUFRUhBUb+yC/gO9qs6bGKKaO2o/6+vrEDtoErekjCIIgCIIgCIJIaWh6J0EQBEEQBEEQthOBHxHOY1AR7UPSEjJ9BEEQBEEQBEHYTsyCjVxitJGLLDS9kyAIgiAIgiAIIoWhkT6CIAiCIAiCIGyHHs5uHzTSRxAEQRAEQRAEkcLQSB+Rchw+fBjvv/8+3nzzTezcudPp5hAEd3xohQ8h0W/CCkdmJf4vhiBiyLG0XQThZQYNGoRzzjkH3/nOd9CjRw+nm0MQaUEk5kckxnkjF3oYnSxk+gjP09HRgZUrV+Ltt9/GG2+8gc2bN6OsrAylpaUoKipyunlEGjJn1hanm5By/POV4U43gUhx1q1bh2XLlqG6uhojR47EzJkzcfbZZ+PUU09FRgalSwRBeBt6ODvhSZqbm7Fs2TK89NJLWLp0KQCgT58+KC8vR58+fZCbm+twCwm38+ivPnS6CUSacOPC051uAqGDlpYW7N+/H1VVVdi/fz8A4LzzzsMll1yC6dOnIy8vz+EWEoT3ER7O/sZXg5BXEOB67ubGCGaO2UEPZ5dApo/wDEePHsUrr7yCF154AR988AGKiorQp08f9O/fH6WlpfD5aOFuKkGmjCCcJ90NaywWQ01NDXbv3o39+/ejvr4eZ5xxBi677DLMmjUL3bp1c7qJBOFJyPTZD5k+wtU0NTXhtddew7PPPov3338fZWVl6N27NwYMGIDi4mIyeg5CpowgCLfD07TGYjHU1dVh165dOHDgAGpqavCd73wHc+bMwQUXXID8/Hxu1yKIVEcwfa99NdgS03fBmO1k+iSQ6SNcRygUwptvvol//vOfeOutt9CtWzf069cPgwcPpi+vTsiYEQRBGEfNNNbX12P79u3Yt28fjh49inPPPRdz5szBOeecg2AwaGMrCcJ7CKZvyfqhlpi+i8Z+S6ZPApk+whXEYjGsWrUKf//73/Gf//wHOTk5qKiowKBBg1BSUuJ08yyFjBlBEIT7UTOAtbW12L59O/bu3YvW1lZcfvnl+P73v49JkybRjBSCkIFMn/2Q6SMcZffu3Xj22Wfx5JNP4vDhwxg0aBCGDBmCnj17urKj/OOitwEAOb5sh1tC6KU11kb3jSAI06iZP2EN4Pbt27Fjxw707NkT11xzDa6++mpUVFTY2EqCcDeC6fvv+uMsMX2zx35Dpk8CmT7CdlpaWvDSSy/hb3/7G/73v/+hf//+GDhwICoqKlyzLbZg7tQgA+EtWmNtSf+m+0cQfBF/x9Ll+6VmADs6OrBnzx7s2LEDe/bswSmnnILrrrsOl1xyCe0wTaQ9ZPrsh0wfYRtfffUVHn30UTz33HPIy8vDwIEDMWTIEEc7PxZzp0W6JDdeQmrwtKB76B607h3dK/eh5/uWqvdPa8OYlpYWbNu2DTt37kRzczPmzJmDH/zgBxgzZoxNLSQIdyGYvhfXD0cuZ9PX0hjBpWO3kOmTQKaPsJTm5mb85z//wV//+lds2rQJgwcPxnHHHWf7IxZ4mDstUjWZcTt6DZ4WdB/tx+w9pHtmPzy/d6l2/1imf37zzTfYvn07jj/+eNx00024/PLL6fl/RFpBps9+yPQRlrBu3To88sgj+Ne//oXCwkIMHjwYQ4YMQXa2tZ27HeZOi1RLYNwGb5OnBt1La7D6HtJ9sw76/rGjNfrX1taGbdu2Yfv27WhoaMD/+3//D/PmzcO4cePsaSBBOIhg+v69bqQlpu+KcZvJ9Ekg00dwIxwO4+WXX8Yf//hHfPXVV4lRPSs2ZXGDudPCioRlf6SR+zn10idQYNu17EwwWfB6EuokTt9LunfmcPr+ibHzXvKIub+++wLVv8diMRw6dCgx+jd27Fj8+Mc/xsUXX4zMzEzT1ycIN0Kmz37I9BGmOXjwIB577DE88sgjiMViGDp0KIYNG8ZlVG/ez9/EkEw/h1Y6w7b2KEoCHU43w3XIGUc3JZUs8Eo8nTbyVpl4t99PK42Dk/eU9/10+30UI3dPnf5+idEyf0B89G/r1q349ttv4fP5MG/ePNx4440oLy+3oYUEYR+C6Vu8bpQlpu//xm1kMn333XcfXn75ZWzZsgU5OTmYNGkSfve732HYsGGJY6qqqrBgwQK8++67aGxsxLBhw/Dzn/8cs2fPThxTW1uLm2++Ga+//jr8fj9mz56NP//5z8jPz+f63sxApo8wRCwWw+rVq/HHP/4Rr776KioqKnDcccehX79+pkb15v38TdW/u9EAbmuPqv6dTF9XaiNdd2l1471Vgwx9V0r8WU43wRS10bDTTXAVtZEMz30vgeSY7NbvKMvo3969e/HNN99gz549mDVrFm699VZUVla68nFGBKEXwfT988vRlpi+OeM3MJm+s88+G1dccQUmTpyIjo4O3Hnnndi4cSM2b96cWGc7ffp01NXV4a9//St69OiBxYsXY+HChfj8888xfvx4AMA555yDgwcP4vHHH0d7ezu+973vYeLEiVi8eDHX92YGMn2ELjo6OvDf//4X9957L7799lscd9xxGD58OIqKigyfU8voKWF3MqJl7pRwa9LhBHJmTwm3JJtk6tlQurduuY9yKN1buqdx1L6vbrqvrLHZjfeVZfSvvr4eW7ZswTfffIOhQ4fizjvvxOzZs13ziCOCMIIdpm/v3r1Jpi87O1tzFtqhQ4dQWlqKFStWYMqUKQCA/Px8PProo5gzZ07iuO7du+N3v/sdrr32Wnz99dcYOXIk1qxZgxNPPBEA8Pbbb+Pcc8/Fvn370Lt3b67vzyhk+ggmmpqa8OSTT+L3v/89QqEQhg8fjmHDhhlab2DU5KnBKwExauzUcGOiYTd6zJ4SVieZZu59Ot9jI/fWCcNg5P6m830FjH9v7bi/PGK1m+4vi/lrb2/H1q1bE9PQFixYgGuuucZV08cIghXB9D3z5VhLTN/c8eu7/H7hwoVYtGiR6mu3bduGoUOHYsOGDRg1ahSA+EhfVlYWnn32WRQXF+OFF17ANddcg/Xr12PIkCH4+9//jp/85Cc4evRo4jwdHR0IBoN48cUXcdFFF3F9f0ahMhGhysGDB/HnP/8ZjzzyCAoLCzFy5EgMGDAAfr++Tt0KoydGnABoJRxWGDuiKzyMnhjpfTOTWPLWQG0kw1UJpF0Yvcdynz9vo8DjHgvvLx3vrRmUPnuz99iK762A0/f4rl++BkDd/GVmZmLUqFEYOXIkdu3ahd///vf4xS9+gXnz5uFHP/oRevXqZVdzCcITyI30qRGNRnHLLbdg8uTJCcMHAC+88AIuv/xydO/eHRkZGcjNzcWSJUswZMgQAPE1f6WlpUnnysjIQElJCaqqqji+I3OQ6SNk2bp1K37zm9/g3//+NyoqKjBt2jSUl5frWktgtdFTQkgMdnV0x4CMI460IZ3hbfaUYDGBdhr8dDN+Vpt6ARajYPV9JvPHB7X7pHSf7foOu8UAspg/v9+PQYMGYeDAgaiqqsJLL72EP/7xj7jiiivw85//PGkDCoJwO9GYH9EY36Jf9NgkxsLCQl27d86fPx8bN27EypUrk37/i1/8AnV1dXjvvffQo0cPvPLKK7jsssvw8ccfY/To0VzbbiVk+ogktm7dioULF+Lll1/G0KFDcdFFF6G4uJjptU6ZPIFdHd1lf0fGzx7sMntKvNfaDQAcvd/pYvzsvNduGpkn82cd0vssxHMnvs9uMIAs5s/n86FXr17o1asXjh49irVr12L06NGYPXs2Fi1aROaPIHRw0003YenSpfjoo4/Qt2/fxO+3b9+Ov/71r9i4cSOOP/54AMDYsWPx8ccf4+GHH8Zjjz2G8vJy1NTUJJ2vo6MDtbW1rtp5l0wfAQDYsmULFi1ahJdffhnHHXccLrnkEhQUaG/97aTRkzN5Ssd52fitCfELGBODfKcZOG30lIw+4Jz5S2Xj57b77eQ9BlLb/Dl5r8X32el7brUB1IrvM376GQDgnftPUj2uW7duOPXUUzFmzBhs2LABo0ePxsUXX4xf/epXZP4IVxOBHxHwHemLgH27klgshptvvhlLlizB8uXLMXDgwKS/t7S0AECXZU2BQADRaLxYVVlZibq6OqxduxYTJkwAAHzwwQeIRqM4+eSTzbwVrtBGLmnOli1bsHDhQixZsgTHHXccxowZo2r2Tv7JJgDAhOBuu5qYgNXkKWF3srA21B8AUBxotvW6ViKYRrckhCw4ZQx4JIhmDT9Pk+/2e+5kYYenGeBR5OFx352633q+32655zwLc1pomT+BxsZGfPXVV/jmm29w8cUXY9GiRRg+fLjFrSMIdoSNXP72xQRLNnK57oS1TI9smDdvHhYvXoxXX301qUBSVFSEnJwctLe3Y+TIkejVqxceeOABdO/eHa+88goWLFiApUuX4txzzwUQf2RDdXU1HnvsscQjG0488UR6ZAPhPLt378bPfvYzvPTSS7rMnhJWmECzJk8O3kmCYOzUSCXTVxfJ6/I7OwoAPLRgZ4K4NtQ/pe774MzDjlzX6H130gxsb+/h2LV5UhfJs72455XCnlzct/v7bsT8XXLJJfjtb3+LiooKi1tHENoIpu/xLyYgJ59vkam1qQM3MJo+pb0qnn76acydOxcA8O233+KOO+7AypUr0dTUhCFDhuC2225LeoRDbW0tbrrppqSHsz/00EOu2l2XTF+aUVdXh3vuuQcPP/wwBg0ahHHjxpkye0oYSRasMHly6E0MWIydEqmS+MuZPTV4JItW6YFnYqiljVS4/2r33ipTwPPeW2UE1O59qt93gP+9d2uRT2/8t/Pesxo/IG7+vvzyS+zcuRM33XQT7rrrLub1+gRhBYLpe/SLiZaYvhtPWMNk+tIJMn1pQjgcxsMPP4xFixahpKQEJ5xwAnr0kK9IGzV6asglCHaZPClyiYAZY6dGOiR/rLAkialm/NPx/psxA1bff6MmwMj9T8d7L6BXA2763vPqC9xq/g4fPoy1a9eirq4OixYtwrx585CVlWVh6whCHjJ99kOmL8WJxWJ48cUXcdtttyEcDmP8+PHo16+f7HC2FWZPzL5wCQBgbO4eS6+jxvqW+LSWvlm1ll/L60kfL7OnhJAYOmX+ga5JoBXm38s64KkBNSPghAaUDABPDXj53gP8Y4Cbin9ApwasKvoB7jR/sVgMe/fuxRdffIHs7Gw88MADuPTSS3U9kokgzCKYvr+uPdkS03fThE/J9Ekg05fCrFu3DjfccAO2bNmCcePG4bjjjuuy+5BdRk8Oq82fYPDkINOnjNVmD+iqCycKAXYVAEgHynTPaLL8Gloc6bB+vQVpQJl94RLHCoHiPiJV+gQ9o37RaBTffPMN1q1bh+HDh+OJJ57A2LFjLWwdQXRCps9+yPSlIEePHsWdd96Jv//97zj++OMxbtw4ZGZmJh1jpdlTM3py8Orw1UyelFTp4HljdZKnpQ0rkz8niwCkha7IacGu5F9OC6SBrjgVD5wsCAKpoQU95q+9vR3r1q3Dpk2bcM011+Dee++l9X6E5Qim76G1p1hi+n444X9k+iSQ6UshotEonn76aSxYsABFRUU46aSTkgK3k6N6Whjp5PWYPDms7Ni9luA5bfbk4JH4uaUQQHpIhkUPvBN/Vi2QDjpxgw4E7I4HQPqZv7q6Onz22Weor6/H73//e3zve9/rMjuIIHhBps9+yPSlCGvXrsX111+PnTt34sQTT8SAAQMS8/PdNKqnhVrHbtbkSXFDcreige9zk6YWbtH9GisTOx760JPsUSHAPG7Ug5mE36gmSAtx3KgHQL8mUjE2sPYfocfYk95YLIZdu3bh888/x6BBg/D4448nHjZNEDwRTN+Dn0+yxPTdeuIqMn0SyPR5nKamJtx55514/PHHMWrUKIwbNw4ZGfEvT+S6tqRjJxVu43JN3kZPytjcPdwNnhy8OvFVDUOS/j2pcBvWN/fjcm6raI5kJ/6fly7EWKURuUTPK8UAPYkdz2KAnkKAWxN8KVoJPy9NuCnRTzVN2FUwtKIvsUoXqxqG4Nxu67kXAwX0mL+Ojg6sW7cOGzduxA033IB7773XVc8bI7wPmT77IdPnYd544w1ce+21yMzMRGVlZWIqp9TsKaEn2bfa6AHAt82lif8fmldj+fX0dNxSY6dGXoDt83cSsemTw6gRtFon3zaXuk4bakh143ZtCLrgXQiwUhfiZN+qYhHvJF/Qhdv1AFhXIEqF4qEZXWj1KVZpQ4/xA+J7BPzvf/9DR0cH/va3v2HmzJmWtItIPwTT98Dnp1pi+m47cSWZPglk+jxIVVUV5s+fj7fffhsnnngihg0bBp/Px2z21BB36nYbPSlWJ/fiDluPqdPC7YmcluFTQynpc0IrdupDC1b9uFkbLLowkvTbpQ23FgOcSu55wRovqIiorA2j/YuV2tA75XPLli1Yu3Ytzj77bDz88MMoLy+3rG1EeiCYvvvXnGaJ6fvpxI/J9Ekg0+chotEonnzySdx2223o1asXTjrpJOTm5nIxe2KOtHVO5xlftJfrudVMnhy8O+sv65OnXXbP5ru2xs0JnBmzJ8eRtjzu+pCipRevFQZSWR9ySb8dI79yOFEQMKuPdNKGU7oA7DOAXigk6h31a2lpwWeffYaDBw/igQcewHXXXUfP9iMMQ6bPfsj0eYRdu3bhqquuwoYNG3DKKaegoqKCq9kTGz05zCT3eo2eGLMdtNTkieFt+AD3Jm5WGD4pPA2gm4oDPHXiVn0A3ioKsOrDqgRf0Ee6FI2sih9W6ENP7KCiYhy95m/Pnj343//+h9GjR+PZZ5/FgAEDLGkXkdoIpu+3a6YiyNn0hZo6cMfEFWT6JJDpcznRaBSPPfYYbrvtNgwaNAgTJ05EYD6/W6Zl9qSwdtJmjJ4U1o5ZzeDJ4ZUO2Sx2GD4pRpM5pwoEdhYH3KgTLxUFjGiER3KvpBHSh37UYojXCows/Y4XNKLX+IXDYaxZswY7d+7EAw88gBtuuIEe70Dogkyf/ZDpczE7d+7EVVddhU2bNqGyshK9ftWT27n1mj0pch0zT6MnRa5D1mvypHihIzYLz2TNqGa0kjjeumFJ3pwsEJBO4uhN7nnoRG9iz6oTiiX60BNL3FpoNNL/eEEnes3fvn37sHr1aowaNYpG/QhdCKbv3s9Ot8T03XnSh2T6JJDpcyHRaBSPPvooFixYgMGDB2P8X8cgKy/T9HnNGj058jPsSU6aOvhWmoHUTuSdGN1jQZzA2VkkMFsgAPjpJZW1YkYnasm9nYUBM1qhmMKGl4qObo4lgDuMnzDqt2PHDjzwwAP4wQ9+QKN+hCZk+uyHTJ/L2L9/P7773e9i/fr1OPmeE9Hn5N6mz8nb7O1vLOryu2Hd+K6N2Hq0awfep6Ce6zWc6ng/rRnAfOzJpbt0t8VNyZkUQTu89SJl69HSlNGL1fDSC0+tCEm9lYUBgaF5NVwSeQHSiTa844odxUcrYgrgfDFJqT8a+7L+nWqFUb+xY8fiueeeQ58+fQy1iUgPBNN3z2dnWGL6fnHSB2T6JJDpcxGLFy/GD37wA/Tt2xcnPjIOWflZps5nh9kTYzaRlzN6YtySxH9R0zfp31mBCI/mmCYcCST+/4TSfabOZcWosBPFArdoRoreBI2lUEAFAv0IenGrTgBjybzb9WJl32SFXrxShPyipi9O67VdV2FRC73mLxwO49NPP8W+ffvw+OOP48orr+TWFiK1INNnP2T6XEBtbS1uuOEGvP3226isrMTAgQMTfzOyQyfPDlXL6EnR2+FqGT0xdnWyUlOnhRtNnxIsZpCKBcqYSczEunKbZtxWJFDSDK+EXkkzbkvkBc24TS+AOc3Y2Ud5Kb4AbJph6aN4asbIqN/OnTuxatUqnHPOOXjiiSfQrVs3bu0hUgPB9P3q0zMtMX0LT36PTJ8EMn0Os2zZMsyZMwf5+fmYNGkScnNzNV8jZwRX7hkEABhRVs2lXXrNnhi1TlaPyZPCq3P9uroMAJAbDJs+lxuTMSOcULrPdrMnRU9ypldHdhk/1oKBl3Sjldw7oRujiTyrbuwsFHhJM3rijJpunCpMerEoqbcIKcZp49fS0oJVq1ahqakJzz33HM466yxu7SG8D5k++yHT5xBtbW1YsGAB/va3v2HixIkYPny4oYecrpghP2feiPkzY/SkiDtXM0ZPit6OVTB4cqSK6TNr+ACgJdQ5ldhs4cCsjtxeNNhdb75inSq66V90lENL4hjVDUsib0Q3vJN40k0nbteN2T7LrHbE/Zbb+im95i8Wi2HLli1Ys2YNrrvuOvz+979Hdjb/jdkI7yGYvl9+eiaC+eY3KxQTamrH3WT6ukCmzwG+/vprXHLJJTh69ChOO+00FBcX6z6HktmTQyuJ52n2BI7U56F7Ef+Hn2t1pmomT4zbOlKj8DZ8crCaQN46EpIyJ4sGgLymUkE/VmjHaMGAh3bkknge2jGTwEu1Y1Y3TmsGsC7mOFmodEORUqvvclPMMTLqV1dXh48//hjdunXDSy+9hBEjRnBpC+FdBNN31/+mW2L6fn3KMjJ9Esj02UgsFsMTTzyBW265BSNGjMAJJ5yAQEB/B6rH8EkROlarjJ4Yq00fq8GTw00dqFHMJl9aZk8OucTMSi3ZXThIp6KBHfphSeSt0I8VsCTwLPrxuvGzo9AkYHfB0qq4o6QdI32YW/RjxPhFIhF88cUX+Prrr/HnP/8Z1113naEZTkRqQKbPfsj02cSRI0cwd+5cfPTRRzjttNMMbWVsxuwJhJrjnW1pzwbT5wK6Gj0pvDrPmkPxL20wz3yyDbin4zSKE4ZPTKg5C+MH7bUs6RLDOwGrOVSI8YPijwRwsnDgpIbsTNzFSJN4q4tPdiTvXk7cjeJU/BHrx8uFSzNxB3BX0cnoox1WrlyJqVOn4plnnkFJSQmXthDeQjB9P1t9tiWm777Kt8n0SSDTZwMrV67EpZdeiry8PEyePBnBYFDX63maPTFGjZ+W0ZNipOMUTJ4UMn3OGz4gWU88CggsmuKRgPEsHpCGzFGYGzJ9DjFKGrIicW9o0RfD5SD9mMOLBUxxv5ZKMciI8QuFQvjkk0/Q3NyMF198EaeeeiqXthDegUyf/ZDps5BoNIr77rsP99xzDyZMmIDjjz9e11QGs2ZPzujJwdpp6jV7AqydpZLRE5NKHaURzCRbvM2eFCPJl9cLCGa0RDrqxGzibkfRQKojp/UDOKchN5k+MXYUMo3qyK1xCOCjIyPGLxaLYdOmTVi7di1++ctf4o477oDf7zfdFsIbCKbvjtXnIJuz6WtrasdvK98i0yeBTJ9F1NTU4Morr8S6deswdepU9OzZk/m1dpk9MUqdpVGjJ0Wuo2QxeVKc6CBr93dOIyrpU4/aagcCSIcPJX2MbyhhteGTopV8mdEVS9LFqi2zevKi6XNrwi6gN3G3unCgpqVUSdiN4LbCgRxuKGjaFYsAc1pK9HMZ9qeEbbv2IfzXf2H8+PF4/vnndeVLhHch02c/ZPosYMWKFbj00ktRXFyMyZMnIyuLrYNzwuxJKe3ZwM3oiele1GzI5EmxomMUmzpNHOgQAQAd6iPEaoaQx/o9o0iTLioiSPTmhJ5MFBDcVDwwqyWthF2PnpwsHtTuL3JMR4B67FHCbh0B9hc2jfZ3Vsckzf7OoT4u2tKK4J//hfr6erz44ouYMmWKI+0g7EMwfQtWzbTE9P1+0htk+iSQ6eNINBrFb37zG/zmN7/BiSeeiJEjRzJN53xnzHGJ/w/20j91hIfZQ2PngzED3bs+/N0okSOi5/EUdJg+n9EOMXTwWMeeFTXXAAeTK92E/Yb0JIaXtnhqSsAthQS5BIu5kOBCPXmhgMCzMCVO1s3oyUrj59ZEnSU2KenJSS0BqV/gNNXnOaSnWCyGfn9/HZ9//jnuuusu3HnnnTTdM4Uh02c/ZPo4cfToUVx55ZVYs2YNpk2bhh49emi+Rmz25NBK2HmbPTFmkvQkoyfGBtOX6OiUMGP6XJigKxKW7yhZTSAXbQHWFxM4aAowlmBxKSTYrSmjegJMFxF4aSqQxX86Y+RItqNaEggdyTF+YS/FJ8CUnnjHp1QpdMr2f16KT8eYsPRTLF++HCeddBKef/55Q88yJtyPYPp+8sl5lpi+P0xeSqZPgnzGT+hi3bp1uOCCC5CZmYnzzz8f2dkKpucYWmZPQBzAxZ2jlWZPIHIkW1dHqGj0LETT4HkdzoYP6PqZySVdVulL0IjRBEtWY40Z3JJ1LRT1FvabH0H2CCz6kX0dxyQ9Ar6JekJXnLQUas5iTtS5JukdPudG/Ayi9J0yO0OBCVGMEscWrgVP4RomdCV8d5Q0pdkPCv2BEV05pKm1552M8wsK8NFHH2HMmDF4/fXXMXbsWNvbQdhDBH5EwHdEl/f5UgUyfSZ55plncOONN2L06NEYN26c5nROVsMnJXQwD4HWY+cuM1hJ1jB6UrSMn26jZyKpClTHO75QDt9qEDNeGZFRMXxyCAlDoNWHiFFdSbG7oMAhWZcm6ilfUNCLgq7kPidpwm7FqDFgPlFXLCIA3PWU+D2LrswUEexO0jNi5kb7FGDRlVUY1ZVqnOJs/gzFJ6O6Eu6vzX3g8qkjMT0rC+vWrcMpp5yCxx57DFdffbWtbSCIVINMn0Ha2tpw8803Y/HixTj99NPRr18/1eONmj0AnWZP+PcxA8ScpOs0e2KkCbpdI3rCe+SKV0ZjbDJ8UsSfuSEDqENnLKN+urRm0vgFqrOcKyikGF0S0sJ2cydk0JWeUWQmXfFK0hsMaiqNRo9ZEeuKa5FKBVZdMccqk7oKVGehHVkIAIjkGDBhHhv1W1Y5BKgcgtNf7IH58+fjk08+wV/+8hfN2VSEt4jGfIjG+BaPeJ8vVSDTZ4Cqqiqcf/752L9/Py644AIUFBQoHsvT7HX5u5b5M2H2xNhh9Cwxebyws6NzwPDJ6UxXYcEtRQUdxk9Ob4FWn7FECvBGku6UtlpNFBMMzE4AlJN0u2YnSPVlOEH3SHLuBF0+Yz3aMqgroKu2DMUsneZPKV4B6aGtzZdOwwXFxVi6dCnWrVuH1157DeXl5ba3gyC8Dpk+nXz++ec477zz0K1bN5xzzjnIyFD+CI0aPi2z1+V4cYLOyegBQNbRzucwhbvx3TzB1SbPKVxi+JL+rjX6x0FvkSPZyDoa4KMxlSSdNGcvasUEgCFJN1lMADoTdNPFBEAzQVfTl+GCgheSc6NTPLOipmcniDFlAnXAtQgq1riMvlhilmHzZ3TUz6HpnqvOGodzcnLwySefYPz48Xj99ddx4okn2toGwhqi8CPKeQ0e7/OlCmT6dPDPf/4T119/PcaNG4fRo0crrt+zy+yJyWz2IXNHNkI9zSXOYqMn/b3ZpDx4KAAcCqA9z4EqtM6OLbgv/tWImXuONRO+CBDqa3AamcGkyYjWrCguiPXGy/gFd2QjNCie7Os1eqZG+4zg9lEZjkm5FFUDyElfgW258fNbVFDQo6+UNn4uRNEEWhC7uBWsAKCgw1CBypS+AGPm75i+sveyT2Nu69eu63gxK/uPwtRAAF999RVOO+00/O1vf8N3v/tdQ+ciiHSETB8DkUgECxYswOOPP666fs8psycmeCjeEek1f0pmzwxCW9yGYOi0sMPwCWi1SdYU2mj4BITiAqBfY2KsLC4A5kb17DR+wX0ZtuisrZc9O5wKGJ2tAACRXD7TZKUFBYBDci5s8d9i/Ltnt/HLPmhPN2+3xvQiaCyz2We6OCqFlwEUCqMADBVHrZryqdU/6YlhRg2fgM/nw9ixY1FSUoIbbrgBX375Je6//34EAu7MNwhtIjEfIpzX4PE+X6pAz+nToKGhAbNnz8b69etx+umnyz4v5uPuw5P+3dKHrXPmafbk0OrYjBg9rQ6NxeiZGelj7cxy9ycnZVED/Yxdps+nM0fwi/bFYNWagBWa05NAsWpOb+Ikpzs7dNYFSdLEUmCwazRZDTcVFcQYTc61dGY0MRfrzA36Avgm5GZgiWNddOZRjbHEMR4xDLBXZ0K/6eb+EgCm7d8CAKirq8OHH36IsWPH4r///S89j81jCM/pu/Hjiy15Tt+jp71Mz+mTQKZPhT179mDGjBkIhUKYNm0asrK6jh5IDZ8c0sTcarMnRq5DMzOqJ9eR6R3R49mJSc2dEm7txPQaPiDZ9ElRMoF2aE4teUqXAkMq6owKC5SQs2A2lunRmZXxLNWKpWo6U+s/3aozAcH4hcNhLF++HMFgEO+88w4qKirsawRhCsH03fDRbEtM3+NT/kumTwKZPgU+++wznHvuuejVqxdOOeUU+P3JwZHF7EkJHNv0q6WX/o9cr9kTE+oZ4Tp9M9wtYmrqppHOK/fgsWkrBtbQu7Xz4m345GjpE7W1yAAkJ01mdedkkUEuWdIqMqSL1txYXDCqNbWEnFVrlJDHMTNrQQk5rRnVmdmiKe94ZqQfNas11kKpgF6tOWH8otEo/ve//+HgwYN46623MHHiRPsaQRhGMH3Xr7gUWZxNX7ipHU9MfZFMnwRa0yfDiy++iKuuugrjx4/HqFGjumzYYsbwAZ0GhsX8mTF7AJDZAGQ2BNBWYuo0AIDsWuG/AbRb/B0SPqNUxQ7DBwAFOzo7eD3FBjO6Cx4KcCs0ZB0NILsWlutNjoIdft1FBn+7sYTcbWhpTS5xbCsxXj/Uoze5dctmtCa33k9vMp7Z7DO1Biu7Vt/3LVV0Fs20X2t6EOuAxzpAsdaMFk6NaC3enxornOrVmtC32WH+lvcZjmn7t8Dv96OyshIbN27ElClT8M9//hOXXHKJ9Q0gCI9Bpk9ELBbDb3/7W9x9992YOnUq+vfvn/R3s2ZPitjYSBNyHmZPTHYtDBk/wehZjZtMntWdlV2GT6o9Nb2J4VVoAIxpTgwP/bEmSW7SIE+M6M0IrPqSYlRvQtIc5dSLmS0w6E3GpXozMotBD76IvaMwViL97IzMntFLwXY+MU18LsCY3oTvjJrelOKZ0C/o0ZuRIoNdehOMn8/nw+jRo1FQUIA5c+Zg27ZtuP322xV3WSfcQwQ+RMB5IxfO50sVyPQdIxKJ4Oabb8a//vUvnHvuuejRo0fS33kbPilCgDYzoiE1elL0GD8rzZ7R5NquqZ1ug4fhk6KUoJsxfHL641VsyGww+d2QSchT1eSZhXeBAVBOynkWt8wk42K9mdGaVjLOU3NuTMRjAfuKDGJY9GZWawJirfCKbQA/88eqsUCbfuMH6B/1s9P4AcCAAQOQn5+P++67D3v37sVDDz1EO3sSxDHI9AEIhUK48sorsXLlSsycORMFBQWJv1lt9gQyQsn/bS1lf62W2ROjloTrMXp6E6OcmuR/dwTZX2snbhvls8LwSck96DOkOzFqGhR0xZIgqWnQrPED9CfdehMjQh65IoMVsxkA/Ym4nObMJOJAcpHBqiQcSJ1pnryR+8ytKKjqNYBa8Q0wbv5yavT3q3aM+jlh/Hr06IFzzz0XL7zwAg4ePIjFixcjGHRp0kEgGgOinB+xEKXdSmRJe9NXV1eHmTNnYvfu3Tj33HOTAoNew2fG7EkRTJJaEq7H7IkRGz+rRvSkJs8rFOzhHykaK+LBzGrDZ0R/QLIGWXQnhkfBwcpiA9D5nnLgs6XYkG6JuJEiAxDXnZNFBhbdGS005NQY05sdxi+VpnnqQdwnGdWdGlq6Y41zes2f+H0Jsdxq3ekd9ZOu82PpZxsrfLr74+UVncavsLAQ5557Lt5//32ceeaZeOONN1BUVKTrfASRaqT17p379+/HmWeeiXA4jKlTpyIzMx7B7B7d00LaQRk1ewLZ9fFb3lZkrrIi7ZT0GD0jybfeZCiaCeTv0yFvK2f7MTSjqW9nA5wwfHIoJUdmNJhdH0PDQJ+pgoNWQqSmRbu0x4qeRIgVuwoNAL/YZ0WhATBfaBBgScLldGeH3gDjuyx6UXc8+1st3ZmJdTyKq0q6Y+lvnYh1mn2uDbPqJwS2Jv6/vb098UiH9957D71797a+AQQTwu6dV394BbLyuz4SzQzhpjD+cfq/afdOCWlr+nbs2IEpU6agqKgIkyZNSjyS4cvQsC7HNvVRjlJWmj0pZkcpBLMnYNb0Afa+F6XOKH+/vIR1b/BgVWek8xvmlzy/WE1/gD0aFCdGXi862JkIMRcdHNKeuNAAOJt8i5FLxM3qjgdGE3AnjJ+jybcLi1xOFll59LVi7bmhwCrudxsG+NxTYD2G2PhFo1GsWrUK9fX1+PjjjzFw4EDrG0BoQqbPftLS9G3ZsgVTp05Fr169cNJJJ8Hn88maPTVae+iPWkYNUmZT5y0ycl2p2RNjpDPKOdx5vvZ8Y9HbSEckvi4LukyfwwmQgNTwKSEYQTuLDplNMUP6E5DToZlkKOdwzDb9aSVB0sJDKhQctIoNgH79GdFeaykfw8er2ADEE3AjU9h56w5I1l4q6A7gX+gyGvPMao93odXOmAck60+puCrGNX3uMcTGLxaL4dNPP0V1dTVWrFiBYcP05XwEfwTTN+fDKy0xff88/XkyfRL0PaUzBfjqq68wefJk9O3b17DhC4RjyD8QTfxokREy1ulkNsWSDB8QD/os5ie7Ppb40TqOBeG6eo2XUcSfL+vnLIbXNu6mscDwAfEOuGin/s/GbOHBqAaUdMaqPzHiNki/H1YhJJn5+2OyP1L03Eu3IG2z1ns1OqVYL4U7zMcdsc5Y4qIaOYdjKNxh7PV6v3/Sz1hLe67RncmEXkl7LMaDJ4L2ePV7rP2yHOKYZyTu6c1D8g9EUbQz3rewfu669GfzcIPP58PJJ5+MPn36YNKkSdiwYYO9DSAUicR8lvywct9992HixIkoKChAaWkpZs2aha1bt3Y5bvXq1TjjjDOQl5eHwsJCTJkyBa2trYm/19bW4v/9v/+HwsJCFBcX45prrkFTUxOXz4gXbkmNbeHzzz/Hd77zHQwbNgzjx48HID+dU4lAWD5KiZPupt6dPprHyJ4SOYflR13MJDNy19Ais8l45VGAxbREsiwsC7qg2q03WZNqUUmDYowWHuQQtKE18seiR9bpT0p6NKLBjJB25VuqS0s16CHy98eS9KekNylG46EAq+bEqOlP78ifVH9GYx+L9gQEDerRnr9DR9ErBltGXHhiVH9mEd9/Fg2yFly19KcW9wD9s23U9CfXFwvGj1WDbtLf2siwpNE+n8+HE088EYFAAKeeeio++OADTJgwwboGEJ5gxYoVmD9/PiZOnIiOjg7ceeedmD59OjZv3oy8vDwAccN39tln42c/+xn+8pe/ICMjA+vXr08sDQOA//f//h8OHjyId999F+3t7fje976H66+/HosXL3bqrXUhbaZ3rl69GtOnT8fo0aMxevRoQ6N7esgIxdDUW98WaUaqd0LnY9bsCR2PkYqm3k4n/0AEHUF9r9GbcLtimolFpk+PFo3oUIBVj7yKD0rJD4smeUx54l18cFyDJqfYqaGmQbkk3KoCmFryrUeDRhNvgO8UdzUNei4G2lj0kiLVIM+ClxQr4x9rf2xGg3pmingq/okQGz+BDRs2YMOGDVi2bBkqKyutbQAhizC984r3v2vJ9M5/f+c5Q9M7Dx06hNLSUqxYsQJTpkwBAJxyyik466yzcM8998i+5uuvv8bIkSOxZs0anHjiiQCAt99+G+eeey727dvnmg2E0mJ659q1azF9+nSMHTtWt+ELhGO6k+yMUPz4/AMR5B/Q3sbM6HQNACjeETFt+HKORFG8I2LZ1E3hc2D9PGwlhQ2fgN7PXa8exdOfzEydy66PoXhHJOmcrJo08v2Jfy7Gpg+nGjynBUqnZVs940FOI3o1qKRbFg2anW7HqkEj331H0RFbeU/HN7M0QC9SjZiJf+LX6umPjWgw/0AExTsiiXyFBT0a9HfoiCsxWDrdc22ka843evRojB07FtOnT8fatWutuzjhKA0NDUk/bW3a6xLq6+sBACUl8e13a2pq8Omnn6K0tBSTJk1CWVkZpk6dipUrVyZes3r1ahQXFycMHwCceeaZ8Pv9+PTTTzm/K+Ok/PTOr776CmeccQZGjx6N448/nst0TjnUAqeQcEtHXIwaveyG5E4s50gUrd31+/ecI3w6Q+k0J6eNnePr+Vxi+KSaFN8XpdE/M5rMPrbhgREtiineEUFbof5zsEy3k2ozIxTTPeqc7ujVIYvupOjVoZAgm30+opB0G3l0hZ7pnuLPRI/+AuGYJ6fZOY30e6+lQyNxMFH4ajDWHwtk18eQcyRqOAYC6iN/cv2znjgofP+9pkPpVE8AOP744xGNRnHGGWdg5cqVGD16tDUXJ1SJwsf/4ezHhNSvX7+k3y9cuBCLFi1Sfl00iltuuQWTJ0/GqFGjAMR3+weARYsW4YEHHsC4cePw7LPP4jvf+Q42btyIoUOHoqqqCqWlyVv/ZmRkoKSkBFVVVRzfmTmcTo8tZcuWLZg2bRqGDRuGjqGX4EvGirPZ5FoJIdgaCeZAV7MnhtX4qRm97AZjHQ3gvNHTS9HONtQPzEbh7jDX8zZUsE9RsNPwSZErRDhZhJDq0qgW5RJvntq0LOlOUewuPAgYTbrFOuRdeFDSod7CA2lQH3KxUK8JZEXQoKAjM8VY4Vw8zB9LDHSNDo8ZP5a+uaF/lr4+fFDXX40ePRodHR2YNm0aPvnkEwwfrv85zYR72bt3b9L0zuxs9S2R58+fj40bNyaN4kWj8e/iDTfcgO9973sAgPHjx+P999/H3//+d9x3330WtNwaUrY72L59O6ZOnRp/HsuIK5hfx2t0T/H8rRHktsYDcEsZW1lazeyJUUu2eY3qCeRWJ5fCIzl8Ok0zFOwOAX72TqtwD1/DB8TNJAuN/dgfwmVVEQKIJwMBnXoUcGsRQq/Jc8NoH+/iA8BegLB6erEScgaQZ+EB0Jd0yxUeAP1JtzjhZtWilQk3M8c+et5xUU8hzCmMjEZLkYuHYk0ZjYdmzF/R9vi9ZO2fhb5Dz6ifXuPH2kfGAtrn1Rs3v90xEEMH7ezy+/HjxyMSiWDq1KlYtWoVBg8erOu8hDli8CVG5nieEwAKCwuZ1/TddNNNWLp0KT766CP07ds38ftevXoBAEaOHJl0/IgRI7Bnzx4AQHl5OWpqkp/j09HRgdraWpSXlxt+H7xJSdN34MABTJkyBb169cKECRPg823VnNZpZWINIJFYixGMk1KyzWr2xIiTbSNGTy3Rlho9JyjYbXILQAvxRRg1EY0pvo/G/sm7O9ipSy09imHRplrizapNPcZPrE+vFSFYEhy9WFGA0INbig+AesKtpUUjxYfc6nagWp8OrSo+CKa+YC+/ZFsPrDpENNYl/jmBYJQA/VpUQ0uLLDoE2M2fOB4GWiOWaVFpuqdqX80QF32RmCVxUcn4TZgwIWH8PvvsM9dsvEFYTywWw80334wlS5Zg+fLl8cEiEQMGDEDv3r27PMbhm2++wTnnnAMAqKysRF1dHdauXZvYEfaDDz5ANBrFySefbM8bYSDldu+sq6tDZWUl/H4/Jk+eDJ9POWgIRrBoW0vS75sqchRfw8PsKSF0MEbMnpisunaEi413VuJORY/R05toq3Uq+Xtak/4dzWRMuhxMsvWYPhb87XEdqOlRDG9tyiU8RrVpphABKCc6avrkqccu5xYlOGaTG4C/Hpm1CCjq0UwBgpcWtZJuvXqUJtx69MiSbMvp0S4dCijq0e1a1IiLYj26TYtOxEWjxVmr9Ji/pxX1Q3LZC7MO9tUAZI1fLBZLTOtbvXo1ioqKLLk2EUfYvXP2e1cjM4/vjID25jD+e+Y/mHbvnDdvHhYvXoxXX30Vw4Z1DhAVFRUhJyeef/3pT3/CwoUL8dRTT2HcuHH4xz/+gQceeAAbN25MjAyfc845qK6uxmOPPZZ4ZMOJJ55Ij2ywilAohDPOOAPV1dU444wzkp6focSOjf1U/y5OuHXtcqXD7AmYGZ3Iqusa6M0YPzvaL3QmUoMnh9tNn1WGTw6pCbSyEAHwKUYI+uRRjLCqEKGV3Ih1mm56BOKaTIUChFnkkm0nEm1Bj8xaBBzRI48ChBRxfNTSpBXxUapHs7HRzXERkNejUr/tdj0KyJk+IL5+6/3330evXr3w/vvvIxh0fvQ5VRFM30Xvfs8S07fkrKeZTJ/S4NDTTz+NuXPnJv7929/+Fg8//DBqa2sxduxY3H///Tj11FMTf6+trcVNN92E119/HX6/H7Nnz8ZDDz2E/Px8Lu+JBylj+iKRCGbNmoUvv/wSM2bMQEaG+sxVLbMnxh/u7ARa+uZpHq83qc5s6rqoJtSTbcqVnNkTw9qZBA8lT8Fpz9c/85elI8nd15z4/2gWW8fj9k7EqgSb6bhwhEmTAkbMvKBPVk2K4VmMcFMhgrcm3W763FaEcEMBQu90d7OJtpom060IoRUf7SzWZjZ1GIqNQNf4aFSTwUNtlvXZYjqCPqYiLeB+TQLKxq+9vR3Lli3DCSecgCVLliAQcH65QCriFtOXTqSE6YvFYrj++uvx6quv4pxzztGszBg1fGLkEm0zCbUcah2JltkTUOtEpEZPit5ORK4DEZs8KdxNn5sTGosMnxQ1A8hDn6lejGDVJOBuXdqdZCeOS5MihKBLHjFSidx9zaRHBVj1COjTpNmCrR5NqsVIo/ER4B8jpX14qmhSQMn4hUIhvPXWW5g1axYef/xx1aVChDEE03fhsu9bYvpenf53Mn0SUmIjl/vuuw8vvvgiZs6cyc3wKZk9AXEgbOuuf/hfzewJBA+1delEWM2e+HhpB6Jl9owSaI0g+4h7N1qxAl1TlxgwY/iAZF2KEx0eo89Ap3bMFiS0pjQpaTSzqUN3UqO0iYFcQcIfjuhKajyNBQk20PVzVUq4zRYhWLQooKZJPSN/Ul3q1aPwnpWSbOlnl1Z6tAAhTrJq0ixifZiJkSyaVIuRgD7zJ42RasVa4TNl0aW/Pcpm/KIxxzZ3UdrYJRgM4qyzzsILL7yAgQMH4mc/+xnX6xKEE3je9D3//PO45557cO6552rOm+Vl+MT42toRPBAP0KHeBZrHs5g9MYLx02v2xGTVtetO3AC2hCZ4oDHp37FsfruduR0nR1NYyN3XDF8buzYFWAsSQHJiY1dBwojxA9QTmVSCdyGCFT2FCJ6zIrTMH6su1QoRaro0W4jQ0iWr8XNzgh0L+BzTpRxyJpBXYUxASZd64qSS+bMiTgZaIwgeaGTuw1NBl1rk5+fjO9/5Du6++24MHDgQV1zB/vgvgp2oBY9s4H2+VMHTpm/lypX4/ve/j2nTpqFHjx6Kx1ll9qQIBkguwdZr9gAg0BgfNcs79t/2klzd58is7dyZNFLAZ0Gy1Oh5BV4dhdUbE6geZ1CjatoUMKLRvB31hnQpkFXXjszaFt3aZE1oxFp1LJkhEgjJtq+t3bWFCKAzyWadFaF3dEXQpdsT7HRBXCAD9BXJtGAd/VNDrEs9M3VYdSmOk762dtfrkrfx2/btANnfDxm6Cz169MC0adPwve99D3379k3auIMgvIZnTd8333yDmTNnYuLEiaioqFA8zi7DJ0acYJsxe1Iya1uYEmyx0eOB602eAxtlaGLTGj4llDQqvpfixMaMTgW96TV/Yp0GGkPcjJ/r9SqD7QUJFxQjlLQoxcjsiEBjyFQxIm9HvaEimVYxQqpNRxNsBuwcVXETWto0Ei+BuK4A4wXczNr4/xuJlUCy+VOLk8J3lEWbrNM9hViiqU0hNmn063Zos9MMDkD/imycffa5+PLLtRg6dKil1003ojEfojHOI32cz5cqeNL0HTlyBGeddRYGDx6MESNGKB7H2/Bpmb2kY1vDyNl+BADQUcb2rBclsydGzfhpmT09iXVGdf2x/wKxHL4LbPXgtpEUnlOU9G5GwAqrToMHGuFrDTPrU4ycVs0WJYwYv5ztR9A6uDuT0bMiwdY+kQs7Hh0FCd54qRghnMdsMUJLm3p0yRWbR/uYpnj6fY7oUy1mSu+f0VFAccwUx0AjMdOMNjOq65n7dKuKEoC7+nYWbfbpczJCoVpMm3YGvvpqHbp3725T6wiCH54zfeFwGBdeeCGysrJw4oknKh7HYvisSKSBuOETIxgopeSaxeyJESfXPEf1hHa6BaZOwaOjfE4bPqBTp1r6FKOlVbVEm0WrRgoTekb2eCbYbkpaeGOVPlkQ7qeRgoRSMQLQTq55FiMymzoQaGDb2h5g1yVNPXYeoZgL8CnoaulTLW7qNX9CzPS1hnUZP4B91I/bxkMMRQm7150OGjQDmzYvxjnnnIdPPvkImZnps4eBldBIn314qleIxWKYN28etm/fjtNOO01xC12ehs/X1s6cSPtaw10Mn5iM6vokYxVoDOk2fALxqR76DZ/0ekKb1Ayf2nvqcizjZ6XVMVDCEteoXYUJoKs+pejRqliberWqdh05verRpxtJl+lzRgsSrMUoloKEkg5ZZkmw6F+sT63+QArr58PVZDMUqGzfgIWhkOeW/oGl/2SNm3L6ZI2bWvqUa6OV+mTRKFNhyWZ9asVin8+PEcMvw9atu3D99TcgBZ545goE08f7h+iKp0b6HnroIbzwwgs4//zzFSssvAyf2QRajYzqesRyjS3o9tU3Jf07VqS+Y6nS9Z2EWyXQ5lE+3s/jU0NvYsdTr9KRP6OFiaydNQCMaVQ6uqKlWb2Va62qNW2Tr43dBQkBudEVIwWJ9pJc3YUzpVE/raIZ7+l0LCMqbhztc9sunjzR0igrgiZ99U26Y6d05I+lr7dq1M9O7Fx7GghkYdTxV+Hf/34E48ePww9/+ENbrksQPPCM6Xv77bdx++234+yzz9Z8NINZrDR8aIlP+fEd+2+sR7H2NSRGzwi+w3XJv8jNMX1OOXgk025LVHhj5PEZcujRKWCgOLGzCgCbRrtcS6RZI8lL4vo6dKoneSHUiWb6uelUDywadbooIU6sWQtoVhi/dIdFo9GsgGZxwor+Xs+UednrHIufwn+NaNR3uI45fgrvi6f541aYcOHa02CwGMeP/C5+8pMFGDZsGGbMmGFT61ITmt5pH57Irrdv347LLrsMkyZNQllZmeJxvNfxqaF3agRaWhOGL+k8UjMm/lt9k6bh0/z74Tr5a8i0RfU8DO/V1kTFjaN8LsZocQJQ0ZDcdRQ0q6dwkXQ9nTplgRJqPrAUcPRMj9dLRnU9MnZWMWsz0SaJRo0U1XyH6xJFEebXWDCVzi7snEIHwN4k36p40NKa0KcejSrFT1addomfOmKo7rxGg1Sd5gkARUUVGDr0Qlx00Wzs2LGD27UJwkpcP9LX0tKCCy64AAMHDlTdJtfOaZ26zZ7W+Q7XJY2m6E1CpCMpepMgFniMoKT8KB+nDVycnn6spFlBV3Ijfyya1apaK+q2pVVXxZpG+7yJmbiqps2k4xR0yjqi0kWjQjsc0KdXR1K8ilkzJNaOkk5Zi7xWxlCAXae2jkq7cGOXXuXj0di4FzNmnIv1679Abq7xx8SkMzHwf5i6t8v01uFq0xeLxXDttdeioaFBdfjclYZP70iaEKwzjd0SQ0ZPZ0eghlOjfPUDFdZG8owfGtGjaCf7w3LtwlCCwqhZcZHC0CiJqEjBrFuOWtWC1vPZD69CmpWFCVWt6ixMAM4+CscTMDy+gdcUz1h2Jt/RVY1YKqdTXbMhJDpliqMGChSAeZ1auf7UDf3/kOi5WLf+SXzve9fg3/9erLjBIEG4AVebvkceeQRLly7FBRdcgEDA+USMKTExMB0t1pgc7H0lxeyvra1Lfm2BzrVTDMmKU6N8jf3lt6GOuky19QOz4Vd5nFjBbmNrjmxFr2537ov/V4dWpa93q1ZZ8GKC4sbiBMB/5gSQnFSnYmHCakirXYnlZHHPARI6bWwyFEt99U3xHEBPLNVp/jTbwDDaZ9T4yeUAbuv/GwfnoV+vuVjyyoN49NFHMW/ePKeb5DloTZ99+GIu3XP2s88+w5QpUzB9+nT06tVL8bivGo5L+nf+nq4Bl8conxWGT2r2kq6n0QFIzV7Sa/V0AAyBXyuRZhnlUwr4TRWd149kMWzVzRrwbaz0AVA1fQKBcPKJrNIqYN2INOBwkQJQ1ayVWk06hmeBwkVaFRco7JqKbIdW9Wg08dpjWuWt0cT5GQoUVmyMRVpVxg15gJviaeI6FsdVIQ/IPdimqM+kc7lQq40Ht2Pn+09i5ccf46STTuJ48dSloaEBRUVFOOONHyAjz9iO9kp0NLfhg5mPob6+HoWFhVzP7WVcVjOJ09DQgEsuuQTjxo3TZfiAZBMBAIXbGKb08JjWoSPQq5m9xDG1dV2Cv5rRswpeo3zS+yKFxfAxY3OwN4rcZ8KiVy3sGpFO/F5IjlWSFSXtxhqbjCUqDiHcM656dRHihEtcpJArUNiKSb2yaFR6rPQ8unRq06if2giK3oKaG4lmKBs/J7TKPNrHej6ZmMqqVbmYapVWtdb46RntU8sFWnpxTPxj4JcL+KCZCxT0GozSMWfiwlkX45utX6OgoIDTxVMfGumzD1eavhtvvBF+vx9jxoxRPEbO8MnR0jcv6d+5+5qT/s1l1IQxIWExe0nHHzN+es0ecyLNYaqcXKCXfuYdQT5fPrdN6xBgGeVjRUuvfC7Cz/AlHSOTrLBol5deeaNVqNDCrXo1gtxnYZsRtLFAoaZXNxcozGqVGZsTaSMofRb5e1r5PtjeJFoxVaxFIzEV0GH+OBQp1IyftF9TIxCOaRYp/B3ujK9lo0/H9gPf4NrrbsB//r3Y6eZ4BjJ99uG6r83zzz+PV199FbNmzTK9IDYj1LVHkQafvO11qufgUdXTa/YEIk1NQFP8tQGdzya0I0ERArxaQOdl+Jhx6SifdGqnHDz0yhsj2u3Ys8+QXgGD05OEc5gYlRZ/zrZr1qM0VeR00awlRYrcHO6FNan5Yy2s8dCpgJmdPK3Qq1sTabXRPoFIlk8zxrLolcuGLjr0yoqekeqk1zmkVz0mzyhMerW5SOHz+VFx2v/hlVcfwL///W9cccUVnC5OEHxwVYjfvXs3rr/+ekyePBl5ecpBg2WUTy6BlhJojSDUu3MIPnigka2hYjSCu96kOdIkf3ykqUlXIq0Z5E2M8gmfWSSHz+Y6XNfypTim9cqA0SIF0KlfvXq1GzuSknTElpFqBYzoNlZbZ0irTEU1jlM8Sa/WYESvPKZ4GtGq2SIwoJEXmNQra16QEYppFipYRvuYsdn4ZeUVoe+ky/D9a65FZWUl+vfvz+niqQuN9NmHa1LpaDSKK6+8EgMGDMCAAQMUj2Od1qlFoLXrNA8haAnJtNlpnXoCu5LZkx7jRCItNhpEMjyndupFzgDyXG+iBzn9RnQmKFaOTPMuVBBstPTNS4q1bipUiDVrmfEzASXR+mAZ7esI+lQLwoIJFDRrWK8ao32+gnxT+YHe2CqgqVkN4ycd7ZPLDQKtES5x1svTPLsNGI3G/V9j9qWX47P/rYLf7+HnDxMphWu+Lo888gi2bt2KCy+80PS5WEb51Aj1LkBmUwdQmIOM6nrT7VGDxexJj9cK9GZH+VoHd9duB0NQZ5l2lA4buBid2tnlPDKFCgGh881s6lDXrE0j09JjqFhBAPaMVLPAo0hhBaRZeVimeFqB9H4ImuW9oYsaajHWKc2a1SlLoYIrDhQq+px0ITa/8ns8+uijmD9/PqeLpyaxmA8xziNzvM+XKrjC9O3atQs//elPccYZZyAzU3kHKJ7TOlnpKCuKn1eaSHNInvUaPqsQ3qNbUavkNfXt/GLHOA7i+CQSyd/nyiebyCK+n1YWLfToVys5MVuoALQTEV6FCoIP4vuVs/2ILddkLVIA9iTSbjN5bh05cQvi+6VZYOMAa4zVo1mjo3168gQ3jfbpzREK9sTQWKHdD0hzBCA5TwhkZqPv5Mvw45/chpkzZ6rOYCMIu3A8vMdiMcydOxeDBg1Cnz59FI/jNa2ThcymriVFnom0GbPHa5TPjNGzepSvqU/y76PajwDiavjkEHccAn6Z9f75+91lDnkbQLcUKgTcXrBQwo5iBRUqkrFiVoVRhPeb2dSB9nzHu2FmBN3yjre8dMtjiicQ7+O0isPx+6aiW85TPFmwomBhVYw1O9pnJE9ggcXwAfHvgNT4SfMEf99hyKkeh/+bcxU++WiF6c0JU5UofIhynaoF7udLFRzvbZ588kmsX78es2bNUj2uqXfnnOj8A/IPYuU9yqdELDcbyM2G73Cd/N85B3JexHoUI1Kg/uBTOxIQ4V5GGB7JwyuQ60GugseKtCMKtAHCvBIl3fJCrlghpqOsCIFGZd1qYWWxQg9OGz21yrP4/jtdrJArVADuL1ZYYQCNapen8TOqWztGTfTq1hexTrtKugW6ajfVdWsULd1qjfbFcrNVcwWWYgWLblmMX2sPH1OuwIKVulWi51nn44vHfo8nn3wS1113nb0XJwgJjpq+6upq/PjHP8app56KrCzl3SJX5Q9P+rfYAAoU79DO1FkMn1biLCbWoxgAdCXRdo/yCW0EoGn4WNAzyid3n9IZuc8j/0DUtmJFoDEEIFkTRg2g3WglzHaNljT19nNLQNyEtFgBAIE2e4oVagj33UyxwkpYpsp1DCy3vB0syXMqateobnmN9imePxGvihBoDClqV2u0L5Cfb+vsCnHfYDdm8wV/u/1FYrnRPimBYA56zLwEP7r1VlxwwQUoKyuzp3EegnbvtA9HTd+tt96K3r17o6KiwvS5mnonm5H8A9Y8hFVInMWIzZ8bRvmMBm4zibP48+9g8JY8kw+7K3eA/GiJEZp6+5EhkZRV2pXDbdoV42QCAlDRQkDpc7DbDHqpWEHJsz5YkmdWItnxGRZ26LY9P4OpUOyEdvWMUsvpNdAYsnS0T0/OEGjjlzM4MdqXP3QkGvsNws0/+hFe+Pe/7b24B6CNXOzDMdO3YsUKLFmyBBdffLHqcdJRPjmkSTPQ1QQWbdfeaUvPKJ8csR7F8GVmKD7o19LpcQP7qm4oxXOUT/rZimExfKx4bWqnlPjUTv3YVcAQo6VdO3EiYRY+c576TXWkBQunihVugrRrLdFM8wU3wQw6VWyTateKtX1M7WhsAgb2te16ankDL1gLFjyNH2vBoseMWVjy2P1YsWIFpk6dyufiBKETR0xfOBzGddddh3HjxiFfxcywGD5WWso6I0FutbFeQ26UT4yv/tgDUEuKbUmefSXFif83u7JBrWInfHbt+XwqJ6k2xchqmnoHkNnUWbWW06/ZgoWAoClbzZ9GwYI3diQf6Yjc52p1Ip0wWT2KgZ37LL2WZhsMonczFzP69fqICU86gsnGT67YZmaKp0CkIKg6QwgAYNEUT6XRvkScN3TWTrS0y5o7ZITsHe3jDYvxyyzqhm6nnYWrvvd9bNu6RXWn+nSDpnfahyOm709/+hMaGhq4VDvkRvmkZDYlhzY5A8graRaQJs88R/nEZg8AYkXqo4B6R/nEn4/b8fLUToCffnljpX6l19FKPMyOUvMuWhDssBQseOFEwYJFv2ZpKctk0i5L4pwuCFM8zSCYQEG/StplneKpRlIB12L9iq/lq29SzR+0pnjKYWX+wGL8nBjtY6XbyVOxd/0aPPjgg/jpT39q78UJAg6YvurqavzqV7/CGWecAb9fee0Bz1E+NVrKMpHdEEUkJ4DgIeVegnWUr8vvhQBrcjG21OjxpH6w9jPQWJIOmtppP0IHm+1y/cqe0yLcULRwQr9ewGjBQmm0RA4588dzQwyr9Qt01XBmU8zWooXX1/VZgfSe8NRvrCg/aaYQwF+/Vuk2s6lDM4dg0S/PooVb9esLBNDjnNn45aJFmDt3LkpLS+1pnMuhNX32Ybvpu+uuu9C7d2/07t3b9LmMjJKoEerZWUISJ9CsyYYSsdq6xGiHnsAtvEYtWGuN8skhfp9249bpGbwxW2U2gpJ+eWBEv1KsTJa1jB6N8rkP8T3TKloYgdfoiTBFzqh+WUZL3FCoMIIToyU81vUJSKd4ytGe75PNI5LuWVkmirYrP5PPCDxH/9S0a3S0z6k8wutTlHMHDEF2xSDc/rOf4emnnrL34kTaY6vp27BhA5599llcdNFFqsfZNcoHANkN8jt5CQGNJRFRGiWRg6ViJ54OZzZRFoK1mQBtd8IsrtCF+qpMm8ngPLGqQ/19Bvdl2D61kwU5DVtlAI2YP6vMnvAe2wr57LJJU+Ocxcqiha+kGAEYK1poGT6tpFkJJ4tv6QCPKZ56kN5PnhoW9AsYKxzzQkmz2Q1RzTjs5GifWh6RfTADbf04duwaeQQAdD/zAvzziQfwk1tvxahRo/hd26PELFjTRyN98thm+mKxGH74wx9ixIgRKCoy/3Bl3qN8SkQz/YiW5MbPV9ti+nyAcuLMO0C3l+QiXKxeQXYqYW7po7JtdpZzzwVTI9S3Awirf165+/lu889Dw6Ge2cjKjLfLag3LHcMLrybJbilcBPc5+oQeXbilaJGKGjYyUkIa1o9Uw3qmeMohbBBnJPbGautMFS6imX7NXMJOxBo2m0u09eK7nwML0bHdkDvlZPzgpvlYuXyF7dcn0hfbIuiyZcuwZs0aXHLJJarHvTd0GKR7SuUeTO4EeI2Q6KVdxvxpjfKpTcvQfNi6xgiJNEgL7RNwOki39Eq+j5EcO/do1AlDdY4FoQMKtHY9n1THdpFV11nFlNOwGeRGrnkmyiyFCydRTDhcWLhIJO42Fy7MIiTPWZl+24oWdps9lpESq/CkhgFVHevRsJkpnqzYpWErCses8NKw0mifoXwi7Ldfxxkxpnyi6Lwz8dld92PZsmWYPn26DQ1zLzEAMc7poYuzTUexxfTFYjH89Kc/xahRo5Cdrb/SKf2yZzbHv1A5NcqvYQnQSlM7teCdOJtBT1A2dH6GqZ0NAx34evGuLnNEzvAB8jpW07CViHWjpWOt9SRau3Oqnluhumy1rvXgqeIFB3gXLswmzEnn0qFbFqSJM++CBU/MTI/zTMLMCSeKb22FfqacQk3DWqN9cthl9LLq2k0X4Fg3JJLq1XI6fLbnFIG8XOTNmIYf3fYTbF7/FXw+mo5IWI8tpu/111/Hrl27GEf52GmVbHzEO4EWj5AooRakzSy+1tq8hUdCYaQqJ/3MuePmJENjhEQPQuFC7vN0wggaSTZ4I6dpO0f5WBKNVDd8Wni1cKGFm82eXtIhYWYlkhPrYvzkPh+7dBwuzpSdeQGwadjMM4C1pnhK22MXcn1gZrMP7Xnqmgq0+twbjxlH+wpOn4Qd736EpUuX4vzzz7ehYe4kCh984PycPs7nSxUsN33RaBS33347jj/+eGRkmL+ckCzLIQSPzAagI+hDzmHlgGB0lE8OYbTC6qRZz2YBPJLl1h4+tBeaPg0AlyfLnKZ28iLVdSzGqQTZ8uJFGuGGwkV7SS4yYa92pdd3gpTUMWPCzBstHfMcsZYjMYMI9urYyCZESrBM8ewIgltewQTriLUDxQt/dhbyzjkdtyy4DTNnzlR9jFkqQ49ssA/LTd9///tfHDx4EJMmTVI9Tu8oHwutPZJvulryLIVllE+KOGnm9YBVngFZjFxgln5etgZmPbi0qmwVZnRsBDvMn1W6ViIlk2MXI/28tYoXrFPjtBDryo7EmVXHPKbGAfx07OpRElayotxmX7TnxWQLyk7oWChgCPDUsXi0z0gMNqpjaR/GC1frmHW0b+op2L/sI7z88suas+EIwiyWmr5YLIZf/vKXGDVqlOWjfIljGpT/JgSe4h3mnwCrNhUjVpQPX3sHYo0Gg/XAvqqLULWqyixBmVcQ1pqCoQs3T+1kRGk9H0/E9661R4CLnuVIJAVF+cDOffzOZwNWJRmEcbxcvJBOjbNLy6Rj92FWx9IpnlpICxlmpnhKzycls7bF9Kh1dkMUdYPUH36X2aBdVGaZ4smMi0f7fJmZyDv3dPz053di9uzZabm2Lxrzwcd5ZI73IyBSBUtN37Jly7B//35HRvnUaO2eXB3MOZIcDIyM8snhK4gHV1bzlziey9W7In3fduHaSpweOK7n40l2fSzpvlqhZd/hOkCnlgXsSI4pMfYm0vuWrVKwM0PC/JkpxMH6ZNmVOvbwZi4Ccuv6eGKXjgGRBg2YvlTNL1JhtC9v0kTse+1dvPvuu2m/kydhLZaavnvvvRfDhg2zbZSPhez6rsFBLWmWbYvGgmvf4brkf6skzMLfWNGTWCgF4bYi7c/StVM7eePA2hFeWpZDr5a10KNl2eNMt0AePQlG2mjZAZSmxRnBrHbbS3LVZ2D0KE4s7ddj/uzScnZ9jCk2a8F1hIQVF2/mwpP2QvXZRABQNyiQlGfwiMNSxHkDi5bFx/sO1yHWo1jxWK0ChniKp9VGL11G+/xZmcidVomF99yTlqYvFrPgkQ2pH44MYZnp+/LLL/Hpp5/i8ssvVz2O5yifVjBmIR7E4gGN14ifgK8gPxGglcyeWjDWIlycaWu1zcqpnSV96uUPC/CdyhiOKE9Dqd1fxPVaemDRslwBQwyLlo3ueqhk/vQUMfSOjMhpm0eSTLgP3sULKSzFC70FOT0YjdMs0+JSAtbNXGxY12cWuZlFWlM8mQoYxwpyPIvKLLDkGSwFDDdo2Q15BhDPNQpOn4w1P7sX69atw7hx47henyAELDN9v/vd73DcccchGJR5aJBOrBwZkSJOMIRqFk/zxzsIu/nB1UDy1M5gr2bF43KDYTuaowtxh9ASylI9NnQwz5b1fEYR64S3nmONTbK6NlPAAOwvYliJHcmFWwsYZunUgHXxWJwwW2X2SMv6SAc9W5VbKMVkM4j7kJwjUVfpWTrF06u5RujMMbj73l/j5RdecrhF9kK7d9qHJaavpqYGL7/8Mi6++GLV4945dSCArl/AQLV6gi0Hj5ERJcTBLm+HfIcnIJ0OxxNhZMSM0bNyamekrOu9DOa5L8BaQbBXM0LN8ro1omcrEesns9b8+XgmF04VMYyMWnspsdBbwHAzVhQwrDJ6bi7KsSbKbtMyoF/PVq/rM4qVxTjVvzNO8XSDfpWmeErzDZ65RjgS4FrEyApENEf7AKDnrIl4bd6TOHToEHr27Mnt+gQhYInpe+aZZ9CnTx8UFRmrxkm/zJHGeDODh7S/NFYTKYiPXAYaQ9zPrRaEIwVBVwRgAAj1jAAFHU43wza0kgot0lXPrCjp2g2VZCsTC7ciJP9yRQwnCxit3f1dpnpalTSbwS1xWg4jem4JZbnS+LHCW88s6/rainy6i8xddcM+xZM3PPINXlM8WfONUHOW5+NzsE935A/vg2eeeQYLFixwujm2QSN99sHd9MViMTz88MMYOnQonxM2djYx1LNr5SV4KMBlLR+gb+2IkCwD1iXM4muwwDtJlvu8rYA1obB7nr0lMOiZF27TsxS3JMfpVsQwg9xovluKGOHiTPjbg44VMNJdz7xHR+ygS0EOSMRoq/UsV8QQI+gZsCcm6803rMCOnMPtRYxu547Hg399CLfddlvaPL6BHtlgH9xN3/Lly1FbW4sBAwaoHhef2mmeUM8IohnJwTlbZsqa0amdYoKH2mR/LwTLjJ1Vpq/hVOBtK+n8/3A3PoHX61U3JxA6PbGm5fRsJVaO/jmdWNhVyGDBawmyFlYXMVixs4ChR89WrINS1HNjhucLGaxT4nKDYdOzMeRwi54Bd8Zks3oWcg5/B0NcdkDPTk3xLJo0DF8/ugwrVqzAtGnTuF2fIACA+/ypRx55BIMHD0Yg4FzVt60k+cc2cnPiPwZe1zGwXDX4hnpmm2hYHPFUC6XPiJfhI4yTdTT5uyN3r3gUMbTwtbQZ07OESEEw8WMnwucV6hlJ/BD2InzujsRjWKc9J/QMkJ7NwKMImUp69rW0qZ5HqcitB3E/pZRzRDkOPSitq/cS/swMFH9nNB555BGnm2IbwiMbeP+wct9992HixIkoKChAaWkpZs2aha1btyq0NYZzzjkHPp8Pr7zyStLf9uzZg5kzZyI3NxelpaVYsGABOjrcVXzjOtLX3NyMpUuXYubMmXxO2MiveYLhUUqWuW4LLiTKLa3ax3BCreImvHduHZTHK8hWYGdnE7+PnQbeqAFk7tTFWlXTtOQ1Tpg8wv1I75NdI9mRgiAyWnLYNSzzejshPbuXcLdIojgnd5+ya42t65MS6pmtPsOooBwZ1fX6NM0591CCe97BEdYpnk6N9nX7zmi8suBZNDc3Iy/P3RtrpQIrVqzA/PnzMXHiRHR0dODOO+/E9OnTsXnz5i6f/5/+9CfZabeRSAQzZ85EeXk5Vq1ahYMHD+Kqq65CZmYm7r33XrveiiZcTd/SpUtRWFiIkhL1bzmvqZ1A11ERLaQLi1mDslaCnFEts6unnPmzIeDSs8v4YcW0Id4Y1bQhtAoaNiUUQPx9uzGhcPN6ETfSeQ/VC3Pc0FvEOHZ8RnU9OsqUNycLHmrjMyNDQ9NZRwM0I8PlsGpaa10fMyyatiA2S6d4Wpp7pMCUZVZyBpYiq3sh3njjDVx22WVON8dy4iNzvDdyYT/27bffTvr3M888g9LSUqxduxZTpkxJ/H7dunX4wx/+gM8//xy9evVKes2yZcuwefNmvPfeeygrK8O4ceNwzz334Pbbb8eiRYuQleWOXJLr9M7nnnsO/fr189Ti07YiX/yn0MKdAoVpnwpBVy2RALSndrYV+jvfh8cMX1pt4mITtmpa6d8WINa413ROsGPrfVbTbRpoOhWmw3HHAmPhqKYt1rHW+2IZyddbvE91fD4fCqaOwFPPPuN0UzxPQ0ND0k9bm/YMp/r6+CCOeACrpaUF//d//4eHH34Y5eXlXV6zevVqjB49GmVlZYnfzZgxAw0NDdi0aROHd8IHbiN9DQ0NeOedd3DRRRfxOSHHqZ1a5ByOlwTESXJ2A8fpnhagN6FnGRHhWT22ehOXk0t36X7NpzUDuLfD7ViuaYsKGQCNWBNxxDrwt/tt1TFvvKppt0+H8xpu0bTR0WtLC4omYX10g1FNG8k9BD6tGcA+xXPKSLx/81NoaGhAYaHBhyd7BCsf2dCvX7+k3y9cuBCLFi1SfF00GsUtt9yCyZMnY9SoUYnf33rrrZg0aRIuvPBC2ddVVVUlGT4AiX9XVZnf5JEX3JzVG2+8gR49eqC4uFj1OLundhpdLyIOakXbja0B4YlakG3t4Z1EYkRZddK/u2crP+BaTF7A/KJycbBujrBNwzrS1nU+/dfVZTJHMmBjIUMOLxQ13JxMWI3RZCLdihle0LEY0rR+9Graqh087UJN02rr+oB4gU12eQlnUkHHTuYfQOf3gSn/KAUO9ivEm2++iSuuuILL9dORvXv3Jpnm7Gz1z37+/PnYuHEjVq5cmfjda6+9hg8++ABffvmlZe20C25Z6CuvvNJljqscpT2TH6pXc8j9FYz2/M6PKbOp69QPqwKucF1XBVuVqS/ie9unwPpOyCmkHQcA7G9MrpY6rWth9FqJtkI/Aq1xfclp2i7MaNvu9XzjB+1VNPxiTbg6kQDnQobDuNUAuipmm8ApXfMo0MlpOpgX5jalVbyZixJtJfoLz1LtOKnr9vwMTS3nHI7ZV3hWWdcnzj8aWoKy/bTXqDi1N5a8tiTlTV/s2A/vcwJAYWEh80jpTTfdhKVLl+Kjjz5C3759E7//4IMPsH379i6DWrNnz8Zpp52G5cuXo7y8HJ999lnS36ur4xqUmw7qFFxMX0dHB9566y2cccYZul8rNYEAcKQ+D+geH06PHDG/MJ4nWgZQL9KpFeLzu41A9zZ0L2Lr+NMJqeEDFHSdFU9K1DTtxNoG3ppmuZ5dSTGPKcvie5kKiYQcXihkaOF0IcNOXZslHQp0St9Vt+m6tYdPtUhnt66lOUhudTtayjJNnTO7ls8GRaw5SGGu9Q+zN0NeoI2pmNF3Uh+8c+c7iEaj8Pu9EVuMYOX0TrZjY7j55puxZMkSLF++HAMHJs9IvOOOO3Dttdcm/W706NF48MEHcf755wMAKisr8Zvf/AY1NTUoLS0FALz77rsoLCzEyJEjTb4bfnBxGKtXrwYA9OzZU/W4Ly/qrvvcge5dq4aRI9nckmOtERE1hOCYYTIPVDN6ZoMtoH9ERO4ztwK7R0T0IjciwgOlz5e1wGHlFvdiLZrVtdJ53QYVM9iQK2QA8WJGqhfnWK7jNgJZEdI1A7K67hkvPqeDrjOq69E6WH9uZiV25SBH2vKY8pDmSLYjeUjZ2FK0hlqxfv16jB8/3vbrpwvz58/H4sWL8eqrr6KgoCCxBq+oqAg5OTkoLy+XHa2rqKhIGMTp06dj5MiRmDNnDu6//35UVVXhrrvuwvz58zWnlNoJlx7rtddeQ9++fW2rRAS6tyGM5A9RzgTySI5zq9tV/x480IhYTud0EV8r2wYmwmucTBrEVbVA9zbwGmNye+WYdbqQ3bDqmgdaugZgSNdi3JYQ25VIpCNmCxlWkqxD8+ufSNfpg1d0bbRAJ47xTiHNQ7Q4Up+XNsUMf4YfvSf2whtvvJHaps/K+Z0MPProowCAadOmJf3+6aefxty5c5nOEQgEsHTpUtx4442orKxEXl4err76atx9993sDbEBLr3X66+/njT/1QnkpgVk19o/VU4IonJJshUBlnUuPT3XyZs4pevggcakf6vpWu44s4mx2TUiwudGCbGzCJ+/XcUMLdrzMxBoYNOylFhOlmldm13/RLp2B3bruqUsU7VQ1zq4eyJms8ZonrDqmvIQ/fSZ3Bv/WfIf3HXXXU43JWWJ6Xmon8pr+vfvjzfffJNHkyzDtOmrqqrCt99+i5NPPplHe+Lr+TjRLpmqnyk/O8kSnKygSd83r0CbLtU1tyO9v4B92lYa/XNS75RIeA+rihlaybEYlpHsdND1/sYiV8/OYF3/1D272bIp+azI37OApVPypbgpRov7Kj/DbNTIkWxuBY1U0XXfyj5Y/duXUVdXp7k7vmexYE0feJ8vRTBt+t577z306tULwWBQ9Tgj6/mUYJlaETzUNYGQJsuFO3iPJ+sj1LtA9e+s6/nkTADhLngWM+SQaiDnsKWXA+B8EkFmL7VI1yKdgPD+WXTNMzlON/oU1MtuvmWEQPc2zXwk3C0Cf0dyPuJEkc4MrJu5eDEXcfu6vvzyPBRXFOG9997DJZdcYvv1idTCtOl76623NDdwcSvt+cmVgMymZBPIWjG2G3G7tYJsqCclxumIlra9gheTCIIPcvfejmKGHajpOngo4Mq47fbk2Et0vf/qO3haTfBAo2YRWg49uQhhnD6Te2Pp0qUpa/pisfgP73MSXTFl+mKxGN59912cdNJJXBpj9WiIFtJEGRqLo6XrnqyiS7uO0VrK5/w8K8as0yncvnNnqiHWkJsNoNBOOxMImrbsHbyiYzmc0DZhnO5FzbblJO2FQEbIG9pWykfsJJ02cwGAvpP74PVFryMWi8Hnc/7zJ7yLKdO3detW1NXVoazMmw/21SKS0zklI9BqX+VVuK4bgqtTTCrcBgAoDvAN7HWRzk58VcMQ0+fjNU2IJzk16n9vz/ch0uCMtuXaQhBGcPtoNmmbMIoRbYd6F1hSiGbNR3Jq+BWiecFrXZ+QjwDO5CSlY0pRf7Qe33zzDYYNG8b1+m7A6ef0pROmTN+HH36I3r17IyND/TR2r+djQSsx7nJdzgZQPJVCfG63oreqNr5or+rf+2bZuLJdAXEgl7IvXIKKoHobv6zvx7U9Tm0DbqW2la6VzgmxVwoaXkPQlFDQsLuYEckJILshiqbe7o/nVkHatob2fB/q87OQf+DY7q0Wa9uqnIRl6rJV61W9npOsHl+ADz/8MCVNH2I+/huvkOmTxZTpe+edd5jW8w3rpu2wth7lVyKS28SFJ0JAjGVnwtdmbN2fVlB1a+KgdS+H5ul00x5mfNFe5Gdod07ppm2lc6YKXk8e9oVLNF/Pu6DBQqhnhKu+7ZipQdq2H9K2ddpW03P+gYgr85J0yUlGnlKIN99+DT/4wQ+cbgrhYQybvlgshhUrVmDKlCncGqM0muTEWj+hoqZE7r54W2PZnTtaqSXJ4uPcjNI9YDHuhDzDutVgK+SNn9PrWNVg1bYUrxY0AHWdp0rywIITBQ0rEWvSTEEjeKARzYOLObXKXkjbcXhrm2UHTysxo21xjM8+EkJLX3f2R5SXAMNPLsJjz61MyXV9tJGLfRg2fZs2bUJLS4stO3eKv/A1YUnC2Mjl+fJckCbJThs91WkUBfGH5pT2tHFfdKILXtW22t/djFzykE6JA2/SpaDhBX2ncmJcHGhOmuKpRN+sWqbRvqF5Nfi2Wd3U2a3t1lL9y07k8GysLuh8kF86bdLCqu2BY/LR0tKKzZs34/jjj7ehZUQqYjir/OCDD9C7d28EAupV+5bv85t6UHNIZtuzgq5P/Gxv8SOzWbkSwiOwamF1YGVaMC3z2bgBN0wR8gQy9y9U0IHgDnNVZa1RbC2EajIlD4QaXi5ouFbbQELfpG3nkH72Sfp2qbbtgHkzF43cpOZQIbeC9LfNpUwj2fvCJUy5SV0kj/uaVRYysvwYPDa+ri/lTF/s2A/vcxJdMBydli1bhtJS903tCVTHH0bantf1jqsZQa8j937thvcUIScCqxXwnAIXqM5yhbZdkRS7tKhBMKB07yxes6qFK3QNkLZdwrBuNfrjt4Pabumbl1h64hak/VWgxY+I/kcCEgBGTC7EG2+/iptuusnpphAexZDpi0aj+Pjjj3HGGWfwbo+lCMEnMxhPkDNCzrRDa9681pqnjqC9Ji8VpgelOmI9mNW325IGwB1FDcJ63FDQcAKn9c06GsKKU6MhbkbpHuvRd1PvgOmZGlZid26Sbgw/uQh/eWoVotEo/H6/083hBj2ywT4Mqearr75COBxGjx49uDTCqc0AOoJdfwD2TVzsQKmNhH5Y5s3rQWtNiNN4VTtC4iD+kRIpCzvQMsIoZqZqiXXQMDDmGR0rIdW2l5JklvVyhD7EOnB7nBbnRm7oX7yykZQWrAWS/sfnIRwOY8OGDRa3iEhVDJm+lStXonfv3pqVBp7r+ewiHrx8iR97ry1c11tJeqqRyomNk/pWbo/3jCnhLF7RjVfaSViPnkKVU7pRK2hL8xMvwbtAy7uAzEpGph+DxxZh5cqVjlzfUmKcfwhZDJm+Tz75BMXFxZyboo7sJi4GyD2oL9EVJ8i8k2Sj527ppa1oGgkhWLBS38rXowSY4E+nrpwraLDoW28fpASvPpFwD2p9u936trtvcANeKPgOPiEHn3zyidPN4IowvZP3D9EVQ2v6Vq9ejREjRvBui2mETVyspCPoQzSrc82dP8w+mim8zi0B1AuPa5gYrOJ2rnebB3M7F2+cKmpIMaNvpfPphaWoQRBayGkvI8RXW26J5YSzlPZssN2E89Y3r/wk96CPSwznuYOnVTiRnwwcW4Al9y3ndl0ivdBt+mpra7F7925MnTpV81iWZ+F4fU62OEEGkpNk6d8AoKkix/I2OcHQvBqMzd2jedyAjCPM5ywJ8N3BbkJwN9Nx3TOamI4bm7sHLx060UyTXI+avpWOd0sinE4JAwDURjKwNtSf6zlTDbNFDbv0HajO8vxsDaf0zfNZfV6jI+hDw5B85O9pBaCub7n8xC6c0DdLfgKw5yi885Oz8rajNqKdkg+cGMFDuw7i6NGj6NatG9c2OAY9ssE2dJu+NWvWoHv37ggG2eZmae0I1tTR+cyx/Y1FepvDnfwDUVOvdzKQ8qZPQT0AtkcxsAZUVngHVCtY31LB9NkIGjerbztGsrUQ9C0kE6mkdy14Jw1WwFLYYC1qAO7frMgsWgaQ9N0Vp/RdEujgXrhLJ30DqRe3+xTUo6kjG+OL9jrdFNso6R5Arz5BfPbZZ5gxY4bTzSE8hm7Tt27dOnTv3l3zuD43H9TdGMFkyNHQEjeZoWZnE1+hgmYVTb3t2YY3mBdW/bwF0imYWo0X9M1KKiUNvJ8vmUrYWdRwmlTRtBjStzosn83QvBp8Wd8PgDs03tTbb7g4zUPj+QeituQprDmKU9RGMhwrTg8bmYH169enkOnzHfvhfU5Cim7Tt3btWhQW2jt3/evqssT/B/OUpwSEcjIRaKUbDah/ToR7Ub1vg8Jo35FvX2M8jpsThlRE6/NuaAl6pqjhBdyeFKciqVS4UyJ/T6sty1DszlHWt1QwjWbv6uju6GwNFkaM9uOLL75wuhmEBzE00jdw4EAr2sKFSI78RN5Aq4/brmluQem9BnvRQ3FTkdDBPEDhngNIq4IHFTW8idZ9a4e3E2aekMa9CRWmk1HKUzIZXvt1dRlGlFXzbVAKMHR4Jh57Y7XTzeAHremzDV2mLxwOY8eOHZgwYYJV7TFM6KD6c1MiOTFEsuWDbaDNihbxIZKd/O+WPubWHBL2IkwLsgMljdupb94VYjMJA+E9lO43kLpFDas1/mV9P5qm7xKCvZpVcxWvalyap2TX+ihXsZDjRmRix/Z9CIfDyMqiQhnBji7Tt3XrVmRkZKCgoMCq9jiCOGBFsuJBNxC2t0wgXFcaPK0i3apnLLtipSpSTTmlcTWSvoMqiT+Rvgi6kBY29BY1mipyLF+bLaXLd5A0TsgQyYmhcVAMufuT18y5qTAdyfJxyVNCB/NoVpKEkkAHU67Su28AGZk+fPPNNxg1apQNLbMYGumzDV2Z8DfffIMePXrA5+NTjbJzFEQvQmLME2EUxIpzE3zY1aG9SREQXx/gRfL3d0ZCOR1abQR5JQwEIeC2ogbpO46TG12kGk5onPIU9+L3+9CvIjuFTJ8v/sP7nEQXdG3B9O233yI/X3sjCSM7d7oBcUKsRDTT3+WH9dhIlo8CKeFqIlk+Zn1rnUfuhyDswmoNksYJMU7MnlHSoN5p9nK5ipdw8wCCVVQM9OPbb791uhkEJ1pbW7F///4uv9+0aRPX6+jK6DZv3oy8PPW1c+mInBE0kiw39fFWoCXSAy1d6ylskMYJpzFS2NCjcZbioRthnb3AOhuCcA4WjZst7BHOLhsZNNSHzZs3O3Z9nsRi1vx4hZdeeglDhw7FzJkzMWbMGHz66aeJv82ZM4frtXR927/++msUFdn7nBrx4xqcpmB3yOkmuBK3P9SX4AuPkUCCcBNKhTvSOJEq8NQ0FTacp/+gDGz+eq3TzSA48Otf/xpr167FunXr8PTTT+Oaa67B4sWLAQAxzu5VV5li9+7dqKys5NoAInXQMnVDGDuaHB//RTElftaV8GzGdD28uaZPCypsyMNa2CAIwjuMzd3jyfXZTX18njVeboClAM2er/Dd2JA1Vzl5YBb+smcX12s7Rppv5NLe3o6ysvgA14QJE/DRRx/hoosuwrZt27jtoSLAbPo6Ojpw5MgRpjV9fbNqmc65J7tE9vdH2vRNIdV6XAOALrthEcl0z+66i9akwm1Mr03HETyeGnfTaDYhz4CMI0wP7Y0nCu5OFtK9sEGokwoJ8ZDMo9jWrv3IAC+M6DhBwe4QGvsHnW6GInL5Cmuf7PZ8JceXjdaYts779A7g8OEWRCIRBAIBG1pGWEVpaSm++uorjBkzBgBQUlKCd999F1dffTW++uorrtdiNn3V1dWIxWLIzc3l2gA5xF/o3KD2A2pDoHWGUrQ+N7mgSdiHXo23hOhZPDxI5WSBN3YX7wg+kMbZGZBxBEeytAvZpHHr0Or/dtd3wwml+2xqjXcoLw0gEomhuroavXv3dro55kjz3Tv/+c9/IiMj2Y5lZWXh+eefx0033cT1Wsymb9++fcjPz4ffz2fEbFXDEC7nAQBkaVf0opl++Nv5XdIxNN5rSZ96mxpC2EluMIxQFsuObOkzok2FDXcj/fy17hcVNuRR+9xI4/YwqXCbbM6iV+NA+hSpgzV+hPqqP7KD5fMi5MnK8qF7SSb27dvnfdOX5vTt21fxb5MnT+Z6LWbTt3//fs8/lD2aqfH3DMDv4GOFtNqnFUAJwu0aZ4KhiEPJQurBq7DhifVOpHFDsE59czUpUqTW6mtYqN1fRIVqE/Qqy5Dd5t9r+GLxH97n9DqhUAhfffUVampqEI0mx40LLrjA0Dl1jfTl5Gh3yCf/hO8zJewmqvaJ+H1A1KCS/D71cxOESYL72ARmmcZZrs0hUSDSGy9oyAttJNyN0wU8ylfcT+9efuzblwJTX9N8Ixc53n77bVx11VU4fPhwl7/5fD5EIhFD52WeC7Z3715kZ/PfVdFz+H2GfuoH0mdHeAQtPasQzVD/IQg7sFKHBbtDpHPCMDxHtlQ1qBGrzcR5ohMnR5779fVh7969jl2fsI6bb74Zl156KQ4ePIhoNJr0Y9TwATpM3+7du1P6wez5+zxeFtABLYomTEGJAuF1DBbv3KbzL2qU14IQhBc0zAuu+0R4hD69Ati9e7fTzTCPsJEL7x8PU11djR//+MeJRznwgtn07dmzJ6VNH0G4mdr9RU43gSAIgrABWr/vPCyP/HCa3uUB7N2z1elmEBZwySWXYPny5dzPyzwRpaqqCscffzz3BhAEQRAEQRCE1awN9ceEYAqMjiFu+qqqqpxuhnloTV8X/vrXv+LSSy/Fxx9/jNGjRyMzM3mR7w9/+END52U2ffX19QgG7X1Yp5umrhTttHbedlNfbw9FuxnP7/ZGEARBEAQholu3AOrrG51uBmEBzz//PJYtW4ZgMIjly5fD5+v0CD6fz1rTF4vF0NDQgKwseo4SYZ4cn72b2rBcj4xhejKpcJvTTSAIIkU4oXSfa4rV9QOzLS1W5++LpUWx2u58Rc81iwrb0dDQilgslmQKPAeN9HXh5z//OX71q1/hjjvu4PZ8dIDR9DU1NSEajTLt3lkcYHtYbF5AOxhlBZJ3qAlHAkznlsK6lX0qI/4sWT57gP1elgTY1h/k+Nz7nEchyJYE2KpmLJ/NiobhtuqccB7hOWJuThRKAo2ojVBMJMzjVp1TEc/7UM6iTa/iHHREomhubkZ+fr7TzSE4Eg6Hcfnll3M1fACj6aurq4PP53N8pE+aHANA1YFuQIa6pY8p5NA+47ueWo5smzXeJyD/GRHeQvYeMtx7L+qcN3oTBd5JAuBMIqwXlvfDs4AHJN8bKmyYw2mduz0ZzvFlcy3gAaRzLShnsZ+iwrghqKur87bpo5G+Llx99dX4z3/+gzvvvJPreZlM39GjR5GTk+Pt4WMZkoKUxluLBboe4Isoq6rL8ZrnV/87QRjFSp2bhRKF9ETx/hksbri9sNGlzaTxtMBLOpeL/ZS3uJtAwIeC/AwcPXoUffu6Y1qxIax4xILHH9kQiURw//3345133sGYMWO6bOTyxz/+0dB5mU2f3Zu4eAHZIJlmTAymwM5RhCpSnYtNIBU3CDfQRVc6ixtahQ3eOs/em4m2fu3qBxGEBD0FvPjx6jpXy2EK94TR0N8d+zh8WjMAJ5fucroZrqSwIG76iNRiw4YNGD9+PABg48aN3M7LPL2TTB+R6uyP0C5YLFCxg0g1SNOE12is8KFgj75ZGKTz1KO4MIC6ujqnm2EKXyz+w/ucXubDDz+05LxMKwSPHj3KtIkLKysahnM7F+EN+gTcvQaEIAiCIAjCSxQX+WmkLwV5/vnnFf+2YMECw+dlNn3S+aQEQRAEQRAEQThDcZHP+6YvZtGPh7nxxhvx1ltvdfn9rbfeiueee87weZlMX2trKwIBWoxDEACwJlTudBMIgiAIgkhz8nJ9aG1tdboZBGf+9a9/4corr8TKlSsTv7v55pvxwgsvmJr6yWT62tvbU27nTkKdqYVbnG4CQRAEQRAEoUBWZjxHJ4xz3333YeLEiSgoKEBpaSlmzZqFrVu3Jv5eW1uLm2++GcOGDUNOTg4qKirwwx/+EPX19Unn2bNnD2bOnInc3FyUlpZiwYIF6Ohgf9yTmJkzZ+KRRx7BBRdcgLVr12LevHl4+eWX8eGHH2L4cONL5Jg2cmEV1Iyffma4IQRBEARBxKk60A3lvT0+bYtIa2iXWuvJJNNnmhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLycODAARw4cAAPPPAARo4cid27d+MHP/gBDhw4gJdeeglA/BELM2fORHl5OVatWoWDBw/iqquuQmZmJu69915D7fq///s/1NXVYfLkyejZsydWrFiBIUOGmHqvTKYvHA5zfyo8QRAEQRAEQRDGyM6K5+hexgcLdu/Ucezbb7+d9O9nnnkGpaWlWLt2LaZMmYJRo0bhv//9b+LvgwcPxm9+8xt897vfRUdHBzIyMrBs2TJs3rwZ7733HsrKyjBu3Djcc889uP3227Fo0SJkZWk//uTHP/6x7O979uyJE044AY888kjid5Y+py8SoYfEEgRBEARBEPygEW1zZGX6DE8hTAcaGhqS/p2dna35NAJh2mZJSYnqMYWFhcjIiNuo1atXY/To0SgrK0scM2PGDNx4443YtGlT4pl7anz55Zeyvx8yZAgaGhoSfzez3I7J9NEmLgRBEARBEARPyPCZI9weQzCDKZV3LzFf/If3OQH069cv6dcLFy7EokWLFF8WjUZxyy23YPLkyRg1apTsMYcPH8Y999yD66+/PvG7qqqqJMMHIPHvqqoqpiZb9Ww+MUxKycrKQjQatbotBEEQBEEQBEEw0BYG09RBV2PFIxaOnW/v3r0oLCxM/FprlG/+/PnYuHFj0q6ZYhoaGjBz5kyMHDlS1Ty6FaaFeqzP6Hvn/pNMNYYgCIIgCBoBIbwPbeJiPe3t7Dl6OlJYWJj0o2b6brrpJixduhQffvgh+vbt2+XvjY2NOPvss1FQUIAlS5Ykfe7l5eWorq5OOl74d3m5ex7zxWz6YjGPP+mQ0MWKBuNbwhIEQRAEQRDWEk4F0+fww9ljsRhuuukmLFmyBB988AEGDhzY5ZiGhgZMnz4dWVlZeO211xAMBpP+XllZiQ0bNqCmpibxu3fffReFhYUYOXIke2Mshsn05eTk0GYuBHGMiUG2+dkEQRAEQRBW0dwSQ05OjtPN8DTz58/Hc889h8WLF6OgoABVVVWoqqpKPPReMHzNzc146qmn0NDQkDhG8EbTp0/HyJEjMWfOHKxfvx7vvPMO7rrrLsyfP19zSqmdMK3p69atGz0HhCAIgiAIgiBcQl19DN26dXO6GabwxSx4ZIOO8z366KMAgGnTpiX9/umnn8bcuXPxxRdf4NNPPwWALs/J27lzJwYMGIBAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvvNvU+eMNs+tra2rhddGrhFpo+mGbsjzSiT6DA6WYQBEEQBEGkBHX1Uc+bPqfRWr42bdo0piVu/fv3x5tvvmmoDUePHkUsFkNJSQkOHTqEjz/+GMOGDcPxxx9v6HxKME3vLC4uRigU4nphr+OLxFR/CO9BplQe0jZBEIS7KNhjPhZTbPc+dQ0RFBcXO90Mczi8ps9pnnzySUyYMAEnnngiHn30UVx00UV4//33ccUVV+DJJ5/kei3mkb5UM30+6RJFDYHoDYhdjtc8f9ffxTzweMQ1oXJa4+ZirNC5+JhYgPOzdQjCIdS0z1vntKsh4RRqOhf/rX5gtu68xaqc5eTSXdacOAVoaOygkT6P89BDD2HTpk1obW1FRUUFdu7ciZ49e6K+vh5Tp07Ftddey+1azKavtbUVsVjM1JPgzRCOqESTDvU2yRkqL9Cl3RrvE1D/nLICHv0g0gjF+8dw753QudnihhcKG4Q3SNKWy4p4pHOCB3o0Hj/e3uEOylnsJRKJobEpBUyfhc/p8wIZGRnIyclBTk4OhgwZgp49ewIAioqKuHsuJtNXXFyMWCyGcDisuQtNXSSP6cLNEe3dbFSN3jFKyhpQu7+I6ZrpjvB5snz2APu9rI0wyQgl/vi60Byfe3YyEtMaa2N+LyyfDevnzKLzVEXWqJpIFChJ8AZeK26YhZLh9CTddM4bylmUaY21obY+LhKvT+90eiMXpwkEAgiFQggGg1ixYkXi901NTdyvxaT8/Px8+P1+tLW1uWrrUVZCfTsQ3Mf2JSespzWmvikQ7wCrdT2rmFS4DasahmgfSHBDnGSxJApWJQmAixMFjoUNgIobTkA6V4d0TvDE7pyF5ZpAfBOXjIAfeXlsGibcyXvvvZfwVkVFnYNYLS0teOKJJ7heiykq+nw+FBYWIhwOc704QRCEk6xqGIJJhdssOXe6FDeI9EZNd04lw07xRU1fp5uQoGintZ9TU19az20VrBqvb4ihsDDHsWVX3Ij54j+8z+kRxEZPTGlpKUpLS7lei3n4q6ioyPbNXE4o3eeaIFo/MNvSIJq/L0ZB1CJyfNmuThQIgiAIgiD0cPRoBEVF+U43g+DM4cOH8fe//x2rV69GVVV8o8Ty8nJMmjQJc+fOTaz5MwLTIxuEC7a0tBi+EEEQBEEQBEE4xYTgbqebwI0DVRGUl5c73QzzpPkjG8SsWbMGxx13HB566CEUFRVhypQpmDJlCoqKivDQQw9h+PDh+Pzzzw2fn3mkr6KiArt27TJ8IYIgjFPSp542LCIIgkgDaA8C5xmSyTwm4hgHqiLoVzHM6WYQHLn55ptx6aWX4rHHHusybTcWi+EHP/gBbr75ZqxevdrQ+ZlV3b9/fzQ3Nxu6iBdgmloZjRn+KdrunuccumXKLOFStPRMEIQrOKF0n9NNILxKisV5q9Zmu5n9ByPo37+/080wjbB7J+8fL7J+/Xrceuutsus0fT4fbr31Vqxbt87w+ZnLSf369UNbW2qvi/J3ePv8BMGCqg5ZOnsPJgQE0QWDOm7sH+TcECKdsHXGholYTfkKG07uXrt3XwxjT+zn2PUJ/pSXl+Ozzz7D8OHDZf/+2WefoayszPD5mU1f37590draqnncp384Hif/ZJPhBlmFv93pFmij1cbcnRloGUiRmJAn1LcDuTvVv9JU2CDSBdPFDYPnjtLMPMImrNS45rU9kFOlOgcORtG3bwrM3Erzh7OLue2223D99ddj7dq1+M53vpMweNXV1Xj//ffxt7/9DQ888IDh8zN3T3369EFjY6PhC1lFSygLCLt/7jU3NN5r7c5uCPZqRm6QHq+RSqSKzilRIMyipaH8/c729v4O0rlVpMsuzCz68USBTaPPCvZqRksoi/IVgxys7kCfPn2cboZ5rJiO6VHTN3/+fPTo0QMPPvggHnnkEUQiEQDxB7hPmDABzzzzDC677DLD59c10tfU1IRoNAq/33zyqfTg6iNtyQ+ZbAllmb5WOqL1uUk/5+7Zqbte042IP3/SuAQGc0uJQoqSAoUNJkjjnkIuVzFMmmi8pU+U/Vid+QpAOUs4HMOR2vbUGOkjkrj88stx+eWXo729HYcPHwYA9OjRA5mZmabPzWz6ysrK4PP50NLSgvx89eeC7AuXMJ1T7otMOIPcvWC9j90zmgAAAzKOcG2TmyGNOw8VNtwNFfDMQ8mw+6ECnrWMKKuW/b1U++mWr1TVRBAI+Eyt73INNL1TlszMTPTq1Svpd3v37sXChQvx97//3dA5mU1fRkYGunfvjqamJk3TZzfBXs0IHVRPrlv6RJG7Pz0qbLz4sr4fxhftZT5+V0d3jSNYg2wrSgJ8567URtikrv0e+DOirBpfV6dA4HY5SgacJVlgTRS2tUc9sdU3C1TY8CZmC3heT4YB4L3WbkzvY1dHd6bPJt00ng6bFfHKV0oCfJc9seYqX+5pR48euQgEAlyvT7ib2tpa/OMf/7De9AHxxzY0NjamxsMgCYLoQmP/IAp2u+fxIm5hfUsFxubuYSwKuDtZcKKwQXiHVNA4wPY+1rdUmGmOYzi9bpVwnv17O9CvYoDTzeADjfQleO2111T/vmPHDlPn12X6RowYgU2b7N2Z002jIHIJsb9dfd56NEWq/moICbEWuzq6p0QVOd2QajwdNE0QBJGqyOUteuJ6Ux+G5xq7EJY8BfDG1M/dOzowcsQEp5tBcGbWrFnw+XyIxZRdq9wz/FjRlb2NHDkypR/QrkUgHIO/PZr0o4X42EA4hkBY+UZS9Y5wGhaN69G/FNI44UakmjejcUqICTeipWk9uQoRh/cyFD3s+DaGkSNHOnZ9ntDD2Tvp1asXXn75ZUSjUdmfL774wtT5dZm+oUOHoqmpSfO4/X/ppXmMGxE6ayHgSX94YfX5CUILXhqUJsikZcLt6C3ekcYJFtwyIwkAira1mC5eAN7JVfTsPZAq7NkZxdChQ51uBsGZCRMmYO3atYp/1xoF1ELX9M7jjjsOhw8fRiwWMzW8KDC+aC++rO9n+jxmCEge+2NlQMvf04qmihzltoRjCLR1/Vwj2ZY1iZAwIOMI01qQsbl7PLMeRKzx1h4+5B8wlgDouqbM9yiS5c0REMK7WBnPSePqODkKkk44YcKkeRNAeYqdRKMx7N3ThuOOO87pphCcWbBggeqMyiFDhuDDDz80fH5dpm/YsGHo6OhAY2MjCgsLDV/UbgKtx0bwPPpcV3G7C3b40dIrHuQjOcaD/dfVZYpbIaciJYEOXZsAeA0vaFxITqSFDUoWCLOIda+VBOfvabWuHVS4I0yitMu4Ho07QZcCemvn90AuVwn2St+lQkqw5igH9kXQ0R5LHdNHG7kkOO2001T/npeXh6lTpxo+v64sOCsrC4MGDUJtba3rTF+wVzPad7jrURJWIw6qYtp35CNzkPY0XMJ6eI9mK91zt6A1mi2HUrJgpqhBpCaBVp+rCxtKOKnxdJz65la0Hi3lVX1LEQrTAm7vt7zGN1+3Y9DgvsjKoudCEvrQPfQxbtw47Ny5EwMGDLCgOeqEmtUFrvW0kpZeMeQeTI/go/VZBfPCNrWE0IPafUu3jjPd3i+Rfvc83d5vukP3uxOtHAUAxg+igoUc325px/hxlU43gxtWbLzi1Y1crEa36ZswYQLWr1/PvSH7G4sU/1aYG0LNIXeNLHqdUHOW6mcOAH0K6m1qTXqg9nmzdIBEJ1TU8C6qhQ0b2+F2SOPexOv61jtTw0q0chSAPU9Jpd1pv94QxTlnnuB0MwgPYmik78gR7S/F/r/0Qsv3I9rHMXyp3URTRY7imhB/OIJoVgD+cPx9R7P0h/j8A1E09XbHc9D2NxZhf2MRhnWr0Tz22+ZSXNLzcxta5R6+bS5lOs5rGldC0DVgTNt2QkUNZ6DChn2Qxu1h6b5Ric/RDfo2uxGX2TjulvxEYH9jEfIztOfEspo+VpzcqGjr5g7c8ZOxjl3fEmhkzhZ0m76JEyfiyJEjCIVCCAaDVrTJUZp6+5mDqjh4yv1O+ne3J8pmGJpXw7Sb5XpUoG9WLdM5z8rbbrZZSawN9Wc6bl+4hOt1eREpCyNQbV/iLKdv8d+8rmchgWNJGAD+SYPbSbeiBuCtwgYLrAkx4H59W7ERV7ppXBrTUyFHYSlKA2DebftIFtveEMWB+EY0E4NVTMdrsSZUjrqI+ppPAGisbcfB/ftw0kkncbkukV7ojqIlJSXo378/ampqUFFhfsv6Yd1qsPUoW+B1moxQvBShlgyr4Q9HULitCS1941/sjmDqzO//trkUQ/PYgi8ra0LlXM9HqKNX325PGGoOFaK0ZwO381mRNPBKGADvFzWcQKuwIcZOfUfK7J+66fakmLe+WQ2f1xDPRNKbq/jDkUQ/AFiXozihb6vglaewGD4A2PFVI/oN6IVu3bpxua4roN07bcNQ6ayyshLffPMNF9PHE94jIeLgZwVy57fTCPJOignjlPZs4LJuVc9mRbz1LSQYwnmNajn3oK/L7m+pChU27CUjFDNVtBPOAaRW0c5K0kHjbtlzwIy+lc4nhkXzvGI35Sby7FzfiFMrpzndDMKjGJqcPXnyZNTV1XFuijq8AoBaQMoICT8xyw2fchtionbIH8OS1Ns5DZDwBnbrW7iOk98nIr2xUoNGz01JMaGE3t3F7Y6xLPmJl2FdeuIk279oxeTJk51uBleE3Tt5/xBdMWT6Tj31VBw4cADRqPrat9y/u2u6lxhx4HJzAPNKO1MJLwR+Ldyom87kxD1tIlIHaVHD7kID6ZtQw2wh1g59C0tP9LfJ3ZrnvfREmLpsNx3tUWxfX49TTz3VketbRsyiH6ILhkzfmDFjkJWVhcOHD3NpBOtCXDNkNvsSP1qBqam3ulnVGxh5kxFKfj+ZzTTNiAXegZp3R2IUqRbc2vHKYTRhoJFsb8Fr+lvhzs5Y54Vk0wtt1EMqFMS8ghu1o5UbAV37IyvzEztyRztgXc+3e1MzsrOyMXr0aItbRKQqhtb0+f1+nHbaaThw4ABKS923GNrtJih3X7Oqccw/EGEKrmLk3nPmjmyEBrHt3KbG1qOlKRNcvY4d2m7pm4fcfc5UMoXkRvw+2/OoZJfuiPXglgTYCELBTowb9J0qIyFeRI+28w/wW69nJ1LNe/NdOM+WT+sx6dRK+P3uemyGWejh7PZheA/k6dOn48EHH+TZFv00dm1+JDeKzGZnp5X62toT/x/LznSsHaGeEdnPCABQwP8ZM7x38KyL5KVE8mBoh1ql++YCfG3ttupayehS4pB6uL1gZwVy75m07Q547ixuh7a1inVCbpJOeUkq8fUnDZj33QudbgbhYQxnlmeccQYWLFiASCSCQEDZZOX+PcD0kHYljtR3jogFsiKIHMk2fC6B1lIgh/PAldjoKf2eZ6DNqYm/D8McC7o1jSUIdE8eDexeZK3R2hcuoWlCxxDr2y6j19Q7oLtirKRvR6HEwbtQUUMd0ra3cbG+AevyElM5CZD43ALd25L7RhjPS1gL0aw5iWPr+cJRbF/XgNOfOt2R61sKPbLBNgxHpuOPPx65ubk4dOgQysvNbcksVNOkX3K3ozcRtjtxDh4KxKtqOpG7D1vRGc1pqic7XtU2oK5X6d8cT5LFiBKuI1l8EgfCGAndeygJlv6btO08rGue7HxGH++CHe9CtIBW3uHKgp4ManmJl3MSPc/ny83LxciRIy1uEZHKGI5UPp8PU6dOxf79+zVNn1cevi5GaTQk0Br/XVv3IIIHjAdL4TwCkRz37nQqRe1+NnV0jsSOL9prR3Mc48v6ftjfWOR0M7gh1qSVBQ0ja1Z5kaqJg1NsPVqacgUNtWNDvQusaA4X5O5D96JmWpNtEFZt85h9xBsjRi7UuyCpD3B7TiIucqRDTrLlf/U47bRT4fOl4BR4GumzDVPlqRkzZuD+++/n1RZuhHpGEDzEL2BJDZoVSK+Rf4Btpyw382V9P8W/7clWr8hOKtzGuzldWNUwRPFvR9rcmch6QdteShzEaBWnhOTBy4kDK04UNHjqWg5Bl2ZHNoTzkLa9CWlb3zmBuNa9no8A7s5J1PIRAPh81Tbcde0FlraBSH1Mmb7TTz8dP/rRjzTX9Y1fcgRfXtTdzKUSBLq32bKuL7MpZqnZCx5oVK0aB1ojyGyK79DUnu98ZedIfZ6t04eEAJgXML/7qJjmCJt2umc32278eGlbCzu17eURbSXUEgfA+eQB8GZBwwqs1Lmctr2eGJO23UvR9nAiftpRiBYjzkcA4zkJy3IT6R4DdtA9Wzu3cTIn6WiLoOqrwzj99BRczwfavdNOTJm+YcOGobi4GFVVVejTpw+vNjlCZpN7FSJtmxtMoFfJC7QxGz8W+hTUu26Kp7Sg4SZtC8lKZpM/bXXsdEEjlbG6oKGG2wp1TkDathY1bQcPNNrWDnGfImjd9CYuFtCnoJ7r+ZzSdc1XNSgsLsRxxx3H9fqugaZ32oaph334fD6cc8452LdvH5fG2DmSlNkQD1zCjxGcWt8htLlwRwyZDebPx3N0idUAsVZkqbPXDw9t24G4jU6204tr0og4btGQFLe2i2DH6bjgFQ0l2tgALvkIC6m8aZEc+/93AOdOPzc11/MRtmJ6y6nzzjsP77zzDo+2WIqRYNRSloncavfvbCX33toL4/81uoMn4R3s6mitRpzYdAR9CQ0ThICbk1819GjbrfGaZQocwH80JB0o3OGsrnkWsKX9EcVx8xxcXYWfLrzD6WZYB4302YZp03fWWWfh0KFDaGpqQn5+vuJxdq/ri2YA2RqPXWnt4UPOYf7K8LWGFf8Wy8lK/L/Wur7c6na0lBnbLlwceKMZ8XUA4W7uTCbSge5Fzdwqx06aPLG2xVq2ArViBpEe2K11X2vYcl0D5hNjJ9Y9pQo8p+MbnSXjRAw3E7uN5iFA11zEbXmI24sZrUdDOLz9CM4880xHrk+kFqZNX3FxMcaNG4d9+/Zh+PDhphtkJDnOOuqOxfNqZk96jB2JhRS5z0lPALZ7MxfCHdpW0rUTWnZ7AkEYh0cibGZmhqDndNM173VPvGGd4u/WTVwKtjsbw+Xit53FO4G2Y3sAqeUhPIsZqaLrA2sOYtDQQSgrK7O4Rc5BG7nYB5cn5s6aNQvPPvssF9OnhVBZc0MyLMBi9pRek9nUgfZ847ch53AMrT2Mz/MWPscwOgMQVZHtx226jhTmIKOardO0IoFg1bXZQgbhDG7RuVrstkLXrLGadO1NrNK1VjFDuomLnpzE1xo2nYeYyUEAykPU2Pfxflx0/kVON4NIEbiYvpkzZ+Lee+9FNBqF329qb5gkzG4w0laiPcVTC6V1fZlNHQCOJccGTJ/cuQTMBF+jZB3trC6rfu4MI337G4tcXWXjvYOnHtzyIF8tXRuFVzHDDOLEi5II54kcyXaNycvZfsTQ64wU9nhDunYXbtI1D32KY79TsVuMUl9ZOshkUuchopEo9q8+gAt/fqHTTbEWWtNnG1y+2ePGjUNOTg6qq6vRq1cvxeOk6/pqDiksZGjUbla4W4RLwNWzrs9sQsyK+Dq5MDefHogb3zb1xysxo3jPAJT21Dc/60hbHtN8+uZItiPz6Y0+q8+MrlngUcwQY5WuvZJEUNLMB7cUNOTgpXG3aRpQ+dwL7OmvUpGaHSWJuJDquu4o67rG0Y06F+CZg7h9Pd+hTYfhj/lxyimnOHJ9IvXg8m32+/04++yz8fXXX6uaPkD9C5ugoINbgmyW7IaopWYvo7peNugKZDZ1IPvYA1nbCvmNolqB+N42tAQVjxtRVm1Hcyzh62r5efWhZj7Tv3gVM7SwWtdSnEoixCPYSkSOZKMmLP+Z600iUhmrixm8sVrfbk6MBZTuGem6E6XPyC6zp3czOTvjNgBEcgLIbogCMJ6DsBSdeUxfFu5lMC+smIO4If9gnWm0d+U+zJgxAxkZ7owvvHB6Td99992Hl19+GVu2bEFOTg4mTZqE3/3udxg2bFjimFAohJ/85Cf497//jba2NsyYMQOPPPJI0lrLPXv24MYbb8SHH36I/Px8XH311bjvvvtcdf+4teT888/H8uXLeZ3OUYQAx0pHWRHz+icziNvlmAFszDBdQRYbp9wg27SUrEByh3By6S7d1/20ZkDi/8MRNmPVErJ/wx0eyI1g69W1VfAqZPAcwVZCnBDWHCpEME9er25IJMwgV8zgVciwE7sTYul1s3MCri/OAWwFOq9rGuiqa56aZinO8ZiRYXeBTg25HMTsej5dcBi99lL+se3DN3H7vT/TfS3P4fD0zhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLis71uvfVWvPHGG3jxxRdRVFSEm266CRdffDE++eQTAEAkEsHMmTNRXl6OVatW4eDBg7jqqquQmZmJe++9l/ObMw430zdz5kxcffXVqKurQ3FxseJxM1buxDunDuRyTZZREdapcGoJcahnNoKH3DUFTNze7AagbpA71hbYhTiAegabR7DdYvLUcEUhgwNeSiS8WshQwm06T0VNA2y6lmoasEfXqaxprdzDjoKzHEIbW3ukV+4B2JN/hPYcRmj/UcycOdPya6UyDQ3Jsxqys7ORnZ080vr2228n/fuZZ55BaWkp1q5diylTpqC+vh5PPfUUFi9ejDPOOAMA8PTTT2PEiBH43//+h1NOOQXLli3D5s2b8d5776GsrAzjxo3DPffcg9tvvx2LFi1CVpY7YhS3DLSwsBAzZszAjh07cMIJJ5g/oQ0JcnZ9vBQQNbdkTp2W1q6/y83hfhnhvQi0FSVX31hGRVimwrESas5SHBUhrEOqA0sQa1pBy1rTloOH2hDqmRx4UyVZNoonCxkO4DaTp4a0rV5NkFkLGXKY0TVrIcPrWKpplXitFqMBdInRcmjlHnbDmncYLc6ZhVXTRz/ahO9MPwuFhWnwcFoLR/r69euX9OuFCxdi0aJFqi+tr48XUkpK4knz2rVr0d7envSsxOHDh6OiogKrV6/GKaecgtWrV2P06NFJ0z1nzJiBG2+8EZs2bcL48eM5vCnzcHVV3/3ud/HDH/4Q48ePh8/n7BdfDlsSYgE5syf927EAbCRB1sJtgViJllAWU/ANRwJcg29WIJISCYXjmm5ptaaI0RBFNLPT+LlVv4Q9CDp3KjkGtBNkFsTfVzdomgpzMtg0G8N2TYv/bUHMFpBq3K71fKlELBZD40dbcM0fH3a6KZ5n7969ScZZOsonJRqN4pZbbsHkyZMxatQoAEBVVRWysrK6zGIsKytDVVVV4hjpsxSFfwvHuAGu0e28887D3LlzUVtbi+7duyseZ+cUT2Fqp9nkWGuKZ2Jdn5rZk5J0rPmEQo34++9MMqxeC5Uq5AbDrpo6xEvPutDStM2JBOCOhFkJ1kIGoYzj+jagabsKc5QgexM5TeccscDwseQgiWPM5R2t3dVnZHDNO9JoN9rWnTVoP9KYNlM7fRCrhN85gfgsRD2jpfPnz8fGjRuxcuVKzi1yB1xNX15eHs477zx8++23qqaPGQNTPI0unG7t7jcVgAONIX2GT+71x4gUKO98qUTOkahmABYj9zkxB2QOm7mkGsG8sCUbX/B8NIMUtUJGoDGEWG42fIfr2E/IMO2TF50JVDy0UxHD22TXusDoqR1nsZ6B+PtvK/IlvvOkafeitZcALz1rrufbWdWpTQP5h5B3GMk5jCDtz5zSuOundr6/AReef0FiExHCHm666SYsXboUH330Efr27Zv4fXl5OcLhcJc9S6qrq1FeXp445rPPPks6X3V1deJvboH7wpl58+Zh+/btiESsr0YGDwUQPBSIB9haaxNkJQKNoSTDZhRxci2cU3xeHhvJaHVC2bVAwfZA4nMNHvL+9EevETwUgL9DW89WjXTx0jNaWvmchxFxDHAqFhBsOHqvWlqNFeeO6dlJTRPmsHI3WkfvlUFNx3oUJ/5fTtt6R67l0OqnsmsBfwe45RypMF052t6Buvc3YN68eU43xT5iFv2wXj4Ww0033YQlS5bggw8+wMCByTMRJ0yYgMzMTLz//vuJ323duhV79uxBZWUlAKCyshIbNmxATU1N4ph3330XhYWFGDlyJHtjLIb75PVp06ahpKQEu3btwuDBgxWP0zvF02wwaCvycZviqdTxx3oU6xsZYcDuSpwUuc891JPN0NNmLuq4xVRbmciaHcE2g5B8+TvinzOrbu2C9zpVNyJoPNPBx8Lx1rfRmKxnJoYcUj0DKppOgZkYbt2NNngokFJ6Vjy3hukzq2clZHOOQfbvnu7UKF/9qq3o3q0EU6dO5Xp9Qpn58+dj8eLFePXVV1FQUJBYg1dUVIScnBwUFRXhmmuuwY9//GOUlJSgsLAQN998MyorK3HKKacAAKZPn46RI0dizpw5uP/++1FVVYW77roL8+fP11xHaCfcTZ/P58P8+fPx6KOPqpo+JQLVXQN4ZrN6tai9kE9SoTXFM6uu3dZKr5hAYwhZoo0twsVdtxzVO8XTKMFDAbS3yF8nUqbf5KXyZi5G9MwLt+nZSQMIKJtst5lBr+KWIgZgbWIsdw0vFuV4kwoFjOCO7MTnZ7We9SwncSLvyKprByCfa9iNXD8KGMs33L7e+uibX+LnN/3QlZshWoXTD2d/9NFHAcQHrcQ8/fTTmDt3LgDgwQcfhN/vx+zZs5Mezi4QCASwdOlS3HjjjaisrEReXh6uvvpq3H333WbfClcs2aZq7ty5uOuuu1BfX4+iIvWFwkpfZrcgBD478B2uS5pyoYa4XU4E5cxmH9rzun6rpPczlNPZtmCvZsvbZQVam7mEDsbn3Qda3R+k7dSzGuIihpJ+nS5iGEko0gHpd9yuIoZWkuyWopzTSTJvPbs9STaLVM9aZo+lwMxjPV/eDvXn7/GeVaSE0VyDZQlCu8mnEYjvXSQnhlCDt/ON0P4jaNqyP2E00gaHH84ei2kfHAwG8fDDD+Phh5V3VO3fvz/efPNN9gs7gCWmr7S0FBdffDE2b96cmO8qx4yVO/He0GFcrsky2qdniqdSctxekovM2hbF16lN8Yw1NiX+31eQz9QOMZm1LWgvye3ye3FbW7urDyMLmwWoXqfBfDCWQzBHsn/LSt4ooaSPMw+cFVO7X1SwCHv3uXFWGT1Bz0a0LMbpAgYgX8SQK0ilQhFDCypimMNNIyRipHoWJ8mpqmUgrudAqw/uGYdWhqee1eKzVnFZLs8AnNG2XHGZBaV8gyXXsHNqpzjPOLL4A1xw0YXo2bMn1+sThIBlD6S54447cMopp2D8+PEIBs1NfWnPi9lSTRYqyVYkEmLDJ/232aRZTNH2tqSAbMdIiRqBVh8iOfqDdpLhEpPBuRzUwU9XkZyYaxJlO7WshJ6RawE3GEBWWIsYdhUwtKYrJ75THi5gANYWMXjG4lTUMkAFOd5YHaN5FeekCH2M0zkGAPYcI6vrbAHZXMOBPCPS2IzWVZ9j4Wdr+F7bK9i4eXM6Y5npGzduHE4++WRs3rwZJ5xwguJxZ3671dbRPimWPCdHBEuCLA7KRhJlNcTvj3dwVpriaYiwXzYgd6HDxz8guxAjI9dGtKw1ci1GSctGkwqlkWuBeDIUT5aVtMsycu00igUMwNVFDDeRcyRq+Yi19P/5G0B1LbNgxQwMvdhSkGPVMUfDZ+c0ZS0ta8VkltlEcn/jbfwA+RzDjqmdnoFRy40ffoKJJ5+MsWPHWtwgIp2xzPQBwJ133olLL70UY8aMQUaGuUvxGu1rK/KheIe5oXuWKZ7YuU/3eRMBu7EJGNhX9hitRFkNITjnHIn/u26Q8qiAVVM8XUdGzPZEmefIteVFCx1atiphBswVL9JGyw5gZaKsV9t6E2WtgpzVIyRAspZ5FS+4FeL0kAaFOMD4ej43FJcTxynkFgJa+YXaqLXwPv3tfrT2MK9nrlpmKSoDjmg5Gm5Hy/LV+NV/X7b92m7A6Y1c0glLTd/06dPRp08fbN26Fccff7zicTxH+5TIOcyugHBxpuGqsq8+HnzN6M1XUgzUi6rPRfyrc22F/i6fCY8gLYfRKZ6uIivqimlEenQMOKflRBLCcdRaQJpAtRV5YbUOoYVbEmPF16lo2WwhDuCXKHOFNVF2MXZPubdax4BxLQOdcR2wJrcQsCu/cHVuwVhQbl61Bn1798ZZZ51lcYOIdMdS0+fz+XD33Xfjuuuuw7Bhw2wZ7ROmxaklx22FfmQ3mAvM0tE+cSA1S6y2Lm78JOcWAjTLtDgja0ikn1l7oXbAcmSKp4vhva5Pr8njAU8tS7VrBXYlFwRf7NS2r76JWyHOLi2Tjr2DHi2bmabsq29CrLbO8Ovlzgd0atpo8UJMW6F8cVT8GTUMYpj+mUajfE1vfIDHn3wqrR7TkITDu3emE5aaPgCYPXs2fvnLX+Lrr7/G6NGjFY8zO9qXU9P5/5lN5u826wiJUoLsKynmGpy7XMtkcM5uiCoGZ4HCHTG05ycHodZSU5flQwqv6+OtY1Z4Gj2t81uZNANkAt2KWmJstggnh1WaNlLI4FGE46ljV4+OsOLgej4lLfPQsdw0ZV5aFheTZc9vYmqnHsT9HGA8r3C1jhlH+Zo++h/6lpfj4osvtrhBBGGD6fP7/fjd736HOXPmYMSIEdxG+6RBI+mYfJ9mwmx2tC+ztsXyRFnr+gJKj3GwYsc4uc+9faD261w9xdOBdX0C6ahjO0b/xOQcjiEj5MLiRYqTqgUM6XVIx5xx2WZEgo7t1DBgn47FCHmF0RE/rUIygC6FZMB4XsGEm0f52sJofutD/ONfi+H3O798xCloTZ99WG76AOD888/HwIEDsWnTJtWdieRG+3IPdg0QGTY9f1dutE9stmJF+aqBmWW0L9LUhEC+zHN0JFM8u5y7vilpuqeAnmDNMtrHQuFOHzoUnsrR0kvnN8/NUzxNrOtzUsdSpJVkLR1roaRhLXz1TRDKEmrPhaLihftRK17YgZNFOBYdWwWvERNTuHjWhd6p9lbrmGXXTjUdG80nAOVRvsS5RcULozkFLzqC8n2mOJ9wdRzWsWPn4AEDcd5551ncIJdD0zttwxbT5/P58Lvf/Q6zZ8/G8OHDkZ2t/ABxuS+6EXiPkrBua89KpKmpy/8bSZyliNsZLlbZKp71fE1dp3jqQXw/I9nJ52npY8LcuXSKZ+7+uCkMtDncEBmMalipeCHWsBKsxQunkwxAO8kgun5GLIULK0dIeMVlo4ULKWZHStRgicOZDUBmAycdu7X4xgEjOtbC6IwL3nsD8MwngM72NQ8yn0+YySUA5XzCVC4BOJJLRJpb0Pz2CvxpyZL0XctH2I4tpg+I7+R50kknYd26dTj55JMVj5vUtAWr8oernqsjaM8oSfBQG6KZfvXHM+gc7VNLlMV/C+Tn6xrtkyNvRz0iBZ1DcKGeymbbDgJtQETUBMEgSYlmdv4+1LfD6mbFYZjiGdyXAb81jwqzjOChuPsMNPL7wshp2KrChVMGUEDOCArJhulEw6W4uXABWFeAc1LDPGZcqCHVMdeE2Qk0Zlzo0bAThQsri8jS3/Eyf0JfopRH8NKw0qwhNZRzCQCI/822XIIhjwCA6nc+wEkTJ2L69Ol2tMrV0PRO+7DN9Pl8Pjz00EOYMGEChg8fjqIic1UjFuPHMtonhxDcAMDfzq9DZBkZkR6boTElQw/i9yUEbl5TPDNCxoK1FkKAlCPGead+n7nHN1qCEQ2L7zNPWPRrRZXZ3x4XltNFCylKiQbgUOGCAS8WLoC4pnkWLgBlPae6hiOSJriq+MYwLc6rGs7bUa/6d61RPqOzLSJNTcioUH82n9a6VHHxWC6PsBuphllQyiWcyCPCR2rQ+MVqPPbFF3wvThAa2Gb6AGDUqFG46qqrsHz5cpxxxhmKx7GM9vFCmOJpJlFmWROlx/CJ6dizL5F8aM3JlyPQGEoK2ALi9xs8BNQPzlE8h9kpnnrxtwsVOnV8Ef4BW4toJrglHLxGrHloWI1YbZ1u/fJOnAHlZIMKF524sXBhFCeLF+LjtDSsZyMXNyTMRrBLwzz16/RItdP6FSMYRiM5hBrCe1TLHwRYcgie8Zclh+ANq36PvPc65syZg1GjRlnbIK9Aa/psw1bTBwC//vWvMWjQIBw4cAC9e/c2dS6zo3251fHsPZKj3mtFCoKGqsy8H9kgF7i1pniy0J6fkfgsAKClzLpoKZ3imapEsq1POsT3LLOJfyWeh34jTU0IwLpkA2BLnu0uXBDGcFPhQvp6oxqWK7oBye+1rVA7aXYjdhfdAH5FN4Df1E5hPZ9V+gWMF47FRQu5HELPKJ8S4r4IsDaH4Jk/OKHfll3b0LZnJ3730Qf2X5xIe2w3fWVlZVi4cCH++Mc/4vzzz1fcptaq0T5pcAKAQKt2eUbL+IlH+3ibvS7XEp2fRzKd2dSB9vxOKcgFcJakmedICetoH09iAfePlMjplwWn9ctbs2KCh9oQaO3Ur5UJBytO6NeLCHrWKloYndop6M6M4ZOei7d+AWgW3ewuWLh5lMRN8NKv0kwhnvqVnpeXjsW5g4BUzzTKFycWieDwW//F3YsWorQ0FZ+3YhAa6bMN200fANxyyy148sknsXHjRowZM8bUuVhG+7IboprGrj0/g8toiVLCHMjPNxy41XaWi9XWAcI1B8rP21ea4slKYkS0obMs1tTbgRKZDKk+xTP/QFy3LIUJs6iZPZ761Zs869WvnVVnQh9GixZ6sbLwZqX5A7QNoBJWTE32KlbNspDTr1tnWTBdQyFnEDCTNwjkVrcncgezeQPLKB+r4XNilO/opyvQMz8Pt956q/0XJwg4ZPqysrLwt7/9DWeffTYGDRqEfAVDY3S0T0iUeaM2WuI7XGfJNVnxFeQDojbEehTrer10tE8Luc+4qXeAabQvXaZ4GsGods0ULQTt2l0YSyTPsPYB19KihVsKFulA/oGILQUL7NwHMDwXlSeJa3GYXq8Eb+16fWocT1imdhZtD5u+DusotZJ2zYzyaa1H9ZnIGQB17QqIl89I+zdBzywFCzfnDCyjfO31R3H043fx0rJlyMykQqQY2r3TPhwxfQAwdepUXHTRRfj8888xbdo0xeNYjF+wNoqMkPodjuQELBnt02P2rBrtA4BYY1Pc+Mm0K9aj2PRoHxAfbVJb/ygE9I5g51SOpt7GN9jw+hRPlnV9+Qe0tWsVThcqBGK1dfC1x793RhIPvSglHoR5rCq4qeE7XBefHWSj4ZNeHyDt2oGVu3Y6pt3GJkdmoonzBaEtgD06FpDmDGbyBcCZUT7WfOHwO6/golmzMGXKFH4XJwidOGb6AODBBx/EkCFDsGfPHlRUVDC9Jv+As88UEkb7lBJmX0E+Yo1859+bRWhrxmGgY2C54nF6R/tYULpfTb393Cp3Xpji6bRuxbhZu2Yrz0YQJ3u8ko90gAoWyaSKdt26HooVlqmdvLRrZHaFXdo1unOy0D61XAHQP8qnhLhIrNRP1g/kF4+dGKFu+mYz2vfuwF+Wv2v/xb0AremzDUdNX1lZGf74xz/ipz/9KcrLy5GVlSV73KSmLfiq4TjVc3UEfbaM9mVU1wMtrarnUMPO0T45Mqo7nxXUUab/WYlao30AkBGKJQVyOfIPRBHJkj+mqY93d1nM35+swUBYO/Lw0q4aiftuQrt2o6fyzLtgoVasSDe8ULBwCqV4m2hnbg7AYV2UFlqJczrqFlDWLovh4zEtOWNnFWI9ihV1q1Vk472Bix7M5go8kfarAuJcwa3FikioFYfffAl/efBBlJWVWd8oD+KLxeCL8XVpvM+XKjhq+gDg2muvxb/+9S+sWbMGkydPNnUuq5JncfADEO/IVZJnK0dMeD7/TC6oWzHapxdpgI+qNKepL3+DKJ3imb9PXlN+hiJvJMvHZPx4IC1YdNGtScwWLIRz6MV3uA4ZLfEt7R1PPo4lkXIFCyPFCidGqeWQS6rs0q0WZgttTiN8D41ql2W0RAveRTa3PKrB9bqF+woVgHKxIkFu8iNEpBq2YpRP8TwKugWS7z9LnmClbpXyhF2fvIYJY0bj2muvte7iBMGI46bP5/PhmWeewciRIzFgwAD06dNH9rgxhd9ojvbxQkieeSfNAtLEV08irfmgYK3RvpbWLgEdSDYIGdVA6+Duym3gNNoXCMdUAzoLSYGWp/9jyBuiGWzGz26s0q1ReD6g3U3VZylOFyvkkEtE3KhZKW7TMA/kzJ/TBTbAed0W7I51Oa9R3bIYPl6jfHIzgpJ0q1GoYCkMC7HTyRE/McL7a89Xzg9YYTF8rKhpFhDpyeYcoWH/N2jctR6L39kCn8+7M5gsh6Z32obzPQ6AAQMG4P7778fChQtx4YUXKu5sxGL8zI72BQ80xo/Relgux9E+1sDOM3nWQvgcACDUu8C268rh79AO6umOcL98reZ3m1NDbxLCqlkjxQq9BpBXsYIHThYr3EbO9iPoKCuy1OgZHaW2IuaK3yeP5JknjiTPUB4l8QJ2FCj06Fdzx06do3xSYjlZmvkBj9FpQH2UT4A5N7A5zkba27Bv1Qv44x8eQP/+/TlenCCM45pUet68eVi8eDHWrFmDSZMmmToXi/GTIg5iABBosH86kVpCrSf5MDrap4T0swn1LnDVaF+CGPgFdh+4JdAsUzyNFCuk94UJTsUKFvNnZ5Eio7oegYbONcFOFyoINgQN25U4A2wFC7u066bimptx0+h08ECj5cU1ObSMn53xVowRDdtRWEvCgcLa/s9excjhx+HGG2/kePHUhB7ZYB+uMX1+vx/PP/88Ro0ahd69e2PAgAGyx/Ga5ikk0GqJcywnSz24MyTQiXPpWOMnTU6cCuZKCJ9ZLDs+ItvSN8/J5jiKnVM8c/c1w9emvmWopmY5I5eIuEGvlEy7E0OFCs6oJc96tcuyeRYrcprNPhLSjK9m10XpxqUj01ZN7TSkWYY1qEbW/lsebxlG+dQIHmjklhdwHeWzmaO7NqBp70a8/PVm+P3puYkS4U5c9ZXp378/nnjiCVx33XXo2bMn8vLkg4bRaZ65+5q5tbXzpOrGT0BIDPSaP19Jcfx1Op5BxZSEaIz2+VrDmgFeQO5z1RPwWUb70nGKpyV6ZUBvMiIuUhjeJpxT4iyHOGmLZWemdZHCCdxg9KTwKqyp6lbHbAop4sJa7r5m0qyNaOnViVE+MYLxM7QplkV6FRAMH9C1/xI0nOpFinBzPfategH/ePop5keRpT20ps82XJdGX3nllVi6dClWrlyJ6dOnm1r8GqwJwR82t+0y75ETVvMnmD3pv516ALEcvrb2pCAvRhzwo1nxaaBNFeY7FU08PMWTRa+x7EzN0T4e6DV+vpJiZFhVoGA9F2OhQikZIcxjSaHColETwCKzxwhrUQ2wR7NuLarx2sBFDunnyiW26thp1ohuhVirNxcwq1k9epVD+KyjWQEuuQCTXm02fLFYFHs+XoxZF16IK664guPFCYIPvljMfQ+zaGxsxPHHH4/evXtj7NixisdJR/vy93QNtiymjyXQaxo/g1uKywV8qeGTfZ1CwDcU2FUqfCyBXsn4CQimT4mmihzmyp4bAz2gPzGR0yrAR69MRQodetVboEi8TiMp4a1VQFuvWloF2JISL+uVdToySyJduE07YTWtV52xlTWJluqWNYnWpVuLYyvAT69u1CrAz/Tx0CpgTS5gNMYCHOOsTbFVCUHDXt68peqr9xE5sB7fbPkaBQW0rECLhoYGFBUV4YQrf4NAFt/nmUbCIXzx/M9RX1+PwsJCruf2Mq6s7RUUFOCll17ClClTUFpail69eskeN6bwG+zY2E/1XNGsgD2jJ+KAqbPSB3QGfRbDJz1OCPpWJNF6pnkq4Q9HVIO9YICimclz3xv7GwwCLhrtK9gdSvy/v92eh1xbMTptpDihNjpthVZ5ImfKbRmpdilKRQo3ojV6oqRbrdkUVk5BNooQV9X0mnuwzXgsdRij66Wt0itTXGVc8pF0XoMxVjiGW4xVwGrDB8TvmTQHAEzkATYbvsaD21Hz1XtY+fHHZPj0QtM7bcOVpg8ATjrpJPzhD3/Az372M1xwwQWK6/sGjdpri/HTlUgLyaneaR49ioF6/VOUfCXFiBXlA3ofAsspiVab5mkGsWFKwt8ZzesHZnO/rh6KdrZ1/iOqHmWimX5N42drkcJocWJgX/h06FSaTDtp+MxoVZxIcitQuAzeRQou0+U4JdF6CmrSJNoJzZqNqeJimvi+ymnVrVM71RDeE4tOec34YcakZlm1mnitSLNOzPaxki55gD/ZzcnmADYZPqH/b2urx4a1z+JPDz6Ik046iePFCYIvrg718+bNw6pVq7BixQrMmDEDgQCfZ78YRfcICqP5i/Uo7vz/onjA1pNUC68Rn8en1wCqILxnM8Ffa7QPiHfecpU+NZJMl4RYgF/k90VSsGxkoDiBgX0NX86O4gSPkWkWpFr1VIFCozjhSgwW0pBprItLJN3tBoaabByRNoKsVhl0WrgnjIb+fL5bRTvaVL8PbtSq7tkTBoyf3oKa9LUA9MVXBq3+//bOPT6K8l7jT+4BQgLhFiIEQ+Qm1xhBIiAiWBSOR0WK+PHSHlSkVezxbmtboAfP0Wo9bVUKcurxKBVbUaoWr4DcESQCAuUmRgIIQYEkhJDb7p4/wiyzk9ndd2beuezm+X4+fDTJ7uwk8+z7e57f++470cZUGbN8QPNGmi6JzWu6ngdwsvb7/Y3Y9c/FuPGG63h7BpPwlg3O4cnP9KmpqanB0KFDkZycjOHDh4d9XLTZPkB+t89wEdApAOqgpvsaUQqAEvgiHkOvCBg0Jk58tg8QHPgB3cG/2fk4HfoEDIqTXWlD+jTQmAge30RjIuT5IubEBZ0C9pqUZufjQZ0CcrQqXaeAsJEOaYKZMNJqzQo30Qzo1Yklc0B869SNWT6Z4yrg0tgqcVxt6XV/3/530apVBbZv/wKtWnm74eM1lM/0Fd1sz2f6Sv7Kz/Rp8fwNRFq3bo13330XpaWl2L9/f9jH9RxwKOqxRAYfI0tqAq1Sjc0qaAbaaIEPaBrQRYJdxGN0bBf6WjYYaRFEiq9Tn3uzBYGCJFLcZOnUsDZ1dNFMO+qfCWoz3GOUY4d9H7ikU+Ishq9btA0ndDRlZAzV03VEnSrnJDHwieBk4CMmCaOJaGOf6LgabWzVPR+DOrU6yycNDwa+o8e24sSJHfjww2UMfFYI2PSPNMPzoQ8ACgoK8Oabb2LDhg0oLy8P+ziZwc9o+BOmdSs05ucIBb6Q1zg3wKsHeaNhUCkEjV2yDD1PFCduJRBEoAssc0mmzGLiJGYNdVSTq36NSOZDUKNeaUwQcazeDkeN1eAXtYGA6FoUaWKENdIGiEWtenGWTya2hheVPoyOq+G+b2Rc1TsPoecK6DRazY/nmejKyjLs3/8Oli59Cz179pT22oTYSUyEPgAYP348nn76aaxcuRLV1SbXvBvESPgTnfVTApevbTp8bc1NZ1uZ/VNes7FLVvCfk8T9bJ8ARj+3GA7Z2gTO6SI/x5Q21bo0q9FAx3ZozM8x9hwDJtrRznQMI+s9aFvzDABatzJkooHwujQ0E6i8psFZEyA2A59XkbW00yhGr2FjlyzDOg2+lqbJa2ZMbczPMTSmGqkXkd7fsToTLRL4amsrsOufi/C73z2D8ePHO3BW8Y/yuT5Z/4g+nt7IRcv999+PHTt2YNmyZbj22muRktJ8wBHdzVNBpCgY2S1RGSy16/7DhSvFXCedDrMRhA4N2a1Dvk45WSP8XD3U55ZcXhnyMzsMtcimLkL4A1ELQoIvIK0DGEhKiF4QEhOkdKlFdvEEjGsz3OdR9PTpa5tuSJcK9fmdAZjTpbopoaDVpBqa6JaJWh9mNGp1ybyvbTpwTquR9Bnymg43J2Q1l2Ti9IZYouOobLTjqdmxFGgaT62MpdpzCqdX2fqUVucFcHIlTmNjHXbuehVTp/4QM2fOdOx1CZGB5zdy0dLQ0IAxY8agvLwcY8aMQUKC/ptdZGMXBSNFwegHvo3OpEUrDNrApyVScTA6e5NcXmmbUYnnZR9ObkCgYHYjAlF9ihoWPX2KGpZo+tQzK/GgT0CeRp3UJyCuURkbZUTSqlFDrdapUUMdSadOGWogukZb+vgZfKwNGgXEG7tqvDCOAs40d+NRn4GAH7v++TouvDAL69at1p14IOIEN3L54Vwkp8jdyKWxoRYlb/6SG7lo8F4rMAopKSl45513UF9fjy1btoR9nMjn+xT8qUnCHSkjSz7PFnRAQ4axydRIyz6jBT7lMXqPM7Nc72xBB9TmtkVtrjs3GhUq7A5/tk8IBzd0UTC6jO5sQQdDDYlo+gmnu2g/Ez0+0HxJsl2zfE51p1sSVpZ5iixDFx3f9LQoMq4qrxHtdbTnanSzL1mGGojvZfJ2zGKanV018jEJq+NotGOLvg/UY6hn9emxwAcAX3/9EZKTq/D+++8x8ElE9tJOLvEMT0wt71To0KEDPvnkEwwdOhRt2rTBxRdfrPs4kaWeaowsBQm3rE4vICnBL6Va/J5P2mWfosYk+JrnHm916aeC9vdK//a0lOPGGkJLPCUiQ5MK2mvYkJFsSZPB4whqM5wmzTYkFES0yM/yGcOfkigUGuxaPne2oIMhbQKRl9BF02i08dKoRhu7ZKEhI9nQOCnTUAOCwUhgibws4uVep+px1KhGw2FkDJUxfjZkJKMhQ3wMlb1KAhDQp8e0eeTIJpw4uQ1ffFGCDh06RH08IV4kJkMfAPTu3RvLli3D1VdfjYyMDOTl5ek+zkzwA8Q/6wc0LQsRmQ0zE/7O9GzqyKVWmNsZsyG7NerbNZ1n+nfhb2RuFPXv63oAdPizfUIIfLbPDmOtF/wiadNo8APOm4zaTmmmdKk22GYNi5poWrTDsMQ0kj53ahS7mxJA8+BntVlmdrMtRaOi46RrTQkHN8lwumEmE5mrXRSNGtWmghL8rGpTTSSdym5GAN7bwEVPmxf1+ib4/2VlZThYtgrLly9Hr169HDuvFoMdt1iIzaHGdmI29AHAyJEj8fLLL2PatGmYMGECOnbsqPs4ZamnHbN+Nd3aAACSzop3u0XDX22ntOD/K8ENMBYA1c9THy9aADSyLFUpGL5WTYN+68NnhJ8bi8g0L3YFv5pubYQ1adRcq3Vklvp2Kahv19TQMNKMiKZLp5oRXtwkQzZONCWimWmzwc9sQyL4utmtTS2PjKRP5Xc1a6oBybN8pBlnCtqhzYEKAGJBz4w+azulARb0adfYGTy/3LZI//a0u7p0eMfOXj1Lw/7s+++/x6pVq/C///u/GDFihINnRYh8Yjr0AcAtt9yC0tJS/Pa3v8XEiRORkRF+VzaZs35K2FNQAo/R8BeuYEQy1kqQi1Y01IEv3PFlzf4pvz/Q/G/jlRDoxdk+QJ651tOkkeAHGGtEAOJa1HuO9pgyGxFAk3kx0oiIh1m+WJhNOVPQTto4qUXbKDNjrLX6FB0jjZhqhbQT4hvQxLqxdkuXRhu4dnyGXa+eG9WnXj2v7ZQmfdwEmt6jaiKNn27p0olaXl1djeXLl+PXv/41pk6davvrtVQS/E3/ZB+TNCfmdu/UIxAIYPr06XjnnXdw7bXXIj098rIHI8FPIbHe18xUR8KIqQFCzbbRmZRwhSNS6NNDKR5mioQ69EWj9eEzcVEohE2M4FI6MzsmimjSihYVRDVppRGhEM7EGN4UKYIm9UyM9OVJgOObEQByb34tY5dEPY0a1SQQuSERSZ+ixjqaNiOZaxnajHdj7dZ4CYg1bhVkalNk3JQxZgL6+pQ5ZgKhGnVrvATk6jLcLF9tbS0++OAD3HDDDViwYEHYneKJeZTdO4feaM/unZ8v5e6dWuIi9AGAz+fDjTfeiC+++AI/+MEPhHZWEgl/1Xnnb76bXGvsT2WmeBgJT1rUxcNo4NNi9NyNnndjeugAmlF2VvdxhpYpedVgA9KMjFk9mjUyZpZyympCAM40IlofPoOqizLCalCLlw0M4A1zbUczAmhuro3oM5K5NqJNrbmWbawVFIMdL+babV16tWkL6GvTyfHSbP0WGTO9rMlwga+hoQEff/wxLrnkEixduhRJSbG/CsSLBEPfDTaFvr8z9GmJm9AHNHVmrrrqKpSXl+Oqq65CYmL0wUYb/NSmOhx2hL+aLqEDfFqVO3PTdZnN/2aty6N3yq2GPj0yys5KD32At40MEGpmIunRziaEokcrOlSMjNUGRF1mopAG1djVhAC8bWIAd8y1otNYaowB1rTpxLnHi7kGnNWldty0W5c1XVKkjJWANU0q9dvIeCmzdmt16mVNhgt8fr8fK1asQNeuXbFixYqoK8eIeRj6nCeuQh8AVFRUoLi4GAkJCRg5cmTEKfmttX1Cvk6qN/ankFFItGFPi9FCcrZD6CDb6oSx5+uFPjV6xcSOwBdy/NTQx7c9GOZzMDFuZk73OD/oGdGizBm/cHo0a2jOdkg0rEE1Wj262YBQ8LKRAdxtRAD2GWy1Nq0abBmNCAVRgy1bl3ZqEoid5phXGrWAt5q1QGRt2lm3lZodtlarcWmc1At9gUAA69atAwBs3LgRWVni97IlxlFC37Dr7Ql9m99h6NMS8xu5aGnXrh1WrFiBYcOGYfPmzRg2bBgSEhKaBTw9lIFK1HA3picYKibqjTWihT0FZTAXKSbawKf+nojxjhb4gNDzNjr7Igt1ONLS9pC821KIIrx5xrmNXSKdvxmM6DDchkPR9FiXmWi6AWFEg9rX1OKW/hRjKdyAiAUENhpStGq0IWaESBsOhdOlGT0qVBY0Lb8z04yIpEmnDbaeJmXp0dENrwTRjptuaFK0bouiV7ON6DJaza7pkuJ4o1atx3C1LqhTjwW+zZs3o6qqCps3b2bgc5JAoOmf7GMaYM2aNXjmmWdQUlKCo0ePYunSpbjhhhuCP6+ursbjjz+Ov//97zhx4gTy8/Nx//33Y8aMGcHH1NbW4qGHHsIbb7yBuro6jB8/HvPmzUOXLl1k/VaWibvQBwC5ublYvXo1Lr/8cpSUlCBpwK2Gnu9LTTAU/ADxTqKvVRKqc5OQUm1MkNHCn17xCPdzKzMvapQC2JCRgIxv5d+g2QyV+WKfp8gsq3fttRMFNiI0okHAfAPCiIkRbUCE06ITDQi7Z521RDU1LmB0B0+RJoTRMdHozIoWEV0aDX5aXRqdhRYx2EDz8OeUwQai6NFDuyJGQnZTzCpGx0izDVr1z6LpUmR8VFDr0ulVOeGoLIh+jbNKmxq4TgQ+AEGzv2HDBuTm5kp9TeJ9zpw5g8GDB2PatGmYNGlSs58/+OCDWLlyJRYtWoQLL7wQH3/8MX76058iNzcX//qv/woAeOCBB7Bs2TK8+eabyMrKwn333YdJkyZh/fr1Tv86YYm75Z1q9uzZgxEjRqCgoACFhYVCs31aZC6zq85tPuAaDX8K6sISLfCFQ11YjBQRLQ0ZzQflSCHQrkICAH7RNoYdvkbwUoqEPgU7lhyrdShDf2qMaDGcsTGrRUWHRhoQVgx2JIR1CHsaEAm+gFATwm0tqjF73c02IdREMtl2nZcebusxq7ROusmu6pEaM2OjgpnGrBq7xkerYyMgPj66rUUA0ut0UdJe3e9v3boVBw4cwPr169G3b1+5L0rCoizvvOy6/7Bleeem935lanlnQkJCs5m+AQMG4Oabb8avfvWr4PeKiopw7bXXYu7cuaisrESnTp3w+uuvY/LkyQCaMki/fv2wceNGDB8+XMrvZZW4nOlT6Nu3L1atWoWRI0ciOTkZhQObf44vGlZn/fSCnhplMDY78+e3sNpEXYASTa6U0wt8QPPf2yszgUECkB/8EiBkbvzJ4uZG1oxfOB1a1Z9ibsw0HvRm/mSYGvXvKrP5YBdVPVLlH1T0I1Q2alEErS7NGO1wsytGNBludsWKHhsyxHSo4AU9VvY0vvNkVGKgraw3PjZkJFgKfgpmm7JqTcpsykYbHz3RlAXsaczq8OWXX2Lfvn1Yu3YtA18cUlVVFfJ1Wloa0tKMj3OXX3453n33XUybNg25ublYtWoV9u3bh//+7/8G0DRT3NDQgHHjxgWf07dvX+Tl5TH0OcnAgQOxcuVKXHnllUhMTERhf3PBDzD2WT8AqM0WH6jNmO+zHUNHxbRKcwWqLiv0OK2+l1+ltUU1/WTLvnOmU8EvWtNBwazBqctMxNmOCaa1B5w3RbIbD4B4ACTyMdqAAKzp0EoDQv28Vif80lc+xIzRbkGIjo1mqOiZZGlMVB/HbD2ONC4qKH8DRZOe0aENgU9vlm/Xrl3YuXMnVq9ejYEDB8p/USJGAPKbQ+eO17176A79s2bNwuzZsw0f7vnnn8f06dPRrVs3JCcnIzExEQsXLsQVV1wBADh27BhSU1PRrl27kOd16dIFx44dM/Mb2EKLKAdFRUX4+OOP8YMf/AB+vx+F597bsmf9qnObG4Vkgx/tEQ1/2sAHnA9vRoqNNvBpj21HAGxMb/63yvhWTghMbDRQXFyc7QPsCX7qv6sZ7ZltOtRlmQ9+TjQdgFCT15huTHNGzE08Y7YBYcRgmw1+FT2bXsOq2VaOY0aHRow20GS249loewk7Q56CHWPi2Y4JhrQookEtiuYBsXHR6Hjo6scuoB/4duzYgR07duCTTz7BJZdcYs8LE9c5dOhQyPJOM7N8QFPo++yzz/Duu++iR48eWLNmDe69917k5uaGzO55nRYR+gCguLgYq1atwlVXXYXGxkYUFhaiMH2v5Vk/vaCnpvHcMmWZ4U8v8KkxE/7CobyWXtExU1zCofd3lBUEHcfh4BdOg43p9jQdwunPjaaDGQ0q70n13y1mtRYOmzQoipXmAyAe/MI1v8yMfVotRhr7tJgdC+02265j4DLYqUHAPh1GqsdGtag3HqpfI5IWzWqwUfNRqmjjYqw1HfQC39atW7F3716sWrUKRUVF9rwwESYh0PRP9jEBIDMz0/ItG86ePYtf/OIXWLp0KSZOnAgAGDRoELZt24Znn30W48aNQ05ODurr61FRUREy21deXo6cnBxLry+TFhP6gKYZv3Xr1uHKK6+Ez+dDUVGRqeBXfUECgAQkGbg7gIzwFy3saVEXEL3CE67A6GH37J8e6uLjO9ecyTgSAx8QMYjR4Fd9gbj2rOhOa3ZE9Sca/kT0F4tNh3hfTqfXfIjU/DLTfAAiG26Rxpeo2Y6mw2iG2w6zDTTXn22zK0DMz/JFa77agdF6HAnRWqw36ydLf3poA2CsB75AIICSkhIcPHgQ69at45JOIkRDQwMaGhqQmBg6ziQlJcHvbxqni4qKkJKSghUrVuCmm24CAOzduxdlZWUoLi52/JzDEef2pDkDBw7Ehg0bMHr0aPh8PgwbNgyF6U0Dg174awp4+ihBxInwV9XzXPirivLAMNgx+9eQCbQ6bvlwhgh3PUyHQTuWeAKGZloiEUl/RrAy63e2szndRdKckYYD0LzpYKfRUVAMTzw3HMzQ1HQw9veXFfyMGG2RMc9o48stw+1LM6Y/Lxhuu1DGRDc0aCboRWpAGB0HlXNQdGhlpYMRfGlAZb5OYyyMJr2gP73At2nTJpSXl2P9+vXo08f4bu7EJjxwn77q6mp89dVXwa9LS0uxbds2ZGdnIy8vD6NHj8YjjzyCVq1aoUePHli9ejVeffVVPPfccwCArKws3HnnnXjwwQeRnZ2NzMxMzJw5E8XFxZ7ZxAWI81s2RKK0tBSjRo1CVlYWLr/88mCC31rbx5TRNhL8FEQK0NnO+t83G/5k0RBmtlwkBJotOkZQ72qacTiKxO00PYLvrupuTSdhZDMTuzSnoNaeDL0pxseM0VGjaM9Mw8EO7WmNjxcMDwDDTQe92eZIY6FR/Zkx3IC5a6ZFa7qtatDJ3yWS/vRMt+GZZrs0aFF/0eqw3eOfgtmmlxZZ4x9gfgy0u/ZmHAmg6sKE6DVXwcbxTx36/H4/NmzYgMrKSqxduxb5+fn2vTARRrllQ/G1v7Hllg0bP/i18C0bVq1ahTFjxjT7/o9+9CO88sorOHbsGH7+85/j448/xsmTJ9GjRw9Mnz4dDzzwABISzm3eeO7m7IsXLw65ObuXlne22NAHAN9++y3Gjh2L+vp6jB49GikpTUlhbQfz2/bKLEThAp8aUzMw2aFfp500foxwoU9NuILkdOgTIXDuozVty+S+HU7nJSDBwKaRRnewtMP4RNKdFfOj6M6M3hS83mwAWkbDAXC26QBYN95plQGphltB1Hg7qT8vmG4R/SnaA7ylP70x0Kr+6rKtjX2A+fHPazU343BAuvZO5zUdsG1ZICTwNTQ0YNWqVUhPT8fy5ct543UP4aXQ11Jo0aEPACoqKjBx4kQcPHgQY8eORXr6eeG5Ff5Ewp4W0YKkDXxaRIuSSOjTohQmrxUg4HzoswMjoQ9wxvwAzQ2QqO5kNBoA4wZIVHN6BsjsbFFLaTYA5m6ZIdt4R9Og6eXtKv2ZNd7R9BfJeLvRcBAhkGSP9gBj457b2rOrwQo412QFmmvQ6+OeHVx5ZE/w/2tra7F8+XLk5+dj2bJlyMrKsu+FiWGCoe8am0Lfhwx9Wlp86AOaBoZbbrkF69atw9VXX422bdsGf+Zk8Kvp2nQpUs6Yb4FFKkzRAp+aSIXJTOALeX6bAFofNbhNuUMGyC68asBrugZM603EBIloLl4aDYC3NAfERsPBaJPLiPkOpz+7Gg6AHOMd69rz6nhnRXcAm6t6eEl36sBXVVWF5cuXY9SoUVi8eLHprfqJfTD0OU+L28hFj/T0dCxZsgQzZ87EX/7yF4wbNw4dO3YEAIw60TSImAl/ohu9KGFPoaGN+fCnFAltcTIS+LSPt7okRQ/t7wzAcBCMJQJJxoyQP8W4EfKliRkhvb+9GcJpTUFUcyLLPs02Gs52Pv9+imd9uYWo5rSYMdwKDZnRzXc07YkuNTajO6ufhY114+1VZDRVI2GkxkZb6mmlsVqVf358Fx3z4kFz6sD3/fffY/ny5bjtttvw/PPPN9t1kXgLO2/ZQEJh6DtHUlISXnzxReTl5WHOnDkYPXo0evToEfz5qBN7TM/66YU/EeMtI/wB1reQlxkAld9JD+3fxGmTnuCztzC5Gfwi6c2KzgB9E260yaB+jlZjVgyQWm/qvwEDoPNoNWjFfIcLfmaaW+HGNBkrGhranP9aRHNOmO+WgqzmlhpZY53yPLX2ZOhNi8iYF2+B75tvvsGaNWswa9YsPPbYY8FNNgghDH0hJCQk4PHHH8dFF12E22+/HYWFhRgwYEBw0LAy6wc0Da512cYLkRVTXtvpfMpIPWV95D1dcP546d/ZO5Jri3baSWO/f2JD7BsiK8HPqOlpaGN+qadiWGo7+SzrTB3+rBqhcERrMLRU8+1UowGwpjcg1ICbNd7q5yoG3A7zDUQ34E5pzmtLimVhR8gLhxW9qTld4LNcRyM1UtUofx9Fe/GiNyXwBQIB7Ny5E1u3bsWiRYuC90ojMYA/0PRP9jFJMxj6dJg8eTLy8vIwYcIEnD59GsOHDw9ZHmAk/NVcoH+D56SzJmbvDIY/deADgPr2TV/LCH/a49sdAIHwf8vWR+Qt3fDabB8gbsS1fx8nNKag1kJ9e+vBr769D/Xtm/7frLZEzRBgvcHgVczozQpONhqAJtMsazyry27SnZWxzKgBB5pMuBkDboZ4WtbpZMgDzo9xtZ3k1FClHtd2Mqc5I+ObmpquAfhaqfQnWD+9HPj8fj8+++wzHDt2DGvWrMHQoUPtfWFCYhRu5BKBsrIyjB8/HrW1tbjyyiuRmpra7DF6wS9cONHDjDFXiGSWtIEvHEaKl1KkohGpgJktVABCClU0lELmxUIFmDPi2uAnojO79KUQTWdmzFEknYmaIzt0Fs0cxbPW9JDRZFCw0mQArJtwPc0ZNeJmNaenNxEjHi96i6Y1mY1TBbONUzVmNWd1fLO7huppz2vLOYHzga++vj54S4aPPvoIeXl59r84kYKykcvl4+bYspHLhuWzuJGLBoa+KFRVVWHy5MnYtm0bxowZg3bt2uk+7qNBvS29jswCJhr4tEQqYqKBT4u2iDkV+kJIbW4a0g9HnuT2kjmq7aa6a3G9uVlNs/oKZ46MaMyOxgLgreYCED8mHDDXYADsNeIimjNqxEX0Fs2IO6E1rRGPV6219IYpEF5vTtfO1kcSUZN/vvZEq5kKTga+iooKrFy5EoWFhXjrrbdCdl4n3kcJfSPGzUFysuTQ11iL9Qx9zWDoE8Dn8+HRRx/F/PnzMXr0aHTv3l33cVaDH2CtkPlaixfMSOgVM7OhT036d0meCX3RSDvqzMrnBJ8m1IngcPADzpsksw0FILpJammNBcBbRtzN5gIgp8EAiJlxM1rTM+Nua81LRhwQ01qz8c4DWrOjUQpYq5tqvbmts2goOnQy8JWVlWH16tX46U9/iqeffhpJSXG0drmFwNDnPAx9Bli0aBHuvvtuDB48GIMGDQq7K5Qb4c/Xpf78F6flBZbUU0lSAl+QtucLflJ58+WykXAy9AEAkh16azSaMC8OG6WgviRoy66mAgCgbaNhXalxVGPJAaQdcmb3l5bUXADsWbWgoJhxrxtxoMmMOxn4DGsMcE1nVjWmYNt4FmNjmROM/+wAAoEAvvzyS2zfvh3/8z//g1tvvdWR1ybyCYa+sbPtCX0rZjP0aeBGLga47bbb0LdvX/zLv/wLKioqMGLECCQnN/8Tjv9yHwBr4U8ZsKMVtpCwp6AKVlZNen17H5I61MF3QsJOA21DDYH23K0UuIjUJ5oPfl4l1W/KLPlaBQyZpWb6atsoRVPAebMkM/AB58/ZsaaCBeq6m7grtRnMNBZMYlRjwed1qYcPkNJY0Nu0SpbOans2bVVqdrxy0ozXdmv0dvPKYZSxQZbOAMB3UQ2SvmptS3NUPf6K6i1em6PjPzuAxsZGrF+/HpWVlVi3bh2KiooceW1C4gXesdIgl156KbZt24bMzEx88MEHOH36dNjHKuHPCr5WAd1B3NelXj/waWnb2CxsGSGpQ13wv8o/u1B+J+HfzW6cMjFmi6bJIh1OU8GfR7sGFjUVfJ2LauC7qMbycQDono9jWoq3hoKCA7+X7jWSoC2Fpl1gfdIbC4A5fcWrITeNyVk+UZyqKVLGMWVcDaP/aL9DtHE9Ih7X1/jPDuD06dP44IMPkJmZia1btzLwxRHKzdll/yPN4UyfCXJycrB27VrMnDkTr7/+Oq644oqwn/OTMesHnO+emy5cSiEx0N0MF/DU35cyAxiGZr9rVRzcCC0cyQFzIdPkjB8QOiNjSlcmZ/20urKsJ4GQEG1W2Y1Zvngm0myfcLPK4kyMVmeWxqooGhOZkYlXQw7AM7N8hsYxCxrTq42mV8QYbHLorWSIZ22N/+wADh06hDVr1uDWW2/FH//4R6SlOXSPE0LiDIY+k6SlpeGll17CiBEjMGPGDAwcOBBDhgwJ+zk/K+EvveuZ4P+nAKg9Y2EZpODST9EZPWHDLqF7r/47KNQebWP5uBFpTHCuwDkc/NR/T59ZTRlsJkTTlfJzYfNkUldqc5jeph4+u3XkNrHaVAAMG/NIzSrDptyEvrSm3FJDIQZMuZs4uSJEpCYa0pjFmpjSszr4/6bGrxjQ1g82foUvtm7Fzp07sWDBAtxxxx2OvTZxkMC5f7KPSZrBjVwksH37dlx33XVISUnBqFGjhLpQ0cKfXsDRw1IAVNCYKhlLOJsVPhmhr41YgQ8bBGOgyAEw3zWPYs6jacoOLSmY1ZTdjQSgua4MNRKsLIGME13poWhNiqYAoeBnRGNCxlzymGW4QUVthaAdv5zQllfHrUi1MKrOYqQOjl61C2vXroXP58O7776LwYMHO/r6xH6UjVxGjrFnI5d1n3IjFy0MfZI4deoUbrnlFnz++ee48sor0bFjx6jP0QY/0aCnhyzDbsdn9nwn0hwNfXrUHm3T4kyUGT15tYkAaIyUTYEvHNIbCUDsaAqIaM4daSYAuubcqrZ0zblD2opozlu4rtxsegKx3/hUaKaxGAl8Rf/YhE8//RSXXXYZFi9eHPb+yCS2UULfqCtn2RL61q6aw9CngaFPIn6/H//5n/+JuXPn4tJLL8XFF18cdrmnmo8G9bYU+NRYKYKdO1UF//9Epbzlbh2yzv9ux78z/+azEvoAoHV6+OefPJIV+cluLJcyYKayL6gM+bqm1poZkmGmOneqkqojhQ5ZZyzpSMFyEwFokebctWYCEDToMptTspsJZnUVk5oCLOvKC81OQK6mAHnjFGBtrNLWvai1TouDmgoEAuj253dRUlKCX/7yl/jFL36BxETuNxivBEPfFTaFvjUMfVoY+mxg9erVmDJlStP9R0aMQGqqWGFaPf4CaedgpBiqw54eVo27OvRpMVIUrYY+IHLwi8TJI1muGyptsIuGW8FPqye7GgiAN5sIQqbKrc9cCRp0Pa2xkRAdOzQlbNI9HPjCjV1ua0oZq2RrStY4ZWejU48QrTmsJ3/NWaT9fhGqqqrw5ptv4oorrnD09YnzMPQ5D0OfTXz33XeYOnUqtm3bhtGjR6NTp07Cz3Uy/EULfGrMFMZIgU+PSMXRzdAHAKlJEu/DZIB6n/m7K1s1VYC4sXKzeQCwgSDEOZNutIEAOKslNXq6kmXSw2nKjEl32qAD7pp0ADGnp0hjVDyNT1bqHGCu1h37tr3p16srPYz6F/+CwsJCLF682JBfIrGLEvquGPVrW0LfmrW/YejTwNBnI36/H0899RR+85vfoKioCP379xda7qlgZ/gzEvb0EC2QRkOfGm2RdDv0AQx+WszoqKU3D4DY1BHgnFEX1ZVZoy6qJxGjTj2ZwwktGR2fWvrYZEVHg98+afg5gUAA//znP7FlyxbMmjULjz32GJdztiAY+pyHoc8B1q1bhx/+8Ido06YNRowYgfR0Y+KWGf4AILN1rdTjhSuUVgKfHlU11geFWDVXgLcMu9WmASBmsGRoiM2DULxq1M1qyohRN6uncEa9JWvJS+ORGicamrLHpVjXkZnAV1tbi/Xr1+PMmTNYsmQJRowYYfr1SWwSDH0jbQp96xj6tDD0OcTJkyfx4x//GKtXr8aoUaNwwQXGg5zV8NevS3nI10dOG/xAtwDqgik79F3QNnQJ0e7yLqaOE6smC3DXaKn1I1M7TjUNjn+X6QlzBbRcDSnIbB4oRDLrMrWkmHUvaIk6SpWqIcA5HSn1zGwdU3BbQ2YC3+HDh7Fu3TqMHj0ar7zyCrKzsy2dA4lNGPqch6HPQQKBABYuXIif/exn6Nu3L4qKipCUZLxwGgl/2qCnhx3hzw60oU8PkQLqdpG0ipNmK5J+ZOvGzoYB4J2mARDbZh2Q0zywu+kE2K8jK4ad45A5DcV68xIIX8uM6MntcchM2PP5fCgpKcGePXvwxz/+EXfddZehj7yQ+CIY+kb8yp7Qt/4/GPo0MPS5wJ49ezB58mScPHkSo0aNMn0PmnDhTyTohUNGAe3T/niz7+091dnycUVCnx7aQup2sZSBnYbLqH5kmi5FOzL0okZUOy2haQA4Z9ijaclOw273SgMtThp2tzXkVOPAraZln/bHXRuDFMLpyQv1y0zgq6iowNq1a5GdnY0lS5agb9++ls6BxD4Mfc7D0OcSdXV1ePTRR/HSSy/h0ksvRb9+/Ux3vJTwZyXs6WGmmOoFPi1miqnZwBeOg5XmdxoD3DddgDzjJUM3Vo1XON242SwA4rNhANhn2s1oyY6mASC3cWBGQ3aZduqnOfHYrFSjaMkL2jEa+AKBAHbv3o0tW7Zg+vTp+O1vf4u0tLToTyRxjxL6Rl9uT+hbvYGhTwtDn8t88sknuO2224KbvLRu3Vroeb67I99I9kSdvPsOiRZUkcCnh0hhlR36OqRFngX44ni3qMeINfN1SefDut93QytqRHXjdrOgQ9oZIV1EI9Z0Ew5ZDQMFK8Y9koasGHdZ+tld3iVuGgaAHP30yDol4UyaMKudWBp7tBgdi9yY3aupqcGGDRtQXV2NRYsW4eqrr7Z0DiS+CIa+4l/aE/o2zmXo08DQ5wFOnTqFe+65B++//z4uv/xy5OfnB38WLdxFQ6ahB8IXV7OBT0u44up06IuEUmy9asDChbtIOKUTNVY0E6uNAsC7uomEEw0DwJh5N6ofI8bdSe0YMe9e0I6obqKNQ25pJ56ak3po9eTG7B4AfP3119i4cSMmTJiABQsWoH17a6trSPzB0Oc8DH0eYvHixbjnnnvQrVs3XDpvCFIzrO9upmBngZUV+LSoi6wXiqkebZKMh/JNxy8Uetxlnb8RPuYZn5zlMk4YMZl6iYUmARBqxLxg3AE5zQLAWfMuQzvRzLtXtGOHeZeBWjdmNQPEXkMSiJ3xBjBWmyLVJKOBr76+Hps2bcKRI0ewYMECTJ061dDzSctBCX1XXmZP6Fu1iaFPC0Ofxzhy5Ahuu+02bN++HZf9x6W44LJcqceXWWgLsw4BAPafkfuBdz16tTmOrZXdpR3PzdBnF7KCH2CPIbOrOaCgGDLZBgyIjSYB4E6jALDfwNuhHa2B96JxV5Bl4LUY0YtCLDSY7Bxr7Bpn3NJLOGrnGzfKhw8fxsaNGzFkyBC89tprpm5NRVoODH3Ow9DnQfx+P+bPn4+HH34YPXv2xCUvDJI666dgtugqYU8POwJgrzb6BdxKCPRagZWF14y8Vit2NwgUrXixQQB4SyuA9/SiJiPZmb9VdaP8TSXiVTNe1kth1iHHGpAKMsYZL2rFaOCrr6/H559/jtLSUjzzzDP4yU9+wlsxkKgEQ9+wJ+wJfZufZOjTwNDnYb755hvccccd2LlzJ4qLi9F1TidbXke0+EYKe3rIKMDhAl84RIuwFwutTNw0ZyI6kW3OounErDmTqRPAe1rxmonX045dRl5PM/Fq4mXhFb14pfGoYEY3XtSJldm9AQMG4NVXX8WFF14o5VxI/MPQ5zwMfR7H7/djwYIFeOihh9CzZ08MHToUSffac8nCFWGjYU8Ps4XYaOjTQ68gx7uZB5w1aGY14uXGAOBNYyYbrzcIALlGXlQvRo08xxRjGNFKLDQcATHNeFUnVmb3fve73+Gee+7h7B4xRDD0DbUp9H3O0KeFoS9GUGb9duzYgeHDhyMvL8/yzp7hUIqxjLCnh2hBlhH49Nha2d2zhVc2Mk0aEGrUZOvDqFGTpY9wRo0aMUckM29VM1bMvBW9RDPzLUErsaQTwJxWZNYcrWa8rBGjge/gwYPYtGkTBg0ahP/7v//j7B4xBUOf8zD0xRCBQAALFy7Eww8/jK5du2LYsGFo3bq1tPB3eeZXzb53uD5byrHDEa4w2xX4FLqlNt+RbEPVRZaO6UWjBsgza2p92KkLEbNmpz62VnbHdZ22W9aDFq/qA4it5gBgzNDboRXF0HvZyMvGLo3Y1VwE4nMscTPs1dTUYPPmzTh69Ch+97vf4a677uLsHjGNEvrGXPoLW0Lfp1v+k6FPA0NfDHLs2DHcd999+OCDD1BUVIS+ffsiISHBcPjTC3mRsDsAAk1F2u7AB+iHvkiIFO14Mmwi2nCjIeCWNmSYtnjShx5azbjVMAKc10m86wOwrhE3moqAt8YRNUY1I1sfRgJfIBDAnj17sGXLFkyYMAEvvPACcnJypJ4PaXkw9DkPQ18Ms2zZMtx9991ITk5GcXEx2rVrB0D/hu5GA1407CzWg1uXAQC21+TZ9hpGQ180lAIea8ZNhi5acjMAiP2GgIKoqTeiGadNvdc0Imrsva4PO7QBOKsPr2lDDz29uBn2AODUqVPYuHEjfD4fFi5ciIkTJ0o9H9JyCYa+op/bE/pK/ouhTwNDX4xTXV2NJ554AvPnz8eAAQMwZMgQJCcnA2gKf7LDnh6yCrcS9sIhMwTKDn0K7ZKMLfdaXdVX2muPztwj9LgKn9yt0hXsMHB6mrCrGWBXIwDwvqkH7GkIAM4Y+8Gty2xtEgFy9RHL2pBZU+zWhnr8iJVxQ0GklhitH0YCX0NDA7Zv346dO3dixowZePLJJ5GRkWHo9QiJRDD0XfJzJCdJDn2+Wnz6BUOfFoa+OKGkpATTp09HaWkpioqKkJ+fH1xrf9lDuxw5B7MFPFrYi4TZQm5XoQaMBz83sCv4AXKMnKgmZBk5L+lBZiMAEG8GALHTEIikD9nm3ivacKNBpOD18UJBZNzw+phhR/346LfDhB8bCARQWlqKLVu2oKCgAC+99BIuueQS6edECEOf8zD0xRF+vx+vvPIKHn74YWRlZWHYsGHBJZ+Ac+EPEC/kVgKfHqIF3StGzm28ZOasasGLDQCAelBjxeCb0YcVg09dnMdL44QapxuGsVg3jAS+iooKbN68GZWVlXj22Wfx4x//GImJibacFyFK6Luq8HFbQt/KrU8x9Glg6ItDTp06hSeeeAJ//vOf0b9/fwwZMgQpKSkhj3E7AMoOe+HQK+w0c6G4bfTt0oKIqaMWmuO2HtTI1IYRkx+L5t4u7NYDIKYJt8aJWB0jjIS9hoYGbNu2Dbt27cJdd92FJ598MqRhTIgdMPQ5D0NfHLN9+3bcc8892L17N4YMGYLevXs369o5Gf6ApuLuVOALx4lG+z+XEGvGDnDe7DupAzfCPxCbOgDcC35OaCKSyY9Vg28nboU+p+uEVhexqgUjYc/v92Pfvn3Ytm0b+vXrhwULFmDw4MG2nBchWoKhb8jjSE6Se0uYRl8dVm5j6NPC0BfnBAIBLFmyBA899BDq6upwySWXoHv37rr31rErABalHwz7s28aO9jympG4MPmE7vdLantIe41YNHcKdpg8rQbcuO5qLkw+IfV660ENREYx+m42gRSjzwZAeJzSgtvNwO01ebg+cysAubVAjd0aEA18gUAAhw4dwhdffIH09HQ8++yzmDx5Mu+5RxyFoc95GPpaCPX19Zg3bx5mzZqF9u3bo6ioCB07dtR9rNXwFynkRcPuMBAu8EXDjAmIVZMHWDN6Rq6/0+Ev0vWXbfRi+foDzoR/wL0GgJ4W7DD71EEoXmoCitYDq7rwStgDgO+//x4lJSWoqKjAnDlz8JOf/ASpqak2nh0h+gRD3+DH7Al9259m6NPA0NfCqKiowNy5c/HCCy8gPz8fhYWFaNu2bdjHiwRAKyEvGjJNgNnAF41whiDWzR4gZvhkXX87DZ+Va9/SAr8as4bfjCacMvxGtWDF8MeDDsxoIB4bf2pENeGlsHf69Gls3boVpaWlmDlzJp544gl+bo+4CkOf8zD0tVDKysrw+OOPY8mSJejduzcGDRokHP7sDHnRMGsI7Ap8kTjQoD+TGmuoTZ9T116W8bPzukcyfvFg9oHoht8OPdhh+u3QAa+/feNBLDT7tKj14KWwV1VVhS+//BL79+/H5MmT8dRTTyEvz957WhIiQjD0DbQp9O1g6NPC0NfC2bNnD2bPno23334bvXr1wqBBg6K+QX76xPsOnV10RMyBG4FPITupUcpxPq/NsXyMoenHLD3/pC/Z8jmYwYwBdPuay7heXqHC18aVRo9V4++GBkpqe8RN4APcu/ZAbDX4AGtjvZHxQjTwVVVVYceOHdi3bx9uuukmzJ49G3369DF7ioRIRwl9Ywc8akvoW7Hztwx9Ghj6CABg7969mD17Nt566y307t0bAwcOFHqjeCkAAs2NgpvmH5AX+ryEW+EPiG4E4+l6ywqOVsM+4O1rrsbtsG8VL11zBa9f+1i/5iJ8XptjKOwpM3sMe8TLMPQ5D0MfCUEd/nr16oX+/fujffv2Qs/1WgD0AvEY+hTcNIMAA74beDEA8Lrbi9fe50DLCHoKc3/zr0KPO3XqFHbt2hVcxjl79mz07t3b5rMjxDzB0Nf/EXtC365nhEPfmjVr8Mwzz6CkpARHjx7F0qVLccMNN4Q8Zvfu3XjsscewevVqNDY24uKLL8Zbb70VXC5dW1uLhx56CG+88Qbq6uowfvx4zJs3D126dJH6u1nB3dGceI4+ffpg8eLF2LdvH+bOnYs33ngDeXl56NevH7p27RpxS+d5T04I+dqNEHhRSmL0BwH4qsFv85nEP2rz44YxHNfqVPD/3b6e8W78FbKTGl0LAYrRV0IAw17LQXmvu/U+d+Nai4S9QCCAo0ePYvfu3SgrK8PUqVOxdOlShj1CDHLmzBkMHjwY06ZNw6RJk5r9/MCBAxg5ciTuvPNOzJkzB5mZmdi1axfS08/fVP6BBx7AsmXL8OabbyIrKwv33XcfJk2ahPXr1zv5q0SEM30kIkePHsUf/vAHzJs3D5mZmejbty/y8/Ob3eQ9GnYGQNGgJ4pMY9HSjKFdgcDsNXbCJLa0aww4G/JFrr2TYaClXW+nrrWZ97id192t6ywS9vx+P0pLS7Fnzx5UVVXh3nvvxf3334+uXbs6cIaEyCE403fxw/bM9P3zWVPLOxMSEprN9E2dOhUpKSl47bXXdJ9TWVmJTp064fXXX8fkyZMBNO2Z0a9fP2zcuBHDhw83/bvIhKGPCFFdXY0///nPeOaZZ3D27Fn07dsXffr0QUpKiqnjWQ2BsoOeCGYMRksziApWjaKd15ehXg52hAFZ192OMNBSr7Xs62zXe1vGNXfzGouEvYaGBuzduxd79uxBq1at8Oijj2LatGnIyMhw4AwJkYsToe/QoUMhoS8tLQ1paZFfSxv6/H4/srKy8Oijj2LdunXYunUr8vPz8fOf/zz4mJUrV2Ls2LE4depUyK1QevTogX//93/HAw88IPX3MwuXdxIhMjIy8LOf/Qz33nsv3n77bTz55JN444030KtXL/Tr1w9ZWVmGjqdeCioaAN0IeqKv7/byQq9hdOmnk9c23GsZvYYtNQQoKL+/2VBg5zXXO7bZ92hLv85mcXq8Vr+e6LX2wrUVCXuVlZXYvXs39u/fj169euFPf/oTJk2ahORkWjgSBwQCTf9kHxNA9+7dQ749a9YszJ4929Chjh8/jurqajz11FOYO3cunn76aXz44YeYNGkSPv30U4wePRrHjh1Dampqs3tfdunSBceOydtYyyocMYghkpOTMWXKFPzwhz/EZ599hueeey74QdbevXuje/fuET/3p0ekAOh20BMl3HmeZBbUDQdevK5GgoIXzKJXiPY5P69ca+15RAoGvL7niXR9vXJttUS61l64tqKf1zt06BD27duHsrIyTJo0CfPnz8fw4cMN11hCWip6M31G8fubxo/rr78+OGM3ZMgQbNiwAfPnz8fo0aPlnKwDMPQRUyQkJKC4uBhvvvkmjh49igULFuDFF1/E559/jl69eqFPnz6m3lzazWCem/2hrFN2lFYJTb/7BZKXLADAEd9p6cc0wgVJbU0+7/z/nw3USTobe1GbR+WaAu5fA6+RndSI7MRUt0/DEHqB5aS/3oUz8TYXJLUNvndj5X2rZWBqK0vPl/V+Fwl7dXV12Lt3L/bv34+EhATce++9mDFjBnJy4ufen4SE4Acgu49xrs+TmZlp+ZYNHTt2RHJyMi6++OKQ7/fr1w/r1q0DAOTk5KC+vh4VFRUhs33l5eWeeu8y9BHLdO3aFbNnz8YTTzyBt99+G8899xzeeOMNFBQUoHfv3ujUqZPpzuSDs6/R/b5Xw6A6GNiF2dDlJbR/J6+ayXDXU+Y1cDtA2qUnr15TNdrrK6NJ4/b1BOy7psrfy6vX1q7x1+zfU9FCtLAXCATw3XffYd++fThw4ACGDBmCefPm4cYbbzT9uXlCYoWEQAAJkpd3yjxeamoqhg4dir1794Z8f9++fejRowcAoKioCCkpKVixYgVuuukmAE23QCsrK0NxcbG0c7EKQx+RRkpKCm6++WbcfPPN2LZtG/70pz9h0aJFyMzMREFBAS666CJTs396eDEMOhH44hW9v50bxtKNaxgPIV4P9d/SCyHBqWsbr9dTjRfCXyyMt9HCXl1dHfbv34+vv/4ap0+fxq233orXX38dgwcPdugMCSFA02aFX331VfDr0tJSbNu2DdnZ2cjLy8MjjzyCm2++GVdccQXGjBmDDz/8EO+99x5WrVoFAMjKysKdd96JBx98ENnZ2cjMzMTMmTNRXFzsmZ07Ae7eSWzmzJkz+Nvf/oYXXngBO3fuREFBAXr16oUuXbo4+rkEO8NgLJiPeMEOk8nr5zxOhAVeV+ew83rG4nX8yawxYX8WCARQXl6O/fv348CBAxgwYADuu+8+TJkyBW3atHHwLAlxF2X3znG9HrBl987l+/9b+JYNq1atwpgxzd+3P/rRj/DKK68AAF5++WX813/9Fw4fPow+ffpgzpw5uP7664OPVW7Ovnjx4pCbs3tpeSdDH3GML7/8EvPnz8drr72G1q1bIz8/H7169ULr1q1dOycrYTAWzUi8YdZs8tp5B1mBgdfUG7TU92SkoAcANTU12L9/P0pLS1FTU4M77rgDM2bMwMCBAx06Q0K8hZdCX0uBoY84Tk1NDd566y0sXLgQGzduRF5eHvLz89GjRw/PbEEdKQzGujmJd8KZTl632EAkNPBaep+W8j6MFPYaGxtx8OBBlJaWBj/bc/fdd+Omm25ytdlJiBcIhr6Cf7cn9B34PUOfBoY+4iplZWV49dVXsXDhQnz//ffo2bMnCgoK0LlzZ09uS/2nOZ+6fQqEtBiU4BBvQYHENtGWbx4/fhxfffUVSktL0alTJ9x111244447kJeX5+BZEuJtGPqch6GPeIJAIICNGzfi5Zdfxl//+lekp6eje/fuKCgoQHZ2ttunZysMkoQQ4n0ihb2TJ0/iwIEDKCsrQ11dHW6++WZMmzYNxcXFnmxgEuI2wdDX82f2hL6v/8DQp4Ghj3iO2tpafPDBB3jttdfw/vvvo127dsEAmJWV5fbpxRQMlIQQYp5IQa+yshIHDhzAoUOHUFFRgYkTJ+L222/HNddcg/T0dAfPkpDYg6HPeRj6iKeprq7Ge++9h1dffRUrVqxAp06dcMEFF+DCCy9Eu3bt2EF1EQZKQojXibbBihECgQAqKirwzTff4MiRI/juu+8wduxY3HHHHbjuuuuQkZEh7bUIiXfOh777kZwoOfT567D86z8y9Glg6CMxw6lTp/DOO+/gb3/7G1asWIGsrCzk5uaiR48ejt8CgtgPQyUh7iMzNMUiyi0WDh48iG+//RaVlZUYO3YspkyZguuvvx7t27d3+xQJiUmCoS9/pj2hr/R5hj4NDH0kJjlz5gw++eQTLFmyBO+99x4AIDc3Fzk5OejWrRt3RiNRYagkTtHSg1OsUVNTg8OHD6O8vBxHjhwBAFx33XWYPHkyrr76at5PjxAJMPQ5D0MfiXkaGxuxfv16fPjhh1i2bBl27dqFzp07o0uXLmjTpo1nbgNBWha337DH7VOIK177e1+3T4HEOZWVlSgvL8fx48fRv39/TJw4Eddccw1GjBjBOkKIZIKhr8d99oS+gy8w9Glg6CNxx4kTJ7BixQqsXLkSe/bsgd/vd/uUCJFKAs4iAbWa79Zrvk4N+SqAdATQytbzIiSW6dmzJyZMmICxY8eiQ4cObp8OIXENQ5/zsHVF4o4OHTpgypQpmDJlitunQgghhBBCwhHwN/2TfUzSjES3T4AQQgghhBBCiH1wpo8QQgghhBDiPIFA0z/ZxyTN4EwfIYQQQgghhMQxnOkjhBBCCCGEOI8/AEDyzJyfM316MPQRQgghhBBCnIfLOx2DyzsJIYQQQgghJI7hTB8hhBBCCCHEeQKwYaZP7uHiBc70EUIIIYQQQkgcw5k+QgghhBBCiPPwM32OwZk+QgghhBBCCIljONNHCCGEEEIIcR6/H4DfhmMSLZzpI4QQQgghhJA4hjN9hBBCCCGEEOfhZ/ocg6GPEEIIIYQQ4jwMfY7B5Z2EEEIIIYQQEsdwpo8QQgghhBDiPP4ApN9N3c+ZPj0400cIIYQQQgghcQxn+gghhBBCCCGOEwj4EQjIvcWC7OPFC5zpI4QQQgghhJA4hjN9hBBCCCGEEOcJBOR/Bo+7d+rCmT5CCCGEEEIIiWM400cIIYQQQghxnoANu3dypk8Xhj5CCCGEEEKI8/j9QILkjVe4kYsuXN5JCCGEEEIIIXEMZ/oIIYQQQgghzsPlnY7BmT5CCCGEEEIIiWM400cIIYQQQghxnIDfj4Dkz/Tx5uz6cKaPEEIIIYQQQuIYzvQRQgghhBBCnIef6XMMzvQRQgghhBBCSBzDmT5CCCGEEEKI8/gDQAJn+pyAoY8QQgghhBDiPIEAANk3Z2fo04PLOwkhhBBCCCEkjuFMHyGEEEIIIcRxAv4AApKXdwY406cLZ/oIIYQQQgghJI7hTB8hhBBCCCHEeQJ+yP9MH2/Orgdn+gghhBBCCCEkjmHoI4QQQgghhDhOwB+w5Z8R1qxZg+uuuw65ublISEjA3//+97CPnTFjBhISEvD73/8+5PsnT57ErbfeiszMTLRr1w533nknqqurTfxF7IOhjxBCCCGEENIiOXPmDAYPHowXX3wx4uOWLl2Kzz77DLm5uc1+duutt2LXrl345JNP8I9//ANr1qzB9OnT7TplU/AzfYQQQgghhBDn8cBn+q699lpce+21ER9z5MgRzJw5Ex999BEmTpwY8rPdu3fjww8/xOeff45LL70UAPD8889jwoQJePbZZ3VDohsw9BFCCCGEEEIcpxENgOQ7LDSiAQBQVVUV8v20tDSkpaUZPp7f78ftt9+ORx55BP3792/2840bN6Jdu3bBwAcA48aNQ2JiIjZt2oQbb7zR8GvaAUMfIYQQQgghxDFSU1ORk5ODdcfet+X4GRkZ6N69e8j3Zs2ahdmzZxs+1tNPP43k5GTcf//9uj8/duwYOnfuHPK95ORkZGdn49ixY4Zfzy4Y+gghhBBCCCGOkZ6ejtLSUtTX19ty/EAggISEhJDvmZnlKykpwR/+8Ad88cUXzY4XazD0EUIIIYQQQhwlPT0d6enpbp9GRNauXYvjx48jLy8v+D2fz4eHHnoIv//97/HNN98gJycHx48fD3leY2MjTp48iZycHKdPOSwMfYQQQgghhBCi4fbbb8e4ceNCvjd+/Hjcfvvt+Ld/+zcAQHFxMSoqKlBSUoKioiIAwMqVK+H3+3HZZZc5fs7hYOgjhBBCCCGEtEiqq6vx1VdfBb8uLS3Ftm3bkJ2djby8PHTo0CHk8SkpKcjJyUGfPn0AAP369cM111yDu+++G/Pnz0dDQwPuu+8+TJ061TM7dwK8Tx8hhBBCCCGkhbJlyxYUFhaisLAQAPDggw+isLAQv/71r4WP8Ze//AV9+/bF2LFjMWHCBIwcORIvvfSSXadsioRAICB5o1RCCCGEEEIIIV6BM32EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxzP8DfXWh2MY7qRIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHvCAYAAADgu7bYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+sUlEQVR4nOydeXwU9f3/X7ubY3OHAEm4wi2HnCJqQAGtgooHiuf3V5TWq4K22kq11haqrbbW1tbWs1qttdiqFQ+88AJFqCIKcgjKfSYBQu5sNtnd3x/LbGYnc3xm5jPX7vv5eOShJLMzn9157fvzfr0/x/hisVgMBEEQBEEQBEEQRErid7oBBEEQBEEQBEEQhHWQ6SMIgiAIgiAIgkhhyPQRBEEQBEEQBEGkMGT6CIIgCIIgCIIgUhgyfQRBEARBEARBECkMmT6CIAiCIAiCIIgUhkwfQRAEQRAEQRBECkOmjyAIgiAIgiAIIoUh00cQBEEQBEEQBJHCkOkjCIIgCIIgCIJIYcj0EQRBEARBEASRdjz66KMYM2YMCgsLUVhYiMrKSrz11luJv4dCIcyfPx/du3dHfn4+Zs+ejerq6qRz7NmzBzNnzkRubi5KS0uxYMECdHR02P1WNCHTRxAEQRAEQRBE2tG3b1/89re/xdq1a/H555/jjDPOwIUXXohNmzYBAG699Va8/vrrePHFF7FixQocOHAAF198ceL1kUgEM2fORDgcxqpVq/CPf/wDzzzzDH75y1869ZYU8cVisZjTjSAIgiAIgiAIgnCakpIS/P73v8cll1yCnj17YvHixbjkkksAAFu2bMGIESOwevVqnHLKKXjrrbdw3nnn4cCBAygrKwMAPPbYY7j99ttx6NAhZGVlOflWkshwugEEQRAEQRAEQaQXoVAI4XDYknPHYjH4fL6k32VnZyM7O1vxNZFIBC+++CKam5tRWVmJtWvXor29HWeeeWbimOHDh6OioiJh+lavXo3Ro0cnDB8AzJgxAzfeeCM2bdqE8ePH839zBiHTRxAEQRAEQRCEbYRCIQzsn4+qmogl58/Pz0dTU1PS7xYuXIhFixZ1OXbDhg2orKxEKBRCfn4+lixZgpEjR2LdunXIyspCcXFx0vFlZWWoqqoCAFRVVSUZPuHvwt/cBJk+giAIgiAIgiBsIxwOo6omgp1r+6OwgO8WIw2NUQycsBt79+5FYWFh4vdKo3zDhg3DunXrUF9fj5deeglXX301VqxYwbVNboBMH0EQBEEQBEEQtlNY4Odu+hLnPrYjpxZZWVkYMmQIAGDChAlYs2YN/vznP+Pyyy9HOBxGXV1d0mhfdXU1ysvLAQDl5eX47LPPks4n7O4pHOMWaPdOgiAIgiAIgiBsJxKLWvJjhmg0ira2NkyYMAGZmZl4//33E3/bunUr9uzZg8rKSgBAZWUlNmzYgJqamsQx7777LgoLCzFy5EhT7eANjfQRBEEQBEEQBJF2/OxnP8M555yDiooKNDY2YvHixVi+fDneeecdFBUV4ZprrsGPf/xjlJSUoLCwEDfffDMqKytxyimnAACmT5+OkSNHYs6cObj//vtRVVWFu+66C/Pnz1fdNMYJyPQRBEEQBEEQBGE7UcQQBd+nx+k5X01NDa666iocPHgQRUVFGDNmDN555x2cddZZAIAHH3wQfr8fs2fPRltbG2bMmIFHHnkk8fpAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvv5vqeeEDP6SMIgiAIgiAIwjYaGhpQVFSEqq0VlmzkUj5sD+rr65nW9KULNNJHEARBEARBEITtRBGFuRV48uckukIbuRAEQRAEQRAEQaQwNNJHEARBEARBEITtRGIxRDivNON9vlSBTB9BEARBEARBELbj9EYu6QRN7yQIgiAIgiAIgkhhaKSPIAiCIAiCIAjbiSKGCI302QKN9BEEQRAEQRAEQaQwNNJHEARBEARBEITt0Jo++6CRPoIgCIIgCIIgiBSGRvoIgiAIgiAIgrAdemSDfdBIH0EQBEEQBEEQRApDI30EQRAEQRAEQdhO9NgP73MSXSHTRxAEQRAEQRCE7UQseGQD7/OlCjS9kyAIwqPMnTsXAwYMSPqdz+fDokWLHGkPQRAEQRDuhEwfQRCETWzfvh033HADBg0ahGAwiMLCQkyePBl//vOf0dra6nTzCIIgCMJWIjFrfoiu0PROgiAIG3jjjTdw6aWXIjs7G1dddRVGjRqFcDiMlStXYsGCBdi0aROeeOIJp5tJEARBEEQKQqaPIAjCYnbu3IkrrrgC/fv3xwcffIBevXol/jZ//nxs27YNb7zxhoMtZKejowPRaBRZWVlON4UgCILwOLSRi33Q9E6CIAiLuf/++9HU1ISnnnoqyfAJDBkyBD/60Y+Sfvfcc89hwoQJyMnJQUlJCa644grs3buXS3vC4TB++ctfYsKECSgqKkJeXh5OO+00fPjhh0nH7dq1Cz6fDw888AD+9Kc/YfDgwcjOzsbmzZsBAFu2bMEll1yCkpISBINBnHjiiXjttdeSzlFbW4vbbrsNo0ePRn5+PgoLC3HOOedg/fr1XN4LQRAEQRDa0EgfQRCExbz++usYNGgQJk2axHT8b37zG/ziF7/AZZddhmuvvRaHDh3CX/7yF0yZMgVffvkliouLTbWnoaEBTz75JK688kpcd911aGxsxFNPPYUZM2bgs88+w7hx45KOf/rppxEKhXD99dcjOzsbJSUl2LRpEyZPnow+ffrgjjvuQF5eHl544QXMmjUL//3vf3HRRRcBAHbs2IFXXnkFl156KQYOHIjq6mo8/vjjmDp1KjZv3ozevXubei8EQRCEd4nChwh83M9JdIVMH0EQhIU0NDRg//79uPDCC5mO3717NxYuXIhf//rXuPPOOxO/v/jiizF+/Hg88sgjSb83Qrdu3bBr166kKZrXXXcdhg8fjr/85S946qmnko7ft28ftm3bhp49eyZ+d+aZZ6KiogJr1qxBdnY2AGDevHk49dRTcfvttydM3+jRo/HNN9/A7++cWDJnzhwMHz4cTz31FH7xi1+Yei8EQRAEQWhD0zsJgiAspKGhAQBQUFDAdPzLL7+MaDSKyy67DIcPH078lJeXY+jQoV2mYBohEAgkDF80GkVtbS06Ojpw4okn4osvvuhy/OzZs5MMX21tLT744ANcdtllaGxsTLTxyJEjmDFjBr799lvs378fAJCdnZ0wfJFIBEeOHEF+fj6GDRsmey2CIAgifYjGrPkhukIjfQRBEBZSWFgIAGhsbGQ6/ttvv0UsFsPQoUNl/56ZmcmlXf/4xz/whz/8AVu2bEF7e3vi9wMHDuxyrPR327ZtQywWwy9+8QvFkbqamhr06dMH0WgUf/7zn/HII49g586diEQiiWO6d+/O5b0QBEEQ3iRiwfRO3udLFcj0EQRBWEhhYSF69+6NjRs3Mh0fjUbh8/nw1ltvIRAIdPl7fn6+6TY999xzmDt3LmbNmoUFCxagtLQUgUAA9913H7Zv397l+JycnC5tBIDbbrsNM2bMkL3GkCFDAAD33nsvfvGLX+D73/8+7rnnHpSUlMDv9+OWW25JnIcgCIIgCGsh00cQBGEx5513Hp544gmsXr0alZWVqscOHjwYsVgMAwcOxHHHHWdJe1566SUMGjQIL7/8Mny+zorowoULmV4/aNAgAPFRxzPPPFPzWqeffnqXdYJ1dXXo0aOHzpYTBEEQqQSN9NkHrekjCIKwmJ/+9KfIy8vDtddei+rq6i5/3759O/785z8DiG/YEggE8Ktf/QqxWPLChFgshiNHjphujzCCKD7/p59+itWrVzO9vrS0FNOmTcPjjz+OgwcPdvn7oUOHkq4lfR8vvvhiYs0fQRAEQRDWQyN9BEEQFjN48GAsXrwYl19+OUaMGIGrrroKo0aNQjgcxqpVq/Diiy9i7ty5iWN//etf42c/+xl27dqFWbNmoaCgADt37sSSJUtw/fXX47bbbjPVnvPOOw8vv/wyLrroIsycORM7d+7EY489hpEjR6KpqYnpHA8//DBOPfVUjB49Gtdddx0GDRqE6upqrF69Gvv27Us8h++8887D3Xffje9973uYNGkSNmzYgH/961+J0UKCIAgifYnGfIjGOD+ygfP5UgUyfQRBEDZwwQUX4KuvvsLvf/97vPrqq3j00UeRnZ2NMWPG4A9/+AOuu+66xLF33HEHjjvuODz44IP41a9+BQDo168fpk+fjgsuuMB0W+bOnYuqqio8/vjjeOeddzBy5Eg899xzePHFF7F8+XKmc4wcORKff/45fvWrX+GZZ57BkSNHUFpaivHjx+OXv/xl4rg777wTzc3NWLx4Mf7zn//ghBNOwBtvvIE77rjD9PsgCIIgCIINX0w674YgCIIgCIIgCMIiGhoaUFRUhBUb+yC/gO9qs6bGKKaO2o/6+vrEDtoErekjCIIgCIIgCIJIaWh6J0EQBEEQBEEQthOBHxHOY1AR7UPSEjJ9BEEQBEEQBEHYTsyCjVxitJGLLDS9kyAIgiAIgiAIIoWhkT6CIAiCIAiCIGyHHs5uHzTSRxAEQRAEQRAEkcLQSB+Rchw+fBjvv/8+3nzzTezcudPp5hAEd3xohQ8h0W/CCkdmJf4vhiBiyLG0XQThZQYNGoRzzjkH3/nOd9CjRw+nm0MQaUEk5kckxnkjF3oYnSxk+gjP09HRgZUrV+Ltt9/GG2+8gc2bN6OsrAylpaUoKipyunlEGjJn1hanm5By/POV4U43gUhx1q1bh2XLlqG6uhojR47EzJkzcfbZZ+PUU09FRgalSwRBeBt6ODvhSZqbm7Fs2TK89NJLWLp0KQCgT58+KC8vR58+fZCbm+twCwm38+ivPnS6CUSacOPC051uAqGDlpYW7N+/H1VVVdi/fz8A4LzzzsMll1yC6dOnIy8vz+EWEoT3ER7O/sZXg5BXEOB67ubGCGaO2UEPZ5dApo/wDEePHsUrr7yCF154AR988AGKiorQp08f9O/fH6WlpfD5aOFuKkGmjCCcJ90NaywWQ01NDXbv3o39+/ejvr4eZ5xxBi677DLMmjUL3bp1c7qJBOFJyPTZD5k+wtU0NTXhtddew7PPPov3338fZWVl6N27NwYMGIDi4mIyeg5CpowgCLfD07TGYjHU1dVh165dOHDgAGpqavCd73wHc+bMwQUXXID8/Hxu1yKIVEcwfa99NdgS03fBmO1k+iSQ6SNcRygUwptvvol//vOfeOutt9CtWzf069cPgwcPpi+vTsiYEQRBGEfNNNbX12P79u3Yt28fjh49inPPPRdz5szBOeecg2AwaGMrCcJ7CKZvyfqhlpi+i8Z+S6ZPApk+whXEYjGsWrUKf//73/Gf//wHOTk5qKiowKBBg1BSUuJ08yyFjBlBEIT7UTOAtbW12L59O/bu3YvW1lZcfvnl+P73v49JkybRjBSCkIFMn/2Q6SMcZffu3Xj22Wfx5JNP4vDhwxg0aBCGDBmCnj17urKj/OOitwEAOb5sh1tC6KU11kb3jSAI06iZP2EN4Pbt27Fjxw707NkT11xzDa6++mpUVFTY2EqCcDeC6fvv+uMsMX2zx35Dpk8CmT7CdlpaWvDSSy/hb3/7G/73v/+hf//+GDhwICoqKlyzLbZg7tQgA+EtWmNtSf+m+0cQfBF/x9Ll+6VmADs6OrBnzx7s2LEDe/bswSmnnILrrrsOl1xyCe0wTaQ9ZPrsh0wfYRtfffUVHn30UTz33HPIy8vDwIEDMWTIEEc7PxZzp0W6JDdeQmrwtKB76B607h3dK/eh5/uWqvdPa8OYlpYWbNu2DTt37kRzczPmzJmDH/zgBxgzZoxNLSQIdyGYvhfXD0cuZ9PX0hjBpWO3kOmTQKaPsJTm5mb85z//wV//+lds2rQJgwcPxnHHHWf7IxZ4mDstUjWZcTt6DZ4WdB/tx+w9pHtmPzy/d6l2/1imf37zzTfYvn07jj/+eNx00024/PLL6fl/RFpBps9+yPQRlrBu3To88sgj+Ne//oXCwkIMHjwYQ4YMQXa2tZ27HeZOi1RLYNwGb5OnBt1La7D6HtJ9sw76/rGjNfrX1taGbdu2Yfv27WhoaMD/+3//D/PmzcO4cePsaSBBOIhg+v69bqQlpu+KcZvJ9Ekg00dwIxwO4+WXX8Yf//hHfPXVV4lRPSs2ZXGDudPCioRlf6SR+zn10idQYNu17EwwWfB6EuokTt9LunfmcPr+ibHzXvKIub+++wLVv8diMRw6dCgx+jd27Fj8+Mc/xsUXX4zMzEzT1ycIN0Kmz37I9BGmOXjwIB577DE88sgjiMViGDp0KIYNG8ZlVG/ez9/EkEw/h1Y6w7b2KEoCHU43w3XIGUc3JZUs8Eo8nTbyVpl4t99PK42Dk/eU9/10+30UI3dPnf5+idEyf0B89G/r1q349ttv4fP5MG/ePNx4440oLy+3oYUEYR+C6Vu8bpQlpu//xm1kMn333XcfXn75ZWzZsgU5OTmYNGkSfve732HYsGGJY6qqqrBgwQK8++67aGxsxLBhw/Dzn/8cs2fPThxTW1uLm2++Ga+//jr8fj9mz56NP//5z8jPz+f63sxApo8wRCwWw+rVq/HHP/4Rr776KioqKnDcccehX79+pkb15v38TdW/u9EAbmuPqv6dTF9XaiNdd2l1471Vgwx9V0r8WU43wRS10bDTTXAVtZEMz30vgeSY7NbvKMvo3969e/HNN99gz549mDVrFm699VZUVla68nFGBKEXwfT988vRlpi+OeM3MJm+s88+G1dccQUmTpyIjo4O3Hnnndi4cSM2b96cWGc7ffp01NXV4a9//St69OiBxYsXY+HChfj8888xfvx4AMA555yDgwcP4vHHH0d7ezu+973vYeLEiVi8eDHX92YGMn2ELjo6OvDf//4X9957L7799lscd9xxGD58OIqKigyfU8voKWF3MqJl7pRwa9LhBHJmTwm3JJtk6tlQurduuY9yKN1buqdx1L6vbrqvrLHZjfeVZfSvvr4eW7ZswTfffIOhQ4fizjvvxOzZs13ziCOCMIIdpm/v3r1Jpi87O1tzFtqhQ4dQWlqKFStWYMqUKQCA/Px8PProo5gzZ07iuO7du+N3v/sdrr32Wnz99dcYOXIk1qxZgxNPPBEA8Pbbb+Pcc8/Fvn370Lt3b67vzyhk+ggmmpqa8OSTT+L3v/89QqEQhg8fjmHDhhlab2DU5KnBKwExauzUcGOiYTd6zJ4SVieZZu59Ot9jI/fWCcNg5P6m830FjH9v7bi/PGK1m+4vi/lrb2/H1q1bE9PQFixYgGuuucZV08cIghXB9D3z5VhLTN/c8eu7/H7hwoVYtGiR6mu3bduGoUOHYsOGDRg1ahSA+EhfVlYWnn32WRQXF+OFF17ANddcg/Xr12PIkCH4+9//jp/85Cc4evRo4jwdHR0IBoN48cUXcdFFF3F9f0ahMhGhysGDB/HnP/8ZjzzyCAoLCzFy5EgMGDAAfr++Tt0KoydGnABoJRxWGDuiKzyMnhjpfTOTWPLWQG0kw1UJpF0Yvcdynz9vo8DjHgvvLx3vrRmUPnuz99iK762A0/f4rl++BkDd/GVmZmLUqFEYOXIkdu3ahd///vf4xS9+gXnz5uFHP/oRevXqZVdzCcITyI30qRGNRnHLLbdg8uTJCcMHAC+88AIuv/xydO/eHRkZGcjNzcWSJUswZMgQAPE1f6WlpUnnysjIQElJCaqqqji+I3OQ6SNk2bp1K37zm9/g3//+NyoqKjBt2jSUl5frWktgtdFTQkgMdnV0x4CMI460IZ3hbfaUYDGBdhr8dDN+Vpt6ARajYPV9JvPHB7X7pHSf7foOu8UAspg/v9+PQYMGYeDAgaiqqsJLL72EP/7xj7jiiivw85//PGkDCoJwO9GYH9EY36Jf9NgkxsLCQl27d86fPx8bN27EypUrk37/i1/8AnV1dXjvvffQo0cPvPLKK7jsssvw8ccfY/To0VzbbiVk+ogktm7dioULF+Lll1/G0KFDcdFFF6G4uJjptU6ZPIFdHd1lf0fGzx7sMntKvNfaDQAcvd/pYvzsvNduGpkn82cd0vssxHMnvs9uMIAs5s/n86FXr17o1asXjh49irVr12L06NGYPXs2Fi1aROaPIHRw0003YenSpfjoo4/Qt2/fxO+3b9+Ov/71r9i4cSOOP/54AMDYsWPx8ccf4+GHH8Zjjz2G8vJy1NTUJJ2vo6MDtbW1rtp5l0wfAQDYsmULFi1ahJdffhnHHXccLrnkEhQUaG/97aTRkzN5Ssd52fitCfELGBODfKcZOG30lIw+4Jz5S2Xj57b77eQ9BlLb/Dl5r8X32el7brUB1IrvM376GQDgnftPUj2uW7duOPXUUzFmzBhs2LABo0ePxsUXX4xf/epXZP4IVxOBHxHwHemLgH27klgshptvvhlLlizB8uXLMXDgwKS/t7S0AECXZU2BQADRaLxYVVlZibq6OqxduxYTJkwAAHzwwQeIRqM4+eSTzbwVrtBGLmnOli1bsHDhQixZsgTHHXccxowZo2r2Tv7JJgDAhOBuu5qYgNXkKWF3srA21B8AUBxotvW6ViKYRrckhCw4ZQx4JIhmDT9Pk+/2e+5kYYenGeBR5OFx352633q+32655zwLc1pomT+BxsZGfPXVV/jmm29w8cUXY9GiRRg+fLjFrSMIdoSNXP72xQRLNnK57oS1TI9smDdvHhYvXoxXX301qUBSVFSEnJwctLe3Y+TIkejVqxceeOABdO/eHa+88goWLFiApUuX4txzzwUQf2RDdXU1HnvsscQjG0488UR6ZAPhPLt378bPfvYzvPTSS7rMnhJWmECzJk8O3kmCYOzUSCXTVxfJ6/I7OwoAPLRgZ4K4NtQ/pe774MzDjlzX6H130gxsb+/h2LV5UhfJs72455XCnlzct/v7bsT8XXLJJfjtb3+LiooKi1tHENoIpu/xLyYgJ59vkam1qQM3MJo+pb0qnn76acydOxcA8O233+KOO+7AypUr0dTUhCFDhuC2225LeoRDbW0tbrrppqSHsz/00EOu2l2XTF+aUVdXh3vuuQcPP/wwBg0ahHHjxpkye0oYSRasMHly6E0MWIydEqmS+MuZPTV4JItW6YFnYqiljVS4/2r33ipTwPPeW2UE1O59qt93gP+9d2uRT2/8t/Pesxo/IG7+vvzyS+zcuRM33XQT7rrrLub1+gRhBYLpe/SLiZaYvhtPWMNk+tIJMn1pQjgcxsMPP4xFixahpKQEJ5xwAnr0kK9IGzV6asglCHaZPClyiYAZY6dGOiR/rLAkialm/NPx/psxA1bff6MmwMj9T8d7L6BXA2763vPqC9xq/g4fPoy1a9eirq4OixYtwrx585CVlWVh6whCHjJ99kOmL8WJxWJ48cUXcdtttyEcDmP8+PHo16+f7HC2FWZPzL5wCQBgbO4eS6+jxvqW+LSWvlm1ll/L60kfL7OnhJAYOmX+ga5JoBXm38s64KkBNSPghAaUDABPDXj53gP8Y4Cbin9ApwasKvoB7jR/sVgMe/fuxRdffIHs7Gw88MADuPTSS3U9kokgzCKYvr+uPdkS03fThE/J9Ekg05fCrFu3DjfccAO2bNmCcePG4bjjjuuy+5BdRk8Oq82fYPDkINOnjNVmD+iqCycKAXYVAEgHynTPaLL8Gloc6bB+vQVpQJl94RLHCoHiPiJV+gQ9o37RaBTffPMN1q1bh+HDh+OJJ57A2LFjLWwdQXRCps9+yPSlIEePHsWdd96Jv//97zj++OMxbtw4ZGZmJh1jpdlTM3py8Orw1UyelFTp4HljdZKnpQ0rkz8niwCkha7IacGu5F9OC6SBrjgVD5wsCAKpoQU95q+9vR3r1q3Dpk2bcM011+Dee++l9X6E5Qim76G1p1hi+n444X9k+iSQ6UshotEonn76aSxYsABFRUU46aSTkgK3k6N6Whjp5PWYPDms7Ni9luA5bfbk4JH4uaUQQHpIhkUPvBN/Vi2QDjpxgw4E7I4HQPqZv7q6Onz22Weor6/H73//e3zve9/rMjuIIHhBps9+yPSlCGvXrsX111+PnTt34sQTT8SAAQMS8/PdNKqnhVrHbtbkSXFDcreige9zk6YWbtH9GisTOx760JPsUSHAPG7Ug5mE36gmSAtx3KgHQL8mUjE2sPYfocfYk95YLIZdu3bh888/x6BBg/D4448nHjZNEDwRTN+Dn0+yxPTdeuIqMn0SyPR5nKamJtx55514/PHHMWrUKIwbNw4ZGfEvT+S6tqRjJxVu43JN3kZPytjcPdwNnhy8OvFVDUOS/j2pcBvWN/fjcm6raI5kJ/6fly7EWKURuUTPK8UAPYkdz2KAnkKAWxN8KVoJPy9NuCnRTzVN2FUwtKIvsUoXqxqG4Nxu67kXAwX0mL+Ojg6sW7cOGzduxA033IB7773XVc8bI7wPmT77IdPnYd544w1ce+21yMzMRGVlZWIqp9TsKaEn2bfa6AHAt82lif8fmldj+fX0dNxSY6dGXoDt83cSsemTw6gRtFon3zaXuk4bakh143ZtCLrgXQiwUhfiZN+qYhHvJF/Qhdv1AFhXIEqF4qEZXWj1KVZpQ4/xA+J7BPzvf/9DR0cH/va3v2HmzJmWtItIPwTT98Dnp1pi+m47cSWZPglk+jxIVVUV5s+fj7fffhsnnngihg0bBp/Px2z21BB36nYbPSlWJ/fiDluPqdPC7YmcluFTQynpc0IrdupDC1b9uFkbLLowkvTbpQ23FgOcSu55wRovqIiorA2j/YuV2tA75XPLli1Yu3Ytzj77bDz88MMoLy+3rG1EeiCYvvvXnGaJ6fvpxI/J9Ekg0+chotEonnzySdx2223o1asXTjrpJOTm5nIxe2KOtHVO5xlftJfrudVMnhy8O+sv65OnXXbP5ru2xs0JnBmzJ8eRtjzu+pCipRevFQZSWR9ySb8dI79yOFEQMKuPdNKGU7oA7DOAXigk6h31a2lpwWeffYaDBw/igQcewHXXXUfP9iMMQ6bPfsj0eYRdu3bhqquuwoYNG3DKKaegoqKCq9kTGz05zCT3eo2eGLMdtNTkieFt+AD3Jm5WGD4pPA2gm4oDPHXiVn0A3ioKsOrDqgRf0Ee6FI2sih9W6ENP7KCiYhy95m/Pnj343//+h9GjR+PZZ5/FgAEDLGkXkdoIpu+3a6YiyNn0hZo6cMfEFWT6JJDpcznRaBSPPfYYbrvtNgwaNAgTJ05EYD6/W6Zl9qSwdtJmjJ4U1o5ZzeDJ4ZUO2Sx2GD4pRpM5pwoEdhYH3KgTLxUFjGiER3KvpBHSh37UYojXCows/Y4XNKLX+IXDYaxZswY7d+7EAw88gBtuuIEe70Dogkyf/ZDpczE7d+7EVVddhU2bNqGyshK9ftWT27n1mj0pch0zT6MnRa5D1mvypHihIzYLz2TNqGa0kjjeumFJ3pwsEJBO4uhN7nnoRG9iz6oTiiX60BNL3FpoNNL/eEEnes3fvn37sHr1aowaNYpG/QhdCKbv3s9Ot8T03XnSh2T6JJDpcyHRaBSPPvooFixYgMGDB2P8X8cgKy/T9HnNGj058jPsSU6aOvhWmoHUTuSdGN1jQZzA2VkkMFsgAPjpJZW1YkYnasm9nYUBM1qhmMKGl4qObo4lgDuMnzDqt2PHDjzwwAP4wQ9+QKN+hCZk+uyHTJ/L2L9/P7773e9i/fr1OPmeE9Hn5N6mz8nb7O1vLOryu2Hd+K6N2Hq0awfep6Ce6zWc6ng/rRnAfOzJpbt0t8VNyZkUQTu89SJl69HSlNGL1fDSC0+tCEm9lYUBgaF5NVwSeQHSiTa844odxUcrYgrgfDFJqT8a+7L+nWqFUb+xY8fiueeeQ58+fQy1iUgPBNN3z2dnWGL6fnHSB2T6JJDpcxGLFy/GD37wA/Tt2xcnPjIOWflZps5nh9kTYzaRlzN6YtySxH9R0zfp31mBCI/mmCYcCST+/4TSfabOZcWosBPFArdoRoreBI2lUEAFAv0IenGrTgBjybzb9WJl32SFXrxShPyipi9O67VdV2FRC73mLxwO49NPP8W+ffvw+OOP48orr+TWFiK1INNnP2T6XEBtbS1uuOEGvP3226isrMTAgQMTfzOyQyfPDlXL6EnR2+FqGT0xdnWyUlOnhRtNnxIsZpCKBcqYSczEunKbZtxWJFDSDK+EXkkzbkvkBc24TS+AOc3Y2Ud5Kb4AbJph6aN4asbIqN/OnTuxatUqnHPOOXjiiSfQrVs3bu0hUgPB9P3q0zMtMX0LT36PTJ8EMn0Os2zZMsyZMwf5+fmYNGkScnNzNV8jZwRX7hkEABhRVs2lXXrNnhi1TlaPyZPCq3P9uroMAJAbDJs+lxuTMSOcULrPdrMnRU9ypldHdhk/1oKBl3Sjldw7oRujiTyrbuwsFHhJM3rijJpunCpMerEoqbcIKcZp49fS0oJVq1ahqakJzz33HM466yxu7SG8D5k++yHT5xBtbW1YsGAB/va3v2HixIkYPny4oYecrpghP2feiPkzY/SkiDtXM0ZPit6OVTB4cqSK6TNr+ACgJdQ5ldhs4cCsjtxeNNhdb75inSq66V90lENL4hjVDUsib0Q3vJN40k0nbteN2T7LrHbE/Zbb+im95i8Wi2HLli1Ys2YNrrvuOvz+979Hdjb/jdkI7yGYvl9+eiaC+eY3KxQTamrH3WT6ukCmzwG+/vprXHLJJTh69ChOO+00FBcX6z6HktmTQyuJ52n2BI7U56F7Ef+Hn2t1pmomT4zbOlKj8DZ8crCaQN46EpIyJ4sGgLymUkE/VmjHaMGAh3bkknge2jGTwEu1Y1Y3TmsGsC7mOFmodEORUqvvclPMMTLqV1dXh48//hjdunXDSy+9hBEjRnBpC+FdBNN31/+mW2L6fn3KMjJ9Esj02UgsFsMTTzyBW265BSNGjMAJJ5yAQEB/B6rH8EkROlarjJ4Yq00fq8GTw00dqFHMJl9aZk8OucTMSi3ZXThIp6KBHfphSeSt0I8VsCTwLPrxuvGzo9AkYHfB0qq4o6QdI32YW/RjxPhFIhF88cUX+Prrr/HnP/8Z1113naEZTkRqQKbPfsj02cSRI0cwd+5cfPTRRzjttNMMbWVsxuwJhJrjnW1pzwbT5wK6Gj0pvDrPmkPxL20wz3yyDbin4zSKE4ZPTKg5C+MH7bUs6RLDOwGrOVSI8YPijwRwsnDgpIbsTNzFSJN4q4tPdiTvXk7cjeJU/BHrx8uFSzNxB3BX0cnoox1WrlyJqVOn4plnnkFJSQmXthDeQjB9P1t9tiWm777Kt8n0SSDTZwMrV67EpZdeiry8PEyePBnBYFDX63maPTFGjZ+W0ZNipOMUTJ4UMn3OGz4gWU88CggsmuKRgPEsHpCGzFGYGzJ9DjFKGrIicW9o0RfD5SD9mMOLBUxxv5ZKMciI8QuFQvjkk0/Q3NyMF198EaeeeiqXthDegUyf/ZDps5BoNIr77rsP99xzDyZMmIDjjz9e11QGs2ZPzujJwdpp6jV7AqydpZLRE5NKHaURzCRbvM2eFCPJl9cLCGa0RDrqxGzibkfRQKojp/UDOKchN5k+MXYUMo3qyK1xCOCjIyPGLxaLYdOmTVi7di1++ctf4o477oDf7zfdFsIbCKbvjtXnIJuz6WtrasdvK98i0yeBTJ9F1NTU4Morr8S6deswdepU9OzZk/m1dpk9MUqdpVGjJ0Wuo2QxeVKc6CBr93dOIyrpU4/aagcCSIcPJX2MbyhhteGTopV8mdEVS9LFqi2zevKi6XNrwi6gN3G3unCgpqVUSdiN4LbCgRxuKGjaFYsAc1pK9HMZ9qeEbbv2IfzXf2H8+PF4/vnndeVLhHch02c/ZPosYMWKFbj00ktRXFyMyZMnIyuLrYNzwuxJKe3ZwM3oiele1GzI5EmxomMUmzpNHOgQAQAd6iPEaoaQx/o9o0iTLioiSPTmhJ5MFBDcVDwwqyWthF2PnpwsHtTuL3JMR4B67FHCbh0B9hc2jfZ3Vsckzf7OoT4u2tKK4J//hfr6erz44ouYMmWKI+0g7EMwfQtWzbTE9P1+0htk+iSQ6eNINBrFb37zG/zmN7/BiSeeiJEjRzJN53xnzHGJ/w/20j91hIfZQ2PngzED3bs+/N0okSOi5/EUdJg+n9EOMXTwWMeeFTXXAAeTK92E/Yb0JIaXtnhqSsAthQS5BIu5kOBCPXmhgMCzMCVO1s3oyUrj59ZEnSU2KenJSS0BqV/gNNXnOaSnWCyGfn9/HZ9//jnuuusu3HnnnTTdM4Uh02c/ZPo4cfToUVx55ZVYs2YNpk2bhh49emi+Rmz25NBK2HmbPTFmkvQkoyfGBtOX6OiUMGP6XJigKxKW7yhZTSAXbQHWFxM4aAowlmBxKSTYrSmjegJMFxF4aSqQxX86Y+RItqNaEggdyTF+YS/FJ8CUnnjHp1QpdMr2f16KT8eYsPRTLF++HCeddBKef/55Q88yJtyPYPp+8sl5lpi+P0xeSqZPgnzGT+hi3bp1uOCCC5CZmYnzzz8f2dkKpucYWmZPQBzAxZ2jlWZPIHIkW1dHqGj0LETT4HkdzoYP6PqZySVdVulL0IjRBEtWY40Z3JJ1LRT1FvabH0H2CCz6kX0dxyQ9Ar6JekJXnLQUas5iTtS5JukdPudG/Ayi9J0yO0OBCVGMEscWrgVP4RomdCV8d5Q0pdkPCv2BEV05pKm1552M8wsK8NFHH2HMmDF4/fXXMXbsWNvbQdhDBH5EwHdEl/f5UgUyfSZ55plncOONN2L06NEYN26c5nROVsMnJXQwD4HWY+cuM1hJ1jB6UrSMn26jZyKpClTHO75QDt9qEDNeGZFRMXxyCAlDoNWHiFFdSbG7oMAhWZcm6ilfUNCLgq7kPidpwm7FqDFgPlFXLCIA3PWU+D2LrswUEexO0jNi5kb7FGDRlVUY1ZVqnOJs/gzFJ6O6Eu6vzX3g8qkjMT0rC+vWrcMpp5yCxx57DFdffbWtbSCIVINMn0Ha2tpw8803Y/HixTj99NPRr18/1eONmj0AnWZP+PcxA8ScpOs0e2KkCbpdI3rCe+SKV0ZjbDJ8UsSfuSEDqENnLKN+urRm0vgFqrOcKyikGF0S0sJ2cydk0JWeUWQmXfFK0hsMaiqNRo9ZEeuKa5FKBVZdMccqk7oKVGehHVkIAIjkGDBhHhv1W1Y5BKgcgtNf7IH58+fjk08+wV/+8hfN2VSEt4jGfIjG+BaPeJ8vVSDTZ4Cqqiqcf/752L9/Py644AIUFBQoHsvT7HX5u5b5M2H2xNhh9Cwxebyws6NzwPDJ6UxXYcEtRQUdxk9Ob4FWn7FECvBGku6UtlpNFBMMzE4AlJN0u2YnSPVlOEH3SHLuBF0+Yz3aMqgroKu2DMUsneZPKV4B6aGtzZdOwwXFxVi6dCnWrVuH1157DeXl5ba3gyC8Dpk+nXz++ec477zz0K1bN5xzzjnIyFD+CI0aPi2z1+V4cYLOyegBQNbRzucwhbvx3TzB1SbPKVxi+JL+rjX6x0FvkSPZyDoa4KMxlSSdNGcvasUEgCFJN1lMADoTdNPFBEAzQVfTl+GCgheSc6NTPLOipmcniDFlAnXAtQgq1riMvlhilmHzZ3TUz6HpnqvOGodzcnLwySefYPz48Xj99ddx4okn2toGwhqi8CPKeQ0e7/OlCmT6dPDPf/4T119/PcaNG4fRo0crrt+zy+yJyWz2IXNHNkI9zSXOYqMn/b3ZpDx4KAAcCqA9z4EqtM6OLbgv/tWImXuONRO+CBDqa3AamcGkyYjWrCguiPXGy/gFd2QjNCie7Os1eqZG+4zg9lEZjkm5FFUDyElfgW258fNbVFDQo6+UNn4uRNEEWhC7uBWsAKCgw1CBypS+AGPm75i+sveyT2Nu69eu63gxK/uPwtRAAF999RVOO+00/O1vf8N3v/tdQ+ciiHSETB8DkUgECxYswOOPP666fs8psycmeCjeEek1f0pmzwxCW9yGYOi0sMPwCWi1SdYU2mj4BITiAqBfY2KsLC4A5kb17DR+wX0ZtuisrZc9O5wKGJ2tAACRXD7TZKUFBYBDci5s8d9i/Ltnt/HLPmhPN2+3xvQiaCyz2We6OCqFlwEUCqMADBVHrZryqdU/6YlhRg2fgM/nw9ixY1FSUoIbbrgBX375Je6//34EAu7MNwhtIjEfIpzX4PE+X6pAz+nToKGhAbNnz8b69etx+umnyz4v5uPuw5P+3dKHrXPmafbk0OrYjBg9rQ6NxeiZGelj7cxy9ycnZVED/Yxdps+nM0fwi/bFYNWagBWa05NAsWpOb+Ikpzs7dNYFSdLEUmCwazRZDTcVFcQYTc61dGY0MRfrzA36Avgm5GZgiWNddOZRjbHEMR4xDLBXZ0K/6eb+EgCm7d8CAKirq8OHH36IsWPH4r///S89j81jCM/pu/Hjiy15Tt+jp71Mz+mTQKZPhT179mDGjBkIhUKYNm0asrK6jh5IDZ8c0sTcarMnRq5DMzOqJ9eR6R3R49mJSc2dEm7txPQaPiDZ9ElRMoF2aE4teUqXAkMq6owKC5SQs2A2lunRmZXxLNWKpWo6U+s/3aozAcH4hcNhLF++HMFgEO+88w4qKirsawRhCsH03fDRbEtM3+NT/kumTwKZPgU+++wznHvuuejVqxdOOeUU+P3JwZHF7EkJHNv0q6WX/o9cr9kTE+oZ4Tp9M9wtYmrqppHOK/fgsWkrBtbQu7Xz4m345GjpE7W1yAAkJ01mdedkkUEuWdIqMqSL1txYXDCqNbWEnFVrlJDHMTNrQQk5rRnVmdmiKe94ZqQfNas11kKpgF6tOWH8otEo/ve//+HgwYN46623MHHiRPsaQRhGMH3Xr7gUWZxNX7ipHU9MfZFMnwRa0yfDiy++iKuuugrjx4/HqFGjumzYYsbwAZ0GhsX8mTF7AJDZAGQ2BNBWYuo0AIDsWuG/AbRb/B0SPqNUxQ7DBwAFOzo7eD3FBjO6Cx4KcCs0ZB0NILsWlutNjoIdft1FBn+7sYTcbWhpTS5xbCsxXj/Uoze5dctmtCa33k9vMp7Z7DO1Biu7Vt/3LVV0Fs20X2t6EOuAxzpAsdaMFk6NaC3enxornOrVmtC32WH+lvcZjmn7t8Dv96OyshIbN27ElClT8M9//hOXXHKJ9Q0gCI9Bpk9ELBbDb3/7W9x9992YOnUq+vfvn/R3s2ZPitjYSBNyHmZPTHYtDBk/wehZjZtMntWdlV2GT6o9Nb2J4VVoAIxpTgwP/bEmSW7SIE+M6M0IrPqSYlRvQtIc5dSLmS0w6E3GpXozMotBD76IvaMwViL97IzMntFLwXY+MU18LsCY3oTvjJrelOKZ0C/o0ZuRIoNdehOMn8/nw+jRo1FQUIA5c+Zg27ZtuP322xV3WSfcQwQ+RMB5IxfO50sVyPQdIxKJ4Oabb8a//vUvnHvuuejRo0fS33kbPilCgDYzoiE1elL0GD8rzZ7R5NquqZ1ug4fhk6KUoJsxfHL641VsyGww+d2QSchT1eSZhXeBAVBOynkWt8wk42K9mdGaVjLOU3NuTMRjAfuKDGJY9GZWawJirfCKbQA/88eqsUCbfuMH6B/1s9P4AcCAAQOQn5+P++67D3v37sVDDz1EO3sSxDHI9AEIhUK48sorsXLlSsycORMFBQWJv1lt9gQyQsn/bS1lf62W2ROjloTrMXp6E6OcmuR/dwTZX2snbhvls8LwSck96DOkOzFqGhR0xZIgqWnQrPED9CfdehMjQh65IoMVsxkA/Ym4nObMJOJAcpHBqiQcSJ1pnryR+8ytKKjqNYBa8Q0wbv5yavT3q3aM+jlh/Hr06IFzzz0XL7zwAg4ePIjFixcjGHRp0kEgGgOinB+xEKXdSmRJe9NXV1eHmTNnYvfu3Tj33HOTAoNew2fG7EkRTJJaEq7H7IkRGz+rRvSkJs8rFOzhHykaK+LBzGrDZ0R/QLIGWXQnhkfBwcpiA9D5nnLgs6XYkG6JuJEiAxDXnZNFBhbdGS005NQY05sdxi+VpnnqQdwnGdWdGlq6Y41zes2f+H0Jsdxq3ekd9ZOu82PpZxsrfLr74+UVncavsLAQ5557Lt5//32ceeaZeOONN1BUVKTrfASRaqT17p379+/HmWeeiXA4jKlTpyIzMx7B7B7d00LaQRk1ewLZ9fFb3lZkrrIi7ZT0GD0jybfeZCiaCeTv0yFvK2f7MTSjqW9nA5wwfHIoJUdmNJhdH0PDQJ+pgoNWQqSmRbu0x4qeRIgVuwoNAL/YZ0WhATBfaBBgScLldGeH3gDjuyx6UXc8+1st3ZmJdTyKq0q6Y+lvnYh1mn2uDbPqJwS2Jv6/vb098UiH9957D71797a+AQQTwu6dV394BbLyuz4SzQzhpjD+cfq/afdOCWlr+nbs2IEpU6agqKgIkyZNSjyS4cvQsC7HNvVRjlJWmj0pZkcpBLMnYNb0Afa+F6XOKH+/vIR1b/BgVWek8xvmlzy/WE1/gD0aFCdGXi862JkIMRcdHNKeuNAAOJt8i5FLxM3qjgdGE3AnjJ+jybcLi1xOFll59LVi7bmhwCrudxsG+NxTYD2G2PhFo1GsWrUK9fX1+PjjjzFw4EDrG0BoQqbPftLS9G3ZsgVTp05Fr169cNJJJ8Hn88maPTVae+iPWkYNUmZT5y0ycl2p2RNjpDPKOdx5vvZ8Y9HbSEckvi4LukyfwwmQgNTwKSEYQTuLDplNMUP6E5DToZlkKOdwzDb9aSVB0sJDKhQctIoNgH79GdFeaykfw8er2ADEE3AjU9h56w5I1l4q6A7gX+gyGvPMao93odXOmAck60+puCrGNX3uMcTGLxaL4dNPP0V1dTVWrFiBYcP05XwEfwTTN+fDKy0xff88/XkyfRL0PaUzBfjqq68wefJk9O3b17DhC4RjyD8QTfxokREy1ulkNsWSDB8QD/os5ie7Ppb40TqOBeG6eo2XUcSfL+vnLIbXNu6mscDwAfEOuGin/s/GbOHBqAaUdMaqPzHiNki/H1YhJJn5+2OyP1L03Eu3IG2z1ns1OqVYL4U7zMcdsc5Y4qIaOYdjKNxh7PV6v3/Sz1hLe67RncmEXkl7LMaDJ4L2ePV7rP2yHOKYZyTu6c1D8g9EUbQz3rewfu669GfzcIPP58PJJ5+MPn36YNKkSdiwYYO9DSAUicR8lvywct9992HixIkoKChAaWkpZs2aha1bt3Y5bvXq1TjjjDOQl5eHwsJCTJkyBa2trYm/19bW4v/9v/+HwsJCFBcX45prrkFTUxOXz4gXbkmNbeHzzz/Hd77zHQwbNgzjx48HID+dU4lAWD5KiZPupt6dPprHyJ4SOYflR13MJDNy19Ais8l45VGAxbREsiwsC7qg2q03WZNqUUmDYowWHuQQtKE18seiR9bpT0p6NKLBjJB25VuqS0s16CHy98eS9KekNylG46EAq+bEqOlP78ifVH9GYx+L9gQEDerRnr9DR9ErBltGXHhiVH9mEd9/Fg2yFly19KcW9wD9s23U9CfXFwvGj1WDbtLf2siwpNE+n8+HE088EYFAAKeeeio++OADTJgwwboGEJ5gxYoVmD9/PiZOnIiOjg7ceeedmD59OjZv3oy8vDwAccN39tln42c/+xn+8pe/ICMjA+vXr08sDQOA//f//h8OHjyId999F+3t7fje976H66+/HosXL3bqrXUhbaZ3rl69GtOnT8fo0aMxevRoQ6N7esgIxdDUW98WaUaqd0LnY9bsCR2PkYqm3k4n/0AEHUF9r9GbcLtimolFpk+PFo3oUIBVj7yKD0rJD4smeUx54l18cFyDJqfYqaGmQbkk3KoCmFryrUeDRhNvgO8UdzUNei4G2lj0kiLVIM+ClxQr4x9rf2xGg3pmingq/okQGz+BDRs2YMOGDVi2bBkqKyutbQAhizC984r3v2vJ9M5/f+c5Q9M7Dx06hNLSUqxYsQJTpkwBAJxyyik466yzcM8998i+5uuvv8bIkSOxZs0anHjiiQCAt99+G+eeey727dvnmg2E0mJ659q1azF9+nSMHTtWt+ELhGO6k+yMUPz4/AMR5B/Q3sbM6HQNACjeETFt+HKORFG8I2LZ1E3hc2D9PGwlhQ2fgN7PXa8exdOfzEydy66PoXhHJOmcrJo08v2Jfy7Gpg+nGjynBUqnZVs940FOI3o1qKRbFg2anW7HqkEj331H0RFbeU/HN7M0QC9SjZiJf+LX6umPjWgw/0AExTsiiXyFBT0a9HfoiCsxWDrdc22ka843evRojB07FtOnT8fatWutuzjhKA0NDUk/bW3a6xLq6+sBACUl8e13a2pq8Omnn6K0tBSTJk1CWVkZpk6dipUrVyZes3r1ahQXFycMHwCceeaZ8Pv9+PTTTzm/K+Ok/PTOr776CmeccQZGjx6N448/nst0TjnUAqeQcEtHXIwaveyG5E4s50gUrd31+/ecI3w6Q+k0J6eNnePr+Vxi+KSaFN8XpdE/M5rMPrbhgREtiineEUFbof5zsEy3k2ozIxTTPeqc7ujVIYvupOjVoZAgm30+opB0G3l0hZ7pnuLPRI/+AuGYJ6fZOY30e6+lQyNxMFH4ajDWHwtk18eQcyRqOAYC6iN/cv2znjgofP+9pkPpVE8AOP744xGNRnHGGWdg5cqVGD16tDUXJ1SJwsf/4ezHhNSvX7+k3y9cuBCLFi1Sfl00iltuuQWTJ0/GqFGjAMR3+weARYsW4YEHHsC4cePw7LPP4jvf+Q42btyIoUOHoqqqCqWlyVv/ZmRkoKSkBFVVVRzfmTmcTo8tZcuWLZg2bRqGDRuGjqGX4EvGirPZ5FoJIdgaCeZAV7MnhtX4qRm97AZjHQ3gvNHTS9HONtQPzEbh7jDX8zZUsE9RsNPwSZErRDhZhJDq0qgW5RJvntq0LOlOUewuPAgYTbrFOuRdeFDSod7CA2lQH3KxUK8JZEXQoKAjM8VY4Vw8zB9LDHSNDo8ZP5a+uaF/lr4+fFDXX40ePRodHR2YNm0aPvnkEwwfrv85zYR72bt3b9L0zuxs9S2R58+fj40bNyaN4kWj8e/iDTfcgO9973sAgPHjx+P999/H3//+d9x3330WtNwaUrY72L59O6ZOnRp/HsuIK5hfx2t0T/H8rRHktsYDcEsZW1lazeyJUUu2eY3qCeRWJ5fCIzl8Ok0zFOwOAX72TqtwD1/DB8TNJAuN/dgfwmVVEQKIJwMBnXoUcGsRQq/Jc8NoH+/iA8BegLB6erEScgaQZ+EB0Jd0yxUeAP1JtzjhZtWilQk3M8c+et5xUU8hzCmMjEZLkYuHYk0ZjYdmzF/R9vi9ZO2fhb5Dz6ifXuPH2kfGAtrn1Rs3v90xEEMH7ezy+/HjxyMSiWDq1KlYtWoVBg8erOu8hDli8CVG5nieEwAKCwuZ1/TddNNNWLp0KT766CP07ds38ftevXoBAEaOHJl0/IgRI7Bnzx4AQHl5OWpqkp/j09HRgdraWpSXlxt+H7xJSdN34MABTJkyBb169cKECRPg823VnNZpZWINIJFYixGMk1KyzWr2xIiTbSNGTy3Rlho9JyjYbXILQAvxRRg1EY0pvo/G/sm7O9ipSy09imHRplrizapNPcZPrE+vFSFYEhy9WFGA0INbig+AesKtpUUjxYfc6nagWp8OrSo+CKa+YC+/ZFsPrDpENNYl/jmBYJQA/VpUQ0uLLDoE2M2fOB4GWiOWaVFpuqdqX80QF32RmCVxUcn4TZgwIWH8PvvsM9dsvEFYTywWw80334wlS5Zg+fLl8cEiEQMGDEDv3r27PMbhm2++wTnnnAMAqKysRF1dHdauXZvYEfaDDz5ANBrFySefbM8bYSDldu+sq6tDZWUl/H4/Jk+eDJ9POWgIRrBoW0vS75sqchRfw8PsKSF0MEbMnpisunaEi413VuJORY/R05toq3Uq+Xtak/4dzWRMuhxMsvWYPhb87XEdqOlRDG9tyiU8RrVpphABKCc6avrkqccu5xYlOGaTG4C/Hpm1CCjq0UwBgpcWtZJuvXqUJtx69MiSbMvp0S4dCijq0e1a1IiLYj26TYtOxEWjxVmr9Ji/pxX1Q3LZC7MO9tUAZI1fLBZLTOtbvXo1ioqKLLk2EUfYvXP2e1cjM4/vjID25jD+e+Y/mHbvnDdvHhYvXoxXX30Vw4Z1DhAVFRUhJyeef/3pT3/CwoUL8dRTT2HcuHH4xz/+gQceeAAbN25MjAyfc845qK6uxmOPPZZ4ZMOJJ55Ij2ywilAohDPOOAPV1dU444wzkp6focSOjf1U/y5OuHXtcqXD7AmYGZ3Iqusa6M0YPzvaL3QmUoMnh9tNn1WGTw6pCbSyEAHwKUYI+uRRjLCqEKGV3Ih1mm56BOKaTIUChFnkkm0nEm1Bj8xaBBzRI48ChBRxfNTSpBXxUapHs7HRzXERkNejUr/tdj0KyJk+IL5+6/3330evXr3w/vvvIxh0fvQ5VRFM30Xvfs8S07fkrKeZTJ/S4NDTTz+NuXPnJv7929/+Fg8//DBqa2sxduxY3H///Tj11FMTf6+trcVNN92E119/HX6/H7Nnz8ZDDz2E/Px8Lu+JBylj+iKRCGbNmoUvv/wSM2bMQEaG+sxVLbMnxh/u7ARa+uZpHq83qc5s6rqoJtSTbcqVnNkTw9qZBA8lT8Fpz9c/85elI8nd15z4/2gWW8fj9k7EqgSb6bhwhEmTAkbMvKBPVk2K4VmMcFMhgrcm3W763FaEcEMBQu90d7OJtpom060IoRUf7SzWZjZ1GIqNQNf4aFSTwUNtlvXZYjqCPqYiLeB+TQLKxq+9vR3Lli3DCSecgCVLliAQcH65QCriFtOXTqSE6YvFYrj++uvx6quv4pxzztGszBg1fGLkEm0zCbUcah2JltkTUOtEpEZPit5ORK4DEZs8KdxNn5sTGosMnxQ1A8hDn6lejGDVJOBuXdqdZCeOS5MihKBLHjFSidx9zaRHBVj1COjTpNmCrR5NqsVIo/ER4B8jpX14qmhSQMn4hUIhvPXWW5g1axYef/xx1aVChDEE03fhsu9bYvpenf53Mn0SUmIjl/vuuw8vvvgiZs6cyc3wKZk9AXEgbOuuf/hfzewJBA+1delEWM2e+HhpB6Jl9owSaI0g+4h7N1qxAl1TlxgwY/iAZF2KEx0eo89Ap3bMFiS0pjQpaTSzqUN3UqO0iYFcQcIfjuhKajyNBQk20PVzVUq4zRYhWLQooKZJPSN/Ul3q1aPwnpWSbOlnl1Z6tAAhTrJq0ixifZiJkSyaVIuRgD7zJ42RasVa4TNl0aW/Pcpm/KIxxzZ3UdrYJRgM4qyzzsILL7yAgQMH4mc/+xnX6xKEE3je9D3//PO45557cO6552rOm+Vl+MT42toRPBAP0KHeBZrHs5g9MYLx02v2xGTVtetO3AC2hCZ4oDHp37FsfruduR0nR1NYyN3XDF8buzYFWAsSQHJiY1dBwojxA9QTmVSCdyGCFT2FCJ6zIrTMH6su1QoRaro0W4jQ0iWr8XNzgh0L+BzTpRxyJpBXYUxASZd64qSS+bMiTgZaIwgeaGTuw1NBl1rk5+fjO9/5Du6++24MHDgQV1zB/vgvgp2oBY9s4H2+VMHTpm/lypX4/ve/j2nTpqFHjx6Kx1ll9qQIBkguwdZr9gAg0BgfNcs79t/2klzd58is7dyZNFLAZ0Gy1Oh5BV4dhdUbE6geZ1CjatoUMKLRvB31hnQpkFXXjszaFt3aZE1oxFp1LJkhEgjJtq+t3bWFCKAzyWadFaF3dEXQpdsT7HRBXCAD9BXJtGAd/VNDrEs9M3VYdSmOk762dtfrkrfx2/btANnfDxm6Cz169MC0adPwve99D3379k3auIMgvIZnTd8333yDmTNnYuLEiaioqFA8zi7DJ0acYJsxe1Iya1uYEmyx0eOB602eAxtlaGLTGj4llDQqvpfixMaMTgW96TV/Yp0GGkPcjJ/r9SqD7QUJFxQjlLQoxcjsiEBjyFQxIm9HvaEimVYxQqpNRxNsBuwcVXETWto0Ei+BuK4A4wXczNr4/xuJlUCy+VOLk8J3lEWbrNM9hViiqU0hNmn063Zos9MMDkD/imycffa5+PLLtRg6dKil1003ojEfojHOI32cz5cqeNL0HTlyBGeddRYGDx6MESNGKB7H2/Bpmb2kY1vDyNl+BADQUcb2rBclsydGzfhpmT09iXVGdf2x/wKxHL4LbPXgtpEUnlOU9G5GwAqrToMHGuFrDTPrU4ycVs0WJYwYv5ztR9A6uDuT0bMiwdY+kQs7Hh0FCd54qRghnMdsMUJLm3p0yRWbR/uYpnj6fY7oUy1mSu+f0VFAccwUx0AjMdOMNjOq65n7dKuKEoC7+nYWbfbpczJCoVpMm3YGvvpqHbp3725T6wiCH54zfeFwGBdeeCGysrJw4oknKh7HYvisSKSBuOETIxgopeSaxeyJESfXPEf1hHa6BaZOwaOjfE4bPqBTp1r6FKOlVbVEm0WrRgoTekb2eCbYbkpaeGOVPlkQ7qeRgoRSMQLQTq55FiMymzoQaGDb2h5g1yVNPXYeoZgL8CnoaulTLW7qNX9CzPS1hnUZP4B91I/bxkMMRQm7150OGjQDmzYvxjnnnIdPPvkImZnps4eBldBIn314qleIxWKYN28etm/fjtNOO01xC12ehs/X1s6cSPtaw10Mn5iM6vokYxVoDOk2fALxqR76DZ/0ekKb1Ayf2nvqcizjZ6XVMVDCEteoXYUJoKs+pejRqliberWqdh05verRpxtJl+lzRgsSrMUoloKEkg5ZZkmw6F+sT63+QArr58PVZDMUqGzfgIWhkOeW/oGl/2SNm3L6ZI2bWvqUa6OV+mTRKFNhyWZ9asVin8+PEcMvw9atu3D99TcgBZ545goE08f7h+iKp0b6HnroIbzwwgs4//zzFSssvAyf2QRajYzqesRyjS3o9tU3Jf07VqS+Y6nS9Z2EWyXQ5lE+3s/jU0NvYsdTr9KRP6OFiaydNQCMaVQ6uqKlWb2Va62qNW2Tr43dBQkBudEVIwWJ9pJc3YUzpVE/raIZ7+l0LCMqbhztc9sunjzR0igrgiZ99U26Y6d05I+lr7dq1M9O7Fx7GghkYdTxV+Hf/34E48ePww9/+ENbrksQPPCM6Xv77bdx++234+yzz9Z8NINZrDR8aIlP+fEd+2+sR7H2NSRGzwi+w3XJv8jNMX1OOXgk025LVHhj5PEZcujRKWCgOLGzCgCbRrtcS6RZI8lL4vo6dKoneSHUiWb6uelUDywadbooIU6sWQtoVhi/dIdFo9GsgGZxwor+Xs+UednrHIufwn+NaNR3uI45fgrvi6f541aYcOHa02CwGMeP/C5+8pMFGDZsGGbMmGFT61ITmt5pH57Irrdv347LLrsMkyZNQllZmeJxvNfxqaF3agRaWhOGL+k8UjMm/lt9k6bh0/z74Tr5a8i0RfU8DO/V1kTFjaN8LsZocQJQ0ZDcdRQ0q6dwkXQ9nTplgRJqPrAUcPRMj9dLRnU9MnZWMWsz0SaJRo0U1XyH6xJFEebXWDCVzi7snEIHwN4k36p40NKa0KcejSrFT1addomfOmKo7rxGg1Sd5gkARUUVGDr0Qlx00Wzs2LGD27UJwkpcP9LX0tKCCy64AAMHDlTdJtfOaZ26zZ7W+Q7XJY2m6E1CpCMpepMgFniMoKT8KB+nDVycnn6spFlBV3Ijfyya1apaK+q2pVVXxZpG+7yJmbiqps2k4xR0yjqi0kWjQjsc0KdXR1K8ilkzJNaOkk5Zi7xWxlCAXae2jkq7cGOXXuXj0di4FzNmnIv1679Abq7xx8SkMzHwf5i6t8v01uFq0xeLxXDttdeioaFBdfjclYZP70iaEKwzjd0SQ0ZPZ0eghlOjfPUDFdZG8owfGtGjaCf7w3LtwlCCwqhZcZHC0CiJqEjBrFuOWtWC1vPZD69CmpWFCVWt6ixMAM4+CscTMDy+gdcUz1h2Jt/RVY1YKqdTXbMhJDpliqMGChSAeZ1auf7UDf3/kOi5WLf+SXzve9fg3/9erLjBIEG4AVebvkceeQRLly7FBRdcgEDA+USMKTExMB0t1pgc7H0lxeyvra1Lfm2BzrVTDMmKU6N8jf3lt6GOuky19QOz4Vd5nFjBbmNrjmxFr2537ov/V4dWpa93q1ZZ8GKC4sbiBMB/5gSQnFSnYmHCakirXYnlZHHPARI6bWwyFEt99U3xHEBPLNVp/jTbwDDaZ9T4yeUAbuv/GwfnoV+vuVjyyoN49NFHMW/ePKeb5DloTZ99+GIu3XP2s88+w5QpUzB9+nT06tVL8bivGo5L+nf+nq4Bl8conxWGT2r2kq6n0QFIzV7Sa/V0AAyBXyuRZhnlUwr4TRWd149kMWzVzRrwbaz0AVA1fQKBcPKJrNIqYN2INOBwkQJQ1ayVWk06hmeBwkVaFRco7JqKbIdW9Wg08dpjWuWt0cT5GQoUVmyMRVpVxg15gJviaeI6FsdVIQ/IPdimqM+kc7lQq40Ht2Pn+09i5ccf46STTuJ48dSloaEBRUVFOOONHyAjz9iO9kp0NLfhg5mPob6+HoWFhVzP7WVcVjOJ09DQgEsuuQTjxo3TZfiAZBMBAIXbGKb08JjWoSPQq5m9xDG1dV2Cv5rRswpeo3zS+yKFxfAxY3OwN4rcZ8KiVy3sGpFO/F5IjlWSFSXtxhqbjCUqDiHcM656dRHihEtcpJArUNiKSb2yaFR6rPQ8unRq06if2giK3oKaG4lmKBs/J7TKPNrHej6ZmMqqVbmYapVWtdb46RntU8sFWnpxTPxj4JcL+KCZCxT0GozSMWfiwlkX45utX6OgoIDTxVMfGumzD1eavhtvvBF+vx9jxoxRPEbO8MnR0jcv6d+5+5qT/s1l1IQxIWExe0nHHzN+es0ecyLNYaqcXKCXfuYdQT5fPrdN6xBgGeVjRUuvfC7Cz/AlHSOTrLBol5deeaNVqNDCrXo1gtxnYZsRtLFAoaZXNxcozGqVGZsTaSMofRb5e1r5PtjeJFoxVaxFIzEV0GH+OBQp1IyftF9TIxCOaRYp/B3ujK9lo0/H9gPf4NrrbsB//r3Y6eZ4BjJ99uG6r83zzz+PV199FbNmzTK9IDYj1LVHkQafvO11qufgUdXTa/YEIk1NQFP8tQGdzya0I0ERArxaQOdl+Jhx6SifdGqnHDz0yhsj2u3Ys8+QXgGD05OEc5gYlRZ/zrZr1qM0VeR00awlRYrcHO6FNan5Yy2s8dCpgJmdPK3Qq1sTabXRPoFIlk8zxrLolcuGLjr0yoqekeqk1zmkVz0mzyhMerW5SOHz+VFx2v/hlVcfwL///W9cccUVnC5OEHxwVYjfvXs3rr/+ekyePBl5ecpBg2WUTy6BlhJojSDUu3MIPnigka2hYjSCu96kOdIkf3ykqUlXIq0Z5E2M8gmfWSSHz+Y6XNfypTim9cqA0SIF0KlfvXq1GzuSknTElpFqBYzoNlZbZ0irTEU1jlM8Sa/WYESvPKZ4GtGq2SIwoJEXmNQra16QEYppFipYRvuYsdn4ZeUVoe+ky/D9a65FZWUl+vfvz+niqQuN9NmHa1LpaDSKK6+8EgMGDMCAAQMUj2Od1qlFoLXrNA8haAnJtNlpnXoCu5LZkx7jRCItNhpEMjyndupFzgDyXG+iBzn9RnQmKFaOTPMuVBBstPTNS4q1bipUiDVrmfEzASXR+mAZ7esI+lQLwoIJFDRrWK8ao32+gnxT+YHe2CqgqVkN4ycd7ZPLDQKtES5x1svTPLsNGI3G/V9j9qWX47P/rYLf7+HnDxMphWu+Lo888gi2bt2KCy+80PS5WEb51Aj1LkBmUwdQmIOM6nrT7VGDxexJj9cK9GZH+VoHd9duB0NQZ5l2lA4buBid2tnlPDKFCgGh881s6lDXrE0j09JjqFhBAPaMVLPAo0hhBaRZeVimeFqB9H4ImuW9oYsaajHWKc2a1SlLoYIrDhQq+px0ITa/8ns8+uijmD9/PqeLpyaxmA8xziNzvM+XKrjC9O3atQs//elPccYZZyAzU3kHKJ7TOlnpKCuKn1eaSHNInvUaPqsQ3qNbUavkNfXt/GLHOA7i+CQSyd/nyiebyCK+n1YWLfToVys5MVuoALQTEV6FCoIP4vuVs/2ILddkLVIA9iTSbjN5bh05cQvi+6VZYOMAa4zVo1mjo3168gQ3jfbpzREK9sTQWKHdD0hzBCA5TwhkZqPv5Mvw45/chpkzZ6rOYCMIu3A8vMdiMcydOxeDBg1Cnz59FI/jNa2ThcymriVFnom0GbPHa5TPjNGzepSvqU/y76PajwDiavjkEHccAn6Z9f75+91lDnkbQLcUKgTcXrBQwo5iBRUqkrFiVoVRhPeb2dSB9nzHu2FmBN3yjre8dMtjiicQ7+O0isPx+6aiW85TPFmwomBhVYw1O9pnJE9ggcXwAfHvgNT4SfMEf99hyKkeh/+bcxU++WiF6c0JU5UofIhynaoF7udLFRzvbZ588kmsX78es2bNUj2uqXfnnOj8A/IPYuU9yqdELDcbyM2G73Cd/N85B3JexHoUI1Kg/uBTOxIQ4V5GGB7JwyuQ60GugseKtCMKtAHCvBIl3fJCrlghpqOsCIFGZd1qYWWxQg9OGz21yrP4/jtdrJArVADuL1ZYYQCNapen8TOqWztGTfTq1hexTrtKugW6ajfVdWsULd1qjfbFcrNVcwWWYgWLblmMX2sPH1OuwIKVulWi51nn44vHfo8nn3wS1113nb0XJwgJjpq+6upq/PjHP8app56KrCzl3SJX5Q9P+rfYAAoU79DO1FkMn1biLCbWoxgAdCXRdo/yCW0EoGn4WNAzyid3n9IZuc8j/0DUtmJFoDEEIFkTRg2g3WglzHaNljT19nNLQNyEtFgBAIE2e4oVagj33UyxwkpYpsp1DCy3vB0syXMqateobnmN9imePxGvihBoDClqV2u0L5Cfb+vsCnHfYDdm8wV/u/1FYrnRPimBYA56zLwEP7r1VlxwwQUoKyuzp3EegnbvtA9HTd+tt96K3r17o6KiwvS5mnonm5H8A9Y8hFVInMWIzZ8bRvmMBm4zibP48+9g8JY8kw+7K3eA/GiJEZp6+5EhkZRV2pXDbdoV42QCAlDRQkDpc7DbDHqpWEHJsz5YkmdWItnxGRZ26LY9P4OpUOyEdvWMUsvpNdAYsnS0T0/OEGjjlzM4MdqXP3QkGvsNws0/+hFe+Pe/7b24B6CNXOzDMdO3YsUKLFmyBBdffLHqcdJRPjmkSTPQ1QQWbdfeaUvPKJ8csR7F8GVmKD7o19LpcQP7qm4oxXOUT/rZimExfKx4bWqnlPjUTv3YVcAQo6VdO3EiYRY+c576TXWkBQunihVugrRrLdFM8wU3wQw6VWyTateKtX1M7WhsAgb2te16ankDL1gLFjyNH2vBoseMWVjy2P1YsWIFpk6dyufiBKETR0xfOBzGddddh3HjxiFfxcywGD5WWso6I0FutbFeQ26UT4yv/tgDUEuKbUmefSXFif83u7JBrWInfHbt+XwqJ6k2xchqmnoHkNnUWbWW06/ZgoWAoClbzZ9GwYI3diQf6Yjc52p1Ip0wWT2KgZ37LL2WZhsMonczFzP69fqICU86gsnGT67YZmaKp0CkIKg6QwgAYNEUT6XRvkScN3TWTrS0y5o7ZITsHe3jDYvxyyzqhm6nnYWrvvd9bNu6RXWn+nSDpnfahyOm709/+hMaGhq4VDvkRvmkZDYlhzY5A8graRaQJs88R/nEZg8AYkXqo4B6R/nEn4/b8fLUToCffnljpX6l19FKPMyOUvMuWhDssBQseOFEwYJFv2ZpKctk0i5L4pwuCFM8zSCYQEG/StplneKpRlIB12L9iq/lq29SzR+0pnjKYWX+wGL8nBjtY6XbyVOxd/0aPPjgg/jpT39q78UJAg6YvurqavzqV7/CGWecAb9fee0Bz1E+NVrKMpHdEEUkJ4DgIeVegnWUr8vvhQBrcjG21OjxpH6w9jPQWJIOmtppP0IHm+1y/cqe0yLcULRwQr9ewGjBQmm0RA4588dzQwyr9Qt01XBmU8zWooXX1/VZgfSe8NRvrCg/aaYQwF+/Vuk2s6lDM4dg0S/PooVb9esLBNDjnNn45aJFmDt3LkpLS+1pnMuhNX32Ybvpu+uuu9C7d2/07t3b9LmMjJKoEerZWUISJ9CsyYYSsdq6xGiHnsAtvEYtWGuN8skhfp9249bpGbwxW2U2gpJ+eWBEv1KsTJa1jB6N8rkP8T3TKloYgdfoiTBFzqh+WUZL3FCoMIIToyU81vUJSKd4ytGe75PNI5LuWVkmirYrP5PPCDxH/9S0a3S0z6k8wutTlHMHDEF2xSDc/rOf4emnnrL34kTaY6vp27BhA5599llcdNFFqsfZNcoHANkN8jt5CQGNJRFRGiWRg6ViJ54OZzZRFoK1mQBtd8IsrtCF+qpMm8ngPLGqQ/19Bvdl2D61kwU5DVtlAI2YP6vMnvAe2wr57LJJU+Ocxcqiha+kGAEYK1poGT6tpFkJJ4tv6QCPKZ56kN5PnhoW9AsYKxzzQkmz2Q1RzTjs5GifWh6RfTADbf04duwaeQQAdD/zAvzziQfwk1tvxahRo/hd26PELFjTRyN98thm+mKxGH74wx9ixIgRKCoy/3Bl3qN8SkQz/YiW5MbPV9ti+nyAcuLMO0C3l+QiXKxeQXYqYW7po7JtdpZzzwVTI9S3Awirf165+/lu889Dw6Ge2cjKjLfLag3LHcMLrybJbilcBPc5+oQeXbilaJGKGjYyUkIa1o9Uw3qmeMohbBBnJPbGautMFS6imX7NXMJOxBo2m0u09eK7nwML0bHdkDvlZPzgpvlYuXyF7dcn0hfbIuiyZcuwZs0aXHLJJarHvTd0GKR7SuUeTO4EeI2Q6KVdxvxpjfKpTcvQfNi6xgiJNEgL7RNwOki39Eq+j5EcO/do1AlDdY4FoQMKtHY9n1THdpFV11nFlNOwGeRGrnkmyiyFCydRTDhcWLhIJO42Fy7MIiTPWZl+24oWdps9lpESq/CkhgFVHevRsJkpnqzYpWErCses8NKw0mifoXwi7Ldfxxkxpnyi6Lwz8dld92PZsmWYPn26DQ1zLzEAMc7poYuzTUexxfTFYjH89Kc/xahRo5Cdrb/SKf2yZzbHv1A5NcqvYQnQSlM7teCdOJtBT1A2dH6GqZ0NAx34evGuLnNEzvAB8jpW07CViHWjpWOt9SRau3Oqnluhumy1rvXgqeIFB3gXLswmzEnn0qFbFqSJM++CBU/MTI/zTMLMCSeKb22FfqacQk3DWqN9cthl9LLq2k0X4Fg3JJLq1XI6fLbnFIG8XOTNmIYf3fYTbF7/FXw+mo5IWI8tpu/111/Hrl27GEf52GmVbHzEO4EWj5AooRakzSy+1tq8hUdCYaQqJ/3MuePmJENjhEQPQuFC7vN0wggaSTZ4I6dpO0f5WBKNVDd8Wni1cKGFm82eXtIhYWYlkhPrYvzkPh+7dBwuzpSdeQGwadjMM4C1pnhK22MXcn1gZrMP7Xnqmgq0+twbjxlH+wpOn4Qd736EpUuX4vzzz7ehYe4kCh984PycPs7nSxUsN33RaBS33347jj/+eGRkmL+ckCzLIQSPzAagI+hDzmHlgGB0lE8OYbTC6qRZz2YBPJLl1h4+tBeaPg0AlyfLnKZ28iLVdSzGqQTZ8uJFGuGGwkV7SS4yYa92pdd3gpTUMWPCzBstHfMcsZYjMYMI9urYyCZESrBM8ewIgltewQTriLUDxQt/dhbyzjkdtyy4DTNnzlR9jFkqQ49ssA/LTd9///tfHDx4EJMmTVI9Tu8oHwutPZJvulryLIVllE+KOGnm9YBVngFZjFxgln5etgZmPbi0qmwVZnRsBDvMn1W6ViIlk2MXI/28tYoXrFPjtBDryo7EmVXHPKbGAfx07OpRElayotxmX7TnxWQLyk7oWChgCPDUsXi0z0gMNqpjaR/GC1frmHW0b+op2L/sI7z88suas+EIwiyWmr5YLIZf/vKXGDVqlOWjfIljGpT/JgSe4h3mnwCrNhUjVpQPX3sHYo0Gg/XAvqqLULWqyixBmVcQ1pqCoQs3T+1kRGk9H0/E9661R4CLnuVIJAVF+cDOffzOZwNWJRmEcbxcvJBOjbNLy6Rj92FWx9IpnlpICxlmpnhKzycls7bF9Kh1dkMUdYPUH36X2aBdVGaZ4smMi0f7fJmZyDv3dPz053di9uzZabm2Lxrzwcd5ZI73IyBSBUtN37Jly7B//35HRvnUaO2eXB3MOZIcDIyM8snhK4gHV1bzlziey9W7In3fduHaSpweOK7n40l2fSzpvlqhZd/hOkCnlgXsSI4pMfYm0vuWrVKwM0PC/JkpxMH6ZNmVOvbwZi4Ccuv6eGKXjgGRBg2YvlTNL1JhtC9v0kTse+1dvPvuu2m/kydhLZaavnvvvRfDhg2zbZSPhez6rsFBLWmWbYvGgmvf4brkf6skzMLfWNGTWCgF4bYi7c/StVM7eePA2hFeWpZDr5a10KNl2eNMt0AePQlG2mjZAZSmxRnBrHbbS3LVZ2D0KE4s7ddj/uzScnZ9jCk2a8F1hIQVF2/mwpP2QvXZRABQNyiQlGfwiMNSxHkDi5bFx/sO1yHWo1jxWK0ChniKp9VGL11G+/xZmcidVomF99yTlqYvFrPgkQ2pH44MYZnp+/LLL/Hpp5/i8ssvVz2O5yifVjBmIR7E4gGN14ifgK8gPxGglcyeWjDWIlycaWu1zcqpnSV96uUPC/CdyhiOKE9Dqd1fxPVaemDRslwBQwyLlo3ueqhk/vQUMfSOjMhpm0eSTLgP3sULKSzFC70FOT0YjdMs0+JSAtbNXGxY12cWuZlFWlM8mQoYxwpyPIvKLLDkGSwFDDdo2Q15BhDPNQpOn4w1P7sX69atw7hx47henyAELDN9v/vd73DcccchGJR5aJBOrBwZkSJOMIRqFk/zxzsIu/nB1UDy1M5gr2bF43KDYTuaowtxh9ASylI9NnQwz5b1fEYR64S3nmONTbK6NlPAAOwvYliJHcmFWwsYZunUgHXxWJwwW2X2SMv6SAc9W5VbKMVkM4j7kJwjUVfpWTrF06u5RujMMbj73l/j5RdecrhF9kK7d9qHJaavpqYGL7/8Mi6++GLV4945dSCArl/AQLV6gi0Hj5ERJcTBLm+HfIcnIJ0OxxNhZMSM0bNyamekrOu9DOa5L8BaQbBXM0LN8ro1omcrEesns9b8+XgmF04VMYyMWnspsdBbwHAzVhQwrDJ6bi7KsSbKbtMyoF/PVq/rM4qVxTjVvzNO8XSDfpWmeErzDZ65RjgS4FrEyApENEf7AKDnrIl4bd6TOHToEHr27Mnt+gQhYInpe+aZZ9CnTx8UFRmrxkm/zJHGeDODh7S/NFYTKYiPXAYaQ9zPrRaEIwVBVwRgAAj1jAAFHU43wza0kgot0lXPrCjp2g2VZCsTC7ciJP9yRQwnCxit3f1dpnpalTSbwS1xWg4jem4JZbnS+LHCW88s6/rainy6i8xddcM+xZM3PPINXlM8WfONUHOW5+NzsE935A/vg2eeeQYLFixwujm2QSN99sHd9MViMTz88MMYOnQonxM2djYx1LNr5SV4KMBlLR+gb+2IkCwD1iXM4muwwDtJlvu8rYA1obB7nr0lMOiZF27TsxS3JMfpVsQwg9xovluKGOHiTPjbg44VMNJdz7xHR+ygS0EOSMRoq/UsV8QQI+gZsCcm6803rMCOnMPtRYxu547Hg399CLfddlvaPL6BHtlgH9xN3/Lly1FbW4sBAwaoHhef2mmeUM8IohnJwTlbZsqa0amdYoKH2mR/LwTLjJ1Vpq/hVOBtK+n8/3A3PoHX61U3JxA6PbGm5fRsJVaO/jmdWNhVyGDBawmyFlYXMVixs4ChR89WrINS1HNjhucLGaxT4nKDYdOzMeRwi54Bd8Zks3oWcg5/B0NcdkDPTk3xLJo0DF8/ugwrVqzAtGnTuF2fIACA+/ypRx55BIMHD0Yg4FzVt60k+cc2cnPiPwZe1zGwXDX4hnpmm2hYHPFUC6XPiJfhI4yTdTT5uyN3r3gUMbTwtbQZ07OESEEw8WMnwucV6hlJ/BD2InzujsRjWKc9J/QMkJ7NwKMImUp69rW0qZ5HqcitB3E/pZRzRDkOPSitq/cS/swMFH9nNB555BGnm2IbwiMbeP+wct9992HixIkoKChAaWkpZs2aha1btyq0NYZzzjkHPp8Pr7zyStLf9uzZg5kzZyI3NxelpaVYsGABOjrcVXzjOtLX3NyMpUuXYubMmXxO2MiveYLhUUqWuW4LLiTKLa3ax3BCreImvHduHZTHK8hWYGdnE7+PnQbeqAFk7tTFWlXTtOQ1Tpg8wv1I75NdI9mRgiAyWnLYNSzzejshPbuXcLdIojgnd5+ya42t65MS6pmtPsOooBwZ1fX6NM0591CCe97BEdYpnk6N9nX7zmi8suBZNDc3Iy/P3RtrpQIrVqzA/PnzMXHiRHR0dODOO+/E9OnTsXnz5i6f/5/+9CfZabeRSAQzZ85EeXk5Vq1ahYMHD+Kqq65CZmYm7r33XrveiiZcTd/SpUtRWFiIkhL1bzmvqZ1A11ERLaQLi1mDslaCnFEts6unnPmzIeDSs8v4YcW0Id4Y1bQhtAoaNiUUQPx9uzGhcPN6ETfSeQ/VC3Pc0FvEOHZ8RnU9OsqUNycLHmrjMyNDQ9NZRwM0I8PlsGpaa10fMyyatiA2S6d4Wpp7pMCUZVZyBpYiq3sh3njjDVx22WVON8dy4iNzvDdyYT/27bffTvr3M888g9LSUqxduxZTpkxJ/H7dunX4wx/+gM8//xy9evVKes2yZcuwefNmvPfeeygrK8O4ceNwzz334Pbbb8eiRYuQleWOXJLr9M7nnnsO/fr189Ti07YiX/yn0MKdAoVpnwpBVy2RALSndrYV+jvfh8cMX1pt4mITtmpa6d8WINa413ROsGPrfVbTbRpoOhWmw3HHAmPhqKYt1rHW+2IZyddbvE91fD4fCqaOwFPPPuN0UzxPQ0ND0k9bm/YMp/r6+CCOeACrpaUF//d//4eHH34Y5eXlXV6zevVqjB49GmVlZYnfzZgxAw0NDdi0aROHd8IHbiN9DQ0NeOedd3DRRRfxOSHHqZ1a5ByOlwTESXJ2A8fpnhagN6FnGRHhWT22ehOXk0t36X7NpzUDuLfD7ViuaYsKGQCNWBNxxDrwt/tt1TFvvKppt0+H8xpu0bTR0WtLC4omYX10g1FNG8k9BD6tGcA+xXPKSLx/81NoaGhAYaHBhyd7BCsf2dCvX7+k3y9cuBCLFi1SfF00GsUtt9yCyZMnY9SoUYnf33rrrZg0aRIuvPBC2ddVVVUlGT4AiX9XVZnf5JEX3JzVG2+8gR49eqC4uFj1OLundhpdLyIOakXbja0B4YlakG3t4Z1EYkRZddK/u2crP+BaTF7A/KJycbBujrBNwzrS1nU+/dfVZTJHMmBjIUMOLxQ13JxMWI3RZCLdihle0LEY0rR+9Graqh087UJN02rr+oB4gU12eQlnUkHHTuYfQOf3gSn/KAUO9ivEm2++iSuuuILL9dORvXv3Jpnm7Gz1z37+/PnYuHEjVq5cmfjda6+9hg8++ABffvmlZe20C25Z6CuvvNJljqscpT2TH6pXc8j9FYz2/M6PKbOp69QPqwKucF1XBVuVqS/ie9unwPpOyCmkHQcA7G9MrpY6rWth9FqJtkI/Aq1xfclp2i7MaNvu9XzjB+1VNPxiTbg6kQDnQobDuNUAuipmm8ApXfMo0MlpOpgX5jalVbyZixJtJfoLz1LtOKnr9vwMTS3nHI7ZV3hWWdcnzj8aWoKy/bTXqDi1N5a8tiTlTV/s2A/vcwJAYWEh80jpTTfdhKVLl+Kjjz5C3759E7//4IMPsH379i6DWrNnz8Zpp52G5cuXo7y8HJ999lnS36ur4xqUmw7qFFxMX0dHB9566y2cccYZul8rNYEAcKQ+D+geH06PHDG/MJ4nWgZQL9KpFeLzu41A9zZ0L2Lr+NMJqeEDFHSdFU9K1DTtxNoG3ppmuZ5dSTGPKcvie5kKiYQcXihkaOF0IcNOXZslHQp0St9Vt+m6tYdPtUhnt66lOUhudTtayjJNnTO7ls8GRaw5SGGu9Q+zN0NeoI2pmNF3Uh+8c+c7iEaj8Pu9EVuMYOX0TrZjY7j55puxZMkSLF++HAMHJs9IvOOOO3Dttdcm/W706NF48MEHcf755wMAKisr8Zvf/AY1NTUoLS0FALz77rsoLCzEyJEjTb4bfnBxGKtXrwYA9OzZU/W4Ly/qrvvcge5dq4aRI9nckmOtERE1hOCYYTIPVDN6ZoMtoH9ERO4ztwK7R0T0IjciwgOlz5e1wGHlFvdiLZrVtdJ53QYVM9iQK2QA8WJGqhfnWK7jNgJZEdI1A7K67hkvPqeDrjOq69E6WH9uZiV25SBH2vKY8pDmSLYjeUjZ2FK0hlqxfv16jB8/3vbrpwvz58/H4sWL8eqrr6KgoCCxBq+oqAg5OTkoLy+XHa2rqKhIGMTp06dj5MiRmDNnDu6//35UVVXhrrvuwvz58zWnlNoJlx7rtddeQ9++fW2rRAS6tyGM5A9RzgTySI5zq9tV/x480IhYTud0EV8r2wYmwmucTBrEVbVA9zbwGmNye+WYdbqQ3bDqmgdaugZgSNdi3JYQ25VIpCNmCxlWkqxD8+ufSNfpg1d0bbRAJ47xTiHNQ7Q4Up+XNsUMf4YfvSf2whtvvJHaps/K+Z0MPProowCAadOmJf3+6aefxty5c5nOEQgEsHTpUtx4442orKxEXl4err76atx9993sDbEBLr3X66+/njT/1QnkpgVk19o/VU4IonJJshUBlnUuPT3XyZs4pevggcakf6vpWu44s4mx2TUiwudGCbGzCJ+/XcUMLdrzMxBoYNOylFhOlmldm13/RLp2B3bruqUsU7VQ1zq4eyJms8ZonrDqmvIQ/fSZ3Bv/WfIf3HXXXU43JWWJ6Xmon8pr+vfvjzfffJNHkyzDtOmrqqrCt99+i5NPPplHe+Lr+TjRLpmqnyk/O8kSnKygSd83r0CbLtU1tyO9v4B92lYa/XNS75RIeA+rihlaybEYlpHsdND1/sYiV8/OYF3/1D272bIp+azI37OApVPypbgpRov7Kj/DbNTIkWxuBY1U0XXfyj5Y/duXUVdXp7k7vmexYE0feJ8vRTBt+t577z306tULwWBQ9Tgj6/mUYJlaETzUNYGQJsuFO3iPJ+sj1LtA9e+s6/nkTADhLngWM+SQaiDnsKWXA+B8EkFmL7VI1yKdgPD+WXTNMzlON/oU1MtuvmWEQPc2zXwk3C0Cf0dyPuJEkc4MrJu5eDEXcfu6vvzyPBRXFOG9997DJZdcYvv1idTCtOl76623NDdwcSvt+cmVgMymZBPIWjG2G3G7tYJsqCclxumIlra9gheTCIIPcvfejmKGHajpOngo4Mq47fbk2Et0vf/qO3haTfBAo2YRWg49uQhhnD6Te2Pp0qUpa/pisfgP73MSXTFl+mKxGN59912cdNJJXBpj9WiIFtJEGRqLo6XrnqyiS7uO0VrK5/w8K8as0yncvnNnqiHWkJsNoNBOOxMImrbsHbyiYzmc0DZhnO5FzbblJO2FQEbIG9pWykfsJJ02cwGAvpP74PVFryMWi8Hnc/7zJ7yLKdO3detW1NXVoazMmw/21SKS0zklI9BqX+VVuK4bgqtTTCrcBgAoDvAN7HWRzk58VcMQ0+fjNU2IJzk16n9vz/ch0uCMtuXaQhBGcPtoNmmbMIoRbYd6F1hSiGbNR3Jq+BWiecFrXZ+QjwDO5CSlY0pRf7Qe33zzDYYNG8b1+m7A6ef0pROmTN+HH36I3r17IyND/TR2r+djQSsx7nJdzgZQPJVCfG63oreqNr5or+rf+2bZuLJdAXEgl7IvXIKKoHobv6zvx7U9Tm0DbqW2la6VzgmxVwoaXkPQlFDQsLuYEckJILshiqbe7o/nVkHatob2fB/q87OQf+DY7q0Wa9uqnIRl6rJV61W9npOsHl+ADz/8MCVNH2I+/huvkOmTxZTpe+edd5jW8w3rpu2wth7lVyKS28SFJ0JAjGVnwtdmbN2fVlB1a+KgdS+H5ul00x5mfNFe5Gdod07ppm2lc6YKXk8e9oVLNF/Pu6DBQqhnhKu+7ZipQdq2H9K2ddpW03P+gYgr85J0yUlGnlKIN99+DT/4wQ+cbgrhYQybvlgshhUrVmDKlCncGqM0muTEWj+hoqZE7r54W2PZnTtaqSXJ4uPcjNI9YDHuhDzDutVgK+SNn9PrWNVg1bYUrxY0AHWdp0rywIITBQ0rEWvSTEEjeKARzYOLObXKXkjbcXhrm2UHTysxo21xjM8+EkJLX3f2R5SXAMNPLsJjz61MyXV9tJGLfRg2fZs2bUJLS4stO3eKv/A1YUnC2Mjl+fJckCbJThs91WkUBfGH5pT2tHFfdKILXtW22t/djFzykE6JA2/SpaDhBX2ncmJcHGhOmuKpRN+sWqbRvqF5Nfi2Wd3U2a3t1lL9y07k8GysLuh8kF86bdLCqu2BY/LR0tKKzZs34/jjj7ehZUQqYjir/OCDD9C7d28EAupV+5bv85t6UHNIZtuzgq5P/Gxv8SOzWbkSwiOwamF1YGVaMC3z2bgBN0wR8gQy9y9U0IHgDnNVZa1RbC2EajIlD4QaXi5ouFbbQELfpG3nkH72Sfp2qbbtgHkzF43cpOZQIbeC9LfNpUwj2fvCJUy5SV0kj/uaVRYysvwYPDa+ri/lTF/s2A/vcxJdMBydli1bhtJS903tCVTHH0bantf1jqsZQa8j937thvcUIScCqxXwnAIXqM5yhbZdkRS7tKhBMKB07yxes6qFK3QNkLZdwrBuNfrjt4Pabumbl1h64hak/VWgxY+I/kcCEgBGTC7EG2+/iptuusnpphAexZDpi0aj+Pjjj3HGGWfwbo+lCMEnMxhPkDNCzrRDa9681pqnjqC9Ji8VpgelOmI9mNW325IGwB1FDcJ63FDQcAKn9c06GsKKU6MhbkbpHuvRd1PvgOmZGlZid26Sbgw/uQh/eWoVotEo/H6/083hBj2ywT4Mqearr75COBxGjx49uDTCqc0AOoJdfwD2TVzsQKmNhH5Y5s3rQWtNiNN4VTtC4iD+kRIpCzvQMsIoZqZqiXXQMDDmGR0rIdW2l5JklvVyhD7EOnB7nBbnRm7oX7yykZQWrAWS/sfnIRwOY8OGDRa3iEhVDJm+lStXonfv3pqVBp7r+ewiHrx8iR97ry1c11tJeqqRyomNk/pWbo/3jCnhLF7RjVfaSViPnkKVU7pRK2hL8xMvwbtAy7uAzEpGph+DxxZh5cqVjlzfUmKcfwhZDJm+Tz75BMXFxZyboo7sJi4GyD2oL9EVJ8i8k2Sj527ppa1oGgkhWLBS38rXowSY4E+nrpwraLDoW28fpASvPpFwD2p9u936trtvcANeKPgOPiEHn3zyidPN4IowvZP3D9EVQ2v6Vq9ejREjRvBui2mETVyspCPoQzSrc82dP8w+mim8zi0B1AuPa5gYrOJ2rnebB3M7F2+cKmpIMaNvpfPphaWoQRBayGkvI8RXW26J5YSzlPZssN2E89Y3r/wk96CPSwznuYOnVTiRnwwcW4Al9y3ndl0ivdBt+mpra7F7925MnTpV81iWZ+F4fU62OEEGkpNk6d8AoKkix/I2OcHQvBqMzd2jedyAjCPM5ywJ8N3BbkJwN9Nx3TOamI4bm7sHLx060UyTXI+avpWOd0sinE4JAwDURjKwNtSf6zlTDbNFDbv0HajO8vxsDaf0zfNZfV6jI+hDw5B85O9pBaCub7n8xC6c0DdLfgKw5yi885Oz8rajNqKdkg+cGMFDuw7i6NGj6NatG9c2OAY9ssE2dJu+NWvWoHv37ggG2eZmae0I1tTR+cyx/Y1FepvDnfwDUVOvdzKQ8qZPQT0AtkcxsAZUVngHVCtY31LB9NkIGjerbztGsrUQ9C0kE6mkdy14Jw1WwFLYYC1qAO7frMgsWgaQ9N0Vp/RdEujgXrhLJ30DqRe3+xTUo6kjG+OL9jrdFNso6R5Arz5BfPbZZ5gxY4bTzSE8hm7Tt27dOnTv3l3zuD43H9TdGMFkyNHQEjeZoWZnE1+hgmYVTb3t2YY3mBdW/bwF0imYWo0X9M1KKiUNvJ8vmUrYWdRwmlTRtBjStzosn83QvBp8Wd8PgDs03tTbb7g4zUPj+QeituQprDmKU9RGMhwrTg8bmYH169enkOnzHfvhfU5Cim7Tt3btWhQW2jt3/evqssT/B/OUpwSEcjIRaKUbDah/ToR7Ub1vg8Jo35FvX2M8jpsThlRE6/NuaAl6pqjhBdyeFKciqVS4UyJ/T6sty1DszlHWt1QwjWbv6uju6GwNFkaM9uOLL75wuhmEBzE00jdw4EAr2sKFSI78RN5Aq4/brmluQem9BnvRQ3FTkdDBPEDhngNIq4IHFTW8idZ9a4e3E2aekMa9CRWmk1HKUzIZXvt1dRlGlFXzbVAKMHR4Jh57Y7XTzeAHremzDV2mLxwOY8eOHZgwYYJV7TFM6KD6c1MiOTFEsuWDbaDNihbxIZKd/O+WPubWHBL2IkwLsgMljdupb94VYjMJA+E9lO43kLpFDas1/mV9P5qm7xKCvZpVcxWvalyap2TX+ihXsZDjRmRix/Z9CIfDyMqiQhnBji7Tt3XrVmRkZKCgoMCq9jiCOGBFsuJBNxC2t0wgXFcaPK0i3apnLLtipSpSTTmlcTWSvoMqiT+Rvgi6kBY29BY1mipyLF+bLaXLd5A0TsgQyYmhcVAMufuT18y5qTAdyfJxyVNCB/NoVpKEkkAHU67Su28AGZk+fPPNNxg1apQNLbMYGumzDV2Z8DfffIMePXrA5+NTjbJzFEQvQmLME2EUxIpzE3zY1aG9SREQXx/gRfL3d0ZCOR1abQR5JQwEIeC2ogbpO46TG12kGk5onPIU9+L3+9CvIjuFTJ8v/sP7nEQXdG3B9O233yI/X3sjCSM7d7oBcUKsRDTT3+WH9dhIlo8CKeFqIlk+Zn1rnUfuhyDswmoNksYJMU7MnlHSoN5p9nK5ipdw8wCCVVQM9OPbb791uhkEJ1pbW7F///4uv9+0aRPX6+jK6DZv3oy8PPW1c+mInBE0kiw39fFWoCXSAy1d6ylskMYJpzFS2NCjcZbioRthnb3AOhuCcA4WjZst7BHOLhsZNNSHzZs3O3Z9nsRi1vx4hZdeeglDhw7FzJkzMWbMGHz66aeJv82ZM4frtXR927/++msUFdn7nBrx4xqcpmB3yOkmuBK3P9SX4AuPkUCCcBNKhTvSOJEq8NQ0FTacp/+gDGz+eq3TzSA48Otf/xpr167FunXr8PTTT+Oaa67B4sWLAQAxzu5VV5li9+7dqKys5NoAInXQMnVDGDuaHB//RTElftaV8GzGdD28uaZPCypsyMNa2CAIwjuMzd3jyfXZTX18njVeboClAM2er/Dd2JA1Vzl5YBb+smcX12s7Rppv5NLe3o6ysvgA14QJE/DRRx/hoosuwrZt27jtoSLAbPo6Ojpw5MgRpjV9fbNqmc65J7tE9vdH2vRNIdV6XAOALrthEcl0z+66i9akwm1Mr03HETyeGnfTaDYhz4CMI0wP7Y0nCu5OFtK9sEGokwoJ8ZDMo9jWrv3IAC+M6DhBwe4QGvsHnW6GInL5Cmuf7PZ8JceXjdaYts779A7g8OEWRCIRBAIBG1pGWEVpaSm++uorjBkzBgBQUlKCd999F1dffTW++uorrtdiNn3V1dWIxWLIzc3l2gA5xF/o3KD2A2pDoHWGUrQ+N7mgSdiHXo23hOhZPDxI5WSBN3YX7wg+kMbZGZBxBEeytAvZpHHr0Or/dtd3wwml+2xqjXcoLw0gEomhuroavXv3dro55kjz3Tv/+c9/IiMj2Y5lZWXh+eefx0033cT1Wsymb9++fcjPz4ffz2fEbFXDEC7nAQBkaVf0opl++Nv5XdIxNN5rSZ96mxpC2EluMIxQFsuObOkzok2FDXcj/fy17hcVNuRR+9xI4/YwqXCbbM6iV+NA+hSpgzV+hPqqP7KD5fMi5MnK8qF7SSb27dvnfdOX5vTt21fxb5MnT+Z6LWbTt3//fs8/lD2aqfH3DMDv4GOFtNqnFUAJwu0aZ4KhiEPJQurBq7DhifVOpHFDsE59czUpUqTW6mtYqN1fRIVqE/Qqy5Dd5t9r+GLxH97n9DqhUAhfffUVampqEI0mx40LLrjA0Dl1jfTl5Gh3yCf/hO8zJewmqvaJ+H1A1KCS/D71cxOESYL72ARmmcZZrs0hUSDSGy9oyAttJNyN0wU8ylfcT+9efuzblwJTX9N8Ixc53n77bVx11VU4fPhwl7/5fD5EIhFD52WeC7Z3715kZ/PfVdFz+H2GfuoH0mdHeAQtPasQzVD/IQg7sFKHBbtDpHPCMDxHtlQ1qBGrzcR5ohMnR5779fVh7969jl2fsI6bb74Zl156KQ4ePIhoNJr0Y9TwATpM3+7du1P6wez5+zxeFtABLYomTEGJAuF1DBbv3KbzL2qU14IQhBc0zAuu+0R4hD69Ati9e7fTzTCPsJEL7x8PU11djR//+MeJRznwgtn07dmzJ6VNH0G4mdr9RU43gSAIgrABWr/vPCyP/HCa3uUB7N2z1elmEBZwySWXYPny5dzPyzwRpaqqCscffzz3BhAEQRAEQRCE1awN9ceEYAqMjiFu+qqqqpxuhnloTV8X/vrXv+LSSy/Fxx9/jNGjRyMzM3mR7w9/+END52U2ffX19QgG7X1Yp5umrhTttHbedlNfbw9FuxnP7/ZGEARBEAQholu3AOrrG51uBmEBzz//PJYtW4ZgMIjly5fD5+v0CD6fz1rTF4vF0NDQgKwseo4SYZ4cn72b2rBcj4xhejKpcJvTTSAIIkU4oXSfa4rV9QOzLS1W5++LpUWx2u58Rc81iwrb0dDQilgslmQKPAeN9HXh5z//OX71q1/hjjvu4PZ8dIDR9DU1NSEajTLt3lkcYHtYbF5AOxhlBZJ3qAlHAkznlsK6lX0qI/4sWT57gP1elgTY1h/k+Nz7nEchyJYE2KpmLJ/NiobhtuqccB7hOWJuThRKAo2ojVBMJMzjVp1TEc/7UM6iTa/iHHREomhubkZ+fr7TzSE4Eg6Hcfnll3M1fACj6aurq4PP53N8pE+aHANA1YFuQIa6pY8p5NA+47ueWo5smzXeJyD/GRHeQvYeMtx7L+qcN3oTBd5JAuBMIqwXlvfDs4AHJN8bKmyYw2mduz0ZzvFlcy3gAaRzLShnsZ+iwrghqKur87bpo5G+Llx99dX4z3/+gzvvvJPreZlM39GjR5GTk+Pt4WMZkoKUxluLBboe4Isoq6rL8ZrnV/87QRjFSp2bhRKF9ETx/hksbri9sNGlzaTxtMBLOpeL/ZS3uJtAwIeC/AwcPXoUffu6Y1qxIax4xILHH9kQiURw//3345133sGYMWO6bOTyxz/+0dB5mU2f3Zu4eAHZIJlmTAymwM5RhCpSnYtNIBU3CDfQRVc6ixtahQ3eOs/em4m2fu3qBxGEBD0FvPjx6jpXy2EK94TR0N8d+zh8WjMAJ5fucroZrqSwIG76iNRiw4YNGD9+PABg48aN3M7LPL2TTB+R6uyP0C5YLFCxg0g1SNOE12is8KFgj75ZGKTz1KO4MIC6ujqnm2EKXyz+w/ucXubDDz+05LxMKwSPHj3KtIkLKysahnM7F+EN+gTcvQaEIAiCIAjCSxQX+WmkLwV5/vnnFf+2YMECw+dlNn3S+aQEQRAEQRAEQThDcZHP+6YvZtGPh7nxxhvx1ltvdfn9rbfeiueee87weZlMX2trKwIBWoxDEACwJlTudBMIgiAIgkhz8nJ9aG1tdboZBGf+9a9/4corr8TKlSsTv7v55pvxwgsvmJr6yWT62tvbU27nTkKdqYVbnG4CQRAEQRAEoUBWZjxHJ4xz3333YeLEiSgoKEBpaSlmzZqFrVu3Jv5eW1uLm2++GcOGDUNOTg4qKirwwx/+EPX19Unn2bNnD2bOnInc3FyUlpZiwYIF6Ohgf9yTmJkzZ+KRRx7BBRdcgLVr12LevHl4+eWX8eGHH2L4cONL5Jg2cmEV1Iyffma4IQRBEARBxKk60A3lvT0+bYtIa2iXWuvJJNNnmhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLycODAARw4cAAPPPAARo4cid27d+MHP/gBDhw4gJdeeglA/BELM2fORHl5OVatWoWDBw/iqquuQmZmJu69915D7fq///s/1NXVYfLkyejZsydWrFiBIUOGmHqvTKYvHA5zfyo8QRAEQRAEQRDGyM6K5+hexgcLdu/Ucezbb7+d9O9nnnkGpaWlWLt2LaZMmYJRo0bhv//9b+LvgwcPxm9+8xt897vfRUdHBzIyMrBs2TJs3rwZ7733HsrKyjBu3Djcc889uP3227Fo0SJkZWk//uTHP/6x7O979uyJE044AY888kjid5Y+py8SoYfEEgRBEARBEPygEW1zZGX6DE8hTAcaGhqS/p2dna35NAJh2mZJSYnqMYWFhcjIiNuo1atXY/To0SgrK0scM2PGDNx4443YtGlT4pl7anz55Zeyvx8yZAgaGhoSfzez3I7J9NEmLgRBEARBEARPyPCZI9weQzCDKZV3LzFf/If3OQH069cv6dcLFy7EokWLFF8WjUZxyy23YPLkyRg1apTsMYcPH8Y999yD66+/PvG7qqqqJMMHIPHvqqoqpiZb9Ww+MUxKycrKQjQatbotBEEQBEEQBEEw0BYG09RBV2PFIxaOnW/v3r0oLCxM/FprlG/+/PnYuHFj0q6ZYhoaGjBz5kyMHDlS1Ty6FaaFeqzP6Hvn/pNMNYYgCIIgCBoBIbwPbeJiPe3t7Dl6OlJYWJj0o2b6brrpJixduhQffvgh+vbt2+XvjY2NOPvss1FQUIAlS5Ykfe7l5eWorq5OOl74d3m5ex7zxWz6YjGPP+mQ0MWKBuNbwhIEQRAEQRDWEk4F0+fww9ljsRhuuukmLFmyBB988AEGDhzY5ZiGhgZMnz4dWVlZeO211xAMBpP+XllZiQ0bNqCmpibxu3fffReFhYUYOXIke2Mshsn05eTk0GYuBHGMiUG2+dkEQRAEQRBW0dwSQ05OjtPN8DTz58/Hc889h8WLF6OgoABVVVWoqqpKPPReMHzNzc146qmn0NDQkDhG8EbTp0/HyJEjMWfOHKxfvx7vvPMO7rrrLsyfP19zSqmdMK3p69atGz0HhCAIgiAIgiBcQl19DN26dXO6GabwxSx4ZIOO8z366KMAgGnTpiX9/umnn8bcuXPxxRdf4NNPPwWALs/J27lzJwYMGIBAIIClS5fixhtvRGVlJfLy8nD11Vfj7rvvNvU+eMNs+tra2rhddGrhFpo+mGbsjzSiT6DA6WYQBEEQBEGkBHX1Uc+bPqfRWr42bdo0piVu/fv3x5tvvmmoDUePHkUsFkNJSQkOHTqEjz/+GMOGDcPxxx9v6HxKME3vLC4uRigU4nphr+OLxFR/CO9BplQe0jZBEIS7KNhjPhZTbPc+dQ0RFBcXO90Mczi8ps9pnnzySUyYMAEnnngiHn30UVx00UV4//33ccUVV+DJJ5/kei3mkb5UM30+6RJFDYHoDYhdjtc8f9ffxTzweMQ1oXJa4+ZirNC5+JhYgPOzdQjCIdS0z1vntKsh4RRqOhf/rX5gtu68xaqc5eTSXdacOAVoaOygkT6P89BDD2HTpk1obW1FRUUFdu7ciZ49e6K+vh5Tp07Ftddey+1azKavtbUVsVjM1JPgzRCOqESTDvU2yRkqL9Cl3RrvE1D/nLICHv0g0gjF+8dw753QudnihhcKG4Q3SNKWy4p4pHOCB3o0Hj/e3uEOylnsJRKJobEpBUyfhc/p8wIZGRnIyclBTk4OhgwZgp49ewIAioqKuHsuJtNXXFyMWCyGcDisuQtNXSSP6cLNEe3dbFSN3jFKyhpQu7+I6ZrpjvB5snz2APu9rI0wyQgl/vi60Byfe3YyEtMaa2N+LyyfDevnzKLzVEXWqJpIFChJ8AZeK26YhZLh9CTddM4bylmUaY21obY+LhKvT+90eiMXpwkEAgiFQggGg1ixYkXi901NTdyvxaT8/Px8+P1+tLW1uWrrUVZCfTsQ3Mf2JSespzWmvikQ7wCrdT2rmFS4DasahmgfSHBDnGSxJApWJQmAixMFjoUNgIobTkA6V4d0TvDE7pyF5ZpAfBOXjIAfeXlsGibcyXvvvZfwVkVFnYNYLS0teOKJJ7heiykq+nw+FBYWIhwOc704QRCEk6xqGIJJhdssOXe6FDeI9EZNd04lw07xRU1fp5uQoGintZ9TU19az20VrBqvb4ihsDDHsWVX3Ij54j+8z+kRxEZPTGlpKUpLS7lei3n4q6ioyPbNXE4o3eeaIFo/MNvSIJq/L0ZB1CJyfNmuThQIgiAIgiD0cPRoBEVF+U43g+DM4cOH8fe//x2rV69GVVV8o8Ty8nJMmjQJc+fOTaz5MwLTIxuEC7a0tBi+EEEQBEEQBEE4xYTgbqebwI0DVRGUl5c73QzzpPkjG8SsWbMGxx13HB566CEUFRVhypQpmDJlCoqKivDQQw9h+PDh+Pzzzw2fn3mkr6KiArt27TJ8IYIgjFPSp542LCIIgkgDaA8C5xmSyTwm4hgHqiLoVzHM6WYQHLn55ptx6aWX4rHHHusybTcWi+EHP/gBbr75ZqxevdrQ+ZlV3b9/fzQ3Nxu6iBdgmloZjRn+KdrunuccumXKLOFStPRMEIQrOKF0n9NNILxKisV5q9Zmu5n9ByPo37+/080wjbB7J+8fL7J+/Xrceuutsus0fT4fbr31Vqxbt87w+ZnLSf369UNbW2qvi/J3ePv8BMGCqg5ZOnsPJgQE0QWDOm7sH+TcECKdsHXGholYTfkKG07uXrt3XwxjT+zn2PUJ/pSXl+Ozzz7D8OHDZf/+2WefoayszPD5mU1f37590draqnncp384Hif/ZJPhBlmFv93pFmij1cbcnRloGUiRmJAn1LcDuTvVv9JU2CDSBdPFDYPnjtLMPMImrNS45rU9kFOlOgcORtG3bwrM3Erzh7OLue2223D99ddj7dq1+M53vpMweNXV1Xj//ffxt7/9DQ888IDh8zN3T3369EFjY6PhC1lFSygLCLt/7jU3NN5r7c5uCPZqRm6QHq+RSqSKzilRIMyipaH8/c729v4O0rlVpMsuzCz68USBTaPPCvZqRksoi/IVgxys7kCfPn2cboZ5rJiO6VHTN3/+fPTo0QMPPvggHnnkEUQiEQDxB7hPmDABzzzzDC677DLD59c10tfU1IRoNAq/33zyqfTg6iNtyQ+ZbAllmb5WOqL1uUk/5+7Zqbte042IP3/SuAQGc0uJQoqSAoUNJkjjnkIuVzFMmmi8pU+U/Vid+QpAOUs4HMOR2vbUGOkjkrj88stx+eWXo729HYcPHwYA9OjRA5mZmabPzWz6ysrK4PP50NLSgvx89eeC7AuXMJ1T7otMOIPcvWC9j90zmgAAAzKOcG2TmyGNOw8VNtwNFfDMQ8mw+6ECnrWMKKuW/b1U++mWr1TVRBAI+Eyt73INNL1TlszMTPTq1Svpd3v37sXChQvx97//3dA5mU1fRkYGunfvjqamJk3TZzfBXs0IHVRPrlv6RJG7Pz0qbLz4sr4fxhftZT5+V0d3jSNYg2wrSgJ8567URtikrv0e+DOirBpfV6dA4HY5SgacJVlgTRS2tUc9sdU3C1TY8CZmC3heT4YB4L3WbkzvY1dHd6bPJt00ng6bFfHKV0oCfJc9seYqX+5pR48euQgEAlyvT7ib2tpa/OMf/7De9AHxxzY0NjamxsMgCYLoQmP/IAp2u+fxIm5hfUsFxubuYSwKuDtZcKKwQXiHVNA4wPY+1rdUmGmOYzi9bpVwnv17O9CvYoDTzeADjfQleO2111T/vmPHDlPn12X6RowYgU2b7N2Z002jIHIJsb9dfd56NEWq/moICbEWuzq6p0QVOd2QajwdNE0QBJGqyOUteuJ6Ux+G5xq7EJY8BfDG1M/dOzowcsQEp5tBcGbWrFnw+XyIxZRdq9wz/FjRlb2NHDkypR/QrkUgHIO/PZr0o4X42EA4hkBY+UZS9Y5wGhaN69G/FNI44UakmjejcUqICTeipWk9uQoRh/cyFD3s+DaGkSNHOnZ9ntDD2Tvp1asXXn75ZUSjUdmfL774wtT5dZm+oUOHoqmpSfO4/X/ppXmMGxE6ayHgSX94YfX5CUILXhqUJsikZcLt6C3ekcYJFtwyIwkAira1mC5eAN7JVfTsPZAq7NkZxdChQ51uBsGZCRMmYO3atYp/1xoF1ELX9M7jjjsOhw8fRiwWMzW8KDC+aC++rO9n+jxmCEge+2NlQMvf04qmihzltoRjCLR1/Vwj2ZY1iZAwIOMI01qQsbl7PLMeRKzx1h4+5B8wlgDouqbM9yiS5c0REMK7WBnPSePqODkKkk44YcKkeRNAeYqdRKMx7N3ThuOOO87pphCcWbBggeqMyiFDhuDDDz80fH5dpm/YsGHo6OhAY2MjCgsLDV/UbgKtx0bwPPpcV3G7C3b40dIrHuQjOcaD/dfVZYpbIaciJYEOXZsAeA0vaFxITqSFDUoWCLOIda+VBOfvabWuHVS4I0yitMu4Ho07QZcCemvn90AuVwn2St+lQkqw5igH9kXQ0R5LHdNHG7kkOO2001T/npeXh6lTpxo+v64sOCsrC4MGDUJtba3rTF+wVzPad7jrURJWIw6qYtp35CNzkPY0XMJ6eI9mK91zt6A1mi2HUrJgpqhBpCaBVp+rCxtKOKnxdJz65la0Hi3lVX1LEQrTAm7vt7zGN1+3Y9DgvsjKoudCEvrQPfQxbtw47Ny5EwMGDLCgOeqEmtUFrvW0kpZeMeQeTI/go/VZBfPCNrWE0IPafUu3jjPd3i+Rfvc83d5vukP3uxOtHAUAxg+igoUc325px/hxlU43gxtWbLzi1Y1crEa36ZswYQLWr1/PvSH7G4sU/1aYG0LNIXeNLHqdUHOW6mcOAH0K6m1qTXqg9nmzdIBEJ1TU8C6qhQ0b2+F2SOPexOv61jtTw0q0chSAPU9Jpd1pv94QxTlnnuB0MwgPYmik78gR7S/F/r/0Qsv3I9rHMXyp3URTRY7imhB/OIJoVgD+cPx9R7P0h/j8A1E09XbHc9D2NxZhf2MRhnWr0Tz22+ZSXNLzcxta5R6+bS5lOs5rGldC0DVgTNt2QkUNZ6DChn2Qxu1h6b5Ric/RDfo2uxGX2TjulvxEYH9jEfIztOfEspo+VpzcqGjr5g7c8ZOxjl3fEmhkzhZ0m76JEyfiyJEjCIVCCAaDVrTJUZp6+5mDqjh4yv1O+ne3J8pmGJpXw7Sb5XpUoG9WLdM5z8rbbrZZSawN9Wc6bl+4hOt1eREpCyNQbV/iLKdv8d+8rmchgWNJGAD+SYPbSbeiBuCtwgYLrAkx4H59W7ERV7ppXBrTUyFHYSlKA2DebftIFtveEMWB+EY0E4NVTMdrsSZUjrqI+ppPAGisbcfB/ftw0kkncbkukV7ojqIlJSXo378/ampqUFFhfsv6Yd1qsPUoW+B1moxQvBShlgyr4Q9HULitCS1941/sjmDqzO//trkUQ/PYgi8ra0LlXM9HqKNX325PGGoOFaK0ZwO381mRNPBKGADvFzWcQKuwIcZOfUfK7J+66fakmLe+WQ2f1xDPRNKbq/jDkUQ/AFiXozihb6vglaewGD4A2PFVI/oN6IVu3bpxua4roN07bcNQ6ayyshLffPMNF9PHE94jIeLgZwVy57fTCPJOignjlPZs4LJuVc9mRbz1LSQYwnmNajn3oK/L7m+pChU27CUjFDNVtBPOAaRW0c5K0kHjbtlzwIy+lc4nhkXzvGI35Sby7FzfiFMrpzndDMKjGJqcPXnyZNTV1XFuijq8AoBaQMoICT8xyw2fchtionbIH8OS1Ns5DZDwBnbrW7iOk98nIr2xUoNGz01JMaGE3t3F7Y6xLPmJl2FdeuIk279oxeTJk51uBleE3Tt5/xBdMWT6Tj31VBw4cADRqPrat9y/u2u6lxhx4HJzAPNKO1MJLwR+Ldyom87kxD1tIlIHaVHD7kID6ZtQw2wh1g59C0tP9LfJ3ZrnvfREmLpsNx3tUWxfX49TTz3VketbRsyiH6ILhkzfmDFjkJWVhcOHD3NpBOtCXDNkNvsSP1qBqam3ulnVGxh5kxFKfj+ZzTTNiAXegZp3R2IUqRbc2vHKYTRhoJFsb8Fr+lvhzs5Y54Vk0wtt1EMqFMS8ghu1o5UbAV37IyvzEztyRztgXc+3e1MzsrOyMXr0aItbRKQqhtb0+f1+nHbaaThw4ABKS923GNrtJih3X7Oqccw/EGEKrmLk3nPmjmyEBrHt3KbG1qOlKRNcvY4d2m7pm4fcfc5UMoXkRvw+2/OoZJfuiPXglgTYCELBTowb9J0qIyFeRI+28w/wW69nJ1LNe/NdOM+WT+sx6dRK+P3uemyGWejh7PZheA/k6dOn48EHH+TZFv00dm1+JDeKzGZnp5X62toT/x/LznSsHaGeEdnPCABQwP8ZM7x38KyL5KVE8mBoh1ql++YCfG3ttupayehS4pB6uL1gZwVy75m07Q547ixuh7a1inVCbpJOeUkq8fUnDZj33QudbgbhYQxnlmeccQYWLFiASCSCQEDZZOX+PcD0kHYljtR3jogFsiKIHMk2fC6B1lIgh/PAldjoKf2eZ6DNqYm/D8McC7o1jSUIdE8eDexeZK3R2hcuoWlCxxDr2y6j19Q7oLtirKRvR6HEwbtQUUMd0ra3cbG+AevyElM5CZD43ALd25L7RhjPS1gL0aw5iWPr+cJRbF/XgNOfOt2R61sKPbLBNgxHpuOPPx65ubk4dOgQysvNbcksVNOkX3K3ozcRtjtxDh4KxKtqOpG7D1vRGc1pqic7XtU2oK5X6d8cT5LFiBKuI1l8EgfCGAndeygJlv6btO08rGue7HxGH++CHe9CtIBW3uHKgp4ManmJl3MSPc/ny83LxciRIy1uEZHKGI5UPp8PU6dOxf79+zVNn1cevi5GaTQk0Br/XVv3IIIHjAdL4TwCkRz37nQqRe1+NnV0jsSOL9prR3Mc48v6ftjfWOR0M7gh1qSVBQ0ja1Z5kaqJg1NsPVqacgUNtWNDvQusaA4X5O5D96JmWpNtEFZt85h9xBsjRi7UuyCpD3B7TiIucqRDTrLlf/U47bRT4fOl4BR4GumzDVPlqRkzZuD+++/n1RZuhHpGEDzEL2BJDZoVSK+Rf4Btpyw382V9P8W/7clWr8hOKtzGuzldWNUwRPFvR9rcmch6QdteShzEaBWnhOTBy4kDK04UNHjqWg5Bl2ZHNoTzkLa9CWlb3zmBuNa9no8A7s5J1PIRAPh81Tbcde0FlraBSH1Mmb7TTz8dP/rRjzTX9Y1fcgRfXtTdzKUSBLq32bKuL7MpZqnZCx5oVK0aB1ojyGyK79DUnu98ZedIfZ6t04eEAJgXML/7qJjmCJt2umc32278eGlbCzu17eURbSXUEgfA+eQB8GZBwwqs1Lmctr2eGJO23UvR9nAiftpRiBYjzkcA4zkJy3IT6R4DdtA9Wzu3cTIn6WiLoOqrwzj99BRczwfavdNOTJm+YcOGobi4GFVVVejTpw+vNjlCZpN7FSJtmxtMoFfJC7QxGz8W+hTUu26Kp7Sg4SZtC8lKZpM/bXXsdEEjlbG6oKGG2wp1TkDathY1bQcPNNrWDnGfImjd9CYuFtCnoJ7r+ZzSdc1XNSgsLsRxxx3H9fqugaZ32oaph334fD6cc8452LdvH5fG2DmSlNkQD1zCjxGcWt8htLlwRwyZDebPx3N0idUAsVZkqbPXDw9t24G4jU6204tr0og4btGQFLe2i2DH6bjgFQ0l2tgALvkIC6m8aZEc+/93AOdOPzc11/MRtmJ6y6nzzjsP77zzDo+2WIqRYNRSloncavfvbCX33toL4/81uoMn4R3s6mitRpzYdAR9CQ0ThICbk1819GjbrfGaZQocwH80JB0o3OGsrnkWsKX9EcVx8xxcXYWfLrzD6WZYB4302YZp03fWWWfh0KFDaGpqQn5+vuJxdq/ri2YA2RqPXWnt4UPOYf7K8LWGFf8Wy8lK/L/Wur7c6na0lBnbLlwceKMZ8XUA4W7uTCbSge5Fzdwqx06aPLG2xVq2ArViBpEe2K11X2vYcl0D5hNjJ9Y9pQo8p+MbnSXjRAw3E7uN5iFA11zEbXmI24sZrUdDOLz9CM4880xHrk+kFqZNX3FxMcaNG4d9+/Zh+PDhphtkJDnOOuqOxfNqZk96jB2JhRS5z0lPALZ7MxfCHdpW0rUTWnZ7AkEYh0cibGZmhqDndNM173VPvGGd4u/WTVwKtjsbw+Xit53FO4G2Y3sAqeUhPIsZqaLrA2sOYtDQQSgrK7O4Rc5BG7nYB5cn5s6aNQvPPvssF9OnhVBZc0MyLMBi9pRek9nUgfZ847ch53AMrT2Mz/MWPscwOgMQVZHtx226jhTmIKOardO0IoFg1bXZQgbhDG7RuVrstkLXrLGadO1NrNK1VjFDuomLnpzE1xo2nYeYyUEAykPU2Pfxflx0/kVON4NIEbiYvpkzZ+Lee+9FNBqF329qb5gkzG4w0laiPcVTC6V1fZlNHQCOJccGTJ/cuQTMBF+jZB3trC6rfu4MI337G4tcXWXjvYOnHtzyIF8tXRuFVzHDDOLEi5II54kcyXaNycvZfsTQ64wU9nhDunYXbtI1D32KY79TsVuMUl9ZOshkUuchopEo9q8+gAt/fqHTTbEWWtNnG1y+2ePGjUNOTg6qq6vRq1cvxeOk6/pqDiksZGjUbla4W4RLwNWzrs9sQsyK+Dq5MDefHogb3zb1xysxo3jPAJT21Dc/60hbHtN8+uZItiPz6Y0+q8+MrlngUcwQY5WuvZJEUNLMB7cUNOTgpXG3aRpQ+dwL7OmvUpGaHSWJuJDquu4o67rG0Y06F+CZg7h9Pd+hTYfhj/lxyimnOHJ9IvXg8m32+/04++yz8fXXX6uaPkD9C5ugoINbgmyW7IaopWYvo7peNugKZDZ1IPvYA1nbCvmNolqB+N42tAQVjxtRVm1Hcyzh62r5efWhZj7Tv3gVM7SwWtdSnEoixCPYSkSOZKMmLP+Z600iUhmrixm8sVrfbk6MBZTuGem6E6XPyC6zp3czOTvjNgBEcgLIbogCMJ6DsBSdeUxfFu5lMC+smIO4If9gnWm0d+U+zJgxAxkZ7owvvHB6Td99992Hl19+GVu2bEFOTg4mTZqE3/3udxg2bFjimFAohJ/85Cf497//jba2NsyYMQOPPPJI0lrLPXv24MYbb8SHH36I/Px8XH311bjvvvtcdf+4teT888/H8uXLeZ3OUYQAx0pHWRHz+icziNvlmAFszDBdQRYbp9wg27SUrEByh3By6S7d1/20ZkDi/8MRNmPVErJ/wx0eyI1g69W1VfAqZPAcwVZCnBDWHCpEME9er25IJMwgV8zgVciwE7sTYul1s3MCri/OAWwFOq9rGuiqa56aZinO8ZiRYXeBTg25HMTsej5dcBi99lL+se3DN3H7vT/TfS3P4fD0zhUrVmD+/PmYOHEiOjo6cOedd2L69OnYvHkz8vLis71uvfVWvPHGG3jxxRdRVFSEm266CRdffDE++eQTAEAkEsHMmTNRXl6OVatW4eDBg7jqqquQmZmJe++9l/ObMw430zdz5kxcffXVqKurQ3FxseJxM1buxDunDuRyTZZREdapcGoJcahnNoKH3DUFTNze7AagbpA71hbYhTiAegabR7DdYvLUcEUhgwNeSiS8WshQwm06T0VNA2y6lmoasEfXqaxprdzDjoKzHEIbW3ukV+4B2JN/hPYcRmj/UcycOdPya6UyDQ3Jsxqys7ORnZ080vr2228n/fuZZ55BaWkp1q5diylTpqC+vh5PPfUUFi9ejDPOOAMA8PTTT2PEiBH43//+h1NOOQXLli3D5s2b8d5776GsrAzjxo3DPffcg9tvvx2LFi1CVpY7YhS3DLSwsBAzZszAjh07cMIJJ5g/oQ0JcnZ9vBQQNbdkTp2W1q6/y83hfhnhvQi0FSVX31hGRVimwrESas5SHBUhrEOqA0sQa1pBy1rTloOH2hDqmRx4UyVZNoonCxkO4DaTp4a0rV5NkFkLGXKY0TVrIcPrWKpplXitFqMBdInRcmjlHnbDmncYLc6ZhVXTRz/ahO9MPwuFhWnwcFoLR/r69euX9OuFCxdi0aJFqi+tr48XUkpK4knz2rVr0d7envSsxOHDh6OiogKrV6/GKaecgtWrV2P06NFJ0z1nzJiBG2+8EZs2bcL48eM5vCnzcHVV3/3ud/HDH/4Q48ePh8/n7BdfDlsSYgE5syf927EAbCRB1sJtgViJllAWU/ANRwJcg29WIJISCYXjmm5ptaaI0RBFNLPT+LlVv4Q9CDp3KjkGtBNkFsTfVzdomgpzMtg0G8N2TYv/bUHMFpBq3K71fKlELBZD40dbcM0fH3a6KZ5n7969ScZZOsonJRqN4pZbbsHkyZMxatQoAEBVVRWysrK6zGIsKytDVVVV4hjpsxSFfwvHuAGu0e28887D3LlzUVtbi+7duyseZ+cUT2Fqp9nkWGuKZ2Jdn5rZk5J0rPmEQo34++9MMqxeC5Uq5AbDrpo6xEvPutDStM2JBOCOhFkJ1kIGoYzj+jagabsKc5QgexM5TeccscDwseQgiWPM5R2t3dVnZHDNO9JoN9rWnTVoP9KYNlM7fRCrhN85gfgsRD2jpfPnz8fGjRuxcuVKzi1yB1xNX15eHs477zx8++23qqaPGQNTPI0unG7t7jcVgAONIX2GT+71x4gUKO98qUTOkahmABYj9zkxB2QOm7mkGsG8sCUbX/B8NIMUtUJGoDGEWG42fIfr2E/IMO2TF50JVDy0UxHD22TXusDoqR1nsZ6B+PtvK/IlvvOkafeitZcALz1rrufbWdWpTQP5h5B3GMk5jCDtz5zSuOundr6/AReef0FiExHCHm666SYsXboUH330Efr27Zv4fXl5OcLhcJc9S6qrq1FeXp445rPPPks6X3V1deJvboH7wpl58+Zh+/btiESsr0YGDwUQPBSIB9haaxNkJQKNoSTDZhRxci2cU3xeHhvJaHVC2bVAwfZA4nMNHvL+9EevETwUgL9DW89WjXTx0jNaWvmchxFxDHAqFhBsOHqvWlqNFeeO6dlJTRPmsHI3WkfvlUFNx3oUJ/5fTtt6R67l0OqnsmsBfwe45RypMF052t6Buvc3YN68eU43xT5iFv2wXj4Ww0033YQlS5bggw8+wMCByTMRJ0yYgMzMTLz//vuJ323duhV79uxBZWUlAKCyshIbNmxATU1N4ph3330XhYWFGDlyJHtjLIb75PVp06ahpKQEu3btwuDBgxWP0zvF02wwaCvycZviqdTxx3oU6xsZYcDuSpwUuc891JPN0NNmLuq4xVRbmciaHcE2g5B8+TvinzOrbu2C9zpVNyJoPNPBx8Lx1rfRmKxnJoYcUj0DKppOgZkYbt2NNngokFJ6Vjy3hukzq2clZHOOQfbvnu7UKF/9qq3o3q0EU6dO5Xp9Qpn58+dj8eLFePXVV1FQUJBYg1dUVIScnBwUFRXhmmuuwY9//GOUlJSgsLAQN998MyorK3HKKacAAKZPn46RI0dizpw5uP/++1FVVYW77roL8+fP11xHaCfcTZ/P58P8+fPx6KOPqpo+JQLVXQN4ZrN6tai9kE9SoTXFM6uu3dZKr5hAYwhZoo0twsVdtxzVO8XTKMFDAbS3yF8nUqbf5KXyZi5G9MwLt+nZSQMIKJtst5lBr+KWIgZgbWIsdw0vFuV4kwoFjOCO7MTnZ7We9SwncSLvyKprByCfa9iNXD8KGMs33L7e+uibX+LnN/3QlZshWoXTD2d/9NFHAcQHrcQ8/fTTmDt3LgDgwQcfhN/vx+zZs5Mezi4QCASwdOlS3HjjjaisrEReXh6uvvpq3H333WbfClcs2aZq7ty5uOuuu1BfX4+iIvWFwkpfZrcgBD478B2uS5pyoYa4XU4E5cxmH9rzun6rpPczlNPZtmCvZsvbZQVam7mEDsbn3Qda3R+k7dSzGuIihpJ+nS5iGEko0gHpd9yuIoZWkuyWopzTSTJvPbs9STaLVM9aZo+lwMxjPV/eDvXn7/GeVaSE0VyDZQlCu8mnEYjvXSQnhlCDt/ON0P4jaNqyP2E00gaHH84ei2kfHAwG8fDDD+Phh5V3VO3fvz/efPNN9gs7gCWmr7S0FBdffDE2b96cmO8qx4yVO/He0GFcrsky2qdniqdSctxekovM2hbF16lN8Yw1NiX+31eQz9QOMZm1LWgvye3ye3FbW7urDyMLmwWoXqfBfDCWQzBHsn/LSt4ooaSPMw+cFVO7X1SwCHv3uXFWGT1Bz0a0LMbpAgYgX8SQK0ilQhFDCypimMNNIyRipHoWJ8mpqmUgrudAqw/uGYdWhqee1eKzVnFZLs8AnNG2XHGZBaV8gyXXsHNqpzjPOLL4A1xw0YXo2bMn1+sThIBlD6S54447cMopp2D8+PEIBs1NfWnPi9lSTRYqyVYkEmLDJ/232aRZTNH2tqSAbMdIiRqBVh8iOfqDdpLhEpPBuRzUwU9XkZyYaxJlO7WshJ6RawE3GEBWWIsYdhUwtKYrJ75THi5gANYWMXjG4lTUMkAFOd5YHaN5FeekCH2M0zkGAPYcI6vrbAHZXMOBPCPS2IzWVZ9j4Wdr+F7bK9i4eXM6Y5npGzduHE4++WRs3rwZJ5xwguJxZ3671dbRPimWPCdHBEuCLA7KRhJlNcTvj3dwVpriaYiwXzYgd6HDxz8guxAjI9dGtKw1ci1GSctGkwqlkWuBeDIUT5aVtMsycu00igUMwNVFDDeRcyRq+Yi19P/5G0B1LbNgxQwMvdhSkGPVMUfDZ+c0ZS0ta8VkltlEcn/jbfwA+RzDjqmdnoFRy40ffoKJJ5+MsWPHWtwgIp2xzPQBwJ133olLL70UY8aMQUaGuUvxGu1rK/KheIe5oXuWKZ7YuU/3eRMBu7EJGNhX9hitRFkNITjnHIn/u26Q8qiAVVM8XUdGzPZEmefIteVFCx1atiphBswVL9JGyw5gZaKsV9t6E2WtgpzVIyRAspZ5FS+4FeL0kAaFOMD4ej43FJcTxynkFgJa+YXaqLXwPv3tfrT2MK9nrlpmKSoDjmg5Gm5Hy/LV+NV/X7b92m7A6Y1c0glLTd/06dPRp08fbN26Fccff7zicTxH+5TIOcyugHBxpuGqsq8+HnzN6M1XUgzUi6rPRfyrc22F/i6fCY8gLYfRKZ6uIivqimlEenQMOKflRBLCcdRaQJpAtRV5YbUOoYVbEmPF16lo2WwhDuCXKHOFNVF2MXZPubdax4BxLQOdcR2wJrcQsCu/cHVuwVhQbl61Bn1798ZZZ51lcYOIdMdS0+fz+XD33Xfjuuuuw7Bhw2wZ7ROmxaklx22FfmQ3mAvM0tE+cSA1S6y2Lm78JOcWAjTLtDgja0ikn1l7oXbAcmSKp4vhva5Pr8njAU8tS7VrBXYlFwRf7NS2r76JWyHOLi2Tjr2DHi2bmabsq29CrLbO8Ovlzgd0atpo8UJMW6F8cVT8GTUMYpj+mUajfE1vfIDHn3wqrR7TkITDu3emE5aaPgCYPXs2fvnLX+Lrr7/G6NGjFY8zO9qXU9P5/5lN5u826wiJUoLsKynmGpy7XMtkcM5uiCoGZ4HCHTG05ycHodZSU5flQwqv6+OtY1Z4Gj2t81uZNANkAt2KWmJstggnh1WaNlLI4FGE46ljV4+OsOLgej4lLfPQsdw0ZV5aFheTZc9vYmqnHsT9HGA8r3C1jhlH+Zo++h/6lpfj4osvtrhBBGGD6fP7/fjd736HOXPmYMSIEdxG+6RBI+mYfJ9mwmx2tC+ztsXyRFnr+gJKj3GwYsc4uc+9faD261w9xdOBdX0C6ahjO0b/xOQcjiEj5MLiRYqTqgUM6XVIx5xx2WZEgo7t1DBgn47FCHmF0RE/rUIygC6FZMB4XsGEm0f52sJofutD/ONfi+H3O798xCloTZ99WG76AOD888/HwIEDsWnTJtWdieRG+3IPdg0QGTY9f1dutE9stmJF+aqBmWW0L9LUhEC+zHN0JFM8u5y7vilpuqeAnmDNMtrHQuFOHzoUnsrR0kvnN8/NUzxNrOtzUsdSpJVkLR1roaRhLXz1TRDKEmrPhaLihftRK17YgZNFOBYdWwWvERNTuHjWhd6p9lbrmGXXTjUdG80nAOVRvsS5RcULozkFLzqC8n2mOJ9wdRzWsWPn4AEDcd5551ncIJdD0zttwxbT5/P58Lvf/Q6zZ8/G8OHDkZ2t/ABxuS+6EXiPkrBua89KpKmpy/8bSZyliNsZLlbZKp71fE1dp3jqQXw/I9nJ52npY8LcuXSKZ+7+uCkMtDncEBmMalipeCHWsBKsxQunkwxAO8kgun5GLIULK0dIeMVlo4ULKWZHStRgicOZDUBmAycdu7X4xgEjOtbC6IwL3nsD8MwngM72NQ8yn0+YySUA5XzCVC4BOJJLRJpb0Pz2CvxpyZL0XctH2I4tpg+I7+R50kknYd26dTj55JMVj5vUtAWr8oernqsjaM8oSfBQG6KZfvXHM+gc7VNLlMV/C+Tn6xrtkyNvRz0iBZ1DcKGeymbbDgJtQETUBMEgSYlmdv4+1LfD6mbFYZjiGdyXAb81jwqzjOChuPsMNPL7wshp2KrChVMGUEDOCArJhulEw6W4uXABWFeAc1LDPGZcqCHVMdeE2Qk0Zlzo0bAThQsri8jS3/Eyf0JfopRH8NKw0qwhNZRzCQCI/822XIIhjwCA6nc+wEkTJ2L69Ol2tMrV0PRO+7DN9Pl8Pjz00EOYMGEChg8fjqIic1UjFuPHMtonhxDcAMDfzq9DZBkZkR6boTElQw/i9yUEbl5TPDNCxoK1FkKAlCPGead+n7nHN1qCEQ2L7zNPWPRrRZXZ3x4XltNFCylKiQbgUOGCAS8WLoC4pnkWLgBlPae6hiOSJriq+MYwLc6rGs7bUa/6d61RPqOzLSJNTcioUH82n9a6VHHxWC6PsBuphllQyiWcyCPCR2rQ+MVqPPbFF3wvThAa2Gb6AGDUqFG46qqrsHz5cpxxxhmKx7GM9vFCmOJpJlFmWROlx/CJ6dizL5F8aM3JlyPQGEoK2ALi9xs8BNQPzlE8h9kpnnrxtwsVOnV8Ef4BW4toJrglHLxGrHloWI1YbZ1u/fJOnAHlZIMKF524sXBhFCeLF+LjtDSsZyMXNyTMRrBLwzz16/RItdP6FSMYRiM5hBrCe1TLHwRYcgie8Zclh+ANq36PvPc65syZg1GjRlnbIK9Aa/psw1bTBwC//vWvMWjQIBw4cAC9e/c2dS6zo3251fHsPZKj3mtFCoKGqsy8H9kgF7i1pniy0J6fkfgsAKClzLpoKZ3imapEsq1POsT3LLOJfyWeh34jTU0IwLpkA2BLnu0uXBDGcFPhQvp6oxqWK7oBye+1rVA7aXYjdhfdAH5FN4Df1E5hPZ9V+gWMF47FRQu5HELPKJ8S4r4IsDaH4Jk/OKHfll3b0LZnJ3730Qf2X5xIe2w3fWVlZVi4cCH++Mc/4vzzz1fcptaq0T5pcAKAQKt2eUbL+IlH+3ibvS7XEp2fRzKd2dSB9vxOKcgFcJakmedICetoH09iAfePlMjplwWn9ctbs2KCh9oQaO3Ur5UJBytO6NeLCHrWKloYndop6M6M4ZOei7d+AWgW3ewuWLh5lMRN8NKv0kwhnvqVnpeXjsW5g4BUzzTKFycWieDwW//F3YsWorQ0FZ+3YhAa6bMN200fANxyyy148sknsXHjRowZM8bUuVhG+7IboprGrj0/g8toiVLCHMjPNxy41XaWi9XWAcI1B8rP21ea4slKYkS0obMs1tTbgRKZDKk+xTP/QFy3LIUJs6iZPZ761Zs869WvnVVnQh9GixZ6sbLwZqX5A7QNoBJWTE32KlbNspDTr1tnWTBdQyFnEDCTNwjkVrcncgezeQPLKB+r4XNilO/opyvQMz8Pt956q/0XJwg4ZPqysrLwt7/9DWeffTYGDRqEfAVDY3S0T0iUeaM2WuI7XGfJNVnxFeQDojbEehTrer10tE8Luc+4qXeAabQvXaZ4GsGods0ULQTt2l0YSyTPsPYB19KihVsKFulA/oGILQUL7NwHMDwXlSeJa3GYXq8Eb+16fWocT1imdhZtD5u+DusotZJ2zYzyaa1H9ZnIGQB17QqIl89I+zdBzywFCzfnDCyjfO31R3H043fx0rJlyMykQqQY2r3TPhwxfQAwdepUXHTRRfj8888xbdo0xeNYjF+wNoqMkPodjuQELBnt02P2rBrtA4BYY1Pc+Mm0K9aj2PRoHxAfbVJb/ygE9I5g51SOpt7GN9jw+hRPlnV9+Qe0tWsVThcqBGK1dfC1x793RhIPvSglHoR5rCq4qeE7XBefHWSj4ZNeHyDt2oGVu3Y6pt3GJkdmoonzBaEtgD06FpDmDGbyBcCZUT7WfOHwO6/golmzMGXKFH4XJwidOGb6AODBBx/EkCFDsGfPHlRUVDC9Jv+As88UEkb7lBJmX0E+Yo1859+bRWhrxmGgY2C54nF6R/tYULpfTb393Cp3Xpji6bRuxbhZu2Yrz0YQJ3u8ko90gAoWyaSKdt26HooVlqmdvLRrZHaFXdo1unOy0D61XAHQP8qnhLhIrNRP1g/kF4+dGKFu+mYz2vfuwF+Wv2v/xb0AremzDUdNX1lZGf74xz/ipz/9KcrLy5GVlSV73KSmLfiq4TjVc3UEfbaM9mVU1wMtrarnUMPO0T45Mqo7nxXUUab/WYlao30AkBGKJQVyOfIPRBHJkj+mqY93d1nM35+swUBYO/Lw0q4aiftuQrt2o6fyzLtgoVasSDe8ULBwCqV4m2hnbg7AYV2UFlqJczrqFlDWLovh4zEtOWNnFWI9ihV1q1Vk472Bix7M5go8kfarAuJcwa3FikioFYfffAl/efBBlJWVWd8oD+KLxeCL8XVpvM+XKjhq+gDg2muvxb/+9S+sWbMGkydPNnUuq5JncfADEO/IVZJnK0dMeD7/TC6oWzHapxdpgI+qNKepL3+DKJ3imb9PXlN+hiJvJMvHZPx4IC1YdNGtScwWLIRz6MV3uA4ZLfEt7R1PPo4lkXIFCyPFCidGqeWQS6rs0q0WZgttTiN8D41ql2W0RAveRTa3PKrB9bqF+woVgHKxIkFu8iNEpBq2YpRP8TwKugWS7z9LnmClbpXyhF2fvIYJY0bj2muvte7iBMGI46bP5/PhmWeewciRIzFgwAD06dNH9rgxhd9ojvbxQkieeSfNAtLEV08irfmgYK3RvpbWLgEdSDYIGdVA6+Duym3gNNoXCMdUAzoLSYGWp/9jyBuiGWzGz26s0q1ReD6g3U3VZylOFyvkkEtE3KhZKW7TMA/kzJ/TBTbAed0W7I51Oa9R3bIYPl6jfHIzgpJ0q1GoYCkMC7HTyRE/McL7a89Xzg9YYTF8rKhpFhDpyeYcoWH/N2jctR6L39kCn8+7M5gsh6Z32obzPQ6AAQMG4P7778fChQtx4YUXKu5sxGL8zI72BQ80xo/Relgux9E+1sDOM3nWQvgcACDUu8C268rh79AO6umOcL98reZ3m1NDbxLCqlkjxQq9BpBXsYIHThYr3EbO9iPoKCuy1OgZHaW2IuaK3yeP5JknjiTPUB4l8QJ2FCj06Fdzx06do3xSYjlZmvkBj9FpQH2UT4A5N7A5zkba27Bv1Qv44x8eQP/+/TlenCCM45pUet68eVi8eDHWrFmDSZMmmToXi/GTIg5iABBosH86kVpCrSf5MDrap4T0swn1LnDVaF+CGPgFdh+4JdAsUzyNFCuk94UJTsUKFvNnZ5Eio7oegYbONcFOFyoINgQN25U4A2wFC7u066bimptx0+h08ECj5cU1ObSMn53xVowRDdtRWEvCgcLa/s9excjhx+HGG2/kePHUhB7ZYB+uMX1+vx/PP/88Ro0ahd69e2PAgAGyx/Ga5ikk0GqJcywnSz24MyTQiXPpWOMnTU6cCuZKCJ9ZLDs+ItvSN8/J5jiKnVM8c/c1w9emvmWopmY5I5eIuEGvlEy7E0OFCs6oJc96tcuyeRYrcprNPhLSjK9m10XpxqUj01ZN7TSkWYY1qEbW/lsebxlG+dQIHmjklhdwHeWzmaO7NqBp70a8/PVm+P3puYkS4U5c9ZXp378/nnjiCVx33XXo2bMn8vLkg4bRaZ65+5q5tbXzpOrGT0BIDPSaP19Jcfx1Op5BxZSEaIz2+VrDmgFeQO5z1RPwWUb70nGKpyV6ZUBvMiIuUhjeJpxT4iyHOGmLZWemdZHCCdxg9KTwKqyp6lbHbAop4sJa7r5m0qyNaOnViVE+MYLxM7QplkV6FRAMH9C1/xI0nOpFinBzPfategH/ePop5keRpT20ps82XJdGX3nllVi6dClWrlyJ6dOnm1r8GqwJwR82t+0y75ETVvMnmD3pv516ALEcvrb2pCAvRhzwo1nxaaBNFeY7FU08PMWTRa+x7EzN0T4e6DV+vpJiZFhVoGA9F2OhQikZIcxjSaHColETwCKzxwhrUQ2wR7NuLarx2sBFDunnyiW26thp1ohuhVirNxcwq1k9epVD+KyjWQEuuQCTXm02fLFYFHs+XoxZF16IK664guPFCYIPvljMfQ+zaGxsxPHHH4/evXtj7NixisdJR/vy93QNtiymjyXQaxo/g1uKywV8qeGTfZ1CwDcU2FUqfCyBXsn4CQimT4mmihzmyp4bAz2gPzGR0yrAR69MRQodetVboEi8TiMp4a1VQFuvWloF2JISL+uVdToySyJduE07YTWtV52xlTWJluqWNYnWpVuLYyvAT69u1CrAz/Tx0CpgTS5gNMYCHOOsTbFVCUHDXt68peqr9xE5sB7fbPkaBQW0rECLhoYGFBUV4YQrf4NAFt/nmUbCIXzx/M9RX1+PwsJCruf2Mq6s7RUUFOCll17ClClTUFpail69eskeN6bwG+zY2E/1XNGsgD2jJ+KAqbPSB3QGfRbDJz1OCPpWJNF6pnkq4Q9HVIO9YICimclz3xv7GwwCLhrtK9gdSvy/v92eh1xbMTptpDihNjpthVZ5ImfKbRmpdilKRQo3ojV6oqRbrdkUVk5BNooQV9X0mnuwzXgsdRij66Wt0itTXGVc8pF0XoMxVjiGW4xVwGrDB8TvmTQHAEzkATYbvsaD21Hz1XtY+fHHZPj0QtM7bcOVpg8ATjrpJPzhD3/Az372M1xwwQWK6/sGjdpri/HTlUgLyaneaR49ioF6/VOUfCXFiBXlA3ofAsspiVab5mkGsWFKwt8ZzesHZnO/rh6KdrZ1/iOqHmWimX5N42drkcJocWJgX/h06FSaTDtp+MxoVZxIcitQuAzeRQou0+U4JdF6CmrSJNoJzZqNqeJimvi+ymnVrVM71RDeE4tOec34YcakZlm1mnitSLNOzPaxki55gD/ZzcnmADYZPqH/b2urx4a1z+JPDz6Ik046iePFCYIvrg718+bNw6pVq7BixQrMmDEDgQCfZ78YRfcICqP5i/Uo7vz/onjA1pNUC68Rn8en1wCqILxnM8Ffa7QPiHfecpU+NZJMl4RYgF/k90VSsGxkoDiBgX0NX86O4gSPkWkWpFr1VIFCozjhSgwW0pBprItLJN3tBoaabByRNoKsVhl0WrgnjIb+fL5bRTvaVL8PbtSq7tkTBoyf3oKa9LUA9MVXBq3+//bOPT6K8l7jT+4BQgLhFiIEQ+Qm1xhBIiAiWBSOR0WK+PHSHlSkVezxbmtboAfP0Wo9bVUKcurxKBVbUaoWr4DcESQCAuUmRgIIQYEkhJDb7p4/wiyzk9ndd2beuezm+X4+fDTJ7uwk8+z7e57f++470cZUGbN8QPNGmi6JzWu6ngdwsvb7/Y3Y9c/FuPGG63h7BpPwlg3O4cnP9KmpqanB0KFDkZycjOHDh4d9XLTZPkB+t89wEdApAOqgpvsaUQqAEvgiHkOvCBg0Jk58tg8QHPgB3cG/2fk4HfoEDIqTXWlD+jTQmAge30RjIuT5IubEBZ0C9pqUZufjQZ0CcrQqXaeAsJEOaYKZMNJqzQo30Qzo1Yklc0B869SNWT6Z4yrg0tgqcVxt6XV/3/530apVBbZv/wKtWnm74eM1lM/0Fd1sz2f6Sv7Kz/Rp8fwNRFq3bo13330XpaWl2L9/f9jH9RxwKOqxRAYfI0tqAq1Sjc0qaAbaaIEPaBrQRYJdxGN0bBf6WjYYaRFEiq9Tn3uzBYGCJFLcZOnUsDZ1dNFMO+qfCWoz3GOUY4d9H7ikU+Ishq9btA0ndDRlZAzV03VEnSrnJDHwieBk4CMmCaOJaGOf6LgabWzVPR+DOrU6yycNDwa+o8e24sSJHfjww2UMfFYI2PSPNMPzoQ8ACgoK8Oabb2LDhg0oLy8P+ziZwc9o+BOmdSs05ucIBb6Q1zg3wKsHeaNhUCkEjV2yDD1PFCduJRBEoAssc0mmzGLiJGYNdVSTq36NSOZDUKNeaUwQcazeDkeN1eAXtYGA6FoUaWKENdIGiEWtenGWTya2hheVPoyOq+G+b2Rc1TsPoecK6DRazY/nmejKyjLs3/8Oli59Cz179pT22oTYSUyEPgAYP348nn76aaxcuRLV1SbXvBvESPgTnfVTApevbTp8bc1NZ1uZ/VNes7FLVvCfk8T9bJ8ARj+3GA7Z2gTO6SI/x5Q21bo0q9FAx3ZozM8x9hwDJtrRznQMI+s9aFvzDABatzJkooHwujQ0E6i8psFZEyA2A59XkbW00yhGr2FjlyzDOg2+lqbJa2ZMbczPMTSmGqkXkd7fsToTLRL4amsrsOufi/C73z2D8ePHO3BW8Y/yuT5Z/4g+nt7IRcv999+PHTt2YNmyZbj22muRktJ8wBHdzVNBpCgY2S1RGSy16/7DhSvFXCedDrMRhA4N2a1Dvk45WSP8XD3U55ZcXhnyMzsMtcimLkL4A1ELQoIvIK0DGEhKiF4QEhOkdKlFdvEEjGsz3OdR9PTpa5tuSJcK9fmdAZjTpbopoaDVpBqa6JaJWh9mNGp1ybyvbTpwTquR9Bnymg43J2Q1l2Ti9IZYouOobLTjqdmxFGgaT62MpdpzCqdX2fqUVucFcHIlTmNjHXbuehVTp/4QM2fOdOx1CZGB5zdy0dLQ0IAxY8agvLwcY8aMQUKC/ptdZGMXBSNFwegHvo3OpEUrDNrApyVScTA6e5NcXmmbUYnnZR9ObkCgYHYjAlF9ihoWPX2KGpZo+tQzK/GgT0CeRp3UJyCuURkbZUTSqlFDrdapUUMdSadOGWogukZb+vgZfKwNGgXEG7tqvDCOAs40d+NRn4GAH7v++TouvDAL69at1p14IOIEN3L54Vwkp8jdyKWxoRYlb/6SG7lo8F4rMAopKSl45513UF9fjy1btoR9nMjn+xT8qUnCHSkjSz7PFnRAQ4axydRIyz6jBT7lMXqPM7Nc72xBB9TmtkVtrjs3GhUq7A5/tk8IBzd0UTC6jO5sQQdDDYlo+gmnu2g/Ez0+0HxJsl2zfE51p1sSVpZ5iixDFx3f9LQoMq4qrxHtdbTnanSzL1mGGojvZfJ2zGKanV018jEJq+NotGOLvg/UY6hn9emxwAcAX3/9EZKTq/D+++8x8ElE9tJOLvEMT0wt71To0KEDPvnkEwwdOhRt2rTBxRdfrPs4kaWeaowsBQm3rE4vICnBL6Va/J5P2mWfosYk+JrnHm916aeC9vdK//a0lOPGGkJLPCUiQ5MK2mvYkJFsSZPB4whqM5wmzTYkFES0yM/yGcOfkigUGuxaPne2oIMhbQKRl9BF02i08dKoRhu7ZKEhI9nQOCnTUAOCwUhgibws4uVep+px1KhGw2FkDJUxfjZkJKMhQ3wMlb1KAhDQp8e0eeTIJpw4uQ1ffFGCDh06RH08IV4kJkMfAPTu3RvLli3D1VdfjYyMDOTl5ek+zkzwA8Q/6wc0LQsRmQ0zE/7O9GzqyKVWmNsZsyG7NerbNZ1n+nfhb2RuFPXv63oAdPizfUIIfLbPDmOtF/wiadNo8APOm4zaTmmmdKk22GYNi5poWrTDsMQ0kj53ahS7mxJA8+BntVlmdrMtRaOi46RrTQkHN8lwumEmE5mrXRSNGtWmghL8rGpTTSSdym5GAN7bwEVPmxf1+ib4/2VlZThYtgrLly9Hr169HDuvFoMdt1iIzaHGdmI29AHAyJEj8fLLL2PatGmYMGECOnbsqPs4ZamnHbN+Nd3aAACSzop3u0XDX22ntOD/K8ENMBYA1c9THy9aADSyLFUpGL5WTYN+68NnhJ8bi8g0L3YFv5pubYQ1adRcq3Vklvp2Kahv19TQMNKMiKZLp5oRXtwkQzZONCWimWmzwc9sQyL4utmtTS2PjKRP5Xc1a6oBybN8pBlnCtqhzYEKAGJBz4w+azulARb0adfYGTy/3LZI//a0u7p0eMfOXj1Lw/7s+++/x6pVq/C///u/GDFihINnRYh8Yjr0AcAtt9yC0tJS/Pa3v8XEiRORkRF+VzaZs35K2FNQAo/R8BeuYEQy1kqQi1Y01IEv3PFlzf4pvz/Q/G/jlRDoxdk+QJ651tOkkeAHGGtEAOJa1HuO9pgyGxFAk3kx0oiIh1m+WJhNOVPQTto4qUXbKDNjrLX6FB0jjZhqhbQT4hvQxLqxdkuXRhu4dnyGXa+eG9WnXj2v7ZQmfdwEmt6jaiKNn27p0olaXl1djeXLl+PXv/41pk6davvrtVQS/E3/ZB+TNCfmdu/UIxAIYPr06XjnnXdw7bXXIj098rIHI8FPIbHe18xUR8KIqQFCzbbRmZRwhSNS6NNDKR5mioQ69EWj9eEzcVEohE2M4FI6MzsmimjSihYVRDVppRGhEM7EGN4UKYIm9UyM9OVJgOObEQByb34tY5dEPY0a1SQQuSERSZ+ixjqaNiOZaxnajHdj7dZ4CYg1bhVkalNk3JQxZgL6+pQ5ZgKhGnVrvATk6jLcLF9tbS0++OAD3HDDDViwYEHYneKJeZTdO4feaM/unZ8v5e6dWuIi9AGAz+fDjTfeiC+++AI/+MEPhHZWEgl/1Xnnb76bXGvsT2WmeBgJT1rUxcNo4NNi9NyNnndjeugAmlF2VvdxhpYpedVgA9KMjFk9mjUyZpZyympCAM40IlofPoOqizLCalCLlw0M4A1zbUczAmhuro3oM5K5NqJNrbmWbawVFIMdL+babV16tWkL6GvTyfHSbP0WGTO9rMlwga+hoQEff/wxLrnkEixduhRJSbG/CsSLBEPfDTaFvr8z9GmJm9AHNHVmrrrqKpSXl+Oqq65CYmL0wUYb/NSmOhx2hL+aLqEDfFqVO3PTdZnN/2aty6N3yq2GPj0yys5KD32At40MEGpmIunRziaEokcrOlSMjNUGRF1mopAG1djVhAC8bWIAd8y1otNYaowB1rTpxLnHi7kGnNWldty0W5c1XVKkjJWANU0q9dvIeCmzdmt16mVNhgt8fr8fK1asQNeuXbFixYqoK8eIeRj6nCeuQh8AVFRUoLi4GAkJCRg5cmTEKfmttX1Cvk6qN/ankFFItGFPi9FCcrZD6CDb6oSx5+uFPjV6xcSOwBdy/NTQx7c9GOZzMDFuZk73OD/oGdGizBm/cHo0a2jOdkg0rEE1Wj262YBQ8LKRAdxtRAD2GWy1Nq0abBmNCAVRgy1bl3ZqEoid5phXGrWAt5q1QGRt2lm3lZodtlarcWmc1At9gUAA69atAwBs3LgRWVni97IlxlFC37Dr7Ql9m99h6NMS8xu5aGnXrh1WrFiBYcOGYfPmzRg2bBgSEhKaBTw9lIFK1HA3picYKibqjTWihT0FZTAXKSbawKf+nojxjhb4gNDzNjr7Igt1ONLS9pC821KIIrx5xrmNXSKdvxmM6DDchkPR9FiXmWi6AWFEg9rX1OKW/hRjKdyAiAUENhpStGq0IWaESBsOhdOlGT0qVBY0Lb8z04yIpEmnDbaeJmXp0dENrwTRjptuaFK0bouiV7ON6DJaza7pkuJ4o1atx3C1LqhTjwW+zZs3o6qqCps3b2bgc5JAoOmf7GMaYM2aNXjmmWdQUlKCo0ePYunSpbjhhhuCP6+ursbjjz+Ov//97zhx4gTy8/Nx//33Y8aMGcHH1NbW4qGHHsIbb7yBuro6jB8/HvPmzUOXLl1k/VaWibvQBwC5ublYvXo1Lr/8cpSUlCBpwK2Gnu9LTTAU/ADxTqKvVRKqc5OQUm1MkNHCn17xCPdzKzMvapQC2JCRgIxv5d+g2QyV+WKfp8gsq3fttRMFNiI0okHAfAPCiIkRbUCE06ITDQi7Z521RDU1LmB0B0+RJoTRMdHozIoWEV0aDX5aXRqdhRYx2EDz8OeUwQai6NFDuyJGQnZTzCpGx0izDVr1z6LpUmR8VFDr0ulVOeGoLIh+jbNKmxq4TgQ+AEGzv2HDBuTm5kp9TeJ9zpw5g8GDB2PatGmYNGlSs58/+OCDWLlyJRYtWoQLL7wQH3/8MX76058iNzcX//qv/woAeOCBB7Bs2TK8+eabyMrKwn333YdJkyZh/fr1Tv86YYm75Z1q9uzZgxEjRqCgoACFhYVCs31aZC6zq85tPuAaDX8K6sISLfCFQ11YjBQRLQ0ZzQflSCHQrkICAH7RNoYdvkbwUoqEPgU7lhyrdShDf2qMaDGcsTGrRUWHRhoQVgx2JIR1CHsaEAm+gFATwm0tqjF73c02IdREMtl2nZcebusxq7ROusmu6pEaM2OjgpnGrBq7xkerYyMgPj66rUUA0ut0UdJe3e9v3boVBw4cwPr169G3b1+5L0rCoizvvOy6/7Bleeem935lanlnQkJCs5m+AQMG4Oabb8avfvWr4PeKiopw7bXXYu7cuaisrESnTp3w+uuvY/LkyQCaMki/fv2wceNGDB8+XMrvZZW4nOlT6Nu3L1atWoWRI0ciOTkZhQObf44vGlZn/fSCnhplMDY78+e3sNpEXYASTa6U0wt8QPPf2yszgUECkB/8EiBkbvzJ4uZG1oxfOB1a1Z9ibsw0HvRm/mSYGvXvKrP5YBdVPVLlH1T0I1Q2alEErS7NGO1wsytGNBludsWKHhsyxHSo4AU9VvY0vvNkVGKgraw3PjZkJFgKfgpmm7JqTcpsykYbHz3RlAXsaczq8OWXX2Lfvn1Yu3YtA18cUlVVFfJ1Wloa0tKMj3OXX3453n33XUybNg25ublYtWoV9u3bh//+7/8G0DRT3NDQgHHjxgWf07dvX+Tl5TH0OcnAgQOxcuVKXHnllUhMTERhf3PBDzD2WT8AqM0WH6jNmO+zHUNHxbRKcwWqLiv0OK2+l1+ltUU1/WTLvnOmU8EvWtNBwazBqctMxNmOCaa1B5w3RbIbD4B4ACTyMdqAAKzp0EoDQv28Vif80lc+xIzRbkGIjo1mqOiZZGlMVB/HbD2ONC4qKH8DRZOe0aENgU9vlm/Xrl3YuXMnVq9ejYEDB8p/USJGAPKbQ+eO17176A79s2bNwuzZsw0f7vnnn8f06dPRrVs3JCcnIzExEQsXLsQVV1wBADh27BhSU1PRrl27kOd16dIFx44dM/Mb2EKLKAdFRUX4+OOP8YMf/AB+vx+F597bsmf9qnObG4Vkgx/tEQ1/2sAHnA9vRoqNNvBpj21HAGxMb/63yvhWTghMbDRQXFyc7QPsCX7qv6sZ7ZltOtRlmQ9+TjQdgFCT15huTHNGzE08Y7YBYcRgmw1+FT2bXsOq2VaOY0aHRow20GS249loewk7Q56CHWPi2Y4JhrQookEtiuYBsXHR6Hjo6scuoB/4duzYgR07duCTTz7BJZdcYs8LE9c5dOhQyPJOM7N8QFPo++yzz/Duu++iR48eWLNmDe69917k5uaGzO55nRYR+gCguLgYq1atwlVXXYXGxkYUFhaiMH2v5Vk/vaCnpvHcMmWZ4U8v8KkxE/7CobyWXtExU1zCofd3lBUEHcfh4BdOg43p9jQdwunPjaaDGQ0q70n13y1mtRYOmzQoipXmAyAe/MI1v8yMfVotRhr7tJgdC+02265j4DLYqUHAPh1GqsdGtag3HqpfI5IWzWqwUfNRqmjjYqw1HfQC39atW7F3716sWrUKRUVF9rwwESYh0PRP9jEBIDMz0/ItG86ePYtf/OIXWLp0KSZOnAgAGDRoELZt24Znn30W48aNQ05ODurr61FRUREy21deXo6cnBxLry+TFhP6gKYZv3Xr1uHKK6+Ez+dDUVGRqeBXfUECgAQkGbg7gIzwFy3saVEXEL3CE67A6GH37J8e6uLjO9ecyTgSAx8QMYjR4Fd9gbj2rOhOa3ZE9Sca/kT0F4tNh3hfTqfXfIjU/DLTfAAiG26Rxpeo2Y6mw2iG2w6zDTTXn22zK0DMz/JFa77agdF6HAnRWqw36ydLf3poA2CsB75AIICSkhIcPHgQ69at45JOIkRDQwMaGhqQmBg6ziQlJcHvbxqni4qKkJKSghUrVuCmm24CAOzduxdlZWUoLi52/JzDEef2pDkDBw7Ehg0bMHr0aPh8PgwbNgyF6U0Dg174awp4+ihBxInwV9XzXPirivLAMNgx+9eQCbQ6bvlwhgh3PUyHQTuWeAKGZloiEUl/RrAy63e2szndRdKckYYD0LzpYKfRUVAMTzw3HMzQ1HQw9veXFfyMGG2RMc9o48stw+1LM6Y/Lxhuu1DGRDc0aCboRWpAGB0HlXNQdGhlpYMRfGlAZb5OYyyMJr2gP73At2nTJpSXl2P9+vXo08f4bu7EJjxwn77q6mp89dVXwa9LS0uxbds2ZGdnIy8vD6NHj8YjjzyCVq1aoUePHli9ejVeffVVPPfccwCArKws3HnnnXjwwQeRnZ2NzMxMzJw5E8XFxZ7ZxAWI81s2RKK0tBSjRo1CVlYWLr/88mCC31rbx5TRNhL8FEQK0NnO+t83G/5k0RBmtlwkBJotOkZQ72qacTiKxO00PYLvrupuTSdhZDMTuzSnoNaeDL0pxseM0VGjaM9Mw8EO7WmNjxcMDwDDTQe92eZIY6FR/Zkx3IC5a6ZFa7qtatDJ3yWS/vRMt+GZZrs0aFF/0eqw3eOfgtmmlxZZ4x9gfgy0u/ZmHAmg6sKE6DVXwcbxTx36/H4/NmzYgMrKSqxduxb5+fn2vTARRrllQ/G1v7Hllg0bP/i18C0bVq1ahTFjxjT7/o9+9CO88sorOHbsGH7+85/j448/xsmTJ9GjRw9Mnz4dDzzwABISzm3eeO7m7IsXLw65ObuXlne22NAHAN9++y3Gjh2L+vp6jB49GikpTUlhbQfz2/bKLEThAp8aUzMw2aFfp500foxwoU9NuILkdOgTIXDuozVty+S+HU7nJSDBwKaRRnewtMP4RNKdFfOj6M6M3hS83mwAWkbDAXC26QBYN95plQGphltB1Hg7qT8vmG4R/SnaA7ylP70x0Kr+6rKtjX2A+fHPazU343BAuvZO5zUdsG1ZICTwNTQ0YNWqVUhPT8fy5ct543UP4aXQ11Jo0aEPACoqKjBx4kQcPHgQY8eORXr6eeG5Ff5Ewp4W0YKkDXxaRIuSSOjTohQmrxUg4HzoswMjoQ9wxvwAzQ2QqO5kNBoA4wZIVHN6BsjsbFFLaTYA5m6ZIdt4R9Og6eXtKv2ZNd7R9BfJeLvRcBAhkGSP9gBj457b2rOrwQo412QFmmvQ6+OeHVx5ZE/w/2tra7F8+XLk5+dj2bJlyMrKsu+FiWGCoe8am0Lfhwx9Wlp86AOaBoZbbrkF69atw9VXX422bdsGf+Zk8Kvp2nQpUs6Yb4FFKkzRAp+aSIXJTOALeX6bAFofNbhNuUMGyC68asBrugZM603EBIloLl4aDYC3NAfERsPBaJPLiPkOpz+7Gg6AHOMd69rz6nhnRXcAm6t6eEl36sBXVVWF5cuXY9SoUVi8eLHprfqJfTD0OU+L28hFj/T0dCxZsgQzZ87EX/7yF4wbNw4dO3YEAIw60TSImAl/ohu9KGFPoaGN+fCnFAltcTIS+LSPt7okRQ/t7wzAcBCMJQJJxoyQP8W4EfKliRkhvb+9GcJpTUFUcyLLPs02Gs52Pv9+imd9uYWo5rSYMdwKDZnRzXc07YkuNTajO6ufhY114+1VZDRVI2GkxkZb6mmlsVqVf358Fx3z4kFz6sD3/fffY/ny5bjtttvw/PPPN9t1kXgLO2/ZQEJh6DtHUlISXnzxReTl5WHOnDkYPXo0evToEfz5qBN7TM/66YU/EeMtI/wB1reQlxkAld9JD+3fxGmTnuCztzC5Gfwi6c2KzgB9E260yaB+jlZjVgyQWm/qvwEDoPNoNWjFfIcLfmaaW+HGNBkrGhranP9aRHNOmO+WgqzmlhpZY53yPLX2ZOhNi8iYF2+B75tvvsGaNWswa9YsPPbYY8FNNgghDH0hJCQk4PHHH8dFF12E22+/HYWFhRgwYEBw0LAy6wc0Da512cYLkRVTXtvpfMpIPWV95D1dcP546d/ZO5Jri3baSWO/f2JD7BsiK8HPqOlpaGN+qadiWGo7+SzrTB3+rBqhcERrMLRU8+1UowGwpjcg1ICbNd7q5yoG3A7zDUQ34E5pzmtLimVhR8gLhxW9qTld4LNcRyM1UtUofx9Fe/GiNyXwBQIB7Ny5E1u3bsWiRYuC90ojMYA/0PRP9jFJMxj6dJg8eTLy8vIwYcIEnD59GsOHDw9ZHmAk/NVcoH+D56SzJmbvDIY/deADgPr2TV/LCH/a49sdAIHwf8vWR+Qt3fDabB8gbsS1fx8nNKag1kJ9e+vBr769D/Xtm/7frLZEzRBgvcHgVczozQpONhqAJtMsazyry27SnZWxzKgBB5pMuBkDboZ4WtbpZMgDzo9xtZ3k1FClHtd2Mqc5I+ObmpquAfhaqfQnWD+9HPj8fj8+++wzHDt2DGvWrMHQoUPtfWFCYhRu5BKBsrIyjB8/HrW1tbjyyiuRmpra7DF6wS9cONHDjDFXiGSWtIEvHEaKl1KkohGpgJktVABCClU0lELmxUIFmDPi2uAnojO79KUQTWdmzFEknYmaIzt0Fs0cxbPW9JDRZFCw0mQArJtwPc0ZNeJmNaenNxEjHi96i6Y1mY1TBbONUzVmNWd1fLO7huppz2vLOYHzga++vj54S4aPPvoIeXl59r84kYKykcvl4+bYspHLhuWzuJGLBoa+KFRVVWHy5MnYtm0bxowZg3bt2uk+7qNBvS29jswCJhr4tEQqYqKBT4u2iDkV+kJIbW4a0g9HnuT2kjmq7aa6a3G9uVlNs/oKZ46MaMyOxgLgreYCED8mHDDXYADsNeIimjNqxEX0Fs2IO6E1rRGPV6219IYpEF5vTtfO1kcSUZN/vvZEq5kKTga+iooKrFy5EoWFhXjrrbdCdl4n3kcJfSPGzUFysuTQ11iL9Qx9zWDoE8Dn8+HRRx/F/PnzMXr0aHTv3l33cVaDH2CtkPlaixfMSOgVM7OhT036d0meCX3RSDvqzMrnBJ8m1IngcPADzpsksw0FILpJammNBcBbRtzN5gIgp8EAiJlxM1rTM+Nua81LRhwQ01qz8c4DWrOjUQpYq5tqvbmts2goOnQy8JWVlWH16tX46U9/iqeffhpJSXG0drmFwNDnPAx9Bli0aBHuvvtuDB48GIMGDQq7K5Qb4c/Xpf78F6flBZbUU0lSAl+QtucLflJ58+WykXAy9AEAkh16azSaMC8OG6WgviRoy66mAgCgbaNhXalxVGPJAaQdcmb3l5bUXADsWbWgoJhxrxtxoMmMOxn4DGsMcE1nVjWmYNt4FmNjmROM/+wAAoEAvvzyS2zfvh3/8z//g1tvvdWR1ybyCYa+sbPtCX0rZjP0aeBGLga47bbb0LdvX/zLv/wLKioqMGLECCQnN/8Tjv9yHwBr4U8ZsKMVtpCwp6AKVlZNen17H5I61MF3QsJOA21DDYH23K0UuIjUJ5oPfl4l1W/KLPlaBQyZpWb6atsoRVPAebMkM/AB58/ZsaaCBeq6m7grtRnMNBZMYlRjwed1qYcPkNJY0Nu0SpbOans2bVVqdrxy0ozXdmv0dvPKYZSxQZbOAMB3UQ2SvmptS3NUPf6K6i1em6PjPzuAxsZGrF+/HpWVlVi3bh2KiooceW1C4gXesdIgl156KbZt24bMzEx88MEHOH36dNjHKuHPCr5WAd1B3NelXj/waWnb2CxsGSGpQ13wv8o/u1B+J+HfzW6cMjFmi6bJIh1OU8GfR7sGFjUVfJ2LauC7qMbycQDono9jWoq3hoKCA7+X7jWSoC2Fpl1gfdIbC4A5fcWrITeNyVk+UZyqKVLGMWVcDaP/aL9DtHE9Ih7X1/jPDuD06dP44IMPkJmZia1btzLwxRHKzdll/yPN4UyfCXJycrB27VrMnDkTr7/+Oq644oqwn/OTMesHnO+emy5cSiEx0N0MF/DU35cyAxiGZr9rVRzcCC0cyQFzIdPkjB8QOiNjSlcmZ/20urKsJ4GQEG1W2Y1Zvngm0myfcLPK4kyMVmeWxqooGhOZkYlXQw7AM7N8hsYxCxrTq42mV8QYbHLorWSIZ22N/+wADh06hDVr1uDWW2/FH//4R6SlOXSPE0LiDIY+k6SlpeGll17CiBEjMGPGDAwcOBBDhgwJ+zk/K+EvveuZ4P+nAKg9Y2EZpODST9EZPWHDLqF7r/47KNQebWP5uBFpTHCuwDkc/NR/T59ZTRlsJkTTlfJzYfNkUldqc5jeph4+u3XkNrHaVAAMG/NIzSrDptyEvrSm3FJDIQZMuZs4uSJEpCYa0pjFmpjSszr4/6bGrxjQ1g82foUvtm7Fzp07sWDBAtxxxx2OvTZxkMC5f7KPSZrBjVwksH37dlx33XVISUnBqFGjhLpQ0cKfXsDRw1IAVNCYKhlLOJsVPhmhr41YgQ8bBGOgyAEw3zWPYs6jacoOLSmY1ZTdjQSgua4MNRKsLIGME13poWhNiqYAoeBnRGNCxlzymGW4QUVthaAdv5zQllfHrUi1MKrOYqQOjl61C2vXroXP58O7776LwYMHO/r6xH6UjVxGjrFnI5d1n3IjFy0MfZI4deoUbrnlFnz++ee48sor0bFjx6jP0QY/0aCnhyzDbsdn9nwn0hwNfXrUHm3T4kyUGT15tYkAaIyUTYEvHNIbCUDsaAqIaM4daSYAuubcqrZ0zblD2opozlu4rtxsegKx3/hUaKaxGAl8Rf/YhE8//RSXXXYZFi9eHPb+yCS2UULfqCtn2RL61q6aw9CngaFPIn6/H//5n/+JuXPn4tJLL8XFF18cdrmnmo8G9bYU+NRYKYKdO1UF//9Epbzlbh2yzv9ux78z/+azEvoAoHV6+OefPJIV+cluLJcyYKayL6gM+bqm1poZkmGmOneqkqojhQ5ZZyzpSMFyEwFokebctWYCEDToMptTspsJZnUVk5oCLOvKC81OQK6mAHnjFGBtrNLWvai1TouDmgoEAuj253dRUlKCX/7yl/jFL36BxETuNxivBEPfFTaFvjUMfVoY+mxg9erVmDJlStP9R0aMQGqqWGFaPf4CaedgpBiqw54eVo27OvRpMVIUrYY+IHLwi8TJI1muGyptsIuGW8FPqye7GgiAN5sIQqbKrc9cCRp0Pa2xkRAdOzQlbNI9HPjCjV1ua0oZq2RrStY4ZWejU48QrTmsJ3/NWaT9fhGqqqrw5ptv4oorrnD09YnzMPQ5D0OfTXz33XeYOnUqtm3bhtGjR6NTp07Cz3Uy/EULfGrMFMZIgU+PSMXRzdAHAKlJEu/DZIB6n/m7K1s1VYC4sXKzeQCwgSDEOZNutIEAOKslNXq6kmXSw2nKjEl32qAD7pp0ADGnp0hjVDyNT1bqHGCu1h37tr3p16srPYz6F/+CwsJCLF682JBfIrGLEvquGPVrW0LfmrW/YejTwNBnI36/H0899RR+85vfoKioCP379xda7qlgZ/gzEvb0EC2QRkOfGm2RdDv0AQx+WszoqKU3D4DY1BHgnFEX1ZVZoy6qJxGjTj2ZwwktGR2fWvrYZEVHg98+afg5gUAA//znP7FlyxbMmjULjz32GJdztiAY+pyHoc8B1q1bhx/+8Ido06YNRowYgfR0Y+KWGf4AILN1rdTjhSuUVgKfHlU11geFWDVXgLcMu9WmASBmsGRoiM2DULxq1M1qyohRN6uncEa9JWvJS+ORGicamrLHpVjXkZnAV1tbi/Xr1+PMmTNYsmQJRowYYfr1SWwSDH0jbQp96xj6tDD0OcTJkyfx4x//GKtXr8aoUaNwwQXGg5zV8NevS3nI10dOG/xAtwDqgik79F3QNnQJ0e7yLqaOE6smC3DXaKn1I1M7TjUNjn+X6QlzBbRcDSnIbB4oRDLrMrWkmHUvaIk6SpWqIcA5HSn1zGwdU3BbQ2YC3+HDh7Fu3TqMHj0ar7zyCrKzsy2dA4lNGPqch6HPQQKBABYuXIif/exn6Nu3L4qKipCUZLxwGgl/2qCnhx3hzw60oU8PkQLqdpG0ipNmK5J+ZOvGzoYB4J2mARDbZh2Q0zywu+kE2K8jK4ad45A5DcV68xIIX8uM6MntcchM2PP5fCgpKcGePXvwxz/+EXfddZehj7yQ+CIY+kb8yp7Qt/4/GPo0MPS5wJ49ezB58mScPHkSo0aNMn0PmnDhTyTohUNGAe3T/niz7+091dnycUVCnx7aQup2sZSBnYbLqH5kmi5FOzL0okZUOy2haQA4Z9ijaclOw273SgMtThp2tzXkVOPAraZln/bHXRuDFMLpyQv1y0zgq6iowNq1a5GdnY0lS5agb9++ls6BxD4Mfc7D0OcSdXV1ePTRR/HSSy/h0ksvRb9+/Ux3vJTwZyXs6WGmmOoFPi1miqnZwBeOg5XmdxoD3DddgDzjJUM3Vo1XON242SwA4rNhANhn2s1oyY6mASC3cWBGQ3aZduqnOfHYrFSjaMkL2jEa+AKBAHbv3o0tW7Zg+vTp+O1vf4u0tLToTyRxjxL6Rl9uT+hbvYGhTwtDn8t88sknuO2224KbvLRu3Vroeb67I99I9kSdvPsOiRZUkcCnh0hhlR36OqRFngX44ni3qMeINfN1SefDut93QytqRHXjdrOgQ9oZIV1EI9Z0Ew5ZDQMFK8Y9koasGHdZ+tld3iVuGgaAHP30yDol4UyaMKudWBp7tBgdi9yY3aupqcGGDRtQXV2NRYsW4eqrr7Z0DiS+CIa+4l/aE/o2zmXo08DQ5wFOnTqFe+65B++//z4uv/xy5OfnB38WLdxFQ6ahB8IXV7OBT0u44up06IuEUmy9asDChbtIOKUTNVY0E6uNAsC7uomEEw0DwJh5N6ofI8bdSe0YMe9e0I6obqKNQ25pJ56ak3po9eTG7B4AfP3119i4cSMmTJiABQsWoH17a6trSPzB0Oc8DH0eYvHixbjnnnvQrVs3XDpvCFIzrO9upmBngZUV+LSoi6wXiqkebZKMh/JNxy8Uetxlnb8RPuYZn5zlMk4YMZl6iYUmARBqxLxg3AE5zQLAWfMuQzvRzLtXtGOHeZeBWjdmNQPEXkMSiJ3xBjBWmyLVJKOBr76+Hps2bcKRI0ewYMECTJ061dDzSctBCX1XXmZP6Fu1iaFPC0Ofxzhy5Ahuu+02bN++HZf9x6W44LJcqceXWWgLsw4BAPafkfuBdz16tTmOrZXdpR3PzdBnF7KCH2CPIbOrOaCgGDLZBgyIjSYB4E6jALDfwNuhHa2B96JxV5Bl4LUY0YtCLDSY7Bxr7Bpn3NJLOGrnGzfKhw8fxsaNGzFkyBC89tprpm5NRVoODH3Ow9DnQfx+P+bPn4+HH34YPXv2xCUvDJI666dgtugqYU8POwJgrzb6BdxKCPRagZWF14y8Vit2NwgUrXixQQB4SyuA9/SiJiPZmb9VdaP8TSXiVTNe1kth1iHHGpAKMsYZL2rFaOCrr6/H559/jtLSUjzzzDP4yU9+wlsxkKgEQ9+wJ+wJfZufZOjTwNDnYb755hvccccd2LlzJ4qLi9F1TidbXke0+EYKe3rIKMDhAl84RIuwFwutTNw0ZyI6kW3OounErDmTqRPAe1rxmonX045dRl5PM/Fq4mXhFb14pfGoYEY3XtSJldm9AQMG4NVXX8WFF14o5VxI/MPQ5zwMfR7H7/djwYIFeOihh9CzZ08MHToUSffac8nCFWGjYU8Ps4XYaOjTQ68gx7uZB5w1aGY14uXGAOBNYyYbrzcIALlGXlQvRo08xxRjGNFKLDQcATHNeFUnVmb3fve73+Gee+7h7B4xRDD0DbUp9H3O0KeFoS9GUGb9duzYgeHDhyMvL8/yzp7hUIqxjLCnh2hBlhH49Nha2d2zhVc2Mk0aEGrUZOvDqFGTpY9wRo0aMUckM29VM1bMvBW9RDPzLUErsaQTwJxWZNYcrWa8rBGjge/gwYPYtGkTBg0ahP/7v//j7B4xBUOf8zD0xRCBQAALFy7Eww8/jK5du2LYsGFo3bq1tPB3eeZXzb53uD5byrHDEa4w2xX4FLqlNt+RbEPVRZaO6UWjBsgza2p92KkLEbNmpz62VnbHdZ22W9aDFq/qA4it5gBgzNDboRXF0HvZyMvGLo3Y1VwE4nMscTPs1dTUYPPmzTh69Ch+97vf4a677uLsHjGNEvrGXPoLW0Lfp1v+k6FPA0NfDHLs2DHcd999+OCDD1BUVIS+ffsiISHBcPjTC3mRsDsAAk1F2u7AB+iHvkiIFO14Mmwi2nCjIeCWNmSYtnjShx5azbjVMAKc10m86wOwrhE3moqAt8YRNUY1I1sfRgJfIBDAnj17sGXLFkyYMAEvvPACcnJypJ4PaXkw9DkPQ18Ms2zZMtx9991ITk5GcXEx2rVrB0D/hu5GA1407CzWg1uXAQC21+TZ9hpGQ180lAIea8ZNhi5acjMAiP2GgIKoqTeiGadNvdc0Imrsva4PO7QBOKsPr2lDDz29uBn2AODUqVPYuHEjfD4fFi5ciIkTJ0o9H9JyCYa+op/bE/pK/ouhTwNDX4xTXV2NJ554AvPnz8eAAQMwZMgQJCcnA2gKf7LDnh6yCrcS9sIhMwTKDn0K7ZKMLfdaXdVX2muPztwj9LgKn9yt0hXsMHB6mrCrGWBXIwDwvqkH7GkIAM4Y+8Gty2xtEgFy9RHL2pBZU+zWhnr8iJVxQ0GklhitH0YCX0NDA7Zv346dO3dixowZePLJJ5GRkWHo9QiJRDD0XfJzJCdJDn2+Wnz6BUOfFoa+OKGkpATTp09HaWkpioqKkJ+fH1xrf9lDuxw5B7MFPFrYi4TZQm5XoQaMBz83sCv4AXKMnKgmZBk5L+lBZiMAEG8GALHTEIikD9nm3ivacKNBpOD18UJBZNzw+phhR/346LfDhB8bCARQWlqKLVu2oKCgAC+99BIuueQS6edECEOf8zD0xRF+vx+vvPIKHn74YWRlZWHYsGHBJZ+Ac+EPEC/kVgKfHqIF3StGzm28ZOasasGLDQCAelBjxeCb0YcVg09dnMdL44QapxuGsVg3jAS+iooKbN68GZWVlXj22Wfx4x//GImJibacFyFK6Luq8HFbQt/KrU8x9Glg6ItDTp06hSeeeAJ//vOf0b9/fwwZMgQpKSkhj3E7AMoOe+HQK+w0c6G4bfTt0oKIqaMWmuO2HtTI1IYRkx+L5t4u7NYDIKYJt8aJWB0jjIS9hoYGbNu2Dbt27cJdd92FJ598MqRhTIgdMPQ5D0NfHLN9+3bcc8892L17N4YMGYLevXs369o5Gf6ApuLuVOALx4lG+z+XEGvGDnDe7DupAzfCPxCbOgDcC35OaCKSyY9Vg28nboU+p+uEVhexqgUjYc/v92Pfvn3Ytm0b+vXrhwULFmDw4MG2nBchWoKhb8jjSE6Se0uYRl8dVm5j6NPC0BfnBAIBLFmyBA899BDq6upwySWXoHv37rr31rErABalHwz7s28aO9jympG4MPmE7vdLantIe41YNHcKdpg8rQbcuO5qLkw+IfV660ENREYx+m42gRSjzwZAeJzSgtvNwO01ebg+cysAubVAjd0aEA18gUAAhw4dwhdffIH09HQ8++yzmDx5Mu+5RxyFoc95GPpaCPX19Zg3bx5mzZqF9u3bo6ioCB07dtR9rNXwFynkRcPuMBAu8EXDjAmIVZMHWDN6Rq6/0+Ev0vWXbfRi+foDzoR/wL0GgJ4W7DD71EEoXmoCitYDq7rwStgDgO+//x4lJSWoqKjAnDlz8JOf/ASpqak2nh0h+gRD3+DH7Al9259m6NPA0NfCqKiowNy5c/HCCy8gPz8fhYWFaNu2bdjHiwRAKyEvGjJNgNnAF41whiDWzR4gZvhkXX87DZ+Va9/SAr8as4bfjCacMvxGtWDF8MeDDsxoIB4bf2pENeGlsHf69Gls3boVpaWlmDlzJp544gl+bo+4CkOf8zD0tVDKysrw+OOPY8mSJejduzcGDRokHP7sDHnRMGsI7Ap8kTjQoD+TGmuoTZ9T116W8bPzukcyfvFg9oHoht8OPdhh+u3QAa+/feNBLDT7tKj14KWwV1VVhS+//BL79+/H5MmT8dRTTyEvz957WhIiQjD0DbQp9O1g6NPC0NfC2bNnD2bPno23334bvXr1wqBBg6K+QX76xPsOnV10RMyBG4FPITupUcpxPq/NsXyMoenHLD3/pC/Z8jmYwYwBdPuay7heXqHC18aVRo9V4++GBkpqe8RN4APcu/ZAbDX4AGtjvZHxQjTwVVVVYceOHdi3bx9uuukmzJ49G3369DF7ioRIRwl9Ywc8akvoW7Hztwx9Ghj6CABg7969mD17Nt566y307t0bAwcOFHqjeCkAAs2NgpvmH5AX+ryEW+EPiG4E4+l6ywqOVsM+4O1rrsbtsG8VL11zBa9f+1i/5iJ8XptjKOwpM3sMe8TLMPQ5D0MfCUEd/nr16oX+/fujffv2Qs/1WgD0AvEY+hTcNIMAA74beDEA8Lrbi9fe50DLCHoKc3/zr0KPO3XqFHbt2hVcxjl79mz07t3b5rMjxDzB0Nf/EXtC365nhEPfmjVr8Mwzz6CkpARHjx7F0qVLccMNN4Q8Zvfu3XjsscewevVqNDY24uKLL8Zbb70VXC5dW1uLhx56CG+88Qbq6uowfvx4zJs3D126dJH6u1nB3dGceI4+ffpg8eLF2LdvH+bOnYs33ngDeXl56NevH7p27RpxS+d5T04I+dqNEHhRSmL0BwH4qsFv85nEP2rz44YxHNfqVPD/3b6e8W78FbKTGl0LAYrRV0IAw17LQXmvu/U+d+Nai4S9QCCAo0ePYvfu3SgrK8PUqVOxdOlShj1CDHLmzBkMHjwY06ZNw6RJk5r9/MCBAxg5ciTuvPNOzJkzB5mZmdi1axfS08/fVP6BBx7AsmXL8OabbyIrKwv33XcfJk2ahPXr1zv5q0SEM30kIkePHsUf/vAHzJs3D5mZmejbty/y8/Ob3eQ9GnYGQNGgJ4pMY9HSjKFdgcDsNXbCJLa0aww4G/JFrr2TYaClXW+nrrWZ97id192t6ywS9vx+P0pLS7Fnzx5UVVXh3nvvxf3334+uXbs6cIaEyCE403fxw/bM9P3zWVPLOxMSEprN9E2dOhUpKSl47bXXdJ9TWVmJTp064fXXX8fkyZMBNO2Z0a9fP2zcuBHDhw83/bvIhKGPCFFdXY0///nPeOaZZ3D27Fn07dsXffr0QUpKiqnjWQ2BsoOeCGYMRksziApWjaKd15ehXg52hAFZ192OMNBSr7Xs62zXe1vGNXfzGouEvYaGBuzduxd79uxBq1at8Oijj2LatGnIyMhw4AwJkYsToe/QoUMhoS8tLQ1paZFfSxv6/H4/srKy8Oijj2LdunXYunUr8vPz8fOf/zz4mJUrV2Ls2LE4depUyK1QevTogX//93/HAw88IPX3MwuXdxIhMjIy8LOf/Qz33nsv3n77bTz55JN444030KtXL/Tr1w9ZWVmGjqdeCioaAN0IeqKv7/byQq9hdOmnk9c23GsZvYYtNQQoKL+/2VBg5zXXO7bZ92hLv85mcXq8Vr+e6LX2wrUVCXuVlZXYvXs39u/fj169euFPf/oTJk2ahORkWjgSBwQCTf9kHxNA9+7dQ749a9YszJ4929Chjh8/jurqajz11FOYO3cunn76aXz44YeYNGkSPv30U4wePRrHjh1Dampqs3tfdunSBceOydtYyyocMYghkpOTMWXKFPzwhz/EZ599hueeey74QdbevXuje/fuET/3p0ekAOh20BMl3HmeZBbUDQdevK5GgoIXzKJXiPY5P69ca+15RAoGvL7niXR9vXJttUS61l64tqKf1zt06BD27duHsrIyTJo0CfPnz8fw4cMN11hCWip6M31G8fubxo/rr78+OGM3ZMgQbNiwAfPnz8fo0aPlnKwDMPQRUyQkJKC4uBhvvvkmjh49igULFuDFF1/E559/jl69eqFPnz6m3lzazWCem/2hrFN2lFYJTb/7BZKXLADAEd9p6cc0wgVJbU0+7/z/nw3USTobe1GbR+WaAu5fA6+RndSI7MRUt0/DEHqB5aS/3oUz8TYXJLUNvndj5X2rZWBqK0vPl/V+Fwl7dXV12Lt3L/bv34+EhATce++9mDFjBnJy4ufen4SE4Acgu49xrs+TmZlp+ZYNHTt2RHJyMi6++OKQ7/fr1w/r1q0DAOTk5KC+vh4VFRUhs33l5eWeeu8y9BHLdO3aFbNnz8YTTzyBt99+G8899xzeeOMNFBQUoHfv3ujUqZPpzuSDs6/R/b5Xw6A6GNiF2dDlJbR/J6+ayXDXU+Y1cDtA2qUnr15TNdrrK6NJ4/b1BOy7psrfy6vX1q7x1+zfU9FCtLAXCATw3XffYd++fThw4ACGDBmCefPm4cYbbzT9uXlCYoWEQAAJkpd3yjxeamoqhg4dir1794Z8f9++fejRowcAoKioCCkpKVixYgVuuukmAE23QCsrK0NxcbG0c7EKQx+RRkpKCm6++WbcfPPN2LZtG/70pz9h0aJFyMzMREFBAS666CJTs396eDEMOhH44hW9v50bxtKNaxgPIV4P9d/SCyHBqWsbr9dTjRfCXyyMt9HCXl1dHfbv34+vv/4ap0+fxq233orXX38dgwcPdugMCSFA02aFX331VfDr0tJSbNu2DdnZ2cjLy8MjjzyCm2++GVdccQXGjBmDDz/8EO+99x5WrVoFAMjKysKdd96JBx98ENnZ2cjMzMTMmTNRXFzsmZ07Ae7eSWzmzJkz+Nvf/oYXXngBO3fuREFBAXr16oUuXbo4+rkEO8NgLJiPeMEOk8nr5zxOhAVeV+ew83rG4nX8yawxYX8WCARQXl6O/fv348CBAxgwYADuu+8+TJkyBW3atHHwLAlxF2X3znG9HrBl987l+/9b+JYNq1atwpgxzd+3P/rRj/DKK68AAF5++WX813/9Fw4fPow+ffpgzpw5uP7664OPVW7Ovnjx4pCbs3tpeSdDH3GML7/8EvPnz8drr72G1q1bIz8/H7169ULr1q1dOycrYTAWzUi8YdZs8tp5B1mBgdfUG7TU92SkoAcANTU12L9/P0pLS1FTU4M77rgDM2bMwMCBAx06Q0K8hZdCX0uBoY84Tk1NDd566y0sXLgQGzduRF5eHvLz89GjRw/PbEEdKQzGujmJd8KZTl632EAkNPBaep+W8j6MFPYaGxtx8OBBlJaWBj/bc/fdd+Omm25ytdlJiBcIhr6Cf7cn9B34PUOfBoY+4iplZWV49dVXsXDhQnz//ffo2bMnCgoK0LlzZ09uS/2nOZ+6fQqEtBiU4BBvQYHENtGWbx4/fhxfffUVSktL0alTJ9x111244447kJeX5+BZEuJtGPqch6GPeIJAIICNGzfi5Zdfxl//+lekp6eje/fuKCgoQHZ2ttunZysMkoQQ4n0ihb2TJ0/iwIEDKCsrQ11dHW6++WZMmzYNxcXFnmxgEuI2wdDX82f2hL6v/8DQp4Ghj3iO2tpafPDBB3jttdfw/vvvo127dsEAmJWV5fbpxRQMlIQQYp5IQa+yshIHDhzAoUOHUFFRgYkTJ+L222/HNddcg/T0dAfPkpDYg6HPeRj6iKeprq7Ge++9h1dffRUrVqxAp06dcMEFF+DCCy9Eu3bt2EF1EQZKQojXibbBihECgQAqKirwzTff4MiRI/juu+8wduxY3HHHHbjuuuuQkZEh7bUIiXfOh777kZwoOfT567D86z8y9Glg6CMxw6lTp/DOO+/gb3/7G1asWIGsrCzk5uaiR48ejt8CgtgPQyUh7iMzNMUiyi0WDh48iG+//RaVlZUYO3YspkyZguuvvx7t27d3+xQJiUmCoS9/pj2hr/R5hj4NDH0kJjlz5gw++eQTLFmyBO+99x4AIDc3Fzk5OejWrRt3RiNRYagkTtHSg1OsUVNTg8OHD6O8vBxHjhwBAFx33XWYPHkyrr76at5PjxAJMPQ5D0MfiXkaGxuxfv16fPjhh1i2bBl27dqFzp07o0uXLmjTpo1nbgNBWha337DH7VOIK177e1+3T4HEOZWVlSgvL8fx48fRv39/TJw4Eddccw1GjBjBOkKIZIKhr8d99oS+gy8w9Glg6CNxx4kTJ7BixQqsXLkSe/bsgd/vd/uUCJFKAs4iAbWa79Zrvk4N+SqAdATQytbzIiSW6dmzJyZMmICxY8eiQ4cObp8OIXENQ5/zsHVF4o4OHTpgypQpmDJlitunQgghhBBCwhHwN/2TfUzSjES3T4AQQgghhBBCiH1wpo8QQgghhBDiPIFA0z/ZxyTN4EwfIYQQQgghhMQxnOkjhBBCCCGEOI8/AEDyzJyfM316MPQRQgghhBBCnIfLOx2DyzsJIYQQQgghJI7hTB8hhBBCCCHEeQKwYaZP7uHiBc70EUIIIYQQQkgcw5k+QgghhBBCiPPwM32OwZk+QgghhBBCCIljONNHCCGEEEIIcR6/H4DfhmMSLZzpI4QQQgghhJA4hjN9hBBCCCGEEOfhZ/ocg6GPEEIIIYQQ4jwMfY7B5Z2EEEIIIYQQEsdwpo8QQgghhBDiPP4ApN9N3c+ZPj0400cIIYQQQgghcQxn+gghhBBCCCGOEwj4EQjIvcWC7OPFC5zpI4QQQgghhJA4hjN9hBBCCCGEEOcJBOR/Bo+7d+rCmT5CCCGEEEIIiWM400cIIYQQQghxnoANu3dypk8Xhj5CCCGEEEKI8/j9QILkjVe4kYsuXN5JCCGEEEIIIXEMZ/oIIYQQQgghzsPlnY7BmT5CCCGEEEIIiWM400cIIYQQQghxnIDfj4Dkz/Tx5uz6cKaPEEIIIYQQQuIYzvQRQgghhBBCnIef6XMMzvQRQgghhBBCSBzDmT5CCCGEEEKI8/gDQAJn+pyAoY8QQgghhBDiPIEAANk3Z2fo04PLOwkhhBBCCCEkjuFMHyGEEEIIIcRxAv4AApKXdwY406cLZ/oIIYQQQgghJI7hTB8hhBBCCCHEeQJ+yP9MH2/Orgdn+gghhBBCCCEkjmHoI4QQQgghhDhOwB+w5Z8R1qxZg+uuuw65ublISEjA3//+97CPnTFjBhISEvD73/8+5PsnT57ErbfeiszMTLRr1w533nknqqurTfxF7IOhjxBCCCGEENIiOXPmDAYPHowXX3wx4uOWLl2Kzz77DLm5uc1+duutt2LXrl345JNP8I9//ANr1qzB9OnT7TplU/AzfYQQQgghhBDn8cBn+q699lpce+21ER9z5MgRzJw5Ex999BEmTpwY8rPdu3fjww8/xOeff45LL70UAPD8889jwoQJePbZZ3VDohsw9BFCCCGEEEIcpxENgOQ7LDSiAQBQVVUV8v20tDSkpaUZPp7f78ftt9+ORx55BP3792/2840bN6Jdu3bBwAcA48aNQ2JiIjZt2oQbb7zR8GvaAUMfIYQQQgghxDFSU1ORk5ODdcfet+X4GRkZ6N69e8j3Zs2ahdmzZxs+1tNPP43k5GTcf//9uj8/duwYOnfuHPK95ORkZGdn49ixY4Zfzy4Y+gghhBBCCCGOkZ6ejtLSUtTX19ty/EAggISEhJDvmZnlKykpwR/+8Ad88cUXzY4XazD0EUIIIYQQQhwlPT0d6enpbp9GRNauXYvjx48jLy8v+D2fz4eHHnoIv//97/HNN98gJycHx48fD3leY2MjTp48iZycHKdPOSwMfYQQQgghhBCi4fbbb8e4ceNCvjd+/Hjcfvvt+Ld/+zcAQHFxMSoqKlBSUoKioiIAwMqVK+H3+3HZZZc5fs7hYOgjhBBCCCGEtEiqq6vx1VdfBb8uLS3Ftm3bkJ2djby8PHTo0CHk8SkpKcjJyUGfPn0AAP369cM111yDu+++G/Pnz0dDQwPuu+8+TJ061TM7dwK8Tx8hhBBCCCGkhbJlyxYUFhaisLAQAPDggw+isLAQv/71r4WP8Ze//AV9+/bF2LFjMWHCBIwcORIvvfSSXadsioRAICB5o1RCCCGEEEIIIV6BM32EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxDEMfIYQQQgghhMQxDH2EEEIIIYQQEscw9BFCCCGEEEJIHMPQRwghhBBCCCFxzP8DfXWh2MY7qRIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -851,13 +877,6 @@ "engine": 0 }, "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:00<00:00, 7.12tasks/s]\n" - ] } ], "source": [ @@ -894,6 +913,13 @@ " show=True,\n", " )" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -912,7 +938,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, "vscode": { "interpreter": { diff --git a/examples/notebooks/initial_condition_definition.ipynb b/examples/notebooks/initial_condition_definition.ipynb index 7d08eaa2..89c57ab9 100644 --- a/examples/notebooks/initial_condition_definition.ipynb +++ b/examples/notebooks/initial_condition_definition.ipynb @@ -56,7 +56,7 @@ "output_type": "stream", "text": [ "Starting 6 engines with \n", - "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.04engine/s]\n", + "100%|███████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.10engine/s]\n", "%autopx enabled\n" ] } @@ -93,16 +93,18 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:01\n", - "\n" - ], "text/plain": [ - "" + "[stdout:3] 2024-04-17 21:05:45|INFO|rank 3|ndsl.logging:Constant selected: ConstantVersions.GFS\n" ] }, - "metadata": { - "engine": 0 + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:5] 2024-04-17 21:05:45|INFO|rank 5|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:1] 2024-04-17 21:05:45|INFO|rank 1|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[stdout:4] 2024-04-17 21:05:45|INFO|rank 4|ndsl.logging:Constant selected: ConstantVersions.GFS\n" + ] + }, + "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ - "%px: 0%| | 0/6 [00:01\n", + "\n" + ], "text/plain": [ - "[output:5]" + "" + ] + }, + "metadata": { + "engine": 4 + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[output:0]" ] }, "metadata": {}, @@ -267,7 +301,7 @@ ] }, "metadata": { - "engine": 5 + "engine": 0 }, "output_type": "display_data" }, @@ -275,13 +309,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "%px: 0%| | 0/6 [00:06" ] @@ -566,7 +561,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAHvCAYAAAAIF8G2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSOUlEQVR4nOzdd1QU19sH8O/SmxQbRQVRQewoKhbsFNHYuyZixd57ixqNvcdeYotGY8OOIlHsqCiWRBERxQImGgFBkbLz/uGPfV2pu+wyC3w/58w57sydZ56FRebh3rlXIgiCACIiIiIiIiqytMROgIiIiIiIiMTFwpCIiIiIiKiIY2FIRERERERUxLEwJCIiIiIiKuJYGBIRERERERVxLAyJiIiIiIiKOBaGRERERERERRwLQyIiIiIioiKOhSEREREREVERx8KQiIiIiIioiGNhSERERERERdLFixfRrl072NjYQCKRwM/PT+744cOH4enpiRIlSkAikSA0NDRXcQ8cOAAnJycYGBigRo0aOHXqlNxxQRDw448/wtraGoaGhnB3d0d4eLiK3pVyWBgSEREREVGRlJiYiFq1amHdunVZHndzc8PixYtzHfPq1avo1asXBg4ciDt37qBjx47o2LEjHjx4IGuzZMkSrFmzBhs3bkRwcDCMjY3h5eWFpKSkPL8nZUkEQRBEuzoREREREZEGkEgkOHLkCDp27Jjh2LNnz2Bvb487d+7A2dk52zg9evRAYmIiTpw4IdvXoEEDODs7Y+PGjRAEATY2NpgwYQImTpwIAIiLi4OlpSV27NiBnj17qvJt5ZqOKFclIiIiIqIiKykpCcnJyWqJLQgCJBKJ3D59fX3o6+ur5XrfunbtGsaPHy+3z8vLSzZMNTIyEjExMXB3d5cdNzMzg6urK65du8bCkIiIiIiICr+kpCTY25kg5p80tcQ3MTFBQkKC3L7Zs2djzpw5arnet2JiYmBpaSm3z9LSEjExMbLj6fuyaiMGFoZERERERJRvkpOTEfNPGiJD7GBaTLVTnsR/kMLe5TlevHgBU1NT2f786i0syFgYEhERERFRvjMtpqXywlAW29RUrjDMT1ZWVnjz5o3cvjdv3sDKykp2PH2ftbW1XJucnl9UJ85KSkRERERE+S5NkKplE1vDhg0RGBgoty8gIAANGzYEANjb28PKykquTXx8PIKDg2VtxMAeQyIiIiIiKpISEhLw5MkT2evIyEiEhoaiePHisLW1xX///YeoqCi8fv0aABAWFgbgS69fes9f3759UaZMGSxcuBAAMGbMGDRr1gzLly9H27ZtsW/fPty6dQubN28G8GX207Fjx2L+/PlwcHCAvb09Zs2aBRsbm0xnRM0vLAyJiIiIiCjfSSFACtWunKdovFu3bqFFixay1+mzifr4+GDHjh04duwY+vfvLzuePmPo15PZREVFQUvr/wdiNmrUCHv37sXMmTMxffp0ODg4wM/PD9WrV5e1mTx5MhITE+Hr64vY2Fi4ubnB398fBgYGCr9nVeE6hkRERERElG/i4+NhZmaGmDBbtUw+Y1U5CnFxcaI9Y1hQsceQiIiIiIjynRRSqPqJQNVHLDo4+QwREREREVERxx5DIiIiIiLKd2mCgDQVP9Wm6nhFCQtDIiIiIiLKd5ow+Qz9Pw4lJSIiIiIiKuLYY0hERERERPlOCgFp7DHUGOwxJCIiIiIiKuLYY0hERERERPmOzxhqFvYYEhERERERFXHsMSQiIiIionzH5So0C3sMiYiIiIiIijj2GBIRERERUb6T/m9TdUxSDgtDIiIiIiLKd2lqWK5C1fGKEg4lJSLR7NixAxKJBLdu3cqxbfPmzdG8eXOF4j979gwSiQTLli1TMkPNJZVKUb16dfz8889ip1KklC9fHv369RM7jQLh26/VhQsXIJFIcOHCBYVjbdy4Eba2tvj8+bPqEiQiIjksDIkUlF7MpG8GBgZwdHTEyJEj8ebNG7HT00jr16/Hjh07xE6jUPn999/x4sULjBw5Urbv5s2bGDlyJKpVqwZjY2PY2tqie/fuePz4caYxHj58iNatW8PExATFixfHDz/8gH///VeteX/8+BHr1q2Dp6cnrK2tUaxYMdSuXRsbNmxAWlpahvZSqRRLliyBvb09DAwMULNmTfz+++9qzVFdCuPPwdWrVzFnzhzExsaq9Tr9+vVDcnIyNm3apNbrEFH+ShPUs5FyOJSUSEk//fQT7O3tkZSUhMuXL2PDhg04deoUHjx4ACMjI7HT0yjr169HyZIl89TTcvbsWdUlVAgsXboUPXv2hJmZmWzf4sWLceXKFXTr1g01a9ZETEwM1q5dizp16uD69euoXr26rO3Lly/RtGlTmJmZYcGCBUhISMCyZctw//593LhxA3p6emrJ++nTpxg1ahRatWqF8ePHw9TUFGfOnMHw4cNx/fp17Ny5U679jBkzsGjRIgwePBj16tXD0aNH0bt3b0gkEvTs2VMtOWYnLCwMWlrK/U1VFT8Hmubq1auYO3cu+vXrB3Nzc7ljeflafcvAwAA+Pj5YsWIFRo0aBYlEopK4RET0/1gYEinJ29sbdevWBQAMGjQIJUqUwIoVK3D06FH06tUr03MSExNhbGycn2nmiSAISEpKgqGhodipqK1QKYju3LmDu3fvYvny5XL7x48fj71798p9rXr06IEaNWpg0aJF+O2332T7FyxYgMTERISEhMDW1hYAUL9+fXh4eGDHjh3w9fVVS+5WVla4f/8+qlWrJts3ZMgQDBgwANu3b8esWbNQqVIlAMCrV6+wfPlyjBgxAmvXrgXw5WetWbNmmDRpErp16wZtbW215JkVfX39fL2eJlD2/y1Vf626d++OJUuW4Pz582jZsqVKYxORODj5jGbhUFIiFUm/UYmMjATwZeiTiYkJIiIi0KZNGxQrVgx9+vQB8GV43KpVq1CtWjUYGBjA0tISQ4YMwfv37+Vi3rp1C15eXihZsiQMDQ1hb2+PAQMGyLXZt28fXFxcUKxYMZiamqJGjRpYvXq17PicOXMy/et6+pDYZ8+eyfaVL18e3333Hc6cOYO6devC0NBQNnQrNjYWY8eORbly5aCvr49KlSph8eLFkEqz/y+4fPny+OuvvxAUFCQbfvvts4KfP3/G+PHjUapUKRgbG6NTp04ZhjRm9oxhUlIS5syZA0dHRxgYGMDa2hqdO3dGRERElvkIggBfX1/o6enh8OHDcl+LK1eu5JgHAJw+fRpNmjSBsbExihUrhrZt2+Kvv/6SaxMTE4P+/fujbNmy0NfXh7W1NTp06CD39c7N9zczfn5+0NPTQ9OmTeX2N2rUKEMB7eDggGrVquHhw4dy+w8dOoTvvvtOVhQCgLu7OxwdHfHHH39ke/3Zs2dDS0sLgYGBcvvTv653797N8tySJUvKFYXpOnXqBAByeR49ehQpKSkYPny4bJ9EIsGwYcPw8uVLXLt2Lds8038Gnz59Ci8vLxgbG8PGxgY//fQThG/WuUpMTMSECRNkn+/KlStj2bJlGdp9+9xcbj872f0cpKSkYO7cuXBwcICBgQFKlCgBNzc3BAQEZPv+0q998eJFDBkyBCVKlICpqSn69u2b4f8SIHef2+z+3/rWnDlzMGnSJACAvb297H2lf8Zz+zxmcHAwWrduDTMzMxgZGaFZs2a4cuVKhnYuLi4oXrw4jh49mmNMIiJSHHsMiVQkvRgpUaKEbF9qaiq8vLzg5uaGZcuWyYaYDhkyBDt27ED//v0xevRoREZGYu3atbhz5w6uXLkCXV1d/PPPP/D09ESpUqUwdepUmJub49mzZ7JiBgACAgLQq1cvtGrVCosXLwbw5cb6ypUrGDNmjFLvIywsDL169cKQIUMwePBgVK5cGR8/fkSzZs3w6tUrDBkyBLa2trh69SqmTZuG6OhorFq1Kst4q1atwqhRo2BiYoIZM2YAACwtLeXajBo1ChYWFpg9ezaePXuGVatWYeTIkdi/f3+WcdPS0vDdd98hMDAQPXv2xJgxY/DhwwcEBATgwYMHqFixYqbnDBgwAPv378eRI0fQtm1bhfPYvXs3fHx84OXlhcWLF+Pjx4/YsGED3NzccOfOHZQvXx4A0KVLF/z1118YNWoUypcvj3/++QcBAQGIioqSvc7p+5uVq1evonr16tDV1c2xrSAIePPmjVwx9urVK/zzzz+yHu+v1a9fH6dOnco25syZM3H8+HEMHDgQ9+/fR7FixXDmzBls2bIF8+bNQ61atXLM61sxMTEAvhSO6e7cuQNjY2NUqVIlQ47px93c3LKNm5aWhtatW6NBgwZYsmQJ/P39MXv2bKSmpuKnn34C8OVr1L59e5w/fx4DBw6Es7Mzzpw5g0mTJuHVq1dYuXJljvnn9NnJ7udgzpw5WLhwIQYNGoT69esjPj4et27dwu3bt+Hh4ZHjtUeOHAlzc3PMmTMHYWFh2LBhA54/fy6b7AXI/ecWyPr/rW917twZjx8/xu+//46VK1fKvnelSpXKMed0f/75J7y9veHi4iL7g8P27dvRsmVLXLp0Sfa9TlenTp1Mi0YiKpikkCANqh0aLlVxvCJFICKFbN++XQAgnDt3Tvj333+FFy9eCPv27RNKlCghGBoaCi9fvhQEQRB8fHwEAMLUqVPlzr906ZIAQNizZ4/cfn9/f7n9R44cEQAIN2/ezDKXMWPGCKampkJqamqWbWbPni1k9qOe/j4iIyNl++zs7AQAgr+/v1zbefPmCcbGxsLjx4/l9k+dOlXQ1tYWoqKisry+IAhCtWrVhGbNmmWZg7u7uyCVSmX7x40bJ2hrawuxsbGyfc2aNZOL8euvvwoAhBUrVmSImx4rMjJSACAsXbpUSElJEXr06CEYGhoKZ86cUSqPDx8+CObm5sLgwYPlzo+JiRHMzMxk+9+/fy+7blZy8/3NStmyZYUuXbrkqu3u3bsFAMK2bdtk+27evCkAEHbt2pWh/aRJkwQAQlJSUrZx79+/L+jp6QmDBg0S3r9/L5QpU0aoW7eukJKSotibEQTh8+fPQtWqVQV7e3u589u2bStUqFAhQ/vExMRMf7a+lf4zOGrUKNk+qVQqtG3bVtDT0xP+/fdfQRAEwc/PTwAgzJ8/X+78rl27ChKJRHjy5Ilsn52dneDj4yN7rchnOKufg1q1aglt27bN9r1kJv3aLi4uQnJysmz/kiVLBADC0aNHBUHI/edWELL+fysrS5cuzfD/SLpvv1bnz58XAAjnz58XBOHL98LBwUHw8vKS+9p9/PhRsLe3Fzw8PDLE9PX1FQwNDXOVGxFprri4OAGAcPtvS+HxC2uVbrf/thQACHFxcWK/zQKHQ0mJlOTu7o5SpUqhXLly6NmzJ0xMTHDkyBGUKVNGrt2wYcPkXh84cABmZmbw8PDA27dvZZuLiwtMTExw/vx5AJBN5HDixAmkpKRkmoO5uTkSExNzHHKmCHt7e3h5eWXIuUmTJrCwsJDL2d3dHWlpabh48WKerunr6ys33LVJkyZIS0vD8+fPszzn0KFDKFmyJEaNGpXh2LdDZ5OTk9GtWzecOHECp06dgqenp1J5BAQEIDY2Fr169ZL7Omhra8PV1VX2vTM0NISenh4uXLiQ6ZA+IHff36y8e/cOFhYWObZ79OgRRowYgYYNG8LHx0e2/9OnTwAyfwbMwMBArk1Wqlevjrlz52Lr1q3w8vLC27dvsXPnTujoKD4QZeTIkfj777+xdu1aufM/ffqUpxy/jp9OIpFg5MiRSE5Oxrlz5wAAp06dgra2NkaPHi133oQJEyAIAk6fPp3jNZT5DKczNzfHX3/9hfDw8Fy9n8yu/XXv8bBhw6CjoyPr+c3t5/Zr3/6/pQ6hoaEIDw9H79698e7dO1leiYmJaNWqFS5evJhhqLqFhQU+ffqEjx8/qj0/IlI/qaCejZTDoaRESlq3bh0cHR2ho6MDS0tLVK5cOcMMfDo6OihbtqzcvvDwcMTFxaF06dKZxv3nn38AAM2aNUOXLl0wd+5crFy5Es2bN0fHjh3Ru3dv2c3y8OHD8ccff8Db2xtlypSBp6cnunfvjtatWyv9vuzt7TPsCw8Px71797IcIpaes7K+fs4NgKzoyaqoAr4M3a1cuXKuCpGFCxciISEBp0+fznYtxJzySL9xz2riC1NTUwBfCq7FixdjwoQJsLS0RIMGDfDdd9+hb9++sLKyApC77292BCH733wxMTFo27YtzMzMcPDgQblJWtInE8psTbikpCS5NtmZNGkS9u3bhxs3bmDBggWoWrVqjud8a+nSpbIhqG3atJE7ZmhomOcctbS0UKFCBbl9jo6OACB7Fu758+ewsbFBsWLF5NqlD2HNTXGnzGc43U8//YQOHTrA0dER1atXR+vWrfHDDz+gZs2aOZ4LfHmO9GsmJiawtraWvb/cfm7TZfb/ljqk5/X1Hy2+FRcXJ/dHkPTPPWclJSoc0tQwlFTV8YoSFoZESqpfv36mz2h9TV9fP0OxKJVKUbp0aezZsyfTc9KLL4lEgoMHD+L69es4fvw4zpw5gwEDBmD58uW4fv06TExMULp0aYSGhuLMmTM4ffo0Tp8+je3bt6Nv376yaf+zuoHKbM04IPObbalUCg8PD0yePDnTc9JvtJWV1cySORU/ueXl5QV/f38sWbIEzZs3l/U4KZpHeu/F7t27ZQXe174uUseOHYt27drBz88PZ86cwaxZs7Bw4UL8+eefqF27dq6+v1kpUaJEtgVHXFwcvL29ERsbi0uXLsHGxkbuuLW1NQAgOjo6w7nR0dEoXrx4rorTp0+fym7u79+/n2P7b+3YsQNTpkzB0KFDMXPmzAzHra2tcf78eQiCIPc5Ts/72/clprx8hps2bYqIiAgcPXoUZ8+exdatW7Fy5Ups3LgRgwYNynNuinxugcz/31KH9LyWLl0KZ2fnTNt8+3Pw/v17GBkZacRMyUREhQ0LQ6J8VrFiRZw7dw6NGzfO1c1NgwYN0KBBA/z888/Yu3cv+vTpg3379sluGPX09NCuXTu0a9cOUqkUw4cPx6ZNm2TT/qf/tT02NlZunbHc9IJ8nXNCQgLc3d0Ve7P/o46/7lesWBHBwcFISUnJcRKWBg0aYOjQofjuu+/QrVs3HDlyRKkhj+kT2pQuXTpXX4uKFStiwoQJmDBhAsLDw+Hs7Izly5fLLRuR0/c3M05OTrLZb7+VlJSEdu3a4fHjxzh37lymvXhlypRBqVKlcOvWrQzHbty4keVN+tekUin69esHU1NTjB07FgsWLEDXrl3RuXPnHM8Fvsw4OmjQIHTu3Bnr1q3LtI2zszO2bt2Khw8fyr2P4OBg2fHc5Pn06VO5P148fvwYAGQTrtjZ2eHcuXP48OGDXK/ho0ePZMdVIbufg+LFi6N///7o378/EhIS0LRpU8yZMydXhWF4eDhatGghe52QkIDo6GhZD6yin1tF5OVnOz0vU1PTXOcVGRmZYTIiIiq42GOoWfiMIVE+6969O9LS0jBv3rwMx1JTUxEbGwvgy1/Gv+1tSL8RTh9e9+7dO7njWlpasuFn6W3Sb76+fg4wMTExw0LiOeV87do1nDlzJsOx2NhYpKamZnu+sbGx7H2pSpcuXfD27VvZ+nZfy6yXxt3dHfv27YO/vz9++OGHHJfZyIyXlxdMTU2xYMGCTJ8LTF+e4OPHj7LhjukqVqyIYsWKyb4vufn+ZqVhw4Z48OBBhnZpaWno0aMHrl27hgMHDqBhw4ZZxujSpQtOnDiBFy9eyPYFBgbi8ePH6NatW7bXB4AVK1bg6tWr2Lx5M+bNm4dGjRph2LBhePv2bY7nXrx4ET179kTTpk2xZ8+eLHunOnToAF1dXaxfv162TxAEbNy4EWXKlEGjRo1yvBYAuc+IIAhYu3YtdHV10apVKwBAmzZtkJaWluGztHLlSkgkEnh7e+fqOjnJ6ufg259jExMTVKpUKcfPQbrNmzfLfR43bNiA1NRUWd65/dwqI319Q2V+vl1cXFCxYkUsW7YMCQkJucrr9u3buf6+ExGRYthjSJTPmjVrhiFDhmDhwoUIDQ2Fp6cndHV1ER4ejgMHDmD16tXo2rUrdu7cifXr16NTp06oWLEiPnz4gC1btsDU1FTWEzBo0CD8999/aNmyJcqWLYvnz5/jl19+gbOzs+yv6p6enrC1tcXAgQMxadIkaGtr49dff0WpUqUQFRWVq5wnTZqEY8eO4bvvvkO/fv3g4uKCxMRE3L9/HwcPHsSzZ8/klhn4louLCzZs2ID58+ejUqVKKF26dJ4XqO7bty927dqF8ePH48aNG2jSpAkSExNx7tw5DB8+HB06dMhwTseOHWVDbU1NTWVrNOaWqakpNmzYgB9++AF16tRBz549ZV/HkydPonHjxli7di0eP36MVq1aoXv37qhatSp0dHRw5MgRvHnzBj179gSAXH1/s9KhQwfMmzcPQUFBchPpTJgwAceOHUO7du3w33//yfVMAsD3338v+/f06dNx4MABtGjRAmPGjEFCQgKWLl2KGjVqoH///tle/+HDh5g1axb69euHdu3aAfgyLNTZ2Vn23GtWnj9/jvbt20MikaBr1644cOCA3PGaNWvK/rhRtmxZjB07FkuXLkVKSgrq1asHPz8/XLp0CXv27MnV4vYGBgbw9/eHj48PXF1dcfr0aZw8eRLTp0+XDdtu164dWrRogRkzZuDZs2eoVasWzp49i6NHj2Ls2LGZLn2ijKx+DqpWrYrmzZvL1um7desWDh48KDdpTnaSk5Nln7ewsDCsX78ebm5uaN++PYDcf26VfU8AMGPGDPTs2RO6urpo166drGDMjpaWFrZu3Qpvb29Uq1YN/fv3R5kyZfDq1SucP38epqamOH78uKx9SEgI/vvvv0x/tomoYJIKEkgFFS9XoeJ4RYo4k6ESFVzpU8TntMyAj4+PYGxsnOXxzZs3Cy4uLoKhoaFQrFgxoUaNGsLkyZOF169fC4IgCLdv3xZ69eol2NraCvr6+kLp0qWF7777Trh165YsxsGDBwVPT0+hdOnSgp6enmBraysMGTJEiI6OlrtWSEiI4OrqKmuzYsWKLJeryGra/A8fPgjTpk0TKlWqJOjp6QklS5YUGjVqJCxbtkxuqvzMxMTECG3bthWKFSsmAJBN2Z/V1/Lbae0FIeNyFYLwZVr7GTNmCPb29oKurq5gZWUldO3aVYiIiBAEQX65iq+tX79eACBMnDhR4TzS93t5eQlmZmaCgYGBULFiRaFfv36y783bt2+FESNGCE5OToKxsbFgZmYmuLq6Cn/88YcsRm6+v9mpWbOmMHDgQLl9zZo1EwBkuX3rwYMHgqenp2BkZCSYm5sLffr0EWJiYrK9bmpqqlCvXj2hbNmycksxCIIgrF69WgAg7N+/P8vz07+mWW2zZ8+Wa5+WliYsWLBAsLOzE/T09IRq1aoJv/32Ww5fnS/SfwYjIiJk79PS0lKYPXu2kJaWJtf2w4cPwrhx4wQbGxtBV1dXcHBwEJYuXSq3jIIgZL1cRW4+O1n9HMyfP1+oX7++YG5uLhgaGgpOTk7Czz//nOPPVfq1g4KCBF9fX8HCwkIwMTER+vTpI7x79y5D+5w+t19/zRQxb948oUyZMoKWlpbc/yk5LVeR7s6dO0Lnzp2FEiVKCPr6+oKdnZ3QvXt3ITAwUK7dlClTBFtb2wzfEyIqeNKXq7j8wEYIfV5WpdvlBzZcrkJJEkFQ0ewORESUb3bv3o0RI0YgKipK7tlR+n/9+vXDwYMHMx2mWBjs2LED/fv3x82bN3OcCKug+/z5M8qXL4+pU6dizJgxYqdDRHkUHx8PMzMzBD0oA5Niqn2yLeGDFM2qv0JcXFyGWZcpe3zGkIioAOrTpw9sbW2znLiFqDDZvn07dHV1MXToULFTISIqtPiMIRFRAaSlpYUHDx6InQZRvhg6dCiLQqJCKA1aSFNxP1Xmi3FRbrAwJCIiIiKifCeoYfIZgZPPKI3PGBIRERERUb5Jf8Yw8L4tjFX8jGHiByla1YjiM4ZKYI8hERERERHlOy5wr1k4+QwREREREVERxx5DKnTevn2LwMBAnD17NtcLuBMVJIkpyfiUkip7/TktNdN2+tr//1+8oa4OjHX11J4bUUFlZ2cHDw8PtGrVCiVLlhQ7HaIiIU3QQpqg4sln+JCc0lgYUoGXmpqKy5cv4+zZszh79izu3LmD6tWrw9PTE40aNYJEwiEFlL+mnDsjdgqFzmJ3L7FToEJMEAQ8evQICxYsQO/evVG7dm14enrC09MTbm5u0NHh7RIRFX6cfIYKpMTERJw9exZ+fn44ceIEdHV14eXlBQ8PD7i7u8PKykrsFEnDVVizXOwUqIh4OnqC2CmQAmJiYnDu3DkEBATgzJkzSElJwXfffYeOHTvC09MTxsbGYqdIVOClTz5z8l4FGBfTVmnsxA9paFvzKSefUQILQyow3r9/Dz8/P/j5+eHs2bMoV64cOnXqhI4dO8LV1RVaWnxktjBh4UYkvqJe1EqlUgQHB8PPzw9HjhzBixcv4OnpiY4dO6Jjx46wsLAQO0WiAomFoWZiYUgaLSEhAceOHcPvv/+OM2fOoFatWujcuTM6duwIJycnDhMVEQs3ItJ0qixs04eb+vn54fDhw7h37x68vLzQs2dPtG/fHiYmJiq7FlFhl14YHrtXUS2FYfuaESwMlcDCkDROUlISTp06hX379uHEiROoWLEievXqhR49eqBixYpip1egsHgjIlJedoXlkydPsH//fuzbtw8RERFo164devbsCW9vbxgYGORjlkQFT3pheOSug1oKw061wlkYKoGFIWkEQRBw9epV7Ny5E/v370epUqVkxWD16tXFTk+tWLwREWm+7IrEBw8eYN++fdi3bx/+/fdf9OjRAz4+PpwAjSgLLAw1EwtDEtXz58+xe/du7Ny5E2/fvkWvXr3g4+OD+vXra+QvUxZxRERFW3YFoiAICA4Oxs6dO7Fv3z6UKlUKffv2Rd++fWFra5uPWRJptvTC8NBdR7UUhl1qPWZhqAQWhpTvPn78iIMHD2Lnzp24dOkSPD094ePjg3bt2mnM8BsWgERElJPsisSkpCQcP34cO3bsQEBAAJo0aQIfHx907doVRkZG+ZglkeZhYaiZWBhSvrl37x42b96M3377DWXLlkX//v3Rp08fUZeWYAFIRER5ldMkNzExMdizZw+2b9+Oly9f4ocffsDgwYNRs2bNfMqQSLOkF4YH7jrBSMWF4ccPaehW6xELQyWwMCS1SkxMxP79+7F582bcu3cPPXr0gK+vLxo0aJCvQ0VZABIRUX7Iaajp9evXsXnzZuzfvx81a9aEr68vevTowfURqUhhYaiZWBiSWoSGhmLTpk3Ys2cP7O3tMWTIEPTu3Rvm5uZqvS4LQCIi0gQ59SLGxsZiz5492Lx5MyIjI9GnTx8MGTIEzs7O+ZMgkYjSC8N9oVXVUhj2dP6bhaESWBiSyiQnJ+Pw4cNYu3Yt7ty5g169esHX1xf16tVTee8gC0AiIioIcioQBUHAzZs3sXnzZvz++++oU6cORo4cic6dO0NXVzefsiTKXywMNZOW2AlQwRcdHY25c+eifPnymDlzJrp06YKXL19i69ateZ5dtMKa5ZluREREBUFOv7ckEgnq16+PrVu34uXLl+jcuTNmzJgBOzs7zJ07FzExMfmYLVH+kkJLLZsiLl68iHbt2sHGxgYSiQR+fn5yxwVBwI8//ghra2sYGhrC3d0d4eHh2cYsX748JBJJhm3EiBGyNs2bN89wfOjQoQrlrmosDEkp6esO9urVC+XLl8eNGzewbds2PH78GOPGjYOFhYVScVkAEhFRYZSb320WFhYYN24cHj9+jK1btyI4OBh2dnbo3bs3rl69Cg7yosImTZCoZVNEYmIiatWqhXXr1mV6fMmSJVizZg02btyI4OBgGBsbw8vLC0lJSVnGvHnzJqKjo2VbQEAAAKBbt25y7QYPHizXbsmSJQrlrmo6ol6dCpzU1FQcOnQIy5YtQ3h4OAYMGIC//voLlSpVUjomC0AiIipK0n/vZTXMVEtLC23atEGbNm3w5MkTrF+/Hm3atIGDgwMmTpyILl26QEeHt3BE2YmPj5d7ra+vD319/QztvL294e3tnWkMQRCwatUqzJw5Ex06dAAA7Nq1C5aWlvDz80PPnj0zPa9UqVJyrxctWoSKFSuiWbNmcvuNjIxEnZ3/W+wxpFxJSEjA6tWrUalSJUybNg19+/bFy5cvsWLFCoWLQvYKEhER5TzMFAAqVaqEFStW4OXLl+jbty+mTp0KBwcHrFmzBgkJCfmUKZF6pEFLLRsAlCtXDmZmZrJt4cKFCucXGRmJmJgYuLu7y/aZmZnB1dUV165dy1WM5ORk/PbbbxgwYECGx6v27NmDkiVLonr16pg2bRo+fvyocI6qxD83Ubaio6Pxyy+/YMOGDXBwcMDSpUvRqVMnhf9SyQKQiIgoczn1IAKAiYkJRo0ahWHDhuHIkSNYunQpZs+ejWHDhmHUqFGwtrbOr3SJCoQXL17ITT6TWW9hTtKf8bW0tJTbb2lpmevnf/38/BAbG4t+/frJ7e/duzfs7OxgY2ODe/fuYcqUKQgLC8Phw4cVzlNVWBhSpsLCwrB48WLs3bsXnp6eOHr0KJo0aaLQRDIsBomIiHIvNwWijo4OunXrhq5du+LSpUtYtmwZ7O3t0bt3b0yZMgWVK1fOr3SJ8kwqaEEqqHYAo/R/z+KamppqxKyk27Ztg7e3N2xsbOT2+/r6yv5do0YNWFtbo1WrVoiIiEDFihXzO00AHEpK3wgLC8P333+PWrVqQSKRIDQ0FMeOHUPTpk1zLAo5RJSIiCjvcvN7VCKRoGnTpjh27Bju3LkDiUSCWrVq4YcffkBYWFg+ZUpUuKU///fmzRu5/W/evMnVs4HPnz/HuXPnMGjQoBzburq6AgCePHmiRKaqwcKQAACPHj2SFYRGRkZ49OgRtm3bBicnp2zPYyFIRESkHrn9/VqlShVs27YNDx8+hIGBAWrVqoXvv/+eBSJpPHU+Y6gK9vb2sLKyQmBgoGxffHw8goOD0bBhwxzP3759O0qXLo22bdvm2DY0NBQARB0WzsKwiHv06BH69OkDZ2dnWUG4efNmlC9fPtP27BUkIiLKX7n9nWtvb48tW7bg0aNHMDIykhWIjx49yocsiQqmhIQEhIaGygqzyMhIhIaGIioqChKJBGPHjsX8+fNx7Ngx3L9/H3379oWNjQ06duwoi9GqVSusXbtWLq5UKsX27dvh4+OTYW6OiIgIzJs3DyEhIXj27BmOHTuGvn37omnTpqhZs6a633KWWBgWUc+fP0ffvn3h7OwMExOTXBeEREREJI7c/i4uX748Nm/eLCsQnZ2d0bdvX0RFReVDlkS5J4Xq1zKUKpjDrVu3ULt2bdSuXRsAMH78eNSuXRs//vgjAGDy5MkYNWoUfH19Ua9ePSQkJMDf3x8GBgayGBEREXj79q1c3HPnziEqKgoDBgzIcE09PT2cO3cOnp6ecHJywoQJE9ClSxccP35cwexVSyJwtdQiJTY2FgsWLMDatWvRtWtX/PTTT1kWgwAnkCEiItJE2U1Q861nz55h1qxZOHToEEaNGoVp06bB3NxcfckR5SA+Ph5mZmbYcLseDE1UOxfmp4RUDKtzE3FxcRox+UxBwh7DIiI5ORmrVq1CxYoVcfv2bVy5cgW7du3KtCjkUFEiIiLNpsjv6fLly2P37t24fPkybt26hUqVKmH16tVITk5Wc5ZEVJCwx7CQEwQBBw4cwLRp02BkZIQlS5agdevWmc4wykKQiIioYMptD6IgCDh9+jQmT56MT58+YeHChejWrZtCy1ER5VV6j+HaEFe19BiOdAlmj6ESWBgWYqGhoRg5ciSePn2KefPmoV+/ftDW1pZrw2KQiIiocFBkeGlqaip27tyJWbNmoUKFCli3bh1q1aqlxuyI/h8LQ83EoaSF0Pv37zFy5Eg0bNgQTZo0wePHjzFw4EC5opBDRYmIiAoXRX636+joYODAgXj8+DHc3NzQoEEDjBo1CrGxsepNkugrUkjUspFyWBgWIlKpFL/++isqV66M8PBwhIaGYuHChTAxMQHAZweJiIiKAkV+15uYmGDRokUIDQ1FWFgYHB0d8euvv0IqVXRuRyIq6DiUtJAICQnBiBEjEB0djZUrV6JTp06y5wVYCBIRERVNigwvFQQBR44cwbhx42BjY4O1a9fCxcVFjdlRUZU+lHTlrUZqGUo6ru5VDiVVAnsMC7iEhASMGzcOTZo0gYeHBx4+fIjOnTtDIpGwd5CIiKiIU+ReQCKRoHPnznj48CHc3d3RpEkTjBs3DgkJCWrOkog0AQvDAuzkyZOoWrUqQkJCcPv2bcybNw9GRkYsCImIiEiOIvcFRkZGmDdvHkJCQhASEoJq1arh5MmTasyOiqo0aKllI+Wotu+W8kVMTAzGjBmDs2fPYunSpRgwYAC0tLRYDBIREVGW0u8Tcju8tEqVKrhw4QK2bduG77//Hp6enli9ejWsrKzUmSYVIVJBAqmg2sliVB2vKGFJXYBIpVJs2bIFVapUgUQiwcOHDzFo0CBUWruSRSERERHliiL3DFpaWhg8eDAePnwI4EuxuGXLFnCKCqLCh5PPFBDPnj3DwIEDER4ejg0bNqBt27YsBomIiChPFJmcBvjyGMuwYcPg4OCAbdu2oXz58upJjAq19MlnFt1sBgMVTz6TlJCKqfWCOPmMEthjqOGkUik2bNiAGjVqoFKlSnjw4AFGRTxiUUhERER5puj9RNu2bfHgwQNUqlQJNWvWxMaNG7m0BVEhwR5DDRYZGYmBAwciIiIC27Ztg+/fd8VOiYiIiAopRXsPAwICvjzSUqkSew9JIek9hgtutFBLj+H0+ufZY6gE9hhqoPRewpo1a8LR0RGSEb4sComIiEitFO099PDwwP3791GpUiXUqFEDGzZsYO8hUQHGwlDDvHr1Cq1bt8aiRYtg0rc3zlZ1gJaBgdhpERERURGgaHFoamqKTZs24ciRI1i0aBFat26NV69eqSk7KmzSIFHLRsphYahBfv/9d1SvXh1lypSBZIQvDCs7ip0SERERFTHKrIfs7u6Oe/fuwcbGBjVq1MC+ffvUlB0RqQvXMdQA//33H0aMGIFz587h119/RadOnWTHOMkMERERiaHCmuUKPXdoZmaGHTt24PDhw/D19cXRo0exfv16WFhYqDFLKsikghakgmr7qVQdryjhV05kZ8+eRY0aNfDhwwfcv39frigEvjwI/u1GRERElB+U+QN1586d8eDBA8THx6NGjRoICAhQQ2ZEpGqclVQknz9/xtSpU7F161YsX74cgwcPhkSi+Jho9igSERFRflD0j9OCIGDLli2YMGECBg0ahEWLFkFfX19N2VFBkj4r6Y/B7jAw0VVp7KSEFPzkeo6zkiqBPYYiePjwIVxdXXHp0iWEhITA19dX4aJQmfH/RERERMpS9L5DIpHA19cXISEhuHTpElxdXfHw4UM1ZUcFUfpQUlVvpBx+5fKRIAjYvHkz6tWrBy8vL1y9ehWOjopPMMOCkIiIiMSgzD2Io6Mjrl69Ci8vL9SrVw9btmwBB6wRaR5OPpNP3r17h8GDB+P69es4evQoWrVqpXAMFoREREQktvT7EUWGlurp6WHx4sXw8PBA37594e/vjy1btqB48eLqSpMKgDRBC2kq7uFTdbyihF+5fHD58mU4OzsjLS0N9+7dU7go5LBRIiIi0jTK3JukL2uRmpqKWrVq4fLly2rIjIiUwcJQjaRSKRYuXAgvLy9MmTIFfn5+KFmyZK7PZ0FIREREmkyZ+5SSJUvCz88PkydPhpeXFxYtWgSpVKqG7EjTCZBAquJN4AL3SuNQUjX5559/0LdvX4SHh+PixYtwcXHJ9bksBomIiKigyMt9i/lwX2zZsgVBQUHYtWsXSpUqpcLMiEgR7DFUg6CgIDg7O8PU1BS3b9/OdVHIHkIiIiIqSvTLlUWab3+YmJjA2dkZFy9eFDslykfpzxiqeiPl8CunQlKpFD///DPatGmDmTNnYv/+/TAzM8vxPBaEREREVFRpGRrilpsrpk+fDm9vbyxYsIBDS4lEwKGkKvL+/Xv07dsXf/31Fy5duoQ6derkeA6LQSIiIqIvax4uT0vCpUuX0LVrV1y/fh27du2Cubm52KmRGkkFCaSCap8JVHW8ooQ9hioQGhqKunXrQhAEhISE5FgUsoeQiIiIKKOul88jJCQEaWlpcHFxwd27d8VOidQoDVpq2Ug5/Mrl0c6dO+Hm5ob+/fvj2LFjsLCwyLY9C0IiIiKirLns/hXHjx9Hv3790LhxY+zatUvslIiKBA4lVdLnz58xduxY/PHHHzh06BC8vLyybc+CkIiIiCh3Kq1dCZgZ4dChQ+jduzeuXbuGVatWQV9fX+zUSIU4lFSzsDBUQkxMDDp37ozk5GTcvn0bdnZ2WbZlQUhERESknGFhD3D79m106dIFLVu2xKFDh2BlZSV2WkSFEoeSKujWrVuoW7cuKlSogEuXLrEoJCIiIlKjFkcP4tKlSyhfvjzq1auHW7duiZ0SqYgUWmrZSDn8yingt99+Q/PmzTF27Fjs3r0bhoaGmbbj5DJEREREqlNty3r89ttvGD16NJo3b449e/aInRJRocOhpLmQlpaGqVOnYuvWrTh48CBat26daTsWg0RERETqIZFIMGnSJNSoUQO9evXC3bt3sXDhQmhra4udGikpTZAgTcXPBKo6XlHCwjAH8fHx6NmzJyIjIxEcHAxHR8cMbVgQEhEREalXhTXL8XT0BLRu3RrBwcHo0KEDHjx4gH379sHU1FTs9IgKPA4lzUZUVBTc3NyQlpaG69evsygkIiIiElH6fZejoyOuX7+O1NRUuLm5ISoqSuTMSBnps5KqeiPlsDDMwo0bN1C/fn00btwYJ0+ehJmZmdxxPkdIRERElP/S77/MzMxw8uRJNGrUCPXr18fNmzdFzowUJQhakKp4EwSWN8riVy4TBw8eRMuWLTF16lSsX78eOjryI25ZEBIRERGJJ/1eTFdXFxs2bMCUKVPQokULHDp0SOTMiAouPmP4FUEQsGTJEvz888/4/fff0a5dO7njLAiJiIiINEP6M4cSiQTjxo1DxYoV0adPH0RERGDSpEmQSDikUNOlQYI0qHjyGRXHK0rYY/g/aWlpGD16NFatWoWgoCAWhUREREQa7uv7s/bt2+PixYtYuXIlxowZg7S0NBEzIyp4WBgCSEpKQs+ePREQEIBr166hdu3asmN8lpCIiIhIc319n1a7dm1cvXoVZ86cQa9evZCUlCRiZpQTqaCOCWjEflcFV5EvDGNjY9G6dWu8ePECly9fRvny5WXHWBASERERab6v79ns7e1x5coVREVFwdvbG3FxcSJmRlRwFOnC8NWrV2jatClMTEwQGBiIkiVLAmAvIREREVFB8/W9W8mSJREYGAgjIyM0bdoUr1+/FjEzyoqqZyRN30g5RfYr9/TpU7i5uaFevXrw8/ODsbExAPYSEhERERVUX9/HGRsbw8/PDy4uLmjcuDEiIyNFzIxI8xXJwvDRo0do2rQpOnbsiK1bt0JHR4e9hERERESFwNf3c7q6uti2bRs6dOiAJk2aICwsTMTM6FtSSNSykXKKXGF47949NGvWDP369cOKFSsgkUhYEBIREREVUhKJBCtXroSPjw+aNm2K+/fvi50S/U+aIFHLpoiLFy+iXbt2sLGxgUQigZ+fn9xxQRDw448/wtraGoaGhnB3d0d4eHi2MefMmQOJRCK3OTk5ybVJSkrCiBEjUKJECZiYmKBLly548+aNQrmrWpEqDG/duoUWLVpg9OjRmD9/PotCIiIiokLo2/s7iUSCn3/+GaNHj0bz5s0REhIiUmakaRITE1GrVi2sW7cu0+NLlizBmjVrsHHjRgQHB8PY2BheXl45znhbrVo1REdHy7bLly/LHR83bhyOHz+OAwcOICgoCK9fv0bnzp1V9r6UUWQWuL927Rq8vb0xZ84cjB07lgUhERERUSFWYc1yPB09QW7fjBkzYGRkhFatWuH06dNo2LChSNkRALVMFqNoPG9vb3h7e2d6TBAErFq1CjNnzkSHDh0AALt27YKlpSX8/PzQs2fPLOPq6OjAysoq02NxcXHYtm0b9u7di5YtWwIAtm/fjipVquD69eto0KCBQu9BVYpEj2FISAi8vb2xYMECFoVERERERURm93zjxo3Dzz//DG9vb/YcFmLx8fFy2+fPnxWOERkZiZiYGLi7u8v2mZmZwdXVFdeuXcv23PDwcNjY2KBChQro06cPoqKiZMdCQkKQkpIiF9fJyQm2trY5xlWnQl8Y3rt3D56enpg9ezaGDx/OopCIiIioCMns3m/EiBH48ccf4enpyWcORSSFqhe3///JZ8qVKwczMzPZtnDhQoXzi4mJAQBYWlrK7be0tJQdy4yrqyt27NgBf39/bNiwAZGRkWjSpAk+fPggi6unpwdzc3OF4qpboR5K+ujRI7i7u2P8+PH4RVuKX1gUEhERERGA8ePH4+PHj3B3d0dQUFCGyUGoYHvx4gVMTU1lr/X19fPt2l8PTa1ZsyZcXV1hZ2eHP/74AwMHDsy3PBRVaHsMIyIi0KpVK/j6+mJbMQOx0yEiIiIikWQ1YmzmzJkYNGgQWrVqhYiIiHzOigQ1LFUh/K/H0NTUVG5TpjBMf0bw29lC37x5k+Xzg5kxNzeHo6Mjnjx5IoubnJyM2NjYPMVVtUJZGL5+/RqtWrVCz549MW/evAwPHhMRERFR0ZJVcTh//nz06NED7u7ueP36dT5nRZrM3t4eVlZWCAwMlO2Lj49HcHCwQhMXJSQkICIiAtbW1gAAFxcX6OrqysUNCwtDVFSUqBMiFbqhpLGxsWjdujVatmyJZcuWQSL58leDzIpDPm9IREREVHRkNlOpRCLB8uXL8d9//8Hb2xsXL16EmZmZSBkWLenPBao6piISEhJkPXnAlwlnQkNDUbx4cdja2mLs2LGYP38+HBwcYG9vj1mzZsHGxgYdO3aUndOqVSt06tQJI0eOBABMnDgR7dq1g52dHV6/fo3Zs2dDW1sbvXr1AvBlApuBAwdi/PjxKF68OExNTTFq1Cg0bNhQtBlJgUJWGCYlJaFDhw6wtbXF5s2bZUVhVp6OnsDikIiIiKiIk0gk2LJlCzp27IgOHTrA398fBgZ8FEndNGG5ivR1ztONHz8eAODj44MdO3Zg8uTJSExMhK+vL2JjY+Hm5pbh8xEREYG3b9/KXr98+RK9evXCu3fvUKpUKbi5ueH69esoVaqUrM3KlSuhpaWFLl264PPnz/Dy8sL69euVfdsqIREEQRA1AxVJS0tDt27dEB0djcDAQBgZGWXbngUhERERUdGU1WNGiYmJcHd3h42NDf744w9oa2vnc2ZFQ3x8PMzMzNApoD90jfVUGjslMRlHPLYjLi5ObvIZylmheMZQEASMGDECjx49wokTJ1gUEhEREVGWsroXNDY2xokTJ/D3339j5MiRKCT9JxpL5UtVqGFoalFSKArDxYsX4/jx4/D390eJEiWybcuikIiIiIiyuicsUaIEzpw5g2PHjmHJkiX5nBWReAr8M4b79u3DggULcPHiRdja2mbblkUhEREREeXE1tYWJ06cQLNmzVC+fHn06NFD7JQKpfQlJlQdk5RToAvDy5cvY9CgQThw4ACcnZ2zbMeCkIiIiIi+ldU94tPRE1C7dm3s378f3bp1Q5kyZeDm5pbP2RHlrwJbGD5+/BgdOnTAihUr4O3tnWU7FoVEREREpIiv7x8N2rZGm3bfIeTGTTg4OIiYVeGjCctV0P8rkM8Yvnv3Dm3atMHgwYPh6+ubZTsWhURERESUF6aNG0K3rgtaeXri3bt3YqdDpDYFrjBMTk5G165dUatWLSxYsCDLdiwKiYiIiEgVTNu2xgcLc7Tr1BEpKSlip1NocFZSzVKgCkNBEDBq1CjExsZi165d0NLKPH0WhURERESkKhItLZj16oYHz59j6PDhXMZCRVgYapYCVRj+8ssvOHr0KI4dOwZjY+NM27AoJCIiIiJV09LXh3n/vvj94EGsXbtW7HSIVK7ATD7j7++PadOmITAwEOXKlRM7HSIiIiIqYnSKW8C83/eYMHkyHB0d4eXlJXZKBRonn9EsBaLHMCIiAr169cKmTZvQoEGDLNuxt5CIiIiI1MnAvjzMunZCl+7d8fTpU7HTIVIZjS8MP378iC5duqBv3774/vvvs2zHopCIiIiI8kOxei7Qq10Lbdq3x8ePH8VOp8AS8P+L3Ktq49OfytPowlAQBAwdOhQmJiZYunRplu1YFBIRERFRfjJr3xbRn5MwyNeXk9FQoaDRheHGjRtx9uxZ/PHHH9DT0xM7HSIiIiIiAIBERwdmfXvjwPHj2LRpk9jpFEiclVSzaGxheOPGDUycOBF//PEHbGxssmzH3kIiIiIiEoOOmRlK+vTBmHHjcOPGDbHTIcoTjSwM4+Pj0atXL8yePRtNmzbNsh2LQiIiIiISk2GlijDxaIXO3bvhw4cPYqdToLDHULNoZGE4atQo2NvbY+LEiVm2YVFIRERERJrAtGUzJBgZYujw4WKnUqCwMNQsGlcY7tu3DydOnMDOnTuhpaVx6RERERERyZFoacG0Z3ccPnoU+/fvFzsdIqVoVOX1/PlzDB06FNu2bUOZMmWybMfeQiIiIiLSJDrmZjDt1hkDfX3x/PlzsdMpENhjqFk0pjCUSqXo27cvevbsiY4dO2bZjkUhEREREWki41o1oFezOnr06QOpVCp2OkQK0ZjCcMOGDXjx4gWWL2fhR0REREQFk2n7tngQ/hgbN24UOxWNJwgStWykHI0oDJ89e4apU6diy5YtMDY2zrIdewuJiIiISJNp6eujWNfOmDBpEp49eyZ2OkS5JnphKAgCBg8ejN69e6NVq1ZZtmNRSEREREQFgWFlB+jWqgGfAQMgCILY6WgsKSRq2Ug5oheG27Ztw6NHj7B06VKxUyEiIiIiUoniHb7DrXv3sG3bNrFTIcoVUQvDN2/eYOLEidi0aRNMTU2zbMfeQiIiIiIqSLQMDVGsS0eMnTABb968ETsdjcRZSTWLqIXhpEmT4OHhgTZt2oiZBhERERGRyhlVqwK9ShUwdsIEsVPRSJx8RrOIVhgGBQXhyJEjWLlyZbbt2FtIRERERAWVSfvvcPjwYQQFBYmdClG2RCkMk5OTMXz4cMyZMwdly5bNsh2LQiIiIiIqyHQszGHi2QoDfH2RkpIidjoahUNJNYsoheHq1auhpaWF0aNHi3F5IiIiIqJ8Y9qsCf79mIhVq1aJnQpRlvK9MHzz5g3mzZuHX375Bbq6ulm2Y28hERERERUGEm1tGHdsh9lz5+Kff/4ROx2NwWcMNUu+F4azZ8+Gu7s7mjdvnt+XJiIiIiIShaFDJeg7VML0mTPFToUoUzr5ebH79+9j586duHfvXrbt2FtIRERERIWNSdvW2Ll0JcaOHo3q1auLnY7oBDU8E1iUegyjoqLw/PlzfPz4EaVKlUK1atWgr6+vdLx86zEUBAETJkzAsGHD4ODgkF+XJSIiIiLSCLqlS8GooStGjh0rdipUQD179gxTpkyBnZ0d7O3t0axZM3h7e6Nu3bowMzODh4cHDhw4AKlUqnDsfCsMz549i5CQEMyaNSvbduwtJCIiIqLCyry1B4Jv3MDZs2fFTkV0AgBBUPEm9ptSo9GjR6NWrVqIjIzE/Pnz8ffffyMuLg7JycmIiYnBqVOn4Obmhh9//BE1a9bEzZs3FYqfL0NJBUHAzJkzMXXqVFhYWOTHJYmIiIiINI62kREMWzTFxKlTcdfDAxJJ0Rn6SHljbGyMp0+fokSJEhmOlS5dGi1btkTLli0xe/Zs+Pv748WLF6hXr16u4+dLj+Hx48fx4sULjBgxItt27C0kIiIiosLO1K0RnkQ+xYkTJ8RORVRSSNSyFVYLFy7MtCjMTOvWrdG5c2eF4qu9MJRKpZg1axamTZsGIyMjdV+OiIiIiEijaenrw7BFM0yaNk2pZ8EKCy5XoVnUPpT00KFDePfuHYYMGZJtO/YWEhEREVFRUaxxQ7y4eBmHDx9G165dxU6HCqCDBw/ijz/+QFRUFJKTk+WO3b59W+F4au0xFAQB8+fPx/Tp02FgYKDOSxERERERFRhaurowbNEMM2bPhiAU5ilTsib933IVqt6KgjVr1qB///6wtLTEnTt3UL9+fZQoUQJPnz6Ft7e3UjHVWhiePXsW0dHR6N+/f7bt2FtIREREREWNiWt9RL18iYCAALFToQJm/fr12Lx5M3755Rfo6elh8uTJCAgIwOjRoxEXF6dUTLUWhsuWLcPIkSNhaGiozssQERERERU4Wnq6MGzcAPMXLRI7FVGofKmK/21FQVRUFBo1agQAMDQ0xIcPHwAAP/zwA37//XelYqqtMLxz5w6uXr2K4cOHZ9uOvYVEREREVFQVc2uMa1evIjQ0VOxUqACxsrLCf//9BwCwtbXF9evXAQCRkZFKD01WW2G4fPly9O/fHyVLllTXJYiIiIiICjRtE2MY1nPBgsWLxU4l33FWUuW1bNkSx44dAwD0798f48aNg4eHB3r06IFOnTopFVMts5L+888/OHDgAB48eJBtO/YWEhEREVFRZ9asCY4sWYF///0XpUqVEjsdKgA2b94sW+pkxIgRKFGiBK5evYr27dvnuBpEVtRSGO7cuRNubm5wcHBQR3giIiIiokJDt3QpmFSqiJ07d2LixIlip5Nv1NHDVxR6DK9fv47jx48jOTkZrVq1QuvWrdGzZ0/07NkzT3FVPpRUEARs3rwZvr6+qg5NRERERFQo6dZ3wZr164vU0hVcrkJxBw8eROPGjbF69Wps3boVbdu2xbJly1QSW+WF4YULFxAbG4uOHTtm247DSImIiIiIvjCuWQP/vnuLoKAgsVMhDbZw4UIMHjwYcXFxeP/+PebPn48FCxaoJLbKC8MtW7bAx8cH+vr6qg5NRERERFQoSXR0YFjXBVu2bBE7lXyjCctVXLx4Ee3atYONjQ0kEgn8/Py+yVHAjz/+CGtraxgaGsLd3R3h4eHZxly4cCHq1auHYsWKoXTp0ujYsSPCwsLk2jRv3hwSiURuGzp0aI75hoWFYeLEidDW1gYATJgwAR8+fMA///yj2BvPhEoLw8TERBw9ehR9+/ZVZVgiIiIiokLPsG4dHDp8GImJiWKnUmQkJiaiVq1aWLduXabHlyxZgjVr1mDjxo0IDg6GsbExvLy8kJSUlGXMoKAgjBgxAtevX0dAQABSUlLg6emZ4fs6ePBgREdHy7YlS5bkmO/Hjx9hamoqe62npwcDAwMkJCTk8h1nTaWTz5w4cQJ2dnaoUaNGtu04jJSIiIiISJ6ejTX0SxTHyZMn0b17d7HTUbsvPXyqnnxGsfbe3t7w9vbOIpaAVatWYebMmejQoQMAYNeuXbC0tISfn1+Wk734+/vLvd6xYwdKly6NkJAQNG3aVLbfyMgIVlZWiiUMYOvWrTAxMZG9Tk1NxY4dO+SWCRw9erTCcVVaGO7fvx89evSARFK4H/okIiIiIlI1iUQC7RrVsWvPniJRGKpTfHy83Gt9fX2FH3WLjIxETEwM3N3dZfvMzMzg6uqKa9eu5XoW0Li4OABA8eLF5fbv2bMHv/32G6ysrNCuXTvMmjULRkZG2caytbXNMNzYysoKu3fvlr2WSCTiFobx8fE4deqUyh5+JCIiIiIqaozqOOPMslWIj4+XGzJYGKlzuYpy5crJ7Z89ezbmzJmjUKyYmBgAgKWlpdx+S0tL2bGcSKVSjB07Fo0bN0b16tVl+3v37g07OzvY2Njg3r17mDJlCsLCwnD48OFs4z179kyh96AIlRWGJ0+eROXKleHk5JRtOw4jJSIiIiLKnJ5laWiXLIlTp07leV26ouzFixdyhbVYE2OOGDECDx48wOXLl+X2f720X40aNWBtbY1WrVohIiICFStWzO80Aahw8pkTJ06gffv2qgpHRERERFQkGVZ1wtGTJ8ROQ+0ENW0AYGpqKrcpUximP//35s0buf1v3rzJ1bOBI0eOxIkTJ3D+/HmULVs227aurq4AgCdPnmTZZt++fTleM92LFy9w5cqVXLcHVFQYpqam4vTp02jbtq0qwhERERERFVkGVSrD398fUqlU7FTUKn0oqao3VbG3t4eVlRUCAwNl++Lj4xEcHIyGDRtm874EjBw5EkeOHMGff/4Je3v7HK8VGhoKALC2ts6yzYYNG1ClShUsWbIEDx8+zHA8Li4Op06dQu/evVGnTh28e/cux+t+TSVDSa9duwYdHR3Uq1cv23YcRkpERERElD0D+/L47+Mn3L17F7Vr1xY7nUItISFBrpcuMjISoaGhKF68OGxtbTF27FjMnz8fDg4OsLe3x6xZs2BjY4OOHTvKzmnVqhU6deqEkSNHAvgyfHTv3r04evQoihUrJnse0czMDIaGhoiIiMDevXvRpk0blChRAvfu3cO4cePQtGlT1KxZM8tcg4KCcOzYMfzyyy+YNm0ajI2NYWlpCQMDA7x//x4xMTEoWbIk+vXrhwcPHmR4NjInKikMT5w4gTZt2sgWWiQiIiIiIuVItLVhWNkBp0+fLtyF4ddjP1UZUwG3bt1CixYtZK/Hjx8PAPDx8cGOHTswefJkJCYmwtfXF7GxsXBzc4O/vz8MDAxk50RERODt27ey1xs2bADwZRH7r23fvh39+vWDnp4ezp07h1WrViExMRHlypVDly5dMHPmzBzzbd++Pdq3b4+3b9/i8uXLeP78OT59+oSSJUuidu3aqF27NrS0lBsUKhEERVf7yKhWrVqYPn06evTokW079hgSEREREeUs/up1lI18jtDgG2KnonLx8fEwMzNDhZ3ToW1kkPMJCkj7mISnPgsQFxdX6Gd1VbU8P2MYExODBw8eoFWrVqrIh4iIiIioyDOq4oT7IbcRGxsrdirqo47nC1W8/EVRkufC8Ny5c6hduzZKliyZbTv2FhIRERER5Y6OhTlMrK1x7tw5sVOhIiLPhWFAQAA8PDxUkQsREREREf2PxLES/P39xU5DbQRBPRspJ0+FoSAIOHfuHAtDIiIiIiIVM6xSGX4nTkAFU4IQ5ShPhWFYWBjevXuHRo0aqSofIiIiIiICoG9fHrH//YfHjx+LnYpaaPo6hgVJWloaQkND8f79e6Vj5KkwPH/+PBo1aiQ3XWtm+HwhEREREZFitHR1oVfeDufPnxc7FfVInyxG1VsRMHbsWGzbtg3Al6KwWbNmqFOnDsqVK4cLFy4oFTPPheHX634QEREREZHq6DtUxKmAALHTIA1z8OBB1KpVCwBw/PhxREZG4tGjRxg3bhxmzJihVEylC0NBEHDhwgUWhkREREREamJYqRIuBl0olM8ZcvIZ5b19+xZWVlYAgFOnTqFbt25wdHTEgAEDcP/+faViKl0Y/vXXX0hMTET9+vWVDUFERERERNnQtyuHxIRE/P3332KnQhrE0tISf//9N9LS0uDv7y+bDPTjx4/Q1tZWKqbSheH58+fh5uYGPT29bNvx+UIiIiIiIuVIdHRgUqlC4XzOUFDTVgT0798f3bt3R/Xq1SGRSODu7g4ACA4OhpOTk1Ix81QYchgpEREREZF6SezL49TZs2KnQRpkzpw52Lp1K3x9fXHlyhXo6+sDALS1tTF16lSlYuooc5JUKkVQUBCmTJmi1EWJiIiIiCh3DBwq4dKvuyCVSqGllae5IzWKOpaXKErLVXTt2lXudWxsLHx8fJSOp9Qn6969e0hJSYGLi4vSFyYiIiIiopzplyuLz8nJSk8qQoXP4sWLsX//ftnr7t27o0SJEihbtizu3bunVEylCsPLly+jYcOG0NHJvsORzxcSEREREeWNRFsbxSpWwOXLl8VORfX4fKFSNm7ciHLlygEAAgICEBAQgNOnT6N169aYOHGiUjGVKgyDg4PRoEEDpS5IRERERESKkZaxRnBwsNhpqFT6UFJVb0VBTEyMrDA8ceIEunfvDk9PT0yePBk3b95UKqbShaGrq6tSFyQiIiIiIsXo29niwpVC2GNISrGwsMCLFy8AAP7+/rJZSQVBQFpamlIxFZ585r///kN4eDjXLyQiIiIiyif6draIehqJ9+/fw8LCQux0VEMdwz+LyHDSzp07o3fv3nBwcMC7d+/g7e0NALhz5w4qVaqkVEyFewxv3ryJChUqoGTJkkpdkIiIiIiIFKNtYoJiVpa4ceOG2KmQBli5ciVGjhyJqlWrIiAgACYmJgCA6OhoDB8+XKmYCvcYhoaGok6dOjm248QzRERERESqo1vGBnfv3oWXl5fYqaiI5H+bqmMWfrq6uplOMjNu3DilYyrcY3jv3j3UrFlT6QsSEREREZHipKVLKb0UARU+u3fvhpubG2xsbPD8+XMAwKpVq3D06FGl4rEwJCIiIiIqAPRsbHA9JETsNFRH1UtVFKElKzZs2IDx48fD29sbsbGxsglnzM3NsWrVKqViKlQYJicn49GjRywMiYiIiIjymZ6NNZ49eYLk5GSxUyGR/fLLL9iyZQtmzJgBbW1t2f66devi/v37SsVUqDAMCwuDvr4+7OzslLoYEREREREpR6e4BbR0dPD48WOxU1EN9hgqLTIyErVr186wX19fH4mJiUrFVKgwfPz4MSpXrgwtLaWWPyQiIiIiIiVJtLRgbG1ViApDiXq2IsDe3h6hoaEZ9vv7+6NKlSpKxVRoVtLw8HA4ODjk2I4zkhIRERERqZ6kRHGEh4eLnQaJbPz48RgxYgSSkpIgCAJu3LiB33//HQsXLsTWrVuViqlQYfj48WM4OjoqdSEiIiIiIsoboXjxQtNjKAhfNlXHLAoGDRoEQ0NDzJw5Ex8/fkTv3r1hY2OD1atXo2fPnkrFVLgwbNmypVIXIiIiIiKivNEpXQp3/vpL7DRIA/Tp0wd9+vTBx48fkZCQgNKlS+cpnkIPC0ZGRsLe3j5PFyQiIiIiIuXoliiOiIgIsdNQDU4+oxJGRkZ5LgoBBQrD1NRUxMTEoFy5cnm+KBERERERKU7b3AwJ79/L1q2jounNmzf44YcfYGNjAx0dHWhra8ttysj1UNI3b95AEARYW1srdSEiIiIiIsobHVNTSNPS8ObNG9jY2IidTt6oYxbRIjIrab9+/RAVFYVZs2bB2toaEkne33euC8OXL1+idOnS0NXVzfNFiYiIiIhIcRIdHRiameHly5cFvzAkpV2+fBmXLl2Cs7OzymLmujB89eoVypYtq7ILExERERGR4nQtzPHq1Sux08gzifBlU3XMoqBcuXIQVDwFa66fMXz58iXKlCmTYzuuYUhEREREpD4SU1O8fPlS7DTyjpPPKG3VqlWYOnUqnj17prKY7DEkIiIiIipAhGImhaLHkJTXo0cPfPz4ERUrVoSRkVGGx/3+++8/hWMqVBhWrVpV4QsQEREREZHqaJubFY7CkJPPKG3lypUqmXDmawpNPuPh4aHSixMRERERkWK0zcwQ9vSp2GmQiPr165flsU+fPikVM9fPGEZHR3PmIyIiIiIikemYmSE6OlrsNPKOzxgqbfTo0ZnuT0xMRJs2bZSKmevC8L///kOJEiWUuggREREREamGlrER4uPixE6DRHTy5EnMnj1bbl9iYiJat26N1NRUpWLmaiipIAh4//49zM3NlboIERERERGphpahARLj4iAIgsqfM8tX6ujhKyI9hmfPnkWTJk1gYWGBsWPH4sOHD/Dy8oKOjg5Onz6tVMxcFYYJCQlIS0uDhYWFUhchIiIiIiLV0DI0QlpaGhITE2FiYiJ2OiSCihUrwt/fHy1atICWlhZ+//136Ovr4+TJkzA2NlYqZq4Kw9jYWEgkEpiZmSl1ESIiIiIiUg0tQwMAX+7RC3RhyB7DPKlZsyZOnDgBDw8PuLq64sSJEzA0NFQ6Xq4Kw/fv38PMzAxaWrl+JJGIiIiIiNRAoqUFPWNjvH//vmCvM87lKhRSu3btTIcO6+vr4/Xr12jcuLFs3+3btxWOn+vCkM8XEhERERFpBl0jI7x//17sNCgfdezYUa3xcz2UlM8XEhERERFpBh1jI8TGxoqdRp5IhC+bqmMWVt/OQqpquRob+v79exaGREREREQaQtvQkD2GRdjNmzcRHBycYX9wcDBu3bqlVMxcF4YcSkpEREREpCEMDQp+YcgF7pU2YsQIvHjxIsP+V69eYcSIEUrFzFVh+OnTJxgZGSl1ASIiIiIiUjFdXXz69EnsLEgkf//9N+rUqZNhf+3atfH3338rFTNXhWFKSgp0dXWVugAREREREamWoKWFlJQUsdMo8C5evIh27drBxsYGEokEfn5+cscFQcCPP/4Ia2trGBoawt3dHeHh4TnGXbduHcqXLw8DAwO4urrixo0bcseTkpIwYsQIlChRAiYmJujSpQvevHmT67z19fUzbR8dHQ0dnVxNI5OBSgvDCmuWK5UEERERERHlHgtD1UhMTEStWrWwbt26TI8vWbIEa9aswcaNGxEcHAxjY2N4eXkhKSkpy5j79+/H+PHjMXv2bNy+fRu1atWCl5cX/vnnH1mbcePG4fjx4zhw4ACCgoLw+vVrdO7cOdd5e3p6Ytq0aYiLi5Pti42NxfTp0+Hh4ZHrOF/LVTmZnJwMPT09pS5ARERERESqJWhpITk5Wew08kQCNcxKqmB7b29veHt7Z3pMEASsWrUKM2fORIcOHQAAu3btgqWlJfz8/NCzZ89Mz1uxYgUGDx6M/v37AwA2btyIkydP4tdff8XUqVMRFxeHbdu2Ye/evWjZsiUAYPv27ahSpQquX7+OBg0a5Jj3smXL0LRpU9jZ2aF27doAgNDQUFhaWmL37t0KfhW+yFWPYVpamtJdkkREREREpFqClhZSU1PFTkNjxcfHy22fP39WOEZkZCRiYmLg7u4u22dmZgZXV1dcu3Yt03OSk5MREhIid46Wlhbc3d1l54SEhCAlJUWujZOTE2xtbbOM+60yZcrg3r17WLJkCapWrQoXFxesXr0a9+/fR7ly5RR+r0Auewy1tbUL/F8kiIiIiIgKC4lUWvA7bgTJl03VMYEMxdHs2bMxZ84chULFxMQAACwtLeX2W1payo596+3bt0hLS8v0nEePHsni6unpZVj1Ibu4mTE2Noavr2+u2+ckV58mPT09ufGrREREREQkHolUWvAf9VLH8hL/i/fixQuYmprKduvr66v4Qvnv2LFj8Pb2hq6uLo4dO5Zt2/bt2yscP1eFoa6ubq4ebn06egInoCEiIiIiUjOJVMpVA7JhamoqVxgqw8rKCgDw5s0bWFtby/a/efMGzs7OmZ5TsmRJaGtrZ5gx9M2bN7J4VlZWSE5ORmxsrFyv4ddtMtOxY0fExMSgdOnS6NixY5btJBIJ0tLScnh3GeXqGcPcFoZERERERKR+haIw1PAF7u3t7WFlZYXAwEDZvvj4eAQHB6Nhw4aZnqOnpwcXFxe5c6RSKQIDA2XnuLi4QFdXV65NWFgYoqKisoybHqd06dKyf2e1KVMUArnsMTQ0NMTHjx+VugAREREREalYSgoMDQ3FzqLAS0hIwJMnT2SvIyMjERoaiuLFi8PW1hZjx47F/Pnz4eDgAHt7e8yaNQs2NjZyPXatWrVCp06dMHLkSADA+PHj4ePjg7p166J+/fpYtWoVEhMTZbOUmpmZYeDAgRg/fjyKFy8OU1NTjBo1Cg0bNszVjKTqkqvC0MLCArGxsWpOhYiIiIiIcuVTEiwsLMTOIk8kghqWq1Aw3q1bt9CiRQvZ6/HjxwMAfHx8sGPHDkyePBmJiYnw9fVFbGws3Nzc4O/vDwMDA9k5ERERePv2rex1jx498O+//+LHH39ETEwMnJ2d4e/vLzchzcqVK6GlpYUuXbrg8+fP8PLywvr16xXKPTAwEIGBgfjnn38glUrljv36668KxQIUKAzfv3+vcHAiIiIiIlK9tE+fCnxhqAmaN28OQci6mpRIJPjpp5/w008/Zdnm2bNnGfaNHDlS1oOYGQMDA6xbtw7r1q1TKN90c+fOxU8//YS6devC2toaEkneZ3fNVWFobm7OwpCIiIiISEOkJn7MsNxBgaPGWUkLu40bN2LHjh344YcfVBYzV5PPcCgpEREREZHmSPn4kT2GRVhycjIaNWqk0pi5Lgzj4uIyjF0lIiIiIqL8JUilSE5MLPiFoYbPSqrJBg0ahL1796o0Zq6HkgqCgLi4uIL/ASQiIiIiKsCkn5IAoMAPJdWEyWcKkvSJcYAvy1Vs3rwZ586dQ82aNTMsXbJixQqF4+eqMDQxMYG2tjbev3/PwpCIiIiISETSTx+hra0NY2NjsVOhfHTnzh25187OzgCABw8eqCR+rgpDiUTC5wyJiIiIiDSA9FMSjM3MVDITpagEyZdN1TELqfPnz6s1fq6eMQSA4sWL4927d+rMhYiIiIiIciBN/AhTMzOx0yARDRgwAB8+fMiwPzExEQMGDFAqZq4LQ2tra7x+/VqpixARERERkWqkxsXB2tpa7DTyjpPPKG3nzp349OlThv2fPn3Crl27lIqZq6GkAFC2bFm8evVKqYsQEREREZFqpMXFoXKFCmKnQSKIj4+HIAgQBAEfPnyAgYGB7FhaWhpOnTqF0qVLKxU714VhmTJlWBgSEREREYksLTYOZarXEjuNPOOspIozNzeHRCKBRCKBo6NjhuMSiQRz585VKrZChWFgYKBSFyEiIiIiItWQfEhAmTJlxE6DRHD+/HkIgoCWLVvi0KFDKF68uOyYnp4e7OzsYGNjo1RslQ8lfTp6AiqsWa5UMkRERERElD0hPh5ly5YVO428U8czgYW8x7BZs2YAgMjISNja2qp0ZlqFegxfvnypsgsTEREREZHiUt7HFo4eQzUMJS3shWE6Ozs7lcfM9aykZcuWxT///IOUlBSVJ0FERERERDkTUlPxKS6ucPQYkkbJdWFoaWkJiUSC6OhodeZDRERERERZSI2Ph5a2NiwtLcVOJe+4XIVGyXVhqKOjAysrK7x48UKd+RARERERURbSYuNgYmEBbW1tsVOhQibXhSEA2NvbIzIyUl25EBERERFRNlLe/YeKFSuKnYZqsMcwT1JTU3Hu3Dls2rQJHz58AAC8fv0aCQkJSsXL9eQzAODo6IjHjx8rdSEiIiIiIsqb1H/+Re1q1cROg0T2/PlztG7dGlFRUfj8+TM8PDxQrFgxLF68GJ8/f8bGjRsVjqlQjyELQyIiIiIi8Uj++y/Thc0LovQF7lW9FQVjxoxB3bp18f79exgaGsr2d+rUSem15xUqDB0cHBAeHp5ju6ejJyiVDBERERERZU149x8cHBzEToNEdunSJcycORN6enpy+8uXL5+rteczo3CPYVhYGKRSqVIXIyIiIiIi5QhSKRKjYwpNjyEpTyqVIi0tLcP+ly9folixYkrFVKgwrFy5Mj5//oznz58rdTEiIiIiIlJO6n/vIU1NLTyFISefUZqnpydWrVoley2RSJCQkIDZs2ejTZs2SsVUqDDU09ODk5MT7t27p9TFiIiIiIhIOcmvo1G+UqUMwwep6Fm2bBmuXLmCqlWrIikpCb1795YNI128eLFSMRWalRQAatasiXv37qFDhw5KXZCIiIiIiBSX/Po1Gri4iJ2GyqhjspiiMvlMuXLlcPfuXezfvx93795FQkICBg4ciD59+shNRqMIpQrDW7duKXUxIiIiIiJSjtY//6Jm81Zip0EiS0lJgZOTE06cOIE+ffqgT58+Komr0FBSAHB2dsbt27dzbMeZSYmIiIiIVCfl1WvUqlVL7DRUi88XKkxXVxdJSUkqj6twYVivXj08ffoUb9++VXkyRERERESUUVpCAj7EvEH9+vXFToU0wIgRI7B48WKkpqaqLKbCQ0mLFy8OBwcH3LhxQ+kZb4iIiIiIKPc+P49CuQr2sLCwEDsV1VFHL18R6TW8efMmAgMDcfbsWdSoUQPGxsZyxw8fPqxwTIULQwBwdXVFcHAwC0MiIiIionzw+XkUPBu7iZ0GaQhzc3N06dJFpTGVLgyPHz+u0kSIiIiIiChzWq+i4dquo9hpqBRnJVXe9u3bVR5T4WcMAcDNzQ3Xrl3LcUwrJ6AhIiIiIsobIS0NHyKews2tkPUYcoF7jaJUj2HNmjWhq6uLkJAQuLq6qjonIiIiIiL6n88vXsJAXx81atQQOxXSEPb29pBIJFkef/r0qcIxlSoMtbS00KxZM5w/f56FIRERERGRGiWFP4FbkybQ0lJqsJ/G4lBS5Y0dO1budUpKCu7cuQN/f39MmjRJqZhKFYYA0KJFC5w4cQJTp05VNgQREREREeVAiHyGNkOHi50GaZAxY8Zkun/dunW4deuWUjGV/rNDixYtcPnyZSQnJ2fbjs8ZEhEREREpR0hNRcKTp2jRooXYqagenzFUOW9vbxw6dEipc5UuDKtVqwZjY2PcvHlT2RBERERERJSNz8+jYGxijKpVq4qdChUABw8eRPHixZU6V+mhpBKJBM2bN8f58+fRuHFjZcMQEREREVEWPoU/QdNmzbOdaKTA4gL3Sqtdu7bcZ0IQBMTExODff//F+vXrlYqpdGEIfBlOevDgQcycOTMvYYiIiIiIKBOfn0SgzfiJYqdBGqZjx45yr7W0tFCqVCk0b94cTk5OSsXMc2E4fvx4fP78Gfr6+lm2ezp6AiqsWZ6XSxERERERFSnSlBQkP4sqnM8XgrOS5sXs2bNVHjNPc95WrlwZxYsXx5UrV1SVDxERERERAfgc+QzmxS3g6OgodirqwclnlHb79m3cv39f9vro0aPo2LEjpk+fnuPkoFnJU2EokUjQunVr+Pv75yUMERERERF9IynsMb5r7V04ny+kPBkyZAgeP34M4Mti9j169ICRkREOHDiAyZMnKxUzz6tktm7dGqdPn85rGCIiIiIi+lpEJDw8PMTOQn3YY6i0x48fw9nZGQBw4MABNGvWDHv37sWOHTvyf7mKdB4eHnj48CFevnyZbTuuZ0hERERElDtpCQmIex4Fd3d3sVMhDSQIAqRSKQDg3LlzaNOmDQCgXLlyePv2rVIx81wYmpubo0GDBhxOSkRERESkIp8eh6OSkxMsLS3FTkVt0iefUfVWFNStWxfz58/H7t27ERQUhLZt2wIAIiMjlf7M5LkwBABvb28WhkREREREKpIaFo5O330ndhqkoVatWoXbt29j5MiRmDFjBipVqgTgywL3jRo1UipmnparSOft7Y0lS5YgJSUFurq6qghJRERERFQkCVIpPv39CO2WFvLl3rjAvdJq1qwpNytpuqVLl0JbW1upmCrpMXR2doaBgQGuXbuWbTs+Z0hERERElL3Pz6OgI5GgQYMGYqdCGurFixdyc7zcuHEDY8eOxa5du5TuqFNJYailpcVlK4iIiIiIVODT34/Q2rs1dHRUMrhPY2nCM4YfPnzA2LFjYWdnB0NDQzRq1Ag3b97Msn2/fv0gkUgybNWqVZO1mTNnTobjTk5Oyn6ZMtW7d2+cP38eABATEwMPDw/cuHEDM2bMwE8//aRUTJUUhsCXZStOnjypqnBEREREREXSpwd/o3P7DmKnoX4asFzFoEGDEBAQgN27d+P+/fvw9PSEu7s7Xr16lWn71atXIzo6Wra9ePECxYsXR7du3eTaVatWTa7d5cuXFUssBw8ePED9+vUBAH/88QeqV6+Oq1evYs+ePdixY4dSMVVWGLZt2xZhYWEICwvLth2HkxIRERERZS455g3S3r6VzTJJyomPj5fbPn/+nKHNp0+fcOjQISxZsgRNmzZFpUqVMGfOHFSqVAkbNmzINK6ZmRmsrKxk261bt/D+/Xv0799frp2Ojo5cu5IlS6r0/aWkpEBfXx/Al+Uq2rdvDwBwcnJCdHS0UjFVVhiampqiTZs22L9/v6pCEhEREREVKYl3QuHVujVMTU3FTkX91NhjWK5cOZiZmcm2hQsXZrh8amoq0tLSYGBgILff0NAw1z1827Ztg7u7O+zs7OT2h4eHw8bGBhUqVECfPn0QFRWVq3i5Va1aNWzcuBGXLl1CQEAAWrduDQB4/fo1SpQooVRMlRWGANCjRw/8/vvvEIQiMh0QEREREZGKCIIA6f2/0LdPH7FTKfBevHiBuLg42TZt2rQMbYoVK4aGDRti3rx5eP36NdLS0vDbb7/h2rVruep1e/36NU6fPo1BgwbJ7Xd1dcWOHTvg7++PDRs2IDIyEk2aNMGHDx9U9v4WL16MTZs2oXnz5ujVqxdq1aoFADh27JhsiKmiJIIKq7jExESULl0a165dQ82aNbNtW2FNIZ9+l4iIiIhIAZ9fvca7Xzbg3b//wtjYWOx01CY+Ph5mZmaoOnwBtPUNcj5BAWmfk/D3+umIi4vLVa9rREQEBgwYgIsXL0JbWxt16tSBo6MjQkJC8PDhw2zPXbhwIZYvX47Xr19DT08vy3axsbGws7PDihUrMHDgQIXfU1bS0tIQHx8PCwsL2b5nz57ByMgIpUuXVjieSnsMjY2N0aFDB+zatUuVYYmIiIiICr1Pt26jS6dOhboo1DQVK1ZEUFAQEhIS8OLFC9y4cQMpKSmoUKFCtucJgoBff/0VP/zwQ7ZFIQCYm5vD0dERT548UWXqEAQBISEh2LRpk6w3Uk9PD0ZGRkrFU2lhCACDBw/Gzp07M33Ak4iIiIiIMhJSU/HpVggGDx4sdir5RwNmJU1nbGwMa2trvH//HmfOnEGHDtnPChsUFIQnT57kqgcwISEBERERsLa2Vi65TDx//hw1atRAhw4dMGLECPz7778AvgwxnThxolIxVV4YNm/eHObm5vDz88u2HWcnJSIiIiL6IvHefZQqURLNmjUTO5Ui5cyZM/D390dkZCQCAgLQokULODk5yWYZnTZtGvr27ZvhvG3btsHV1RXVq1fPcGzixIkICgrCs2fPcPXqVXTq1Ana2tro1auXyvIeM2YM6tati/fv38PQ0FC2v1OnTggMDFQqpspXzZRIJPD19cXmzZvRo0cPVYcnIiIiIip0Um6EYPLw4ZBIJGKnkm+UWZA+NzEVkT4xzcuXL1G8eHF06dIFP//8M3R1dQEA0dHRGWYUjYuLw6FDh7B69epMY758+RK9evXCu3fvUKpUKbi5ueH69esoVaqUUu8pM5cuXcLVq1czDGMtX758lmsw5kTlhSEA+Pj4YObMmQgPD4eDg4M6LkFEREREVCik/PMvEp5EwMfHR+xU8lcehn5mG1MB3bt3R/fu3bM8ntli8WZmZvj48WOW5+zbt0+xJJQglUqRlpaWYf/Lly9RrFgxpWKqfCgpAJQuXRrdunXLsopOx+GkRERERFTUxQVdQqcuXVTao0SFm6enJ1atWiV7LZFIkJCQgNmzZ6NNmzZKxVRLYQh8GVu7fft2vH37Vl2XICIiIiIq0NISEvHpZghmTJ0qdiri0ICJZwqiZcuW4cqVK6hatSqSkpLQu3dv2TDSxYsXKxVTbYWhs7MzGjVqhPXr12fbjr2GRERERFRUfbh8BQ0bNZItUE6UG+XKlcPdu3cxY8YMjBs3DrVr18aiRYtw584dpdYwBNT0jGG6iRMn4ocffsCkSZPkZsshIiIiIirqpMkp+HTlOmYeOCB2KqLQhMlnCqKUlBQ4OTnhxIkT6NOnD/r06aOSuGrrMQS+jH21trbG9u3bs23HXkMiIiIiKmoSgm/AtmxZeHh4iJ0KFSC6urpISkpSeVy1FoYSiQQzZ87EggUL1JI8EREREVFBJE1Owac/g/Dz3LlFaokKORq0wH1BM2LECCxevBipqakqi6nWwhAAunTpghIlSmDTpk3ZtmOvIREREREVFR+uXkM5a2t07txZ7FSoALp58yYOHz4MW1tbeHl5oXPnznKbMtT6jCEAaGlpYd68efD19cXgwYNhZGSk7ksSEREREWks6efP+HQ+CEt37YaWltr7aTQWnzFUnrm5Obp06aLSmBJBENT+5RMEAa6urujWrRsmTZqUbdsKa5arOx0iIiIiItHEBZ5H2ZfRCL11q0gOI42Pj4eZmRlqDFwAbT0DlcZOS07C/W3TERcXB1NTU5XGLuzy5U8UEokE8+bNw6JFi/D+/fv8uCQRERERkcZJS/yIxD+DsHThwiJZFFLeSKVSLF68GI0bN0a9evUwdepUfPr0SSWx863v2tPTE3Xr1sW8efOybcdnDYmIiIiosIo9E4AGrq7w9PQUOxXRpQ8lVfVWmP3888+YPn06TExMUKZMGaxevRojRoxQSex8KwwlEgmWL1+ODRs2IDw8PL8uS0RERESkEVL++RcfrwVj7apVYqdCBdSuXbuwfv16nDlzBn5+fjh+/Dj27NkDqVSa59j5+rRr9erV4ePjgylTpmTbjr2GRERERFTYJJz0h4+PD6pXry52KpqBy1UoLCoqCm3atJG9dnd3h0QiwevXr/McW+2zkn5r7ty5cHBwwIULF9C8efP8vjwRERERUb77FP4En59EYMGZs2KnQgVYamoqDAzkJ+zR1dVFSkpKnmPne2FoaWmJWbNmYdSoUbh9+zZ0dXUzbfd09ATOUEpEREREBZ6QloZEv+OY++OPKF26tNjpaA519PAV8h5DQRDQr18/6Ovry/YlJSVh6NChMDY2lu07fPiwwrFFWThlzJgxkEqlWLNmjRiXJyIiIiLKN/FBl1DKyBhjx44VOxUq4Hx8fFC6dGmYmZnJtu+//x42NjZy+5SR7z2GAKCnp4f169fju+++Q48ePVC2bNlM27HXkIiIiIgKstT3sUg4G4gj/v5ZjpQrqrjAveK2b9+uttii9BgCQLNmzdCpUyeMGzcu23aciIaIiIiICqqEYyfQuXNnNG3aVOxUiLIlWmEIAEuXLkVAQABOnTolZhpERERERCr38a+/kfzkKVYt5wi4THFWUo0iamFoaWmJZcuWYciQIYiPj8+yHXsNiYiIiKggkX76hA+HjmLV8uWwtLQUOx2NJBEEtWykHFELQwAYOHAgnJycMGnSJLFTISIiIiJSif+OnkDdmjUxcOBAsVMhyhXRC0OJRIItW7Zg7969CAwMzLIdew2JiIiIqCD4FPYYKXfvY9f27ZBIJGKno7k4lFSjiF4YAkD58uWxaNEiDB48GAkJCVm2Y3FIRERERJpM+vkzPhw8guVLl8LOzk7sdIhyTSMKQwAYNmwYypUrh4kTJ4qdChERERGRUuKPnUR1B0cMHTpU7FQ0XvpyFareSDkaUxhqaWlh165d2LdvH/z8/LJsx15DIiIiItJEiXfvI/neA/yxdy+0tDTmNpsoVzTqE2tnZ4eNGzdi4MCBePXqVZbtWBwSERERkSZJjY1D/IHD2LZ5M2xtbcVOp2DgM4YaRaMKQwDo2bMnvvvuO/j4+EAqlYqdDhERERFRtgSpFPH7/kDnDh3Qo0cPsdMhUorGFYYAsHbtWkRGRmLZsmVZtmGvIRERERFpgvg/g1DsYxI2rl8vdioFCp8x1CwaWRgWK1YMv//+O+bOnYuLFy9m2Y7FIRERERGJ6dOTCCQEBOLQH3+gWLFiYqdTsHAoqUbRyMIQAOrXr49ly5ahe/fueP36dZbtWBwSERERkRhSY+PwdsdvWL1yJerXry92OkR5orGFIQAMHToUXl5e6NatG5KTk8VOh4iIiIgIACCkpiJu915079ABQ4YMETudAolDSTWLRheGEokEGzZsQGJiIiZNmpRlO/YaEhEREVF+ijt2EjYGhti6eTMkEonY6RDlmUYXhgBgZGSEQ4cOYdeuXfjtt9+ybMfikIiIiIjyw4ebIUi+cxcnjx6FoaGh2OkUXHzGUKNofGEIABUrVsS+ffswZMgQXL9+Pct2LA6JiIiISJ2SIp8h7uARHPrjD1SoUEHsdIhUpkAUhgDg5eWFhQsXomPHjoiKihI7HSIiIiIqYlL/e4/323dj+ZIl8PLyEjudQoHPF2qOAlMYAsCoUaPQoUMHdOjQAYmJiZm2Ya8hEREREama9PNnxG7fhd7dumHkyJFip0OkcgWqMJRIJFi7di3Mzc3Rt29fSKXSTNuxOCQiIiIiVRGkUsT9/gdq2JXHxvXrOdmMqgiCejZSSoEqDAFAV1cXBw8exN27dzF9+vQs27E4JCIiIiJViD/pj2Lv43DsyBHo6uqKnU6hweUqNEuBKwwBoESJEjh16hS2bNmCTZs2ZdmOxSERERER5UX85atIuXUbgWfPokSJEmKnQ6Q2OmInoCxHR0ccPXoUrVu3hq2tLby9vTNt93T0BFRYszyfsyMiIiKigujrjoVTp06h+/TZOHPmDBwcHETMqpBSx/IS7DFUWoEtDAHAzc0NW7duRY8ePXDx4kU4Oztn2i79B5wFIhERERGly2502Z07d9CzZ09s27YNjRs3zsesiMRRIIeSfq1nz56YPn062rZtm+MyFhxaSkREREQ5iYqKQtu2bTFjxgz06NFD7HQKLYlUPRspp8AXhgAwZcoUtGvXDq1bt8a7d++ybcvikIiIiIiyuid89+4dvLy80KFDB0yePDmfsyIST6EoDCUSCdatW4cqVargu+++y3KNw3RPR09ggUhERERURGV1H5iYmIi2bduiatWqWLt2LZelUDdBTRsppVAUhgCgra2NPXv2QE9PDz169EBKSkqO57A4JCIiIipasrr/S0lJQffu3WFgYIA9e/ZAW1s7nzMjElehKQwBwMDAAEePHkVUVBR8fX0h5LDAJSejISIiIiJBEDB48GC8fPkSR48ehYGBgdgpFQlcx1CzFKrCEADMzc3h7++PCxcuYMKECbLisMKa5Rk2IiIiIio6MustFAQBEyZMQFBQEE6fPg0zMzMRMiuiBEE9mwI+fPiAsWPHws7ODoaGhmjUqBFu3ryZZfsLFy5AIpFk2GJiYuTarVu3DuXLl4eBgQFcXV1x48YNpb5E+alAL1eRFRsbG5w7dw5NmzaFkZER9pa2EDslIiIiIhJRVkNIZ86cif379+PixYuwsbHJ56xIbIMGDcKDBw+we/du2NjY4LfffoO7uzv+/vtvlClTJsvzwsLCYGpqKntdunRp2b/379+P8ePHY+PGjXB1dcWqVavg5eWFsLAwuXaaptD1GKarWLEiAgMDsWXLFgz8kMTnCYmIiIiKqKzuA+fPn4+tW7ciMDAQFStWzOesSOyhpJ8+fcKhQ4ewZMkSNG3aFJUqVcKcOXNQqVIlbNiwIdtzS5cuDSsrK9mmpfX/ZdWKFSswePBg9O/fH1WrVsXGjRthZGSEX3/9VdkvVb4otIUhADg5OeHcuXNYsWIFVqxYweKQiIiIiAAAy5cvx6pVq3Du3Dk4OTmJnQ6pWHx8vNz2+fPnDG1SU1ORlpaW4ZlSQ0NDXL58Odv4zs7OsLa2hoeHB65cuSLbn5ycjJCQELi7u8v2aWlpwd3dHdeuXcvju1KvQl0YAkCNGjVw9uxZ/PTTT1i3bh2LQyIiIqIiJLN7v3Xr1mHevHk4e/YsatSoIUJWBECty1WUK1cOZmZmsm3hwoUZLl+sWDE0bNgQ8+bNw+vXr5GWlobffvsN165dQ3R0dKYpW1tbY+PGjTh06BAOHTqEcuXKoXnz5rh9+zYA4O3bt0hLS4OlpaXceZaWlhmeQ9Q0hfIZw2+5uLjg9OnT8Pb2RnJyMp6O+/IfBCegISIiIiq8MisKV6xYgZ9++gn+/v6oU6eOCFlRfnjx4oXcM4D6+vqZttu9ezcGDBiAMmXKQFtbG3Xq1EGvXr0QEhKSafvKlSujcuXKsteNGjVCREQEVq5cid27d6v2TeSzQt9jmK5hw4YIDAzE/Pnz8fPPPwPgOoZEREREhVVm93np94GBgYFo0KCBCFnR19T5jKGpqancllVhWLFiRQQFBSEhIQEvXrzAjRs3kJKSggoVKuT6fdSvXx9PnjwBAJQsWRLa2tp48+aNXJs3b97AyspKuS9UPikyhSHwpefwwoULWLNmDWbMmAFBEFgcEhERERUy397fCYKA6dOnY+3atbhw4QJcXFxEyow0lbGxMaytrfH+/XucOXMGHTp0yPW5oaGhsLa2BgDo6enBxcUFgYGBsuNSqRSBgYFo2LChyvNWpSIxlPRrNWrUwMWLF9GqVSt8/PhRblIaDi0lIiIiKtgyKwrHjRuHgwcPIigoSG4YIIlMiXUHcxVTAWfOnIEgCKhcuTKePHmCSZMmwcnJCf379wcATJs2Da9evcKuXbsAAKtWrYK9vT2qVauGpKQkbN26FX/++SfOnj0rizl+/Hj4+Pigbt26qF+/PlatWoXExERZTE1V5ApD4MvY4EuXLqFly5aIi4vD5s2boaOjg6ejJ7A4JCIiIiokUlJSMGTIEJw/fx6XLl2Cvb292CnRVxRdXiK3MRURFxeHadOm4eXLlyhevDi6dOmCn3/+Gbq6ugCA6OhoREVFydonJydjwoQJePXqFYyMjFCzZk2cO3cOLVq0kLXp0aMH/v33X/z444+IiYmBs7Mz/P39M0xIo2kkgqDqMr3geP36NVq3bg1bW1vs378fxsbGANhzSERERFQQfd1bmJiYiO7du+Ply5c4ffo0F6/XIPHx8TAzM0ND75+go2uQ8wkKSE1JwrXTPyIuLk5u8hnKWZF6xvBbNjY2uHjxIhISEtCqVSu8ffsWwJf/VPjsIREREVHB8fW929u3b9GyZUt8/PgRFy9eZFGoqdS4XAUprkgXhgBgbm4Of39/lCtXDo0bN8azZ89kx1gcEhEREWm+r+/ZIiMj0bhxY9jZ2cHf3x9mZmYiZkZUcBT5whAADAwMsG/fPnh6eqJhw4a4c+eO7Bh7D4mIiIg019f3aXfu3EGjRo3g5eWFffv2ZblEAWkGdS5XQYpjYfg/2traWLNmDcaNG4dmzZrh+PHjcsdZHBIRERFplq/vz44dO4amTZti3LhxWL16NbS0eJtLpAj+xHxFIpFg8uTJ2L59O3r16oWVK1fi67l52HtIREREpBnS78kEQcCKFSvQu3dv7Ny5E5MnT4ZEIhE5O8oVqaCejZRSJJeryEmXLl1Qrlw5tG/fHo8fP8aaNWtkU9YC4LqHRERERCJKvxdLSUnBqFGjcPToUZw/fx716tUTOTOigos9hlmoX78+bty4gStXrqBt27aIi4vL0Ia9h0RERET5K/3+Ky4uDm3btsXVq1cRHBzMorAg4qykGoWFYTZsbW1x+fJl6OrqokGDBnj8+HGGNhxeSkRERJQ/0u+5Hj9+DFdXV+jq6uLKlSuwtbUVOTNShgRqmHxG7DdVgLEwzIGpqSmOHTuGdu3awdXVFf7+/pm2Y3FIREREpD7p91qnT59G/fr10aFDBxw7dgzFihUTOTOiwoGFYS5oa2tjyZIlWLt2Lbp27YqlS5fKTUqTjr2HRERERKr3dPQECIKAJUuWoFu3bli/fj0WL14MbW1tsVOjvBAE9WykFE4+o4A+ffqgcuXK6NixI0JDQ7F161YYGhpmaMfJaYiIiIhU4+noCfj06RMGDRqEixcvIigoCC4uLmKnRVTosMdQQXXr1sWtW7fw7NkzNGnSBM+fP8+yLXsPiYiIiJT3dPQEPHv2DG5ubnj27Blu3rzJorAQ4QL3moWFoRKsrKzw559/ol69eqhTpw7OnDmTZVsOLyUiIiJS3NPRE+Dv7w8XFxe4urrizz//hJWVldhpERVaLAyVpK+vjw0bNmDlypXo0qUL5s2bB6lUmmV7FohEREREufNk5Dj89NNP6Nq1K1atWoX169dDX19f7LRI1bhchUbhM4Z51LdvX9SqVQudO3dGcHAwdu/eDQsLiyzb8/lDIiIioqzd+r4/2rVrh7CwMFy5cgW1atUSOyWiIoE9hipQq1Yt3Lp1CxKJBC4uLrh9+3aO57D3kIiIiEjeQbcWcHFxgba2Nm7dusWisJCTCIJaNlIOC0MVsbCwwNGjRzFo0CA0adIE69aty3RJi69xeCkRERERIAgCxmvpo0mTJhg8eDD8/Pxgbm4udlqkblI1baQUDiVVIS0tLUyfPh2NGzdG7969ceHCBWzduhVmZmbZnsfhpURERFRUST99Qt2boVh47RpOnz6Npk2bip0SUZHEHkM1aNasGUJDQ/HhwwfUqVMHISEhuTqPPYhERERUlHyOegHtzduRmJiI0NBQFoVFDIeSahb2GKpJqVKlcOrUKSxZsgRNmzbFokWLMHLkSEgkkhzPZQ8iERERFRTK/FFbEASsXbsWUzdswY8//ohJkyZBS4v9FURiYmGoRlpaWpg6dSrc3NzQq1cvnDt3Dtu2bUPJkiVzdT4LRCIiItJkyhSFb9++xYABA3Dnzh2cPXsWjRs3VkNmVCCoY3kJdhgqjX+ayQdubm64e/cudHR0ULNmTQQGBip0PoeYEhERkaZR5t7k3LlzqFmzJnR1dXH37l0WhUQahIVhPilevDgOHjyIuXPnokOHDpg8eTKSk5MVisECkYiIiMSmzP1IcnIyJk+ejI4dO+Knn37CwYMHUbx4cTVlSAWGIKhnI6WwMMxHEokEgwcPxq1btxAQEIBGjRrh8ePHCsdhgUhERERiUOb+4/Hjx2jYsCECAgJw69YtDBo0KFdzLhBR/mJhKAInJydcv34dTZs2hYuLCzZt2pTjmoeZYYFIRERE+UXRew5BELBp0ya4uLigWbNmuH79OpycnNSUHRVEEkE9GymHk8+IRF9fHytWrIC3tzf69++PY8eOYdu2bbCyssrV+ZyQhoiIiPKDMn+Ejo6OxqBBg3D37l0cPnwYHh4easiMCjx1DP3kUFKlsTAUmYeHB+7fv48RI0agevXq2Lx5Mzp37iw7zgKQiIiIxKJMUXjo0CEMGTIEnp6euH//PiwsLNSQGRGpGgtDDWBhYYG9e/di3759GDRoEI4dO4YLVSpBy9BQ7NSIiIioiFK0KIyLi8Po0aNx/PhxbNiwAT169FBTZlRYSKRfNlXHJOXwGUMN0rNnT9y/fx+vX7+GsH4LPoUpPjENERERUV4oM4dB+jIUMTExuH//PotCogKIhaGGKVOmDPz9/TF16lQk7NoLj78eQ5qUJHZaREREVAQoWhDGx8djyJAh6Ny5M6ZOnQp/f3+UKVNGTdlRocPlKjQKC0MNpKWlhWHDhuH+/ft48uQJhHWbsalKTbHTIiIiokJKmV7CgIAA1KhRA0+ePMG9e/cwbNgwLkNBVICxMNRg5cuXR0BAAKZNm4bOnTvD/UEYQvsNFjstIiIiKkSU6SX09fVFly5dMH36dJw7dw7ly5dXT3JUuAlq2kgpLAw1nJaWFoYOHYr79+8jIiIC1atXxy8Vnbh+IREREeWZovcTJ06cQPXq1fH06VPcu3cPQ4YMYS8hUSHBWUkLiPLly+PcuXPYunUrvv/+e3h6euLq6tWwsrLikhZERESkEEULwujoaIwZMwYBAQFYunQpBg4cyIKQ8kwiCJCo+JlAVccrSthjWIBIJBIMHjwYDx8+hEQiQZUqVbBlyxY8GTmOPYhERESUK4rcM0ilUmzevBlVqlSBlpYWHj58iEGDBrEoJCqE2GNYAFlZWWHfvn04efIkhg8fjt27d2Pz5s2y/+jZg0hERETfUvSPyA8fPoSvry+ioqKwZ88etG3bVk2ZUZGljllE2WOoNPYYFmBt27bFX3/9hbp166JOnTqYOXMmPn78qNTMYkRERFR4KXJfkJiYiJkzZ8LFxQX16tXDX3/9xaKQ1EMAIFXxxrpQaSwMCzgTExOsWLECly5dwrlz51ClShUcOnQIgiCwQCQiIiriFLkXEAQBhw4dQpUqVRAYGIjLly9jxYoVMDExUXOWRKQJWBgWEi4uLrh69SrmzJmDYcOGwcvLC2FhYQCUW5uIiIiICjZFfvc/evQIXl5eGDZsGObOnYsrV66gTp06asyO6P8nn1H1RsphYViIaGlpoX///ggLC0PlypXh7OyMqVOnIiEhAcD/F4gsEomIiAovRX7XJyQkYMqUKahduzacnJzw+PFj9O/fH1pavEUkKmr4U18IWVhY4JdffsH169dx5coVODo6YuvWrUhLS5O1YYFIRERUuCjyuz01NRVbt26Fo6Mjrl69iuvXr2PNmjUwNzdXb5JEXxPw/xPQqGwT+00VXBJBYH9rYSYIAg4ePIipU6fC0NAQS5Ysgbe3d6bTTHM2UyIiooJJkecIT506hSlTpiApKQkLFy5E165dufwE5av4+HiYmZmhpfNU6GjrqzR2atpn/Bm6CHFxcTA1NVVp7MKOPYaFnEQiQbdu3fDw4UMMHjwYP/zwA9zd3XH79u0MbdmLSEREVLAo8rv79u3baNWqFXx8fODr64u///4b3bp1Y1FI4lF5b6Ealr8oQlgYFhF6enoYM2YMIiIiULduXbi5ueGHH37As2fPMrTls4hERESaTZHf08+ePcP3338PNzc31K9fH0+ePMHo0aOhp6en5iyJqCBhYVjEmJubY/HixXj06BEkEgmcnJzg6+ubaYEIsBeRiIhIkyjyezkyMhKDBw+Gk5MTtLS08OjRIyxatIjPEZLmUPUahukbKYWFYRFla2uLXbt2ITQ0FB8/foSTkxMGDx6MyMjITNuzF5GIiEhcihaEVapUQVJSEu7evYtdu3bB1tZWzRkSKYbLVWgWFoZFnJOTE3777TfcvXsXSUlJqFKlSrYFIsAikYiIKD/l9nduZGQkBg0aJFcQ7t69G5UrV86HLImooGNhSACAypUrY/fu3XIF4sCBA/Hw4cNsz2ORSEREpB65/f368OFDDBw4EFWqVEFycjLu3bvHgpAKBg2YfObDhw8YO3Ys7OzsYGhoiEaNGuHmzZtZtj98+DA8PDxQqlQpmJqaomHDhjhz5oxcmzlz5kAikchtTk5OSn2J8hMLQ5KTXiDeu3cPgiCgdu3aaNeuHYKCgpDTyiZfF4ksFImIiJSTm9+jgiAgKCgI7dq1Q+3atSEIAu7du4ddu3bB0dExnzIlKvgGDRqEgIAA7N69G/fv34enpyfc3d3x6tWrTNtfvHgRHh4eOHXqFEJCQtCiRQu0a9cOd+7ckWtXrVo1REdHy7bLly/nx9vJE65jSNmKjo7GL7/8gg0bNsDBwQETJ05E586doaOjo1AcrpFIRESUvdz8UTU1NRWHDx/GsmXL8OTJEwwbNgwjR46EtbV1PmRIpBrp6xi2qjpRLesYBv69LFfrGH769AnFihXD0aNH0bZtW9l+FxcXeHt7Y/78+bm6ZrVq1dCjRw/8+OOPAL70GPr5+SE0NFTp9yEGxe7uqcixtrbGggULMH36dPz666+YMmUKpkyZgnHjxmHAgAEwMTHJVZxvf9mxUCQiIvoiNwVhQkICfv31V6xcuRIAMH78ePTv3z/Xv4eJipr4+Hi51/r6+tDXly9CU1NTkZaWBgMDA7n9hoaGue7hk0ql+PDhA4oXLy63Pzw8HDY2NjAwMEDDhg2xcOFCjZ8Aij2GpJD0v1QuXboU4eHh6N+/P0aMGIFKlSopHZNFIhERFUW5KQjDw8Oxfv16bN++HQ4ODpg0aZJSI3eINImsx7DKBPX0GD7MeG85e/ZszJkzJ8P+Ro0aQU9PD3v37oWlpSV+//13+Pj4oFKlSggLC8vxekuWLMGiRYvw6NEjlC5dGgBw+vRpJCQkoHLlyoiOjsbcuXPx6tUrPHjwAMWKFcvze1QXFoakFEEQcP36dfzyyy84dOgQWrVqhZEjR6J169bQ0lL+0VUWiUREVJjlphiUSqXw9/fHL7/8gj///BNdu3bFyJEj0aBBA0gkknzIkki98qMwfPHihdxQ0sx6DAEgIiICAwYMwMWLF6GtrY06derA0dERISEhOU7CuHfvXgwePBhHjx6Fu7t7lu1iY2NhZ2eHFStWYODAgcq/OTXjn5tIKRKJBA0bNkTDhg0RHR2NLVu2YNCgQTAyMsLw4cPRv39/WFhYKByXQ06JiKgwyk1B+P79e2zfvh3r1q3Dp0+fMHToUGzfvh1WVlb5kCGRCKQAVP23jv8tcG9qaprjM4YAULFiRQQFBSExMRHx8fGwtrZGjx49UKFChWzP27dvHwYNGoQDBw5kWxQCgLm5ORwdHfHkyZNcvw0xsMeQVCYlJQWHDx/G2rVrcfv2bfxfe3cXG1WZx3H8B2VkKm8KNi3BWgrdJURITRupVWMwtlMMKR1p0k7T6GgD9UJggUiwN5ZEe7Fe7MIuXlhMLBTTaRPNYNOV6VADBVPFQKqgkqULLFIpalOoVF5aztmLxroNXcDZmTOnnO8nmQtOnj7zP3f85v+8lJWVafXq1VqyZEnUf+EkMAIAxoM7OV308OHDqq2tVSAQUHZ2ttasWaPnnntOLpfLoioBa/3aMcz748aYdAz3/fMvd3T4zFj6+vqUnp6ut956S5WVlWOOaWhoUEVFhQKBgIqKim475+XLl/XQQw9py5YtWrdu3e+uySoEQ8REZ2enamtrtXv3bqWnp6uyslLl5eW67777Yvq9BEYAgB3cLhBevHhRu3fv1o4dO3TmzBmVl5fr5ZdfVmZmpkUVAvFjp2AYCoVkmqYWLFigrq4ubdq0SW63WwcPHpTL5VJVVZW6u7u1a9cuScPLR/1+v7Zt26aVK1eOzJOYmKgZM2ZIkl599VUVFhYqLS1N33//vaqrq9XZ2alvvvlGSUlJUX3faCIYIqYGBgbU1NSk2tpaffnllyopKVFlZaVyc3Mt3SdBYAQAWOFWgdA0TXV0dKi2tlZNTU3KzMxUZWWlSkpKNGXKFAurBOJrJBj+YUNsguHJv95xMGxqalJVVZXOnTunmTNnqri4WDU1NSMh78UXX9SZM2e0f/9+SdLSpUt14MCBm+bx+/2qq6uTJPl8PrW3t6u3t1dJSUl68sknVVNTo/nz50ftPWOBYAjLfPXVV9qxY4fq6+s1Z84cvfTSSyovL4/r3UsERgDA/+t23cHz58/r/fff13vvvafu7m698MILWr16tRYvXmxRhYC92CkY4jcEQ1jul19+0QcffKCdO3eqvb1d+fn58vv9WrFixU33yMQLgREAcDu3CoRXr17VRx99pLq6Ou3bt09PPfWU/H6/iouLde+991pYJWA/I8Fw/vrYBMN/bSUYRoBgiLg6e/as6uvrVVdXp59++kk+n09+v185OTm2PJKbwAgAzna7paKff/656urq1NjYqKSkJPn9fj3//PO2v9gasBLB0J4IhrCFX/dd7Ny5U42NjXrggQfk8/nk8/m0aNGieJcXU4RNALC/WwXC48ePq6GhQYFAQL29vSotLZXf77d8Pz0wXowEw3l/ik0wPLWNYBgBgiFs5+rVq/r4448VCATU3NysefPmqaysTKWlpcrIyIh3eeMKoRMAInerMNjV1aVAIKBAIKBTp05pxYoV8vl8WrZsmW22RQB2RTC0J4IhbO3y5ctqbm5WQ0ODQqGQFi9erJUrV8rr9WrhwoX8EhtHhE4Adncnl8rfKdM09e233yoYDOrDDz/UsWPHtGzZMvl8PhUWFmrq1KlR+y7gbvdbMFynSROjHAyNa9p36m8EwwgQDDFu9PX1ac+ePQoGgwqFQkpNTZXX65XX69Vjjz2miRMnxrtERBHBE4i/aAar8cgwDH322WcKBoMKBoP67rvvVFBQIK/Xq6KiIt1///3xLhEYl0aCYfra2ATD038nGEaAYIhxaWBgQOFwWMFgUM3NzXK5XPJ4PMrPz1d+fr5SUlLiXSJsjuAJqzg9XI03PT09CofDCofDam1t1eDgoAoLC+X1epWfn899g0AUEAztiWCIcW9oaEiffvqpWltb1draqqNHj+rhhx+Wx+PR3LlzORYccbF5XyjeJdxV/pxXEO8ScBf7dZloa2urvv76a2VlZcnj8cjj8eiJJ57QpEmT4l0icFcZCYZpa2ITDP+9nWAYAYIh7jq9vb1qa2tTe3u7Tp48KcMw4l0SEFUDg9d1ZXBo1LNrN0b/e3LC6P/IJromaYrrnpjXBoxXaWlp8ng8euaZZzRr1qx4lwPc1QiG9sRPYLjrzJo1SyUlJSopKYl3KQAAAPhfTGP4E+05ERFO6wAAAAAAh6NjCAAAAMB6pjn8ifaciAgdQwAAAABwODqGAAAAAKxnmJKi3OEz6BhGimAIAAAAwHosJbUVlpICAAAAgMPRMQQAAABgPVMx6BhGdzonoWMIAAAAAA5HxxAAAACA9dhjaCt0DAEAAADA4egYAgAAALCeYUgyYjAnIkHHEAAAAAAcjo4hAAAAAOuxx9BWCIYAAAAArEcwtBWWkgIAAACAw9ExBAAAAGA9w1TUb6Q36BhGio4hAAAAADgcHUMAAAAAljNNQ6YZ3esloj2fk9AxBAAAAACHo2MIAAAAwHqmGf09gZxKGjE6hgAAAADgcHQMAQAAAFjPjMGppHQMI0YwBAAAAGA9w5AmRPmwGA6fiRhLSQEAAADA4egYAgAAALAeS0lthY4hAAAAADgcHUMAAAAAljMNQ2aU9xhywX3k6BgCAAAAgMPRMQQAAABgPfYY2godQwAAAABwODqGAAAAAKxnmNIEOoZ2QTAEAAAAYD3TlBTtC+4JhpFiKSkAAAAAOBwdQwAAAACWMw1TZpSXkpp0DCNGxxAAAAAAHI6OIQAAAADrmYaiv8eQC+4jRccQAAAAAByOYAgAAADAcqZhxuTze/z8889av3690tLSlJiYqMcff1xffPHFLf9m//79ysrK0uTJk5WRkaG6urqbxrz99tuaO3eu3G63cnJydPjw4d9VVzwQDAEAAAA40qpVqxQOh1VfX69jx47J4/EoLy9P3d3dY44/ffq0li9frqefflqdnZ1av369Vq1apVAoNDKmsbFRGzduVHV1tY4eParMzEwVFBTohx9+sOq1IjLB5OgeAAAAABbp7+/XjBkztFRFmjTBFdW5h8xB7dceXbp0SdOnT7/l2CtXrmjatGnas2ePli9fPvI8Oztbzz77rN58882b/mbz5s1qaWnR8ePHR575fD5dvHhRe/fulSTl5OTo0Ucf1fbt2yVJhmEoNTVVa9eu1WuvvRaN14wJOoYAAAAALDekQQ2ZUf5oUNJw+Pzvz7Vr127+/qEh3bhxQ263e9TzxMREHTp0aMyaOzo6lJeXN+pZQUGBOjo6JEnXr1/XkSNHRo2ZOHGi8vLyRsbYFaeSAgAAALDMPffco5SUFB3q+UdM5p86dapSU1NHPauurtaWLVtGPZs2bZpyc3P1xhtvaOHChUpOTlZDQ4M6OjqUkZEx5tw9PT1KTk4e9Sw5OVn9/f26cuWK+vr6dOPGjTHHnDhx4v9/uRgiGAIAAACwjNvt1unTp3X9+vWYzG+apiZMmDDq2eTJk8ccW19fr4qKCs2ZM0cJCQnKyspSWVmZjhw5EpPa7IxgCAAAAMBSbrf7piWc8TB//nwdOHBAAwMD6u/v1+zZs1VaWqp58+aNOT4lJUUXLlwY9ezChQuaPn26EhMTlZCQoISEhDHHpKSkxOw9ooE9hgAAAAAcbcqUKZo9e7b6+voUCoVUVFQ05rjc3Fy1tbWNehYOh5WbmytpeJlsdnb2qDGGYaitrW1kjF1xKikAAAAARwqFQjJNUwsWLFBXV5c2bdokt9utgwcPyuVyqaqqSt3d3dq1a5ek4esqFi1apFdeeUUVFRX65JNPtG7dOrW0tKigoEDS8HUVfr9f77zzjpYsWaKtW7eqqalJJ06cuGnvoZ2wlBQAAACAI126dElVVVU6d+6cZs6cqeLiYtXU1MjlGr5G4/z58zp79uzI+PT0dLW0tGjDhg3atm2bHnzwQb377rsjoVCSSktL9eOPP+r1119XT0+PHnnkEe3du9fWoVCiYwgAAAAAjsceQwAAAABwOIIhAAAAADgcwRAAAAAAHI5gCAAAAAAORzAEAAAAAIcjGAIAAACAwxEMAQAAAMDhCIYAAAAA4HAEQwAAAABwOIIhAAAAADgcwRAAAAAAHO4/HI6oAgAd9IEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAHvCAYAAAAIF8G2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSOUlEQVR4nOzdd1QU19sH8O/SmxQbRQVRQewoKhbsFNHYuyZixd57ixqNvcdeYotGY8OOIlHsqCiWRBERxQImGgFBkbLz/uGPfV2pu+wyC3w/58w57sydZ56FRebh3rlXIgiCACIiIiIiIiqytMROgIiIiIiIiMTFwpCIiIiIiKiIY2FIRERERERUxLEwJCIiIiIiKuJYGBIRERERERVxLAyJiIiIiIiKOBaGRERERERERRwLQyIiIiIioiKOhSEREREREVERx8KQiIiIiIioiGNhSERERERERdLFixfRrl072NjYQCKRwM/PT+744cOH4enpiRIlSkAikSA0NDRXcQ8cOAAnJycYGBigRo0aOHXqlNxxQRDw448/wtraGoaGhnB3d0d4eLiK3pVyWBgSEREREVGRlJiYiFq1amHdunVZHndzc8PixYtzHfPq1avo1asXBg4ciDt37qBjx47o2LEjHjx4IGuzZMkSrFmzBhs3bkRwcDCMjY3h5eWFpKSkPL8nZUkEQRBEuzoREREREZEGkEgkOHLkCDp27Jjh2LNnz2Bvb487d+7A2dk52zg9evRAYmIiTpw4IdvXoEEDODs7Y+PGjRAEATY2NpgwYQImTpwIAIiLi4OlpSV27NiBnj17qvJt5ZqOKFclIiIiIqIiKykpCcnJyWqJLQgCJBKJ3D59fX3o6+ur5XrfunbtGsaPHy+3z8vLSzZMNTIyEjExMXB3d5cdNzMzg6urK65du8bCkIiIiIiICr+kpCTY25kg5p80tcQ3MTFBQkKC3L7Zs2djzpw5arnet2JiYmBpaSm3z9LSEjExMbLj6fuyaiMGFoZERERERJRvkpOTEfNPGiJD7GBaTLVTnsR/kMLe5TlevHgBU1NT2f786i0syFgYEhERERFRvjMtpqXywlAW29RUrjDMT1ZWVnjz5o3cvjdv3sDKykp2PH2ftbW1XJucnl9UJ85KSkRERERE+S5NkKplE1vDhg0RGBgoty8gIAANGzYEANjb28PKykquTXx8PIKDg2VtxMAeQyIiIiIiKpISEhLw5MkT2evIyEiEhoaiePHisLW1xX///YeoqCi8fv0aABAWFgbgS69fes9f3759UaZMGSxcuBAAMGbMGDRr1gzLly9H27ZtsW/fPty6dQubN28G8GX207Fjx2L+/PlwcHCAvb09Zs2aBRsbm0xnRM0vLAyJiIiIiCjfSSFACtWunKdovFu3bqFFixay1+mzifr4+GDHjh04duwY+vfvLzuePmPo15PZREVFQUvr/wdiNmrUCHv37sXMmTMxffp0ODg4wM/PD9WrV5e1mTx5MhITE+Hr64vY2Fi4ubnB398fBgYGCr9nVeE6hkRERERElG/i4+NhZmaGmDBbtUw+Y1U5CnFxcaI9Y1hQsceQiIiIiIjynRRSqPqJQNVHLDo4+QwREREREVERxx5DIiIiIiLKd2mCgDQVP9Wm6nhFCQtDIiIiIiLKd5ow+Qz9Pw4lJSIiIiIiKuLYY0hERERERPlOCgFp7DHUGOwxJCIiIiIiKuLYY0hERERERPmOzxhqFvYYEhERERERFXHsMSQiIiIionzH5So0C3sMiYiIiIiIijj2GBIRERERUb6T/m9TdUxSDgtDIiIiIiLKd2lqWK5C1fGKEg4lJSLR7NixAxKJBLdu3cqxbfPmzdG8eXOF4j979gwSiQTLli1TMkPNJZVKUb16dfz8889ip1KklC9fHv369RM7jQLh26/VhQsXIJFIcOHCBYVjbdy4Eba2tvj8+bPqEiQiIjksDIkUlF7MpG8GBgZwdHTEyJEj8ebNG7HT00jr16/Hjh07xE6jUPn999/x4sULjBw5Urbv5s2bGDlyJKpVqwZjY2PY2tqie/fuePz4caYxHj58iNatW8PExATFixfHDz/8gH///VeteX/8+BHr1q2Dp6cnrK2tUaxYMdSuXRsbNmxAWlpahvZSqRRLliyBvb09DAwMULNmTfz+++9qzVFdCuPPwdWrVzFnzhzExsaq9Tr9+vVDcnIyNm3apNbrEFH+ShPUs5FyOJSUSEk//fQT7O3tkZSUhMuXL2PDhg04deoUHjx4ACMjI7HT0yjr169HyZIl89TTcvbsWdUlVAgsXboUPXv2hJmZmWzf4sWLceXKFXTr1g01a9ZETEwM1q5dizp16uD69euoXr26rO3Lly/RtGlTmJmZYcGCBUhISMCyZctw//593LhxA3p6emrJ++nTpxg1ahRatWqF8ePHw9TUFGfOnMHw4cNx/fp17Ny5U679jBkzsGjRIgwePBj16tXD0aNH0bt3b0gkEvTs2VMtOWYnLCwMWlrK/U1VFT8Hmubq1auYO3cu+vXrB3Nzc7ljeflafcvAwAA+Pj5YsWIFRo0aBYlEopK4RET0/1gYEinJ29sbdevWBQAMGjQIJUqUwIoVK3D06FH06tUr03MSExNhbGycn2nmiSAISEpKgqGhodipqK1QKYju3LmDu3fvYvny5XL7x48fj71798p9rXr06IEaNWpg0aJF+O2332T7FyxYgMTERISEhMDW1hYAUL9+fXh4eGDHjh3w9fVVS+5WVla4f/8+qlWrJts3ZMgQDBgwANu3b8esWbNQqVIlAMCrV6+wfPlyjBgxAmvXrgXw5WetWbNmmDRpErp16wZtbW215JkVfX39fL2eJlD2/y1Vf626d++OJUuW4Pz582jZsqVKYxORODj5jGbhUFIiFUm/UYmMjATwZeiTiYkJIiIi0KZNGxQrVgx9+vQB8GV43KpVq1CtWjUYGBjA0tISQ4YMwfv37+Vi3rp1C15eXihZsiQMDQ1hb2+PAQMGyLXZt28fXFxcUKxYMZiamqJGjRpYvXq17PicOXMy/et6+pDYZ8+eyfaVL18e3333Hc6cOYO6devC0NBQNnQrNjYWY8eORbly5aCvr49KlSph8eLFkEqz/y+4fPny+OuvvxAUFCQbfvvts4KfP3/G+PHjUapUKRgbG6NTp04ZhjRm9oxhUlIS5syZA0dHRxgYGMDa2hqdO3dGRERElvkIggBfX1/o6enh8OHDcl+LK1eu5JgHAJw+fRpNmjSBsbExihUrhrZt2+Kvv/6SaxMTE4P+/fujbNmy0NfXh7W1NTp06CD39c7N9zczfn5+0NPTQ9OmTeX2N2rUKEMB7eDggGrVquHhw4dy+w8dOoTvvvtOVhQCgLu7OxwdHfHHH39ke/3Zs2dDS0sLgYGBcvvTv653797N8tySJUvKFYXpOnXqBAByeR49ehQpKSkYPny4bJ9EIsGwYcPw8uVLXLt2Lds8038Gnz59Ci8vLxgbG8PGxgY//fQThG/WuUpMTMSECRNkn+/KlStj2bJlGdp9+9xcbj872f0cpKSkYO7cuXBwcICBgQFKlCgBNzc3BAQEZPv+0q998eJFDBkyBCVKlICpqSn69u2b4f8SIHef2+z+3/rWnDlzMGnSJACAvb297H2lf8Zz+zxmcHAwWrduDTMzMxgZGaFZs2a4cuVKhnYuLi4oXrw4jh49mmNMIiJSHHsMiVQkvRgpUaKEbF9qaiq8vLzg5uaGZcuWyYaYDhkyBDt27ED//v0xevRoREZGYu3atbhz5w6uXLkCXV1d/PPPP/D09ESpUqUwdepUmJub49mzZ7JiBgACAgLQq1cvtGrVCosXLwbw5cb6ypUrGDNmjFLvIywsDL169cKQIUMwePBgVK5cGR8/fkSzZs3w6tUrDBkyBLa2trh69SqmTZuG6OhorFq1Kst4q1atwqhRo2BiYoIZM2YAACwtLeXajBo1ChYWFpg9ezaePXuGVatWYeTIkdi/f3+WcdPS0vDdd98hMDAQPXv2xJgxY/DhwwcEBATgwYMHqFixYqbnDBgwAPv378eRI0fQtm1bhfPYvXs3fHx84OXlhcWLF+Pjx4/YsGED3NzccOfOHZQvXx4A0KVLF/z1118YNWoUypcvj3/++QcBAQGIioqSvc7p+5uVq1evonr16tDV1c2xrSAIePPmjVwx9urVK/zzzz+yHu+v1a9fH6dOnco25syZM3H8+HEMHDgQ9+/fR7FixXDmzBls2bIF8+bNQ61atXLM61sxMTEAvhSO6e7cuQNjY2NUqVIlQ47px93c3LKNm5aWhtatW6NBgwZYsmQJ/P39MXv2bKSmpuKnn34C8OVr1L59e5w/fx4DBw6Es7Mzzpw5g0mTJuHVq1dYuXJljvnn9NnJ7udgzpw5WLhwIQYNGoT69esjPj4et27dwu3bt+Hh4ZHjtUeOHAlzc3PMmTMHYWFh2LBhA54/fy6b7AXI/ecWyPr/rW917twZjx8/xu+//46VK1fKvnelSpXKMed0f/75J7y9veHi4iL7g8P27dvRsmVLXLp0Sfa9TlenTp1Mi0YiKpikkCANqh0aLlVxvCJFICKFbN++XQAgnDt3Tvj333+FFy9eCPv27RNKlCghGBoaCi9fvhQEQRB8fHwEAMLUqVPlzr906ZIAQNizZ4/cfn9/f7n9R44cEQAIN2/ezDKXMWPGCKampkJqamqWbWbPni1k9qOe/j4iIyNl++zs7AQAgr+/v1zbefPmCcbGxsLjx4/l9k+dOlXQ1tYWoqKisry+IAhCtWrVhGbNmmWZg7u7uyCVSmX7x40bJ2hrawuxsbGyfc2aNZOL8euvvwoAhBUrVmSImx4rMjJSACAsXbpUSElJEXr06CEYGhoKZ86cUSqPDx8+CObm5sLgwYPlzo+JiRHMzMxk+9+/fy+7blZy8/3NStmyZYUuXbrkqu3u3bsFAMK2bdtk+27evCkAEHbt2pWh/aRJkwQAQlJSUrZx79+/L+jp6QmDBg0S3r9/L5QpU0aoW7eukJKSotibEQTh8+fPQtWqVQV7e3u589u2bStUqFAhQ/vExMRMf7a+lf4zOGrUKNk+qVQqtG3bVtDT0xP+/fdfQRAEwc/PTwAgzJ8/X+78rl27ChKJRHjy5Ilsn52dneDj4yN7rchnOKufg1q1aglt27bN9r1kJv3aLi4uQnJysmz/kiVLBADC0aNHBUHI/edWELL+fysrS5cuzfD/SLpvv1bnz58XAAjnz58XBOHL98LBwUHw8vKS+9p9/PhRsLe3Fzw8PDLE9PX1FQwNDXOVGxFprri4OAGAcPtvS+HxC2uVbrf/thQACHFxcWK/zQKHQ0mJlOTu7o5SpUqhXLly6NmzJ0xMTHDkyBGUKVNGrt2wYcPkXh84cABmZmbw8PDA27dvZZuLiwtMTExw/vx5AJBN5HDixAmkpKRkmoO5uTkSExNzHHKmCHt7e3h5eWXIuUmTJrCwsJDL2d3dHWlpabh48WKerunr6ys33LVJkyZIS0vD8+fPszzn0KFDKFmyJEaNGpXh2LdDZ5OTk9GtWzecOHECp06dgqenp1J5BAQEIDY2Fr169ZL7Omhra8PV1VX2vTM0NISenh4uXLiQ6ZA+IHff36y8e/cOFhYWObZ79OgRRowYgYYNG8LHx0e2/9OnTwAyfwbMwMBArk1Wqlevjrlz52Lr1q3w8vLC27dvsXPnTujoKD4QZeTIkfj777+xdu1aufM/ffqUpxy/jp9OIpFg5MiRSE5Oxrlz5wAAp06dgra2NkaPHi133oQJEyAIAk6fPp3jNZT5DKczNzfHX3/9hfDw8Fy9n8yu/XXv8bBhw6CjoyPr+c3t5/Zr3/6/pQ6hoaEIDw9H79698e7dO1leiYmJaNWqFS5evJhhqLqFhQU+ffqEjx8/qj0/IlI/qaCejZTDoaRESlq3bh0cHR2ho6MDS0tLVK5cOcMMfDo6OihbtqzcvvDwcMTFxaF06dKZxv3nn38AAM2aNUOXLl0wd+5crFy5Es2bN0fHjh3Ru3dv2c3y8OHD8ccff8Db2xtlypSBp6cnunfvjtatWyv9vuzt7TPsCw8Px71797IcIpaes7K+fs4NgKzoyaqoAr4M3a1cuXKuCpGFCxciISEBp0+fznYtxJzySL9xz2riC1NTUwBfCq7FixdjwoQJsLS0RIMGDfDdd9+hb9++sLKyApC77292BCH733wxMTFo27YtzMzMcPDgQblJWtInE8psTbikpCS5NtmZNGkS9u3bhxs3bmDBggWoWrVqjud8a+nSpbIhqG3atJE7ZmhomOcctbS0UKFCBbl9jo6OACB7Fu758+ewsbFBsWLF5NqlD2HNTXGnzGc43U8//YQOHTrA0dER1atXR+vWrfHDDz+gZs2aOZ4LfHmO9GsmJiawtraWvb/cfm7TZfb/ljqk5/X1Hy2+FRcXJ/dHkPTPPWclJSoc0tQwlFTV8YoSFoZESqpfv36mz2h9TV9fP0OxKJVKUbp0aezZsyfTc9KLL4lEgoMHD+L69es4fvw4zpw5gwEDBmD58uW4fv06TExMULp0aYSGhuLMmTM4ffo0Tp8+je3bt6Nv376yaf+zuoHKbM04IPObbalUCg8PD0yePDnTc9JvtJWV1cySORU/ueXl5QV/f38sWbIEzZs3l/U4KZpHeu/F7t27ZQXe174uUseOHYt27drBz88PZ86cwaxZs7Bw4UL8+eefqF27dq6+v1kpUaJEtgVHXFwcvL29ERsbi0uXLsHGxkbuuLW1NQAgOjo6w7nR0dEoXrx4rorTp0+fym7u79+/n2P7b+3YsQNTpkzB0KFDMXPmzAzHra2tcf78eQiCIPc5Ts/72/clprx8hps2bYqIiAgcPXoUZ8+exdatW7Fy5Ups3LgRgwYNynNuinxugcz/31KH9LyWLl0KZ2fnTNt8+3Pw/v17GBkZacRMyUREhQ0LQ6J8VrFiRZw7dw6NGzfO1c1NgwYN0KBBA/z888/Yu3cv+vTpg3379sluGPX09NCuXTu0a9cOUqkUw4cPx6ZNm2TT/qf/tT02NlZunbHc9IJ8nXNCQgLc3d0Ve7P/o46/7lesWBHBwcFISUnJcRKWBg0aYOjQofjuu+/QrVs3HDlyRKkhj+kT2pQuXTpXX4uKFStiwoQJmDBhAsLDw+Hs7Izly5fLLRuR0/c3M05OTrLZb7+VlJSEdu3a4fHjxzh37lymvXhlypRBqVKlcOvWrQzHbty4keVN+tekUin69esHU1NTjB07FgsWLEDXrl3RuXPnHM8Fvsw4OmjQIHTu3Bnr1q3LtI2zszO2bt2Khw8fyr2P4OBg2fHc5Pn06VO5P148fvwYAGQTrtjZ2eHcuXP48OGDXK/ho0ePZMdVIbufg+LFi6N///7o378/EhIS0LRpU8yZMydXhWF4eDhatGghe52QkIDo6GhZD6yin1tF5OVnOz0vU1PTXOcVGRmZYTIiIiq42GOoWfiMIVE+6969O9LS0jBv3rwMx1JTUxEbGwvgy1/Gv+1tSL8RTh9e9+7dO7njWlpasuFn6W3Sb76+fg4wMTExw0LiOeV87do1nDlzJsOx2NhYpKamZnu+sbGx7H2pSpcuXfD27VvZ+nZfy6yXxt3dHfv27YO/vz9++OGHHJfZyIyXlxdMTU2xYMGCTJ8LTF+e4OPHj7LhjukqVqyIYsWKyb4vufn+ZqVhw4Z48OBBhnZpaWno0aMHrl27hgMHDqBhw4ZZxujSpQtOnDiBFy9eyPYFBgbi8ePH6NatW7bXB4AVK1bg6tWr2Lx5M+bNm4dGjRph2LBhePv2bY7nXrx4ET179kTTpk2xZ8+eLHunOnToAF1dXaxfv162TxAEbNy4EWXKlEGjRo1yvBYAuc+IIAhYu3YtdHV10apVKwBAmzZtkJaWluGztHLlSkgkEnh7e+fqOjnJ6ufg259jExMTVKpUKcfPQbrNmzfLfR43bNiA1NRUWd65/dwqI319Q2V+vl1cXFCxYkUsW7YMCQkJucrr9u3buf6+ExGRYthjSJTPmjVrhiFDhmDhwoUIDQ2Fp6cndHV1ER4ejgMHDmD16tXo2rUrdu7cifXr16NTp06oWLEiPnz4gC1btsDU1FTWEzBo0CD8999/aNmyJcqWLYvnz5/jl19+gbOzs+yv6p6enrC1tcXAgQMxadIkaGtr49dff0WpUqUQFRWVq5wnTZqEY8eO4bvvvkO/fv3g4uKCxMRE3L9/HwcPHsSzZ8/klhn4louLCzZs2ID58+ejUqVKKF26dJ4XqO7bty927dqF8ePH48aNG2jSpAkSExNx7tw5DB8+HB06dMhwTseOHWVDbU1NTWVrNOaWqakpNmzYgB9++AF16tRBz549ZV/HkydPonHjxli7di0eP36MVq1aoXv37qhatSp0dHRw5MgRvHnzBj179gSAXH1/s9KhQwfMmzcPQUFBchPpTJgwAceOHUO7du3w33//yfVMAsD3338v+/f06dNx4MABtGjRAmPGjEFCQgKWLl2KGjVqoH///tle/+HDh5g1axb69euHdu3aAfgyLNTZ2Vn23GtWnj9/jvbt20MikaBr1644cOCA3PGaNWvK/rhRtmxZjB07FkuXLkVKSgrq1asHPz8/XLp0CXv27MnV4vYGBgbw9/eHj48PXF1dcfr0aZw8eRLTp0+XDdtu164dWrRogRkzZuDZs2eoVasWzp49i6NHj2Ls2LGZLn2ijKx+DqpWrYrmzZvL1um7desWDh48KDdpTnaSk5Nln7ewsDCsX78ebm5uaN++PYDcf26VfU8AMGPGDPTs2RO6urpo166drGDMjpaWFrZu3Qpvb29Uq1YN/fv3R5kyZfDq1SucP38epqamOH78uKx9SEgI/vvvv0x/tomoYJIKEkgFFS9XoeJ4RYo4k6ESFVzpU8TntMyAj4+PYGxsnOXxzZs3Cy4uLoKhoaFQrFgxoUaNGsLkyZOF169fC4IgCLdv3xZ69eol2NraCvr6+kLp0qWF7777Trh165YsxsGDBwVPT0+hdOnSgp6enmBraysMGTJEiI6OlrtWSEiI4OrqKmuzYsWKLJeryGra/A8fPgjTpk0TKlWqJOjp6QklS5YUGjVqJCxbtkxuqvzMxMTECG3bthWKFSsmAJBN2Z/V1/Lbae0FIeNyFYLwZVr7GTNmCPb29oKurq5gZWUldO3aVYiIiBAEQX65iq+tX79eACBMnDhR4TzS93t5eQlmZmaCgYGBULFiRaFfv36y783bt2+FESNGCE5OToKxsbFgZmYmuLq6Cn/88YcsRm6+v9mpWbOmMHDgQLl9zZo1EwBkuX3rwYMHgqenp2BkZCSYm5sLffr0EWJiYrK9bmpqqlCvXj2hbNmycksxCIIgrF69WgAg7N+/P8vz07+mWW2zZ8+Wa5+WliYsWLBAsLOzE/T09IRq1aoJv/32Ww5fnS/SfwYjIiJk79PS0lKYPXu2kJaWJtf2w4cPwrhx4wQbGxtBV1dXcHBwEJYuXSq3jIIgZL1cRW4+O1n9HMyfP1+oX7++YG5uLhgaGgpOTk7Czz//nOPPVfq1g4KCBF9fX8HCwkIwMTER+vTpI7x79y5D+5w+t19/zRQxb948oUyZMoKWlpbc/yk5LVeR7s6dO0Lnzp2FEiVKCPr6+oKdnZ3QvXt3ITAwUK7dlClTBFtb2wzfEyIqeNKXq7j8wEYIfV5WpdvlBzZcrkJJEkFQ0ewORESUb3bv3o0RI0YgKipK7tlR+n/9+vXDwYMHMx2mWBjs2LED/fv3x82bN3OcCKug+/z5M8qXL4+pU6dizJgxYqdDRHkUHx8PMzMzBD0oA5Niqn2yLeGDFM2qv0JcXFyGWZcpe3zGkIioAOrTpw9sbW2znLiFqDDZvn07dHV1MXToULFTISIqtPiMIRFRAaSlpYUHDx6InQZRvhg6dCiLQqJCKA1aSFNxP1Xmi3FRbrAwJCIiIiKifCeoYfIZgZPPKI3PGBIRERERUb5Jf8Yw8L4tjFX8jGHiByla1YjiM4ZKYI8hERERERHlOy5wr1k4+QwREREREVERxx5DKnTevn2LwMBAnD17NtcLuBMVJIkpyfiUkip7/TktNdN2+tr//1+8oa4OjHX11J4bUUFlZ2cHDw8PtGrVCiVLlhQ7HaIiIU3QQpqg4sln+JCc0lgYUoGXmpqKy5cv4+zZszh79izu3LmD6tWrw9PTE40aNYJEwiEFlL+mnDsjdgqFzmJ3L7FToEJMEAQ8evQICxYsQO/evVG7dm14enrC09MTbm5u0NHh7RIRFX6cfIYKpMTERJw9exZ+fn44ceIEdHV14eXlBQ8PD7i7u8PKykrsFEnDVVizXOwUqIh4OnqC2CmQAmJiYnDu3DkEBATgzJkzSElJwXfffYeOHTvC09MTxsbGYqdIVOClTz5z8l4FGBfTVmnsxA9paFvzKSefUQILQyow3r9/Dz8/P/j5+eHs2bMoV64cOnXqhI4dO8LV1RVaWnxktjBh4UYkvqJe1EqlUgQHB8PPzw9HjhzBixcv4OnpiY4dO6Jjx46wsLAQO0WiAomFoWZiYUgaLSEhAceOHcPvv/+OM2fOoFatWujcuTM6duwIJycnDhMVEQs3ItJ0qixs04eb+vn54fDhw7h37x68vLzQs2dPtG/fHiYmJiq7FlFhl14YHrtXUS2FYfuaESwMlcDCkDROUlISTp06hX379uHEiROoWLEievXqhR49eqBixYpip1egsHgjIlJedoXlkydPsH//fuzbtw8RERFo164devbsCW9vbxgYGORjlkQFT3pheOSug1oKw061wlkYKoGFIWkEQRBw9epV7Ny5E/v370epUqVkxWD16tXFTk+tWLwREWm+7IrEBw8eYN++fdi3bx/+/fdf9OjRAz4+PpwAjSgLLAw1EwtDEtXz58+xe/du7Ny5E2/fvkWvXr3g4+OD+vXra+QvUxZxRERFW3YFoiAICA4Oxs6dO7Fv3z6UKlUKffv2Rd++fWFra5uPWRJptvTC8NBdR7UUhl1qPWZhqAQWhpTvPn78iIMHD2Lnzp24dOkSPD094ePjg3bt2mnM8BsWgERElJPsisSkpCQcP34cO3bsQEBAAJo0aQIfHx907doVRkZG+ZglkeZhYaiZWBhSvrl37x42b96M3377DWXLlkX//v3Rp08fUZeWYAFIRER5ldMkNzExMdizZw+2b9+Oly9f4ocffsDgwYNRs2bNfMqQSLOkF4YH7jrBSMWF4ccPaehW6xELQyWwMCS1SkxMxP79+7F582bcu3cPPXr0gK+vLxo0aJCvQ0VZABIRUX7Iaajp9evXsXnzZuzfvx81a9aEr68vevTowfURqUhhYaiZWBiSWoSGhmLTpk3Ys2cP7O3tMWTIEPTu3Rvm5uZqvS4LQCIi0gQ59SLGxsZiz5492Lx5MyIjI9GnTx8MGTIEzs7O+ZMgkYjSC8N9oVXVUhj2dP6bhaESWBiSyiQnJ+Pw4cNYu3Yt7ty5g169esHX1xf16tVTee8gC0AiIioIcioQBUHAzZs3sXnzZvz++++oU6cORo4cic6dO0NXVzefsiTKXywMNZOW2AlQwRcdHY25c+eifPnymDlzJrp06YKXL19i69ateZ5dtMKa5ZluREREBUFOv7ckEgnq16+PrVu34uXLl+jcuTNmzJgBOzs7zJ07FzExMfmYLVH+kkJLLZsiLl68iHbt2sHGxgYSiQR+fn5yxwVBwI8//ghra2sYGhrC3d0d4eHh2cYsX748JBJJhm3EiBGyNs2bN89wfOjQoQrlrmosDEkp6esO9urVC+XLl8eNGzewbds2PH78GOPGjYOFhYVScVkAEhFRYZSb320WFhYYN24cHj9+jK1btyI4OBh2dnbo3bs3rl69Cg7yosImTZCoZVNEYmIiatWqhXXr1mV6fMmSJVizZg02btyI4OBgGBsbw8vLC0lJSVnGvHnzJqKjo2VbQEAAAKBbt25y7QYPHizXbsmSJQrlrmo6ol6dCpzU1FQcOnQIy5YtQ3h4OAYMGIC//voLlSpVUjomC0AiIipK0n/vZTXMVEtLC23atEGbNm3w5MkTrF+/Hm3atIGDgwMmTpyILl26QEeHt3BE2YmPj5d7ra+vD319/QztvL294e3tnWkMQRCwatUqzJw5Ex06dAAA7Nq1C5aWlvDz80PPnj0zPa9UqVJyrxctWoSKFSuiWbNmcvuNjIxEnZ3/W+wxpFxJSEjA6tWrUalSJUybNg19+/bFy5cvsWLFCoWLQvYKEhER5TzMFAAqVaqEFStW4OXLl+jbty+mTp0KBwcHrFmzBgkJCfmUKZF6pEFLLRsAlCtXDmZmZrJt4cKFCucXGRmJmJgYuLu7y/aZmZnB1dUV165dy1WM5ORk/PbbbxgwYECGx6v27NmDkiVLonr16pg2bRo+fvyocI6qxD83Ubaio6Pxyy+/YMOGDXBwcMDSpUvRqVMnhf9SyQKQiIgoczn1IAKAiYkJRo0ahWHDhuHIkSNYunQpZs+ejWHDhmHUqFGwtrbOr3SJCoQXL17ITT6TWW9hTtKf8bW0tJTbb2lpmevnf/38/BAbG4t+/frJ7e/duzfs7OxgY2ODe/fuYcqUKQgLC8Phw4cVzlNVWBhSpsLCwrB48WLs3bsXnp6eOHr0KJo0aaLQRDIsBomIiHIvNwWijo4OunXrhq5du+LSpUtYtmwZ7O3t0bt3b0yZMgWVK1fOr3SJ8kwqaEEqqHYAo/R/z+KamppqxKyk27Ztg7e3N2xsbOT2+/r6yv5do0YNWFtbo1WrVoiIiEDFihXzO00AHEpK3wgLC8P333+PWrVqQSKRIDQ0FMeOHUPTpk1zLAo5RJSIiCjvcvN7VCKRoGnTpjh27Bju3LkDiUSCWrVq4YcffkBYWFg+ZUpUuKU///fmzRu5/W/evMnVs4HPnz/HuXPnMGjQoBzburq6AgCePHmiRKaqwcKQAACPHj2SFYRGRkZ49OgRtm3bBicnp2zPYyFIRESkHrn9/VqlShVs27YNDx8+hIGBAWrVqoXvv/+eBSJpPHU+Y6gK9vb2sLKyQmBgoGxffHw8goOD0bBhwxzP3759O0qXLo22bdvm2DY0NBQARB0WzsKwiHv06BH69OkDZ2dnWUG4efNmlC9fPtP27BUkIiLKX7n9nWtvb48tW7bg0aNHMDIykhWIjx49yocsiQqmhIQEhIaGygqzyMhIhIaGIioqChKJBGPHjsX8+fNx7Ngx3L9/H3379oWNjQ06duwoi9GqVSusXbtWLq5UKsX27dvh4+OTYW6OiIgIzJs3DyEhIXj27BmOHTuGvn37omnTpqhZs6a633KWWBgWUc+fP0ffvn3h7OwMExOTXBeEREREJI7c/i4uX748Nm/eLCsQnZ2d0bdvX0RFReVDlkS5J4Xq1zKUKpjDrVu3ULt2bdSuXRsAMH78eNSuXRs//vgjAGDy5MkYNWoUfH19Ua9ePSQkJMDf3x8GBgayGBEREXj79q1c3HPnziEqKgoDBgzIcE09PT2cO3cOnp6ecHJywoQJE9ClSxccP35cwexVSyJwtdQiJTY2FgsWLMDatWvRtWtX/PTTT1kWgwAnkCEiItJE2U1Q861nz55h1qxZOHToEEaNGoVp06bB3NxcfckR5SA+Ph5mZmbYcLseDE1UOxfmp4RUDKtzE3FxcRox+UxBwh7DIiI5ORmrVq1CxYoVcfv2bVy5cgW7du3KtCjkUFEiIiLNpsjv6fLly2P37t24fPkybt26hUqVKmH16tVITk5Wc5ZEVJCwx7CQEwQBBw4cwLRp02BkZIQlS5agdevWmc4wykKQiIioYMptD6IgCDh9+jQmT56MT58+YeHChejWrZtCy1ER5VV6j+HaEFe19BiOdAlmj6ESWBgWYqGhoRg5ciSePn2KefPmoV+/ftDW1pZrw2KQiIiocFBkeGlqaip27tyJWbNmoUKFCli3bh1q1aqlxuyI/h8LQ83EoaSF0Pv37zFy5Eg0bNgQTZo0wePHjzFw4EC5opBDRYmIiAoXRX636+joYODAgXj8+DHc3NzQoEEDjBo1CrGxsepNkugrUkjUspFyWBgWIlKpFL/++isqV66M8PBwhIaGYuHChTAxMQHAZweJiIiKAkV+15uYmGDRokUIDQ1FWFgYHB0d8euvv0IqVXRuRyIq6DiUtJAICQnBiBEjEB0djZUrV6JTp06y5wVYCBIRERVNigwvFQQBR44cwbhx42BjY4O1a9fCxcVFjdlRUZU+lHTlrUZqGUo6ru5VDiVVAnsMC7iEhASMGzcOTZo0gYeHBx4+fIjOnTtDIpGwd5CIiKiIU+ReQCKRoHPnznj48CHc3d3RpEkTjBs3DgkJCWrOkog0AQvDAuzkyZOoWrUqQkJCcPv2bcybNw9GRkYsCImIiEiOIvcFRkZGmDdvHkJCQhASEoJq1arh5MmTasyOiqo0aKllI+Wotu+W8kVMTAzGjBmDs2fPYunSpRgwYAC0tLRYDBIREVGW0u8Tcju8tEqVKrhw4QK2bduG77//Hp6enli9ejWsrKzUmSYVIVJBAqmg2sliVB2vKGFJXYBIpVJs2bIFVapUgUQiwcOHDzFo0CBUWruSRSERERHliiL3DFpaWhg8eDAePnwI4EuxuGXLFnCKCqLCh5PPFBDPnj3DwIEDER4ejg0bNqBt27YsBomIiChPFJmcBvjyGMuwYcPg4OCAbdu2oXz58upJjAq19MlnFt1sBgMVTz6TlJCKqfWCOPmMEthjqOGkUik2bNiAGjVqoFKlSnjw4AFGRTxiUUhERER5puj9RNu2bfHgwQNUqlQJNWvWxMaNG7m0BVEhwR5DDRYZGYmBAwciIiIC27Ztg+/fd8VOiYiIiAopRXsPAwICvjzSUqkSew9JIek9hgtutFBLj+H0+ufZY6gE9hhqoPRewpo1a8LR0RGSEb4sComIiEitFO099PDwwP3791GpUiXUqFEDGzZsYO8hUQHGwlDDvHr1Cq1bt8aiRYtg0rc3zlZ1gJaBgdhpERERURGgaHFoamqKTZs24ciRI1i0aBFat26NV69eqSk7KmzSIFHLRsphYahBfv/9d1SvXh1lypSBZIQvDCs7ip0SERERFTHKrIfs7u6Oe/fuwcbGBjVq1MC+ffvUlB0RqQvXMdQA//33H0aMGIFz587h119/RadOnWTHOMkMERERiaHCmuUKPXdoZmaGHTt24PDhw/D19cXRo0exfv16WFhYqDFLKsikghakgmr7qVQdryjhV05kZ8+eRY0aNfDhwwfcv39frigEvjwI/u1GRERElB+U+QN1586d8eDBA8THx6NGjRoICAhQQ2ZEpGqclVQknz9/xtSpU7F161YsX74cgwcPhkSi+Jho9igSERFRflD0j9OCIGDLli2YMGECBg0ahEWLFkFfX19N2VFBkj4r6Y/B7jAw0VVp7KSEFPzkeo6zkiqBPYYiePjwIVxdXXHp0iWEhITA19dX4aJQmfH/RERERMpS9L5DIpHA19cXISEhuHTpElxdXfHw4UM1ZUcFUfpQUlVvpBx+5fKRIAjYvHkz6tWrBy8vL1y9ehWOjopPMMOCkIiIiMSgzD2Io6Mjrl69Ci8vL9SrVw9btmwBB6wRaR5OPpNP3r17h8GDB+P69es4evQoWrVqpXAMFoREREQktvT7EUWGlurp6WHx4sXw8PBA37594e/vjy1btqB48eLqSpMKgDRBC2kq7uFTdbyihF+5fHD58mU4OzsjLS0N9+7dU7go5LBRIiIi0jTK3JukL2uRmpqKWrVq4fLly2rIjIiUwcJQjaRSKRYuXAgvLy9MmTIFfn5+KFmyZK7PZ0FIREREmkyZ+5SSJUvCz88PkydPhpeXFxYtWgSpVKqG7EjTCZBAquJN4AL3SuNQUjX5559/0LdvX4SHh+PixYtwcXHJ9bksBomIiKigyMt9i/lwX2zZsgVBQUHYtWsXSpUqpcLMiEgR7DFUg6CgIDg7O8PU1BS3b9/OdVHIHkIiIiIqSvTLlUWab3+YmJjA2dkZFy9eFDslykfpzxiqeiPl8CunQlKpFD///DPatGmDmTNnYv/+/TAzM8vxPBaEREREVFRpGRrilpsrpk+fDm9vbyxYsIBDS4lEwKGkKvL+/Xv07dsXf/31Fy5duoQ6derkeA6LQSIiIqIvax4uT0vCpUuX0LVrV1y/fh27du2Cubm52KmRGkkFCaSCap8JVHW8ooQ9hioQGhqKunXrQhAEhISE5FgUsoeQiIiIKKOul88jJCQEaWlpcHFxwd27d8VOidQoDVpq2Ug5/Mrl0c6dO+Hm5ob+/fvj2LFjsLCwyLY9C0IiIiKirLns/hXHjx9Hv3790LhxY+zatUvslIiKBA4lVdLnz58xduxY/PHHHzh06BC8vLyybc+CkIiIiCh3Kq1dCZgZ4dChQ+jduzeuXbuGVatWQV9fX+zUSIU4lFSzsDBUQkxMDDp37ozk5GTcvn0bdnZ2WbZlQUhERESknGFhD3D79m106dIFLVu2xKFDh2BlZSV2WkSFEoeSKujWrVuoW7cuKlSogEuXLrEoJCIiIlKjFkcP4tKlSyhfvjzq1auHW7duiZ0SqYgUWmrZSDn8yingt99+Q/PmzTF27Fjs3r0bhoaGmbbj5DJEREREqlNty3r89ttvGD16NJo3b449e/aInRJRocOhpLmQlpaGqVOnYuvWrTh48CBat26daTsWg0RERETqIZFIMGnSJNSoUQO9evXC3bt3sXDhQmhra4udGikpTZAgTcXPBKo6XlHCwjAH8fHx6NmzJyIjIxEcHAxHR8cMbVgQEhEREalXhTXL8XT0BLRu3RrBwcHo0KEDHjx4gH379sHU1FTs9IgKPA4lzUZUVBTc3NyQlpaG69evsygkIiIiElH6fZejoyOuX7+O1NRUuLm5ISoqSuTMSBnps5KqeiPlsDDMwo0bN1C/fn00btwYJ0+ehJmZmdxxPkdIRERElP/S77/MzMxw8uRJNGrUCPXr18fNmzdFzowUJQhakKp4EwSWN8riVy4TBw8eRMuWLTF16lSsX78eOjryI25ZEBIRERGJJ/1eTFdXFxs2bMCUKVPQokULHDp0SOTMiAouPmP4FUEQsGTJEvz888/4/fff0a5dO7njLAiJiIiINEP6M4cSiQTjxo1DxYoV0adPH0RERGDSpEmQSDikUNOlQYI0qHjyGRXHK0rYY/g/aWlpGD16NFatWoWgoCAWhUREREQa7uv7s/bt2+PixYtYuXIlxowZg7S0NBEzIyp4WBgCSEpKQs+ePREQEIBr166hdu3asmN8lpCIiIhIc319n1a7dm1cvXoVZ86cQa9evZCUlCRiZpQTqaCOCWjEflcFV5EvDGNjY9G6dWu8ePECly9fRvny5WXHWBASERERab6v79ns7e1x5coVREVFwdvbG3FxcSJmRlRwFOnC8NWrV2jatClMTEwQGBiIkiVLAmAvIREREVFB8/W9W8mSJREYGAgjIyM0bdoUr1+/FjEzyoqqZyRN30g5RfYr9/TpU7i5uaFevXrw8/ODsbExAPYSEhERERVUX9/HGRsbw8/PDy4uLmjcuDEiIyNFzIxI8xXJwvDRo0do2rQpOnbsiK1bt0JHR4e9hERERESFwNf3c7q6uti2bRs6dOiAJk2aICwsTMTM6FtSSNSykXKKXGF47949NGvWDP369cOKFSsgkUhYEBIREREVUhKJBCtXroSPjw+aNm2K+/fvi50S/U+aIFHLpoiLFy+iXbt2sLGxgUQigZ+fn9xxQRDw448/wtraGoaGhnB3d0d4eHi2MefMmQOJRCK3OTk5ybVJSkrCiBEjUKJECZiYmKBLly548+aNQrmrWpEqDG/duoUWLVpg9OjRmD9/PotCIiIiokLo2/s7iUSCn3/+GaNHj0bz5s0REhIiUmakaRITE1GrVi2sW7cu0+NLlizBmjVrsHHjRgQHB8PY2BheXl45znhbrVo1REdHy7bLly/LHR83bhyOHz+OAwcOICgoCK9fv0bnzp1V9r6UUWQWuL927Rq8vb0xZ84cjB07lgUhERERUSFWYc1yPB09QW7fjBkzYGRkhFatWuH06dNo2LChSNkRALVMFqNoPG9vb3h7e2d6TBAErFq1CjNnzkSHDh0AALt27YKlpSX8/PzQs2fPLOPq6OjAysoq02NxcXHYtm0b9u7di5YtWwIAtm/fjipVquD69eto0KCBQu9BVYpEj2FISAi8vb2xYMECFoVERERERURm93zjxo3Dzz//DG9vb/YcFmLx8fFy2+fPnxWOERkZiZiYGLi7u8v2mZmZwdXVFdeuXcv23PDwcNjY2KBChQro06cPoqKiZMdCQkKQkpIiF9fJyQm2trY5xlWnQl8Y3rt3D56enpg9ezaGDx/OopCIiIioCMns3m/EiBH48ccf4enpyWcORSSFqhe3///JZ8qVKwczMzPZtnDhQoXzi4mJAQBYWlrK7be0tJQdy4yrqyt27NgBf39/bNiwAZGRkWjSpAk+fPggi6unpwdzc3OF4qpboR5K+ujRI7i7u2P8+PH4RVuKX1gUEhERERGA8ePH4+PHj3B3d0dQUFCGyUGoYHvx4gVMTU1lr/X19fPt2l8PTa1ZsyZcXV1hZ2eHP/74AwMHDsy3PBRVaHsMIyIi0KpVK/j6+mJbMQOx0yEiIiIikWQ1YmzmzJkYNGgQWrVqhYiIiHzOigQ1LFUh/K/H0NTUVG5TpjBMf0bw29lC37x5k+Xzg5kxNzeHo6Mjnjx5IoubnJyM2NjYPMVVtUJZGL5+/RqtWrVCz549MW/evAwPHhMRERFR0ZJVcTh//nz06NED7u7ueP36dT5nRZrM3t4eVlZWCAwMlO2Lj49HcHCwQhMXJSQkICIiAtbW1gAAFxcX6OrqysUNCwtDVFSUqBMiFbqhpLGxsWjdujVatmyJZcuWQSL58leDzIpDPm9IREREVHRkNlOpRCLB8uXL8d9//8Hb2xsXL16EmZmZSBkWLenPBao6piISEhJkPXnAlwlnQkNDUbx4cdja2mLs2LGYP38+HBwcYG9vj1mzZsHGxgYdO3aUndOqVSt06tQJI0eOBABMnDgR7dq1g52dHV6/fo3Zs2dDW1sbvXr1AvBlApuBAwdi/PjxKF68OExNTTFq1Cg0bNhQtBlJgUJWGCYlJaFDhw6wtbXF5s2bZUVhVp6OnsDikIiIiKiIk0gk2LJlCzp27IgOHTrA398fBgZ8FEndNGG5ivR1ztONHz8eAODj44MdO3Zg8uTJSExMhK+vL2JjY+Hm5pbh8xEREYG3b9/KXr98+RK9evXCu3fvUKpUKbi5ueH69esoVaqUrM3KlSuhpaWFLl264PPnz/Dy8sL69euVfdsqIREEQRA1AxVJS0tDt27dEB0djcDAQBgZGWXbngUhERERUdGU1WNGiYmJcHd3h42NDf744w9oa2vnc2ZFQ3x8PMzMzNApoD90jfVUGjslMRlHPLYjLi5ObvIZylmheMZQEASMGDECjx49wokTJ1gUEhEREVGWsroXNDY2xokTJ/D3339j5MiRKCT9JxpL5UtVqGFoalFSKArDxYsX4/jx4/D390eJEiWybcuikIiIiIiyuicsUaIEzpw5g2PHjmHJkiX5nBWReAr8M4b79u3DggULcPHiRdja2mbblkUhEREREeXE1tYWJ06cQLNmzVC+fHn06NFD7JQKpfQlJlQdk5RToAvDy5cvY9CgQThw4ACcnZ2zbMeCkIiIiIi+ldU94tPRE1C7dm3s378f3bp1Q5kyZeDm5pbP2RHlrwJbGD5+/BgdOnTAihUr4O3tnWU7FoVEREREpIiv7x8N2rZGm3bfIeTGTTg4OIiYVeGjCctV0P8rkM8Yvnv3Dm3atMHgwYPh6+ubZTsWhURERESUF6aNG0K3rgtaeXri3bt3YqdDpDYFrjBMTk5G165dUatWLSxYsCDLdiwKiYiIiEgVTNu2xgcLc7Tr1BEpKSlip1NocFZSzVKgCkNBEDBq1CjExsZi165d0NLKPH0WhURERESkKhItLZj16oYHz59j6PDhXMZCRVgYapYCVRj+8ssvOHr0KI4dOwZjY+NM27AoJCIiIiJV09LXh3n/vvj94EGsXbtW7HSIVK7ATD7j7++PadOmITAwEOXKlRM7HSIiIiIqYnSKW8C83/eYMHkyHB0d4eXlJXZKBRonn9EsBaLHMCIiAr169cKmTZvQoEGDLNuxt5CIiIiI1MnAvjzMunZCl+7d8fTpU7HTIVIZjS8MP378iC5duqBv3774/vvvs2zHopCIiIiI8kOxei7Qq10Lbdq3x8ePH8VOp8AS8P+L3Ktq49OfytPowlAQBAwdOhQmJiZYunRplu1YFBIRERFRfjJr3xbRn5MwyNeXk9FQoaDRheHGjRtx9uxZ/PHHH9DT0xM7HSIiIiIiAIBERwdmfXvjwPHj2LRpk9jpFEiclVSzaGxheOPGDUycOBF//PEHbGxssmzH3kIiIiIiEoOOmRlK+vTBmHHjcOPGDbHTIcoTjSwM4+Pj0atXL8yePRtNmzbNsh2LQiIiIiISk2GlijDxaIXO3bvhw4cPYqdToLDHULNoZGE4atQo2NvbY+LEiVm2YVFIRERERJrAtGUzJBgZYujw4WKnUqCwMNQsGlcY7tu3DydOnMDOnTuhpaVx6RERERERyZFoacG0Z3ccPnoU+/fvFzsdIqVoVOX1/PlzDB06FNu2bUOZMmWybMfeQiIiIiLSJDrmZjDt1hkDfX3x/PlzsdMpENhjqFk0pjCUSqXo27cvevbsiY4dO2bZjkUhEREREWki41o1oFezOnr06QOpVCp2OkQK0ZjCcMOGDXjx4gWWL2fhR0REREQFk2n7tngQ/hgbN24UOxWNJwgStWykHI0oDJ89e4apU6diy5YtMDY2zrIdewuJiIiISJNp6eujWNfOmDBpEp49eyZ2OkS5JnphKAgCBg8ejN69e6NVq1ZZtmNRSEREREQFgWFlB+jWqgGfAQMgCILY6WgsKSRq2Ug5oheG27Ztw6NHj7B06VKxUyEiIiIiUoniHb7DrXv3sG3bNrFTIcoVUQvDN2/eYOLEidi0aRNMTU2zbMfeQiIiIiIqSLQMDVGsS0eMnTABb968ETsdjcRZSTWLqIXhpEmT4OHhgTZt2oiZBhERERGRyhlVqwK9ShUwdsIEsVPRSJx8RrOIVhgGBQXhyJEjWLlyZbbt2FtIRERERAWVSfvvcPjwYQQFBYmdClG2RCkMk5OTMXz4cMyZMwdly5bNsh2LQiIiIiIqyHQszGHi2QoDfH2RkpIidjoahUNJNYsoheHq1auhpaWF0aNHi3F5IiIiIqJ8Y9qsCf79mIhVq1aJnQpRlvK9MHzz5g3mzZuHX375Bbq6ulm2Y28hERERERUGEm1tGHdsh9lz5+Kff/4ROx2NwWcMNUu+F4azZ8+Gu7s7mjdvnt+XJiIiIiIShaFDJeg7VML0mTPFToUoUzr5ebH79+9j586duHfvXrbt2FtIRERERIWNSdvW2Ll0JcaOHo3q1auLnY7oBDU8E1iUegyjoqLw/PlzfPz4EaVKlUK1atWgr6+vdLx86zEUBAETJkzAsGHD4ODgkF+XJSIiIiLSCLqlS8GooStGjh0rdipUQD179gxTpkyBnZ0d7O3t0axZM3h7e6Nu3bowMzODh4cHDhw4AKlUqnDsfCsMz549i5CQEMyaNSvbduwtJCIiIqLCyry1B4Jv3MDZs2fFTkV0AgBBUPEm9ptSo9GjR6NWrVqIjIzE/Pnz8ffffyMuLg7JycmIiYnBqVOn4Obmhh9//BE1a9bEzZs3FYqfL0NJBUHAzJkzMXXqVFhYWOTHJYmIiIiINI62kREMWzTFxKlTcdfDAxJJ0Rn6SHljbGyMp0+fokSJEhmOlS5dGi1btkTLli0xe/Zs+Pv748WLF6hXr16u4+dLj+Hx48fx4sULjBgxItt27C0kIiIiosLO1K0RnkQ+xYkTJ8RORVRSSNSyFVYLFy7MtCjMTOvWrdG5c2eF4qu9MJRKpZg1axamTZsGIyMjdV+OiIiIiEijaenrw7BFM0yaNk2pZ8EKCy5XoVnUPpT00KFDePfuHYYMGZJtO/YWEhEREVFRUaxxQ7y4eBmHDx9G165dxU6HCqCDBw/ijz/+QFRUFJKTk+WO3b59W+F4au0xFAQB8+fPx/Tp02FgYKDOSxERERERFRhaurowbNEMM2bPhiAU5ilTsib933IVqt6KgjVr1qB///6wtLTEnTt3UL9+fZQoUQJPnz6Ft7e3UjHVWhiePXsW0dHR6N+/f7bt2FtIREREREWNiWt9RL18iYCAALFToQJm/fr12Lx5M3755Rfo6elh8uTJCAgIwOjRoxEXF6dUTLUWhsuWLcPIkSNhaGiozssQERERERU4Wnq6MGzcAPMXLRI7FVGofKmK/21FQVRUFBo1agQAMDQ0xIcPHwAAP/zwA37//XelYqqtMLxz5w6uXr2K4cOHZ9uOvYVEREREVFQVc2uMa1evIjQ0VOxUqACxsrLCf//9BwCwtbXF9evXAQCRkZFKD01WW2G4fPly9O/fHyVLllTXJYiIiIiICjRtE2MY1nPBgsWLxU4l33FWUuW1bNkSx44dAwD0798f48aNg4eHB3r06IFOnTopFVMts5L+888/OHDgAB48eJBtO/YWEhEREVFRZ9asCY4sWYF///0XpUqVEjsdKgA2b94sW+pkxIgRKFGiBK5evYr27dvnuBpEVtRSGO7cuRNubm5wcHBQR3giIiIiokJDt3QpmFSqiJ07d2LixIlip5Nv1NHDVxR6DK9fv47jx48jOTkZrVq1QuvWrdGzZ0/07NkzT3FVPpRUEARs3rwZvr6+qg5NRERERFQo6dZ3wZr164vU0hVcrkJxBw8eROPGjbF69Wps3boVbdu2xbJly1QSW+WF4YULFxAbG4uOHTtm247DSImIiIiIvjCuWQP/vnuLoKAgsVMhDbZw4UIMHjwYcXFxeP/+PebPn48FCxaoJLbKC8MtW7bAx8cH+vr6qg5NRERERFQoSXR0YFjXBVu2bBE7lXyjCctVXLx4Ee3atYONjQ0kEgn8/Py+yVHAjz/+CGtraxgaGsLd3R3h4eHZxly4cCHq1auHYsWKoXTp0ujYsSPCwsLk2jRv3hwSiURuGzp0aI75hoWFYeLEidDW1gYATJgwAR8+fMA///yj2BvPhEoLw8TERBw9ehR9+/ZVZVgiIiIiokLPsG4dHDp8GImJiWKnUmQkJiaiVq1aWLduXabHlyxZgjVr1mDjxo0IDg6GsbExvLy8kJSUlGXMoKAgjBgxAtevX0dAQABSUlLg6emZ4fs6ePBgREdHy7YlS5bkmO/Hjx9hamoqe62npwcDAwMkJCTk8h1nTaWTz5w4cQJ2dnaoUaNGtu04jJSIiIiISJ6ejTX0SxTHyZMn0b17d7HTUbsvPXyqnnxGsfbe3t7w9vbOIpaAVatWYebMmejQoQMAYNeuXbC0tISfn1+Wk734+/vLvd6xYwdKly6NkJAQNG3aVLbfyMgIVlZWiiUMYOvWrTAxMZG9Tk1NxY4dO+SWCRw9erTCcVVaGO7fvx89evSARFK4H/okIiIiIlI1iUQC7RrVsWvPniJRGKpTfHy83Gt9fX2FH3WLjIxETEwM3N3dZfvMzMzg6uqKa9eu5XoW0Li4OABA8eLF5fbv2bMHv/32G6ysrNCuXTvMmjULRkZG2caytbXNMNzYysoKu3fvlr2WSCTiFobx8fE4deqUyh5+JCIiIiIqaozqOOPMslWIj4+XGzJYGKlzuYpy5crJ7Z89ezbmzJmjUKyYmBgAgKWlpdx+S0tL2bGcSKVSjB07Fo0bN0b16tVl+3v37g07OzvY2Njg3r17mDJlCsLCwnD48OFs4z179kyh96AIlRWGJ0+eROXKleHk5JRtOw4jJSIiIiLKnJ5laWiXLIlTp07leV26ouzFixdyhbVYE2OOGDECDx48wOXLl+X2f720X40aNWBtbY1WrVohIiICFStWzO80Aahw8pkTJ06gffv2qgpHRERERFQkGVZ1wtGTJ8ROQ+0ENW0AYGpqKrcpUximP//35s0buf1v3rzJ1bOBI0eOxIkTJ3D+/HmULVs227aurq4AgCdPnmTZZt++fTleM92LFy9w5cqVXLcHVFQYpqam4vTp02jbtq0qwhERERERFVkGVSrD398fUqlU7FTUKn0oqao3VbG3t4eVlRUCAwNl++Lj4xEcHIyGDRtm874EjBw5EkeOHMGff/4Je3v7HK8VGhoKALC2ts6yzYYNG1ClShUsWbIEDx8+zHA8Li4Op06dQu/evVGnTh28e/cux+t+TSVDSa9duwYdHR3Uq1cv23YcRkpERERElD0D+/L47+Mn3L17F7Vr1xY7nUItISFBrpcuMjISoaGhKF68OGxtbTF27FjMnz8fDg4OsLe3x6xZs2BjY4OOHTvKzmnVqhU6deqEkSNHAvgyfHTv3r04evQoihUrJnse0czMDIaGhoiIiMDevXvRpk0blChRAvfu3cO4cePQtGlT1KxZM8tcg4KCcOzYMfzyyy+YNm0ajI2NYWlpCQMDA7x//x4xMTEoWbIk+vXrhwcPHmR4NjInKikMT5w4gTZt2sgWWiQiIiIiIuVItLVhWNkBp0+fLtyF4ddjP1UZUwG3bt1CixYtZK/Hjx8PAPDx8cGOHTswefJkJCYmwtfXF7GxsXBzc4O/vz8MDAxk50RERODt27ey1xs2bADwZRH7r23fvh39+vWDnp4ezp07h1WrViExMRHlypVDly5dMHPmzBzzbd++Pdq3b4+3b9/i8uXLeP78OT59+oSSJUuidu3aqF27NrS0lBsUKhEERVf7yKhWrVqYPn06evTokW079hgSEREREeUs/up1lI18jtDgG2KnonLx8fEwMzNDhZ3ToW1kkPMJCkj7mISnPgsQFxdX6Gd1VbU8P2MYExODBw8eoFWrVqrIh4iIiIioyDOq4oT7IbcRGxsrdirqo47nC1W8/EVRkufC8Ny5c6hduzZKliyZbTv2FhIRERER5Y6OhTlMrK1x7tw5sVOhIiLPhWFAQAA8PDxUkQsREREREf2PxLES/P39xU5DbQRBPRspJ0+FoSAIOHfuHAtDIiIiIiIVM6xSGX4nTkAFU4IQ5ShPhWFYWBjevXuHRo0aqSofIiIiIiICoG9fHrH//YfHjx+LnYpaaPo6hgVJWloaQkND8f79e6Vj5KkwPH/+PBo1aiQ3XWtm+HwhEREREZFitHR1oVfeDufPnxc7FfVInyxG1VsRMHbsWGzbtg3Al6KwWbNmqFOnDsqVK4cLFy4oFTPPheHX634QEREREZHq6DtUxKmAALHTIA1z8OBB1KpVCwBw/PhxREZG4tGjRxg3bhxmzJihVEylC0NBEHDhwgUWhkREREREamJYqRIuBl0olM8ZcvIZ5b19+xZWVlYAgFOnTqFbt25wdHTEgAEDcP/+faViKl0Y/vXXX0hMTET9+vWVDUFERERERNnQtyuHxIRE/P3332KnQhrE0tISf//9N9LS0uDv7y+bDPTjx4/Q1tZWKqbSheH58+fh5uYGPT29bNvx+UIiIiIiIuVIdHRgUqlC4XzOUFDTVgT0798f3bt3R/Xq1SGRSODu7g4ACA4OhpOTk1Ix81QYchgpEREREZF6SezL49TZs2KnQRpkzpw52Lp1K3x9fXHlyhXo6+sDALS1tTF16lSlYuooc5JUKkVQUBCmTJmi1EWJiIiIiCh3DBwq4dKvuyCVSqGllae5IzWKOpaXKErLVXTt2lXudWxsLHx8fJSOp9Qn6969e0hJSYGLi4vSFyYiIiIiopzplyuLz8nJSk8qQoXP4sWLsX//ftnr7t27o0SJEihbtizu3bunVEylCsPLly+jYcOG0NHJvsORzxcSEREREeWNRFsbxSpWwOXLl8VORfX4fKFSNm7ciHLlygEAAgICEBAQgNOnT6N169aYOHGiUjGVKgyDg4PRoEEDpS5IRERERESKkZaxRnBwsNhpqFT6UFJVb0VBTEyMrDA8ceIEunfvDk9PT0yePBk3b95UKqbShaGrq6tSFyQiIiIiIsXo29niwpVC2GNISrGwsMCLFy8AAP7+/rJZSQVBQFpamlIxFZ585r///kN4eDjXLyQiIiIiyif6draIehqJ9+/fw8LCQux0VEMdwz+LyHDSzp07o3fv3nBwcMC7d+/g7e0NALhz5w4qVaqkVEyFewxv3ryJChUqoGTJkkpdkIiIiIiIFKNtYoJiVpa4ceOG2KmQBli5ciVGjhyJqlWrIiAgACYmJgCA6OhoDB8+XKmYCvcYhoaGok6dOjm248QzRERERESqo1vGBnfv3oWXl5fYqaiI5H+bqmMWfrq6uplOMjNu3DilYyrcY3jv3j3UrFlT6QsSEREREZHipKVLKb0UARU+u3fvhpubG2xsbPD8+XMAwKpVq3D06FGl4rEwJCIiIiIqAPRsbHA9JETsNFRH1UtVFKElKzZs2IDx48fD29sbsbGxsglnzM3NsWrVKqViKlQYJicn49GjRywMiYiIiIjymZ6NNZ49eYLk5GSxUyGR/fLLL9iyZQtmzJgBbW1t2f66devi/v37SsVUqDAMCwuDvr4+7OzslLoYEREREREpR6e4BbR0dPD48WOxU1EN9hgqLTIyErVr186wX19fH4mJiUrFVKgwfPz4MSpXrgwtLaWWPyQiIiIiIiVJtLRgbG1ViApDiXq2IsDe3h6hoaEZ9vv7+6NKlSpKxVRoVtLw8HA4ODjk2I4zkhIRERERqZ6kRHGEh4eLnQaJbPz48RgxYgSSkpIgCAJu3LiB33//HQsXLsTWrVuViqlQYfj48WM4OjoqdSEiIiIiIsoboXjxQtNjKAhfNlXHLAoGDRoEQ0NDzJw5Ex8/fkTv3r1hY2OD1atXo2fPnkrFVLgwbNmypVIXIiIiIiKivNEpXQp3/vpL7DRIA/Tp0wd9+vTBx48fkZCQgNKlS+cpnkIPC0ZGRsLe3j5PFyQiIiIiIuXoliiOiIgIsdNQDU4+oxJGRkZ5LgoBBQrD1NRUxMTEoFy5cnm+KBERERERKU7b3AwJ79/L1q2jounNmzf44YcfYGNjAx0dHWhra8ttysj1UNI3b95AEARYW1srdSEiIiIiIsobHVNTSNPS8ObNG9jY2IidTt6oYxbRIjIrab9+/RAVFYVZs2bB2toaEkne33euC8OXL1+idOnS0NXVzfNFiYiIiIhIcRIdHRiameHly5cFvzAkpV2+fBmXLl2Cs7OzymLmujB89eoVypYtq7ILExERERGR4nQtzPHq1Sux08gzifBlU3XMoqBcuXIQVDwFa66fMXz58iXKlCmTYzuuYUhEREREpD4SU1O8fPlS7DTyjpPPKG3VqlWYOnUqnj17prKY7DEkIiIiIipAhGImhaLHkJTXo0cPfPz4ERUrVoSRkVGGx/3+++8/hWMqVBhWrVpV4QsQEREREZHqaJubFY7CkJPPKG3lypUqmXDmawpNPuPh4aHSixMRERERkWK0zcwQ9vSp2GmQiPr165flsU+fPikVM9fPGEZHR3PmIyIiIiIikemYmSE6OlrsNPKOzxgqbfTo0ZnuT0xMRJs2bZSKmevC8L///kOJEiWUuggREREREamGlrER4uPixE6DRHTy5EnMnj1bbl9iYiJat26N1NRUpWLmaiipIAh4//49zM3NlboIERERERGphpahARLj4iAIgsqfM8tX6ujhKyI9hmfPnkWTJk1gYWGBsWPH4sOHD/Dy8oKOjg5Onz6tVMxcFYYJCQlIS0uDhYWFUhchIiIiIiLV0DI0QlpaGhITE2FiYiJ2OiSCihUrwt/fHy1atICWlhZ+//136Ovr4+TJkzA2NlYqZq4Kw9jYWEgkEpiZmSl1ESIiIiIiUg0tQwMAX+7RC3RhyB7DPKlZsyZOnDgBDw8PuLq64sSJEzA0NFQ6Xq4Kw/fv38PMzAxaWrl+JJGIiIiIiNRAoqUFPWNjvH//vmCvM87lKhRSu3btTIcO6+vr4/Xr12jcuLFs3+3btxWOn+vCkM8XEhERERFpBl0jI7x//17sNCgfdezYUa3xcz2UlM8XEhERERFpBh1jI8TGxoqdRp5IhC+bqmMWVt/OQqpquRob+v79exaGREREREQaQtvQkD2GRdjNmzcRHBycYX9wcDBu3bqlVMxcF4YcSkpEREREpCEMDQp+YcgF7pU2YsQIvHjxIsP+V69eYcSIEUrFzFVh+OnTJxgZGSl1ASIiIiIiUjFdXXz69EnsLEgkf//9N+rUqZNhf+3atfH3338rFTNXhWFKSgp0dXWVugAREREREamWoKWFlJQUsdMo8C5evIh27drBxsYGEokEfn5+cscFQcCPP/4Ia2trGBoawt3dHeHh4TnGXbduHcqXLw8DAwO4urrixo0bcseTkpIwYsQIlChRAiYmJujSpQvevHmT67z19fUzbR8dHQ0dnVxNI5OBSgvDCmuWK5UEERERERHlHgtD1UhMTEStWrWwbt26TI8vWbIEa9aswcaNGxEcHAxjY2N4eXkhKSkpy5j79+/H+PHjMXv2bNy+fRu1atWCl5cX/vnnH1mbcePG4fjx4zhw4ACCgoLw+vVrdO7cOdd5e3p6Ytq0aYiLi5Pti42NxfTp0+Hh4ZHrOF/LVTmZnJwMPT09pS5ARERERESqJWhpITk5Wew08kQCNcxKqmB7b29veHt7Z3pMEASsWrUKM2fORIcOHQAAu3btgqWlJfz8/NCzZ89Mz1uxYgUGDx6M/v37AwA2btyIkydP4tdff8XUqVMRFxeHbdu2Ye/evWjZsiUAYPv27ahSpQquX7+OBg0a5Jj3smXL0LRpU9jZ2aF27doAgNDQUFhaWmL37t0KfhW+yFWPYVpamtJdkkREREREpFqClhZSU1PFTkNjxcfHy22fP39WOEZkZCRiYmLg7u4u22dmZgZXV1dcu3Yt03OSk5MREhIid46Wlhbc3d1l54SEhCAlJUWujZOTE2xtbbOM+60yZcrg3r17WLJkCapWrQoXFxesXr0a9+/fR7ly5RR+r0Auewy1tbUL/F8kiIiIiIgKC4lUWvA7bgTJl03VMYEMxdHs2bMxZ84chULFxMQAACwtLeX2W1payo596+3bt0hLS8v0nEePHsni6unpZVj1Ibu4mTE2Noavr2+u2+ckV58mPT09ufGrREREREQkHolUWvAf9VLH8hL/i/fixQuYmprKduvr66v4Qvnv2LFj8Pb2hq6uLo4dO5Zt2/bt2yscP1eFoa6ubq4ebn06egInoCEiIiIiUjOJVMpVA7JhamoqVxgqw8rKCgDw5s0bWFtby/a/efMGzs7OmZ5TsmRJaGtrZ5gx9M2bN7J4VlZWSE5ORmxsrFyv4ddtMtOxY0fExMSgdOnS6NixY5btJBIJ0tLScnh3GeXqGcPcFoZERERERKR+haIw1PAF7u3t7WFlZYXAwEDZvvj4eAQHB6Nhw4aZnqOnpwcXFxe5c6RSKQIDA2XnuLi4QFdXV65NWFgYoqKisoybHqd06dKyf2e1KVMUArnsMTQ0NMTHjx+VugAREREREalYSgoMDQ3FzqLAS0hIwJMnT2SvIyMjERoaiuLFi8PW1hZjx47F/Pnz4eDgAHt7e8yaNQs2NjZyPXatWrVCp06dMHLkSADA+PHj4ePjg7p166J+/fpYtWoVEhMTZbOUmpmZYeDAgRg/fjyKFy8OU1NTjBo1Cg0bNszVjKTqkqvC0MLCArGxsWpOhYiIiIiIcuVTEiwsLMTOIk8kghqWq1Aw3q1bt9CiRQvZ6/HjxwMAfHx8sGPHDkyePBmJiYnw9fVFbGws3Nzc4O/vDwMDA9k5ERERePv2rex1jx498O+//+LHH39ETEwMnJ2d4e/vLzchzcqVK6GlpYUuXbrg8+fP8PLywvr16xXKPTAwEIGBgfjnn38glUrljv36668KxQIUKAzfv3+vcHAiIiIiIlK9tE+fCnxhqAmaN28OQci6mpRIJPjpp5/w008/Zdnm2bNnGfaNHDlS1oOYGQMDA6xbtw7r1q1TKN90c+fOxU8//YS6devC2toaEkneZ3fNVWFobm7OwpCIiIiISEOkJn7MsNxBgaPGWUkLu40bN2LHjh344YcfVBYzV5PPcCgpEREREZHmSPn4kT2GRVhycjIaNWqk0pi5Lgzj4uIyjF0lIiIiIqL8JUilSE5MLPiFoYbPSqrJBg0ahL1796o0Zq6HkgqCgLi4uIL/ASQiIiIiKsCkn5IAoMAPJdWEyWcKkvSJcYAvy1Vs3rwZ586dQ82aNTMsXbJixQqF4+eqMDQxMYG2tjbev3/PwpCIiIiISETSTx+hra0NY2NjsVOhfHTnzh25187OzgCABw8eqCR+rgpDiUTC5wyJiIiIiDSA9FMSjM3MVDITpagEyZdN1TELqfPnz6s1fq6eMQSA4sWL4927d+rMhYiIiIiIciBN/AhTMzOx0yARDRgwAB8+fMiwPzExEQMGDFAqZq4LQ2tra7x+/VqpixARERERkWqkxsXB2tpa7DTyjpPPKG3nzp349OlThv2fPn3Crl27lIqZq6GkAFC2bFm8evVKqYsQEREREZFqpMXFoXKFCmKnQSKIj4+HIAgQBAEfPnyAgYGB7FhaWhpOnTqF0qVLKxU714VhmTJlWBgSEREREYksLTYOZarXEjuNPOOspIozNzeHRCKBRCKBo6NjhuMSiQRz585VKrZChWFgYKBSFyEiIiIiItWQfEhAmTJlxE6DRHD+/HkIgoCWLVvi0KFDKF68uOyYnp4e7OzsYGNjo1RslQ8lfTp6AiqsWa5UMkRERERElD0hPh5ly5YVO428U8czgYW8x7BZs2YAgMjISNja2qp0ZlqFegxfvnypsgsTEREREZHiUt7HFo4eQzUMJS3shWE6Ozs7lcfM9aykZcuWxT///IOUlBSVJ0FERERERDkTUlPxKS6ucPQYkkbJdWFoaWkJiUSC6OhodeZDRERERERZSI2Ph5a2NiwtLcVOJe+4XIVGyXVhqKOjAysrK7x48UKd+RARERERURbSYuNgYmEBbW1tsVOhQibXhSEA2NvbIzIyUl25EBERERFRNlLe/YeKFSuKnYZqsMcwT1JTU3Hu3Dls2rQJHz58AAC8fv0aCQkJSsXL9eQzAODo6IjHjx8rdSEiIiIiIsqb1H/+Re1q1cROg0T2/PlztG7dGlFRUfj8+TM8PDxQrFgxLF68GJ8/f8bGjRsVjqlQjyELQyIiIiIi8Uj++y/Thc0LovQF7lW9FQVjxoxB3bp18f79exgaGsr2d+rUSem15xUqDB0cHBAeHp5ju6ejJyiVDBERERERZU149x8cHBzEToNEdunSJcycORN6enpy+8uXL5+rteczo3CPYVhYGKRSqVIXIyIiIiIi5QhSKRKjYwpNjyEpTyqVIi0tLcP+ly9folixYkrFVKgwrFy5Mj5//oznz58rdTEiIiIiIlJO6n/vIU1NLTyFISefUZqnpydWrVoley2RSJCQkIDZs2ejTZs2SsVUqDDU09ODk5MT7t27p9TFiIiIiIhIOcmvo1G+UqUMwwep6Fm2bBmuXLmCqlWrIikpCb1795YNI128eLFSMRWalRQAatasiXv37qFDhw5KXZCIiIiIiBSX/Po1Gri4iJ2GyqhjspiiMvlMuXLlcPfuXezfvx93795FQkICBg4ciD59+shNRqMIpQrDW7duKXUxIiIiIiJSjtY//6Jm81Zip0EiS0lJgZOTE06cOIE+ffqgT58+Komr0FBSAHB2dsbt27dzbMeZSYmIiIiIVCfl1WvUqlVL7DRUi88XKkxXVxdJSUkqj6twYVivXj08ffoUb9++VXkyRERERESUUVpCAj7EvEH9+vXFToU0wIgRI7B48WKkpqaqLKbCQ0mLFy8OBwcH3LhxQ+kZb4iIiIiIKPc+P49CuQr2sLCwEDsV1VFHL18R6TW8efMmAgMDcfbsWdSoUQPGxsZyxw8fPqxwTIULQwBwdXVFcHAwC0MiIiIionzw+XkUPBu7iZ0GaQhzc3N06dJFpTGVLgyPHz+u0kSIiIiIiChzWq+i4dquo9hpqBRnJVXe9u3bVR5T4WcMAcDNzQ3Xrl3LcUwrJ6AhIiIiIsobIS0NHyKews2tkPUYcoF7jaJUj2HNmjWhq6uLkJAQuLq6qjonIiIiIiL6n88vXsJAXx81atQQOxXSEPb29pBIJFkef/r0qcIxlSoMtbS00KxZM5w/f56FIRERERGRGiWFP4FbkybQ0lJqsJ/G4lBS5Y0dO1budUpKCu7cuQN/f39MmjRJqZhKFYYA0KJFC5w4cQJTp05VNgQREREREeVAiHyGNkOHi50GaZAxY8Zkun/dunW4deuWUjGV/rNDixYtcPnyZSQnJ2fbjs8ZEhEREREpR0hNRcKTp2jRooXYqagenzFUOW9vbxw6dEipc5UuDKtVqwZjY2PcvHlT2RBERERERJSNz8+jYGxijKpVq4qdChUABw8eRPHixZU6V+mhpBKJBM2bN8f58+fRuHFjZcMQEREREVEWPoU/QdNmzbOdaKTA4gL3Sqtdu7bcZ0IQBMTExODff//F+vXrlYqpdGEIfBlOevDgQcycOTMvYYiIiIiIKBOfn0SgzfiJYqdBGqZjx45yr7W0tFCqVCk0b94cTk5OSsXMc2E4fvx4fP78Gfr6+lm2ezp6AiqsWZ6XSxERERERFSnSlBQkP4sqnM8XgrOS5sXs2bNVHjNPc95WrlwZxYsXx5UrV1SVDxERERERAfgc+QzmxS3g6OgodirqwclnlHb79m3cv39f9vro0aPo2LEjpk+fnuPkoFnJU2EokUjQunVr+Pv75yUMERERERF9IynsMb5r7V04ny+kPBkyZAgeP34M4Mti9j169ICRkREOHDiAyZMnKxUzz6tktm7dGqdPn85rGCIiIiIi+lpEJDw8PMTOQn3YY6i0x48fw9nZGQBw4MABNGvWDHv37sWOHTvyf7mKdB4eHnj48CFevnyZbTuuZ0hERERElDtpCQmIex4Fd3d3sVMhDSQIAqRSKQDg3LlzaNOmDQCgXLlyePv2rVIx81wYmpubo0GDBhxOSkRERESkIp8eh6OSkxMsLS3FTkVt0iefUfVWFNStWxfz58/H7t27ERQUhLZt2wIAIiMjlf7M5LkwBABvb28WhkREREREKpIaFo5O330ndhqkoVatWoXbt29j5MiRmDFjBipVqgTgywL3jRo1UipmnparSOft7Y0lS5YgJSUFurq6qghJRERERFQkCVIpPv39CO2WFvLl3rjAvdJq1qwpNytpuqVLl0JbW1upmCrpMXR2doaBgQGuXbuWbTs+Z0hERERElL3Pz6OgI5GgQYMGYqdCGurFixdyc7zcuHEDY8eOxa5du5TuqFNJYailpcVlK4iIiIiIVODT34/Q2rs1dHRUMrhPY2nCM4YfPnzA2LFjYWdnB0NDQzRq1Ag3b97Msn2/fv0gkUgybNWqVZO1mTNnTobjTk5Oyn6ZMtW7d2+cP38eABATEwMPDw/cuHEDM2bMwE8//aRUTJUUhsCXZStOnjypqnBEREREREXSpwd/o3P7DmKnoX4asFzFoEGDEBAQgN27d+P+/fvw9PSEu7s7Xr16lWn71atXIzo6Wra9ePECxYsXR7du3eTaVatWTa7d5cuXFUssBw8ePED9+vUBAH/88QeqV6+Oq1evYs+ePdixY4dSMVVWGLZt2xZhYWEICwvLth2HkxIRERERZS455g3S3r6VzTJJyomPj5fbPn/+nKHNp0+fcOjQISxZsgRNmzZFpUqVMGfOHFSqVAkbNmzINK6ZmRmsrKxk261bt/D+/Xv0799frp2Ojo5cu5IlS6r0/aWkpEBfXx/Al+Uq2rdvDwBwcnJCdHS0UjFVVhiampqiTZs22L9/v6pCEhEREREVKYl3QuHVujVMTU3FTkX91NhjWK5cOZiZmcm2hQsXZrh8amoq0tLSYGBgILff0NAw1z1827Ztg7u7O+zs7OT2h4eHw8bGBhUqVECfPn0QFRWVq3i5Va1aNWzcuBGXLl1CQEAAWrduDQB4/fo1SpQooVRMlRWGANCjRw/8/vvvEIQiMh0QEREREZGKCIIA6f2/0LdPH7FTKfBevHiBuLg42TZt2rQMbYoVK4aGDRti3rx5eP36NdLS0vDbb7/h2rVruep1e/36NU6fPo1BgwbJ7Xd1dcWOHTvg7++PDRs2IDIyEk2aNMGHDx9U9v4WL16MTZs2oXnz5ujVqxdq1aoFADh27JhsiKmiJIIKq7jExESULl0a165dQ82aNbNtW2FNIZ9+l4iIiIhIAZ9fvca7Xzbg3b//wtjYWOx01CY+Ph5mZmaoOnwBtPUNcj5BAWmfk/D3+umIi4vLVa9rREQEBgwYgIsXL0JbWxt16tSBo6MjQkJC8PDhw2zPXbhwIZYvX47Xr19DT08vy3axsbGws7PDihUrMHDgQIXfU1bS0tIQHx8PCwsL2b5nz57ByMgIpUuXVjieSnsMjY2N0aFDB+zatUuVYYmIiIiICr1Pt26jS6dOhboo1DQVK1ZEUFAQEhIS8OLFC9y4cQMpKSmoUKFCtucJgoBff/0VP/zwQ7ZFIQCYm5vD0dERT548UWXqEAQBISEh2LRpk6w3Uk9PD0ZGRkrFU2lhCACDBw/Gzp07M33Ak4iIiIiIMhJSU/HpVggGDx4sdir5RwNmJU1nbGwMa2trvH//HmfOnEGHDtnPChsUFIQnT57kqgcwISEBERERsLa2Vi65TDx//hw1atRAhw4dMGLECPz7778AvgwxnThxolIxVV4YNm/eHObm5vDz88u2HWcnJSIiIiL6IvHefZQqURLNmjUTO5Ui5cyZM/D390dkZCQCAgLQokULODk5yWYZnTZtGvr27ZvhvG3btsHV1RXVq1fPcGzixIkICgrCs2fPcPXqVXTq1Ana2tro1auXyvIeM2YM6tati/fv38PQ0FC2v1OnTggMDFQqpspXzZRIJPD19cXmzZvRo0cPVYcnIiIiIip0Um6EYPLw4ZBIJGKnkm+UWZA+NzEVkT4xzcuXL1G8eHF06dIFP//8M3R1dQEA0dHRGWYUjYuLw6FDh7B69epMY758+RK9evXCu3fvUKpUKbi5ueH69esoVaqUUu8pM5cuXcLVq1czDGMtX758lmsw5kTlhSEA+Pj4YObMmQgPD4eDg4M6LkFEREREVCik/PMvEp5EwMfHR+xU8lcehn5mG1MB3bt3R/fu3bM8ntli8WZmZvj48WOW5+zbt0+xJJQglUqRlpaWYf/Lly9RrFgxpWKqfCgpAJQuXRrdunXLsopOx+GkRERERFTUxQVdQqcuXVTao0SFm6enJ1atWiV7LZFIkJCQgNmzZ6NNmzZKxVRLYQh8GVu7fft2vH37Vl2XICIiIiIq0NISEvHpZghmTJ0qdiri0ICJZwqiZcuW4cqVK6hatSqSkpLQu3dv2TDSxYsXKxVTbYWhs7MzGjVqhPXr12fbjr2GRERERFRUfbh8BQ0bNZItUE6UG+XKlcPdu3cxY8YMjBs3DrVr18aiRYtw584dpdYwBNT0jGG6iRMn4ocffsCkSZPkZsshIiIiIirqpMkp+HTlOmYeOCB2KqLQhMlnCqKUlBQ4OTnhxIkT6NOnD/r06aOSuGrrMQS+jH21trbG9u3bs23HXkMiIiIiKmoSgm/AtmxZeHh4iJ0KFSC6urpISkpSeVy1FoYSiQQzZ87EggUL1JI8EREREVFBJE1Owac/g/Dz3LlFaokKORq0wH1BM2LECCxevBipqakqi6nWwhAAunTpghIlSmDTpk3ZtmOvIREREREVFR+uXkM5a2t07txZ7FSoALp58yYOHz4MW1tbeHl5oXPnznKbMtT6jCEAaGlpYd68efD19cXgwYNhZGSk7ksSEREREWks6efP+HQ+CEt37YaWltr7aTQWnzFUnrm5Obp06aLSmBJBENT+5RMEAa6urujWrRsmTZqUbdsKa5arOx0iIiIiItHEBZ5H2ZfRCL11q0gOI42Pj4eZmRlqDFwAbT0DlcZOS07C/W3TERcXB1NTU5XGLuzy5U8UEokE8+bNw6JFi/D+/fv8uCQRERERkcZJS/yIxD+DsHThwiJZFFLeSKVSLF68GI0bN0a9evUwdepUfPr0SSWx863v2tPTE3Xr1sW8efOybcdnDYmIiIiosIo9E4AGrq7w9PQUOxXRpQ8lVfVWmP3888+YPn06TExMUKZMGaxevRojRoxQSex8KwwlEgmWL1+ODRs2IDw8PL8uS0RERESkEVL++RcfrwVj7apVYqdCBdSuXbuwfv16nDlzBn5+fjh+/Dj27NkDqVSa59j5+rRr9erV4ePjgylTpmTbjr2GRERERFTYJJz0h4+PD6pXry52KpqBy1UoLCoqCm3atJG9dnd3h0QiwevXr/McW+2zkn5r7ty5cHBwwIULF9C8efP8vjwRERERUb77FP4En59EYMGZs2KnQgVYamoqDAzkJ+zR1dVFSkpKnmPne2FoaWmJWbNmYdSoUbh9+zZ0dXUzbfd09ATOUEpEREREBZ6QloZEv+OY++OPKF26tNjpaA519PAV8h5DQRDQr18/6Ovry/YlJSVh6NChMDY2lu07fPiwwrFFWThlzJgxkEqlWLNmjRiXJyIiIiLKN/FBl1DKyBhjx44VOxUq4Hx8fFC6dGmYmZnJtu+//x42NjZy+5SR7z2GAKCnp4f169fju+++Q48ePVC2bNlM27HXkIiIiIgKstT3sUg4G4gj/v5ZjpQrqrjAveK2b9+uttii9BgCQLNmzdCpUyeMGzcu23aciIaIiIiICqqEYyfQuXNnNG3aVOxUiLIlWmEIAEuXLkVAQABOnTolZhpERERERCr38a+/kfzkKVYt5wi4THFWUo0iamFoaWmJZcuWYciQIYiPj8+yHXsNiYiIiKggkX76hA+HjmLV8uWwtLQUOx2NJBEEtWykHFELQwAYOHAgnJycMGnSJLFTISIiIiJSif+OnkDdmjUxcOBAsVMhyhXRC0OJRIItW7Zg7969CAwMzLIdew2JiIiIqCD4FPYYKXfvY9f27ZBIJGKno7k4lFSjiF4YAkD58uWxaNEiDB48GAkJCVm2Y3FIRERERJpM+vkzPhw8guVLl8LOzk7sdIhyTSMKQwAYNmwYypUrh4kTJ4qdChERERGRUuKPnUR1B0cMHTpU7FQ0XvpyFareSDkaUxhqaWlh165d2LdvH/z8/LJsx15DIiIiItJEiXfvI/neA/yxdy+0tDTmNpsoVzTqE2tnZ4eNGzdi4MCBePXqVZbtWBwSERERkSZJjY1D/IHD2LZ5M2xtbcVOp2DgM4YaRaMKQwDo2bMnvvvuO/j4+EAqlYqdDhERERFRtgSpFPH7/kDnDh3Qo0cPsdMhUorGFYYAsHbtWkRGRmLZsmVZtmGvIRERERFpgvg/g1DsYxI2rl8vdioFCp8x1CwaWRgWK1YMv//+O+bOnYuLFy9m2Y7FIRERERGJ6dOTCCQEBOLQH3+gWLFiYqdTsHAoqUbRyMIQAOrXr49ly5ahe/fueP36dZbtWBwSERERkRhSY+PwdsdvWL1yJerXry92OkR5orGFIQAMHToUXl5e6NatG5KTk8VOh4iIiIgIACCkpiJu915079ABQ4YMETudAolDSTWLRheGEokEGzZsQGJiIiZNmpRlO/YaEhEREVF+ijt2EjYGhti6eTMkEonY6RDlmUYXhgBgZGSEQ4cOYdeuXfjtt9+ybMfikIiIiIjyw4ebIUi+cxcnjx6FoaGh2OkUXHzGUKNofGEIABUrVsS+ffswZMgQXL9+Pct2LA6JiIiISJ2SIp8h7uARHPrjD1SoUEHsdIhUpkAUhgDg5eWFhQsXomPHjoiKihI7HSIiIiIqYlL/e4/323dj+ZIl8PLyEjudQoHPF2qOAlMYAsCoUaPQoUMHdOjQAYmJiZm2Ya8hEREREama9PNnxG7fhd7dumHkyJFip0OkcgWqMJRIJFi7di3Mzc3Rt29fSKXSTNuxOCQiIiIiVRGkUsT9/gdq2JXHxvXrOdmMqgiCejZSSoEqDAFAV1cXBw8exN27dzF9+vQs27E4JCIiIiJViD/pj2Lv43DsyBHo6uqKnU6hweUqNEuBKwwBoESJEjh16hS2bNmCTZs2ZdmOxSERERER5UX85atIuXUbgWfPokSJEmKnQ6Q2OmInoCxHR0ccPXoUrVu3hq2tLby9vTNt93T0BFRYszyfsyMiIiKigujrjoVTp06h+/TZOHPmDBwcHETMqpBSx/IS7DFUWoEtDAHAzc0NW7duRY8ePXDx4kU4Oztn2i79B5wFIhERERGly2502Z07d9CzZ09s27YNjRs3zsesiMRRIIeSfq1nz56YPn062rZtm+MyFhxaSkREREQ5iYqKQtu2bTFjxgz06NFD7HQKLYlUPRspp8AXhgAwZcoUtGvXDq1bt8a7d++ybcvikIiIiIiyuid89+4dvLy80KFDB0yePDmfsyIST6EoDCUSCdatW4cqVargu+++y3KNw3RPR09ggUhERERURGV1H5iYmIi2bduiatWqWLt2LZelUDdBTRsppVAUhgCgra2NPXv2QE9PDz169EBKSkqO57A4JCIiIipasrr/S0lJQffu3WFgYIA9e/ZAW1s7nzMjElehKQwBwMDAAEePHkVUVBR8fX0h5LDAJSejISIiIiJBEDB48GC8fPkSR48ehYGBgdgpFQlcx1CzFKrCEADMzc3h7++PCxcuYMKECbLisMKa5Rk2IiIiIio6MustFAQBEyZMQFBQEE6fPg0zMzMRMiuiBEE9mwI+fPiAsWPHws7ODoaGhmjUqBFu3ryZZfsLFy5AIpFk2GJiYuTarVu3DuXLl4eBgQFcXV1x48YNpb5E+alAL1eRFRsbG5w7dw5NmzaFkZER9pa2EDslIiIiIhJRVkNIZ86cif379+PixYuwsbHJ56xIbIMGDcKDBw+we/du2NjY4LfffoO7uzv+/vtvlClTJsvzwsLCYGpqKntdunRp2b/379+P8ePHY+PGjXB1dcWqVavg5eWFsLAwuXaaptD1GKarWLEiAgMDsWXLFgz8kMTnCYmIiIiKqKzuA+fPn4+tW7ciMDAQFStWzOesSOyhpJ8+fcKhQ4ewZMkSNG3aFJUqVcKcOXNQqVIlbNiwIdtzS5cuDSsrK9mmpfX/ZdWKFSswePBg9O/fH1WrVsXGjRthZGSEX3/9VdkvVb4otIUhADg5OeHcuXNYsWIFVqxYweKQiIiIiAAAy5cvx6pVq3Du3Dk4OTmJnQ6pWHx8vNz2+fPnDG1SU1ORlpaW4ZlSQ0NDXL58Odv4zs7OsLa2hoeHB65cuSLbn5ycjJCQELi7u8v2aWlpwd3dHdeuXcvju1KvQl0YAkCNGjVw9uxZ/PTTT1i3bh2LQyIiIqIiJLN7v3Xr1mHevHk4e/YsatSoIUJWBECty1WUK1cOZmZmsm3hwoUZLl+sWDE0bNgQ8+bNw+vXr5GWlobffvsN165dQ3R0dKYpW1tbY+PGjTh06BAOHTqEcuXKoXnz5rh9+zYA4O3bt0hLS4OlpaXceZaWlhmeQ9Q0hfIZw2+5uLjg9OnT8Pb2RnJyMp6O+/IfBCegISIiIiq8MisKV6xYgZ9++gn+/v6oU6eOCFlRfnjx4oXcM4D6+vqZttu9ezcGDBiAMmXKQFtbG3Xq1EGvXr0QEhKSafvKlSujcuXKsteNGjVCREQEVq5cid27d6v2TeSzQt9jmK5hw4YIDAzE/Pnz8fPPPwPgOoZEREREhVVm93np94GBgYFo0KCBCFnR19T5jKGpqancllVhWLFiRQQFBSEhIQEvXrzAjRs3kJKSggoVKuT6fdSvXx9PnjwBAJQsWRLa2tp48+aNXJs3b97AyspKuS9UPikyhSHwpefwwoULWLNmDWbMmAFBEFgcEhERERUy397fCYKA6dOnY+3atbhw4QJcXFxEyow0lbGxMaytrfH+/XucOXMGHTp0yPW5oaGhsLa2BgDo6enBxcUFgYGBsuNSqRSBgYFo2LChyvNWpSIxlPRrNWrUwMWLF9GqVSt8/PhRblIaDi0lIiIiKtgyKwrHjRuHgwcPIigoSG4YIIlMiXUHcxVTAWfOnIEgCKhcuTKePHmCSZMmwcnJCf379wcATJs2Da9evcKuXbsAAKtWrYK9vT2qVauGpKQkbN26FX/++SfOnj0rizl+/Hj4+Pigbt26qF+/PlatWoXExERZTE1V5ApD4MvY4EuXLqFly5aIi4vD5s2boaOjg6ejJ7A4JCIiIiokUlJSMGTIEJw/fx6XLl2Cvb292CnRVxRdXiK3MRURFxeHadOm4eXLlyhevDi6dOmCn3/+Gbq6ugCA6OhoREVFydonJydjwoQJePXqFYyMjFCzZk2cO3cOLVq0kLXp0aMH/v33X/z444+IiYmBs7Mz/P39M0xIo2kkgqDqMr3geP36NVq3bg1bW1vs378fxsbGANhzSERERFQQfd1bmJiYiO7du+Ply5c4ffo0F6/XIPHx8TAzM0ND75+go2uQ8wkKSE1JwrXTPyIuLk5u8hnKWZF6xvBbNjY2uHjxIhISEtCqVSu8ffsWwJf/VPjsIREREVHB8fW929u3b9GyZUt8/PgRFy9eZFGoqdS4XAUprkgXhgBgbm4Of39/lCtXDo0bN8azZ89kx1gcEhEREWm+r+/ZIiMj0bhxY9jZ2cHf3x9mZmYiZkZUcBT5whAADAwMsG/fPnh6eqJhw4a4c+eO7Bh7D4mIiIg019f3aXfu3EGjRo3g5eWFffv2ZblEAWkGdS5XQYpjYfg/2traWLNmDcaNG4dmzZrh+PHjcsdZHBIRERFplq/vz44dO4amTZti3LhxWL16NbS0eJtLpAj+xHxFIpFg8uTJ2L59O3r16oWVK1fi67l52HtIREREpBnS78kEQcCKFSvQu3dv7Ny5E5MnT4ZEIhE5O8oVqaCejZRSJJeryEmXLl1Qrlw5tG/fHo8fP8aaNWtkU9YC4LqHRERERCJKvxdLSUnBqFGjcPToUZw/fx716tUTOTOigos9hlmoX78+bty4gStXrqBt27aIi4vL0Ia9h0RERET5K/3+Ky4uDm3btsXVq1cRHBzMorAg4qykGoWFYTZsbW1x+fJl6OrqokGDBnj8+HGGNhxeSkRERJQ/0u+5Hj9+DFdXV+jq6uLKlSuwtbUVOTNShgRqmHxG7DdVgLEwzIGpqSmOHTuGdu3awdXVFf7+/pm2Y3FIREREpD7p91qnT59G/fr10aFDBxw7dgzFihUTOTOiwoGFYS5oa2tjyZIlWLt2Lbp27YqlS5fKTUqTjr2HRERERKr3dPQECIKAJUuWoFu3bli/fj0WL14MbW1tsVOjvBAE9WykFE4+o4A+ffqgcuXK6NixI0JDQ7F161YYGhpmaMfJaYiIiIhU4+noCfj06RMGDRqEixcvIigoCC4uLmKnRVTosMdQQXXr1sWtW7fw7NkzNGnSBM+fP8+yLXsPiYiIiJT3dPQEPHv2DG5ubnj27Blu3rzJorAQ4QL3moWFoRKsrKzw559/ol69eqhTpw7OnDmTZVsOLyUiIiJS3NPRE+Dv7w8XFxe4urrizz//hJWVldhpERVaLAyVpK+vjw0bNmDlypXo0qUL5s2bB6lUmmV7FohEREREufNk5Dj89NNP6Nq1K1atWoX169dDX19f7LRI1bhchUbhM4Z51LdvX9SqVQudO3dGcHAwdu/eDQsLiyzb8/lDIiIioqzd+r4/2rVrh7CwMFy5cgW1atUSOyWiIoE9hipQq1Yt3Lp1CxKJBC4uLrh9+3aO57D3kIiIiEjeQbcWcHFxgba2Nm7dusWisJCTCIJaNlIOC0MVsbCwwNGjRzFo0CA0adIE69aty3RJi69xeCkRERERIAgCxmvpo0mTJhg8eDD8/Pxgbm4udlqkblI1baQUDiVVIS0tLUyfPh2NGzdG7969ceHCBWzduhVmZmbZnsfhpURERFRUST99Qt2boVh47RpOnz6Npk2bip0SUZHEHkM1aNasGUJDQ/HhwwfUqVMHISEhuTqPPYhERERUlHyOegHtzduRmJiI0NBQFoVFDIeSahb2GKpJqVKlcOrUKSxZsgRNmzbFokWLMHLkSEgkkhzPZQ8iERERFRTK/FFbEASsXbsWUzdswY8//ohJkyZBS4v9FURiYmGoRlpaWpg6dSrc3NzQq1cvnDt3Dtu2bUPJkiVzdT4LRCIiItJkyhSFb9++xYABA3Dnzh2cPXsWjRs3VkNmVCCoY3kJdhgqjX+ayQdubm64e/cudHR0ULNmTQQGBip0PoeYEhERkaZR5t7k3LlzqFmzJnR1dXH37l0WhUQahIVhPilevDgOHjyIuXPnokOHDpg8eTKSk5MVisECkYiIiMSmzP1IcnIyJk+ejI4dO+Knn37CwYMHUbx4cTVlSAWGIKhnI6WwMMxHEokEgwcPxq1btxAQEIBGjRrh8ePHCsdhgUhERERiUOb+4/Hjx2jYsCECAgJw69YtDBo0KFdzLhBR/mJhKAInJydcv34dTZs2hYuLCzZt2pTjmoeZYYFIRERE+UXRew5BELBp0ya4uLigWbNmuH79OpycnNSUHRVEEkE9GymHk8+IRF9fHytWrIC3tzf69++PY8eOYdu2bbCyssrV+ZyQhoiIiPKDMn+Ejo6OxqBBg3D37l0cPnwYHh4easiMCjx1DP3kUFKlsTAUmYeHB+7fv48RI0agevXq2Lx5Mzp37iw7zgKQiIiIxKJMUXjo0CEMGTIEnp6euH//PiwsLNSQGRGpGgtDDWBhYYG9e/di3759GDRoEI4dO4YLVSpBy9BQ7NSIiIioiFK0KIyLi8Po0aNx/PhxbNiwAT169FBTZlRYSKRfNlXHJOXwGUMN0rNnT9y/fx+vX7+GsH4LPoUpPjENERERUV4oM4dB+jIUMTExuH//PotCogKIhaGGKVOmDPz9/TF16lQk7NoLj78eQ5qUJHZaREREVAQoWhDGx8djyJAh6Ny5M6ZOnQp/f3+UKVNGTdlRocPlKjQKC0MNpKWlhWHDhuH+/ft48uQJhHWbsalKTbHTIiIiokJKmV7CgIAA1KhRA0+ePMG9e/cwbNgwLkNBVICxMNRg5cuXR0BAAKZNm4bOnTvD/UEYQvsNFjstIiIiKkSU6SX09fVFly5dMH36dJw7dw7ly5dXT3JUuAlq2kgpLAw1nJaWFoYOHYr79+8jIiIC1atXxy8Vnbh+IREREeWZovcTJ06cQPXq1fH06VPcu3cPQ4YMYS8hUSHBWUkLiPLly+PcuXPYunUrvv/+e3h6euLq6tWwsrLikhZERESkEEULwujoaIwZMwYBAQFYunQpBg4cyIKQ8kwiCJCo+JlAVccrSthjWIBIJBIMHjwYDx8+hEQiQZUqVbBlyxY8GTmOPYhERESUK4rcM0ilUmzevBlVqlSBlpYWHj58iEGDBrEoJCqE2GNYAFlZWWHfvn04efIkhg8fjt27d2Pz5s2y/+jZg0hERETfUvSPyA8fPoSvry+ioqKwZ88etG3bVk2ZUZGljllE2WOoNPYYFmBt27bFX3/9hbp166JOnTqYOXMmPn78qNTMYkRERFR4KXJfkJiYiJkzZ8LFxQX16tXDX3/9xaKQ1EMAIFXxxrpQaSwMCzgTExOsWLECly5dwrlz51ClShUcOnQIgiCwQCQiIiriFLkXEAQBhw4dQpUqVRAYGIjLly9jxYoVMDExUXOWRKQJWBgWEi4uLrh69SrmzJmDYcOGwcvLC2FhYQCUW5uIiIiICjZFfvc/evQIXl5eGDZsGObOnYsrV66gTp06asyO6P8nn1H1RsphYViIaGlpoX///ggLC0PlypXh7OyMqVOnIiEhAcD/F4gsEomIiAovRX7XJyQkYMqUKahduzacnJzw+PFj9O/fH1pavEUkKmr4U18IWVhY4JdffsH169dx5coVODo6YuvWrUhLS5O1YYFIRERUuCjyuz01NRVbt26Fo6Mjrl69iuvXr2PNmjUwNzdXb5JEXxPw/xPQqGwT+00VXBJBYH9rYSYIAg4ePIipU6fC0NAQS5Ysgbe3d6bTTHM2UyIiooJJkecIT506hSlTpiApKQkLFy5E165dufwE5av4+HiYmZmhpfNU6GjrqzR2atpn/Bm6CHFxcTA1NVVp7MKOPYaFnEQiQbdu3fDw4UMMHjwYP/zwA9zd3XH79u0MbdmLSEREVLAo8rv79u3baNWqFXx8fODr64u///4b3bp1Y1FI4lF5b6Ealr8oQlgYFhF6enoYM2YMIiIiULduXbi5ueGHH37As2fPMrTls4hERESaTZHf08+ePcP3338PNzc31K9fH0+ePMHo0aOhp6en5iyJqCBhYVjEmJubY/HixXj06BEkEgmcnJzg6+ubaYEIsBeRiIhIkyjyezkyMhKDBw+Gk5MTtLS08OjRIyxatIjPEZLmUPUahukbKYWFYRFla2uLXbt2ITQ0FB8/foSTkxMGDx6MyMjITNuzF5GIiEhcihaEVapUQVJSEu7evYtdu3bB1tZWzRkSKYbLVWgWFoZFnJOTE3777TfcvXsXSUlJqFKlSrYFIsAikYiIKD/l9nduZGQkBg0aJFcQ7t69G5UrV86HLImooGNhSACAypUrY/fu3XIF4sCBA/Hw4cNsz2ORSEREpB65/f368OFDDBw4EFWqVEFycjLu3bvHgpAKBg2YfObDhw8YO3Ys7OzsYGhoiEaNGuHmzZtZtj98+DA8PDxQqlQpmJqaomHDhjhz5oxcmzlz5kAikchtTk5OSn2J8hMLQ5KTXiDeu3cPgiCgdu3aaNeuHYKCgpDTyiZfF4ksFImIiJSTm9+jgiAgKCgI7dq1Q+3atSEIAu7du4ddu3bB0dExnzIlKvgGDRqEgIAA7N69G/fv34enpyfc3d3x6tWrTNtfvHgRHh4eOHXqFEJCQtCiRQu0a9cOd+7ckWtXrVo1REdHy7bLly/nx9vJE65jSNmKjo7GL7/8gg0bNsDBwQETJ05E586doaOjo1AcrpFIRESUvdz8UTU1NRWHDx/GsmXL8OTJEwwbNgwjR46EtbV1PmRIpBrp6xi2qjpRLesYBv69LFfrGH769AnFihXD0aNH0bZtW9l+FxcXeHt7Y/78+bm6ZrVq1dCjRw/8+OOPAL70GPr5+SE0NFTp9yEGxe7uqcixtrbGggULMH36dPz666+YMmUKpkyZgnHjxmHAgAEwMTHJVZxvf9mxUCQiIvoiNwVhQkICfv31V6xcuRIAMH78ePTv3z/Xv4eJipr4+Hi51/r6+tDXly9CU1NTkZaWBgMDA7n9hoaGue7hk0ql+PDhA4oXLy63Pzw8HDY2NjAwMEDDhg2xcOFCjZ8Aij2GpJD0v1QuXboU4eHh6N+/P0aMGIFKlSopHZNFIhERFUW5KQjDw8Oxfv16bN++HQ4ODpg0aZJSI3eINImsx7DKBPX0GD7MeG85e/ZszJkzJ8P+Ro0aQU9PD3v37oWlpSV+//13+Pj4oFKlSggLC8vxekuWLMGiRYvw6NEjlC5dGgBw+vRpJCQkoHLlyoiOjsbcuXPx6tUrPHjwAMWKFcvze1QXFoakFEEQcP36dfzyyy84dOgQWrVqhZEjR6J169bQ0lL+0VUWiUREVJjlphiUSqXw9/fHL7/8gj///BNdu3bFyJEj0aBBA0gkknzIkki98qMwfPHihdxQ0sx6DAEgIiICAwYMwMWLF6GtrY06derA0dERISEhOU7CuHfvXgwePBhHjx6Fu7t7lu1iY2NhZ2eHFStWYODAgcq/OTXjn5tIKRKJBA0bNkTDhg0RHR2NLVu2YNCgQTAyMsLw4cPRv39/WFhYKByXQ06JiKgwyk1B+P79e2zfvh3r1q3Dp0+fMHToUGzfvh1WVlb5kCGRCKQAVP23jv8tcG9qaprjM4YAULFiRQQFBSExMRHx8fGwtrZGjx49UKFChWzP27dvHwYNGoQDBw5kWxQCgLm5ORwdHfHkyZNcvw0xsMeQVCYlJQWHDx/G2rVrcfv2bfxfe3cXG1WZx3H8B2VkKm8KNi3BWgrdJURITRupVWMwtlMMKR1p0k7T6GgD9UJggUiwN5ZEe7Fe7MIuXlhMLBTTaRPNYNOV6VADBVPFQKqgkqULLFIpalOoVF5aztmLxroNXcDZmTOnnO8nmQtOnj7zP3f85v+8lJWVafXq1VqyZEnUf+EkMAIAxoM7OV308OHDqq2tVSAQUHZ2ttasWaPnnntOLpfLoioBa/3aMcz748aYdAz3/fMvd3T4zFj6+vqUnp6ut956S5WVlWOOaWhoUEVFhQKBgIqKim475+XLl/XQQw9py5YtWrdu3e+uySoEQ8REZ2enamtrtXv3bqWnp6uyslLl5eW67777Yvq9BEYAgB3cLhBevHhRu3fv1o4dO3TmzBmVl5fr5ZdfVmZmpkUVAvFjp2AYCoVkmqYWLFigrq4ubdq0SW63WwcPHpTL5VJVVZW6u7u1a9cuScPLR/1+v7Zt26aVK1eOzJOYmKgZM2ZIkl599VUVFhYqLS1N33//vaqrq9XZ2alvvvlGSUlJUX3faCIYIqYGBgbU1NSk2tpaffnllyopKVFlZaVyc3Mt3SdBYAQAWOFWgdA0TXV0dKi2tlZNTU3KzMxUZWWlSkpKNGXKFAurBOJrJBj+YUNsguHJv95xMGxqalJVVZXOnTunmTNnqri4WDU1NSMh78UXX9SZM2e0f/9+SdLSpUt14MCBm+bx+/2qq6uTJPl8PrW3t6u3t1dJSUl68sknVVNTo/nz50ftPWOBYAjLfPXVV9qxY4fq6+s1Z84cvfTSSyovL4/r3UsERgDA/+t23cHz58/r/fff13vvvafu7m698MILWr16tRYvXmxRhYC92CkY4jcEQ1jul19+0QcffKCdO3eqvb1d+fn58vv9WrFixU33yMQLgREAcDu3CoRXr17VRx99pLq6Ou3bt09PPfWU/H6/iouLde+991pYJWA/I8Fw/vrYBMN/bSUYRoBgiLg6e/as6uvrVVdXp59++kk+n09+v185OTm2PJKbwAgAzna7paKff/656urq1NjYqKSkJPn9fj3//PO2v9gasBLB0J4IhrCFX/dd7Ny5U42NjXrggQfk8/nk8/m0aNGieJcXU4RNALC/WwXC48ePq6GhQYFAQL29vSotLZXf77d8Pz0wXowEw3l/ik0wPLWNYBgBgiFs5+rVq/r4448VCATU3NysefPmqaysTKWlpcrIyIh3eeMKoRMAInerMNjV1aVAIKBAIKBTp05pxYoV8vl8WrZsmW22RQB2RTC0J4IhbO3y5ctqbm5WQ0ODQqGQFi9erJUrV8rr9WrhwoX8EhtHhE4Adncnl8rfKdM09e233yoYDOrDDz/UsWPHtGzZMvl8PhUWFmrq1KlR+y7gbvdbMFynSROjHAyNa9p36m8EwwgQDDFu9PX1ac+ePQoGgwqFQkpNTZXX65XX69Vjjz2miRMnxrtERBHBE4i/aAar8cgwDH322WcKBoMKBoP67rvvVFBQIK/Xq6KiIt1///3xLhEYl0aCYfra2ATD038nGEaAYIhxaWBgQOFwWMFgUM3NzXK5XPJ4PMrPz1d+fr5SUlLiXSJsjuAJqzg9XI03PT09CofDCofDam1t1eDgoAoLC+X1epWfn899g0AUEAztiWCIcW9oaEiffvqpWltb1draqqNHj+rhhx+Wx+PR3LlzORYccbF5XyjeJdxV/pxXEO8ScBf7dZloa2urvv76a2VlZcnj8cjj8eiJJ57QpEmT4l0icFcZCYZpa2ITDP+9nWAYAYIh7jq9vb1qa2tTe3u7Tp48KcMw4l0SEFUDg9d1ZXBo1LNrN0b/e3LC6P/IJromaYrrnpjXBoxXaWlp8ng8euaZZzRr1qx4lwPc1QiG9sRPYLjrzJo1SyUlJSopKYl3KQAAAPhfTGP4E+05ERFO6wAAAAAAh6NjCAAAAMB6pjn8ifaciAgdQwAAAABwODqGAAAAAKxnmJKi3OEz6BhGimAIAAAAwHosJbUVlpICAAAAgMPRMQQAAABgPVMx6BhGdzonoWMIAAAAAA5HxxAAAACA9dhjaCt0DAEAAADA4egYAgAAALCeYUgyYjAnIkHHEAAAAAAcjo4hAAAAAOuxx9BWCIYAAAAArEcwtBWWkgIAAACAw9ExBAAAAGA9w1TUb6Q36BhGio4hAAAAADgcHUMAAAAAljNNQ6YZ3esloj2fk9AxBAAAAACHo2MIAAAAwHqmGf09gZxKGjE6hgAAAADgcHQMAQAAAFjPjMGppHQMI0YwBAAAAGA9w5AmRPmwGA6fiRhLSQEAAADA4egYAgAAALAeS0lthY4hAAAAADgcHUMAAAAAljMNQ2aU9xhywX3k6BgCAAAAgMPRMQQAAABgPfYY2godQwAAAABwODqGAAAAAKxnmNIEOoZ2QTAEAAAAYD3TlBTtC+4JhpFiKSkAAAAAOBwdQwAAAACWMw1TZpSXkpp0DCNGxxAAAAAAHI6OIQAAAADrmYaiv8eQC+4jRccQAAAAAByOYAgAAADAcqZhxuTze/z8889av3690tLSlJiYqMcff1xffPHFLf9m//79ysrK0uTJk5WRkaG6urqbxrz99tuaO3eu3G63cnJydPjw4d9VVzwQDAEAAAA40qpVqxQOh1VfX69jx47J4/EoLy9P3d3dY44/ffq0li9frqefflqdnZ1av369Vq1apVAoNDKmsbFRGzduVHV1tY4eParMzEwVFBTohx9+sOq1IjLB5OgeAAAAABbp7+/XjBkztFRFmjTBFdW5h8xB7dceXbp0SdOnT7/l2CtXrmjatGnas2ePli9fPvI8Oztbzz77rN58882b/mbz5s1qaWnR8ePHR575fD5dvHhRe/fulSTl5OTo0Ucf1fbt2yVJhmEoNTVVa9eu1WuvvRaN14wJOoYAAAAALDekQQ2ZUf5oUNJw+Pzvz7Vr127+/qEh3bhxQ263e9TzxMREHTp0aMyaOzo6lJeXN+pZQUGBOjo6JEnXr1/XkSNHRo2ZOHGi8vLyRsbYFaeSAgAAALDMPffco5SUFB3q+UdM5p86dapSU1NHPauurtaWLVtGPZs2bZpyc3P1xhtvaOHChUpOTlZDQ4M6OjqUkZEx5tw9PT1KTk4e9Sw5OVn9/f26cuWK+vr6dOPGjTHHnDhx4v9/uRgiGAIAAACwjNvt1unTp3X9+vWYzG+apiZMmDDq2eTJk8ccW19fr4qKCs2ZM0cJCQnKyspSWVmZjhw5EpPa7IxgCAAAAMBSbrf7piWc8TB//nwdOHBAAwMD6u/v1+zZs1VaWqp58+aNOT4lJUUXLlwY9ezChQuaPn26EhMTlZCQoISEhDHHpKSkxOw9ooE9hgAAAAAcbcqUKZo9e7b6+voUCoVUVFQ05rjc3Fy1tbWNehYOh5WbmytpeJlsdnb2qDGGYaitrW1kjF1xKikAAAAARwqFQjJNUwsWLFBXV5c2bdokt9utgwcPyuVyqaqqSt3d3dq1a5ek4esqFi1apFdeeUUVFRX65JNPtG7dOrW0tKigoEDS8HUVfr9f77zzjpYsWaKtW7eqqalJJ06cuGnvoZ2wlBQAAACAI126dElVVVU6d+6cZs6cqeLiYtXU1MjlGr5G4/z58zp79uzI+PT0dLW0tGjDhg3atm2bHnzwQb377rsjoVCSSktL9eOPP+r1119XT0+PHnnkEe3du9fWoVCiYwgAAAAAjsceQwAAAABwOIIhAAAAADgcwRAAAAAAHI5gCAAAAAAORzAEAAAAAIcjGAIAAACAwxEMAQAAAMDhCIYAAAAA4HAEQwAAAABwOIIhAAAAADgcwRAAAAAAHO4/HI6oAgAd9IEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -587,7 +582,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAH5CAYAAAAr/WftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiuElEQVR4nOydd3wUxfvHP5eEBJKQBKQISIcA0kWQDkpHmki1UAVBQKUoYEVRVLB+LShFigWQLh1BBEGadKSqIEUQFZIYAgSS/f3Bb8Nms2V2d7bdPe/XKy/lbm92bvdzs0+ZeSYgCIIAgiAIgiAIgiAIwleEud0BgiAIgiAIgiAIwjjkzBEEQRAEQRAEQfgQcuYIgiAIgiAIgiB8CDlzBEEQBEEQBEEQPoScOYIgCIIgCIIgCB9CzhxBEARBEARBEIQPIWeOIAiCIAiCIAjCh5AzRxAEQRAEQRAE4UPImSMIgiAIgiAIgvAh5MwRBEEQBEEQBEH4EHLmCIIgCIIgCIJwhE2bNqF9+/YoWrQoAoEAlixZYriNNWvWoG7dusibNy8KFiyIBx98ECdPnuTeVz9AzhxBEARBEARBEI5w+fJlVK9eHR9//LGpz584cQIdO3bEfffdh71792LNmjX4559/0LlzZ8499QcBQRAEtztBEARBEARBEERoEQgEsHjxYnTq1CnrtWvXruH555/HnDlzkJSUhCpVquCtt95C06ZNAQALFixAz549ce3aNYSF3cxLLVu2DB07dsS1a9eQK1cuF76Je1BmjiAIgiAIgiAITzB06FBs3boVc+fOxf79+9G1a1e0bt0ax48fBwDUqlULYWFhmDFjBjIyMpCcnIwvvvgCzZs3DzlHDqDMHEEQBEEQBEEQLiDPzJ06dQplypTBqVOnULRo0azjmjdvjjp16mDChAkAgI0bN6Jbt274999/kZGRgXr16mHlypVISEhw4Vu4C2XmCIIgCIIgCIJwnQMHDiAjIwOJiYmIjY3N+tu4cSN+++03AMD58+cxYMAA9O7dGzt37sTGjRsRGRmJLl26IBRzVBFud4AgCIIgCIIgCCI1NRXh4eHYtWsXwsPDs70XGxsLAPj4448RHx+PiRMnZr335Zdfonjx4ti+fTvq1q3raJ/dhpw5giAIgiAIgiBcp2bNmsjIyMCFCxfQqFEjxWPS0tKyCp+IiI5fZmam7X30GjTNkiAIgiAIgiAIR0hNTcXevXuxd+9eADe3Gti7dy9OnTqFxMREPPzww+jVqxcWLVqEEydOYMeOHXjjjTewYsUKAMD999+PnTt34tVXX8Xx48exe/du9O3bFyVLlkTNmjVd/GbuQAVQCIIgCIIgCIJwhB9++AH33ntvjtd79+6NmTNn4vr163jttdcwe/ZsnD17FgUKFEDdunXxyiuvoGrVqgCAuXPnYuLEiTh27Biio6NRr149vPXWW6hYsaLTX8d1yJkjCIIgCIIgCCLkmDx5MiZPnoyTJ08CACpXroyXXnoJbdq0cbdjBiBnjiAIgiAIgiCIkGPZsmUIDw9H+fLlIQgCZs2ahUmTJmHPnj2oXLmy291jgpw5giAIgiAIgiAIAPnz58ekSZPQv39/t7vCBFWzJAiCIAiCIAjCUa5evYr09HRb2hYEAYFAINtrUVFRiIqKUv1MRkYG5s+fj8uXL6NevXq29MsOyJkjCIIgCIIgCMIxrl69itJ58uC8Te3HxsYiNTU122svv/wyxo0bl+PYAwcOoF69erh69SpiY2OxePFi3HnnnTb1jD80zZIgCIIgCIIgCMdISUlBfHw8TgcCiOPdNoDigoDTp08jLu5W62qZufT0dJw6dQrJyclYsGABpk2bho0bN/rGoSNnjiAIgiAIgiAIxxCdueRAAHGy6ZCW2xYExAsCkpOTszlzrDRv3hxly5bFZ599xrVfdkHTLAmCIAiCIAiCcJ6wMICzMwdBADIyTH88MzMT165d49gheyFnjiAIgiAIgiCIkGPs2LFo06YNSpQogf/++w9ff/01fvjhB6xZs8btrjFDzhxBEARBEARBEM7jcmbuwoUL6NWrF86dO4f4+HhUq1YNa9asQYsWLfj2yUZozRxBEARBEARBEI6RtWYuVy571sxdv256zZzfoMwcQRAEQRAEQRDOY1dmLoQIc7sDBEEQBEEQBEEQhHEoM0cQBEEQBEEQhPNQZs4y5MwRBEEQBEEQBOE85MxZhqZZEgRBEARBEARB+BDKzBEEQRAEQRAE4TyUmbMMZeYIgiAIgiAIgiB8CGXmCIIgCIIgCIJwHsrMWYYycwRBEARBEARBED6EMnMEQRAEQRAEQTgPZeYsQ5k5giAIgiAIgiAIH0KZOYIgCIIgCIIgnCcQuJmd40lmJt/2PA45cwRBEARBEARBOE9YGH9nLsSgq0cQhG0cP34cLVu2RHx8PAKBAJYsWeJ2lxRp2rQpmjZt6tr5v/nmG+TPnx+pqamu9SHUmDlzJgKBAE6ePOl2VzyP0rUy+5u5fv06ihcvjk8++YRfBwmCIEIYcuYIwkEOHDiALl26oGTJksidOzeKFSuGFi1a4MMPP8x23IQJEzzr+Bihd+/eOHDgAF5//XV88cUXuPvuu13ry6FDhzBu3DjPGe8ZGRl4+eWXMWzYMMTGxgIA0tLS8PHHH6Nly5YoUqQI8ubNi5o1a2Ly5MnIyMjI0UZmZiYmTpyI0qVLI3fu3KhWrRrmzJlje9937tyJoUOHonLlyoiJiUGJEiXQrVs3HDt2TPH4w4cPo3Xr1oiNjUX+/Pnx6KOP4u+//7a9n7zxqpas4sS4kytXLowYMQKvv/46rl69auu5CILwAWJmjvdfCBEQhBAr+UIQLvHTTz/h3nvvRYkSJdC7d2/cfvvtOH36NLZt24bffvsNv/76a9axsbGx6NKlC2bOnOlehy1y5coVREdH4/nnn8drr73mdnewYMECdO3aFRs2bMiRUUhPTwcAREZGOt6vJUuWoHPnzjh9+jSKFSsGADh48CCqVauGZs2aoWXLloiLi8OaNWuwePFi9OrVC7NmzcrWxtixY/Hmm29iwIABqF27NpYuXYoVK1Zgzpw56NGjh21979KlC7Zs2YKuXbuiWrVqOH/+PD766COkpqZi27ZtqFKlStaxZ86cQc2aNREfH48nn3wSqampePvtt1GiRAns2LHD8WufkZGB69evIyoqCgGDldS0tORn1MYdpWslfu8ffvjB8HmSkpJQuHBhTJ48Gf369bPYa4Ig/EhKSgri4+ORXKgQ4jg7XymZmYi/cAHJycmIi4vj2rYXoTVzBOEQr7/+OuLj47Fz504kJCRke+/ChQum2718+TJiYmIs9o4/YsZF/l29iBtOnMiMGTPQoEGDLEcOAG6//XYcOHAAlStXznrt8ccfR79+/TBjxgy8+OKLKFeuHADg7NmzeOeddzBkyBB89NFHAIDHHnsMTZo0wTPPPIOuXbsiPDzclr6PGDECX3/9dbbr1717d1StWhVvvvkmvvzyy6zXJ0yYgMuXL2PXrl0oUaIEAKBOnTpo0aIFZs6ciYEDB9rSRzXCw8Ntuy5e5caNG8jMzDSsd97XKiEhAS1btsTMmTPJmSOIUCcEM2m8oatHEA7x22+/oXLlyorOTaFChbL+PxAI4PLly5g1axYCgQACgQD69OkDABg3bhwCgQAOHTqEhx56CPny5UPDhg2zPvvll1+iVq1ayJMnD/Lnz48ePXrg9OnT2c71448/omvXrihRogSioqJQvHhxDB8+HFeuXMl2XJ8+fRAbG4tTp06hXbt2iI2NRbFixfDxxx8DuDll9L777kNMTAxKliyJr7/+Ouuz48aNQ8mSJQEAzzzzDAKBAEqVKpXVrvj/UsTvJiUQCGDo0KFYsmQJqlSpgqioKFSuXBmrV6/O8fmzZ8+if//+KFq0KKKiolC6dGkMHjwY6enpmDlzJrp27QoAuPfee7Ouq5hVUFr/c+HCBfTv3x+FCxdG7ty5Ub169RwZsZMnTyIQCODtt9/GlClTULZsWURFRaF27drYuXNnjj7KuXr1KlavXo3mzZtne71AgQLZHDmRBx54AMDN6YoiS5cuxfXr1/HEE09ku26DBw/GmTNnsHXrVtXzX7hwAQULFkTTpk0hnaTx66+/IiYmBt27d9fsf/369XM4BuXLl0flypWz9REAFi5ciHbt2mU5cgDQvHlzJCYm4ptvvtE8j/Q6v/feeyhZsiTy5MmDJk2a4ODBgzmO//7779GoUSPExMQgISEBHTt2zNEfpXVgpUqVQrt27bB582bUqVMHuXPnRpkyZTB79uxsn9PS0s8//4xWrVqhQIECyJMnD0qXLs3ksIjnXrt2LWrUqIHcuXPjzjvvxKJFi3Icm5SUhKeffhrFixdHVFQUypUrh7feeguZkgpu0mv2/vvvZ2nz0KFDiufXGndY1xdeu3YNL7/8MsqVK5c1tjz77LO4du1ajmNbtGiBzZs34+LFi7rXhiAIglCHMnME4RAlS5bE1q1bcfDgwWzTz+R88cUXeOyxx1CnTp2sbEXZsmWzHdO1a1eUL18eEyZMyDLCX3/9dbz44ovo1q0bHnvsMfz999/48MMP0bhxY+zZsyfLiZw/fz7S0tIwePBg3HbbbdixYwc+/PBDnDlzBvPnz892noyMDLRp0waNGzfGxIkT8dVXX2Ho0KGIiYnB888/j4cffhidO3fGp59+il69eqFevXooXbo0OnfujISEBAwfPhw9e/ZE27Zts9aDGWXz5s1YtGgRnnjiCeTNmxf/+9//8OCDD+LUqVO47bbbAAB//vkn6tSpg6SkJAwcOBAVK1bE2bNnsWDBAqSlpaFx48Z48skn8b///Q/PPfccKlWqBABZ/5Vz5coVNG3aFL/++iuGDh2K0qVLY/78+ejTpw+SkpLw1FNPZTv+66+/xn///YfHH38cgUAAEydOROfOnfH7778jV65cqt9t165dSE9Px1133cV0Lc6fPw/gprMnsmfPHsTExOT4LnXq1Ml6X+rwSylUqBAmT56Mrl274sMPP8STTz6JzMxM9OnTB3nz5jVVpEIQBPz111/ZnNGzZ8/iwoULimsm69Spg5UrVzK1PXv2bPz3338YMmQIrl69ig8++AD33XcfDhw4gMKFCwMA1q1bhzZt2qBMmTIYN24crly5gg8//BANGjTA7t27FQMJUn799Vd06dIF/fv3R+/evfH555+jT58+qFWrFipXrqyppQsXLqBly5YoWLAgxowZg4SEBJw8eVLRIVPi+PHj6N69OwYNGoTevXtjxowZ6Nq1K1avXo0WLVoAuLmeskmTJjh79iwef/xxlChRAj/99BPGjh2Lc+fO4f3338/W5owZM3D16lUMHDgQUVFRyJ8/v+K5WcYdLTIzM9GhQwds3rwZAwcORKVKlXDgwAG89957OHbsWI61eLVq1YIgCPjpp5/Qrl075vMQBBFkUGbOOgJBEI6wdu1aITw8XAgPDxfq1asnPPvss8KaNWuE9PT0HMfGxMQIvXv3zvH6yy+/LAAQevbsme31kydPCuHh4cLrr7+e7fUDBw4IERER2V5PS0vL0e4bb7whBAIB4Y8//sh6rXfv3gIAYcKECVmvXbp0SciTJ48QCASEuXPnZr1+5MgRAYDw8ssvZ7124sQJAYAwadKkbOfq3bu3ULJkSdXvJgWAEBkZKfz6669Zr+3bt08AIHz44YdZr/Xq1UsICwsTdu7cmaPdzMxMQRAEYf78+QIAYcOGDTmOadKkidCkSZOsf7///vsCAOHLL7/Mei09PV2oV6+eEBsbK6SkpGT7jrfddptw8eLFrGOXLl0qABCWLVuW41xSpk2bJgAQDhw4oHmcIAjCtWvXhDvvvFMoXbq0cP369azX77//fqFMmTI5jr98+bIAQBgzZoxu2z179hSio6OFY8eOCZMmTRIACEuWLNH9nBJffPGFAECYPn161ms7d+4UAAizZ8/OcfwzzzwjABCuXr2q2qZ4nfPkySOcOXMm6/Xt27cLAIThw4dnvVajRg2hUKFCwr///pv12r59+4SwsDChV69eWa/NmDFDACCcOHEi67WSJUsKAIRNmzZlvXbhwgUhKipKGDlyZNZralpavHixAEBRh3qI5164cGHWa8nJyUKRIkWEmjVrZr02fvx4ISYmRjh27Fi2z48ZM0YIDw8XTp06JQjCrWsWFxcnXLhwgakPauOO0rWS/2a++OILISwsTPjxxx+zffbTTz8VAAhbtmzJ9vqff/4pABDeeustpr4RBBFcJCcnCwCE5KJFBeGOO7j+JRcterPt5GS3v6YjkCtMEA7RokULbN26FR06dMC+ffswceJEtGrVCsWKFcO3335rqK1BgwZl+/eiRYuQmZmJbt264Z9//sn6u/3221G+fHls2LAh69g8efJk/f/ly5fxzz//oH79+hAEAXv27Mlxrsceeyzr/xMSElChQgXExMSgW7duWa9XqFABCQkJ+P333w19DxaaN2+eLUNQrVo1xMXFZZ0rMzMTS5YsQfv27RUzP0aLWwDAypUrcfvtt6Nnz55Zr+XKlSurcMfGjRuzHd+9e3fky5cv69+NGjUCAN3r8e+//wJAts+qMXToUBw6dAgfffQRIiJuTaq4cuUKoqKichyfO3furPf1+OijjxAfH48uXbrgxRdfxKOPPoqOHTvqfk7OkSNHMGTIENSrVw+9e/fO1kcAlvvZqVOnbGsL69Spg3vuuScrs3fu3Dns3bsXffr0yZaBqlatGlq0aMGUAbzzzjuz7h8AFCxYEBUqVGDStpj9Xr58Oa5fv657vJyiRYtmTaUFgLi4OPTq1Qt79uzJysrOnz8fjRo1Qr58+bL91ps3b46MjAxs2rQpW5sPPvggChYsaLgvRpk/fz4qVaqEihUrZuvXfffdBwDZxiDglub/+ecf2/tGEISHoWqWlgmtb0sQLlO7dm0sWrQIly5dwo4dOzB27Fj8999/6NKli+paFiVKly6d7d/Hjx+HIAgoX748ChYsmO3v8OHD2QqsnDp1KsvYjY2NRcGCBdGkSRMAQHJycrZ2c+fOncMQjI+Pxx133JHDSYqPj8elS5eYvwMr0jVWIvny5cs6199//42UlBTNqatG+eOPP1C+fHmEyR4I4pS6P/74Q7OPoqHKej0EnaLCkyZNwtSpUzF+/Hi0bds223t58uRRXJMkln2XOu9q5M+fH//73/+wf/9+xMfH43//+x9Tv6WcP38e999/P+Lj47FgwYJsBTPEPljtZ/ny5XO8lpiYmLWWS7wvFSpUyHFcpUqV8M8//+Dy5cua59DTmxZNmjTBgw8+iFdeeQUFChRAx44dMWPGDMXvrUS5cuVy/K4SExMBIOs7Hj9+HKtXr87xOxfXXcqLKcnHCrs4fvw4fvnllxz9Evsv75eoeTPBFoIggghy5ixDa+YIwgUiIyNRu3Zt1K5dG4mJiejbty/mz5+Pl19+menzcsM3MzMTgUAAq1atUqw6J65Xy8jIQIsWLXDx4kWMHj0aFStWRExMDM6ePYs+ffpkK6AAQLWCndrrek4JoG68Ke2fZvVcTmG2j+Kav0uXLuGOO+5QPGbmzJkYPXo0Bg0ahBdeeCHH+0WKFMGGDRsgCEK2a3vu3DkAN7M9LKxZsyarL2fOnDFUhTQ5ORlt2rRBUlISfvzxxxznLFKkSLY+STl37hzy58+vmLVzA6vaXrBgAbZt24Zly5ZhzZo16NevH9555x1s27bN9LpRKZmZmWjRogWeffZZxfdF50mExUnmQWZmJqpWrYp3331X8f3ixYtn+7foHEvXfxIEQRDGIWeOIFxGnBooNXSNRqvLli0LQRBQunTpHMaclAMHDuDYsWOYNWsWevXqlfX6d999Z7DX5smXLx+SkpJyvC7PdrFSsGBBxMXFKVY1lGLkmpYsWRL79+9HZmZmtuzckSNHst7nQcWKFQEAJ06cQNWqVXO8v3TpUjz22GPo3LlzVhVROTVq1MC0adNw+PBh3HnnnVmvb9++Pet9PVavXo1p06bh2WefxVdffYXevXtj+/bt2aZzqnH16lW0b98ex44dw7p167L1QaRYsWIoWLAgfv755xzv7dixg6mPwM3sj5xjx45lFTUR78vRo0dzHHfkyBEUKFCAyzYeelqqW7cu6tati9dffx1ff/01Hn74YcydOzfblGUlfv311xxOubgBu/gdy5Yti9TU1BwVUHlgJUtWtmxZ7Nu3D82aNWNq58SJEwDUixARBBEihGAmjTd09QjCIcTsiRxxHY90alhMTIyiw6NG586dER4ejldeeSXHOQRByFqbJWYdpMcIgoAPPviA+VxWKVu2LJKTk7F///6s186dO4fFixebai8sLAydOnXCsmXLFJ0F8buKRjzLdW3bti3Onz+PefPmZb1248YNfPjhh4iNjc2almqVWrVqITIyUrHfmzZtQo8ePdC4cWN89dVXOaZ8inTs2BG5cuXKVnlSEAR8+umnKFasGOrXr6/Zh6SkpKwqhhMmTMC0adOwe/duTJgwQbf/GRkZ6N69O7Zu3Yr58+ejXr16qsc++OCDWL58ebatMtavX49jx45llfrXY8mSJTh79mzWv3fs2IHt27ejTZs2AG5mAGvUqIFZs2Zlu88HDx7E2rVrc0xRNYuali5dupTj9yc6qixTLf/8889sv4OUlBTMnj0bNWrUwO233w4A6NatG7Zu3ZqVSZWSlJSEGzduGPkq2TA67kjp1q0bzp49i6lTp+Z478qVKzmmt+7atQuBQEBTMwRBEIQ+lJkjCIcYNmwY0tLS8MADD6BixYpIT0/HTz/9hHnz5qFUqVLo27dv1rG1atXCunXr8O6776Jo0aIoXbo07rnnHtW2y5Yti9deew1jx47FyZMn0alTJ+TNmxcnTpzA4sWLMXDgQIwaNQoVK1ZE2bJlMWrUKJw9exZxcXFYuHChLWvd1OjRowdGjx6NBx54AE8++STS0tIwefJkJCYmYvfu3abanDBhAtauXYsmTZpklUU/d+4c5s+fj82bNyMhIQE1atRAeHg43nrrLSQnJyMqKgr33Xdftj3+RAYOHIjPPvsMffr0wa5du1CqVCksWLAAW7Zswfvvv4+8efNavQwAbq5JbNmyJdatW4dXX3016/U//vgDHTp0QCAQQJcuXXJsGVGtWjVUq1YNAHDHHXfg6aefxqRJk3D9+nXUrl0bS5YswY8//oivvvpKd7Pnp556Cv/++y/WrVuH8PBwtG7dGo899hhee+01dOzYEdWrV1f97MiRI/Htt9+iffv2uHjxYrZNwgHgkUceyfr/5557DvPnz8e9996Lp556CqmpqZg0aRKqVq2aTftalCtXDg0bNsTgwYNx7do1vP/++7jtttuyTTmcNGkS2rRpg3r16qF///5ZWxPEx8dj3LhxTOfRQ01LX3/9NT755BM88MADKFu2LP777z9MnToVcXFxTI5kYmIi+vfvj507d6Jw4cL4/PPP8ddff2HGjBlZxzzzzDP49ttv0a5du6wtEy5fvowDBw5gwYIFOHnypOmpi0bHHSmPPvoovvnmGwwaNAgbNmxAgwYNkJGRgSNHjuCbb77BmjVrshUo+u6779CgQYOsqcYEQYQolJmzjsPVMwkiZFm1apXQr18/oWLFikJsbKwQGRkplCtXThg2bJjw119/ZTv2yJEjQuPGjYU8efIIALLKhYvl+//++2/FcyxcuFBo2LChEBMTI8TExAgVK1YUhgwZIhw9ejTrmEOHDgnNmzcXYmNjhQIFCggDBgzIKvc/Y8aMrON69+4txMTE5DhHkyZNhMqVK+d4vWTJksL999+f9W+1rQkE4eY2DVWqVBEiIyOFChUqCF9++aXq1gRDhgxRPJe8hPoff/wh9OrVSyhYsKAQFRUllClTRhgyZIhw7dq1rGOmTp0qlClTRggPD89WWl5eZl0QBOGvv/4S+vbtKxQoUECIjIwUqlatmu366H1HyLZqUGPRokVCIBDIKikvCIKwYcMGAYDqn7zdjIwMYcKECULJkiWFyMhIoXLlytm2VVBD3ELhnXfeyfZ6SkqKULJkSaF69eqKW2eINGnSRLOfcg4ePCi0bNlSiI6OFhISEoSHH35YOH/+vG4/pdf5nXfeEYoXLy5ERUUJjRo1Evbt25fj+HXr1gkNGjQQ8uTJI8TFxQnt27cXDh06lO0Yta0JpBqWfk+5PpS0tHv3bqFnz55CiRIlhKioKKFQoUJCu3bthJ9//ln3O4rnXrNmjVCtWjUhKipKqFixojB//vwcx/7333/C2LFjhXLlygmRkZFCgQIFhPr16wtvv/121v3S0qYaauMOy9YEgnBz+4633npLqFy5shAVFSXky5dPqFWrlvDKK69kKxGelJQkREZGCtOmTWPuG0EQwUXW1gRlyghCuXJc/5LLlAmprQkCguChKgIEQRAhRkZGBu68805069YN48ePd7s7nuTkyZMoXbo0Jk2ahFGjRrndHVsoVaoUqlSpguXLl7vdFdt5//33MXHiRPz222+OFWghCMJbpKSkID4+HsllyyJOZwaJ4bYzMhD/229ITk5GXFwc17a9COU1CYIgXCQ8PByvvvoqPv74Y6SmprrdHYKwlevXr+Pdd9/FCy+8QI4cQRAEB2jNHEEQhMt0794d3bt3d7sbBGE7uXLlwqlTp9zuBkEQXsGONXMhNumQnDmCIAiCIAiCIJyHnDnLkDNHEARBeJpSpUp5apN4Ozh58qTbXSAIgiB8CDlzBEEQBEEQBEE4D2XmLEMFUAiCIAiCIAiCIHwIZeaIoOOff/7B+vXrsXbtWlpoTwQl164B6em3/i39fymRkdn/PyrK3n4RhJ8pWbIkWrRogWbNmpneeJ0gCINQZs4y5MwRvufGjRvYvHkz1q5di7Vr12LPnj2oUqUKWrZsifr16yMQCLjdRSLEmDXL3vYDgeyOGauTpub0+YHevd3uARHMCIKAI0eOYMKECXjooYdQs2ZNtGzZEi1btkTDhg0REUHmEkEQ3oQ2DSd8yeXLl7F27VosWbIEy5cvR65cudCqVSu0aNECzZs3x+233+52FwmP8/jjbveACBU++8ztHhBGOH/+PNatW4fvvvsOa9aswfXr19GuXTt06tQJLVu2RExMjNtdJAjfk7VpeNWq9mwafuBAyGwaTs4c4RsuXbqEJUuWYMmSJVi7di2KFy+OBx54AJ06dcI999yDMN5pesJVyNkiCPcJdUc0MzMT27dvx5IlS7B48WKcPn0aLVu2RKdOndCpUyfky5fP7S4ShC8hZ44f5MwRniY1NRXffvst5syZgzVr1qB69ero3LkzOnXqhIoVK9IUShchZ4sgCK/D0xkVp2IuWbIEixYtwv79+9GqVSv06NEDHTp0QGxsLL+TEUSQk+XMVa9ujzO3bx85cwThFlevXsXKlSsxd+5cLF++HGXLlkXPnj3RvXt3lC1b1u3u+Yr+/d05Ly0vIQjCK9y4Yf6z06erv/frr79i3rx5mDt3Ln777Te0b98ePXr0QJs2bZA7d27zJyWIECDLmatZ0x5nbs8ecuYIwkkEQcBPP/2EWbNmYd68eShYsGCWA1elShW3u2crbjlcfoKcQyJYMeJohNLvwIoDZhdajt3Bgwcxd+5czJ07F3///Te6d++O3r17UxEuglCBnDl+kDNHuMoff/yBL774ArNmzcI///yDnj17onfv3qhTp44nH4B9+978Ly3P8x+ZmdlL9VvBi4aml/Ci00H3TB3e9yvYr7WWUycIArZv345Zs2Zh7ty5KFiwIHr16oVevXqhRIkSznWSIDxOljNXq5Y9ztyuXeTMEYRdpKWlYcGCBZg1axZ+/PFHtGzZEr1790b79u09MzVFdNq0IIfOX2RmZv833T+C4Iv0NxYqvy8tx+7q1atYtmwZZs6cie+++w6NGjVC79690aVLF0RHRzvXSYLwIOTM8YOcOcIx9u/fjylTpuDLL7/EHXfcgb59++Lhhx92dRsBFqdNj1AxWvyE3HHTg+6hd9C7d3SvvIeR31uw3j8tpw64ud3BV199hRkzZuDMmTN49NFHMWDAAFSrVs2ZDhKEx8hy5u6+G3Gcpwek3LiB+J9/JmeOIHhw+fJlzJs3D1OmTMH+/fvRvXt3DBw4EHXr1nV0GiUPp02PYDVSvI5Rx00Puo/OY/Ue0j1zHp6/u2C7f3rTMLdt24YpU6Zg3rx5qFatGgYOHIju3bvT/nVESEHOHD/ImSNsYe/evfjss8/w1VdfoXTp0nj88cfx0EMPISEhwdbzOuG06RFshonX4O28aUH30h7svod03+yDfn/s6GXrkpKS8NVXX2HKlCk4ceIEHn74YTz++OOoUaOGI/0jCDfJcubq1LHHmduxg5w5gjBKeno6Fi1ahI8++gh79uxBz549MXDgQNSuXZt7Fs4LTpsedhgiThpSajhpYHnh+0rxu3HpJm7fS7p31nD7/knx2xg0Y4b2+4IgYOfOnZgyZQrmzJmDu+66C0OHDkXnzp2RK1cu6x0gCA9Czhw/yJkjLHPu3DlMmTIFn332GaKjozFkyBD06dMH+fLls9x2797+NsIyM/3df7tQuiZeMhZZ4HVf3f7edunT7e+lh52/Sze/O+/v5fX7KMXr44qeUwcAly5dwsyZM/Hxxx8jLS0Njz/+OB5//HFX15YThB1kOXN169rjzG3bRs4cQWghCAK2bt2KDz/8EIsWLULz5s0xdOhQtGrVCmEWrInevbXf96JjRAUbjKN0zfx2nchRJ4Idv2rcD1U19Ry7zMxMrF69Gh999BHWr1+PBx98EEOHDkW9evU8uW0PQRgly5mrX98eZ+6nn0LGmfPgbkCEl7lx4wYWLlyIt99+G8ePH0e/fv3wyy+/oFy5cqbb1HPgpLj5kPZShNevaF1Dr24doNdnr/TTbdSuk5evjx/77DR+uEas44qX+iwuFVBz6sLCwtC2bVu0bdsWv/76Kz755BO0bdsW5cuXx6hRo/Dggw8iwosbOhIE4TiUmSOYSE1NxfTp0/Hee+8hLCwMw4cPR9++fREbG2u4LSPOGytenvLmJQPCLXhcV7uvo5U+hvI9NnPd3LhefumnlzD7m3DiuvlhTDECyxTM1NRUzJgxA++++y4AYPjw4ejXr5+p5zBBuE1WZq5hQ3syc5s3h0xmjpw5QpNz587hww8/xOTJk1G+fHk888wzeOCBBwxHBO1w4NTQe0A7nWHzksHgJF6uWEhOOx+8XJ7ey33zC17b9sPOMcUr95jFqbtx4wYWL16MSZMm4fjx4xg8eDCGDRuGIkWK2N9BguAEOXP88MjwRXiNo0ePol+/fihdujQOHjyIpUuXYvv27ejatSuzI9e7960/J8nM1P4j7MWp68xyX53UQKhpi/f3tXKv7L7HNHbwwcy47NTY7ZVnRN+++tWaIyIi0LVrV2zfvh1Lly7FwYMHUbp0afTr1w9Hjx51pqMEwYuwMHv+QojQ+raELkePHsUjjzyC6tWrIxAIYO/evfj222/RuHFj3UXXUufNaQeOcB+3DSEvOO5uG4JO4eT31AvOuNEXgj9u31u1vrgFi1MXCATQuHFjfPvtt9izZw8CgQCqV6+ORx99lJw6ggghyJkjAABHjhzJcuKio6Nx5MgRTJ8+HRUrVtT8HDlv9sNizLL+2dk34ibBfC3oXt8kFK5DsH8/VpzI6Gv9sT5fK1WqhOnTp+Pw4cPInTs3qlevjkceeYScOsL7UGbOMqH1bYkcHDlyBA8//DBq1KiR5cRNmTIFpUqVUjyesm/G8ZIDxqsvoWDMWoHXtfGadojsePE3SvfJPtSusRP3ivWZW7p0aUydOhVHjhxBdHR0llN35MgRY1+WIAjfQM5ciPLHH3+gV69eqFGjBmJjY5mdOCK0IWORHS8Y5Tz6QPdcH69dZ6/0I5hx61qxPotLlSqFKVOmZDl1NWrUQK9evXDq1Cn7O0kQRqDMnGVC69sSSEpKwrPPPotKlSoBuJmZ++yzz8iJIwiCIAifwPpcljp1giCgYsWKGD16NJKSkmztH0EwQ86cZULr24Yw6enpeP/991G2bFns3r0bW7ZswezZsxWdOJpGSRAEQRDexshzulSpUvjiiy+wefNm/PzzzyhXrhw++OADpKen29tJgiBsh/aZC3IEQcD8+fMxduxYREdHY+LEiWjdurViZUpy3giCIAjCn8yaxXacIAhYtWoVnn32WVy5cgVvvPEGunbtqluxmiB4krXPXIsWiMuVi2/b168j/rvvQmafOXLmgpi9e/di6NCh+P333zF+/Hj06dMH4eHh2Y4hB44gCIIgggNWhw64ufn4rFmz8OKLL6JMmTL4+OOPUb16dfs6RxASyJnjB02zDEIuXbqEoUOHol69emjUqBGOHTuG/v37Z3PkaBolQRAEQQQXRp7tERER6N+/P44dO4aGDRuibt26GDZsGK2nI5yF1sxZJrS+bZCTmZmJzz//HBUqVMDx48exd+9evPHGG4iNjQVAa+EIgiAIIhQw8qyPjY3Fm2++ib179+Lo0aNITEzE559/jkwqa0oQvoCmWQYJu3btwpAhQ3Du3Dm89957eOCBB7Lmv5PzRhAEQRChiZGpl4IgYPHixRg+fDiKFi2Kjz76CLVq1bKvc0TIkjXNsk0be6ZZrlpF0ywJf5Camorhw4ejUaNGaNGiBQ4fPozOnTsjEAhQFo4gCIIgQhwjtkAgEEDnzp1x+PBhNG/eHI0aNcLw4cORmppqbycJgjANOXM+ZsWKFbjzzjuxa9cu7N69G+PHj0d0dDQ5cQRBEARBZMOIXRAdHY3x48dj165d2LVrFypXrowVK1bY1zkidKE1c5YJrW8bJJw/fx7du3fHI488gpdeegk//PADKlasSE4cQRAEQRCqGLUTKlWqhB9++AEvvPACHnnkEXTv3h3nz5+3r4NE6OGyM/fGG2+gdu3ayJs3LwoVKoROnTrh6NGjNn5h/pAz5yMyMzMxdepUVKpUCYFAAIcPH8Zjjz2Gvn3DyIkjCIIgCIIJIzZDWFgYBgwYgMOHDwO46eBNnToVVHKBCAY2btyIIUOGYNu2bfjuu+9w/fp1tGzZEpcvX3a7a8xQARSfcPLkSfTv3x/Hjx/H5MmTcf/995MDRxAEQRCEJYwUSAFuLvEYPHgwypcvj+nTp6NUqVK29IsIbrIKoHTsaE8BlKVLTRVA+fvvv1GoUCFs3LgRjRs35tovu6DMnMfJzMzE5MmTUbVqVZQrVw4HDx7EN9+QI0cQBEEQhHWM2hP3338/Dh48iHLlyqFatWr49NNPaRsDwpOkpKRk+7t27ZruZ5KTkwEA+fPnt7t73KDMnIc5ceIE+vfvj99++w3Tp0/HF180d7tLBEEQBEEEKUazdN999x0ee+wxlCtXjrJ0hCGyMnMPPGBPZm7x4hyvv/zyyxg3bpzq5zIzM9GhQwckJSVh8+bNXPtkJ5SZ8yBiNq5atWpITExEgwYHyZEjCIIgCMJWjGbpWrRogQMHDqBcuXKoWrUqJk+eTFk6wjOcPn0aycnJWX9jx47VPH7IkCE4ePAg5s6d61AP+UCZOY9x9uxZ9O3bF0ePHkVi4nQULeo9J06pSBDvsduJc7iFkYq5wfKdRcTvbvf3CgsLvmtHEIR7BOuYovY8mjHDeFvr1q1D//79UaFCBcyYMQPFihWz1jkiqMnKzD34oD2ZuYULDa2ZGzp0KJYuXYpNmzahdOnSXPtjN5SZ8xBz5sxBlSpVUKxYMdSvf8BzjpxWtVceW3r4ZXsQJ7c+CabtVaT9squf0na9eh3M4Nd7bgUnvlewX7tQ0Yvd30s6pnj5+in106wO+va9+WeE5s2bY//+/ShatCiqVq3qu+wGEZoIgoChQ4di8eLF+P77733nyAFAhNsdIICLFy9iyJAhWLduHT7//HM88MADWe+5XejEyEPLTOTSiw9FL/bJKGrfwY3Istb15BHttrt9XjjhmJjFK9dIRO74i/Dqp/xaOZUxNoqdmrHatleuldq9FLFrfHFTM3pjHk/69jWWpYuPj8fMmTOxaNEiDBw4EEuXLsUnn3yCfPny8e0YETzYESEx0N6QIUPw9ddfY+nSpcibN2/WPorx8fHIkycP337ZBE2zdJm1a9eib9++qFmzJqZNm4bbb79d9zNKDh7vB4tdhqEXDM5gcNZ4Y4dBYvQ6G+mDnW1bIRi15bSxynINzfaJ9f44+Z2DUTOAN39zdgYb7fq+XtGHmWmX58+fR//+/bFv3z7MmDEDLVq04N8xwrdkTbPs2tWeaZbz5zNNswwEAoqvz5gxA3369OHaL7sgZ84lrl27hjFjxmDatGl45513MGDAAFVBaaE2DcLMg4XnQ0N6frvaZcErD0I/YWemzOr5KRjgLXgasGavK0sfzLTtxDrgUMXrunE7a+llrRh16gRBwNSpUzFy5Eg89thjePPNNxEVFWVP5whfkeXMdeuGuMhIvm2npyP+m29M7TPnR8iZc4HDhw+jZ8+eiIiIwNdff43ExETDbRiZy673YLFr7ZIdkUo3vkuow3ofeV978bxuBgN4nz/YsTtjZvTcdrXLCmmHHTd/m14IPvpJK2aydMeOHcNDDz2EGzduYM6cOahUqRL/jhG+IsuZ69HDHmdu7tyQceZ8NHz4H0EQMGXKFNSuXRutWrXCTz/9ZLsjBygvdrZjIbfTi8ODfVG/V9C7vnZNd4+IcH4aPWnKGmauHa9rbNe9M/pdSDvmcPO3J56P95ij9z38qhWjNggAJCYm4qeffkKrVq1Qu3ZtTJ06FZRLIAg+UAEUh/j3338xYMAAbNu2DUuXLkWzZs0Mt2FmAJUT8f933IkpZzyzc3572AUr4n0ICwNu3LDf2bIjwxsRcbPvSucj+KJXjMKuWQFq57Parl3ZP0IZLf04URzGjudXZmZwaEa0R4xk6SIjI/HWW2+hRYsW6NWrF1avXo2pU6cif/789nSS8AcuF0AJBkLr27rE5s2bUaNGDWRkZGD//v2GHTkzJYLlKGXmrLbF0obZ81CE2/vwjGI7lfmTOqOkK+ex83et1KZd56CxyR3svP5KbdmR5bVjxoGbmLFNxC0Mbty4gerVq2Pz5s38O0YQIUQQDSneIzMzE2+88QZatWqF0aNHY8mSJShQoADz5606cbynx9ltvJCB5H3UDGarTjvrsVbOwSuYQViHt0HOMpWNxzlojPIePO4Ja2CS5zmCSUdm7JQCBQpgyZIlePbZZ9GqVSu8+eabyPTKfheEsyhFaXj8hRA0zdImLly4gF69euH48ePYtGkTatWqxfxZHlk4o8erjaG8jCA/T0/yyhQZt59zet/byPQ2K44Zr+qFrG0R9mNEO1qfZTmOV/ukH+8hv1d2b7nCYywyq0veWH2u9e9v5lMBAMPQvHl9TJ3aDRs3bsTs2bNRsGBBa50hiBCDnDkb2LhxI3r27ImGDRti9+7diI+PZ/qc006c0mftdFa86rwZzU66hda57TQEzHxnNQOFggPe6KebhiOvoICVgIBe26zte8EQd1tPbjshWrBoiVe2zepY55SW3NaLEgUK1EL9+rtx9epjqFGjBubMmYPGjRu73S3CKezIpHlR6DYSWt/WZjIzM/H666+jbdu2eOGFFzBv3jwmR27AgJt/ESZdax6/A7ENs31wul2jRETcWqsQjJl4pe/F45rz0JX0uvNCbMvqfbQzcOHlmR9u9c+MgavUL15BAbWpb2YNcbvwsp78MtNJqV+8xyQe7fK6bmrPPK8SGRmPvHm/wXPPPYc2bdpgwoQJNO2SIBihzBwnLl26hF69euGXX37Bjz/+iLvuukv3MwMG5HxNaoCLFffU4GXQKL3m172V3HYavYJ4D+TXQ09T8s/z6gfvKWmiYcKjTbPt8K4M6xW0phWy6sdIu059XqtdHlrikVnxsrFtFjv0xNuZ5/kblo65PLRgpA2/P/8CgQB27x6CH3+shy5dumDbtm2YPXs2EhIS3O4aYSeUmbNMaH1bm9i7dy/uvvtuCIKAXbt26TpyYiZODzGyJh+geWbitN43056Tvx/p9VG6TqGK1j1guV52Zz2stiltw029udEHtzH7e+MZHLAzy8uzPRbk1zOUtAQoj+FOjePycYTXc1X+b7uf1Szjud909fHHd2HXrl3IyMhArVq1sG/fPre7RNiJXnrf7F8IEVrf1gZmzZqFhg0bom/fvvj222+RL18+zeNZnDglIiKAyMibf2YxqnG943i3pwU5bmwYvcbitYyM5Df+sejGaHs8Aw8sbZDesqN2jVmuk11OktVnth0BB2k7SjgVTPE7bv7+zOpKb4zi6dS5GVBxilGj8mHZsmXo06cPGjRogNmzZ7vdJYLwLCFuopjn2rVrePrpp/HNN99g4cKFaNWqlebxZp04QNnQBJyZMieffuTUA8GOh3ewTYeTY/XeGJnia/X8LFOIjLZn5f5GRAS/PpxC/tvlNX2R5RielU5Z29Nqw4qjSXrMjjwbbmXKLyusOjAa0DR7b61O4bRjWqmdDBgQBuBFLFxYBw899BC2bt2K999/H1FRUW53jeAJTbO0DDlzJjh//jw6d+6M9PR07N69GyVLllQ9lqcTJ0fPqXNj2pBZQj3zYRWrDrscIwEDrwQLjBjAahkks0ZOMBvfPKbGihg1wM1mR3hVLjR7X3k4tMGsKR6YXQ8MWMu68ajQa9Sp0sp4h4K2vvmmFXbv3o0HH3wQ9913HxYuXIjbb7/d7W4RhGcILdeVAz///DPuvvtulClTBj/++KMtjpzRIIV0ugXP6cJ2Tj2mKWz84O3ISXFqfR2v9UJW1pYQfFELErDeA55OJO/pmErYMdU0mIPLvJ0Jp54pPJfl6LXD8l3M9sNvy4pefbUkfvzxR5QqVQq1a9fGzz//7HaXCF6orXmz+hdCkFljgC+//BKDBg3CuHHjMHLkSAQCAcXjrDhxZgkLu7nuyerUE7U+8IjkuVn9z+g5xbWJTvQ1LAxITzf/Wac+J83W2ZH15RUtjoy8dT2NGnV+i1jbjZ3PQ61pvbzOy3PMUdKG0TVLoZBF8QpqmTs7xi5e+hLbMuOMWtGXeF6zGOnvjRvmne2nn86DL7/8Em+//TaaNm2Kzz77DA8//LC5xggiiCBnjoGMjAyMGTMG06ZNw4IFC9C6dWvF49xy4qQYXU/How9qeDUDwlpExkkDSq9PSs6eG9F+MWgA2FOmnpfhakV7ThrPkZHOnMuJ9UVSjGqMVzl3tT7wWisktuP0WjgrmnRqHHZaY0aRzl7h3Vdejp2ba+K0NKb3fHJy+4RAIIBnnnkGVatWRc+ePbFv3z688cYbCA8Pt9Yw4R6BAH8jVCXZEqx41Nz2DikpKejRowdOnDiB7du3IzExMccxgwff/K/ThUm0iIjgv08di0HhFQfOK/3ghdrD1EmnnUfggOX8ZgxXpe07nM5mKJ3TSvVZnvgpWGBljZ1eH6w6dTycTt4OHU9D2wosWjc7A4E3dhZ7MqsxpTHMTDtWPmt2vHJyvH38ceCzz4DWrVtj+/bt6NixIw4ePIi5c+ciLi7OmU4QhMcIrUmlBjl16hQaNmyIjIwMbNu2TdORk8JSqtvu9RtiP6y2wXoet9YiublPEQ+s3gfW722n5uxY12F1jRJrG1bOr9QPcfsQq9uIOI2835GR3vgtmekDa8DAaj+c0pe0D0r3yY5z2YWaxtzUmdFnB+v1NLJ0x86xW++8vO6Bkzp7/PGb/01MTMS2bdtw48YNNGzYEKdOnXKuEwQ/aM2cZULr2xpgx44dqFOnDho0aIAVK1YgPj4+2/uDBys7ckrIDT0zmNUm78Io4uedfgg77bQ5tVaON0rXx2mnRv553oaIkXvP+xr7OXBgFiPf2S6t2RGwYDne7iAJy7n9YmjzWFNt9+/LapCId0DM6Fhm5vzyz9k5drnh0MXHx2PFihWoX78+6tSpg507dzrXCYIP5MxZJrS+LSMLFizAfffdhzFjxuCTTz5BhGzUY3XipCgNpqyfs2og8coQSJ1Suwl2g9mpccZshsWK7ng4kdJ+uBXBl583GHVoFiWj2+2ggZVzyz9v9H5bNfJDMUjAipvXhvc5pVoz26bVrK7dOGlHiw5drly5MHnyZIwePRr33nsvFi5c6EwHCMIj0CNDgiAImDhxIl5//XXMmTMH7du3z/a+VSdOjnQw513NTck4MbM2wMnMm1ewOyvn1INOSQMiWlrgoT0eRVIAProIC2O7p17SIE+c0hurvuRYDRrwLJgSEeHcWji53pwYd4KlKqb82jlRfIXXmCZtC7BvTZzaeMbyWR44pTdxDV0gEMDw4cNRtmxZPPzww/jtt9/wzDPPqFYdJzyEHRGAEMvMBan5YpyMjAw8/fTTWLBgATZu3IiaNWtme5+3IyeHh2HCMm2H9UFkp2Frtu1gMUScgEULIlJN8M6u8AoiWDUMlD4frM6bG2gFDgB1DfAIHIhtWDGypf21ojU9Q9ltzdltYGdmumNDseiNV7/MBi2UPg9Yc66UPmtk1k+wOXQA0KFDB2zatAlt27bFmTNn8N5771GlSyLoIXMGwNWrV/Hoo4/iwIED2Lp1K0qVKpX1nt1OnPwzZgwTo06jWttGpxV5OQptlmDIyhk9h3SKHO/qgWL7rG3rrU/itdchK8GUzXATJQPYjtkH0vZZ0VobxSNL5yXjOlRQuuZ2BEqNOnYs603NOnVmsspOZOnccOhq1qyJn376Ca1bt0bPnj0xe/Zs5M6d2/5OEOagzJxlQt6ZS0pKQqdOnXD16lVs3rwZBQoUyHrPqCNnxYmTw2KYWJmeJLZrV6TY7Qi0WexYUyCW47Z7bOFRiMGoQcwjkGBnEEHePhnL/DETPBA/52bwgEV3Zg1RszMtgilb4jWsZtRY27caLDXqYMmzykY+K/2c3Q4dcOscrNtYGH0eSx260qVLY8uWLWjXrh3atGmDJUuW5ChkRxDBgk9Nbj6cPXsWbdq0QYkSJbBixQrExMQAcD4bp4WSAWzVKRAXdPN+oHnRgfNCn1gfSHZswm32c3qGiZVAQkQEcPWqtQIAZvc7NGO0OGX88gwkOBVAMItSEQjeAQQtDZspbmJm3aVX9SY9B2/duTXV0ghGdGc2WCFt28xYZ2XKrhmnjleWjtcz14wuIyOBYcOADz+8+e8CBQpg/fr16NatGxo3boxVq1ahaNGifDpI8IMyc5YJrW8r4ffff0fDhg1Ru3ZtLFmyJMuRe+opY/v4mNGg0c9Iq8VZ0SfvSmDyKmxuobT3kliJ0E9Iq4XavY8Uq5Z4Vw4UsTrjRW19nttalKNUiU/+Z0eVOaV9vOyoCsh7NoJWv8yOf7y+t142UK/gBK9zseJl3Xn5N8q7bR5jnd6aVK3PmjkfC/JnlJfu67Bht/4/JiYGS5YsQa1atdCgQQOcOHHCvY4RhE145KfnLEeOHEHz5s3RtWtXvPvuuwgEAnjqKfXjlR54ZrIoVrMnZqclqQ2wPIpTODldx0+bMJtFSSNK39tK5sWsQWxlWpzYhvzfVtqLjDS/voS3buX3yC/T2LQcdVFjPDGaVQNuaoSXcyO2ZxZp9sKu7J70MyzHW62M6BZK0wNFeGvPTDEygF81Xl7ac2pdnNJntJ6/4nte0p80Q5crVy5Mnz4dw4cPR6NGjbB+/XpUqFDB3Q4St6DMnGVCzpnbv38/WrRogQEDBmD8+PG6jpwadk7T0Pocz/Ug4nFWF27bgdXzeemhwooRncgfrHascVP6nFmjhGdAQW4EOrXBe2Yme0DBj+uS5NpQ+65OT+HkURJeqhmrhrXZ9XCAcV3Ij2eZKeI33Smh9T3tCDKw9IPHsgQrjqJ0rSlgv1Mnns/I2jUv6y8QCOC9995DTEwMGjdujHXr1qFq1apud4sAyJnjQEg5cz///DNatWqFESNG4PnnnwcAU46cHLUBmvc6Jvk5ra4FYTmHHm5UGAxGeKyDFOG5zs1KgR55v7SOsRJQsGtdEulSGacDCSJmnDCte2i0PR7r4Yx+zuxaK68a1Dwwqz+rGHXE9O6d1THUjmInSucyOiPGS/qTZueAmw7d66+/jujoaDRt2hRr165FrVq13OsgQXAiZMyVrVu3ok2bNhg3bhyefvppLk6cEtLomdGHjJmF1jyqUvJqx8j5vDLYByPyzJUdFQOl5+IRVNBy6OzSpNzoIOfNHPLrxnOPL63ZCWrnUuuX1nFWDGqeDh0vDXrJoLYbpWvGw8FjqZiqdi4j91HLqbMroGp2urCR9r2iP7lDBwDPP/88oqOj0axZM6xatQr16tVzp3PETSgzZ5mQMF927dqFNm3aYMKECXjiiSdsc+SA7PphjbxZ0Vzu3Hzm9Vtdv6TXPqGO3WOO0QyE2eptN25YDypERJirdGnGeKCgwi14alB+76xuwM1yLrm2zQQTzLZjddpbiNkcivCugMlLg0bOZTUgaqUdMxq0e+07r+qYPFBy6IYPH47IyEi0adMG69evpwwd4WuC3szev38/WrZsiZdfftlWR44lisdriwFehSTsigK77bx54eHBip2GnFYFNLu2HNBqmxWzAQozUye9FEEOVsysE7JSDt4KVtoxO33SLv2Rtm/Bkj2WYrZIlPhfq+s7zbbB4kApadxOrXhFh0oO3ZAhQ3Dt2jW0bNkSP/zwA62hc4tAgL8xFAjwbc/jBLUzJ1atHDFiBE6eHO6KIyfFysJ56efV3rM6j9/KQ8htB84okZHmNiXVw8jifCcdOTlKjpebwQVeAQolw8EtbXrFiHETpwMKem3b3YbR9Uh6n7EKaVB/qi7Ab1YKj+qVPNqQO3VOrX/n2bZdG4vLGTFiBNLS0tC8eXNs3LgRFStWtNYgQbiAz0xwdn777Tc0a9YMAwcOxIULz9tyDivRO4Dd8Oex9oO3QevWInQtjJaqt2OrAyc2CNfDaBluadUyI3g1uODEFE3e2KFF1vvp1jQ/JceJZ0BB2q5TbQDm1iN5QYMibga43IJ3IMBsu1ptmOmXuMed0Yy4XdMujVQEZsFoWyNHAu+8k/P1F154AVeuXEGzZs2wadMmlC1blk8HCTZozZxlgtKZ+/PPP9GsWTP06NHj/7cf4FO1UgqPaUDiQKT2sDPjgFktZqJlQHthnzcv9MEqYWH6Zd+ttG0EqUb09Kj2Ob1jrBQIMOLQ8S4jbhWz++DxPD8Ldl0rrwQVAGuFUswEFcxsp2CXQyffVsRpjJS194LjJ93km2d/9LTIokOtz8uRXnejGuahRa377ua4qObQvfbaa7hy5QqaN2+OLVu2oGjRos53jiBMEhAEQXC7EzxJSkpC48aNcffdd2P69OkIaMybFR086eAN3CzAoIadaznEB4fVh67VOfvSzxpxnoyeU2tAl98T1sHfK9FtLVg1JB6npUcz7Yro6UzJkDGrTavFAcwEGHjqUQuvGi2sqOnGiiHLS4t6fTCqJyuFUlj0pKQFp3So1Qce7dqNnmbM6tEJLboxLpoNutqlx9y5bz6rWG0Gt/Wo5NAJgoC+fftiz5492LRpE+Lj453vWAiRkpKC+Ph4JL/wAuLkRp/Vtq9eRfxrryE5ORlxcXFc2/YiQZWHvHr1Kjp27IgSJUpgypQpmo4cAHzwQU6nAbj5mvgnxWyk2c7PyD8rn29vtq3ISOeyYNLrrXTdgwmjjhygf22MzlBg1ZlcA1Y0ZfW+yjOILPrknYmQ3gPWPngdLd1Iv2NkpDu/S61rbHbmgXysNPpZJXj2k/W3rKRFLT16fdaRnnEv16LTzwo7fvMREea/g1yPrH3jpUel55KR7+JFPQYCAUydOhV33HEHOnbsiKuskVTCGqIRw/svhAiazFxGRga6du2Kc+fOYf369YiOjtY8fvRoc+fhNQVNipLmzG5ky6sdM1Ezs5FrPYz0xe1onxZGxhYjxxqJWJsxgMW+8Fq/Zue+d1bPJepHzygJNU1qHSe3d+yuRJmebj1YBVifvWB0LLOaEdHSZLDMXOChRyC7Jo0GuowSFsZvnZ2Vdux6ZkvJzGR32PygSaXsHABcvnwZzZs3R9GiRfHNN98gPDzc2Y6FCFmZuZdesicz9+qrlJnzE4IgYMiQIThy5AiWL19umyMH6EdgeUW9WObP85iOqdYOr6AGa9SYB142VOxy5AB7M1VK+yayoKVPM+1ERFgvOKSFPOKvR4gF/TSxklU3o8ncua3NYJD+v9l2cue232k1cl15OUHBgjyLbhfS9YhmMr1Kr5kdZ80kI1jOZzY77wdNjhyp/HpMTAyWL1+OQ4cOYejQoQiSnId3ocycZYLi27711ltYtmwZVq9ejdtuu03zWCuOnBTpAGfWiWMtHy9/zehgb7UNI+dy0nkLRqyOP2rXnpc+WbRjpDiK1vu8ggx6U+NCVad2GVusYwCP4IKRQjpawQWz7fA2nkNdk3bh1HOJdQovj2Ct2vtmnTopvK6Vnx262267DWvWrMG3336LiRMnOtspgjCIS/Wt+DF37lxMmDABmzZtQokSJTSP5eXISZEOgizT3cwMsjdu8JlWZBSWilZe3KLAa7j1QBMDDQD//e+UpqqZiUybKUhhttIaGcjuIL3uVoo86c1isLoti1bhKK02zOhRei5eumTth5e2QXAL+TU3M3WXNRhrpeiOlTaM3mcxGMv7Ge5nXZYoUQLLly9HkyZNUKpUKXTv3t3tLgUntDWBZXztzG3evBmPPfYY5s+fjxo1aqgeZ7cTJ6JV2t1KRsHKGg9pP3kN0n4xip1cHK+2TtrNyKR8cTyg7dSZ6UPu3NZ0JUagzezlxfLgF7+3m0YKcQvxfkREeDfAIG2D9fNi/1j1IGY9yHD2BtLAF2DPlgSA9bV1RgO7rLq0so0Baz+s6tLO5/nzKlsRv/46ULNmTcybNw9du3ZFsWLF0LBhQ/s6QhAm8a0zd+zYMXTs2BHvvvsu2rRpo3qcU46cFKnhzHNaGOsgy3sKpdecN6/1B2B70KgZCHY7clKUsiRm+2A12CBfv8TLofOiPuS4HWjwQpBBTYtW+2A2QCDFbJBCz2hVmv7stSCD29r0AnraNPu7MLqJtxTp1EsrG9mLsEyB5qlNPcfSi+P2LSevDRo1egft2nXEzp3bUL58eTe7FXxQZs4yvnTm/v33X7Rt2xYDBgzAwIEDVY978UVjGyHrYTQiJg7crOdmXWtkZdNRMxuOuhHBFc8fTNFj+cNKHGt4b5RrpOhHWJi586utxbQSbDBj2BrZ28gOw1kJrxklVgINvPFTkMGK4cxqNIvncWp6OmlTGb11jFLM9kcevBIxM2Za0WZkJPtz1Q5tivfcb8/2u+56HMnJv6Nly7b4+edtuvUZCMJJfLc1QXp6Olq1aoX8+fNj/vz5CFN52r/4ol47xs5rZmoD6znNZNLMbjaqNTDz2GzW6MDv9w2XzaJnpPIwGIz2gee2G0o6sPJZJcw6/DyMEyMGkR9xO9Ag9oHnOK1336181mh7vM6hBunTGGbHTZ6BWitrPp0I0prRZ7A93wUhE0uXdkX+/Bfx/fdrkStXLre75GuytiaYMMGerQmeey5ktibwVWZOEAQMGzYMSUlJWL58uWlHDsgZEVSb7sHDiRORZwndKGoij7SxRGqNTNvRiuRJr7lee34c6HkiZs1EWKYjWdWqXhbb6MJ9swEHLQ0p6dXu9T9ey2Y4idp355XNVUPUp5GZFazV/8wEGlgzIUrXy+4sSCjqMzPzVpZJCacyzSxThY0U4AHMrfnU06fauAnw1ydr5s2P6zYDgTC0bTsbc+Y0wBNPDMOUKZMRCATc7pb/oWmWlvGVM/fhhx9i6dKl2LlzJ2JiYhSPYXHklO6x1NG4epWvEyfHStRU3i+vPvx5bHAbysg1pRd88GLQwer6ECNBB94BB9KoNkaDDbwCDYCy0Wy2QiCvQIOWPnlpUySYjWVeiPfDaECMxzkBa86kdJqv2SnCRiqlGtWntH3A2TWWXiAyMgadOn2LL7+sg2rVKmPYsGFud4kg/OPMrV69GmPHjsX69etRvHhxW88l3XNcb1C2up8Lz6ltWti9hYB0yptWf1keGsFugPAIGEk3LWY1HIyeV/wdWM3CmM04REcb+5wZ4zXUDBFWxMwHK6wzHfRgOafbwQapQcsaGLPi0JFGlWHRqPQYNY3aEbi1ulafx7pPI9VSjWbpxGeD1vEsmvdrwCE+vgQ6dlyMZ55pjsTERLRq1crtLvmbQIB/Ji3EMqa+cOZ+++039OzZE5999hnq1q2repzZrJwWvBbmay38tzI9Q89QVjM2jBrYLIv6/TgoBwMsEWEreuUx1c1s8R3eC/DFrDjviq+hiJYxLRrOdq29A8zvo6hUTMLMWl+jWwsYMVyjo2k8tRupc2eHTqXVJ420rVZcCmDTm3z8ZP0cwL/iZDA7dHfcUQ8tW36Krl17YO/eXShTpozbXSJCGM+bNGlpaXjwwQfRq1cvPPLII6rH8XLktI4RBzIjD3AWo1Hu0Fmd+mPHNEoexi9l5axrUO8YJceOZ+BB2i7LZ5SOMbKuQ/ycEWNErqFQXFPkNXgHHOR6Yw04aAUbAONr4swYy2QoexctnVpNHPBYX+fEGApk1w2vKcTBSNWqj+Kvv3aiQ4fO2LHjJ0RLp3UR7NCaOct42pkTBAGDBg1CbGwsJk2apHqcE46ciDTapjWVyKjzY7UUvxmDVW+Al0Yu9R4Ebg3oXpiC5MW9kuRRYZ4FVKTBBzNOvlR3rLo1m9kzQygbJ06gVOrdiiOn1LYdAQe9fbnMZD8o0GANo1MtjRxjZWmCntaUdGp23ae0PSOf0UP0S6zOjLAz6OCF5/+9976NefPuxcCBg/HFFzOpIArhCp525j799FOsXbsWu3fvRqQHnnrywVYcSKSGshnjVvoQCQuz9tAwOiCyrM/gMc3NTFZOLcjlNWNbun5NibQ05/qihpJWpRjVrZXiJuLnrWqVZ3+M4kfDw4tBByD775xXIRWpsey1gIPTWjUDaTUndgRypYVarGwkbmQ80nPqjN57Xs6a0jFKNoDXnv8xMZHo0mU+Pv30Lnz22WcYNGiQ213yH5SZs4xnnbkdO3Zg1KhRWLVqFYoWLap63BtvZP/BKxnOPLJyWgO02Yez2jlZjAK1/hiNcMkzOGawMrhK712wTsMUv6P8ftulVS2sVG1VOr/R6TvS85mJxkrPZ8bgtEs/fgg8yNexKcE78GC2kIqSsWxGq1YcJzOVTbUMZTuMZDMEm1btzM7p9U/EivMpntNMsRPxM0YLmMjPp6VN3uuWlRA1mZqqrk8RL07tjIsriq5d52H48La46667UKdOHbe7RIQYnnTmUlJS0LNnT7z88sto3Lix6nFvvJHzNflAwDLI8nDgpXve8KiAqTSA8iraYGTjUF5ZOb0B2muDsxMoXRMeEWkWnYSFGa9WqRV8ALS1wiv4ALibNWCp4uZnpJqU3m+ns8t2BB0AtvFMfi6zhrKekcwDrd+P0UCZF9FysNzQqtp2FkaWJEhR+m6sWlXqhxmtshTb0XPojGTetGyB2Fj/arV06SZo1OgldO3aEwcP7kXevHnd7pJ/oMycZTzpzA0bNgylS5fGqFGjVI9RcuSU0IugsTpWWqjNtbe6gFocQI0aMqxFIHg4ckpt2GXAeHWQ5zlm8Iz4qsGqV63PKKFkhLA6lnr31srejGaxupbdq3o1g9K1cMrBM7JVjIjZwIOWXo0EHqSVNp2A6i7cQu1apKU5Y9+x7jdnZDaQmTEV0NartJ88sl1abRixCfxc2KdBg2dw8uRaPPHEMHzxxUy3u+MfyJmzjOecublz52L58uXYv38/wmy4GfJBxWz1MxbMVL+Uf97sfjVhYfYbE+Jg6vb6Cj9gVspG9WoFJa2Z6Xd0tDm9AvrbX2hhJYtMGjaOXZllOdLsjN54yKpXuVPHOlbyLN1uZfqaHXr1qoHMa4oki16NTgvW64vV/eZEzO43x2NclfaB9fxOjKde1GtYWBg6dpyNTz+thnnz5qF79+5ud4kIETzlzP3xxx8YNGgQZs6ciWLFiqkex5qV00O+XsxMpJkluhYRwW7kqA20WvvRycmd23r1Sa3P86pyxdoX1mNCAb31oTzPYcYwF/VrRK9qbdgJOW/24ERmGeCzBQdwa3NlM8EHvdLtPI1N0qs9mNGrmdkycr2a0arV4K6eXWBVrzztAi86aqzExRVDu3bTMGBAP9StWxclS5Z0u0vehzJzlvGMM5eZmYlevXqhR48e6NSpk+pxPB05OeJgJBrJRqdXap1Dr5ogiwGrZXTY+bCnKTzquDleKDl2PLOxepqVoqRfI4YHSwDCCrwDEAQbuXNbD5jpIU5pNOo4SjVrxqGLjvaPZv1sHLPCI6smjnmiZs3qVasvou6sBHmNOnXS72XFoZN/Xsk24FUwxc/TLe+88wH8/vtqPPxwb2za9L0ts8wIQopnnLnJkyfj9OnTWLlypdtdQXT0rYGYd2Q5d+7sbRrNQsiNDjNbCbCsT9Lrl5NZOb/DaxzXctSkFTO1NGumaquWU0dBCMIIdmaWnQo+kGadh4ejZgb5/RA1ayY7p4S80I8SWmOsnmbt0irpVJ8WLd7BZ59VxaeffoonnnjC7e54G8rMWcYTztzJkycxZswYLFmyBDExMarH2ZmVU0PNQOCxlYFZR4b3AC1vz2sOllZ/nHqoeGGvOFZYDAQr7YptGglEyI0OueZ4bEqvpwXKynkLM4VNWNDSP2vwQalPdhjGXjOKvZrp8AryCpp2jq8A+xirN75KMZudk7ZptfolKzyyc0Z/Y2lp5n+XUjshKioW998/Dc880wlt27ZFqVKlzDVKEAy47swJgoABAwbgoYceQrNmzVSP4+XIsaDkqPE0kKWOnhEjJjJSf4BkNYqtGCZ2Z+XkA6kXjAulwV1JJ15z+ng7dhERN8tHmzW+7QxEeEEnrDhhxHtNi1o4EYCwMguCdHsTr+uWVwaPJfOWmamtW72+sGxzYFQb4qwanoErr67XtMtOsKJx+WerVm2GI0d6ol+/gVi/fg0CgYC1zgUrlJmzjOvO3PTp03HkyBEsXLhQ8zhe03N4TI2IjdXuh5Fz6E2T4FkMgmWNhxOGhZG9uvxk6AA5B3Mn9+rSG7vE9Utm+yHVtdE1G3Zu3+A0rFFgt7WrZpR4PQhhh2MnjtlGgxCxsfwMY7O6dSLL4QfdAjm1G+y6NTrOStfj6e37qfW+nu5ZMma8dOvnvecAoF27SXj//SqYPn06HnvsMbe7QwQprjpzf/31F0aNGoWvv/4acXFxqsd98EH2f5vd88jI/iwsyAumsKDWB/m6IiUnzkxWTnqteAysRtrw2hQit7GyVxePIITYBs91S6zBCKva0zOEnXrYs2yw60e0Ms9uGszSwg08+sFqHLMG0VimrDlRnZWFYNSunbq1si5OOl5paVfvHOL7TgV93XxmWz23V6cI58kTj06dPsPIkQ+jffv2KFy4sNtd8h6UmbOMq87cM888gxYtWqBt27aW2xIjryKpqZabVESvCiaPfemsYnZQtDIQSq9/MGbc5PAaJ6TFdkTs0q7a+QE+2hUNDTt07MZ6NwpG3ERrE2a3+mFXECIYtBusRjEr4vRGJ3TLOq2Tl3aVdKumWSOZMTNVKa1m54zYDH7XZKVKbVGmTDOMHPksvvxyltvd8R6BAH/nK8SmtLrmzG3cuBGLFy/G4cOHNY+TZ+WUUNKA3LljmfZgVUvR0dpROCvGst6grFeBkmdWTn5tpfAccP08eAPm9eRUYEKKnnZZcDsYYQXxmvtdc04iD0S4FYSwAu+sGWnXXnisiZNW/pXilH7l2rW6b51ZpBk/J9CyG3jhZaevXbv38M47d2Ljxn5o0qSJ290hPMC1a9cQFRXFpS1XnLn09HQ88cQTGDduHO644w7V41gcOVZ4RMb0BlzpNDYnotY8o78s64B4DZJeHWy9Smys/to7nplCtXPYBctWGDxxwqgIRZSuq90Gsl0VMc32wQxGDVAr+vWyses0csdQKYjGYwsCtTZYtWulD2qZMV57GLJWkuSRefO7dhMSiqNZs5cxcOATOHhwL3LlyuV2l7xDiEyzXLVqFebOnYsff/wRp0+fRmZmJmJiYlCzZk20bNkSffv2RdGiRU217cq3/eCDDxAWFoYnn3zSclss90t+THT0rT8j7RhB3j7PrJy8basVLuVIrw9NNcsJT63w0i9v7NSv/DxWPs+C+F1iY8mRc5rYWOfGEjfGKyfOJ9Wuln49aLu4Bg+jX7zeerricS4nn7dGxnUz476d38XM89JLNGr0FC5fDuD99993uyuEjE2bNqF9+/YoWrQoAoEAlixZwq3txYsXIzExEf369UNERARGjx6NRYsWYc2aNZg2bRqaNGmCdevWoUyZMhg0aBD+/vtvw+dwPDP3119/Yfz48fj22281IxM8s3JaSKcKaWUjzA564oBmNWps5yDPUmXN6XVwfo7AOYl0ypCX9avUpl14IQBB+lXG7AwJI9kJpewyr02epe3biVJVXCc15fcsiB2obSDOAmuhE+l5eOvXLt2GhenbEE5n3ryq3/DwXGjf/iO88koH9O7dG4UKFXK7S97AA5m5y5cvo3r16ujXrx86d+7MtSsTJ07Ee++9hzZt2iBMoV/dunUDAJw9exYffvghvvzySwwfPtzQOQKCIAhcesvIoEGDcOHCBSxatEjzOLNr5XgdIx1IWQZRrWOk7xl5ALBMhWDJWihl9qTwctR4OnxeHIhFeEYH7dKwXGdWI7Di+2amX4r6UzMmeGSWeVW7dFrnbuC2NtWO0dOWFQ1bLfBz44Z5/bIc42RAjcZge9rSW5fvln5ZtiSyWinbi9r0sn6/+OIB1KlzO6ZMmex2V1wlJSUF8fHxSP78c8RxjjakpKUhvl8/JCcna1bLVyIQCGDx4sXo1KkT1z7ZiaOZuQMHDmDWrFnYv3+/5nFOZeUA9UHayNohI4Msy3o6nmvh9AxpFpweFKXn89K0uNRU56dYmm2HZ+U/pXbNBCV4Q2s5gwu7NCu2bbbAj54xbHY/LS/t7RaM8NpAnBUrmTuWts0E1HiPvVp7V3ptXZy0LS07IjXVeTujdeuJeO+9anjyySGoUqWKsyf3IjZm5lJSUrK9HBUVxa3oCA8yMjJw4MABlCxZEvny5TPdjmPOnCAIGDlyJAYPHozy5ctbbs+pudNSh57X4KxmENsx8Dq1SbjRdrwwFc4oLAM+byOUh4bNGgJ6beq1x2uRvbw9v+GVgIST1Sat4pVghFPGsJOYMZhJw8aRa9jIVEut942MvSJWNxGPi3Nnexg1pBq2+ptyQ9ulS5dHw4aD8PTTo7Bu3WrnOxBCFC9ePNu/X375ZYwbN86dzgB4+umnUbVqVfTv3x8ZGRlo0qQJfvrpJ0RHR2P58uVo2rSpqXYdc+bWrl2LXbt2Yd68eZrHTZ2qH+Fya4Gr0iBqZeqE3iBkdOqDvD23B18z0zn9jlrZa8C9zZelGuRdrVIp08zTYGUJSLiJF4xzVliNFjc3CVdCvMa8Ng6XtqnWntNOnJtrfEJdwywZPKtZPqc07GbwgZeG1doJNnvi/vtfwrhx5bB27Vq0bNnS7e64i42ZudOnT2ebZul2Vm7BggV45JFHAADLli3DiRMncOTIEXzxxRd4/vnnsWXLFlPtOuLMCYKAF154AWPGjDGVRlRaDA5oD4p2Zu7cKN+uht0PYpYBk2W9RyihN3VXepxbGjKS+dALWGhp0OxaDS8ZmMFmROjBOyDBc7ob74ydfCznHYgQ4RGQsDJNjTR8C7vGXB4biJspdOKUA2d2OrEUVofPS+O/XcTE5EPz5qMxZswLaNGiBQIhtsm1U8TFxRleM2cn//zzD26//XYAwMqVK9G1a9esSpcfWFhj5ogzt2zZMpw+fRpDhgzRPG7qVGPt2jlHHdAfVEV9OL1JuJitsLo3l5kHutIgG+yGgR2ID32l6+m0g6enY6dQuhZOZuVYDIhQ17pfAxJG2rKK24ao2+f3EkoOltL1cUrHcmfNqIbt2HNOxK2plGp6DfZ95wCgadMhePnld7B8+XK0b9/e7e64hweqWTpF4cKFcejQIRQpUgSrV6/G5Mk3i+CkpaUhPDzcdLu2O3OZmZl48cUXMXbsWERzeMpo3R95NM5q5o4VpzJ1Ri4fj0E5OpqKS7hBsOtY6ZxOQ0EJfnghIGGlwAmv83vlvKRjc+jp2O6CKnZMxTRyXh6wOFixsaRRkaioGLRoMRZjx76I+++/X7FsfUjgAWcuNTUVv/76a9a/T5w4gb179yJ//vwoUaIEt2717dsX3bp1Q5EiRRAIBNC8eXMAwPbt21GxYkXT7druzC1cuBD//vsvHn/8cc3jjGblWLCSuTO7WaZ4Hq/vaURTcfyD3RlotfPZeR7exVFYz0c4g9EMHi9D2c6KmFrn09Mxjylq0vNZJRiyGjxR058bOpZvg8FTx1IdmtESj8qtPAkGHTduPAjff/82Fi1ahC5durjdnZDl559/xr333pv17xEjRgAAevfujZkzZ3I7z7hx41ClShWcPn0aXbt2zVrDFx4ejjFjxphu19Z95gRBQI0aNfD444/jiSee0DyWxZlzaj8YgM++XGYHYb3pk07sywWEzp5FPHF6byPA3v2NRMxuGi7VoplplCxa5hWY8PveRbyxey8vo4WtzOpYPI/VAJuWlnnsNeekjo0c53fsHpPNFGhzU8vBZl8Eg45/+OET7N//GQ4e3BtSa+ey9pmbO9eefeZ69DC1z5wd9OrVCx07dkSrVq0Qa0MJVVtzumvXrsW5c+fQt29fzePsyMppERub/U8Oz6yaEX0aPd4oWt/ZToJhsPUqERH2a1ksh21Gm+Ln7NS19Bx2n4vgh1P3jNc5tNrh8TsjHduD3c8fJ++ZlXMEq30RDDMT69fvi7Nn/8R3333ndlcImyhXrhwmTJiAggULok2bNpg8eTLOnj3LrX1bM3MtWrRAo0aN8NJLL2kexysrx3Kc3kM3NZVPVk4JpUyd0WyFkQiw2qBqNtth9rhQcubszmbI0dIii5b12jCiZSms08/Mvi/VNq+9FEnL2XE6yyzVmtJ+Yla1LH3fzMbLpGX/4ua4bEbLRt5n0bLRTDLr+2Rj8GP58ldw+fIWfP/9Wre74hhZmblvvrEnM9etm2cycyJnzpzBt99+i6VLl2Ljxo2oXLkyOnbsiA4dOqBGjRqm27XNmduzZw8aNmyIP/74AwUKFFA9jjUrZ4fBoHeM2galVgZivRLYVgbZ2Fg+030A96fzeGGTWjMb1PLSqR+0DOjvMccrMAEoa4KMBvtw05mTImqXpzMnYmTjZZ7OnN1GMGk5O17RMsCuZx5aDhU7w6yWvWBnADc1kZr6D55/vgS2bfvJklHvJ0LRmZPy33//YdWqVVi6dClWrVqFvHnzon379hg8eDAqV65sqC3bCqC888476Nu3r6Yjx4qTaXTpACn+0M0Y9WrwnubglcFIDekgq/V78qJhIb22ehpMSfH2dA/pd+Gt57Q0e7YVYDUa/IDbv1Oe99xpxGunF5gwgxMbL4u4rQFeeOF7BIue7bIt1MZkK0jvO6+CPryQF0Lxo60RG1sADRv2xVtvvY05c750u0vO4oFqlm6QN29edOvWDd26dUNGRgZ++OEHfPvtt9i6dathZ86WzNyFCxdQvHhxHDx4EOXLl1c9bt485ddTUrL/241MhhpWi03owZLJ0HqY2lVQguU4pQE0WBbjW9FgqOrZjBbl2nZKz2Z06jeDQYQlMMFyHGt7rMeYyVTIjWEexX7UsKpnr2Uz5Mep6dnLWgb46tnNsdlJLQNsevaqrQHk1Gsw2Brnzh3Dc89VxdmzZ1CwYEG3u2M7WZm5BQvsycx16eLpzBxPbMnMzZo1Cw0bNtR05LSQX3dx8JQbxW5gZ9l2vY3CvTIIxcV5py9OYDXAE6p6ZsXKlDO7MWsw+BnxOyvp3k3NKm2YbFfG2QpeyFypYUbPfi//zlvPLNsPmNncW64bvTXPVjYQ14OHvcGSvWPRFqu94XedAkCRIomoWLEBZs2ahVGjRrndHecIBPhn0jxaFfTff//FSy+9hA0bNuDChQvIlIn24sWLptrlPhQIgoApU6bgtdde49Ke9P4qOdc8p7cZGRid2M/IaKCCt/HrVDDD7wOwEVj0zAuv6VmOV4zeUAtOWEFJs14JTsTG6u8DZvf5vQDpmR039aznjIl6BpzdM9FNnLA5vO70NW48EJMnv4SRI0eGzjYFITTN8tFHH8Wvv/6K/v37o3DhwtzuMXdn7ocffkBSUhI6deqkeZzaFEujxMXlvGdKgzCPCJaaNsRB0OxeXEptOY10EOU10Hl5wPQqSlFkp41kO7N1Un27oY8QmG3hGnYHJ1hxMjBhRM92rDNS07PXDVae8NpwXo5X9Aw4NyYbwaqexeublKQ/LoeSnu+++wF8+eVQbNy4EU2bNnW7OwRnfvzxR2zevBnVq1fn2i53Z27q1Kno3bt31q7mbiAfGJwagM0OuNHRNwdFrc08eQxk0oHXr+sjQgG5YaKkZ7um1yid16oB4XaAgjTtHm4HJ+xy7NzUNOnZHDycvmDSc1yctjPGw4GSOnxqNkdCAj9NB4PTlytXFBo27IOpU6eGjjMXQpm5ihUr4sqVK9zb5WoSXr58GUuXLsXWrVu5tMfrXiQk3Pp/syXajcDi1PE2BvRKCQOUcbMTJ8cNeTba7Foh1j6bMSDEAIWTUNbNH7gZbIuIMG8EO+3AkZ69i9QxVMvg8VjTpuWAino0qmmndMzb7uCJ152++vUfxWuv1cfly5cRExPjdncIjnzyyScYM2YMXnrpJVSpUgW5cuXK9r7ZYi1cnbnly5ejZMmSqFq1quZxvKZYAsaNaKVFxjzOozRoO1n2WopX1m4EAx4N7mTDrKbNoBeocNLgjY315gPZi33yMvJsh92FTIwGJ6TH253JYMlSeN0QJdg1zauICYum7Rib5VMt7bQ9Qkn3JUpUQ4ECJbBixQp069bN7e7YTwhl5hISEpCSkoL77rsv2+uCICAQCCAjI8NUu1yduXnz5qF79+6+WrRp154vUvQGUb0Mht4A5uf9uEJlcHYSJzUtGg4UpCB44ZXgRChoOpQMZFbsWIPnpqbt1rGehlk0RjrMTiAQQO3aPfD11/NCw5kLIR5++GHkypULX3/9tTcLoKSkpGDlypWYMGECl/bc2Cjci2Wu1TBqBPDcm4jX+axgJhPtdrU9N7Bb02qGgtUABeC+oUt4A/lmxU7qmDd+1TQZ23zxiqb1ipio3Xej+yc6CatWzWrayvRnIzZI3brd8cILbyAlJSX490kLoczcwYMHsWfPHlSoUIFru9ycuRUrVqBChQqoWLGi5nFOT7E0ez+lg5Wbe3CJWNm800u4uW+XmfGQ515bbo8tfghWeNlIsBuzz+tQC1L4QcdSSNPGMappuypaOoWWpvW+m537zUnxayBCitv7hhr5PcTFVUTRoolYuXIlevToYV+nCEe5++67cfr0ae86c8uXL0eHDh10j3Nr8bsV9IwHuwZSLy4g1uqLHdsbeBGtvYlE3Na1nialexi5aRBbMRCc1lhsrPp9dVP7Rg1mr20GbgWvOnbBYPgC7umaR+BNSdM8nT6Wtsycz8kpmXqwrEu2Y8sNNbSyaVLNsGx34Adq1bofK1asDn5nLoQyc8OGDcNTTz2FZ555BlWrVs1RAKVatWqm2uXihty4cQOrVq3CypUrDX9W7wfnpQc0wN94kA+CXjYCvNw3N1EaM7R0raUbN8Yfpw1iJwuX8DiPdIuDYDAQlPBDgEIPtwMUXi3Io0QoBN609uCT4raujWwe7tT4LIXHFFte6+ZYbRCe2x24Sa1arfHee92RmZmJMI86J1wIIWeue/fuAIB+/fplvRYIBLxRAGXr1q2IiIhA7dq1NY9btcp420o/3tRUfvfJSlZN7NvVq9b6oDVA8RiQjLbhlNPm9cHWrrFA7fryqqxqBWnfrOparV2v4eW+eQmzAQo3cCpA4WXtBGvggTehruuICCB3bj5t8cKp35XX14JWrFgfaWlXsG/fPtSsWdPt7hAcOHHihC3tcnHmli9fjrZt2yI8PJxHc7rExuZ0wpSiazyMXpYtCcwMsOJn3FxDIX2I8eyHlwdHL8Oqax6w/DasGg5eM3S91p9gwmqAwk7kOrY6Ld5rOvJaf4IJv+jabOAtmO2QYCAiIhdq1GiOVatWBbczFwKZuZdeegkdO3ZErVq1bGmfizO3evVqPPfcczyaMo1SdM2tqTZq57bjocs6+FGU1p+4pWu5waula6XjrD6UrX5evG5kHLiLdJsMKW5NbZMGTIz+jnhsAWN1fRHp2hs4rWu9tXe5c7Pr2g47hFXXZIcYp0aN1li2bLbrNjZhjTNnzqBNmzaIjIxE+/bt0aFDBzRr1gyRkZFc2rfszJ0/fx4HDx5Es2bNePSHK24WW3EzWup2xSbCXpQeiE5pWy1b5yW9E97HriCFkYITLJnnUNC116easeKFipZqY7OT/fLSGG3UFuFZTCVYdH3XXa3x6aeDkZSUhISEBLe7Yw8hkJn7/PPPkZmZiS1btmDZsmV4+umnce7cObRo0QIdO3ZEu3btkD9/ftPtW3bm1q1bh5o1a6JAgQKax5lZL6cGyzQZlqIUbm85wGMvLoCMWcIdbbttHATDg5q4RagG30SkhXb0cLKCYLDB0+lj2RYgLs69oiu8dM3qGPnRFvG601ewYHGUKFER69atQ5cuXdzuDmGBsLAwNGrUCI0aNcLEiRNx+PBhLFu2DJ999hkGDhyIOnXqoEOHDujZsyeKFStmqG3Lztx3332HFi1aWG3GFfRKAHvMsc9C2m+9QcjLgxRhH14qb20FPxoHBB+U7r3bATheaOnaq8alV/vlR5QCF07sFaeG2eCAEVuEME+NGm2wevXq4HXmAgH+BncgwLc9G6hUqRIqVaqEZ599FhcuXMCyZcvw7bffAgBGjRplqC1Lw4cgCFi3bh2++OILK814BrkBrGc4ODX4qkXXeA2ebhQ/oYHfWby6H5ccL+6tSHgHv+hYCdI2oYY8e+dlbXshix1q3HVXG3z8ca+s8vVE8FGoUCH0798f/fv3N/V5S+7I0aNH8e+//6J+/fpWmvEs0uiZk1N+aJH7zX1i7CYpyXobXsze6vVJXjXTzX2WyDAgzOL17DNpmzCLGW2zTPk0A6s94sXMLa8+ObVUTc0mqVSpPi5e/AfHjh1DhQoVnOmMk4TAmjmRBx54QNEhDwQCyJ07N8qXL4+HHnoIiYmJhtq19NPfsGED6tevj9w6m5Q4vV6OBaP3mbdjJx0Yg3EqmR++k9UBmrcT5NY0Gzu1rXYuClTYC49Ahd+QVxh0OkhB2iZt24XT2rbr+c3iXNm1HtTfNkluVK5cHxs2bCBnzkibHiQ+Ph5LlixBQkJC1jYFu3fvRlJSElq2bIm5c+fizTffxPr169GgQQPmdi07c/fee6/ucSw/Ip6Dk933UPw+YWHmo8F618SrBoFev70WmbMTpYXtSoSattXaDBb88H28FqhggXc1QidmVvhBC0bww/chbdunba3779WiO6Fik9x1171Yv34DBg0a5HZXCAvcfvvteOihh/DRRx8h7P8HhczMTDz11FPImzcv5s6di0GDBmH06NHYvHkzc7sBQRAEMx0SBAGFCxfGokWL0LBhQ81jt2zRb09roJNG4sxWsjR6jN55lD6vZfzKp03oDTAsgybLIMVyjPRcag9KWgunDOsDWu04N7TNci55G0Ycu+ho7ffd0jYLWoYBaTsnrIYka9ZZ75y8tG0lUGFV36Rt9+EdhOMxdruhbd52iV3atmKXBIu29+/fjHHjHsSFC+eDZt1cSkoK4uPjkbx5M+I4z0tPSU1FfMOGSE5ORpyHolQFCxbEli1bckyjPHbsGOrXr49//vkHBw4cQKNGjZBkYBqC6czcL7/8gsuXL6NOnTpmm2BG+kN2q8QvC/LF+W6vmdAaxIyUwSbsw6/a1nrfy5pSMgq83F+vo5Wd9vJ0OKOFVPygb6uBuFCCJVPmtLZ5Ze+MjNVegrad0aZSpTq4fDkVhw4dQuXKld3uDmGSGzdu4MiRIzmcuSNHjiAjIwMAkDt3bsMOu2lnbsOGDWjYsKHu7uUsWTlWWPaOE4/TMoSdmEpr94AZrHu+ELdQu39Wpz9aXZsXG+uNYIUaZBR4Az8HKryqbYACcV5A7jhL9e1VbTsBr/3oeBZT8WJhFjPkyhWJqlUbYMOGDcHnzIXQmrlHH30U/fv3x3PPPYfatWsDAHbu3IkJEyagV69eAICNGzcavseWnDmW9XJOI94/pcHCS4Msb5S+r9MDWDAMmHbAc0wJC/OGtr1g7FKwwr/YFaiwihd0DZC2vYKZbJmb2ua9No8HXrBNgoUaNe7FunUbMHToULe7QpjkvffeQ+HChTFx4kT89ddfAIDChQtj+PDhGD16NACgZcuWaN26taF2Ta2Zy8zMRMGCBbFy5Urcc889mseyZuZ4rQUycoyWAWxmzRwrVuelx8XxmyvOc855KA7QvDTJsy09fdupbcCe9aBmDQLSt3mc1q3acVId27Ee1Ch2rCuS69sN3ZK+zR9n5Rgv6ZtsE2/zyy/b8Nxz9+Off/7OKp7hZ7LWzG3bZs+aubp1PbdmTkrK///4efTPVGZu//79uH79elZZTau4pUm1DIfdxoARPKpBAt6LgMrxQgbPDCwGQbA8nEMFKxkDuY71ptF7HRrTCSlSPbAEmt1EWtHSCzoOlimUrFSoUAvXrqXjwIEDqF69utvdIUwwZ84c9OzZE0BOJ+6ZZ57BpEmTTLVrypnbvHkz6tWrhwgdr4fnejmnkC96dnLajxiYCKXBiXAWN/WthBcMAsJ/+CVQQVPMCBEjAQ239K3lHPnZPgkWpy8iIheqVauPzZs3B5czF0Jr5gYPHoyEhAS0adMm2+vDhw/H3LlznXXmtm/fjrp165o6oVl43Rej7cgzvzyNX7NZ5VAqx0vYi536VjsfaZOwA+keiYA7gQoWffMyLIPFQCVuoeXwOa1vr6wfJbJTocI92L59O4YMGeJ2V/gRQs7cV199hZ49e2L58uVZ27oNGzYMixYtwoYNG0y3a9qZE9OEXsKpKpXShKSRaJk4GHtl400/GAJWN4iV4uVS6W4FK+RY0bdae0bxgy4J76OkPd4GMBm8BOBO4RHe+uZln4RSsMIN++TOO+/B1Knz+J2YcJT7778fn3zyCTp06IDvvvsO06dPx9KlS7Fhw4Yc2xUYwbAzd/HiRRw/fpxpf7mEBH2BetR5ZkY+HUJq/CpNlfCKI8ebzEwgf36249yCdeA1okkvO4g80NK32vFe0XgoGQIiwa5Hq1gNVjilbz8Ysnp4Xd9erPxoFdHBEzWupW83p7i7oW8W+wRw73fH+nu55546GD36GC5duoR8+fLZ2ifHCKHMHAA89NBDSEpKQoMGDVCwYEFs3LgR5cqVs9SmYWdu586dKFOmDAoUKMB0vJ5ApdfbC4aI1fsfTGuAxHvnd6PCTlgGYFFTVvXthbFJ1LdoJAST3vXwujEAGNMjC14Yk+1Eql8lw5f0nROv6xtg13go6RsIvnE7FG2U/PkLokSJMtixYwdatWrldncIBkaMGKH4esGCBXHXXXfhk08+yXrt3XffNXUOw87c3r17cdddd+ke98svxjvDMlC7vcjd6obLejg1KLEO5qE0SNqNH/TNSjAZA6RxdZwMVrhNsGhaCulbG6POoRc0zrMyrBmcyqoF4++RFxUr1sS+ffuCx5kLBPhHqwMBvu1ZYM+ePYqvlytXDikpKVnvByz02bBrsn//flSrVs30Ca2i9QP3e8lqntBA6E/07pvb1Sf9hB3TvAh1gilY4QdojHeeUNC4dPsBO/Gqfv0wxblcuWrYv3+/290gGLFS2IQVU85ct27d7OgLF9QGiJQUb0xT44nad/X6QESYIyxM+wHodyPCCF41BAhtKFjBDmncn1DAOTtkp/AnMbEapk5d4HY3+BFia+bswJAzl56ejiNHjriamVND777J99eS4uXBVT4Q0gDoL5zeYF7pfE7qm3dElwyB0CIUgxV2a9wPmYZQITMzODVO+yk6S2JiNRw7dgTp6emIjIx0uzuEDoMGDcILL7yAO+64Q/fYefPm4caNG3j44YcNncOQM3f06FFERUWhZMmShk7idaQDkWgMOz2oin2gAZDgjfxB65bGtZD2kX4DhBLyfbZEjOr4xg371z7LoaAcwQIvjdtJXFzobD3gVYoWLYVcuSJx7NgxVKlSxe3uWCfIM3MFCxZE5cqV0aBBA7Rv3x533303ihYtity5c+PSpUs4dOgQNm/ejLlz56Jo0aKYMmWK4XMYeqQdO3YMFSpUQBini+Sha50DtehZWpr5NsWsBU2f8S5e1iQPpN9PSYd2Gw28DAGCEPFasILGd4I3bmicdOxdwsLCUKpUIjlzem16hPHjx2Po0KGYNm0aPvnkExw6dCjb+3nz5kXz5s0xZcoUtG7d2tQ5DDlzx48fR/ny5XWPM1PJ0guw3HsjG3XKjyUjlvA6SlM1zaxjIkOAcBut9dN2tk/jPOEUWho3kn32u60Silm+EiXK4/jx4253g2CkcOHCeP755/H888/j0qVLOHXqFK5cuYICBQqgbNmylipZAiYyc1Z2KA9WlBw8M4TaYET4A7m+5c6d9H09DZPGCbcxE7AwovFgNyyD/fsFAywa52W3EO5QosTNzFxQEOSZOTn58uXjvuG7YWfuvvvu49oBP+FhbfgCMgCCAzICiGCDNE0EOzw1HuwOvR++X8mSiVix4ge3u0F4BEPO3IkTJ1C6dGm7+kL4nFDa18sLm8faAQUsCIIgvI2VjcOJ4LBV7ryzDD766ITb3eBDiGXm7IDZmbtx4wbOnz+P4sWL6x6bP7+lPhk2lFnuWYjdV8NYGdy8HsGyA6c1TrhLQsLNexYMRgArpNHQhDROeD0zRfYKUKTIHbhw4TwyMjIQHh7udncIl2F25v766y8IgoAiRYrY2R8Axn+oXirb6xVC6YHsR4zeHzI6+GD2d5GZGXq/KQpY+BMydNlJSLAW6CWNWyfUxlVeFCpUBBkZGfjrr79QtGhRt7tjDcrMWYbZmTtz5gwKFSqEXLly2dkfU7AOBsHg9Ol911B7GIcKrEZHMGicFTICvA0FLPhAOvcuZu5NqIzRLNeG7BXzREZGomDBQjhz5oz/nTnCMszO3NmzZ5l2L/cyeuXSw8LcHWipnDthFa9rnAUyAkITXgELP6wnIo2HLsESfOZhr3h9OqfXKVLkDpw9e9btblgnhDJzf/31F0aNGoX169fjwoULEAQh2/sZGRmm2jWUmStWrJjucefOmeqHZ9AaoKwYwiybJdOgRjiBXRq3em6CYIFFQ2b2RuQJ6ZywituBOb3zk73iPoULF8OZM2fc7oZ1QsiZ69OnD06dOoUXX3wRRYoUsby/nEhIZeZ4YPYhTQMf4Rf0NK5lQJABQHgBPR1acfbCwvTLvJPOCTV4Zo6tBOZorPY/QZOZCyE2b96MH3/8ETVq1ODariFn7s477+R6ci/hUSeeIDyHlhFABgDhB6xmzkjnhB+gDHFwc/vtxXD27BG3u2GdQIC/Ec4p48Wb4sWL55hayQPmq8c6zZIgCP5QsIEgCIIgCJHbby+G06eDYJplCPH+++9jzJgxOHnyJNd2mTNz586do4o5BEEQBEEQhC8JpqIrt99eDH/++afb3bBOCK2Z6969O9LS0lC2bFlER0fn2CHg4sWLptplduYuXryI2267zdRJggG7dREsgwtBEARBEARhLwkJ+XHp0iW3u0EY4P3337elXSZnThAEXLp0CQm04Q3BAaubEduByWAIQRAEQXgOu7foCKYMlxZetFdE4uISkJR0CYIgcKuK6AohlJnr3bu3Le0yOXOpqanIyMhAvnz5dI+109+jTWXNQ364Nl4asEnn/iV//puBAS/pSQkKXhA88KrOSd/+h2wWfUqVyocbN27g8uXLiNUrsUt4hoyMDCxZsgSHDx8GAFSuXBkdOnRAeHi46TaZnLmkpCQEAgHEx8ebPhEPlH7cVpxvLxvNZgeyUIiUBTuhpHPeeMEA8KqBK8XtPoaSJu3ACzr3Mm7rWySUdE42i/OINnlSUpK/nbkQysz9+uuvaNu2Lc6ePYsKFSoAAN544w0UL14cK1asQNmyZU21y+TMXbp0CfHx8Qjz6MUxi9UHotZeRX7+XRHBhZ06twoZAKGJ2n03+4jxutFsRuekcf/jJ53LbZaUFNrawOuEh4cjPj4ely5d8vc+0CHkzD355JMoW7Ystm3bhvz/H3X6999/8cgjj+DJJ5/EihUrTLXL7MzRermckMNGhAJynUudO/oNEF7A7oAF6ZzwArx1rqVrcuT8QXx8AhVB8REbN27M5sgBwG233YY333wTDRo0MN0u8zRLlvVyBEEEP2TYEsEGaZoIBUjnwUe+fPmQ5PWpCXqEUGYuKioK//33X47XU1NTERkZabpdpm976dIlcuYIgiAIgiAIwiMkJOSjzJyPaNeuHQYOHIjt27dDEAQIgoBt27Zh0KBB6NChg+l2mZ05mmZJEARBEARBEN4gKKZZipk53n8e5H//+x/Kli2LevXqIXfu3MidOzcaNGiAcuXK4YMPPjDdLtM0yytXriA6Otr0SQiCIAiCIAiC4Ed0dDSuXLnidjcIRhISErB06VIcP34cR44cAQBUqlQJ5cqVs9Quk+t6/fp15MqVy9KJCIIgCIIgCILgQ0RELly/ft3tbljDI5m5jz/+GKVKlULu3Llxzz33YMeOHTZ82ZuUL18e7du3R/v27S07cgBjZo7VmaPgAEEQBEFYJyyMticgCEKbXLmCwJnzAPPmzcOIESPw6aef4p577sH777+PVq1a4ejRoyhUqJCltkeMGIHx48cjJiYGI0aM0Dz23XffNXUOJmcuPT3dUpUVgiAIgiAIgiD4ERkZifT0dLe7YQ0PVLN89913MWDAAPTt2xcA8Omnn2LFihX4/PPPMWbMGEtd2bNnT5bDvWfPHkttqcHkzGVkZCAiQv/QPHAjNefNRY7uQaHc4MQ7Or+GKLe7QBAEQVgkCtfc7sLNRxuloE2TOwK4ceOG293wLCkpKdn+HRUVhaio7DZMeno6du3ahbFjx2a9FhYWhubNm2Pr1q2W+7BhwwbF/+cJkzMXHh7uf8+fIAgueMIAoKBFkOKdoIU3IJ0HJ6TzLMiRs8SNGzcQFRPjdjcsISAAAQHubQJA8eLFs73+8ssvY9y4cdle++eff5CRkYHChQtne71w4cJZRUp40a9fP3zwwQfImzdvttcvX76MYcOG4fPPPzfVLtOIEhRpXIIgCIIgCIIIEoJhGVRmpj1/AHD69GkkJydn/Umzb24wa9YsxeqjV65cwezZs023y5SZY15gmScPVUEhCIIgCKtQxoIgCB2o2rw2cXFxiIuL0zymQIECCA8Px19//ZXt9b/++gu33347l36kpKRkbRL+33//IXfu3FnvZWRkYOXKlZYKrfB15giCIAiCIAiCsJ3rN2743pmTZtJ4tslKZGQkatWqhfXr16NTp07///lMrF+/HkOHDuXSn4SEBAQCAQQCASQmJuZ4PxAI4JVXXjHdPpMzlydPHqSlpZk+CUEQBEEQBEEQ/EhLS0OePHnc7obvGTFiBHr37o27774bderUwfvvv4/Lly9nVbe0yoYNGyAIAu677z4sXLgQ+fPnz3ovMjISJUuWRNGiRU23z+TM5cuXD0lJSaZPQhAEQRAEQRAEP5KSk5EvXz63u2EJtzNzANC9e3f8/fffeOmll3D+/HnUqFEDq1evzlEUxSxNmjQBAJw4cQIlSpRAIMC34AuzM3fp0iWuJyYIgiAIgiAIwhyXkpJ878x5haFDh3KbVqnG999/j9jYWHTt2jXb6/Pnz0daWhp69+5tql2mapYJCQnkzMlJTdX+I4hggbRNEAQRfNDY7nsuXbqEhIQEt7thCTurWXqNN954AwUKFMjxeqFChTBhwgTT7YbuNEv599HbLd7o7vTygVFPWUrv+/wHSngAO3Qu1XZsrOEuEYQn0TJmSedEsKClc+l7LNaw/BiyWRwnGKZZhhKnTp1C6dKlc7xesmRJnDp1ynS7zM5ccnIyMjMzEWbUqeGFmjOZP7/6e37HzPfSGoBpoPU+avfcrd+dHlaDFqRJghfS347XgnOkc4IHRjTOegxPyGZxlIyMDCQHgTPnhTVzTlGoUCHs378fpUqVyvb6vn37cNttt5lul8mZS0hIgCAIbKJx2rG6eNG7hq7XsOveGP3VSKr4eIqLF9mPJc3xwawm1TRHD39/4LeghVXIyA1NQk3nvCGbRZ2LF5H8/8ufgmWaJe82vUjPnj3x5JNPIm/evGjcuDEAYOPGjXjqqafQo0cP0+0yOXOxsbEIDw/HpUuXfB8BIDyAEaeJIIzglYc/4FkDgBkyOL0L6Vwb0jnBE4/aLJeSkxEREYGYmBi3u0IwMn78eJw8eRLNmjVDRMRNFywzMxO9evWyf81cIBAIznVzBEEQduFRA4AguEI69yZ2O6leTX2EEEkpKcj3/5tR+5lQysxFRkZi3rx5GD9+PPbt24c8efKgatWqKFmypKV2mZw5AMifPz/+/fdfSyfzNZmZ9g6OYWHeVR9BEARBEAThGS7StgS+JTExEYmJidzaY3bmihQpgj///JPbiQmCIAiCIAjCMYIoaH72/HkULVrU7W5YJpQycxkZGZg5cybWr1+PCxcuIFPW0e+//95Uu8zO3B133IGzZ8+aOglBEBaxOzNMEARBEIRvOHv+PO4oXtztbhAGeOqppzBz5kzcf//9qFKlCrcpsszOXLFixYLbmWMxllNSrJ2D9ioi/ICezuPinOkHQRAEYQ964zzZK57n7PnzKFasmNvdsIwg8M+kCQLf9ngxd+5cfPPNN2jbti3Xdg05c+vXr+d6cs+hN7hZzYzQ4El4AS0dsmhc6/OkYcIvmA3OZWZSQIMwj5MzLKwEoMle8Txnzp1Di7vvdrsbhAEiIyNRrlw57u3yn2ZZpAhw7pyVPtkDy6Dm9jQ2lj6SEUFoYXdAwur5yQAgnMJq0MJs2zRGE05hp8atnFuEfgu2cvavv3DHHXe43Q3LhNKauZEjR+KDDz7ARx99xLUKqaHM3JkzZ7idmBtJSWyDltuOGi9YtofIzKRNZYONYNE5GQCEVdwOWOiRkqJvSZDGCS38EHxmQc9eEX8nZK+Y4sy5c0ExzTKUnLnNmzdjw4YNWLVqFSpXroxcuXJle3/RokWm2jWUmbtw4QKuX7+e4+Rcob3s+GD0OtJg6iykc3UoYBG6sNx7PxixepDGQ5dQ0bgRa9rM8zDEfxvp6em48PffQZGZCyUSEhLwwAMPcG+X2ZkrXLgwAoEAzp07hxIlSmgfzLqJaDAMWMGC0mBqNLQRSoMradx9KGDhbcwYaPR7yQ4Zud7H6D0ijfNBft1DzF45d+ECwsPDUbhwYbe7YplQyszNmDHDlnaZnbmIiAjcfvvtOH36tL4z5zQslSiptLtxjG5kzjqlwsuQRoIXNX0a0aXPDQBDUMDCn1gNzAWDxpOS2L4HqyMWahr3w7PaKj63V84cPYrbCxVCeHi4210hPACzMwcApUuXxokTJ9CgQQO7+kMQhJtQ0EMb1ulxXobuL6FFsGg8mKey02845Pn9zBmULl3a7W5wIZQyc6VLl9YsfPL777+bateQM5eYmIhjx46ZOlFQoGTopqZqf4aq993CaKaP8AZyjZOmCYIg/IuS3WJkXA/257gPvt+xP/5AYsWKbneDMMjTTz+d7d/Xr1/Hnj17sHr1ajzzzDOm2zXszO3du9f0yXxPSgoQYeiSZR80b9y4+V+1Smbk7BBuw6JxqaaNOnakccKLaAXljGo82PUd7N8vWNELPBuxVQjXOXbqFO5q2tTtbnAhlDJzTz31lOLrH3/8MX7++WfT7RryTMqXL4/58+frH1i5MvDLL2b75B5i5s3KRpssqLVPAyfhFLw0LjcQyAggvI7RoBxpnPAbaWl82lF7TnhtdoZXLXcbOX7qFLqXL+92NwhOtGnTBmPHjjVdIMVwZu7o0aPIzMxEGI85215YnyMfrOzsT0TELUNArS9KgxIZDc7hBU3yxkmNq50TIB0TzmNnYI40TngBJR0anUHE45ykfcfIzMzEsZMnkZiY6HZXuBBKmTk1FixYgPz585v+vKFffIUKFXDt2jX88ccf/lp4KQ48fjXS5QOnqFIaPAkRP2hc7KN8lCUdE1aRjpF6vwE7DV0KyBFWUdOvEY27gZqdAijr32/Wtoc4+eefSL9+nZw5nTa9SM2aNbMVQBEEAefPn8fff/+NTz75xHS7hp5qkZGRqFixIvbv3+89Zy4zU39OeLChFXX22jSIUIV3ps/uKcBW0cs+K0HBCoKVlBRvGrJ6uKlxr1o1oYiedv2qbzlyzSk9t8hGMc3+Y8dQMTERkZGRbneFMEinTp2y/TssLAwFCxZE06ZNUdFCQRvDIcpq1aph//796Nixo+mTmkbPkKW95m6hd63IUPYmWvctVLQrQsGK0MPrwQrekMZDi1DTtxYs14LsFEX2HzuGajVquN0NbgR7Zm7EiBEYP348YmJicO+996JevXrIlSsX13OYcuasVFxRRW9PmFAzZO1GbTqQlGDYPNZLaGmc9G0MClb4FwpYsEEa9yd+17fRmRV2wrJXIG87xUtegAr7f/0VdZo1c7sbBCMffvghRo8eneXMnTt3DoUKFeJ6DsPOXI0aNTBlyhT9AytXBrZs0T/OD4OblBs31NdcpKTcfMCKg7mZh62XSreLAylrf0LN+WPdlNZvGldDaqR43ZCkYIU7UMDCOUjjzpCScus6ekHfVs9jdRz3in0ikpTE1qcg+i3sOXIEA0aMcLsb3BAE/rISBL7tWaFUqVL43//+h5YtW0IQBGzduhX58uVTPLZx48amzhEQBGNf+eLFi7jtttvw999/o0CBAtoH83TmWI5z6hjRmTM6ZSIuji3qpadqFtXzOoZ3W0bgPfiyOl+sOK1dluOc1LeaIaCncT/qG2DXo9eMHTmsWuMdrHBqfLZSAIXF0LWqby8eAwSPvgG+GvebvgHtgLMWLDaK17TLe5w3Ci87hXG8/TspCYU6dMDFixdVHQK/kJKSgvj4eOzenYzYWL4B4tTUFNx1VzySk5MR53LwecmSJRg0aBAuXLiAQCAANbcrEAggIyPD1DkMZ+by58+P8uXLY8eOHWjbtq2pk2bDT+vYxAIrZvsrr+YXTGsi7Mgo8na+CG2M6ltuGHgtW8dbkxcv8mtLhGfAwq1ghZ/RMm7d1LcbDpMd+gYcN3aZCVZ9Sx05owFnebbXLhvFDwEBVhy2U3YcPozEcuV878hJCfY1c506dUKnTp2QmpqKuLg4HD161P1plgBwzz33YPv27XycOZ7wdgztro6p1L6TDp6XpnSGOry0a6Qd3vrmFawIJV1SwMJZUlMpGOc0oaBxrziGVvSt1p4UFs3zGrtD5RlgkO2HDuGeevXc7gZhgtjYWGzYsAGlS5dGBOctckw7c8uWLePaEV2cMHbFh7XdG25qkZqafZqDUjSYxdgNJYOYYMNpfZsxBAiCJ3YG5Mzqm4xdQg2jNo7T2zGx2CeErWw/ehQdHnnE7W5wJdgzc1KaNGkCALhw4QIuXLiATFlHq1WrZqpdU1Zdw4YN8dxzz+HGjRva3mWDBmzr5tzALyWClfpJAyihhxf1LRoeZAwQduB2MI70TWjBq3CJnfo2agH7Zf84r1r2Brl+4wZ+2r8fExs2dLsrXAklZ2737t3o1asXDh8+nGPtnKNr5oCbnmOuXLmwa9cu3HPPPaZOnA0n1s1JBx29c2lVrATcX+enVMWMjAbncVsHIvIHqhf6xIrZdUmUefYXvDSZmnpLI14MWMjx+rpSwrt4Ud8sBdycDECH2DNg19GjiMqdG1WrVnW7K4RJ+vbti8TEREyfPh2FCxdGIBDg0q4pZy4sLAxNmjTBhg0b+DhzvPHiIChFzxCNiDC+14vad+YRJSPD2Ts4oW03nVT5uiSADGDili7Cwrw/vmvh1UAcje/uYSTQ7OYSECvIf7NezN75gA179qBJo0YI81PAloFQysz9/vvvWLhwIcqVK8e1XdMjw7333ovly5djzJgxPPtjDLWHuttCl85jd3PQysxUv0Z2GBDk9CljxjnyqraBm/p2Utd2BioIb+FnR80sfpmqForwHG+d0LZef0XbJJTskiBiw9696PDoo253g7BAs2bNsG/fPm85c2PGjEF6ejoiIyPVD7S6bk5eCYtHZMqOzIPaQmS7HDurjpN0MJVnAYNoc03PI9W3U1FXvWnESji90J4FMgj8CwUrtCFt+xul++cFbYvYZZdYDeaK101pZpJZuyRIAszp169j8/79eO/ee93uCndCKTM3bdo09O7dGwcPHkSVKlWQK1eubO936NDBVLumrcfKlSsjJiYGO3fuRIMGDcw2c5OUlJs/VL+VMDZq4EqPj47m2xclzDp8eveBDAp2/Jxp0NK3lytVUqDCO4hjidenh8n17JXZFXKMajspicZrJXg4VrwDcXY5e3p2itN2iVm07JIQ0Pj2Q4eQNzYWd955p9tdISywdetWbNmyBatWrcrxnuMFUMSTNm3aFBs2bNB35lgMWq85cmrZC+l3sTKA+3lhvNb9DKW1Tikp3oq2WsWKto0YBGbWhPIixA0C7vg1WGEkECc99sYN7+pETdspKd7ts5dh1bYXAxVmZlLcuJH9O/tJMyFgk2zYswdNmzblVjDDS4RSZm7YsGF45JFH8OKLL6Jw4cLc2rU0Ct17771YsGABXnjhBV794QPvaZROGCxKzp1bBi8vWAdYJZzIoGgZ9l510vyg7WA0CIBbmvXTdzKLG4EKpyoaWzW+xXb8pAPS9i1I28baBILDHgG8bZPoJDQ27NyJ7k88YW8fCNv5999/MXz4cK6OHMDBmRsxYgSuXbuGqKgo9QPbtAEUUoqmMLPeRwk9ozg11d4BWC87Ia165qVpPk7hdqbWjYqOvLSth5Pa9nMGWg1Ww1gNClQ4h52BuFALwAGkbTdJS3NvWw55FVazNglLusSN3xBLv1y0Sa6mp2Pr0aP4NAjXywGhlZnr3LkzNmzYgLJly3Jt15LlWKFCBeTPnx9btmzBfffdx6tP7uDFAg8iXl6fFOp4Za85KfI+eUnb0q0HQlXHbgcqghm7AxVahHoADiBt242WE+fkdE+lNaVetJ692CcT/HT4MG7Lnx+JiYlud8UWQsmZS0xMxNixY7F582ZUrVo1RwGUJ5980lS7ln79gUAArVu3xurVq/3nzKWkWB/8nMqkyOG9hoPnGibWoiu0jYF98NC2E1CQgrCKlwIVUkjbhFXkGvJa0FBE7KdoQwTD7AuPsXbvXrRo1Soo18uFGtOmTUNsbCw2btyIjRs3ZnsvEAi448wBQOvWrfHqq69i4sSJVpuyFzPTEryYdVFC6buJAyo5TcGPX4tQyPFLoQnCPbzqvOlhRNteHa+92q9gIC3N3fPznNoYjFPrXea7Awcw4qWX3O6GbQgC/+FFEPi2x4sTJ07Y0q5lZ65Fixbo2bMnzpw5gzvuuEP9QKfXzSUl6TtidmXWtAwOaYRWLyNmxRGTDqihtLg9FHDTeXOyZLtWkIIIDeQasDvj7NQec1YNXr+vzXMTngFas3p0WteAtbGb1562mZneG8M9HqT4OzkZe3/9Fc2bN3e7K4SHsTyCJCQkoG7duli9ejUee+wxHn0yjlcyEyxRY/EYN6bdkHHsP7yw+ayart3QstcNA8I8PMZxK78NUc+hpmuPG7PMeHUWjdvZZKXzu7GPoqgzLTuEZ5AiSHS9ft8+VL3zTu7VD71EKK2ZA4AzZ87g22+/xalTp5Cenp7tvXfffddUm1zCQW3atHHOmRMHIS8N3GYGa+k8cyuDqdX1btKCFCK0vsN5vKbrpCT2aLEdhgGrrilA4U+8EKQAtMduO3TNOlaTrv2JXbrWa0M+VhvdR9GqHWLVCSM7RJVVe/agVdu2bneD4MT69evRoUMHlClTBkeOHEGVKlVw8uRJCIKAu+66y3S73Jy5iRMn4vr16zkqs1jCakSLx5o3tTakfbM6RcILi+WlUzpZp4mytEVkx+0orQiLrs3AK0hhBaUpxgAZB27hZoVJOVevmvucqOvcufn1xSika2/hJV3zeK64ka3TQu07eaFvDpGRkYGVu3Zh8bhxbnfFVkIpMzd27FiMGjUKr7zyCvLmzYuFCxeiUKFCePjhh9G6dWvT7XJx5mrUqIHcuXNj69ataNy4sfqB8nVzatNqWAZIXsVJjKybc8oQlw+qVlXJ07nSmgplNHLsdafPrMas6JoF3oV57NI1GQehhVcCFUqIfeMZePOKbtSuO01DNo907WSw61opq+ZFnYvwtEG8bH8A2HH8ODIB1K1b1+2uEJw4fPgw5syZAwCIiIjAlStXEBsbi1dffRUdO3bE4MGDTbXLxZkLCwvL2qJA05kD2NZFeKmKpNubh6em+mfvIrXIsRw/Gxh+c9TUcDqq7JZxwBIwkP7G5PhZq7yxW/u8sdsI97LBK6J2z0jXt1CbGumUE2fUEXPauZReHzs3C+fhWClN15TjI+2v+PlntGndGhF+2GrIAqGUmYuJiclaJ1ekSBH89ttvqFy5MgDgn3/+Md0uN4W0bt0ab775JiZMmMCrSfcwOlg6td+cF4wHHtk0VqdPCzMDspkCC141VPVQ0qRXIsy8AhROZHblmglWp88ra9is4pbGxfNmZnrXsZPCMgb7XdNATl3z1DRLWzzO59XpnKLOnaysytPhs9KeQ/bHt9u2Yeybbxo/l88IJWeubt262Lx5MypVqoS2bdti5MiROHDgABYtWmQpAxsQBD67MaSkpKBQoULYt28fKlSooH3wvHn6DbIOXjwG1IgIfSPA6AJkI+gNhiyq1FvLwTMy5nRbbsJTh6zH8TpGb32Q1zQtN4JZjAReWnRD+3K8FqDwoqaVNCkdu+3UNGBc18GiaSPHyXFC16Rp81i1P1jWkQabph3g8NmzqPnii7jw99+IC4bAigIpKSmIj4/HihXJiInh+x0vX07B/ffHIzk52VPX7/fff0dqaiqqVauGy5cvY+TIkfjpp59Qvnx5vPvuuyhZsqSpdrmlk+Li4tC2bVvMmzcPL/HY3NCJ6WY8i5ioobQZaHQ0//PoFVFhyWLwzHR4fT1csOK0ptW0bGYPRS9knt3EK1useB2vZJhZkPfVzQIqVuC1zxihjJ2a1hqveQSSvVDATUoQOHIAMG/bNtzfpo2nHBG7CKXMXJkyZbL+PyYmBp9++imXdrl6S927d8ecOXPAKdnHn9TU7H92kpam7MgpvadndJtxap38rlbwyvQRv+K2ptU0bhW/6JdwBie0IOpbTdM8ppN5TdNetXjcxKlnklOalv/brjFbRP69nFovF0QIgoB5P/+M7g895HZXCBtISkrCtGnTMHbsWFy8eBEAsHv3bpw9e9Z0m1xD9+3atUO/fv1w4MABVKtWTf3A7t3ZplqyoJfBS0kBEhLs3+ZAXKNkZKCUHhsZab5vLIh7yYiEQLSHC14qxgPcinI7uSBaT9Pi+3ZknEW8Fv3VgrLS1nHS2VHStxlNG73nSppOStIfm0lb/kRJ03aM4yw2iHiMVbtDL8DB0+4IId3vP3UKp//9F/fff7/bXXGEUMrM7d+/H82bN0d8fDxOnjyJAQMGIH/+/Fi0aBFOnTqF2bNnm2qXq5UaExODjh07mu5MDszcjZSU7H/AzQekHlajrlYjXnpRYT2MPhTk18nIVBgvOTdewa6Rw+w9YkGrz2lpN89nNDjhROQXuBX5teO6EM6TkuJs1opVq07pGbj1vUnT3kfvGSiOnVY1rXee/6+KB8CcVp3UN2Dv88wIXrX0/58vfvoJHTt1QkxMjNtdITgzYsQI9OnTB8ePH0duybT7tm3bYtOmTabb5R4WGjBgALp164bXX38dUVFRvJvPjjgYuOlc8BoIpWuMlOa484j2661jUirrSxk8Z2HVtF0VVHnpOS3tZh/tzNZJUTIMSLvexE0jzqy+RT0D7mma9GwNO+0EP2paagsoZaJ5ODx6QfKUlJznCfHs3bXr1zFz82YsWLLE7a44Rihl5nbu3InPPvssx+vFihXD+fPnTbfL3Rps2rQpEhISsGTJEnTv3l39QKNTLa0OljyMX3HKndaaCt4GthNT2LSwYiTTdDNtvBJ9tzMyy1IsxS7kwQkyhp3HawE3HuOz2THZ6uwPI8G2UBp3ndZWSkpw6Vmtbb1iPXZtSaD0XPTytHrOLP75Z+S/7TY0adLE7a4QNhAVFYUUBY0fO3YMBQsWNN0ud2cuEAhg4MCBmDJlirYzp4aZ/Y54rWvSc8ZSU51dqyRFGhkGlAc3vcwbL5SiaSJmDOZgdvrc3L/La3p207EDaANlu/FKcAJwZuqY23oGKCPNm9TUW9fPbj0bGXudnAopIk4N9YIjxXPs9ritMWXTJgwcPBiBQMDtrjhGKGXmOnTogFdffRXffPMNgJs+06lTpzB69Gg8+OCDptvlts+clAsXLqB48eI4ePAgypcvr37gvHlsA6ad+7noHSOf667Xhp17vqi9Jx1s9Zw5XvscsR7HOmXTq788Eb0iO3rHsLZl5Biv65lVi1rGglN6VjpGSa/BUPbaqk7NbMTMQ89677MEJ9zUM4tWvahnL2sZ4KtnN8dmOXr7hNq9v5zS+36xNQBfZq2PnTuHqs89hzNnz1rK0vgFcZ+5BQuSER3NNwiVlpaCLl28t89ccnIyunTpgp9//hn//fcfihYtivPnz6NevXpYuXKl6XWStjhzAPDII48gISEBH330kfaBU6fqN8bTSGZ92GstWDZrMLBEcq0OkCz7GHlx41o5XogGGl207lVnzg4tA/rTzawaC2bbkEPBieywFG9gOY61PdZjzGjRi8EJETMbhrs1NvtVywCbnr2mZbVjjOwTqve+1vhsdVyNjXU30GblODlu2xqSez5kzhwkFymCL+fMcbFDzhGKzpzIli1bsG/fPqSmpuKuu+5C8+bNLbVn2xyrUaNGoUGDBhg3bhwKFChgrTGnysOLPyonCkvYNUXn6lX96ZhOYnYKpVf2YTKCl7YxcFLLapiZ9uunjcNZp2F55Xv48TelhF3fIy2N71gcjFoGvPFdgkXLgD3fRTpG27HuXloh3At6sBJw8IiW/klNxYxt27B1+3a3u+I4oTLN8vr168iTJw/27t2LBg0aoEGDBtzats2Zq1GjBurXr49PPvkEL730kvqBAwawZedYMGNMO7HRMusx0dH8173ZaVAE81o3t2HRsnxNnBktGynao6Zls8aCntalexSpadepdaJW8Iix4GvsXN+pZPgC/B07lmnFenhhvA1WPTu5WbjVrBvL7B+l9+xY26lkY/CcMREifPzDD2hYvz6qV6/udlcIm8iVKxdKlCiBjIwM7m3bOnqNGjUKH330Ea5cuWK9MV4//Bs3rO/9wjK9wMqeL9K9Y+RYMWjE73z1qv58fK9kmIIRng8xu/fmMqJlO/eZs/I9Scv2Yee1NXrPjRrAelp1Wsu8ghJkJNuH2SmWdo/TRsZoq9Mj9QJwqan8fjchouUr6en46McfMWrMGLe74gpiZo73nxd5/vnn8dxzz+HixYtc27W1lF3Lli1RpEgRzJgxA0888YT6gTyzc2pIBxc79/ASz2N1bYZ0wLQjmpaZmXPAtasiG2Xw+CG/Z17VsvjZyEhz59ZCbhCxrBMlvI8XZklofU5Ly2YdMel3zsx0rypmMON0MMepTe95fNZOvTllXwSBbTHjp59QtFgxtGjRwu2uEDbz0Ucf4ddff0XRokVRsmTJHAVPdu/ebapdW525QCCAF154AcOHD0e/fv2y7XZuCpapZ3p7wbG2o4fcSOYZwZVPHZNPY9ObWmZ26pn8O7DcL3LUssN73ZwbJal5ntOJfRKdMhoIvhgNTFg9F68Am1NaJh37ByPBYis6tKpjpfaAW1rjkR1WsweM7GGn1U6QcSU9Ha9/9x0++PTTkNqOQEqorJkDgI4dO9pyn22rZimSmZmJmjVrol+/fnjqqae0D7ZS2dLIYMp6DMu0HS3D187KaXoZD7sqSSkZGMFQ3ponVvQXCjqWasiJimjR0e5XZ/UjvPQnHqelMTuqXcrPRzo2dkywwFvHgLqW7araymujcLIrPMf769dj5qFD2L1/P8JCbEmAWM3y66/tqWb50EPerWbJG1szcwAQFhaG8ePHY+DAgRgwYACirUYbeWXerGZQeEfIzJxfROma2lUYQum6UwbPPKGoYyeydfLzsRgPBF+MBibsOK8T5yEdBzfifXba0HZzVoZZXZl1wMzaFT7n8rVreOO77zBt9uyQc+SkhFJmrkyZMti5cyduu+22bK8nJSXhrrvuwu+//26qXUesuPbt26NEiRL4+OOP8cwzz6gfqLR2TulH7pToldYbSfujtx6JZb2SWoUpI1MpzU7N4eVgXb2q3g4ZGzdxU8dy5H2xsq5ObM/MfZYuxlf7PAUl/IEbhqf8/G4F11h0bOe5pdB4mx2jY6zdOmaxB7SOMWtPAMayx25P91Va0y/vSxCMwx//8ANKlSmDdu3aud0VV/GbM/f6669jxYoV2Lt3LyIjI5Ek3apDh5MnTypWs7x27RrOnDljuk+OPP0CgQDGjx+Phx56CI899hjy5cunfjDPKkg8sxq8B3m79oGRtsuj+IRV41Xan1CIKrsVxWXBrIbVnD2W9liDEm4bD4C+8UCYW+dm91o4Xu3wHH/tKlqlh1rxDdJxduxYr2m2DV5TKOXt8brnPItZWbWw1ewJH+r74uXLeHPdOsxdsCBk18r5lfT0dHTt2hX16tXD9OnTmT7z7bffZv3/mjVrEB8fn/XvjIwMrF+/HqVLlzbdJ9vXzIkIgoDWrVujcuXKePfdd7UP/uAD/QZ5GRFax6SlAXFx+gaDkTnwrMYH64JkI+/bOS+ddZA22pYXNiQVSU01vrbC7WNYK1Ly0rCSxqxoODpa//NuadiHBgQTRgISTh4jalBNf7z25golDQPBqeNQ17AU3raEml7IlmDj/wMuw5cuxeHISKxet87lDrmHuGZu5kx71sz16WPvmrmZM2fi6aefZsrMidNoA4EA5G5Xrly5UKpUKbzzzjums7SOzUsJBAJ45513ULt2bQwePBjly5e31qCd64mkA2NKCr/pO0aiyHaUdlfKfvCaNmbX9LNg3aCWFTMatmuqEOs+RgDfqLBbU9j00FvvKOIVIwIwFpDwEnZMo1S7f8GuYfk4rXYdSMN8SU+3toes2dkRaWnWC5t4aQomYM7W8JAtcezvv/Hp9u3YuWuX210JelJSUrL9OyoqClFRUY73I/P/NVu6dGns3LkTBQoU4Nq+o4sMqlSpgt69e2P06NFYtGiR+oFPPcWWneMBS0EVPVjXxpkhPd2aIaA2zc3INgROrxPy8roknlsP8GqLh4a1MGNI2zHdTM2IoIBEcOJmUEJ6nJ6Gjazp9IIhbAY/athth49nNVWtdo18hrfmxHZ5bTXAc/z1qg0BYPTq1ejTuzeqVKnidlc8gZ1r5ooXL57t9Zdffhnjxo3jezIDnDhxwpZ2HR/tXnnlFaxbtw4//PCD9casDg5paWwDo9kCDGL7ssiAaZT6y+MBIS42Zr0eVnD7AesUTjxIpPfMjvvGo127+8badqjozu/YpWcr7aakWA/28e5TKMPzt8x7iqUXx2N5Vk2pABbr5/X65oSePeyksfDDr7/i+99+wyuvveZ2V0KC06dPIzk5Oetv7NixiseNGTMGgUBA8+/IkSOm+7F161YsX74822uzZ89G6dKlUahQIQwcOBDXrl0z3b7j5b8KFy6MF198EcOGDcPu3buRK1cu5QPtys4pDTQs0zaMVK60ezDjHd2VZySU1pCwZC14Zja8nJ1zE95FTJTet8sQEbEjOuy1NUCkXzZY1zaZDVqxrhk10pYd+tL7fTitJdIuG7z0q7cWzo4pxrx0rLfVAM/9Ea30yQNcz8jA0GXL8MJLL6FQoUJud8cz2JmZi4uLY1ozN3LkSPTp00fzmDJlypjuz6uvvoqmTZtmrYk7cOAA+vfvjz59+qBSpUqYNGkSihYtajpr6Eot56eeegozZ87E//73P4wcOdJaYyxT1VjWvfGa8qZmCFsp/65VEZCleqXV8u7iOaRteGkNhdM4OdVSnN7kRNl1LSeOp36NGsVG9ctS0IJwB6eyUHaex06nTtq+0XN41IB1Bbsy8Uq6suNcTvxOeKylYz2P2I5Vu8HnG4l/8OOPEGJi8PTTT7vdFUJGwYIFUbBgQdva37t3L8aPH5/177lz5+Kee+7B1P/fjq148eKWpoC64sxFRkbik08+Qbt27dC9e3fccccdygeazc7ZNb9fy6C1K4LGyo0b+pUrtTCaSVC6xrGxzmfwgg2z2rXiYLqlXalRbMdecvLz8DIoCHZSU53RVXr6zfM4OWWRV5EqvaUAgLPGcKjAMl5evWr9PKz6N1vhUgu9cdXqjAkWPUn7IH++iXr2uZPGwumkJLyyfj1WrF6tPiMtRPHbPnOnTp3CxYsXcerUKWRkZGDv3r0AgHLlyiFWZYy+dOkSChcunPXvjRs3ok2bNln/rl27Nk6fPm26Ty55HkCTJk3wwAMPYPjw4Zg/f776gSwOHYsBzJJZsLtyoFYflKpcSY0EI5uIy/sVHc1n82W9NpTug5Xotd+dPhY9ublehte55do1atw6Xe1PzaAgrONGoQyxQI8ZPVvVrnh+gLTrBHaufVXSrt2BCFG7WlUu1bCqXfmz3Ekdi8ivudVze9heGL58OTp37ozGjRu73RXCIi+99BJmzZqV9e+aNWsCADZs2ICmTZsqfqZw4cI4ceIEihcvjvT0dOzevRuvvPJK1vv//fefJSffNWcOACZNmoQKFSpg5cqVaNu2LduH3F4sLjpkPKdTqg3k4utWI78sUzEBe5wntevEOo/eqxh1/N3WrRRe2rVDt25U++MdhAgV/ByIIO2q4+dxGWAbl3lp1+rWR0bRcvrS07Pr1krhNkD/N2A0K2fk3HJYqmV6mBWHDmH977/jyOrVbnfFkwgC/2HHzh20Z86ciZkzZxr6TNu2bTFmzBi89dZbWLJkCaKjo9GoUaOs9/fv34+yZcua7pOrzlzhwoXx9ttv4/HHH8cvv/yivkjxqaeAN96wfkIe2bmrV61FB6V9YI3GSQ0MI9k5JaTTRswMkDwyfEDOohVS/GxIyx9GvCLJVtasAbfuO6/+sGjXajDCSKSYdyBCKwgRavghEMGKmTFXC721zJmZzhuiStcoFHULWNMLj6yc3vRf1sIovHXLglVbgScs47FHgxDJV65g0NKlmPTOO9mm2RG38Ns0SzOMHz8enTt3RpMmTRAbG4tZs2YhUvI7/fzzz9GyZUvT7QcE+VbkDiMIAlq2bIkyZcrgs88+Uz+QhzMnojeAyg1epXnzVqpXmZ1WwXJ+PUdLTeHSwVrvV8BrfRPrr03rOCeMFLUHCatjxMuBYjEupOfirVvA+ghpVbdaRoVTulU7l1yLXnuaiCjdAzsLOxjVrRyWAJqdutU6t5HxVk27bo+3pFtlSLc5ETVsR1bOaF+MHOeinTBw6VKcjIvDmvXrEQgE7O+Hj0hJSUF8fDwmT05Gnjz6FSeNcOVKCgYPjkdycjJTNUunSE5ORmxsLMLDw7O9fvHiRcTGxmZz8IzgamYOAAKBAKZOnYqqVauiW7duaNasmfKBY8fydei0ELNzPBY/KyGfGmPk5smdQLmBoJc5U8tgyL+rVp94Zed4ZFPczBrwrGrJEzt0K7ZpZqBRClyYjfR6KVosR65Ft40LwLnqe7zhpWErupW3YVVvSu14wXFyW7dKZfLN6tZtR06qW7OOnJL2zeiXl26V2uSR+eOJ3u/IJTth3W+/Yc7hwzh46BA5chqEQmZOJD4+XvH1/PnzW2rXdWcOAEqVKoU333wTAwYMwP79+1WrwXBz6FiqUuotLNcz5JXOoWagsE6NUDKK7TJu3Vj/oYbfC6E4gV0VKeWaNTqNRy0DLTc0zAQhjGqfVxCCB16auug26ek37x9vB05+DquBCN5OHUBGsd3tOoGduhUxol/5mCvXrdmsnAhL5Wwns3IetQ1Sr13DgBUr8NakSShZsqTb3SGCHM+EaAcPHozixYtj1KhR7nQgLS37A4VnVbarV9kG/PR0/YX5LOcxOo1UD/HaSK8RL6fBD1kCq/B62ChVH5Pr1mpfxHPoaVZLq9Jj9GD9bbC0Y+Z6EO4i3iteGrCqWZZjeWkWIM2y4qXnRFraTW3w0IHYBqt9oPe+1jF2zTQiDSsy8rvvULJCBQwaNMjtrngeMTPH+y+U8ERmDgDCwsIwe/ZsVK9eHa1bt0anTp2UD+SdnbOyUTJLdk4cXI08jOTZD6Pr665evaVkOyK/0sX9gPemuzmJk1MtWdZgWC2Ukp5uLKqqFDE2sx6Ut2a9lFkmbmGHwcdDs9L3WBGNY16BLSXNpqbyGV9DwbKxa4qlGc1q9UXUWHq68T5bHW/FcVZN/1bXb0oLm1nVrY+zcosPHcI3hw9j38GDCPNSIIIIWjzjzAFAyZIl8emnn6J///6oXbs2ihUrpnygWYfOTEEIPdSMefkAKw46Rp06cfA0YjBIBzhpP6QDuN7URSNT0pSuq5GBnDYaV8auSKoSUp0YdVClwQezhX2UNMsrECE1xtyoLhjq2OXA8fi82YCZSGamul6tjFfSa3b1KmnWSfT0atZ5t6pZaTtmx1pRk0qa5fF8lbYhf34Z0bCPn/VnU1Lw2PLl+HTaNJQoUcLt7viCUFozZxeecuYAoEePHli1ahV69+6NtWvXWotqpKVZd9Z47b0lwurUyR0pM06dHDXHzixaDpZ0IBePCeUMCesG4nrH8M4EqunV6Hmk6yjMBh60+saiV9YAhBUjg9DGjoCZ9PO89KrXnh5KujWqVyPZRCc061Xrx87CJ/LrymNsZdGriBndimOtUVtATbOstoDVdXDitc7M5GMLeFCvmZmZ6LV0Kdp36oTu3bu73R0ihPBk/vejjz7CiRMn8Pbbb6sfNHZszteU1nbpwaPErjzaxXpetXNrnU+++FitL3qIWT+9fev0MLpxttIfK16drmDmoWLlOlhFzCawGBpmfh96upK2z4rRqXRGkK5bEdfe8cCreuWJ/NrZgahVXnoVEXXKqlfpefSwU6+APXoNduRadVuvIqxjrFynRsZZvaAZj6yhkWmRWs8/H0+vnLRlC/5IT8eHn3zidld8Ba2Zs47nMnMAkDdvXsyZMwf33nsv6tati8aNGysfOHYs8OKL2o2xRL6sZjvkDwUzmQnx/KwGgPQ48Xxm1Ct/IBjd6oAFvSmS8jV4IsGQyZM+pJwy7rWitmbW+aj9PvR0oZWps0OrPKGNl7Njda9FM5hdk8ayllnrdbXzmdGsHeXhpUiNYznSdXd+1a5Zfdm1JQfrdgK8NMvy7FUb743qVUurVitgshwjXW8nxSfa3XjiBF798Uds2LgRefPmdbs7voKmWVrHk84cANSpUwdvv/02unXrht27d6No0aLKB44f74xDJx8wtaJ6Zqebpaebm0YpGrlGp04qDdBmpvPYtZ6NJeLs9hQ5I9FdXoEFo8EHpT4anaYjDTqwVEyVnwuwHnSQY2ZbDita1Yoe+8Tg0IV38MFoGzy0Cij/RowEyuTns6pZM1q1OqZK76VeQSA/Wj7id+I1DdPqmCrFqmaNBlCl5+OtVbe3c9GzA9y0Af7/Wp397z90mz8f77z3HurUqeNef4iQxbPOHAAMGjQI27ZtQ9euXbFhwwbTO6Nzw+h0HFanTjrFwYwjKH6G95o4IPvAbmW9nl1FTpwsEuI3WAwOwNh9tXK9eQYd5PDSKStyrQZb4MFJWPplNkBm1kkRz2fGodXTK+8qmEYxaxzzLMSi15YXtWrm+W/0HhsNlMk/CxgbX3lolde0SLO/VZe1kp6RgW7LlqFNp054/PHHXe2LX6HMnHUCgiAIbndCi7S0NNSvXx9NmjTBBx98oH6gXnYOsBadU5pTbvRBrzQg6s1V1xvYWR4uSoO70Wib0i/DaPU2H8+F54bdUWSpnozo00jAgfUzUpT0xrtIBMBHpzyP8TM8tMpbpwC77qTnMDvjQcSOIhFy/ZBOjWPneKr2bOY5rqqdx+6x1ey4qtRuiD/3n1y3Dj+mpeGnHTuQJ08et7vjK1JSUhAfH49Jk5KRJ08c17avXEnBM8/EIzk5GXFxfNv2Ip7OzAFAdHQ0Fi5ciLvvvhu1a9fGI488onygHdMteVWmFJFH6lgWHfOsYikOxDwMZGm7IiyblduRnfMTdky15FHhT01nWhpl1aaa3vQyyXbo1O3sfqiipSMzlVO1NKd0LiNZEiXd6W2XwUOrRnUa5EayK/DaPkBETXd652HRq5bm1PRqVadyjYa4vr44cABfHD6MXXv3kiNnAcrMWccX5dbKli2LuXPn4vHHH8e2bdvUDxw/Xr8xvTssVgczUiHMaAW1tDTjDw21alZGMFplyyg3bthfKYy4dX1ZK/wZQTpll1UnWtOPWDUqPx8vR07pPKRRPmg5YEY0CpjXqQjL2MZSsEfvGDVH0Qis1TBJo/YjrQhq53NRxOi4qva6kXFVrz019HQqVmzV0mgQBxy2njmDQWvXYu78+ShTpozb3SFCHM9n5kRatWqFN954A506dcKOHTv4bsaoNhgZyYqxZunEwdVKxs3KgmQ719fJUSqmQtk5c9VTrRSGMJJBlhobRrUp1bRZjYoGghFNGg2mSKE955ThoU/AWEbMTIbOrBMo75MRvYq/DzPr6axUxBQhjd7E6PRJXo6xUZ2mp1tbuylq1eyYKgamWcdUM+OpUoGfIHbkTiUno9OSJXhz0iS0atXK7e74HkHgLwVvLyDjj2+cOQAYNmwYfvnlF3Ts2BGbN29GTExMzoNYplsaHdSNGiRAzsFeLRpnpeCJiNWF9FqOnRVDWY7Sdadpb8qwapSXsWx1apoUKwUejAYbeD8BSKNs2JXFMHN+pwNi8s/baSQrIdeo2vl9aihzwUv6BMyPpYD5oihK2WuAj1546NOnpKano8OSJXigWzcMHTrU7e4QBAAfFECRc/36dbRs2RL58+fH/PnzEaZmnEodOp4Du5FBNSzM+LmtFjzR+rxRA8bonHieJYyDfT6+VLc89GlUl0bPbWW9kZXPSjGz+N5I+0YgfRrDrD6laPXDbBbZ6mfl2G0osxIq+nTr2S7tgwhLX7wwjgL2Bm1Z8Kk+MwUBXZYuRdJtt2HN+vXIlSuX213yNWIBlAkTkpE7N98iJVevpuC550KnAIov1sxJyZUrFxYsWIB9+/bhueeeUz9w/Hh71ocZma9+9aq5aUBW1h+pfd7MAGxkzQtvxOl20rUwbvWFF9LvwPvaGq2iJ56fV/t6umX5vB5yDbhpDCjp0s/6tPv7WKnyyNIPI3vIyY+18lk58r4aXdnPK+CgNn76Ffn3MDp+sWBlarjVdXDS980+/82spfOSPn3A2I0bcSAtDfMXLyZHjiOiDHn/hRK+mmYpctttt2HlypWoV68eSpcurb63x1tvAaNH29MJI1WqjFa9FNsHzM+X51EFU4r8e7k5dULeF7VfrZNrS+RTS3hsuGwUo1X+zKxRAsyvN+KxXklEer3t2OLACnJjXgmva9PMuk6eXL1q/Pxa+mcNJpj9vBxxnRTPPb+MolcxU+04N7UJuKs7FqTXkFdfjYyhPMZPMaAnwnsrA9Y+SPGaNmV8uns3ph86hK07duC2225zrR8EoYQvnTkASExMxNKlS9G6dWuUKFECbdq0UT7QbocOuDm4GqnYZuQBYHWDWWm0jucmtV4q965WMMXNSnC8tiAwitLDnmdZePEcaucy8nmzhVL0ymWrnc9LeF2bdmB3sEHpHFaDYGa1I2qUdZx0S6NeGze9Cs/MkahRs/fc6ueNbovhhCPHeoyd2pQ7iq+/nvW/K1euxKgPPsCaNWtQvnx5+/oQotDWBNbxrTMHAA0bNsS0adPQvXt3bNq0CTVq1FA+8K23bv7XDqdOnCJgxKhldeqkg6jZNR5m2zDyS5BX6HTbufMTdjl0RjRpNkNnBbNBBpZy2SJ26jAUnhROBBtYttYw49BZKTghtmEGLV3w2vvLaj8IddLSgOjom//PGqB1Wp92jZ0i6ek3NeqmLp3W7zvvqL61Z88e9OjRA9OnT0eDBg0c7BRBsONrZw4AevTogZMnT+L+++/H1q1btbcs4JmlU6pWBRgfXNUeBFoDKeu5eLTBivRcXpqS6SasD3peRrOVCmpmAgzSf1upxsrahtEHvLguAwhdDXqRtDR+46QcefCKRxVAo78hPeyYpmemH+TwZUe8L3as31Jbx25l3GRtw8x9lu+zy2P89KEuT506hfvvvx/PP/88unfv7nZ3ghbKzFnH45PT2Rg9ejTat2+P1q1b499//9U+WMzSmYF1Y1qji/3lquO5IJ+1DWk7vH8FwbII3wx2P8D0rqtRfaj1Q09rrFrk0QYr8gBDqGrQbXhce73fB4/CT1pt6LVjttAVb0360GB2DV5jgta1ZBk39bAy9vIqwGbnNTJzHE9UsnL//vsvWrVqhY4dO+LZZ591uFMEYQzfbU2gRkZGBrp164Y///wT69atU96DTg5Llk46R9toFNVMVNjKYGZlrYgcs+uoWGFd2GzkenjZQGG9nnrHmdWjGS2GhZnTEa8iEtK2zNxb1vNFRt68rqyL671smBiBlyaV4FmmXasvRjTFa9sWeTtmDGYWzGRDgkGbdunSiDNiZZsCXmOmk+Ol2ec3y5jpZU2qOHKXL19Gs2bNUKxYMXzzzTcIDw93uGOhgbg1wUsv2bM1wauv0tYEviM8PBxfffUVIiMj0b17d1y/fl3/Q0pZuqtXs/9JMVPG10ipYHFamJWF0VazG3ZFjPWQX/dQXYQv1xeva2KmGp/Z88k1aFXTZvph5HyixkNde1YQrxvPMu1KZGaaH+fMZt3UPmNmbpBRXRrRo5eNZqeRj5t2P8euXuU3s8BKO2bGLyuBWL3nk5c1qeLIXb9+Hd26dUPu3Lnx1VdfkSNH+ALfr5mTkjt3bixduhSNGzfGwIED8fnnnyMQCKh/4KmnzJ3IaFVKrTVBetPjrG5oy2NNHO9qgawDt9pDyY/rn1jW/Rg1OMzoUE8PPNaCSj/LqxCFWvEIrc+wwlI1zcWS2K4j166WsWimmA6rPqTatFI8wkolQGk7IqzjkVWjWY5Uk142mo1gJgvsVvDFyhplOTz1CLCNl3Y8t+X3guW34SFNCoKAAQMG4MyZM9i0aRNyh/K47yC0Zs46QeXMAUBCQgJWr16NBg0aYOTIkXjnnXduOnRmHTctrBguRqPXLA8JrTUjZj8vxwtbEmhdO57bL/BG1AvvKLGZAhFGti8QP2c2sMArMAG4p79gCiyI2BFgMIOWtrSCXWZ/61a2e9HSpNuGs14f/I6Ta13V9OXERuVWi6JIEStTGv2cHCtrupUQ++SWxa2QlRMEASNHjsTGjRuxZcsWxMfHu9Cx0IScOet42PI1T9GiRbFu3To0btwY0dHReO2//+w7mZnsyI0b5tekWd0UV6sNo4gDdWamd5wo1oetHUYP67ntqmBnJrBgxDhhdcrUtOhEYMEpI0WpD1L8ZFS7GVxQg6VPVqsBWv28HF5bD1jRpJYe/WLdeK1AkdEx0ur4xtKGmWnkZrYbsEszLNlUu8ZQlemVL7zwAubNm4dNmzahaNGi9pybIGzCIxY4f8qWLYv169ejSZMmyPPkk3j++eftyc6JsBgwShUjeTh1ZteO8CyYYsf0TjvxmsHAA1YjWpoxM2N0axkbrNXZAL6FUtLTb/2mvKA9I1O/7DJaWDRu1+bhZoILZovc2L1Fi5n1poC5a+um8Qy4G+QC/K9H8bNWxza1Nsw+pzMzjWek7dKimS08ePHhh4ovv/baa5g2bRo2btyIsmXL8j8voQll5qzjAavHPipWrIh169ahadOmyJMnD0Z88IH9Dh1grLKVVafOCjza0CplL8ULBrZXsGMzZr221e41r6CCGS3xDCpIdciahfbKaO9mYMFOLbIgv988gwtGtGSH8SzVF8v45wU9BmOQiwWl+8zrt2Gl+JOV8VVEa+sjJV3aqUMvaFzGO++8g/fffx8bNmxAxYoV3e4OQZgi6C3sqlWrYu3atWjWrBmioqIwxG6HDrg1YJkpq280eiiF1+JrOxwvHkZbMOGUQ8dqBJjtD88iJ2bR2+dJhAIKzmI0sKD1GT14GL7S4AJP41neJzKgvQGPYKYaV6/yGW+stMNy3+UBtWDWoUJW7uOPP8b48ePx/fffo2rVqi50igAAQeAvj+DYdI2dkLBuatWqhVWrVqFNmzZIT0/H8A8+uPkGb6dO6eFg1DBhdeqsFjthacdoW6wo5dR5nScszP2HBit2OHTSe2dGe2aDCTwrudnldMmnOZNzZz+ipowYzmZ/F1YKm/Bqx4gBLZ4jmA1oL2Gn86Z0Dl5jotF2zNxzHpVitXBbhwqO3LvvvotXX30Vq1evxl133eVCpwiCHyFjzdSrVw/r169Hy5YtkZaWdnMNHY8snV3TKLU+x1rshMegrNUWzwHaalUvv8LDodOaQmlHMIFHgROttowEE8xoUPwMZe1u4rWgAmB8/af8NR6VKo3omUe1v1DWIGCvBs22b3QtvNJ7PIrssGjRrAaNTsO00rYbKDhyr732Gt577z2sX78etWrVcqFThBRaM2edkHp61KpVCz/88AOaN2+OtLQ0vPbaawiYcejMLHDn4dSZLXQC8FlTotWWHSgVjPFTlUBWjBrT6ensx1vRnfwzRhbvA3wqsvkxmBBqTxHAnqmTWp9jCWix3j+rwTE7jGit85ltP5hxIutm5zmtFEbhpT+184kY1aMX9Cdz5ARBwPPPP4/PP/8cP/zwA02tJIKGkHLmgJtr6DZt2oRmzZohLS0N77777k2HDlB26rQWhJsxlM0a11YqpAH2ZOvcmKoWDKXgjcCrIIGVLJ2VqpcAn8ISvKamGfmcVOdA8GrMKEaCCSK8HDozAShelSrdNKQzM43pzwuGtF2YfRby0KDZQk88K/dK27MyM8HoZ5SeRWqa9IL+FBy54cOHY8GCBdi4cSMqVPi/9u49qMo6/wP4GxRQa0VKZ2wdSLsITiYp5hWt1oVoHJTwBpkxhECpW7lTybZuzbY7U2rTjZREWK8lOulP0QrFbLQwLFOQdTHTpIuXnbQWVssLnfP7w571eDyX5/L9Ppdz3q8ZZnbzPN/ne57ne77P9/O9PYkWZYy8cWTOuLAL5gAgMTERH330EX73u9+htbUV5eXl6Nix4+Vpl1ob0HobynqmEekNBv2lp5evqWqAdVOFnPoicYWdypxCVFkRsfOlJ+VasSNBHH9lw993NnMXTKPlxVdj2ugmKXq/u5HGt9rGdKi0Yuyys6bezizvNETVf4D+OlB08Od9j6KjL/03mz1zL168iOLiYnz44Yf46KOP0KdPH6uzRB4YzBlnr1+cifr06YO6ujpkZGQgKysLa9aswTXXXHMpoHv0Ue0JyhilCzZ1Sev5/KUrsuK14zokNQ9PWaMvekYx1JIV0Pnbphsw9l1EbFCh5xUEvo7Vcz5/nN6RYNYUNaOdCUbKntKYFvFd9bx2QDlOz7kC8Vf2nFDuAGumR6rhqxPVaD0uYodLf1NzZa4t1kIpj8Huq4zy6flydI9RubNnz2Ly5Mn47rvvUFdXxxeCU0hySI0vx29/+1vs3LkTWVlZGDNmDDZv3ozu3bsDZWWXPmBVUKd15zct5zNz90q7jNppYZfeYLVEbnKiNug12oGgd8qvkVcQWNVNp3aDJCd1IihkdCbIWHunpGt0qrm/MiRrcwojZVbtM0Tr9E01jC4JsILMoFLEDpfByoK/MmjGdHQ9ZD5nPQK5U6dOYezYsejSpQt27tyJ2NhYeecl3TgyZ5yDals5unXrhpqaGsTHx2PkyJFoaWm5/I9KUKeH3l4tvZWcml+D2g0n1DZAtVLStmNvrMyGh+xaRW9NqKyD0HpPtJwvUNqyyoKocmbm00D57Yv6Mzv/WvgaXVB7v7R+J1/p6ikXate4BRrVFn0+ozynb4oue04I5LTWE1rX2/pLW1Zd65223nJnxvNKlsWL//c/jx49ipEjR+LGG29ETU0NAzkKaQ6oceXr1KkTqqqqkJ6ejuHDh2Pfvn2X/7GsTH9Qp7Zi9K70jVSo/o7Vs+GEzMDLM327Bngimdk4C0ZksKN2tExNfoKdS4/29ssBK4lnRceOkcBK7b97nktvANnebv9ALpx41gVWdyKpqe/03iMlqJYZNOoh+xwegdy+ffswYsQI3HvvvaiqqkJMTIy885JhStEQ/RdOGMz9qkOHDnj99dcxe/Zs3HXXXdi0adOVHzA6SqenN1pEUOdyidlAQNQDMFjj38rgzoxpabIFmgoWaOTASN5EdB4ox4ga2fB1bLh0HNiV0SDHU7ByriVPWs+hllL3yhr9ocBkPE/81XV66zvvtEV35KptZ8gm+xwegVx1dTVGjx6N2bNn47XXXkOkE0aJiQxywCIm80RERODpp5/GzTffjNzcXPztb3/DE088gYiIiEsfMLKWDjA2HQ4wvlZJRKVm5ktuvR9ArJTVUdYWaW1gGFmTpJTR9nZxL0E38goCtedQiFprEo78lRs1ow9Gyorn8UYa697rjWQGmgor13XKPo9V9bSZnTSiziVi50ctMzIAceVcLZMCObfbjVdeeQXPPvssVqxYgezsbLnnJWG4Zs44BnM+TJgwAfHx8Rg3bhwOHTqE119/HVFRUZc/oCWo81fp633fjZZjffX86T13sPTN2NzE37UUee7ISLm1gNEGbCAigl+9ZcR7mrDR76is5wPMeXl3qHYcyCxvvpjZgQCI3ehFGTEUtdtqsHMpZHZaeAulFo7ZI+yiO0Y9O8BkbIrij/fIuMxnt0mB3MWLF/GHP/wBGzduxIcffog777xT7nmJbCZEWiziDRkyBJ9++inq6uowduxYtLa2Xv0hf1MvzZpCGYiac2s9v9opkmZz2vo7UQ+4YN9Z9NTJQHnwdbyR8u3rHFrXgOjlPT3OCWXKCp7Xxsi6RD33yvOeiPg9eZZXmWv5fPFcx8WydjVfv0Uj10hrJ4+v8xmtX/zVcXqPF3Fu0dNRTQrkWltbMXbsWOzatQu7d+9mIOdAXDNnHIO5ABISEvDxxx8jKioKw4YNw6FDh67+kLJBit7KUEZQp2fhc7A8iHgAmsm7oelrxzV/zBjJ0HI9PfOtZw2OqKDKk9o8iOww8DwvOw3Mpea7y+48CHZuvVPYja6/k/EbM2u9l2giplhb/RuTcW61z1krO4A986DkQ+0z0/tcsv0ayB06dAhDhw5FVFQU6urqkJCQIP/cJByDOeMYzAXRtWtXVFdXIzMzE0OHDkVNTY3vDy5ZYuxEIipqET2Won8Bdm34qtleWzblWmvJi4zALNhxnsfK7LDQmkcrRyS982BVGRLJX6eB1b9drZ0Xaj9ndPRZy/mMHuuvc0rGuWTz/p3YoZzJGv3X80yVMRKoh3f5UvOMMjGQe//99zFkyBCMHz8e1dXV+M1vfiP/3EQ2xTVzKnTo0AHz589HcnIyJk6ciOeeew5PPvnk5Y1RFEpAV1io/2RKZWhkzZKI9UqeaYmqoNvbr0zLzi8Rt7oBG4jLpX89nN6yIeL9UYHKtpEy5nmvXC77lCs1jW0z8qrcd62Nf7PLmOexRjulAuVBb1lT8iRiAwlRnTLB7ml0tHmBnNYyZjURdby/sibimhvdHMXMjj+z7ntlJdxuNxYsWIDnn38e5eXleOCBB8w5N0njdouvptxusenZnU1aPc4wdepUJCYmIisrCw0NDaioqEDnzp2v/qCZQV2wkQkRgZ2RBpp3Wp688y6rYSt7UxMrmNXY9tVDLKqzQElH1L1R0vFudGs93kx27jTQS28ZUa6FyLrGMy1R99fMjXmMHuek4MoMIjs9PdMUvYmNd10GqC9vZs/eMEtlJX7++WdMnz4dO3fuxI4dO5CSkmJ1rohsgdMsNRo8eDD27NmDlpYWjBo1Cl9//bX/DxudegkEXhcnez2HcrxnOjIrfDtN7XICWesngt0DUeVA9nogs8qS3RtBepnxvXzdI9GNYpH1lq8px6Kn5ok8zu5kr08265kiapQvUFkN9h2MLtWws8pKtLS0IDU1FS0tLfjss88YyIUQrpkzjsGcDj179sT27dtx5513YtCgQdiyZYv/Dy9ZIi6oA/Q/lPSUbn+fN+vXwuAuOFFTvcxumHoea7Q8qTlO5uYddDUjnQXBjteSB1F1ldEOECUNvecmdbQ8M4zWnb7qMSNpqSVyTZ0TWr2VlaipqUFKSgqGDh2K7du3o2fPnlbnishWOM1Sp5iYGJSVlWH48OGYMGEC5syZgz//+c+I9NfTaGTqpXfFLWLdUrB01FbwotMLxNfD2S7ro6xkdFobYPxl4WqPD1YORKfnj13X2dmNkWm1nsfq7YACtJ8/UCeUqLQCscPaunBhZiefmnuhpYwZvbeeU2jNfE+diVxLluDvzz+P+fPno6ysDNOmTbM6SySBjD4FBxRvodiCMeihhx5CcnIysrOzsXv3bqxcuRJxcXH+D1Ab1Knt4ZWxIYWIHmSzXlSsNsALxXVzntQ0IoKVKVmbm3j+u6j09KQZiJ61KaLzEEpEr39Tk47axjYgLr1AjG74xLJ1JZGdmopgZUvPPZCRZrA0tNRfDilXPyxYgGmZmfjiiy9QV1eH5ORkq7NEZFucZilAcnIy9uzZg4iICKSkpGDv3r3BD/I19VLvVDeRU4hEri2xagqHHd5VZAVfD3gt10BGI8Nouv7Kkchy6i1cy48/wa51oOsl8z4p/13vFPJgaRpl5PfokAa3NGp+gzKvkdEy4K8elD3dFwiJ6eR7Z85ESkoKOnTogD179jCQC3HeM+JF/YUTBnOCxMXFYePGjZg+fTpGjRqFhQsXwh1sb1TP9XRGG4wiSq/Skyz6VyArXb15CMVfvfI9jAYgIhsc3iMTRnmmKyo9tRjcXWZFJ4F3OrICLlFpqklHdgDsFHbpPBH9PPB+5ojIm548eP7ZvGy53W68MXAgRo0ahcLCQmzYsAHdunWzOlskGYM54yLcQSMO0mrHjh144IEHMGLECFRUVCA2Nlbdgfn54jKhZQpKsFIv8r11RtK28tdp1rTRQMz+/kbX0RlNR3basq6nHcqKUTKujZlTLq1K167XzWp2/a0p+RJ9jUXVU06p8wVovXABBT//jE8++QSrV6/G6NGjLcsLmaOtrQ2xsbF46KFWREd3FZr2hQttWLEiFq2trejaVWzadhQCTwn7ueuuu9DQ0ID//ve/GDRoED7//HN1By5deulPBLVdE2o/o/ehEuw4p3SlyOo6snM3k9bz+vu8rFEUz7S1pi/zetrtPvpiRR6N1CGe+RKZP+90ZdZ1etm9LAHOKPOA/3yJqp8C1YF60jKbRc+nPadOYdCuXTh79iwaGhoYyIWZUGkyWYkboEjSo0cPvPfee5g/fz5Gjx6NF198EbNmzUJERETwg5WATsRInVKiRWxy4nmMrB48M85B2rhcYjY28VcWtRyr9jNmbZyih9Xnt1KgsuT9OTX/LmvEQ0v6Vt7PcC5Lamitn2TVTZ6fs3PdZERlpeZD3G433njjDZSUlODZZ5/FU0895X9HcCLyi8GcRJGRkSgpKUFqaipyc3Oxbds2VFZWonv37uoSkBHUiaKm4Wz0nE5+sIUa74aIkXtjRkOZnQLOo7eDSeZU7WBllXWU/Ritm2QH8L7KlNPLkY4ZRadOncLDDz+Mffv2YevWrRg5cqSEjJETyBhJc/pPSiu2ckyQmpqKxsZGdOzYEQMGDMAHH3ygLQFR0y9ljUGbNa4dzmPoduByid2gINh9FHWPPc/DcmM97+ltRn/Pao4XdQ7RU/PIODOfCyLP4ZBNSYLS0TbZtm0bBgwYgKioKDQ2NjKQIzKII3Mmue666/DOO++goqIC48ePx4wZM/D3v/8d0dHR6hPRM1KnprEsc4MKmXydi6MwYvm7n3qnJAU6h+yeahnvqSLtlAaxjE0nRL0zMxDPcsQyZD7vgFp2OZJRhvx1CjipPOkI4i5cuIC5c+di0aJFePXVV1FQUKBu6QmFNI7MGcfdLC1w8OBB5ObmokOHDnj77bfRt29ffQn5C+qMlGJZO7pZuVOckx6QdqD1OsvoDJC9u5w/LCtiBbvuMq63iKnAvljxXcKdmnto591NvdPUws7lSUcgd+jQIeTm5sLlcmH16tVISkqSkDFyEmU3y5wcObtZVlVxN0uSKCkpCfX19Rg9ejRSUlKwePHi4O+k88V7+qWI7g2j01UCjeTISFftsZyi6Z/RayPievqawiZymqXWfLCc6KP1+skIuGS8q0ztd2HZMUbPNRQ9HVv0lGwj9aody5LGQM7tdmPx4sVISUnBXXfdhfr6egZydAVfTTQRf+GE0ywtEhMTg5dffhn33Xcf8vPzUV1djcrKSvTs2VNdAnl5cjMIaB8l0fvwtaIHMhx72WXWbkZG1NRMBZaRtp7jQ7FcGCEqkAfEvzNQVrp6jmW5uZodWlvB8iCrXhORltllSsdo3IkTJzB9+nQ0NjZi/fr1SEtLk5Axcjq3W3x1EG5zDhnMWSwtLQ1NTU2YOXMm+vfvj/LycmRnZ1/+gBlBWzBqGiWh1ugJ9H3skkd/rGwkaWn8aM2n1nIie62LN7uXCyPMKFNap7Zp7TySueulkfRCtdyYWQ9pKTt6R8ns9poKf+eSUZ50BHLr1q1DcXEx0tPT0dTUhLi4OPH5IiIADOZsIS4uDm+//Taqqqowffp0VFdX47Xz5xGrZXMUs/hqGMnqgbRrI8fo95XZ6LCLQA1oM0ZzrLh2Tm+w26G8BWs0i+g0CnYvzL4OZjbKRbNDmQlG5HRJO9U3/ujJS6CypjGQa21txWOPPYZNmzahrKwMU6ZM0Z4fCisypkXa6SdpBgc8LcJHTk4OmpqacPz4cQzYtQvbjh+3Okv+mTExOVQnP4fThG/vNSgyamzvdO147cya+B8KCwz8TZkU2SiXfQ4R7F5e7HStvMnKo3c9Y/froJave6vjlUjKKwdOnjyJpqYmBnIUclpaWlBQUIA+ffqgc+fOuPnmm/Hcc8/hwoULluaLwZzN9OrVCzU1NSgpKcH99fUo7tQJbRYXEiLDzGjwhErDylsoNK61MuN7hcu1C4fyApj3vULx2nlbvlzTx9va2lBcXIzs7GyUlJSgpqYGvXr1kpQ5CjVG+5TMrN4OHjwIl8uFxYsX48CBA3jllVfw5ptv4plnnpFzQpX4agIbU3oADh8+jIqKCqStWmV1loiIiCgUaQziAKC2thbTp0/HLbfcgsrKSvTu3Vt8vigkKa8muP/+VkRFdRWa9sWLbfi//zPn1QQLFixAWVkZvvrqK6nnCYQjczbWu3dv1NbW4k9/+hOys7NRFBODttJSq7NFREREoUTHaFxRUREmTJiAZ555Btu2bWMgR7rIHJlra2u74u/8+fPC89/a2orrrrtOeLpaMJizucjISDzyyCNoamrCkSNH0L9/f7w7ebKuHjQiIiKiK2hsT2zevBn9+/fHV199hf3796O4uBgRERGSMkekX3x8PGJjY//398ILLwhN//DhwygtLUVxcbHQdLXibpYO0bt3b2zbtg0VFRV48MEHkZ6ejtdee+3Se+ns8PoCIiIicg6NQdyJEyfw+OOPo7a2FgsWLEBBQQGDODJM5l5F33777RXTLGNiYnx+vqSkBPPmzQuYZnNz8xUvvD927BgyMjIwadIkFBYWGs+0AVwz50AnT57EE088gS1btmD+/PkoKChAZGQkgzoiIiIKTkMg53K5UFFRgaeffhoZGRl49dVXL3UkExmgrJnLzJSzZm7TJvVr5r7//nucPn064GduuukmRP/6yrDjx4/j7rvvxrBhw7Bs2bJLbXALMZhzsHfffRczZszAjTfeiPLy8ss9BgzqiIiIyJvG0bjm5mYUFRXhm2++waJFizB27FhJGaNwowRzY8fKCebefVfOBijHjh3DPffcg5SUFKxatQodOnQQmr4eXDPnYGPHjsWBAwcwePBgDBo0CHPnzsVPP/10qbLmmjoiIiJSaGgXnD17FnPnzkVKSgruvPNOHDhwgIEcSeGkVxMcO3YMd999NxISEvDSSy/h+++/x8mTJ3Hy5Ek5J1SJI3Mh4vPPP8fMmTNx4sQJvPzyy8jOzr48l50jdUREROFJQxDndruxfv16zJ49G7169cLChQsxaNAgiZmjcKWMzN13n5yRufffFz8yt2zZMuTn5/v8NyvDKQZzIcTlcmH58uWYM2cO7rjjDpSWliIxMfHyBxjUERERhQ8NgdzBgwfx2GOPoaGhAfPmzUNeXp7la4EodCnB3L33ygnmtmwx5z1zdsBfaQiJjIxEfn4+vvjiCyQmJuKOO+5ASUkJzpw5c+kDyvRLTsEkIiIKXRqe9WfOnMGcOXMwcOBAJCUl4dChQ8jPz2cgR+QQ/KWGoLi4OJSWlqK+vh51dXXo27cvKioq8Msvv1z+EIM6IiKi0KLh2d7e3o6Kigr07dsXu3btQn19PV5//XV069ZNbh6JPDhpzZxdcZpliHO73XjnnXdQUlKCzp07Y/78+bjvvvt8vxuG0zCJiIicSWUQ53a78d5772HOnDk4d+4cXnjhBUycOJHvjCNTKdMs09LkTLOsreU0SwoRERERmDRpEpqbm1FYWIhp06bh97//Pfbu3Xv1hzlaR0RE5Cwant179+7FmDFjkJeXh6KiIvzrX//CpEmTGMiRZdxu8aNy4TZMxWAuTERHR+Pxxx/HkSNHMHjwYKSmpmLatGloaWm5+sNcW0dERGRvGp7TLS0tePDBB5GamoohQ4bg8OHDeOyxx/73EmQici4Gc2GmW7dumDdvHg4ePIiIiAgkJSWhqKjId1AHMKgjIiKyEw3P5aNHj6KwsBBJSUmIjIzEwYMH8eKLL3JdHNkG18wZx2AuTCUkJGDFihVoaGjATz/9hKSkJBQWFuLo0aO+D+BonT6RkWL+7JAXUofXiij8mFW3agzi+vXrh3PnzqGxsRErVqxAQkKCji9HJA+DOePY6ghzSUlJWLVqFRobG3Hu3Dn069cvcFAHMLCzgh0CQgZ1wSnXxw73yzNPdslLKLPTdRbVicR7H5io66TmHqh85h49ehTTp0+/IohbuXLlle+cJaKQwpqaAACJiYlYuXLlFUFdQUEBmpubAx/IwC78sJHnm+hrYqfGOO+5fzKusx3uOflm9nVeulTV87W5uRkFBQXo168fLly4gP379zOII0fgyJxxrPXpCkpQt3//frjdbgwcOBCZmZnYsWMHgr7FwjOwsyq4Y2PHPFZfT6vP752XcBAu31MNu5S9cGD1tbairlm69NJfAG63Gzt27EBmZiYGDhwIt9uN/fv3Y8WKFejbt69JGSUiq/E9cxTQiRMnUFpairKyMtx666148sknkZ2djY4dO2pLSOY77EQ/YEV26YRbY09Wd5je62hG91y43WPA3G5PNdfXbvkJJWZdWz3XVWberLrPQQI44NLLvtevX4+XXnoJhw8fxqOPPopZs2bhhhtuMCGDRGIo75lLTW1Fx45i3wXX3t6Gjz8On/fMMZgjVc6cOYN//OMfeOWVVwAAs2fPxsMPP4xrr71WX4JGgzsrHrR6Gg7h1vBTGG1kybxuDNbFkNGQFnU97Zw3pxF9LWVdRxH5tPIeqwjivJ/Df/zjH5Gfn6//OUxkIQZz4jCYI02UHsEFCxbgyy+/RH5+PmbOnIlbbrlFf6JqAzs7N6b8NSTsnGezqGlk2eE6aW0M2iHPdqC3EW329XNKPu3GiddNbZ7tcG9VBHFffvklFi1ahKVLl+LWW2/FU089pW+GDJGNKMHciBFygrlduxjMEQXkdrtRX1+P0tJSrFu3DmPGjMGsWbOQkZGBSCMPSO/Azg4PWxLDs4HllPvKIF2dQI1nu14rJ+bZKk7/Hdit7lERwLlcLtTU1KC0tBTbt2/HxIkTMWvWLAwbNgwREREmZJJILgZz4jCYI8NOnDiBJUuW4M0330SXLl0wY8YM5OfnIy4uznji+fnG07CCU6YJ6iHiu1n9HfTw/N5OzD+RHqFQ7o3WWaK+t4og7scff8TSpUuxcOFC/Pzzz3jkkUdQVFSEnj17iskDkU0owdywYXKCufp6BnNEml28eBHr16/HG2+8gb179yI3NxeFhYUYMmSI+J5EuwZ5duj1dSK7NhLNuJ9Wf3c7r2GSTcZ3t8P3ll1u7fAdfbFb/atcJxW7Un766acoLy9HVVUVUlJSMGvWLNx///2IiooyIaNE5lOCuSFD5ARzn37KYI7IkIaGBpSXl2PVqlXo06cPioqKMHXqVHTr1k3uia0M8uzWkHA6KxqMvIdy2KHxz3srnpX31Qn3s7Iy4D//5z//wapVq7BkyRK0tLRg6tSpKC4uRnJyskkZJLIOgzlxGMyRVGfPnsXatWtRXl6OxsZGTJ48GUVFRRg+fLi58/5lBnlOaFSECu5SGBr4yojQEoqvCDAiQBDndrvxySefoLy8HGvXrkVycjKKioowefJkXHPNNSZmkshaSjA3eLCcYG7PHgZzRMLt378fS5YswcqVK9GrVy/k5+dj6tSp1r4bx0iQ58RGRqhx4k57dCVRgQDvqT2E628yyCjciRMn8NZbb2Hp0qU4duwYHnroIRQWFuL22283KYNE9sJgThwGc2S6n376CevWrcPy5cuxc+dOpKWlIS8vD+PGjUOnTp2szt4lgYI8pzc6Qp3Td94Ld055lQUFFi6/wwBB3Llz51BdXY1ly5Zh27ZtGD16NPLy8jBhwgR06dLFxEwS2Y8SzKWktKJDB7EB1y+/tOHzzxnMEZnim2++wcqVK7Fs2TKcOnUKOTk5yMvLw9ChQ+25/XJxsdU5ID3a263OAemhBAShFgCEA6PvQLPzbzbINMrdu3dj2bJlWLNmDXr06IG8vDxMmzYNCQkJJmaSyN4YzInDYI5sQVlHsHz5cqxZswbdu3dHTk4OcnJy0L9/f6uzJxcDROexc0PTDuz2MmPer+Dsds9EEnX/AwRx//znP7F69WpUVVXh9OnTmDJlCvLy8sxfH07kEEowN3CgnGBu3z4Gc0SWOXfuHN5//31UVVVh06ZNuOmmm5Cbm4spU6bglltusTp7zsJA0TmsCjhCuREvkxX3i/fKPMr9DRDAHT58GFVVVaiqqsJXX32FcePGIScnBxkZGfZZMkBkUwzmxGEwR7Z25swZbNq0CatXr8aWLVtw++23Izs7G1lZWejXrx97PK3EQJGI7G7xYmFJud1uNDc3Y8OGDVi/fj2ampqQkZGBnJwcZGZm4tprrxV2LqJQpwRzyclygrnGRgZzRLbz448/YuPGjdiwYQO2bNmC+Ph4ZGVlISsrC8OGDUMk19WEFgaLRNYTGAw5kcvlQn19PTZs2IANGzbg22+/xb333ousrCyMHz8ecXFxVmeRyJGUYO722+UEc01NDOaIbO3s2bOora3Fhg0bsGnTJkRFRSE9PR1paWlIS0tDz549rc4i2R2DRTJLmAdETnPy5EnU1taitrYWW7duxcWLF5GZmYmsrCykpaXxfXBEAjCYE4fBHDlee3s76urqsHXrVmzduhV79+7FbbfdhvT0dPTu3ZtbQJM1li+3OgehJS/P6hxQCFOmUG7duhUHDhzAoEGDkJ6ejvT0dIwcORIduV6RSCglmLvtNjnB3IEDDOaIHOv06dP44IMPsHPnTnz55ZdwiXopMZFdnD8PXLhw5X/z/v/R0Vf//5gYufkicrAbb7wR6enpGDNmDK6//nqrs0MU0hjMicNgjoiIiIiITKMEc/36yQnmmpvDJ5jjjhFEREREREQOxEngRERERERkOpcLEP2WqXBbXcOROSIiIiIiIgfiyBwREREREZmOI3PGMZgjIiIiIiLTMZgzjtMsiYiIiIiIHIgjc0REREREZDq3W/xIWri9dI0jc0RERERERA7EkTkiIiIiIjKdjPVtXDNHREREREREtseROSIiIiIiMh1H5ozjyBwREREREZEDcWSOiIiIiIhMx5E54xjMERERERGR6RjMGcdplkRERERERA7EkTkiIiIiIjIdR+aM48gcERERERGRA3FkjoiIiIiITMeROeM4MkdERERERORAHJkjIiIiIiLTcWTOOI7MERERERERORBH5oiIiIiIyHQcmTOOwRwREREREZnO7RYffLndYtOzO06zJCIiIiIiciCOzBERERERkelcLiAiQmyaHJkjIiIiIiIi2+PIHBERERERmY4jc8ZxZI6IiIiIiMiBODJHRERERESm48iccRyZIyIiIiIiciCOzBERERERkek4MmccgzkiIiIiIjIdgznjOM2SiIiIiIjIgTgyR0REREREpuPInHEcmSMiIiIiInIgjswREREREZHpODJnHEfmiIiIiIiIHIjBHBERERERmc7lkvMny7hx45CQkIBOnTrhhhtuwLRp03D8+HF5J1SBwRwREREREVEQ99xzD9auXYsvvvgC69atw5EjRzBx4kRL8xThdofbzFIiIiIiIrJKW1sbYmNjAbQC6Co6dQCxaG1tRdeuotO+UnV1NbKysnD+/HlERUVJPZc/3ACFiIiIiIgs0CYtzba2K9OOiYlBTEyMsLP88MMPeOuttzBixAjLAjmA0yyJiIiIiMhE0dHR6NmzJ4B4ALGC/+Jx7bXXIj4+HrGxsf/7e+GFF4Tkfc6cObjmmmtw/fXX45tvvsHGjRuFpKsXp1kSEREREZGpzp07hwsXLkhJ2+12I8LrnQf+RuZKSkowb968gOk1NzcjKSkJAHDq1Cn88MMP+Prrr/HXv/4VsbGx2Lx581XnMwuDOSIiIiIiCkvff/89Tp8+HfAzN910E6Kjo6/679999x3i4+Oxa9cuDB8+XFYWA+KaOSIiIiIiCks9evRAjx49dB3r+vU9COfPnxeZJU04MkdERERERBTA7t278dlnnyE1NRVxcXE4cuQI/vKXv+Df//43Dhw4IHRzFS24AQoREREREVEAXbp0wfr16zFmzBgkJiaioKAAAwYMwI4dOywL5ACOzBERERERETkSR+aIiIiIiIgciMEcERERERGRAzGYIyIiIiIiciAGc0RERERERA7EYI6IiIiIiMiBGMwRERERERE5EIM5IiIiIiIiB2IwR0RERERE5EAM5oiIiIiIiByIwRwREREREZEDMZgjIiIiIiJyoP8HaxrW0YkM+kAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAH5CAYAAAAr/WftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiuElEQVR4nOydd3wUxfvHP5eEBJKQBKQISIcA0kWQDkpHmki1UAVBQKUoYEVRVLB+LShFigWQLh1BBEGadKSqIEUQFZIYAgSS/f3Bb8Nms2V2d7bdPe/XKy/lbm92bvdzs0+ZeSYgCIIAgiAIgiAIgiAIwleEud0BgiAIgiAIgiAIwjjkzBEEQRAEQRAEQfgQcuYIgiAIgiAIgiB8CDlzBEEQBEEQBEEQPoScOYIgCIIgCIIgCB9CzhxBEARBEARBEIQPIWeOIAiCIAiCIAjCh5AzRxAEQRAEQRAE4UPImSMIgiAIgiAIgvAh5MwRBEEQBEEQBEH4EHLmCIIgCIIgCIJwhE2bNqF9+/YoWrQoAoEAlixZYriNNWvWoG7dusibNy8KFiyIBx98ECdPnuTeVz9AzhxBEARBEARBEI5w+fJlVK9eHR9//LGpz584cQIdO3bEfffdh71792LNmjX4559/0LlzZ8499QcBQRAEtztBEARBEARBEERoEQgEsHjxYnTq1CnrtWvXruH555/HnDlzkJSUhCpVquCtt95C06ZNAQALFixAz549ce3aNYSF3cxLLVu2DB07dsS1a9eQK1cuF76Je1BmjiAIgiAIgiAITzB06FBs3boVc+fOxf79+9G1a1e0bt0ax48fBwDUqlULYWFhmDFjBjIyMpCcnIwvvvgCzZs3DzlHDqDMHEEQBEEQBEEQLiDPzJ06dQplypTBqVOnULRo0azjmjdvjjp16mDChAkAgI0bN6Jbt274999/kZGRgXr16mHlypVISEhw4Vu4C2XmCIIgCIIgCIJwnQMHDiAjIwOJiYmIjY3N+tu4cSN+++03AMD58+cxYMAA9O7dGzt37sTGjRsRGRmJLl26IBRzVBFud4AgCIIgCIIgCCI1NRXh4eHYtWsXwsPDs70XGxsLAPj4448RHx+PiRMnZr335Zdfonjx4ti+fTvq1q3raJ/dhpw5giAIgiAIgiBcp2bNmsjIyMCFCxfQqFEjxWPS0tKyCp+IiI5fZmam7X30GjTNkiAIgiAIgiAIR0hNTcXevXuxd+9eADe3Gti7dy9OnTqFxMREPPzww+jVqxcWLVqEEydOYMeOHXjjjTewYsUKAMD999+PnTt34tVXX8Xx48exe/du9O3bFyVLlkTNmjVd/GbuQAVQCIIgCIIgCIJwhB9++AH33ntvjtd79+6NmTNn4vr163jttdcwe/ZsnD17FgUKFEDdunXxyiuvoGrVqgCAuXPnYuLEiTh27Biio6NRr149vPXWW6hYsaLTX8d1yJkjCIIgCIIgCCLkmDx5MiZPnoyTJ08CACpXroyXXnoJbdq0cbdjBiBnjiAIgiAIgiCIkGPZsmUIDw9H+fLlIQgCZs2ahUmTJmHPnj2oXLmy291jgpw5giAIgiAIgiAIAPnz58ekSZPQv39/t7vCBFWzJAiCIAiCIAjCUa5evYr09HRb2hYEAYFAINtrUVFRiIqKUv1MRkYG5s+fj8uXL6NevXq29MsOyJkjCIIgCIIgCMIxrl69itJ58uC8Te3HxsYiNTU122svv/wyxo0bl+PYAwcOoF69erh69SpiY2OxePFi3HnnnTb1jD80zZIgCIIgCIIgCMdISUlBfHw8TgcCiOPdNoDigoDTp08jLu5W62qZufT0dJw6dQrJyclYsGABpk2bho0bN/rGoSNnjiAIgiAIgiAIxxCdueRAAHGy6ZCW2xYExAsCkpOTszlzrDRv3hxly5bFZ599xrVfdkHTLAmCIAiCIAiCcJ6wMICzMwdBADIyTH88MzMT165d49gheyFnjiAIgiAIgiCIkGPs2LFo06YNSpQogf/++w9ff/01fvjhB6xZs8btrjFDzhxBEARBEARBEM7jcmbuwoUL6NWrF86dO4f4+HhUq1YNa9asQYsWLfj2yUZozRxBEARBEARBEI6RtWYuVy571sxdv256zZzfoMwcQRAEQRAEQRDOY1dmLoQIc7sDBEEQBEEQBEEQhHEoM0cQBEEQBEEQhPNQZs4y5MwRBEEQBEEQBOE85MxZhqZZEgRBEARBEARB+BDKzBEEQRAEQRAE4TyUmbMMZeYIgiAIgiAIgiB8CGXmCIIgCIIgCIJwHsrMWYYycwRBEARBEARBED6EMnMEQRAEQRAEQTgPZeYsQ5k5giAIgiAIgiAIH0KZOYIgCIIgCIIgnCcQuJmd40lmJt/2PA45cwRBEARBEARBOE9YGH9nLsSgq0cQhG0cP34cLVu2RHx8PAKBAJYsWeJ2lxRp2rQpmjZt6tr5v/nmG+TPnx+pqamu9SHUmDlzJgKBAE6ePOl2VzyP0rUy+5u5fv06ihcvjk8++YRfBwmCIEIYcuYIwkEOHDiALl26oGTJksidOzeKFSuGFi1a4MMPP8x23IQJEzzr+Bihd+/eOHDgAF5//XV88cUXuPvuu13ry6FDhzBu3DjPGe8ZGRl4+eWXMWzYMMTGxgIA0tLS8PHHH6Nly5YoUqQI8ubNi5o1a2Ly5MnIyMjI0UZmZiYmTpyI0qVLI3fu3KhWrRrmzJlje9937tyJoUOHonLlyoiJiUGJEiXQrVs3HDt2TPH4w4cPo3Xr1oiNjUX+/Pnx6KOP4u+//7a9n7zxqpas4sS4kytXLowYMQKvv/46rl69auu5CILwAWJmjvdfCBEQhBAr+UIQLvHTTz/h3nvvRYkSJdC7d2/cfvvtOH36NLZt24bffvsNv/76a9axsbGx6NKlC2bOnOlehy1y5coVREdH4/nnn8drr73mdnewYMECdO3aFRs2bMiRUUhPTwcAREZGOt6vJUuWoHPnzjh9+jSKFSsGADh48CCqVauGZs2aoWXLloiLi8OaNWuwePFi9OrVC7NmzcrWxtixY/Hmm29iwIABqF27NpYuXYoVK1Zgzpw56NGjh21979KlC7Zs2YKuXbuiWrVqOH/+PD766COkpqZi27ZtqFKlStaxZ86cQc2aNREfH48nn3wSqampePvtt1GiRAns2LHD8WufkZGB69evIyoqCgGDldS0tORn1MYdpWslfu8ffvjB8HmSkpJQuHBhTJ48Gf369bPYa4Ig/EhKSgri4+ORXKgQ4jg7XymZmYi/cAHJycmIi4vj2rYXoTVzBOEQr7/+OuLj47Fz504kJCRke+/ChQum2718+TJiYmIs9o4/YsZF/l29iBtOnMiMGTPQoEGDLEcOAG6//XYcOHAAlStXznrt8ccfR79+/TBjxgy8+OKLKFeuHADg7NmzeOeddzBkyBB89NFHAIDHHnsMTZo0wTPPPIOuXbsiPDzclr6PGDECX3/9dbbr1717d1StWhVvvvkmvvzyy6zXJ0yYgMuXL2PXrl0oUaIEAKBOnTpo0aIFZs6ciYEDB9rSRzXCw8Ntuy5e5caNG8jMzDSsd97XKiEhAS1btsTMmTPJmSOIUCcEM2m8oatHEA7x22+/oXLlyorOTaFChbL+PxAI4PLly5g1axYCgQACgQD69OkDABg3bhwCgQAOHTqEhx56CPny5UPDhg2zPvvll1+iVq1ayJMnD/Lnz48ePXrg9OnT2c71448/omvXrihRogSioqJQvHhxDB8+HFeuXMl2XJ8+fRAbG4tTp06hXbt2iI2NRbFixfDxxx8DuDll9L777kNMTAxKliyJr7/+Ouuz48aNQ8mSJQEAzzzzDAKBAEqVKpXVrvj/UsTvJiUQCGDo0KFYsmQJqlSpgqioKFSuXBmrV6/O8fmzZ8+if//+KFq0KKKiolC6dGkMHjwY6enpmDlzJrp27QoAuPfee7Ouq5hVUFr/c+HCBfTv3x+FCxdG7ty5Ub169RwZsZMnTyIQCODtt9/GlClTULZsWURFRaF27drYuXNnjj7KuXr1KlavXo3mzZtne71AgQLZHDmRBx54AMDN6YoiS5cuxfXr1/HEE09ku26DBw/GmTNnsHXrVtXzX7hwAQULFkTTpk0hnaTx66+/IiYmBt27d9fsf/369XM4BuXLl0flypWz9REAFi5ciHbt2mU5cgDQvHlzJCYm4ptvvtE8j/Q6v/feeyhZsiTy5MmDJk2a4ODBgzmO//7779GoUSPExMQgISEBHTt2zNEfpXVgpUqVQrt27bB582bUqVMHuXPnRpkyZTB79uxsn9PS0s8//4xWrVqhQIECyJMnD0qXLs3ksIjnXrt2LWrUqIHcuXPjzjvvxKJFi3Icm5SUhKeffhrFixdHVFQUypUrh7feeguZkgpu0mv2/vvvZ2nz0KFDiufXGndY1xdeu3YNL7/8MsqVK5c1tjz77LO4du1ajmNbtGiBzZs34+LFi7rXhiAIglCHMnME4RAlS5bE1q1bcfDgwWzTz+R88cUXeOyxx1CnTp2sbEXZsmWzHdO1a1eUL18eEyZMyDLCX3/9dbz44ovo1q0bHnvsMfz999/48MMP0bhxY+zZsyfLiZw/fz7S0tIwePBg3HbbbdixYwc+/PBDnDlzBvPnz892noyMDLRp0waNGzfGxIkT8dVXX2Ho0KGIiYnB888/j4cffhidO3fGp59+il69eqFevXooXbo0OnfujISEBAwfPhw9e/ZE27Zts9aDGWXz5s1YtGgRnnjiCeTNmxf/+9//8OCDD+LUqVO47bbbAAB//vkn6tSpg6SkJAwcOBAVK1bE2bNnsWDBAqSlpaFx48Z48skn8b///Q/PPfccKlWqBABZ/5Vz5coVNG3aFL/++iuGDh2K0qVLY/78+ejTpw+SkpLw1FNPZTv+66+/xn///YfHH38cgUAAEydOROfOnfH7778jV65cqt9t165dSE9Px1133cV0Lc6fPw/gprMnsmfPHsTExOT4LnXq1Ml6X+rwSylUqBAmT56Mrl274sMPP8STTz6JzMxM9OnTB3nz5jVVpEIQBPz111/ZnNGzZ8/iwoULimsm69Spg5UrVzK1PXv2bPz3338YMmQIrl69ig8++AD33XcfDhw4gMKFCwMA1q1bhzZt2qBMmTIYN24crly5gg8//BANGjTA7t27FQMJUn799Vd06dIF/fv3R+/evfH555+jT58+qFWrFipXrqyppQsXLqBly5YoWLAgxowZg4SEBJw8eVLRIVPi+PHj6N69OwYNGoTevXtjxowZ6Nq1K1avXo0WLVoAuLmeskmTJjh79iwef/xxlChRAj/99BPGjh2Lc+fO4f3338/W5owZM3D16lUMHDgQUVFRyJ8/v+K5WcYdLTIzM9GhQwds3rwZAwcORKVKlXDgwAG89957OHbsWI61eLVq1YIgCPjpp5/Qrl075vMQBBFkUGbOOgJBEI6wdu1aITw8XAgPDxfq1asnPPvss8KaNWuE9PT0HMfGxMQIvXv3zvH6yy+/LAAQevbsme31kydPCuHh4cLrr7+e7fUDBw4IERER2V5PS0vL0e4bb7whBAIB4Y8//sh6rXfv3gIAYcKECVmvXbp0SciTJ48QCASEuXPnZr1+5MgRAYDw8ssvZ7124sQJAYAwadKkbOfq3bu3ULJkSdXvJgWAEBkZKfz6669Zr+3bt08AIHz44YdZr/Xq1UsICwsTdu7cmaPdzMxMQRAEYf78+QIAYcOGDTmOadKkidCkSZOsf7///vsCAOHLL7/Mei09PV2oV6+eEBsbK6SkpGT7jrfddptw8eLFrGOXLl0qABCWLVuW41xSpk2bJgAQDhw4oHmcIAjCtWvXhDvvvFMoXbq0cP369azX77//fqFMmTI5jr98+bIAQBgzZoxu2z179hSio6OFY8eOCZMmTRIACEuWLNH9nBJffPGFAECYPn161ms7d+4UAAizZ8/OcfwzzzwjABCuXr2q2qZ4nfPkySOcOXMm6/Xt27cLAIThw4dnvVajRg2hUKFCwr///pv12r59+4SwsDChV69eWa/NmDFDACCcOHEi67WSJUsKAIRNmzZlvXbhwgUhKipKGDlyZNZralpavHixAEBRh3qI5164cGHWa8nJyUKRIkWEmjVrZr02fvx4ISYmRjh27Fi2z48ZM0YIDw8XTp06JQjCrWsWFxcnXLhwgakPauOO0rWS/2a++OILISwsTPjxxx+zffbTTz8VAAhbtmzJ9vqff/4pABDeeustpr4RBBFcJCcnCwCE5KJFBeGOO7j+JRcterPt5GS3v6YjkCtMEA7RokULbN26FR06dMC+ffswceJEtGrVCsWKFcO3335rqK1BgwZl+/eiRYuQmZmJbt264Z9//sn6u/3221G+fHls2LAh69g8efJk/f/ly5fxzz//oH79+hAEAXv27Mlxrsceeyzr/xMSElChQgXExMSgW7duWa9XqFABCQkJ+P333w19DxaaN2+eLUNQrVo1xMXFZZ0rMzMTS5YsQfv27RUzP0aLWwDAypUrcfvtt6Nnz55Zr+XKlSurcMfGjRuzHd+9e3fky5cv69+NGjUCAN3r8e+//wJAts+qMXToUBw6dAgfffQRIiJuTaq4cuUKoqKichyfO3furPf1+OijjxAfH48uXbrgxRdfxKOPPoqOHTvqfk7OkSNHMGTIENSrVw+9e/fO1kcAlvvZqVOnbGsL69Spg3vuuScrs3fu3Dns3bsXffr0yZaBqlatGlq0aMGUAbzzzjuz7h8AFCxYEBUqVGDStpj9Xr58Oa5fv657vJyiRYtmTaUFgLi4OPTq1Qt79uzJysrOnz8fjRo1Qr58+bL91ps3b46MjAxs2rQpW5sPPvggChYsaLgvRpk/fz4qVaqEihUrZuvXfffdBwDZxiDglub/+ecf2/tGEISHoWqWlgmtb0sQLlO7dm0sWrQIly5dwo4dOzB27Fj8999/6NKli+paFiVKly6d7d/Hjx+HIAgoX748ChYsmO3v8OHD2QqsnDp1KsvYjY2NRcGCBdGkSRMAQHJycrZ2c+fOncMQjI+Pxx133JHDSYqPj8elS5eYvwMr0jVWIvny5cs6199//42UlBTNqatG+eOPP1C+fHmEyR4I4pS6P/74Q7OPoqHKej0EnaLCkyZNwtSpUzF+/Hi0bds223t58uRRXJMkln2XOu9q5M+fH//73/+wf/9+xMfH43//+x9Tv6WcP38e999/P+Lj47FgwYJsBTPEPljtZ/ny5XO8lpiYmLWWS7wvFSpUyHFcpUqV8M8//+Dy5cua59DTmxZNmjTBgw8+iFdeeQUFChRAx44dMWPGDMXvrUS5cuVy/K4SExMBIOs7Hj9+HKtXr87xOxfXXcqLKcnHCrs4fvw4fvnllxz9Evsv75eoeTPBFoIggghy5ixDa+YIwgUiIyNRu3Zt1K5dG4mJiejbty/mz5+Pl19+menzcsM3MzMTgUAAq1atUqw6J65Xy8jIQIsWLXDx4kWMHj0aFStWRExMDM6ePYs+ffpkK6AAQLWCndrrek4JoG68Ke2fZvVcTmG2j+Kav0uXLuGOO+5QPGbmzJkYPXo0Bg0ahBdeeCHH+0WKFMGGDRsgCEK2a3vu3DkAN7M9LKxZsyarL2fOnDFUhTQ5ORlt2rRBUlISfvzxxxznLFKkSLY+STl37hzy58+vmLVzA6vaXrBgAbZt24Zly5ZhzZo16NevH9555x1s27bN9LpRKZmZmWjRogWeffZZxfdF50mExUnmQWZmJqpWrYp3331X8f3ixYtn+7foHEvXfxIEQRDGIWeOIFxGnBooNXSNRqvLli0LQRBQunTpHMaclAMHDuDYsWOYNWsWevXqlfX6d999Z7DX5smXLx+SkpJyvC7PdrFSsGBBxMXFKVY1lGLkmpYsWRL79+9HZmZmtuzckSNHst7nQcWKFQEAJ06cQNWqVXO8v3TpUjz22GPo3LlzVhVROTVq1MC0adNw+PBh3HnnnVmvb9++Pet9PVavXo1p06bh2WefxVdffYXevXtj+/bt2aZzqnH16lW0b98ex44dw7p167L1QaRYsWIoWLAgfv755xzv7dixg6mPwM3sj5xjx45lFTUR78vRo0dzHHfkyBEUKFCAyzYeelqqW7cu6tati9dffx1ff/01Hn74YcydOzfblGUlfv311xxOubgBu/gdy5Yti9TU1BwVUHlgJUtWtmxZ7Nu3D82aNWNq58SJEwDUixARBBEihGAmjTd09QjCIcTsiRxxHY90alhMTIyiw6NG586dER4ejldeeSXHOQRByFqbJWYdpMcIgoAPPviA+VxWKVu2LJKTk7F///6s186dO4fFixebai8sLAydOnXCsmXLFJ0F8buKRjzLdW3bti3Onz+PefPmZb1248YNfPjhh4iNjc2almqVWrVqITIyUrHfmzZtQo8ePdC4cWN89dVXOaZ8inTs2BG5cuXKVnlSEAR8+umnKFasGOrXr6/Zh6SkpKwqhhMmTMC0adOwe/duTJgwQbf/GRkZ6N69O7Zu3Yr58+ejXr16qsc++OCDWL58ebatMtavX49jx45llfrXY8mSJTh79mzWv3fs2IHt27ejTZs2AG5mAGvUqIFZs2Zlu88HDx7E2rVrc0xRNYuali5dupTj9yc6qixTLf/8889sv4OUlBTMnj0bNWrUwO233w4A6NatG7Zu3ZqVSZWSlJSEGzduGPkq2TA67kjp1q0bzp49i6lTp+Z478qVKzmmt+7atQuBQEBTMwRBEIQ+lJkjCIcYNmwY0tLS8MADD6BixYpIT0/HTz/9hHnz5qFUqVLo27dv1rG1atXCunXr8O6776Jo0aIoXbo07rnnHtW2y5Yti9deew1jx47FyZMn0alTJ+TNmxcnTpzA4sWLMXDgQIwaNQoVK1ZE2bJlMWrUKJw9exZxcXFYuHChLWvd1OjRowdGjx6NBx54AE8++STS0tIwefJkJCYmYvfu3abanDBhAtauXYsmTZpklUU/d+4c5s+fj82bNyMhIQE1atRAeHg43nrrLSQnJyMqKgr33Xdftj3+RAYOHIjPPvsMffr0wa5du1CqVCksWLAAW7Zswfvvv4+8efNavQwAbq5JbNmyJdatW4dXX3016/U//vgDHTp0QCAQQJcuXXJsGVGtWjVUq1YNAHDHHXfg6aefxqRJk3D9+nXUrl0bS5YswY8//oivvvpKd7Pnp556Cv/++y/WrVuH8PBwtG7dGo899hhee+01dOzYEdWrV1f97MiRI/Htt9+iffv2uHjxYrZNwgHgkUceyfr/5557DvPnz8e9996Lp556CqmpqZg0aRKqVq2aTftalCtXDg0bNsTgwYNx7do1vP/++7jtttuyTTmcNGkS2rRpg3r16qF///5ZWxPEx8dj3LhxTOfRQ01LX3/9NT755BM88MADKFu2LP777z9MnToVcXFxTI5kYmIi+vfvj507d6Jw4cL4/PPP8ddff2HGjBlZxzzzzDP49ttv0a5du6wtEy5fvowDBw5gwYIFOHnypOmpi0bHHSmPPvoovvnmGwwaNAgbNmxAgwYNkJGRgSNHjuCbb77BmjVrshUo+u6779CgQYOsqcYEQYQolJmzjsPVMwkiZFm1apXQr18/oWLFikJsbKwQGRkplCtXThg2bJjw119/ZTv2yJEjQuPGjYU8efIIALLKhYvl+//++2/FcyxcuFBo2LChEBMTI8TExAgVK1YUhgwZIhw9ejTrmEOHDgnNmzcXYmNjhQIFCggDBgzIKvc/Y8aMrON69+4txMTE5DhHkyZNhMqVK+d4vWTJksL999+f9W+1rQkE4eY2DVWqVBEiIyOFChUqCF9++aXq1gRDhgxRPJe8hPoff/wh9OrVSyhYsKAQFRUllClTRhgyZIhw7dq1rGOmTp0qlClTRggPD89WWl5eZl0QBOGvv/4S+vbtKxQoUECIjIwUqlatmu366H1HyLZqUGPRokVCIBDIKikvCIKwYcMGAYDqn7zdjIwMYcKECULJkiWFyMhIoXLlytm2VVBD3ELhnXfeyfZ6SkqKULJkSaF69eqKW2eINGnSRLOfcg4ePCi0bNlSiI6OFhISEoSHH35YOH/+vG4/pdf5nXfeEYoXLy5ERUUJjRo1Evbt25fj+HXr1gkNGjQQ8uTJI8TFxQnt27cXDh06lO0Yta0JpBqWfk+5PpS0tHv3bqFnz55CiRIlhKioKKFQoUJCu3bthJ9//ln3O4rnXrNmjVCtWjUhKipKqFixojB//vwcx/7333/C2LFjhXLlygmRkZFCgQIFhPr16wtvv/121v3S0qYaauMOy9YEgnBz+4633npLqFy5shAVFSXky5dPqFWrlvDKK69kKxGelJQkREZGCtOmTWPuG0EQwUXW1gRlyghCuXJc/5LLlAmprQkCguChKgIEQRAhRkZGBu68805069YN48ePd7s7nuTkyZMoXbo0Jk2ahFGjRrndHVsoVaoUqlSpguXLl7vdFdt5//33MXHiRPz222+OFWghCMJbpKSkID4+HsllyyJOZwaJ4bYzMhD/229ITk5GXFwc17a9COU1CYIgXCQ8PByvvvoqPv74Y6SmprrdHYKwlevXr+Pdd9/FCy+8QI4cQRAEB2jNHEEQhMt0794d3bt3d7sbBGE7uXLlwqlTp9zuBkEQXsGONXMhNumQnDmCIAiCIAiCIJyHnDnLkDNHEARBeJpSpUp5apN4Ozh58qTbXSAIgiB8CDlzBEEQBEEQBEE4D2XmLEMFUAiCIAiCIAiCIHwIZeaIoOOff/7B+vXrsXbtWlpoTwQl164B6em3/i39fymRkdn/PyrK3n4RhJ8pWbIkWrRogWbNmpneeJ0gCINQZs4y5MwRvufGjRvYvHkz1q5di7Vr12LPnj2oUqUKWrZsifr16yMQCLjdRSLEmDXL3vYDgeyOGauTpub0+YHevd3uARHMCIKAI0eOYMKECXjooYdQs2ZNtGzZEi1btkTDhg0REUHmEkEQ3oQ2DSd8yeXLl7F27VosWbIEy5cvR65cudCqVSu0aNECzZs3x+233+52FwmP8/jjbveACBU++8ztHhBGOH/+PNatW4fvvvsOa9aswfXr19GuXTt06tQJLVu2RExMjNtdJAjfk7VpeNWq9mwafuBAyGwaTs4c4RsuXbqEJUuWYMmSJVi7di2KFy+OBx54AJ06dcI999yDMN5pesJVyNkiCPcJdUc0MzMT27dvx5IlS7B48WKcPn0aLVu2RKdOndCpUyfky5fP7S4ShC8hZ44f5MwRniY1NRXffvst5syZgzVr1qB69ero3LkzOnXqhIoVK9IUShchZ4sgCK/D0xkVp2IuWbIEixYtwv79+9GqVSv06NEDHTp0QGxsLL+TEUSQk+XMVa9ujzO3bx85cwThFlevXsXKlSsxd+5cLF++HGXLlkXPnj3RvXt3lC1b1u3u+Yr+/d05Ly0vIQjCK9y4Yf6z06erv/frr79i3rx5mDt3Ln777Te0b98ePXr0QJs2bZA7d27zJyWIECDLmatZ0x5nbs8ecuYIwkkEQcBPP/2EWbNmYd68eShYsGCWA1elShW3u2crbjlcfoKcQyJYMeJohNLvwIoDZhdajt3Bgwcxd+5czJ07F3///Te6d++O3r17UxEuglCBnDl+kDNHuMoff/yBL774ArNmzcI///yDnj17onfv3qhTp44nH4B9+978Ly3P8x+ZmdlL9VvBi4aml/Ci00H3TB3e9yvYr7WWUycIArZv345Zs2Zh7ty5KFiwIHr16oVevXqhRIkSznWSIDxOljNXq5Y9ztyuXeTMEYRdpKWlYcGCBZg1axZ+/PFHtGzZEr1790b79u09MzVFdNq0IIfOX2RmZv833T+C4Iv0NxYqvy8tx+7q1atYtmwZZs6cie+++w6NGjVC79690aVLF0RHRzvXSYLwIOTM8YOcOcIx9u/fjylTpuDLL7/EHXfcgb59++Lhhx92dRsBFqdNj1AxWvyE3HHTg+6hd9C7d3SvvIeR31uw3j8tpw64ud3BV199hRkzZuDMmTN49NFHMWDAAFSrVs2ZDhKEx8hy5u6+G3Gcpwek3LiB+J9/JmeOIHhw+fJlzJs3D1OmTMH+/fvRvXt3DBw4EHXr1nV0GiUPp02PYDVSvI5Rx00Puo/OY/Ue0j1zHp6/u2C7f3rTMLdt24YpU6Zg3rx5qFatGgYOHIju3bvT/nVESEHOHD/ImSNsYe/evfjss8/w1VdfoXTp0nj88cfx0EMPISEhwdbzOuG06RFshonX4O28aUH30h7svod03+yDfn/s6GXrkpKS8NVXX2HKlCk4ceIEHn74YTz++OOoUaOGI/0jCDfJcubq1LHHmduxg5w5gjBKeno6Fi1ahI8++gh79uxBz549MXDgQNSuXZt7Fs4LTpsedhgiThpSajhpYHnh+0rxu3HpJm7fS7p31nD7/knx2xg0Y4b2+4IgYOfOnZgyZQrmzJmDu+66C0OHDkXnzp2RK1cu6x0gCA9Czhw/yJkjLHPu3DlMmTIFn332GaKjozFkyBD06dMH+fLls9x2797+NsIyM/3df7tQuiZeMhZZ4HVf3f7edunT7e+lh52/Sze/O+/v5fX7KMXr44qeUwcAly5dwsyZM/Hxxx8jLS0Njz/+OB5//HFX15YThB1kOXN169rjzG3bRs4cQWghCAK2bt2KDz/8EIsWLULz5s0xdOhQtGrVCmEWrInevbXf96JjRAUbjKN0zfx2nchRJ4Idv2rcD1U19Ry7zMxMrF69Gh999BHWr1+PBx98EEOHDkW9evU8uW0PQRgly5mrX98eZ+6nn0LGmfPgbkCEl7lx4wYWLlyIt99+G8ePH0e/fv3wyy+/oFy5cqbb1HPgpLj5kPZShNevaF1Dr24doNdnr/TTbdSuk5evjx/77DR+uEas44qX+iwuFVBz6sLCwtC2bVu0bdsWv/76Kz755BO0bdsW5cuXx6hRo/Dggw8iwosbOhIE4TiUmSOYSE1NxfTp0/Hee+8hLCwMw4cPR9++fREbG2u4LSPOGytenvLmJQPCLXhcV7uvo5U+hvI9NnPd3LhefumnlzD7m3DiuvlhTDECyxTM1NRUzJgxA++++y4AYPjw4ejXr5+p5zBBuE1WZq5hQ3syc5s3h0xmjpw5QpNz587hww8/xOTJk1G+fHk888wzeOCBBwxHBO1w4NTQe0A7nWHzksHgJF6uWEhOOx+8XJ7ey33zC17b9sPOMcUr95jFqbtx4wYWL16MSZMm4fjx4xg8eDCGDRuGIkWK2N9BguAEOXP88MjwRXiNo0ePol+/fihdujQOHjyIpUuXYvv27ejatSuzI9e7960/J8nM1P4j7MWp68xyX53UQKhpi/f3tXKv7L7HNHbwwcy47NTY7ZVnRN+++tWaIyIi0LVrV2zfvh1Lly7FwYMHUbp0afTr1w9Hjx51pqMEwYuwMHv+QojQ+raELkePHsUjjzyC6tWrIxAIYO/evfj222/RuHFj3UXXUufNaQeOcB+3DSEvOO5uG4JO4eT31AvOuNEXgj9u31u1vrgFi1MXCATQuHFjfPvtt9izZw8CgQCqV6+ORx99lJw6ggghyJkjAABHjhzJcuKio6Nx5MgRTJ8+HRUrVtT8HDlv9sNizLL+2dk34ibBfC3oXt8kFK5DsH8/VpzI6Gv9sT5fK1WqhOnTp+Pw4cPInTs3qlevjkceeYScOsL7UGbOMqH1bYkcHDlyBA8//DBq1KiR5cRNmTIFpUqVUjyesm/G8ZIDxqsvoWDMWoHXtfGadojsePE3SvfJPtSusRP3ivWZW7p0aUydOhVHjhxBdHR0llN35MgRY1+WIAjfQM5ciPLHH3+gV69eqFGjBmJjY5mdOCK0IWORHS8Y5Tz6QPdcH69dZ6/0I5hx61qxPotLlSqFKVOmZDl1NWrUQK9evXDq1Cn7O0kQRqDMnGVC69sSSEpKwrPPPotKlSoBuJmZ++yzz8iJIwiCIAifwPpcljp1giCgYsWKGD16NJKSkmztH0EwQ86cZULr24Yw6enpeP/991G2bFns3r0bW7ZswezZsxWdOJpGSRAEQRDexshzulSpUvjiiy+wefNm/PzzzyhXrhw++OADpKen29tJgiBsh/aZC3IEQcD8+fMxduxYREdHY+LEiWjdurViZUpy3giCIAjCn8yaxXacIAhYtWoVnn32WVy5cgVvvPEGunbtqluxmiB4krXPXIsWiMuVi2/b168j/rvvQmafOXLmgpi9e/di6NCh+P333zF+/Hj06dMH4eHh2Y4hB44gCIIgggNWhw64ufn4rFmz8OKLL6JMmTL4+OOPUb16dfs6RxASyJnjB02zDEIuXbqEoUOHol69emjUqBGOHTuG/v37Z3PkaBolQRAEQQQXRp7tERER6N+/P44dO4aGDRuibt26GDZsGK2nI5yF1sxZJrS+bZCTmZmJzz//HBUqVMDx48exd+9evPHGG4iNjQVAa+EIgiAIIhQw8qyPjY3Fm2++ib179+Lo0aNITEzE559/jkwqa0oQvoCmWQYJu3btwpAhQ3Du3Dm89957eOCBB7Lmv5PzRhAEQRChiZGpl4IgYPHixRg+fDiKFi2Kjz76CLVq1bKvc0TIkjXNsk0be6ZZrlpF0ywJf5Camorhw4ejUaNGaNGiBQ4fPozOnTsjEAhQFo4gCIIgQhwjtkAgEEDnzp1x+PBhNG/eHI0aNcLw4cORmppqbycJgjANOXM+ZsWKFbjzzjuxa9cu7N69G+PHj0d0dDQ5cQRBEARBZMOIXRAdHY3x48dj165d2LVrFypXrowVK1bY1zkidKE1c5YJrW8bJJw/fx7du3fHI488gpdeegk//PADKlasSE4cQRAEQRCqGLUTKlWqhB9++AEvvPACHnnkEXTv3h3nz5+3r4NE6OGyM/fGG2+gdu3ayJs3LwoVKoROnTrh6NGjNn5h/pAz5yMyMzMxdepUVKpUCYFAAIcPH8Zjjz2Gvn3DyIkjCIIgCIIJIzZDWFgYBgwYgMOHDwO46eBNnToVVHKBCAY2btyIIUOGYNu2bfjuu+9w/fp1tGzZEpcvX3a7a8xQARSfcPLkSfTv3x/Hjx/H5MmTcf/995MDRxAEQRCEJYwUSAFuLvEYPHgwypcvj+nTp6NUqVK29IsIbrIKoHTsaE8BlKVLTRVA+fvvv1GoUCFs3LgRjRs35tovu6DMnMfJzMzE5MmTUbVqVZQrVw4HDx7EN9+QI0cQBEEQhHWM2hP3338/Dh48iHLlyqFatWr49NNPaRsDwpOkpKRk+7t27ZruZ5KTkwEA+fPnt7t73KDMnIc5ceIE+vfvj99++w3Tp0/HF180d7tLBEEQBEEEKUazdN999x0ee+wxlCtXjrJ0hCGyMnMPPGBPZm7x4hyvv/zyyxg3bpzq5zIzM9GhQwckJSVh8+bNXPtkJ5SZ8yBiNq5atWpITExEgwYHyZEjCIIgCMJWjGbpWrRogQMHDqBcuXKoWrUqJk+eTFk6wjOcPn0aycnJWX9jx47VPH7IkCE4ePAg5s6d61AP+UCZOY9x9uxZ9O3bF0ePHkVi4nQULeo9J06pSBDvsduJc7iFkYq5wfKdRcTvbvf3CgsLvmtHEIR7BOuYovY8mjHDeFvr1q1D//79UaFCBcyYMQPFihWz1jkiqMnKzD34oD2ZuYULDa2ZGzp0KJYuXYpNmzahdOnSXPtjN5SZ8xBz5sxBlSpVUKxYMdSvf8BzjpxWtVceW3r4ZXsQJ7c+CabtVaT9squf0na9eh3M4Nd7bgUnvlewX7tQ0Yvd30s6pnj5+in106wO+va9+WeE5s2bY//+/ShatCiqVq3qu+wGEZoIgoChQ4di8eLF+P77733nyAFAhNsdIICLFy9iyJAhWLduHT7//HM88MADWe+5XejEyEPLTOTSiw9FL/bJKGrfwY3Istb15BHttrt9XjjhmJjFK9dIRO74i/Dqp/xaOZUxNoqdmrHatleuldq9FLFrfHFTM3pjHk/69jWWpYuPj8fMmTOxaNEiDBw4EEuXLsUnn3yCfPny8e0YETzYESEx0N6QIUPw9ddfY+nSpcibN2/WPorx8fHIkycP337ZBE2zdJm1a9eib9++qFmzJqZNm4bbb79d9zNKDh7vB4tdhqEXDM5gcNZ4Y4dBYvQ6G+mDnW1bIRi15bSxynINzfaJ9f44+Z2DUTOAN39zdgYb7fq+XtGHmWmX58+fR//+/bFv3z7MmDEDLVq04N8xwrdkTbPs2tWeaZbz5zNNswwEAoqvz5gxA3369OHaL7sgZ84lrl27hjFjxmDatGl45513MGDAAFVBaaE2DcLMg4XnQ0N6frvaZcErD0I/YWemzOr5KRjgLXgasGavK0sfzLTtxDrgUMXrunE7a+llrRh16gRBwNSpUzFy5Eg89thjePPNNxEVFWVP5whfkeXMdeuGuMhIvm2npyP+m29M7TPnR8iZc4HDhw+jZ8+eiIiIwNdff43ExETDbRiZy673YLFr7ZIdkUo3vkuow3ofeV978bxuBgN4nz/YsTtjZvTcdrXLCmmHHTd/m14IPvpJK2aydMeOHcNDDz2EGzduYM6cOahUqRL/jhG+IsuZ69HDHmdu7tyQceZ8NHz4H0EQMGXKFNSuXRutWrXCTz/9ZLsjBygvdrZjIbfTi8ODfVG/V9C7vnZNd4+IcH4aPWnKGmauHa9rbNe9M/pdSDvmcPO3J56P95ij9z38qhWjNggAJCYm4qeffkKrVq1Qu3ZtTJ06FZRLIAg+UAEUh/j3338xYMAAbNu2DUuXLkWzZs0Mt2FmAJUT8f933IkpZzyzc3572AUr4n0ICwNu3LDf2bIjwxsRcbPvSucj+KJXjMKuWQFq57Parl3ZP0IZLf04URzGjudXZmZwaEa0R4xk6SIjI/HWW2+hRYsW6NWrF1avXo2pU6cif/789nSS8AcuF0AJBkLr27rE5s2bUaNGDWRkZGD//v2GHTkzJYLlKGXmrLbF0obZ81CE2/vwjGI7lfmTOqOkK+ex83et1KZd56CxyR3svP5KbdmR5bVjxoGbmLFNxC0Mbty4gerVq2Pz5s38O0YQIUQQDSneIzMzE2+88QZatWqF0aNHY8mSJShQoADz5606cbynx9ltvJCB5H3UDGarTjvrsVbOwSuYQViHt0HOMpWNxzlojPIePO4Ja2CS5zmCSUdm7JQCBQpgyZIlePbZZ9GqVSu8+eabyPTKfheEsyhFaXj8hRA0zdImLly4gF69euH48ePYtGkTatWqxfxZHlk4o8erjaG8jCA/T0/yyhQZt59zet/byPQ2K44Zr+qFrG0R9mNEO1qfZTmOV/ukH+8hv1d2b7nCYywyq0veWH2u9e9v5lMBAMPQvHl9TJ3aDRs3bsTs2bNRsGBBa50hiBCDnDkb2LhxI3r27ImGDRti9+7diI+PZ/qc006c0mftdFa86rwZzU66hda57TQEzHxnNQOFggPe6KebhiOvoICVgIBe26zte8EQd1tPbjshWrBoiVe2zepY55SW3NaLEgUK1EL9+rtx9epjqFGjBubMmYPGjRu73S3CKezIpHlR6DYSWt/WZjIzM/H666+jbdu2eOGFFzBv3jwmR27AgJt/ESZdax6/A7ENs31wul2jRETcWqsQjJl4pe/F45rz0JX0uvNCbMvqfbQzcOHlmR9u9c+MgavUL15BAbWpb2YNcbvwsp78MtNJqV+8xyQe7fK6bmrPPK8SGRmPvHm/wXPPPYc2bdpgwoQJNO2SIBihzBwnLl26hF69euGXX37Bjz/+iLvuukv3MwMG5HxNaoCLFffU4GXQKL3m172V3HYavYJ4D+TXQ09T8s/z6gfvKWmiYcKjTbPt8K4M6xW0phWy6sdIu059XqtdHlrikVnxsrFtFjv0xNuZ5/kblo65PLRgpA2/P/8CgQB27x6CH3+shy5dumDbtm2YPXs2EhIS3O4aYSeUmbNMaH1bm9i7dy/uvvtuCIKAXbt26TpyYiZODzGyJh+geWbitN43056Tvx/p9VG6TqGK1j1guV52Zz2stiltw029udEHtzH7e+MZHLAzy8uzPRbk1zOUtAQoj+FOjePycYTXc1X+b7uf1Szjud909fHHd2HXrl3IyMhArVq1sG/fPre7RNiJXnrf7F8IEVrf1gZmzZqFhg0bom/fvvj222+RL18+zeNZnDglIiKAyMibf2YxqnG943i3pwU5bmwYvcbitYyM5Df+sejGaHs8Aw8sbZDesqN2jVmuk11OktVnth0BB2k7SjgVTPE7bv7+zOpKb4zi6dS5GVBxilGj8mHZsmXo06cPGjRogNmzZ7vdJYLwLCFuopjn2rVrePrpp/HNN99g4cKFaNWqlebxZp04QNnQBJyZMieffuTUA8GOh3ewTYeTY/XeGJnia/X8LFOIjLZn5f5GRAS/PpxC/tvlNX2R5RielU5Z29Nqw4qjSXrMjjwbbmXKLyusOjAa0DR7b61O4bRjWqmdDBgQBuBFLFxYBw899BC2bt2K999/H1FRUW53jeAJTbO0DDlzJjh//jw6d+6M9PR07N69GyVLllQ9lqcTJ0fPqXNj2pBZQj3zYRWrDrscIwEDrwQLjBjAahkks0ZOMBvfPKbGihg1wM1mR3hVLjR7X3k4tMGsKR6YXQ8MWMu68ajQa9Sp0sp4h4K2vvmmFXbv3o0HH3wQ9913HxYuXIjbb7/d7W4RhGcILdeVAz///DPuvvtulClTBj/++KMtjpzRIIV0ugXP6cJ2Tj2mKWz84O3ISXFqfR2v9UJW1pYQfFELErDeA55OJO/pmErYMdU0mIPLvJ0Jp54pPJfl6LXD8l3M9sNvy4pefbUkfvzxR5QqVQq1a9fGzz//7HaXCF6orXmz+hdCkFljgC+//BKDBg3CuHHjMHLkSAQCAcXjrDhxZgkLu7nuyerUE7U+8IjkuVn9z+g5xbWJTvQ1LAxITzf/Wac+J83W2ZH15RUtjoy8dT2NGnV+i1jbjZ3PQ61pvbzOy3PMUdKG0TVLoZBF8QpqmTs7xi5e+hLbMuOMWtGXeF6zGOnvjRvmne2nn86DL7/8Em+//TaaNm2Kzz77DA8//LC5xggiiCBnjoGMjAyMGTMG06ZNw4IFC9C6dWvF49xy4qQYXU/How9qeDUDwlpExkkDSq9PSs6eG9F+MWgA2FOmnpfhakV7ThrPkZHOnMuJ9UVSjGqMVzl3tT7wWisktuP0WjgrmnRqHHZaY0aRzl7h3Vdejp2ba+K0NKb3fHJy+4RAIIBnnnkGVatWRc+ePbFv3z688cYbCA8Pt9Yw4R6BAH8jVCXZEqx41Nz2DikpKejRowdOnDiB7du3IzExMccxgwff/K/ThUm0iIjgv08di0HhFQfOK/3ghdrD1EmnnUfggOX8ZgxXpe07nM5mKJ3TSvVZnvgpWGBljZ1eH6w6dTycTt4OHU9D2wosWjc7A4E3dhZ7MqsxpTHMTDtWPmt2vHJyvH38ceCzz4DWrVtj+/bt6NixIw4ePIi5c+ciLi7OmU4QhMcIrUmlBjl16hQaNmyIjIwMbNu2TdORk8JSqtvu9RtiP6y2wXoet9YiublPEQ+s3gfW722n5uxY12F1jRJrG1bOr9QPcfsQq9uIOI2835GR3vgtmekDa8DAaj+c0pe0D0r3yY5z2YWaxtzUmdFnB+v1NLJ0x86xW++8vO6Bkzp7/PGb/01MTMS2bdtw48YNNGzYEKdOnXKuEwQ/aM2cZULr2xpgx44dqFOnDho0aIAVK1YgPj4+2/uDBys7ckrIDT0zmNUm78Io4uedfgg77bQ5tVaON0rXx2mnRv553oaIkXvP+xr7OXBgFiPf2S6t2RGwYDne7iAJy7n9YmjzWFNt9+/LapCId0DM6Fhm5vzyz9k5drnh0MXHx2PFihWoX78+6tSpg507dzrXCYIP5MxZJrS+LSMLFizAfffdhzFjxuCTTz5BhGzUY3XipCgNpqyfs2og8coQSJ1Suwl2g9mpccZshsWK7ng4kdJ+uBXBl583GHVoFiWj2+2ggZVzyz9v9H5bNfJDMUjAipvXhvc5pVoz26bVrK7dOGlHiw5drly5MHnyZIwePRr33nsvFi5c6EwHCMIj0CNDgiAImDhxIl5//XXMmTMH7du3z/a+VSdOjnQw513NTck4MbM2wMnMm1ewOyvn1INOSQMiWlrgoT0eRVIAProIC2O7p17SIE+c0hurvuRYDRrwLJgSEeHcWji53pwYd4KlKqb82jlRfIXXmCZtC7BvTZzaeMbyWR44pTdxDV0gEMDw4cNRtmxZPPzww/jtt9/wzDPPqFYdJzyEHRGAEMvMBan5YpyMjAw8/fTTWLBgATZu3IiaNWtme5+3IyeHh2HCMm2H9UFkp2Frtu1gMUScgEULIlJN8M6u8AoiWDUMlD4frM6bG2gFDgB1DfAIHIhtWDGypf21ojU9Q9ltzdltYGdmumNDseiNV7/MBi2UPg9Yc66UPmtk1k+wOXQA0KFDB2zatAlt27bFmTNn8N5771GlSyLoIXMGwNWrV/Hoo4/iwIED2Lp1K0qVKpX1nt1OnPwzZgwTo06jWttGpxV5OQptlmDIyhk9h3SKHO/qgWL7rG3rrU/itdchK8GUzXATJQPYjtkH0vZZ0VobxSNL5yXjOlRQuuZ2BEqNOnYs603NOnVmsspOZOnccOhq1qyJn376Ca1bt0bPnj0xe/Zs5M6d2/5OEOagzJxlQt6ZS0pKQqdOnXD16lVs3rwZBQoUyHrPqCNnxYmTw2KYWJmeJLZrV6TY7Qi0WexYUyCW47Z7bOFRiMGoQcwjkGBnEEHePhnL/DETPBA/52bwgEV3Zg1RszMtgilb4jWsZtRY27caLDXqYMmzykY+K/2c3Q4dcOscrNtYGH0eSx260qVLY8uWLWjXrh3atGmDJUuW5ChkRxDBgk9Nbj6cPXsWbdq0QYkSJbBixQrExMQAcD4bp4WSAWzVKRAXdPN+oHnRgfNCn1gfSHZswm32c3qGiZVAQkQEcPWqtQIAZvc7NGO0OGX88gwkOBVAMItSEQjeAQQtDZspbmJm3aVX9SY9B2/duTXV0ghGdGc2WCFt28xYZ2XKrhmnjleWjtcz14wuIyOBYcOADz+8+e8CBQpg/fr16NatGxo3boxVq1ahaNGifDpI8IMyc5YJrW8r4ffff0fDhg1Ru3ZtLFmyJMuRe+opY/v4mNGg0c9Iq8VZ0SfvSmDyKmxuobT3kliJ0E9Iq4XavY8Uq5Z4Vw4UsTrjRW19nttalKNUiU/+Z0eVOaV9vOyoCsh7NoJWv8yOf7y+t142UK/gBK9zseJl3Xn5N8q7bR5jnd6aVK3PmjkfC/JnlJfu67Bht/4/JiYGS5YsQa1atdCgQQOcOHHCvY4RhE145KfnLEeOHEHz5s3RtWtXvPvuuwgEAnjqKfXjlR54ZrIoVrMnZqclqQ2wPIpTODldx0+bMJtFSSNK39tK5sWsQWxlWpzYhvzfVtqLjDS/voS3buX3yC/T2LQcdVFjPDGaVQNuaoSXcyO2ZxZp9sKu7J70MyzHW62M6BZK0wNFeGvPTDEygF81Xl7ac2pdnNJntJ6/4nte0p80Q5crVy5Mnz4dw4cPR6NGjbB+/XpUqFDB3Q4St6DMnGVCzpnbv38/WrRogQEDBmD8+PG6jpwadk7T0Pocz/Ug4nFWF27bgdXzeemhwooRncgfrHascVP6nFmjhGdAQW4EOrXBe2Yme0DBj+uS5NpQ+65OT+HkURJeqhmrhrXZ9XCAcV3Ij2eZKeI33Smh9T3tCDKw9IPHsgQrjqJ0rSlgv1Mnns/I2jUv6y8QCOC9995DTEwMGjdujHXr1qFq1apud4sAyJnjQEg5cz///DNatWqFESNG4PnnnwcAU46cHLUBmvc6Jvk5ra4FYTmHHm5UGAxGeKyDFOG5zs1KgR55v7SOsRJQsGtdEulSGacDCSJmnDCte2i0PR7r4Yx+zuxaK68a1Dwwqz+rGHXE9O6d1THUjmInSucyOiPGS/qTZueAmw7d66+/jujoaDRt2hRr165FrVq13OsgQXAiZMyVrVu3ok2bNhg3bhyefvppLk6cEtLomdGHjJmF1jyqUvJqx8j5vDLYByPyzJUdFQOl5+IRVNBy6OzSpNzoIOfNHPLrxnOPL63ZCWrnUuuX1nFWDGqeDh0vDXrJoLYbpWvGw8FjqZiqdi4j91HLqbMroGp2urCR9r2iP7lDBwDPP/88oqOj0axZM6xatQr16tVzp3PETSgzZ5mQMF927dqFNm3aYMKECXjiiSdsc+SA7PphjbxZ0Vzu3Hzm9Vtdv6TXPqGO3WOO0QyE2eptN25YDypERJirdGnGeKCgwi14alB+76xuwM1yLrm2zQQTzLZjddpbiNkcivCugMlLg0bOZTUgaqUdMxq0e+07r+qYPFBy6IYPH47IyEi0adMG69evpwwd4WuC3szev38/WrZsiZdfftlWR44lisdriwFehSTsigK77bx54eHBip2GnFYFNLu2HNBqmxWzAQozUye9FEEOVsysE7JSDt4KVtoxO33SLv2Rtm/Bkj2WYrZIlPhfq+s7zbbB4kApadxOrXhFh0oO3ZAhQ3Dt2jW0bNkSP/zwA62hc4tAgL8xFAjwbc/jBLUzJ1atHDFiBE6eHO6KIyfFysJ56efV3rM6j9/KQ8htB84okZHmNiXVw8jifCcdOTlKjpebwQVeAQolw8EtbXrFiHETpwMKem3b3YbR9Uh6n7EKaVB/qi7Ab1YKj+qVPNqQO3VOrX/n2bZdG4vLGTFiBNLS0tC8eXNs3LgRFStWtNYgQbiAz0xwdn777Tc0a9YMAwcOxIULz9tyDivRO4Dd8Oex9oO3QevWInQtjJaqt2OrAyc2CNfDaBluadUyI3g1uODEFE3e2KFF1vvp1jQ/JceJZ0BB2q5TbQDm1iN5QYMibga43IJ3IMBsu1ptmOmXuMed0Yy4XdMujVQEZsFoWyNHAu+8k/P1F154AVeuXEGzZs2wadMmlC1blk8HCTZozZxlgtKZ+/PPP9GsWTP06NHj/7cf4FO1UgqPaUDiQKT2sDPjgFktZqJlQHthnzcv9MEqYWH6Zd+ttG0EqUb09Kj2Ob1jrBQIMOLQ8S4jbhWz++DxPD8Ldl0rrwQVAGuFUswEFcxsp2CXQyffVsRpjJS194LjJ93km2d/9LTIokOtz8uRXnejGuahRa377ua4qObQvfbaa7hy5QqaN2+OLVu2oGjRos53jiBMEhAEQXC7EzxJSkpC48aNcffdd2P69OkIaMybFR086eAN3CzAoIadaznEB4fVh67VOfvSzxpxnoyeU2tAl98T1sHfK9FtLVg1JB6npUcz7Yro6UzJkDGrTavFAcwEGHjqUQuvGi2sqOnGiiHLS4t6fTCqJyuFUlj0pKQFp3So1Qce7dqNnmbM6tEJLboxLpoNutqlx9y5bz6rWG0Gt/Wo5NAJgoC+fftiz5492LRpE+Lj453vWAiRkpKC+Ph4JL/wAuLkRp/Vtq9eRfxrryE5ORlxcXFc2/YiQZWHvHr1Kjp27IgSJUpgypQpmo4cAHzwQU6nAbj5mvgnxWyk2c7PyD8rn29vtq3ISOeyYNLrrXTdgwmjjhygf22MzlBg1ZlcA1Y0ZfW+yjOILPrknYmQ3gPWPngdLd1Iv2NkpDu/S61rbHbmgXysNPpZJXj2k/W3rKRFLT16fdaRnnEv16LTzwo7fvMREea/g1yPrH3jpUel55KR7+JFPQYCAUydOhV33HEHOnbsiKuskVTCGqIRw/svhAiazFxGRga6du2Kc+fOYf369YiOjtY8fvRoc+fhNQVNipLmzG5ky6sdM1Ezs5FrPYz0xe1onxZGxhYjxxqJWJsxgMW+8Fq/Zue+d1bPJepHzygJNU1qHSe3d+yuRJmebj1YBVifvWB0LLOaEdHSZLDMXOChRyC7Jo0GuowSFsZvnZ2Vdux6ZkvJzGR32PygSaXsHABcvnwZzZs3R9GiRfHNN98gPDzc2Y6FCFmZuZdesicz9+qrlJnzE4IgYMiQIThy5AiWL19umyMH6EdgeUW9WObP85iOqdYOr6AGa9SYB142VOxy5AB7M1VK+yayoKVPM+1ERFgvOKSFPOKvR4gF/TSxklU3o8ncua3NYJD+v9l2cue232k1cl15OUHBgjyLbhfS9YhmMr1Kr5kdZ80kI1jOZzY77wdNjhyp/HpMTAyWL1+OQ4cOYejQoQiSnId3ocycZYLi27711ltYtmwZVq9ejdtuu03zWCuOnBTpAGfWiWMtHy9/zehgb7UNI+dy0nkLRqyOP2rXnpc+WbRjpDiK1vu8ggx6U+NCVad2GVusYwCP4IKRQjpawQWz7fA2nkNdk3bh1HOJdQovj2Ct2vtmnTopvK6Vnx262267DWvWrMG3336LiRMnOtspgjCIS/Wt+DF37lxMmDABmzZtQokSJTSP5eXISZEOgizT3cwMsjdu8JlWZBSWilZe3KLAa7j1QBMDDQD//e+UpqqZiUybKUhhttIaGcjuIL3uVoo86c1isLoti1bhKK02zOhRei5eumTth5e2QXAL+TU3M3WXNRhrpeiOlTaM3mcxGMv7Ge5nXZYoUQLLly9HkyZNUKpUKXTv3t3tLgUntDWBZXztzG3evBmPPfYY5s+fjxo1aqgeZ7cTJ6JV2t1KRsHKGg9pP3kN0n4xip1cHK+2TtrNyKR8cTyg7dSZ6UPu3NZ0JUagzezlxfLgF7+3m0YKcQvxfkREeDfAIG2D9fNi/1j1IGY9yHD2BtLAF2DPlgSA9bV1RgO7rLq0so0Baz+s6tLO5/nzKlsRv/46ULNmTcybNw9du3ZFsWLF0LBhQ/s6QhAm8a0zd+zYMXTs2BHvvvsu2rRpo3qcU46cFKnhzHNaGOsgy3sKpdecN6/1B2B70KgZCHY7clKUsiRm+2A12CBfv8TLofOiPuS4HWjwQpBBTYtW+2A2QCDFbJBCz2hVmv7stSCD29r0AnraNPu7MLqJtxTp1EsrG9mLsEyB5qlNPcfSi+P2LSevDRo1egft2nXEzp3bUL58eTe7FXxQZs4yvnTm/v33X7Rt2xYDBgzAwIEDVY978UVjGyHrYTQiJg7crOdmXWtkZdNRMxuOuhHBFc8fTNFj+cNKHGt4b5RrpOhHWJi586utxbQSbDBj2BrZ28gOw1kJrxklVgINvPFTkMGK4cxqNIvncWp6OmlTGb11jFLM9kcevBIxM2Za0WZkJPtz1Q5tivfcb8/2u+56HMnJv6Nly7b4+edtuvUZCMJJfLc1QXp6Olq1aoX8+fNj/vz5CFN52r/4ol47xs5rZmoD6znNZNLMbjaqNTDz2GzW6MDv9w2XzaJnpPIwGIz2gee2G0o6sPJZJcw6/DyMEyMGkR9xO9Ag9oHnOK1336181mh7vM6hBunTGGbHTZ6BWitrPp0I0prRZ7A93wUhE0uXdkX+/Bfx/fdrkStXLre75GuytiaYMMGerQmeey5ktibwVWZOEAQMGzYMSUlJWL58uWlHDsgZEVSb7sHDiRORZwndKGoij7SxRGqNTNvRiuRJr7lee34c6HkiZs1EWKYjWdWqXhbb6MJ9swEHLQ0p6dXu9T9ey2Y4idp355XNVUPUp5GZFazV/8wEGlgzIUrXy+4sSCjqMzPzVpZJCacyzSxThY0U4AHMrfnU06fauAnw1ydr5s2P6zYDgTC0bTsbc+Y0wBNPDMOUKZMRCATc7pb/oWmWlvGVM/fhhx9i6dKl2LlzJ2JiYhSPYXHklO6x1NG4epWvEyfHStRU3i+vPvx5bHAbysg1pRd88GLQwer6ECNBB94BB9KoNkaDDbwCDYCy0Wy2QiCvQIOWPnlpUySYjWVeiPfDaECMxzkBa86kdJqv2SnCRiqlGtWntH3A2TWWXiAyMgadOn2LL7+sg2rVKmPYsGFud4kg/OPMrV69GmPHjsX69etRvHhxW88l3XNcb1C2up8Lz6ltWti9hYB0yptWf1keGsFugPAIGEk3LWY1HIyeV/wdWM3CmM04REcb+5wZ4zXUDBFWxMwHK6wzHfRgOafbwQapQcsaGLPi0JFGlWHRqPQYNY3aEbi1ulafx7pPI9VSjWbpxGeD1vEsmvdrwCE+vgQ6dlyMZ55pjsTERLRq1crtLvmbQIB/Ji3EMqa+cOZ+++039OzZE5999hnq1q2repzZrJwWvBbmay38tzI9Q89QVjM2jBrYLIv6/TgoBwMsEWEreuUx1c1s8R3eC/DFrDjviq+hiJYxLRrOdq29A8zvo6hUTMLMWl+jWwsYMVyjo2k8tRupc2eHTqXVJ420rVZcCmDTm3z8ZP0cwL/iZDA7dHfcUQ8tW36Krl17YO/eXShTpozbXSJCGM+bNGlpaXjwwQfRq1cvPPLII6rH8XLktI4RBzIjD3AWo1Hu0Fmd+mPHNEoexi9l5axrUO8YJceOZ+BB2i7LZ5SOMbKuQ/ycEWNErqFQXFPkNXgHHOR6Yw04aAUbAONr4swYy2QoexctnVpNHPBYX+fEGApk1w2vKcTBSNWqj+Kvv3aiQ4fO2LHjJ0RLp3UR7NCaOct42pkTBAGDBg1CbGwsJk2apHqcE46ciDTapjWVyKjzY7UUvxmDVW+Al0Yu9R4Ebg3oXpiC5MW9kuRRYZ4FVKTBBzNOvlR3rLo1m9kzQygbJ06gVOrdiiOn1LYdAQe9fbnMZD8o0GANo1MtjRxjZWmCntaUdGp23ae0PSOf0UP0S6zOjLAz6OCF5/+9976NefPuxcCBg/HFFzOpIArhCp525j799FOsXbsWu3fvRqQHnnrywVYcSKSGshnjVvoQCQuz9tAwOiCyrM/gMc3NTFZOLcjlNWNbun5NibQ05/qihpJWpRjVrZXiJuLnrWqVZ3+M4kfDw4tBByD775xXIRWpsey1gIPTWjUDaTUndgRypYVarGwkbmQ80nPqjN57Xs6a0jFKNoDXnv8xMZHo0mU+Pv30Lnz22WcYNGiQ213yH5SZs4xnnbkdO3Zg1KhRWLVqFYoWLap63BtvZP/BKxnOPLJyWgO02Yez2jlZjAK1/hiNcMkzOGawMrhK712wTsMUv6P8ftulVS2sVG1VOr/R6TvS85mJxkrPZ8bgtEs/fgg8yNexKcE78GC2kIqSsWxGq1YcJzOVTbUMZTuMZDMEm1btzM7p9U/EivMpntNMsRPxM0YLmMjPp6VN3uuWlRA1mZqqrk8RL07tjIsriq5d52H48La46667UKdOHbe7RIQYnnTmUlJS0LNnT7z88sto3Lix6nFvvJHzNflAwDLI8nDgpXve8KiAqTSA8iraYGTjUF5ZOb0B2muDsxMoXRMeEWkWnYSFGa9WqRV8ALS1wiv4ALibNWCp4uZnpJqU3m+ns8t2BB0AtvFMfi6zhrKekcwDrd+P0UCZF9FysNzQqtp2FkaWJEhR+m6sWlXqhxmtshTb0XPojGTetGyB2Fj/arV06SZo1OgldO3aEwcP7kXevHnd7pJ/oMycZTzpzA0bNgylS5fGqFGjVI9RcuSU0IugsTpWWqjNtbe6gFocQI0aMqxFIHg4ckpt2GXAeHWQ5zlm8Iz4qsGqV63PKKFkhLA6lnr31srejGaxupbdq3o1g9K1cMrBM7JVjIjZwIOWXo0EHqSVNp2A6i7cQu1apKU5Y9+x7jdnZDaQmTEV0NartJ88sl1abRixCfxc2KdBg2dw8uRaPPHEMHzxxUy3u+MfyJmzjOecublz52L58uXYv38/wmy4GfJBxWz1MxbMVL+Uf97sfjVhYfYbE+Jg6vb6Cj9gVspG9WoFJa2Z6Xd0tDm9AvrbX2hhJYtMGjaOXZllOdLsjN54yKpXuVPHOlbyLN1uZfqaHXr1qoHMa4oki16NTgvW64vV/eZEzO43x2NclfaB9fxOjKde1GtYWBg6dpyNTz+thnnz5qF79+5ud4kIETzlzP3xxx8YNGgQZs6ciWLFiqkex5qV00O+XsxMpJkluhYRwW7kqA20WvvRycmd23r1Sa3P86pyxdoX1mNCAb31oTzPYcYwF/VrRK9qbdgJOW/24ERmGeCzBQdwa3NlM8EHvdLtPI1N0qs9mNGrmdkycr2a0arV4K6eXWBVrzztAi86aqzExRVDu3bTMGBAP9StWxclS5Z0u0vehzJzlvGMM5eZmYlevXqhR48e6NSpk+pxPB05OeJgJBrJRqdXap1Dr5ogiwGrZXTY+bCnKTzquDleKDl2PLOxepqVoqRfI4YHSwDCCrwDEAQbuXNbD5jpIU5pNOo4SjVrxqGLjvaPZv1sHLPCI6smjnmiZs3qVasvou6sBHmNOnXS72XFoZN/Xsk24FUwxc/TLe+88wH8/vtqPPxwb2za9L0ts8wIQopnnLnJkyfj9OnTWLlypdtdQXT0rYGYd2Q5d+7sbRrNQsiNDjNbCbCsT9Lrl5NZOb/DaxzXctSkFTO1NGumaquWU0dBCMIIdmaWnQo+kGadh4ejZgb5/RA1ayY7p4S80I8SWmOsnmbt0irpVJ8WLd7BZ59VxaeffoonnnjC7e54G8rMWcYTztzJkycxZswYLFmyBDExMarH2ZmVU0PNQOCxlYFZR4b3AC1vz2sOllZ/nHqoeGGvOFZYDAQr7YptGglEyI0OueZ4bEqvpwXKynkLM4VNWNDSP2vwQalPdhjGXjOKvZrp8AryCpp2jq8A+xirN75KMZudk7ZptfolKzyyc0Z/Y2lp5n+XUjshKioW998/Dc880wlt27ZFqVKlzDVKEAy47swJgoABAwbgoYceQrNmzVSP4+XIsaDkqPE0kKWOnhEjJjJSf4BkNYqtGCZ2Z+XkA6kXjAulwV1JJ15z+ng7dhERN8tHmzW+7QxEeEEnrDhhxHtNi1o4EYCwMguCdHsTr+uWVwaPJfOWmamtW72+sGxzYFQb4qwanoErr67XtMtOsKJx+WerVm2GI0d6ol+/gVi/fg0CgYC1zgUrlJmzjOvO3PTp03HkyBEsXLhQ8zhe03N4TI2IjdXuh5Fz6E2T4FkMgmWNhxOGhZG9uvxk6AA5B3Mn9+rSG7vE9Utm+yHVtdE1G3Zu3+A0rFFgt7WrZpR4PQhhh2MnjtlGgxCxsfwMY7O6dSLL4QfdAjm1G+y6NTrOStfj6e37qfW+nu5ZMma8dOvnvecAoF27SXj//SqYPn06HnvsMbe7QwQprjpzf/31F0aNGoWvv/4acXFxqsd98EH2f5vd88jI/iwsyAumsKDWB/m6IiUnzkxWTnqteAysRtrw2hQit7GyVxePIITYBs91S6zBCKva0zOEnXrYs2yw60e0Ms9uGszSwg08+sFqHLMG0VimrDlRnZWFYNSunbq1si5OOl5paVfvHOL7TgV93XxmWz23V6cI58kTj06dPsPIkQ+jffv2KFy4sNtd8h6UmbOMq87cM888gxYtWqBt27aW2xIjryKpqZabVESvCiaPfemsYnZQtDIQSq9/MGbc5PAaJ6TFdkTs0q7a+QE+2hUNDTt07MZ6NwpG3ERrE2a3+mFXECIYtBusRjEr4vRGJ3TLOq2Tl3aVdKumWSOZMTNVKa1m54zYDH7XZKVKbVGmTDOMHPksvvxyltvd8R6BAH/nK8SmtLrmzG3cuBGLFy/G4cOHNY+TZ+WUUNKA3LljmfZgVUvR0dpROCvGst6grFeBkmdWTn5tpfAccP08eAPm9eRUYEKKnnZZcDsYYQXxmvtdc04iD0S4FYSwAu+sGWnXXnisiZNW/pXilH7l2rW6b51ZpBk/J9CyG3jhZaevXbv38M47d2Ljxn5o0qSJ290hPMC1a9cQFRXFpS1XnLn09HQ88cQTGDduHO644w7V41gcOVZ4RMb0BlzpNDYnotY8o78s64B4DZJeHWy9Smys/to7nplCtXPYBctWGDxxwqgIRZSuq90Gsl0VMc32wQxGDVAr+vWyses0csdQKYjGYwsCtTZYtWulD2qZMV57GLJWkuSRefO7dhMSiqNZs5cxcOATOHhwL3LlyuV2l7xDiEyzXLVqFebOnYsff/wRp0+fRmZmJmJiYlCzZk20bNkSffv2RdGiRU217cq3/eCDDxAWFoYnn3zSclss90t+THT0rT8j7RhB3j7PrJy8basVLuVIrw9NNcsJT63w0i9v7NSv/DxWPs+C+F1iY8mRc5rYWOfGEjfGKyfOJ9Wuln49aLu4Bg+jX7zeerricS4nn7dGxnUz476d38XM89JLNGr0FC5fDuD99993uyuEjE2bNqF9+/YoWrQoAoEAlixZwq3txYsXIzExEf369UNERARGjx6NRYsWYc2aNZg2bRqaNGmCdevWoUyZMhg0aBD+/vtvw+dwPDP3119/Yfz48fj22281IxM8s3JaSKcKaWUjzA564oBmNWps5yDPUmXN6XVwfo7AOYl0ypCX9avUpl14IQBB+lXG7AwJI9kJpewyr02epe3biVJVXCc15fcsiB2obSDOAmuhE+l5eOvXLt2GhenbEE5n3ryq3/DwXGjf/iO88koH9O7dG4UKFXK7S97AA5m5y5cvo3r16ujXrx86d+7MtSsTJ07Ee++9hzZt2iBMoV/dunUDAJw9exYffvghvvzySwwfPtzQOQKCIAhcesvIoEGDcOHCBSxatEjzOLNr5XgdIx1IWQZRrWOk7xl5ALBMhWDJWihl9qTwctR4OnxeHIhFeEYH7dKwXGdWI7Di+2amX4r6UzMmeGSWeVW7dFrnbuC2NtWO0dOWFQ1bLfBz44Z5/bIc42RAjcZge9rSW5fvln5ZtiSyWinbi9r0sn6/+OIB1KlzO6ZMmex2V1wlJSUF8fHxSP78c8RxjjakpKUhvl8/JCcna1bLVyIQCGDx4sXo1KkT1z7ZiaOZuQMHDmDWrFnYv3+/5nFOZeUA9UHayNohI4Msy3o6nmvh9AxpFpweFKXn89K0uNRU56dYmm2HZ+U/pXbNBCV4Q2s5gwu7NCu2bbbAj54xbHY/LS/t7RaM8NpAnBUrmTuWts0E1HiPvVp7V3ptXZy0LS07IjXVeTujdeuJeO+9anjyySGoUqWKsyf3IjZm5lJSUrK9HBUVxa3oCA8yMjJw4MABlCxZEvny5TPdjmPOnCAIGDlyJAYPHozy5ctbbs+pudNSh57X4KxmENsx8Dq1SbjRdrwwFc4oLAM+byOUh4bNGgJ6beq1x2uRvbw9v+GVgIST1Sat4pVghFPGsJOYMZhJw8aRa9jIVEut942MvSJWNxGPi3Nnexg1pBq2+ptyQ9ulS5dHw4aD8PTTo7Bu3WrnOxBCFC9ePNu/X375ZYwbN86dzgB4+umnUbVqVfTv3x8ZGRlo0qQJfvrpJ0RHR2P58uVo2rSpqXYdc+bWrl2LXbt2Yd68eZrHTZ2qH+Fya4Gr0iBqZeqE3iBkdOqDvD23B18z0zn9jlrZa8C9zZelGuRdrVIp08zTYGUJSLiJF4xzVliNFjc3CVdCvMa8Ng6XtqnWntNOnJtrfEJdwywZPKtZPqc07GbwgZeG1doJNnvi/vtfwrhx5bB27Vq0bNnS7e64i42ZudOnT2ebZul2Vm7BggV45JFHAADLli3DiRMncOTIEXzxxRd4/vnnsWXLFlPtOuLMCYKAF154AWPGjDGVRlRaDA5oD4p2Zu7cKN+uht0PYpYBk2W9RyihN3VXepxbGjKS+dALWGhp0OxaDS8ZmMFmROjBOyDBc7ob74ydfCznHYgQ4RGQsDJNjTR8C7vGXB4biJspdOKUA2d2OrEUVofPS+O/XcTE5EPz5qMxZswLaNGiBQIhtsm1U8TFxRleM2cn//zzD26//XYAwMqVK9G1a9esSpcfWFhj5ogzt2zZMpw+fRpDhgzRPG7qVGPt2jlHHdAfVEV9OL1JuJitsLo3l5kHutIgG+yGgR2ID32l6+m0g6enY6dQuhZOZuVYDIhQ17pfAxJG2rKK24ao2+f3EkoOltL1cUrHcmfNqIbt2HNOxK2plGp6DfZ95wCgadMhePnld7B8+XK0b9/e7e64hweqWTpF4cKFcejQIRQpUgSrV6/G5Mk3i+CkpaUhPDzcdLu2O3OZmZl48cUXMXbsWERzeMpo3R95NM5q5o4VpzJ1Ri4fj0E5OpqKS7hBsOtY6ZxOQ0EJfnghIGGlwAmv83vlvKRjc+jp2O6CKnZMxTRyXh6wOFixsaRRkaioGLRoMRZjx76I+++/X7FsfUjgAWcuNTUVv/76a9a/T5w4gb179yJ//vwoUaIEt2717dsX3bp1Q5EiRRAIBNC8eXMAwPbt21GxYkXT7druzC1cuBD//vsvHn/8cc3jjGblWLCSuTO7WaZ4Hq/vaURTcfyD3RlotfPZeR7exVFYz0c4g9EMHi9D2c6KmFrn09Mxjylq0vNZJRiyGjxR058bOpZvg8FTx1IdmtESj8qtPAkGHTduPAjff/82Fi1ahC5durjdnZDl559/xr333pv17xEjRgAAevfujZkzZ3I7z7hx41ClShWcPn0aXbt2zVrDFx4ejjFjxphu19Z95gRBQI0aNfD444/jiSee0DyWxZlzaj8YgM++XGYHYb3pk07sywWEzp5FPHF6byPA3v2NRMxuGi7VoplplCxa5hWY8PveRbyxey8vo4WtzOpYPI/VAJuWlnnsNeekjo0c53fsHpPNFGhzU8vBZl8Eg45/+OET7N//GQ4e3BtSa+ey9pmbO9eefeZ69DC1z5wd9OrVCx07dkSrVq0Qa0MJVVtzumvXrsW5c+fQt29fzePsyMppERub/U8Oz6yaEX0aPd4oWt/ZToJhsPUqERH2a1ksh21Gm+Ln7NS19Bx2n4vgh1P3jNc5tNrh8TsjHduD3c8fJ++ZlXMEq30RDDMT69fvi7Nn/8R3333ndlcImyhXrhwmTJiAggULok2bNpg8eTLOnj3LrX1bM3MtWrRAo0aN8NJLL2kexysrx3Kc3kM3NZVPVk4JpUyd0WyFkQiw2qBqNtth9rhQcubszmbI0dIii5b12jCiZSms08/Mvi/VNq+9FEnL2XE6yyzVmtJ+Yla1LH3fzMbLpGX/4ua4bEbLRt5n0bLRTDLr+2Rj8GP58ldw+fIWfP/9Wre74hhZmblvvrEnM9etm2cycyJnzpzBt99+i6VLl2Ljxo2oXLkyOnbsiA4dOqBGjRqm27XNmduzZw8aNmyIP/74AwUKFFA9jjUrZ4fBoHeM2galVgZivRLYVgbZ2Fg+030A96fzeGGTWjMb1PLSqR+0DOjvMccrMAEoa4KMBvtw05mTImqXpzMnYmTjZZ7OnN1GMGk5O17RMsCuZx5aDhU7w6yWvWBnADc1kZr6D55/vgS2bfvJklHvJ0LRmZPy33//YdWqVVi6dClWrVqFvHnzon379hg8eDAqV65sqC3bCqC888476Nu3r6Yjx4qTaXTpACn+0M0Y9WrwnubglcFIDekgq/V78qJhIb22ehpMSfH2dA/pd+Gt57Q0e7YVYDUa/IDbv1Oe99xpxGunF5gwgxMbL4u4rQFeeOF7BIue7bIt1MZkK0jvO6+CPryQF0Lxo60RG1sADRv2xVtvvY05c750u0vO4oFqlm6QN29edOvWDd26dUNGRgZ++OEHfPvtt9i6dathZ86WzNyFCxdQvHhxHDx4EOXLl1c9bt485ddTUrL/241MhhpWi03owZLJ0HqY2lVQguU4pQE0WBbjW9FgqOrZjBbl2nZKz2Z06jeDQYQlMMFyHGt7rMeYyVTIjWEexX7UsKpnr2Uz5Mep6dnLWgb46tnNsdlJLQNsevaqrQHk1Gsw2Brnzh3Dc89VxdmzZ1CwYEG3u2M7WZm5BQvsycx16eLpzBxPbMnMzZo1Cw0bNtR05LSQX3dx8JQbxW5gZ9l2vY3CvTIIxcV5py9OYDXAE6p6ZsXKlDO7MWsw+BnxOyvp3k3NKm2YbFfG2QpeyFypYUbPfi//zlvPLNsPmNncW64bvTXPVjYQ14OHvcGSvWPRFqu94XedAkCRIomoWLEBZs2ahVGjRrndHecIBPhn0jxaFfTff//FSy+9hA0bNuDChQvIlIn24sWLptrlPhQIgoApU6bgtdde49Ke9P4qOdc8p7cZGRid2M/IaKCCt/HrVDDD7wOwEVj0zAuv6VmOV4zeUAtOWEFJs14JTsTG6u8DZvf5vQDpmR039aznjIl6BpzdM9FNnLA5vO70NW48EJMnv4SRI0eGzjYFITTN8tFHH8Wvv/6K/v37o3DhwtzuMXdn7ocffkBSUhI6deqkeZzaFEujxMXlvGdKgzCPCJaaNsRB0OxeXEptOY10EOU10Hl5wPQqSlFkp41kO7N1Un27oY8QmG3hGnYHJ1hxMjBhRM92rDNS07PXDVae8NpwXo5X9Aw4NyYbwaqexeublKQ/LoeSnu+++wF8+eVQbNy4EU2bNnW7OwRnfvzxR2zevBnVq1fn2i53Z27q1Kno3bt31q7mbiAfGJwagM0OuNHRNwdFrc08eQxk0oHXr+sjQgG5YaKkZ7um1yid16oB4XaAgjTtHm4HJ+xy7NzUNOnZHDycvmDSc1yctjPGw4GSOnxqNkdCAj9NB4PTlytXFBo27IOpU6eGjjMXQpm5ihUr4sqVK9zb5WoSXr58GUuXLsXWrVu5tMfrXiQk3Pp/syXajcDi1PE2BvRKCQOUcbMTJ8cNeTba7Foh1j6bMSDEAIWTUNbNH7gZbIuIMG8EO+3AkZ69i9QxVMvg8VjTpuWAino0qmmndMzb7uCJ152++vUfxWuv1cfly5cRExPjdncIjnzyyScYM2YMXnrpJVSpUgW5cuXK9r7ZYi1cnbnly5ejZMmSqFq1quZxvKZYAsaNaKVFxjzOozRoO1n2WopX1m4EAx4N7mTDrKbNoBeocNLgjY315gPZi33yMvJsh92FTIwGJ6TH253JYMlSeN0QJdg1zauICYum7Rib5VMt7bQ9Qkn3JUpUQ4ECJbBixQp069bN7e7YTwhl5hISEpCSkoL77rsv2+uCICAQCCAjI8NUu1yduXnz5qF79+6+WrRp154vUvQGUb0Mht4A5uf9uEJlcHYSJzUtGg4UpCB44ZXgRChoOpQMZFbsWIPnpqbt1rGehlk0RjrMTiAQQO3aPfD11/NCw5kLIR5++GHkypULX3/9tTcLoKSkpGDlypWYMGECl/bc2Cjci2Wu1TBqBPDcm4jX+axgJhPtdrU9N7Bb02qGgtUABeC+oUt4A/lmxU7qmDd+1TQZ23zxiqb1ipio3Xej+yc6CatWzWrayvRnIzZI3brd8cILbyAlJSX490kLoczcwYMHsWfPHlSoUIFru9ycuRUrVqBChQqoWLGi5nFOT7E0ez+lg5Wbe3CJWNm800u4uW+XmfGQ515bbo8tfghWeNlIsBuzz+tQC1L4QcdSSNPGMappuypaOoWWpvW+m537zUnxayBCitv7hhr5PcTFVUTRoolYuXIlevToYV+nCEe5++67cfr0ae86c8uXL0eHDh10j3Nr8bsV9IwHuwZSLy4g1uqLHdsbeBGtvYlE3Na1nialexi5aRBbMRCc1lhsrPp9dVP7Rg1mr20GbgWvOnbBYPgC7umaR+BNSdM8nT6Wtsycz8kpmXqwrEu2Y8sNNbSyaVLNsGx34Adq1bofK1asDn5nLoQyc8OGDcNTTz2FZ555BlWrVs1RAKVatWqm2uXihty4cQOrVq3CypUrDX9W7wfnpQc0wN94kA+CXjYCvNw3N1EaM7R0raUbN8Yfpw1iJwuX8DiPdIuDYDAQlPBDgEIPtwMUXi3Io0QoBN609uCT4raujWwe7tT4LIXHFFte6+ZYbRCe2x24Sa1arfHee92RmZmJMI86J1wIIWeue/fuAIB+/fplvRYIBLxRAGXr1q2IiIhA7dq1NY9btcp420o/3tRUfvfJSlZN7NvVq9b6oDVA8RiQjLbhlNPm9cHWrrFA7fryqqxqBWnfrOparV2v4eW+eQmzAQo3cCpA4WXtBGvggTehruuICCB3bj5t8cKp35XX14JWrFgfaWlXsG/fPtSsWdPt7hAcOHHihC3tcnHmli9fjrZt2yI8PJxHc7rExuZ0wpSiazyMXpYtCcwMsOJn3FxDIX2I8eyHlwdHL8Oqax6w/DasGg5eM3S91p9gwmqAwk7kOrY6Ld5rOvJaf4IJv+jabOAtmO2QYCAiIhdq1GiOVatWBbczFwKZuZdeegkdO3ZErVq1bGmfizO3evVqPPfcczyaMo1SdM2tqTZq57bjocs6+FGU1p+4pWu5waula6XjrD6UrX5evG5kHLiLdJsMKW5NbZMGTIz+jnhsAWN1fRHp2hs4rWu9tXe5c7Pr2g47hFXXZIcYp0aN1li2bLbrNjZhjTNnzqBNmzaIjIxE+/bt0aFDBzRr1gyRkZFc2rfszJ0/fx4HDx5Es2bNePSHK24WW3EzWup2xSbCXpQeiE5pWy1b5yW9E97HriCFkYITLJnnUNC116easeKFipZqY7OT/fLSGG3UFuFZTCVYdH3XXa3x6aeDkZSUhISEBLe7Yw8hkJn7/PPPkZmZiS1btmDZsmV4+umnce7cObRo0QIdO3ZEu3btkD9/ftPtW3bm1q1bh5o1a6JAgQKax5lZL6cGyzQZlqIUbm85wGMvLoCMWcIdbbttHATDg5q4RagG30SkhXb0cLKCYLDB0+lj2RYgLs69oiu8dM3qGPnRFvG601ewYHGUKFER69atQ5cuXdzuDmGBsLAwNGrUCI0aNcLEiRNx+PBhLFu2DJ999hkGDhyIOnXqoEOHDujZsyeKFStmqG3Lztx3332HFi1aWG3GFfRKAHvMsc9C2m+9QcjLgxRhH14qb20FPxoHBB+U7r3bATheaOnaq8alV/vlR5QCF07sFaeG2eCAEVuEME+NGm2wevXq4HXmAgH+BncgwLc9G6hUqRIqVaqEZ599FhcuXMCyZcvw7bffAgBGjRplqC1Lw4cgCFi3bh2++OILK814BrkBrGc4ODX4qkXXeA2ebhQ/oYHfWby6H5ccL+6tSHgHv+hYCdI2oYY8e+dlbXshix1q3HVXG3z8ca+s8vVE8FGoUCH0798f/fv3N/V5S+7I0aNH8e+//6J+/fpWmvEs0uiZk1N+aJH7zX1i7CYpyXobXsze6vVJXjXTzX2WyDAgzOL17DNpmzCLGW2zTPk0A6s94sXMLa8+ObVUTc0mqVSpPi5e/AfHjh1DhQoVnOmMk4TAmjmRBx54QNEhDwQCyJ07N8qXL4+HHnoIiYmJhtq19NPfsGED6tevj9w6m5Q4vV6OBaP3mbdjJx0Yg3EqmR++k9UBmrcT5NY0Gzu1rXYuClTYC49Ahd+QVxh0OkhB2iZt24XT2rbr+c3iXNm1HtTfNkluVK5cHxs2bCBnzkibHiQ+Ph5LlixBQkJC1jYFu3fvRlJSElq2bIm5c+fizTffxPr169GgQQPmdi07c/fee6/ucSw/Ip6Dk933UPw+YWHmo8F618SrBoFev70WmbMTpYXtSoSattXaDBb88H28FqhggXc1QidmVvhBC0bww/chbdunba3779WiO6Fik9x1171Yv34DBg0a5HZXCAvcfvvteOihh/DRRx8h7P8HhczMTDz11FPImzcv5s6di0GDBmH06NHYvHkzc7sBQRAEMx0SBAGFCxfGokWL0LBhQ81jt2zRb09roJNG4sxWsjR6jN55lD6vZfzKp03oDTAsgybLIMVyjPRcag9KWgunDOsDWu04N7TNci55G0Ycu+ho7ffd0jYLWoYBaTsnrIYka9ZZ75y8tG0lUGFV36Rt9+EdhOMxdruhbd52iV3atmKXBIu29+/fjHHjHsSFC+eDZt1cSkoK4uPjkbx5M+I4z0tPSU1FfMOGSE5ORpyHolQFCxbEli1bckyjPHbsGOrXr49//vkHBw4cQKNGjZBkYBqC6czcL7/8gsuXL6NOnTpmm2BG+kN2q8QvC/LF+W6vmdAaxIyUwSbsw6/a1nrfy5pSMgq83F+vo5Wd9vJ0OKOFVPygb6uBuFCCJVPmtLZ5Ze+MjNVegrad0aZSpTq4fDkVhw4dQuXKld3uDmGSGzdu4MiRIzmcuSNHjiAjIwMAkDt3bsMOu2lnbsOGDWjYsKHu7uUsWTlWWPaOE4/TMoSdmEpr94AZrHu+ELdQu39Wpz9aXZsXG+uNYIUaZBR4Az8HKryqbYACcV5A7jhL9e1VbTsBr/3oeBZT8WJhFjPkyhWJqlUbYMOGDcHnzIXQmrlHH30U/fv3x3PPPYfatWsDAHbu3IkJEyagV69eAICNGzcavseWnDmW9XJOI94/pcHCS4Msb5S+r9MDWDAMmHbAc0wJC/OGtr1g7FKwwr/YFaiwihd0DZC2vYKZbJmb2ua9No8HXrBNgoUaNe7FunUbMHToULe7QpjkvffeQ+HChTFx4kT89ddfAIDChQtj+PDhGD16NACgZcuWaN26taF2Ta2Zy8zMRMGCBbFy5Urcc889mseyZuZ4rQUycoyWAWxmzRwrVuelx8XxmyvOc855KA7QvDTJsy09fdupbcCe9aBmDQLSt3mc1q3acVId27Ee1Ch2rCuS69sN3ZK+zR9n5Rgv6ZtsE2/zyy/b8Nxz9+Off/7OKp7hZ7LWzG3bZs+aubp1PbdmTkrK///4efTPVGZu//79uH79elZZTau4pUm1DIfdxoARPKpBAt6LgMrxQgbPDCwGQbA8nEMFKxkDuY71ptF7HRrTCSlSPbAEmt1EWtHSCzoOlimUrFSoUAvXrqXjwIEDqF69utvdIUwwZ84c9OzZE0BOJ+6ZZ57BpEmTTLVrypnbvHkz6tWrhwgdr4fnejmnkC96dnLajxiYCKXBiXAWN/WthBcMAsJ/+CVQQVPMCBEjAQ239K3lHPnZPgkWpy8iIheqVauPzZs3B5czF0Jr5gYPHoyEhAS0adMm2+vDhw/H3LlznXXmtm/fjrp165o6oVl43Rej7cgzvzyNX7NZ5VAqx0vYi536VjsfaZOwA+keiYA7gQoWffMyLIPFQCVuoeXwOa1vr6wfJbJTocI92L59O4YMGeJ2V/gRQs7cV199hZ49e2L58uVZ27oNGzYMixYtwoYNG0y3a9qZE9OEXsKpKpXShKSRaJk4GHtl400/GAJWN4iV4uVS6W4FK+RY0bdae0bxgy4J76OkPd4GMBm8BOBO4RHe+uZln4RSsMIN++TOO+/B1Knz+J2YcJT7778fn3zyCTp06IDvvvsO06dPx9KlS7Fhw4Yc2xUYwbAzd/HiRRw/fpxpf7mEBH2BetR5ZkY+HUJq/CpNlfCKI8ebzEwgf36249yCdeA1okkvO4g80NK32vFe0XgoGQIiwa5Hq1gNVjilbz8Ysnp4Xd9erPxoFdHBEzWupW83p7i7oW8W+wRw73fH+nu55546GD36GC5duoR8+fLZ2ifHCKHMHAA89NBDSEpKQoMGDVCwYEFs3LgR5cqVs9SmYWdu586dKFOmDAoUKMB0vJ5ApdfbC4aI1fsfTGuAxHvnd6PCTlgGYFFTVvXthbFJ1LdoJAST3vXwujEAGNMjC14Yk+1Eql8lw5f0nROv6xtg13go6RsIvnE7FG2U/PkLokSJMtixYwdatWrldncIBkaMGKH4esGCBXHXXXfhk08+yXrt3XffNXUOw87c3r17cdddd+ke98svxjvDMlC7vcjd6obLejg1KLEO5qE0SNqNH/TNSjAZA6RxdZwMVrhNsGhaCulbG6POoRc0zrMyrBmcyqoF4++RFxUr1sS+ffuCx5kLBPhHqwMBvu1ZYM+ePYqvlytXDikpKVnvByz02bBrsn//flSrVs30Ca2i9QP3e8lqntBA6E/07pvb1Sf9hB3TvAh1gilY4QdojHeeUNC4dPsBO/Gqfv0wxblcuWrYv3+/290gGLFS2IQVU85ct27d7OgLF9QGiJQUb0xT44nad/X6QESYIyxM+wHodyPCCF41BAhtKFjBDmncn1DAOTtkp/AnMbEapk5d4HY3+BFia+bswJAzl56ejiNHjriamVND777J99eS4uXBVT4Q0gDoL5zeYF7pfE7qm3dElwyB0CIUgxV2a9wPmYZQITMzODVO+yk6S2JiNRw7dgTp6emIjIx0uzuEDoMGDcILL7yAO+64Q/fYefPm4caNG3j44YcNncOQM3f06FFERUWhZMmShk7idaQDkWgMOz2oin2gAZDgjfxB65bGtZD2kX4DhBLyfbZEjOr4xg371z7LoaAcwQIvjdtJXFzobD3gVYoWLYVcuSJx7NgxVKlSxe3uWCfIM3MFCxZE5cqV0aBBA7Rv3x533303ihYtity5c+PSpUs4dOgQNm/ejLlz56Jo0aKYMmWK4XMYeqQdO3YMFSpUQBini+Sha50DtehZWpr5NsWsBU2f8S5e1iQPpN9PSYd2Gw28DAGCEPFasILGd4I3bmicdOxdwsLCUKpUIjlzem16hPHjx2Po0KGYNm0aPvnkExw6dCjb+3nz5kXz5s0xZcoUtG7d2tQ5DDlzx48fR/ny5XWPM1PJ0guw3HsjG3XKjyUjlvA6SlM1zaxjIkOAcBut9dN2tk/jPOEUWho3kn32u60Silm+EiXK4/jx4253g2CkcOHCeP755/H888/j0qVLOHXqFK5cuYICBQqgbNmylipZAiYyc1Z2KA9WlBw8M4TaYET4A7m+5c6d9H09DZPGCbcxE7AwovFgNyyD/fsFAywa52W3EO5QosTNzFxQEOSZOTn58uXjvuG7YWfuvvvu49oBP+FhbfgCMgCCAzICiGCDNE0EOzw1HuwOvR++X8mSiVix4ge3u0F4BEPO3IkTJ1C6dGm7+kL4nFDa18sLm8faAQUsCIIgvI2VjcOJ4LBV7ryzDD766ITb3eBDiGXm7IDZmbtx4wbOnz+P4sWL6x6bP7+lPhk2lFnuWYjdV8NYGdy8HsGyA6c1TrhLQsLNexYMRgArpNHQhDROeD0zRfYKUKTIHbhw4TwyMjIQHh7udncIl2F25v766y8IgoAiRYrY2R8Axn+oXirb6xVC6YHsR4zeHzI6+GD2d5GZGXq/KQpY+BMydNlJSLAW6CWNWyfUxlVeFCpUBBkZGfjrr79QtGhRt7tjDcrMWYbZmTtz5gwKFSqEXLly2dkfU7AOBsHg9Ol911B7GIcKrEZHMGicFTICvA0FLPhAOvcuZu5NqIzRLNeG7BXzREZGomDBQjhz5oz/nTnCMszO3NmzZ5l2L/cyeuXSw8LcHWipnDthFa9rnAUyAkITXgELP6wnIo2HLsESfOZhr3h9OqfXKVLkDpw9e9btblgnhDJzf/31F0aNGoX169fjwoULEAQh2/sZGRmm2jWUmStWrJjucefOmeqHZ9AaoKwYwiybJdOgRjiBXRq3em6CYIFFQ2b2RuQJ6ZywituBOb3zk73iPoULF8OZM2fc7oZ1QsiZ69OnD06dOoUXX3wRRYoUsby/nEhIZeZ4YPYhTQMf4Rf0NK5lQJABQHgBPR1acfbCwvTLvJPOCTV4Zo6tBOZorPY/QZOZCyE2b96MH3/8ETVq1ODariFn7s477+R6ci/hUSeeIDyHlhFABgDhB6xmzkjnhB+gDHFwc/vtxXD27BG3u2GdQIC/Ec4p48Wb4sWL55hayQPmq8c6zZIgCP5QsIEgCIIgCJHbby+G06eDYJplCPH+++9jzJgxOHnyJNd2mTNz586do4o5BEEQBEEQhC8JpqIrt99eDH/++afb3bBOCK2Z6969O9LS0lC2bFlER0fn2CHg4sWLptplduYuXryI2267zdRJggG7dREsgwtBEARBEARhLwkJ+XHp0iW3u0EY4P3337elXSZnThAEXLp0CQm04Q3BAaubEduByWAIQRAEQXgOu7foCKYMlxZetFdE4uISkJR0CYIgcKuK6AohlJnr3bu3Le0yOXOpqanIyMhAvnz5dI+109+jTWXNQ364Nl4asEnn/iV//puBAS/pSQkKXhA88KrOSd/+h2wWfUqVyocbN27g8uXLiNUrsUt4hoyMDCxZsgSHDx8GAFSuXBkdOnRAeHi46TaZnLmkpCQEAgHEx8ebPhEPlH7cVpxvLxvNZgeyUIiUBTuhpHPeeMEA8KqBK8XtPoaSJu3ACzr3Mm7rWySUdE42i/OINnlSUpK/nbkQysz9+uuvaNu2Lc6ePYsKFSoAAN544w0UL14cK1asQNmyZU21y+TMXbp0CfHx8Qjz6MUxi9UHotZeRX7+XRHBhZ06twoZAKGJ2n03+4jxutFsRuekcf/jJ53LbZaUFNrawOuEh4cjPj4ely5d8vc+0CHkzD355JMoW7Ystm3bhvz/H3X6999/8cgjj+DJJ5/EihUrTLXL7MzRermckMNGhAJynUudO/oNEF7A7oAF6ZzwArx1rqVrcuT8QXx8AhVB8REbN27M5sgBwG233YY333wTDRo0MN0u8zRLlvVyBEEEP2TYEsEGaZoIBUjnwUe+fPmQ5PWpCXqEUGYuKioK//33X47XU1NTERkZabpdpm976dIlcuYIgiAIgiAIwiMkJOSjzJyPaNeuHQYOHIjt27dDEAQIgoBt27Zh0KBB6NChg+l2mZ05mmZJEARBEARBEN4gKKZZipk53n8e5H//+x/Kli2LevXqIXfu3MidOzcaNGiAcuXK4YMPPjDdLtM0yytXriA6Otr0SQiCIAiCIAiC4Ed0dDSuXLnidjcIRhISErB06VIcP34cR44cAQBUqlQJ5cqVs9Quk+t6/fp15MqVy9KJCIIgCIIgCILgQ0RELly/ft3tbljDI5m5jz/+GKVKlULu3Llxzz33YMeOHTZ82ZuUL18e7du3R/v27S07cgBjZo7VmaPgAEEQBEFYJyyMticgCEKbXLmCwJnzAPPmzcOIESPw6aef4p577sH777+PVq1a4ejRoyhUqJCltkeMGIHx48cjJiYGI0aM0Dz23XffNXUOJmcuPT3dUpUVgiAIgiAIgiD4ERkZifT0dLe7YQ0PVLN89913MWDAAPTt2xcA8Omnn2LFihX4/PPPMWbMGEtd2bNnT5bDvWfPHkttqcHkzGVkZCAiQv/QPHAjNefNRY7uQaHc4MQ7Or+GKLe7QBAEQVgkCtfc7sLNRxuloE2TOwK4ceOG293wLCkpKdn+HRUVhaio7DZMeno6du3ahbFjx2a9FhYWhubNm2Pr1q2W+7BhwwbF/+cJkzMXHh7uf8+fIAgueMIAoKBFkOKdoIU3IJ0HJ6TzLMiRs8SNGzcQFRPjdjcsISAAAQHubQJA8eLFs73+8ssvY9y4cdle++eff5CRkYHChQtne71w4cJZRUp40a9fP3zwwQfImzdvttcvX76MYcOG4fPPPzfVLtOIEhRpXIIgCIIgCIIIEoJhGVRmpj1/AHD69GkkJydn/Umzb24wa9YsxeqjV65cwezZs023y5SZY15gmScPVUEhCIIgCKtQxoIgCB2o2rw2cXFxiIuL0zymQIECCA8Px19//ZXt9b/++gu33347l36kpKRkbRL+33//IXfu3FnvZWRkYOXKlZYKrfB15giCIAiCIAiCsJ3rN2743pmTZtJ4tslKZGQkatWqhfXr16NTp07///lMrF+/HkOHDuXSn4SEBAQCAQQCASQmJuZ4PxAI4JVXXjHdPpMzlydPHqSlpZk+CUEQBEEQBEEQ/EhLS0OePHnc7obvGTFiBHr37o27774bderUwfvvv4/Lly9nVbe0yoYNGyAIAu677z4sXLgQ+fPnz3ovMjISJUuWRNGiRU23z+TM5cuXD0lJSaZPQhAEQRAEQRAEP5KSk5EvXz63u2EJtzNzANC9e3f8/fffeOmll3D+/HnUqFEDq1evzlEUxSxNmjQBAJw4cQIlSpRAIMC34AuzM3fp0iWuJyYIgiAIgiAIwhyXkpJ878x5haFDh3KbVqnG999/j9jYWHTt2jXb6/Pnz0daWhp69+5tql2mapYJCQnkzMlJTdX+I4hggbRNEAQRfNDY7nsuXbqEhIQEt7thCTurWXqNN954AwUKFMjxeqFChTBhwgTT7YbuNEv599HbLd7o7vTygVFPWUrv+/wHSngAO3Qu1XZsrOEuEYQn0TJmSedEsKClc+l7LNaw/BiyWRwnGKZZhhKnTp1C6dKlc7xesmRJnDp1ynS7zM5ccnIyMjMzEWbUqeGFmjOZP7/6e37HzPfSGoBpoPU+avfcrd+dHlaDFqRJghfS347XgnOkc4IHRjTOegxPyGZxlIyMDCQHgTPnhTVzTlGoUCHs378fpUqVyvb6vn37cNttt5lul8mZS0hIgCAIbKJx2rG6eNG7hq7XsOveGP3VSKr4eIqLF9mPJc3xwawm1TRHD39/4LeghVXIyA1NQk3nvCGbRZ2LF5H8/8ufgmWaJe82vUjPnj3x5JNPIm/evGjcuDEAYOPGjXjqqafQo0cP0+0yOXOxsbEIDw/HpUuXfB8BIDyAEaeJIIzglYc/4FkDgBkyOL0L6Vwb0jnBE4/aLJeSkxEREYGYmBi3u0IwMn78eJw8eRLNmjVDRMRNFywzMxO9evWyf81cIBAIznVzBEEQduFRA4AguEI69yZ2O6leTX2EEEkpKcj3/5tR+5lQysxFRkZi3rx5GD9+PPbt24c8efKgatWqKFmypKV2mZw5AMifPz/+/fdfSyfzNZmZ9g6OYWHeVR9BEARBEAThGS7StgS+JTExEYmJidzaY3bmihQpgj///JPbiQmCIAiCIAjCMYIoaH72/HkULVrU7W5YJpQycxkZGZg5cybWr1+PCxcuIFPW0e+//95Uu8zO3B133IGzZ8+aOglBEBaxOzNMEARBEIRvOHv+PO4oXtztbhAGeOqppzBz5kzcf//9qFKlCrcpsszOXLFixYLbmWMxllNSrJ2D9ioi/ICezuPinOkHQRAEYQ964zzZK57n7PnzKFasmNvdsIwg8M+kCQLf9ngxd+5cfPPNN2jbti3Xdg05c+vXr+d6cs+hN7hZzYzQ4El4AS0dsmhc6/OkYcIvmA3OZWZSQIMwj5MzLKwEoMle8Txnzp1Di7vvdrsbhAEiIyNRrlw57u3yn2ZZpAhw7pyVPtkDy6Dm9jQ2lj6SEUFoYXdAwur5yQAgnMJq0MJs2zRGE05hp8atnFuEfgu2cvavv3DHHXe43Q3LhNKauZEjR+KDDz7ARx99xLUKqaHM3JkzZ7idmBtJSWyDltuOGi9YtofIzKRNZYONYNE5GQCEVdwOWOiRkqJvSZDGCS38EHxmQc9eEX8nZK+Y4sy5c0ExzTKUnLnNmzdjw4YNWLVqFSpXroxcuXJle3/RokWm2jWUmbtw4QKuX7+e4+Rcob3s+GD0OtJg6iykc3UoYBG6sNx7PxixepDGQ5dQ0bgRa9rM8zDEfxvp6em48PffQZGZCyUSEhLwwAMPcG+X2ZkrXLgwAoEAzp07hxIlSmgfzLqJaDAMWMGC0mBqNLQRSoMradx9KGDhbcwYaPR7yQ4Zud7H6D0ijfNBft1DzF45d+ECwsPDUbhwYbe7YplQyszNmDHDlnaZnbmIiAjcfvvtOH36tL4z5zQslSiptLtxjG5kzjqlwsuQRoIXNX0a0aXPDQBDUMDCn1gNzAWDxpOS2L4HqyMWahr3w7PaKj63V84cPYrbCxVCeHi4210hPACzMwcApUuXxokTJ9CgQQO7+kMQhJtQ0EMb1ulxXobuL6FFsGg8mKey02845Pn9zBmULl3a7W5wIZQyc6VLl9YsfPL777+bateQM5eYmIhjx46ZOlFQoGTopqZqf4aq993CaKaP8AZyjZOmCYIg/IuS3WJkXA/257gPvt+xP/5AYsWKbneDMMjTTz+d7d/Xr1/Hnj17sHr1ajzzzDOm2zXszO3du9f0yXxPSgoQYeiSZR80b9y4+V+1Smbk7BBuw6JxqaaNOnakccKLaAXljGo82PUd7N8vWNELPBuxVQjXOXbqFO5q2tTtbnAhlDJzTz31lOLrH3/8MX7++WfT7RryTMqXL4/58+frH1i5MvDLL2b75B5i5s3KRpssqLVPAyfhFLw0LjcQyAggvI7RoBxpnPAbaWl82lF7TnhtdoZXLXcbOX7qFLqXL+92NwhOtGnTBmPHjjVdIMVwZu7o0aPIzMxEGI85215YnyMfrOzsT0TELUNArS9KgxIZDc7hBU3yxkmNq50TIB0TzmNnYI40TngBJR0anUHE45ykfcfIzMzEsZMnkZiY6HZXuBBKmTk1FixYgPz585v+vKFffIUKFXDt2jX88ccf/lp4KQ48fjXS5QOnqFIaPAkRP2hc7KN8lCUdE1aRjpF6vwE7DV0KyBFWUdOvEY27gZqdAijr32/Wtoc4+eefSL9+nZw5nTa9SM2aNbMVQBEEAefPn8fff/+NTz75xHS7hp5qkZGRqFixIvbv3+89Zy4zU39OeLChFXX22jSIUIV3ps/uKcBW0cs+K0HBCoKVlBRvGrJ6uKlxr1o1oYiedv2qbzlyzSk9t8hGMc3+Y8dQMTERkZGRbneFMEinTp2y/TssLAwFCxZE06ZNUdFCQRvDIcpq1aph//796Nixo+mTmkbPkKW95m6hd63IUPYmWvctVLQrQsGK0MPrwQrekMZDi1DTtxYs14LsFEX2HzuGajVquN0NbgR7Zm7EiBEYP348YmJicO+996JevXrIlSsX13OYcuasVFxRRW9PmFAzZO1GbTqQlGDYPNZLaGmc9G0MClb4FwpYsEEa9yd+17fRmRV2wrJXIG87xUtegAr7f/0VdZo1c7sbBCMffvghRo8eneXMnTt3DoUKFeJ6DsPOXI0aNTBlyhT9AytXBrZs0T/OD4OblBs31NdcpKTcfMCKg7mZh62XSreLAylrf0LN+WPdlNZvGldDaqR43ZCkYIU7UMDCOUjjzpCScus6ekHfVs9jdRz3in0ikpTE1qcg+i3sOXIEA0aMcLsb3BAE/rISBL7tWaFUqVL43//+h5YtW0IQBGzduhX58uVTPLZx48amzhEQBGNf+eLFi7jtttvw999/o0CBAtoH83TmWI5z6hjRmTM6ZSIuji3qpadqFtXzOoZ3W0bgPfiyOl+sOK1dluOc1LeaIaCncT/qG2DXo9eMHTmsWuMdrHBqfLZSAIXF0LWqby8eAwSPvgG+GvebvgHtgLMWLDaK17TLe5w3Ci87hXG8/TspCYU6dMDFixdVHQK/kJKSgvj4eOzenYzYWL4B4tTUFNx1VzySk5MR53LwecmSJRg0aBAuXLiAQCAANbcrEAggIyPD1DkMZ+by58+P8uXLY8eOHWjbtq2pk2bDT+vYxAIrZvsrr+YXTGsi7Mgo8na+CG2M6ltuGHgtW8dbkxcv8mtLhGfAwq1ghZ/RMm7d1LcbDpMd+gYcN3aZCVZ9Sx05owFnebbXLhvFDwEBVhy2U3YcPozEcuV878hJCfY1c506dUKnTp2QmpqKuLg4HD161P1plgBwzz33YPv27XycOZ7wdgztro6p1L6TDp6XpnSGOry0a6Qd3vrmFawIJV1SwMJZUlMpGOc0oaBxrziGVvSt1p4UFs3zGrtD5RlgkO2HDuGeevXc7gZhgtjYWGzYsAGlS5dGBOctckw7c8uWLePaEV2cMHbFh7XdG25qkZqafZqDUjSYxdgNJYOYYMNpfZsxBAiCJ3YG5Mzqm4xdQg2jNo7T2zGx2CeErWw/ehQdHnnE7W5wJdgzc1KaNGkCALhw4QIuXLiATFlHq1WrZqpdU1Zdw4YN8dxzz+HGjRva3mWDBmzr5tzALyWClfpJAyihhxf1LRoeZAwQduB2MI70TWjBq3CJnfo2agH7Zf84r1r2Brl+4wZ+2r8fExs2dLsrXAklZ2737t3o1asXDh8+nGPtnKNr5oCbnmOuXLmwa9cu3HPPPaZOnA0n1s1JBx29c2lVrATcX+enVMWMjAbncVsHIvIHqhf6xIrZdUmUefYXvDSZmnpLI14MWMjx+rpSwrt4Ud8sBdycDECH2DNg19GjiMqdG1WrVnW7K4RJ+vbti8TEREyfPh2FCxdGIBDg0q4pZy4sLAxNmjTBhg0b+DhzvPHiIChFzxCNiDC+14vad+YRJSPD2Ts4oW03nVT5uiSADGDili7Cwrw/vmvh1UAcje/uYSTQ7OYSECvIf7NezN75gA179qBJo0YI81PAloFQysz9/vvvWLhwIcqVK8e1XdMjw7333ovly5djzJgxPPtjDLWHuttCl85jd3PQysxUv0Z2GBDk9CljxjnyqraBm/p2Utd2BioIb+FnR80sfpmqForwHG+d0LZef0XbJJTskiBiw9696PDoo253g7BAs2bNsG/fPm85c2PGjEF6ejoiIyPVD7S6bk5eCYtHZMqOzIPaQmS7HDurjpN0MJVnAYNoc03PI9W3U1FXvWnESji90J4FMgj8CwUrtCFt+xul++cFbYvYZZdYDeaK101pZpJZuyRIAszp169j8/79eO/ee93uCndCKTM3bdo09O7dGwcPHkSVKlWQK1eubO936NDBVLumrcfKlSsjJiYGO3fuRIMGDcw2c5OUlJs/VL+VMDZq4EqPj47m2xclzDp8eveBDAp2/Jxp0NK3lytVUqDCO4hjidenh8n17JXZFXKMajspicZrJXg4VrwDcXY5e3p2itN2iVm07JIQ0Pj2Q4eQNzYWd955p9tdISywdetWbNmyBatWrcrxnuMFUMSTNm3aFBs2bNB35lgMWq85cmrZC+l3sTKA+3lhvNb9DKW1Tikp3oq2WsWKto0YBGbWhPIixA0C7vg1WGEkECc99sYN7+pETdspKd7ts5dh1bYXAxVmZlLcuJH9O/tJMyFgk2zYswdNmzblVjDDS4RSZm7YsGF45JFH8OKLL6Jw4cLc2rU0Ct17771YsGABXnjhBV794QPvaZROGCxKzp1bBi8vWAdYJZzIoGgZ9l510vyg7WA0CIBbmvXTdzKLG4EKpyoaWzW+xXb8pAPS9i1I28baBILDHgG8bZPoJDQ27NyJ7k88YW8fCNv5999/MXz4cK6OHMDBmRsxYgSuXbuGqKgo9QPbtAEUUoqmMLPeRwk9ozg11d4BWC87Ia165qVpPk7hdqbWjYqOvLSth5Pa9nMGWg1Ww1gNClQ4h52BuFALwAGkbTdJS3NvWw55FVazNglLusSN3xBLv1y0Sa6mp2Pr0aP4NAjXywGhlZnr3LkzNmzYgLJly3Jt15LlWKFCBeTPnx9btmzBfffdx6tP7uDFAg8iXl6fFOp4Za85KfI+eUnb0q0HQlXHbgcqghm7AxVahHoADiBt242WE+fkdE+lNaVetJ692CcT/HT4MG7Lnx+JiYlud8UWQsmZS0xMxNixY7F582ZUrVo1RwGUJ5980lS7ln79gUAArVu3xurVq/3nzKWkWB/8nMqkyOG9hoPnGibWoiu0jYF98NC2E1CQgrCKlwIVUkjbhFXkGvJa0FBE7KdoQwTD7AuPsXbvXrRo1Soo18uFGtOmTUNsbCw2btyIjRs3ZnsvEAi448wBQOvWrfHqq69i4sSJVpuyFzPTEryYdVFC6buJAyo5TcGPX4tQyPFLoQnCPbzqvOlhRNteHa+92q9gIC3N3fPznNoYjFPrXea7Awcw4qWX3O6GbQgC/+FFEPi2x4sTJ07Y0q5lZ65Fixbo2bMnzpw5gzvuuEP9QKfXzSUl6TtidmXWtAwOaYRWLyNmxRGTDqihtLg9FHDTeXOyZLtWkIIIDeQasDvj7NQec1YNXr+vzXMTngFas3p0WteAtbGb1562mZneG8M9HqT4OzkZe3/9Fc2bN3e7K4SHsTyCJCQkoG7duli9ejUee+wxHn0yjlcyEyxRY/EYN6bdkHHsP7yw+ayart3QstcNA8I8PMZxK78NUc+hpmuPG7PMeHUWjdvZZKXzu7GPoqgzLTuEZ5AiSHS9ft8+VL3zTu7VD71EKK2ZA4AzZ87g22+/xalTp5Cenp7tvXfffddUm1zCQW3atHHOmRMHIS8N3GYGa+k8cyuDqdX1btKCFCK0vsN5vKbrpCT2aLEdhgGrrilA4U+8EKQAtMduO3TNOlaTrv2JXbrWa0M+VhvdR9GqHWLVCSM7RJVVe/agVdu2bneD4MT69evRoUMHlClTBkeOHEGVKlVw8uRJCIKAu+66y3S73Jy5iRMn4vr16zkqs1jCakSLx5o3tTakfbM6RcILi+WlUzpZp4mytEVkx+0orQiLrs3AK0hhBaUpxgAZB27hZoVJOVevmvucqOvcufn1xSika2/hJV3zeK64ka3TQu07eaFvDpGRkYGVu3Zh8bhxbnfFVkIpMzd27FiMGjUKr7zyCvLmzYuFCxeiUKFCePjhh9G6dWvT7XJx5mrUqIHcuXNj69ataNy4sfqB8nVzatNqWAZIXsVJjKybc8oQlw+qVlXJ07nSmgplNHLsdafPrMas6JoF3oV57NI1GQehhVcCFUqIfeMZePOKbtSuO01DNo907WSw61opq+ZFnYvwtEG8bH8A2HH8ODIB1K1b1+2uEJw4fPgw5syZAwCIiIjAlStXEBsbi1dffRUdO3bE4MGDTbXLxZkLCwvL2qJA05kD2NZFeKmKpNubh6em+mfvIrXIsRw/Gxh+c9TUcDqq7JZxwBIwkP7G5PhZq7yxW/u8sdsI97LBK6J2z0jXt1CbGumUE2fUEXPauZReHzs3C+fhWClN15TjI+2v+PlntGndGhF+2GrIAqGUmYuJiclaJ1ekSBH89ttvqFy5MgDgn3/+Md0uN4W0bt0ab775JiZMmMCrSfcwOlg6td+cF4wHHtk0VqdPCzMDspkCC141VPVQ0qRXIsy8AhROZHblmglWp88ra9is4pbGxfNmZnrXsZPCMgb7XdNATl3z1DRLWzzO59XpnKLOnaysytPhs9KeQ/bHt9u2Yeybbxo/l88IJWeubt262Lx5MypVqoS2bdti5MiROHDgABYtWmQpAxsQBD67MaSkpKBQoULYt28fKlSooH3wvHn6DbIOXjwG1IgIfSPA6AJkI+gNhiyq1FvLwTMy5nRbbsJTh6zH8TpGb32Q1zQtN4JZjAReWnRD+3K8FqDwoqaVNCkdu+3UNGBc18GiaSPHyXFC16Rp81i1P1jWkQabph3g8NmzqPnii7jw99+IC4bAigIpKSmIj4/HihXJiInh+x0vX07B/ffHIzk52VPX7/fff0dqaiqqVauGy5cvY+TIkfjpp59Qvnx5vPvuuyhZsqSpdrmlk+Li4tC2bVvMmzcPL/HY3NCJ6WY8i5ioobQZaHQ0//PoFVFhyWLwzHR4fT1csOK0ptW0bGYPRS9knt3EK1useB2vZJhZkPfVzQIqVuC1zxihjJ2a1hqveQSSvVDATUoQOHIAMG/bNtzfpo2nHBG7CKXMXJkyZbL+PyYmBp9++imXdrl6S927d8ecOXPAKdnHn9TU7H92kpam7MgpvadndJtxap38rlbwyvQRv+K2ptU0bhW/6JdwBie0IOpbTdM8ppN5TdNetXjcxKlnklOalv/brjFbRP69nFovF0QIgoB5P/+M7g895HZXCBtISkrCtGnTMHbsWFy8eBEAsHv3bpw9e9Z0m1xD9+3atUO/fv1w4MABVKtWTf3A7t3ZplqyoJfBS0kBEhLs3+ZAXKNkZKCUHhsZab5vLIh7yYiEQLSHC14qxgPcinI7uSBaT9Pi+3ZknEW8Fv3VgrLS1nHS2VHStxlNG73nSppOStIfm0lb/kRJ03aM4yw2iHiMVbtDL8DB0+4IId3vP3UKp//9F/fff7/bXXGEUMrM7d+/H82bN0d8fDxOnjyJAQMGIH/+/Fi0aBFOnTqF2bNnm2qXq5UaExODjh07mu5MDszcjZSU7H/AzQekHlajrlYjXnpRYT2MPhTk18nIVBgvOTdewa6Rw+w9YkGrz2lpN89nNDjhROQXuBX5teO6EM6TkuJs1opVq07pGbj1vUnT3kfvGSiOnVY1rXee/6+KB8CcVp3UN2Dv88wIXrX0/58vfvoJHTt1QkxMjNtdITgzYsQI9OnTB8ePH0duybT7tm3bYtOmTabb5R4WGjBgALp164bXX38dUVFRvJvPjjgYuOlc8BoIpWuMlOa484j2661jUirrSxk8Z2HVtF0VVHnpOS3tZh/tzNZJUTIMSLvexE0jzqy+RT0D7mma9GwNO+0EP2paagsoZaJ5ODx6QfKUlJznCfHs3bXr1zFz82YsWLLE7a44Rihl5nbu3InPPvssx+vFihXD+fPnTbfL3Rps2rQpEhISsGTJEnTv3l39QKNTLa0OljyMX3HKndaaCt4GthNT2LSwYiTTdDNtvBJ9tzMyy1IsxS7kwQkyhp3HawE3HuOz2THZ6uwPI8G2UBp3ndZWSkpw6Vmtbb1iPXZtSaD0XPTytHrOLP75Z+S/7TY0adLE7a4QNhAVFYUUBY0fO3YMBQsWNN0ud2cuEAhg4MCBmDJlirYzp4aZ/Y54rWvSc8ZSU51dqyRFGhkGlAc3vcwbL5SiaSJmDOZgdvrc3L/La3p207EDaANlu/FKcAJwZuqY23oGKCPNm9TUW9fPbj0bGXudnAopIk4N9YIjxXPs9ritMWXTJgwcPBiBQMDtrjhGKGXmOnTogFdffRXffPMNgJs+06lTpzB69Gg8+OCDptvlts+clAsXLqB48eI4ePAgypcvr37gvHlsA6ad+7noHSOf667Xhp17vqi9Jx1s9Zw5XvscsR7HOmXTq788Eb0iO3rHsLZl5Biv65lVi1rGglN6VjpGSa/BUPbaqk7NbMTMQ89677MEJ9zUM4tWvahnL2sZ4KtnN8dmOXr7hNq9v5zS+36xNQBfZq2PnTuHqs89hzNnz1rK0vgFcZ+5BQuSER3NNwiVlpaCLl28t89ccnIyunTpgp9//hn//fcfihYtivPnz6NevXpYuXKl6XWStjhzAPDII48gISEBH330kfaBU6fqN8bTSGZ92GstWDZrMLBEcq0OkCz7GHlx41o5XogGGl207lVnzg4tA/rTzawaC2bbkEPBieywFG9gOY61PdZjzGjRi8EJETMbhrs1NvtVywCbnr2mZbVjjOwTqve+1vhsdVyNjXU30GblODlu2xqSez5kzhwkFymCL+fMcbFDzhGKzpzIli1bsG/fPqSmpuKuu+5C8+bNLbVn2xyrUaNGoUGDBhg3bhwKFChgrTGnysOLPyonCkvYNUXn6lX96ZhOYnYKpVf2YTKCl7YxcFLLapiZ9uunjcNZp2F55Xv48TelhF3fIy2N71gcjFoGvPFdgkXLgD3fRTpG27HuXloh3At6sBJw8IiW/klNxYxt27B1+3a3u+I4oTLN8vr168iTJw/27t2LBg0aoEGDBtzats2Zq1GjBurXr49PPvkEL730kvqBAwawZedYMGNMO7HRMusx0dH8173ZaVAE81o3t2HRsnxNnBktGynao6Zls8aCntalexSpadepdaJW8Iix4GvsXN+pZPgC/B07lmnFenhhvA1WPTu5WbjVrBvL7B+l9+xY26lkY/CcMREifPzDD2hYvz6qV6/udlcIm8iVKxdKlCiBjIwM7m3bOnqNGjUKH330Ea5cuWK9MV4//Bs3rO/9wjK9wMqeL9K9Y+RYMWjE73z1qv58fK9kmIIRng8xu/fmMqJlO/eZs/I9Scv2Yee1NXrPjRrAelp1Wsu8ghJkJNuH2SmWdo/TRsZoq9Mj9QJwqan8fjchouUr6en46McfMWrMGLe74gpiZo73nxd5/vnn8dxzz+HixYtc27W1lF3Lli1RpEgRzJgxA0888YT6gTyzc2pIBxc79/ASz2N1bYZ0wLQjmpaZmXPAtasiG2Xw+CG/Z17VsvjZyEhz59ZCbhCxrBMlvI8XZklofU5Ly2YdMel3zsx0rypmMON0MMepTe95fNZOvTllXwSBbTHjp59QtFgxtGjRwu2uEDbz0Ucf4ddff0XRokVRsmTJHAVPdu/ebapdW525QCCAF154AcOHD0e/fv2y7XZuCpapZ3p7wbG2o4fcSOYZwZVPHZNPY9ObWmZ26pn8O7DcL3LUssN73ZwbJal5ntOJfRKdMhoIvhgNTFg9F68Am1NaJh37ByPBYis6tKpjpfaAW1rjkR1WsweM7GGn1U6QcSU9Ha9/9x0++PTTkNqOQEqorJkDgI4dO9pyn22rZimSmZmJmjVrol+/fnjqqae0D7ZS2dLIYMp6DMu0HS3D187KaXoZD7sqSSkZGMFQ3ponVvQXCjqWasiJimjR0e5XZ/UjvPQnHqelMTuqXcrPRzo2dkywwFvHgLqW7araymujcLIrPMf769dj5qFD2L1/P8JCbEmAWM3y66/tqWb50EPerWbJG1szcwAQFhaG8ePHY+DAgRgwYACirUYbeWXerGZQeEfIzJxfROma2lUYQum6UwbPPKGoYyeydfLzsRgPBF+MBibsOK8T5yEdBzfifXba0HZzVoZZXZl1wMzaFT7n8rVreOO77zBt9uyQc+SkhFJmrkyZMti5cyduu+22bK8nJSXhrrvuwu+//26qXUesuPbt26NEiRL4+OOP8cwzz6gfqLR2TulH7pToldYbSfujtx6JZb2SWoUpI1MpzU7N4eVgXb2q3g4ZGzdxU8dy5H2xsq5ObM/MfZYuxlf7PAUl/IEbhqf8/G4F11h0bOe5pdB4mx2jY6zdOmaxB7SOMWtPAMayx25P91Va0y/vSxCMwx//8ANKlSmDdu3aud0VV/GbM/f6669jxYoV2Lt3LyIjI5Ek3apDh5MnTypWs7x27RrOnDljuk+OPP0CgQDGjx+Phx56CI899hjy5cunfjDPKkg8sxq8B3m79oGRtsuj+IRV41Xan1CIKrsVxWXBrIbVnD2W9liDEm4bD4C+8UCYW+dm91o4Xu3wHH/tKlqlh1rxDdJxduxYr2m2DV5TKOXt8brnPItZWbWw1ewJH+r74uXLeHPdOsxdsCBk18r5lfT0dHTt2hX16tXD9OnTmT7z7bffZv3/mjVrEB8fn/XvjIwMrF+/HqVLlzbdJ9vXzIkIgoDWrVujcuXKePfdd7UP/uAD/QZ5GRFax6SlAXFx+gaDkTnwrMYH64JkI+/bOS+ddZA22pYXNiQVSU01vrbC7WNYK1Ly0rCSxqxoODpa//NuadiHBgQTRgISTh4jalBNf7z25golDQPBqeNQ17AU3raEml7IlmDj/wMuw5cuxeHISKxet87lDrmHuGZu5kx71sz16WPvmrmZM2fi6aefZsrMidNoA4EA5G5Xrly5UKpUKbzzzjums7SOzUsJBAJ45513ULt2bQwePBjly5e31qCd64mkA2NKCr/pO0aiyHaUdlfKfvCaNmbX9LNg3aCWFTMatmuqEOs+RgDfqLBbU9j00FvvKOIVIwIwFpDwEnZMo1S7f8GuYfk4rXYdSMN8SU+3toes2dkRaWnWC5t4aQomYM7W8JAtcezvv/Hp9u3YuWuX210JelJSUrL9OyoqClFRUY73I/P/NVu6dGns3LkTBQoU4Nq+o4sMqlSpgt69e2P06NFYtGiR+oFPPcWWneMBS0EVPVjXxpkhPd2aIaA2zc3INgROrxPy8roknlsP8GqLh4a1MGNI2zHdTM2IoIBEcOJmUEJ6nJ6Gjazp9IIhbAY/athth49nNVWtdo18hrfmxHZ5bTXAc/z1qg0BYPTq1ejTuzeqVKnidlc8gZ1r5ooXL57t9Zdffhnjxo3jezIDnDhxwpZ2HR/tXnnlFaxbtw4//PCD9casDg5paWwDo9kCDGL7ssiAaZT6y+MBIS42Zr0eVnD7AesUTjxIpPfMjvvGo127+8badqjozu/YpWcr7aakWA/28e5TKMPzt8x7iqUXx2N5Vk2pABbr5/X65oSePeyksfDDr7/i+99+wyuvveZ2V0KC06dPIzk5Oetv7NixiseNGTMGgUBA8+/IkSOm+7F161YsX74822uzZ89G6dKlUahQIQwcOBDXrl0z3b7j5b8KFy6MF198EcOGDcPu3buRK1cu5QPtys4pDTQs0zaMVK60ezDjHd2VZySU1pCwZC14Zja8nJ1zE95FTJTet8sQEbEjOuy1NUCkXzZY1zaZDVqxrhk10pYd+tL7fTitJdIuG7z0q7cWzo4pxrx0rLfVAM/9Ea30yQNcz8jA0GXL8MJLL6FQoUJud8cz2JmZi4uLY1ozN3LkSPTp00fzmDJlypjuz6uvvoqmTZtmrYk7cOAA+vfvjz59+qBSpUqYNGkSihYtajpr6Eot56eeegozZ87E//73P4wcOdJaYyxT1VjWvfGa8qZmCFsp/65VEZCleqXV8u7iOaRteGkNhdM4OdVSnN7kRNl1LSeOp36NGsVG9ctS0IJwB6eyUHaex06nTtq+0XN41IB1Bbsy8Uq6suNcTvxOeKylYz2P2I5Vu8HnG4l/8OOPEGJi8PTTT7vdFUJGwYIFUbBgQdva37t3L8aPH5/177lz5+Kee+7B1P/fjq148eKWpoC64sxFRkbik08+Qbt27dC9e3fccccdygeazc7ZNb9fy6C1K4LGyo0b+pUrtTCaSVC6xrGxzmfwgg2z2rXiYLqlXalRbMdecvLz8DIoCHZSU53RVXr6zfM4OWWRV5EqvaUAgLPGcKjAMl5evWr9PKz6N1vhUgu9cdXqjAkWPUn7IH++iXr2uZPGwumkJLyyfj1WrF6tPiMtRPHbPnOnTp3CxYsXcerUKWRkZGDv3r0AgHLlyiFWZYy+dOkSChcunPXvjRs3ok2bNln/rl27Nk6fPm26Ty55HkCTJk3wwAMPYPjw4Zg/f776gSwOHYsBzJJZsLtyoFYflKpcSY0EI5uIy/sVHc1n82W9NpTug5Xotd+dPhY9ublehte55do1atw6Xe1PzaAgrONGoQyxQI8ZPVvVrnh+gLTrBHaufVXSrt2BCFG7WlUu1bCqXfmz3Ekdi8ivudVze9heGL58OTp37ozGjRu73RXCIi+99BJmzZqV9e+aNWsCADZs2ICmTZsqfqZw4cI4ceIEihcvjvT0dOzevRuvvPJK1vv//fefJSffNWcOACZNmoQKFSpg5cqVaNu2LduH3F4sLjpkPKdTqg3k4utWI78sUzEBe5wntevEOo/eqxh1/N3WrRRe2rVDt25U++MdhAgV/ByIIO2q4+dxGWAbl3lp1+rWR0bRcvrS07Pr1krhNkD/N2A0K2fk3HJYqmV6mBWHDmH977/jyOrVbnfFkwgC/2HHzh20Z86ciZkzZxr6TNu2bTFmzBi89dZbWLJkCaKjo9GoUaOs9/fv34+yZcua7pOrzlzhwoXx9ttv4/HHH8cvv/yivkjxqaeAN96wfkIe2bmrV61FB6V9YI3GSQ0MI9k5JaTTRswMkDwyfEDOohVS/GxIyx9GvCLJVtasAbfuO6/+sGjXajDCSKSYdyBCKwgRavghEMGKmTFXC721zJmZzhuiStcoFHULWNMLj6yc3vRf1sIovHXLglVbgScs47FHgxDJV65g0NKlmPTOO9mm2RG38Ns0SzOMHz8enTt3RpMmTRAbG4tZs2YhUvI7/fzzz9GyZUvT7QcE+VbkDiMIAlq2bIkyZcrgs88+Uz+QhzMnojeAyg1epXnzVqpXmZ1WwXJ+PUdLTeHSwVrvV8BrfRPrr03rOCeMFLUHCatjxMuBYjEupOfirVvA+ghpVbdaRoVTulU7l1yLXnuaiCjdAzsLOxjVrRyWAJqdutU6t5HxVk27bo+3pFtlSLc5ETVsR1bOaF+MHOeinTBw6VKcjIvDmvXrEQgE7O+Hj0hJSUF8fDwmT05Gnjz6FSeNcOVKCgYPjkdycjJTNUunSE5ORmxsLMLDw7O9fvHiRcTGxmZz8IzgamYOAAKBAKZOnYqqVauiW7duaNasmfKBY8fydei0ELNzPBY/KyGfGmPk5smdQLmBoJc5U8tgyL+rVp94Zed4ZFPczBrwrGrJEzt0K7ZpZqBRClyYjfR6KVosR65Ft40LwLnqe7zhpWErupW3YVVvSu14wXFyW7dKZfLN6tZtR06qW7OOnJL2zeiXl26V2uSR+eOJ3u/IJTth3W+/Yc7hwzh46BA5chqEQmZOJD4+XvH1/PnzW2rXdWcOAEqVKoU333wTAwYMwP79+1WrwXBz6FiqUuotLNcz5JXOoWagsE6NUDKK7TJu3Vj/oYbfC6E4gV0VKeWaNTqNRy0DLTc0zAQhjGqfVxCCB16auug26ek37x9vB05+DquBCN5OHUBGsd3tOoGduhUxol/5mCvXrdmsnAhL5Wwns3IetQ1Sr13DgBUr8NakSShZsqTb3SGCHM+EaAcPHozixYtj1KhR7nQgLS37A4VnVbarV9kG/PR0/YX5LOcxOo1UD/HaSK8RL6fBD1kCq/B62ChVH5Pr1mpfxHPoaVZLq9Jj9GD9bbC0Y+Z6EO4i3iteGrCqWZZjeWkWIM2y4qXnRFraTW3w0IHYBqt9oPe+1jF2zTQiDSsy8rvvULJCBQwaNMjtrngeMTPH+y+U8ERmDgDCwsIwe/ZsVK9eHa1bt0anTp2UD+SdnbOyUTJLdk4cXI08jOTZD6Pr665evaVkOyK/0sX9gPemuzmJk1MtWdZgWC2Ukp5uLKqqFDE2sx6Ut2a9lFkmbmGHwcdDs9L3WBGNY16BLSXNpqbyGV9DwbKxa4qlGc1q9UXUWHq68T5bHW/FcVZN/1bXb0oLm1nVrY+zcosPHcI3hw9j38GDCPNSIIIIWjzjzAFAyZIl8emnn6J///6oXbs2ihUrpnygWYfOTEEIPdSMefkAKw46Rp06cfA0YjBIBzhpP6QDuN7URSNT0pSuq5GBnDYaV8auSKoSUp0YdVClwQezhX2UNMsrECE1xtyoLhjq2OXA8fi82YCZSGamul6tjFfSa3b1KmnWSfT0atZ5t6pZaTtmx1pRk0qa5fF8lbYhf34Z0bCPn/VnU1Lw2PLl+HTaNJQoUcLt7viCUFozZxeecuYAoEePHli1ahV69+6NtWvXWotqpKVZd9Z47b0lwurUyR0pM06dHDXHzixaDpZ0IBePCeUMCesG4nrH8M4EqunV6Hmk6yjMBh60+saiV9YAhBUjg9DGjoCZ9PO89KrXnh5KujWqVyPZRCc061Xrx87CJ/LrymNsZdGriBndimOtUVtATbOstoDVdXDitc7M5GMLeFCvmZmZ6LV0Kdp36oTu3bu73R0ihPBk/vejjz7CiRMn8Pbbb6sfNHZszteU1nbpwaPErjzaxXpetXNrnU+++FitL3qIWT+9fev0MLpxttIfK16drmDmoWLlOlhFzCawGBpmfh96upK2z4rRqXRGkK5bEdfe8cCreuWJ/NrZgahVXnoVEXXKqlfpefSwU6+APXoNduRadVuvIqxjrFynRsZZvaAZj6yhkWmRWs8/H0+vnLRlC/5IT8eHn3zidld8Ba2Zs47nMnMAkDdvXsyZMwf33nsv6tati8aNGysfOHYs8OKL2o2xRL6sZjvkDwUzmQnx/KwGgPQ48Xxm1Ct/IBjd6oAFvSmS8jV4IsGQyZM+pJwy7rWitmbW+aj9PvR0oZWps0OrPKGNl7Njda9FM5hdk8ayllnrdbXzmdGsHeXhpUiNYznSdXd+1a5Zfdm1JQfrdgK8NMvy7FUb743qVUurVitgshwjXW8nxSfa3XjiBF798Uds2LgRefPmdbs7voKmWVrHk84cANSpUwdvv/02unXrht27d6No0aLKB44f74xDJx8wtaJ6Zqebpaebm0YpGrlGp04qDdBmpvPYtZ6NJeLs9hQ5I9FdXoEFo8EHpT4anaYjDTqwVEyVnwuwHnSQY2ZbDita1Yoe+8Tg0IV38MFoGzy0Cij/RowEyuTns6pZM1q1OqZK76VeQSA/Wj7id+I1DdPqmCrFqmaNBlCl5+OtVbe3c9GzA9y0Af7/Wp397z90mz8f77z3HurUqeNef4iQxbPOHAAMGjQI27ZtQ9euXbFhwwbTO6Nzw+h0HFanTjrFwYwjKH6G95o4IPvAbmW9nl1FTpwsEuI3WAwOwNh9tXK9eQYd5PDSKStyrQZb4MFJWPplNkBm1kkRz2fGodXTK+8qmEYxaxzzLMSi15YXtWrm+W/0HhsNlMk/CxgbX3lolde0SLO/VZe1kp6RgW7LlqFNp054/PHHXe2LX6HMnHUCgiAIbndCi7S0NNSvXx9NmjTBBx98oH6gXnYOsBadU5pTbvRBrzQg6s1V1xvYWR4uSoO70Wib0i/DaPU2H8+F54bdUWSpnozo00jAgfUzUpT0xrtIBMBHpzyP8TM8tMpbpwC77qTnMDvjQcSOIhFy/ZBOjWPneKr2bOY5rqqdx+6x1ey4qtRuiD/3n1y3Dj+mpeGnHTuQJ08et7vjK1JSUhAfH49Jk5KRJ08c17avXEnBM8/EIzk5GXFxfNv2Ip7OzAFAdHQ0Fi5ciLvvvhu1a9fGI488onygHdMteVWmFJFH6lgWHfOsYikOxDwMZGm7IiyblduRnfMTdky15FHhT01nWhpl1aaa3vQyyXbo1O3sfqiipSMzlVO1NKd0LiNZEiXd6W2XwUOrRnUa5EayK/DaPkBETXd652HRq5bm1PRqVadyjYa4vr44cABfHD6MXXv3kiNnAcrMWccX5dbKli2LuXPn4vHHH8e2bdvUDxw/Xr8xvTssVgczUiHMaAW1tDTjDw21alZGMFplyyg3bthfKYy4dX1ZK/wZQTpll1UnWtOPWDUqPx8vR07pPKRRPmg5YEY0CpjXqQjL2MZSsEfvGDVH0Qis1TBJo/YjrQhq53NRxOi4qva6kXFVrz019HQqVmzV0mgQBxy2njmDQWvXYu78+ShTpozb3SFCHM9n5kRatWqFN954A506dcKOHTv4bsaoNhgZyYqxZunEwdVKxs3KgmQ719fJUSqmQtk5c9VTrRSGMJJBlhobRrUp1bRZjYoGghFNGg2mSKE955ThoU/AWEbMTIbOrBMo75MRvYq/DzPr6axUxBQhjd7E6PRJXo6xUZ2mp1tbuylq1eyYKgamWcdUM+OpUoGfIHbkTiUno9OSJXhz0iS0atXK7e74HkHgLwVvLyDjj2+cOQAYNmwYfvnlF3Ts2BGbN29GTExMzoNYplsaHdSNGiRAzsFeLRpnpeCJiNWF9FqOnRVDWY7Sdadpb8qwapSXsWx1apoUKwUejAYbeD8BSKNs2JXFMHN+pwNi8s/baSQrIdeo2vl9aihzwUv6BMyPpYD5oihK2WuAj1546NOnpKano8OSJXigWzcMHTrU7e4QBAAfFECRc/36dbRs2RL58+fH/PnzEaZmnEodOp4Du5FBNSzM+LmtFjzR+rxRA8bonHieJYyDfT6+VLc89GlUl0bPbWW9kZXPSjGz+N5I+0YgfRrDrD6laPXDbBbZ6mfl2G0osxIq+nTr2S7tgwhLX7wwjgL2Bm1Z8Kk+MwUBXZYuRdJtt2HN+vXIlSuX213yNWIBlAkTkpE7N98iJVevpuC550KnAIov1sxJyZUrFxYsWIB9+/bhueeeUz9w/Hh71ocZma9+9aq5aUBW1h+pfd7MAGxkzQtvxOl20rUwbvWFF9LvwPvaGq2iJ56fV/t6umX5vB5yDbhpDCjp0s/6tPv7WKnyyNIPI3vIyY+18lk58r4aXdnPK+CgNn76Ffn3MDp+sWBlarjVdXDS980+/82spfOSPn3A2I0bcSAtDfMXLyZHjiOiDHn/hRK+mmYpctttt2HlypWoV68eSpcurb63x1tvAaNH29MJI1WqjFa9FNsHzM+X51EFU4r8e7k5dULeF7VfrZNrS+RTS3hsuGwUo1X+zKxRAsyvN+KxXklEer3t2OLACnJjXgmva9PMuk6eXL1q/Pxa+mcNJpj9vBxxnRTPPb+MolcxU+04N7UJuKs7FqTXkFdfjYyhPMZPMaAnwnsrA9Y+SPGaNmV8uns3ph86hK07duC2225zrR8EoYQvnTkASExMxNKlS9G6dWuUKFECbdq0UT7QbocOuDm4GqnYZuQBYHWDWWm0jucmtV4q965WMMXNSnC8tiAwitLDnmdZePEcaucy8nmzhVL0ymWrnc9LeF2bdmB3sEHpHFaDYGa1I2qUdZx0S6NeGze9Cs/MkahRs/fc6ueNbovhhCPHeoyd2pQ7iq+/nvW/K1euxKgPPsCaNWtQvnx5+/oQotDWBNbxrTMHAA0bNsS0adPQvXt3bNq0CTVq1FA+8K23bv7XDqdOnCJgxKhldeqkg6jZNR5m2zDyS5BX6HTbufMTdjl0RjRpNkNnBbNBBpZy2SJ26jAUnhROBBtYttYw49BZKTghtmEGLV3w2vvLaj8IddLSgOjom//PGqB1Wp92jZ0i6ek3NeqmLp3W7zvvqL61Z88e9OjRA9OnT0eDBg0c7BRBsONrZw4AevTogZMnT+L+++/H1q1btbcs4JmlU6pWBRgfXNUeBFoDKeu5eLTBivRcXpqS6SasD3peRrOVCmpmAgzSf1upxsrahtEHvLguAwhdDXqRtDR+46QcefCKRxVAo78hPeyYpmemH+TwZUe8L3as31Jbx25l3GRtw8x9lu+zy2P89KEuT506hfvvvx/PP/88unfv7nZ3ghbKzFnH45PT2Rg9ejTat2+P1q1b499//9U+WMzSmYF1Y1qji/3lquO5IJ+1DWk7vH8FwbII3wx2P8D0rqtRfaj1Q09rrFrk0QYr8gBDqGrQbXhce73fB4/CT1pt6LVjttAVb0360GB2DV5jgta1ZBk39bAy9vIqwGbnNTJzHE9UsnL//vsvWrVqhY4dO+LZZ591uFMEYQzfbU2gRkZGBrp164Y///wT69atU96DTg5Llk46R9toFNVMVNjKYGZlrYgcs+uoWGFd2GzkenjZQGG9nnrHmdWjGS2GhZnTEa8iEtK2zNxb1vNFRt68rqyL671smBiBlyaV4FmmXasvRjTFa9sWeTtmDGYWzGRDgkGbdunSiDNiZZsCXmOmk+Ol2ec3y5jpZU2qOHKXL19Gs2bNUKxYMXzzzTcIDw93uGOhgbg1wUsv2bM1wauv0tYEviM8PBxfffUVIiMj0b17d1y/fl3/Q0pZuqtXs/9JMVPG10ipYHFamJWF0VazG3ZFjPWQX/dQXYQv1xeva2KmGp/Z88k1aFXTZvph5HyixkNde1YQrxvPMu1KZGaaH+fMZt3UPmNmbpBRXRrRo5eNZqeRj5t2P8euXuU3s8BKO2bGLyuBWL3nk5c1qeLIXb9+Hd26dUPu3Lnx1VdfkSNH+ALfr5mTkjt3bixduhSNGzfGwIED8fnnnyMQCKh/4KmnzJ3IaFVKrTVBetPjrG5oy2NNHO9qgawDt9pDyY/rn1jW/Rg1OMzoUE8PPNaCSj/LqxCFWvEIrc+wwlI1zcWS2K4j166WsWimmA6rPqTatFI8wkolQGk7IqzjkVWjWY5Uk142mo1gJgvsVvDFyhplOTz1CLCNl3Y8t+X3guW34SFNCoKAAQMG4MyZM9i0aRNyh/K47yC0Zs46QeXMAUBCQgJWr16NBg0aYOTIkXjnnXduOnRmHTctrBguRqPXLA8JrTUjZj8vxwtbEmhdO57bL/BG1AvvKLGZAhFGti8QP2c2sMArMAG4p79gCiyI2BFgMIOWtrSCXWZ/61a2e9HSpNuGs14f/I6Ta13V9OXERuVWi6JIEStTGv2cHCtrupUQ++SWxa2QlRMEASNHjsTGjRuxZcsWxMfHu9Cx0IScOet42PI1T9GiRbFu3To0btwY0dHReO2//+w7mZnsyI0b5tekWd0UV6sNo4gDdWamd5wo1oetHUYP67ntqmBnJrBgxDhhdcrUtOhEYMEpI0WpD1L8ZFS7GVxQg6VPVqsBWv28HF5bD1jRpJYe/WLdeK1AkdEx0ur4xtKGmWnkZrYbsEszLNlUu8ZQlemVL7zwAubNm4dNmzahaNGi9pybIGzCIxY4f8qWLYv169ejSZMmyPPkk3j++eftyc6JsBgwShUjeTh1ZteO8CyYYsf0TjvxmsHAA1YjWpoxM2N0axkbrNXZAL6FUtLTb/2mvKA9I1O/7DJaWDRu1+bhZoILZovc2L1Fi5n1poC5a+um8Qy4G+QC/K9H8bNWxza1Nsw+pzMzjWek7dKimS08ePHhh4ovv/baa5g2bRo2btyIsmXL8j8voQll5qzjAavHPipWrIh169ahadOmyJMnD0Z88IH9Dh1grLKVVafOCjza0CplL8ULBrZXsGMzZr221e41r6CCGS3xDCpIdciahfbKaO9mYMFOLbIgv988gwtGtGSH8SzVF8v45wU9BmOQiwWl+8zrt2Gl+JOV8VVEa+sjJV3aqUMvaFzGO++8g/fffx8bNmxAxYoV3e4OQZgi6C3sqlWrYu3atWjWrBmioqIwxG6HDrg1YJkpq280eiiF1+JrOxwvHkZbMOGUQ8dqBJjtD88iJ2bR2+dJhAIKzmI0sKD1GT14GL7S4AJP41neJzKgvQGPYKYaV6/yGW+stMNy3+UBtWDWoUJW7uOPP8b48ePx/fffo2rVqi50igAAQeAvj+DYdI2dkLBuatWqhVWrVqFNmzZIT0/H8A8+uPkGb6dO6eFg1DBhdeqsFjthacdoW6wo5dR5nScszP2HBit2OHTSe2dGe2aDCTwrudnldMmnOZNzZz+ipowYzmZ/F1YKm/Bqx4gBLZ4jmA1oL2Gn86Z0Dl5jotF2zNxzHpVitXBbhwqO3LvvvotXX30Vq1evxl133eVCpwiCHyFjzdSrVw/r169Hy5YtkZaWdnMNHY8snV3TKLU+x1rshMegrNUWzwHaalUvv8LDodOaQmlHMIFHgROttowEE8xoUPwMZe1u4rWgAmB8/af8NR6VKo3omUe1v1DWIGCvBs22b3QtvNJ7PIrssGjRrAaNTsO00rYbKDhyr732Gt577z2sX78etWrVcqFThBRaM2edkHp61KpVCz/88AOaN2+OtLQ0vPbaawiYcejMLHDn4dSZLXQC8FlTotWWHSgVjPFTlUBWjBrT6ensx1vRnfwzRhbvA3wqsvkxmBBqTxHAnqmTWp9jCWix3j+rwTE7jGit85ltP5hxIutm5zmtFEbhpT+184kY1aMX9Cdz5ARBwPPPP4/PP/8cP/zwA02tJIKGkHLmgJtr6DZt2oRmzZohLS0N77777k2HDlB26rQWhJsxlM0a11YqpAH2ZOvcmKoWDKXgjcCrIIGVLJ2VqpcAn8ISvKamGfmcVOdA8GrMKEaCCSK8HDozAShelSrdNKQzM43pzwuGtF2YfRby0KDZQk88K/dK27MyM8HoZ5SeRWqa9IL+FBy54cOHY8GCBdi4cSMqVPi/9u49qMo6/wP4GxRQa0VKZ2wdSLsITiYp5hWt1oVoHJTwBpkxhECpW7lTybZuzbY7U2rTjZREWK8lOulP0QrFbLQwLFOQdTHTpIuXnbQWVssLnfP7w571eDyX5/L9Ppdz3q8ZZnbzPN/ne57ne77P9/O9PYkWZYy8cWTOuLAL5gAgMTERH330EX73u9+htbUV5eXl6Nix4+Vpl1ob0HobynqmEekNBv2lp5evqWqAdVOFnPoicYWdypxCVFkRsfOlJ+VasSNBHH9lw993NnMXTKPlxVdj2ugmKXq/u5HGt9rGdKi0Yuyys6bezizvNETVf4D+OlB08Od9j6KjL/03mz1zL168iOLiYnz44Yf46KOP0KdPH6uzRB4YzBlnr1+cifr06YO6ujpkZGQgKysLa9aswTXXXHMpoHv0Ue0JyhilCzZ1Sev5/KUrsuK14zokNQ9PWaMvekYx1JIV0Pnbphsw9l1EbFCh5xUEvo7Vcz5/nN6RYNYUNaOdCUbKntKYFvFd9bx2QDlOz7kC8Vf2nFDuAGumR6rhqxPVaD0uYodLf1NzZa4t1kIpj8Huq4zy6flydI9RubNnz2Ly5Mn47rvvUFdXxxeCU0hySI0vx29/+1vs3LkTWVlZGDNmDDZv3ozu3bsDZWWXPmBVUKd15zct5zNz90q7jNppYZfeYLVEbnKiNug12oGgd8qvkVcQWNVNp3aDJCd1IihkdCbIWHunpGt0qrm/MiRrcwojZVbtM0Tr9E01jC4JsILMoFLEDpfByoK/MmjGdHQ9ZD5nPQK5U6dOYezYsejSpQt27tyJ2NhYeecl3TgyZ5yDals5unXrhpqaGsTHx2PkyJFoaWm5/I9KUKeH3l4tvZWcml+D2g0n1DZAtVLStmNvrMyGh+xaRW9NqKyD0HpPtJwvUNqyyoKocmbm00D57Yv6Mzv/WvgaXVB7v7R+J1/p6ikXate4BRrVFn0+ozynb4oue04I5LTWE1rX2/pLW1Zd65223nJnxvNKlsWL//c/jx49ipEjR+LGG29ETU0NAzkKaQ6oceXr1KkTqqqqkJ6ejuHDh2Pfvn2X/7GsTH9Qp7Zi9K70jVSo/o7Vs+GEzMDLM327Bngimdk4C0ZksKN2tExNfoKdS4/29ssBK4lnRceOkcBK7b97nktvANnebv9ALpx41gVWdyKpqe/03iMlqJYZNOoh+xwegdy+ffswYsQI3HvvvaiqqkJMTIy885JhStEQ/RdOGMz9qkOHDnj99dcxe/Zs3HXXXdi0adOVHzA6SqenN1pEUOdyidlAQNQDMFjj38rgzoxpabIFmgoWaOTASN5EdB4ox4ga2fB1bLh0HNiV0SDHU7ByriVPWs+hllL3yhr9ocBkPE/81XV66zvvtEV35KptZ8gm+xwegVx1dTVGjx6N2bNn47XXXkOkE0aJiQxywCIm80RERODpp5/GzTffjNzcXPztb3/DE088gYiIiEsfMLKWDjA2HQ4wvlZJRKVm5ktuvR9ArJTVUdYWaW1gGFmTpJTR9nZxL0E38goCtedQiFprEo78lRs1ow9Gyorn8UYa697rjWQGmgor13XKPo9V9bSZnTSiziVi50ctMzIAceVcLZMCObfbjVdeeQXPPvssVqxYgezsbLnnJWG4Zs44BnM+TJgwAfHx8Rg3bhwOHTqE119/HVFRUZc/oCWo81fp633fjZZjffX86T13sPTN2NzE37UUee7ISLm1gNEGbCAigl+9ZcR7mrDR76is5wPMeXl3qHYcyCxvvpjZgQCI3ehFGTEUtdtqsHMpZHZaeAulFo7ZI+yiO0Y9O8BkbIrij/fIuMxnt0mB3MWLF/GHP/wBGzduxIcffog777xT7nmJbCZEWiziDRkyBJ9++inq6uowduxYtLa2Xv0hf1MvzZpCGYiac2s9v9opkmZz2vo7UQ+4YN9Z9NTJQHnwdbyR8u3rHFrXgOjlPT3OCWXKCp7Xxsi6RD33yvOeiPg9eZZXmWv5fPFcx8WydjVfv0Uj10hrJ4+v8xmtX/zVcXqPF3Fu0dNRTQrkWltbMXbsWOzatQu7d+9mIOdAXDNnHIO5ABISEvDxxx8jKioKw4YNw6FDh67+kLJBit7KUEZQp2fhc7A8iHgAmsm7oelrxzV/zBjJ0HI9PfOtZw2OqKDKk9o8iOww8DwvOw3Mpea7y+48CHZuvVPYja6/k/EbM2u9l2giplhb/RuTcW61z1krO4A986DkQ+0z0/tcsv0ayB06dAhDhw5FVFQU6urqkJCQIP/cJByDOeMYzAXRtWtXVFdXIzMzE0OHDkVNTY3vDy5ZYuxEIipqET2Won8Bdm34qtleWzblWmvJi4zALNhxnsfK7LDQmkcrRyS982BVGRLJX6eB1b9drZ0Xaj9ndPRZy/mMHuuvc0rGuWTz/p3YoZzJGv3X80yVMRKoh3f5UvOMMjGQe//99zFkyBCMHz8e1dXV+M1vfiP/3EQ2xTVzKnTo0AHz589HcnIyJk6ciOeeew5PPvnk5Y1RFEpAV1io/2RKZWhkzZKI9UqeaYmqoNvbr0zLzi8Rt7oBG4jLpX89nN6yIeL9UYHKtpEy5nmvXC77lCs1jW0z8qrcd62Nf7PLmOexRjulAuVBb1lT8iRiAwlRnTLB7ml0tHmBnNYyZjURdby/sibimhvdHMXMjj+z7ntlJdxuNxYsWIDnn38e5eXleOCBB8w5N0njdouvptxusenZnU1aPc4wdepUJCYmIisrCw0NDaioqEDnzp2v/qCZQV2wkQkRgZ2RBpp3Wp688y6rYSt7UxMrmNXY9tVDLKqzQElH1L1R0vFudGs93kx27jTQS28ZUa6FyLrGMy1R99fMjXmMHuek4MoMIjs9PdMUvYmNd10GqC9vZs/eMEtlJX7++WdMnz4dO3fuxI4dO5CSkmJ1rohsgdMsNRo8eDD27NmDlpYWjBo1Cl9//bX/DxudegkEXhcnez2HcrxnOjIrfDtN7XICWesngt0DUeVA9nogs8qS3RtBepnxvXzdI9GNYpH1lq8px6Kn5ok8zu5kr08265kiapQvUFkN9h2MLtWws8pKtLS0IDU1FS0tLfjss88YyIUQrpkzjsGcDj179sT27dtx5513YtCgQdiyZYv/Dy9ZIi6oA/Q/lPSUbn+fN+vXwuAuOFFTvcxumHoea7Q8qTlO5uYddDUjnQXBjteSB1F1ldEOECUNvecmdbQ8M4zWnb7qMSNpqSVyTZ0TWr2VlaipqUFKSgqGDh2K7du3o2fPnlbnishWOM1Sp5iYGJSVlWH48OGYMGEC5syZgz//+c+I9NfTaGTqpXfFLWLdUrB01FbwotMLxNfD2S7ro6xkdFobYPxl4WqPD1YORKfnj13X2dmNkWm1nsfq7YACtJ8/UCeUqLQCscPaunBhZiefmnuhpYwZvbeeU2jNfE+diVxLluDvzz+P+fPno6ysDNOmTbM6SySBjD4FBxRvodiCMeihhx5CcnIysrOzsXv3bqxcuRJxcXH+D1Ab1Knt4ZWxIYWIHmSzXlSsNsALxXVzntQ0IoKVKVmbm3j+u6j09KQZiJ61KaLzEEpEr39Tk47axjYgLr1AjG74xLJ1JZGdmopgZUvPPZCRZrA0tNRfDilXPyxYgGmZmfjiiy9QV1eH5ORkq7NEZFucZilAcnIy9uzZg4iICKSkpGDv3r3BD/I19VLvVDeRU4hEri2xagqHHd5VZAVfD3gt10BGI8Nouv7Kkchy6i1cy48/wa51oOsl8z4p/13vFPJgaRpl5PfokAa3NGp+gzKvkdEy4K8elD3dFwiJ6eR7Z85ESkoKOnTogD179jCQC3HeM+JF/YUTBnOCxMXFYePGjZg+fTpGjRqFhQsXwh1sb1TP9XRGG4wiSq/Skyz6VyArXb15CMVfvfI9jAYgIhsc3iMTRnmmKyo9tRjcXWZFJ4F3OrICLlFpqklHdgDsFHbpPBH9PPB+5ojIm548eP7ZvGy53W68MXAgRo0ahcLCQmzYsAHdunWzOlskGYM54yLcQSMO0mrHjh144IEHMGLECFRUVCA2Nlbdgfn54jKhZQpKsFIv8r11RtK28tdp1rTRQMz+/kbX0RlNR3basq6nHcqKUTKujZlTLq1K167XzWp2/a0p+RJ9jUXVU06p8wVovXABBT//jE8++QSrV6/G6NGjLcsLmaOtrQ2xsbF46KFWREd3FZr2hQttWLEiFq2trejaVWzadhQCTwn7ueuuu9DQ0ID//ve/GDRoED7//HN1By5deulPBLVdE2o/o/ehEuw4p3SlyOo6snM3k9bz+vu8rFEUz7S1pi/zetrtPvpiRR6N1CGe+RKZP+90ZdZ1etm9LAHOKPOA/3yJqp8C1YF60jKbRc+nPadOYdCuXTh79iwaGhoYyIWZUGkyWYkboEjSo0cPvPfee5g/fz5Gjx6NF198EbNmzUJERETwg5WATsRInVKiRWxy4nmMrB48M85B2rhcYjY28VcWtRyr9jNmbZyih9Xnt1KgsuT9OTX/LmvEQ0v6Vt7PcC5Lamitn2TVTZ6fs3PdZERlpeZD3G433njjDZSUlODZZ5/FU0895X9HcCLyi8GcRJGRkSgpKUFqaipyc3Oxbds2VFZWonv37uoSkBHUiaKm4Wz0nE5+sIUa74aIkXtjRkOZnQLOo7eDSeZU7WBllXWU/Ritm2QH8L7KlNPLkY4ZRadOncLDDz+Mffv2YevWrRg5cqSEjJETyBhJc/pPSiu2ckyQmpqKxsZGdOzYEQMGDMAHH3ygLQFR0y9ljUGbNa4dzmPoduByid2gINh9FHWPPc/DcmM97+ltRn/Pao4XdQ7RU/PIODOfCyLP4ZBNSYLS0TbZtm0bBgwYgKioKDQ2NjKQIzKII3Mmue666/DOO++goqIC48ePx4wZM/D3v/8d0dHR6hPRM1KnprEsc4MKmXydi6MwYvm7n3qnJAU6h+yeahnvqSLtlAaxjE0nRL0zMxDPcsQyZD7vgFp2OZJRhvx1CjipPOkI4i5cuIC5c+di0aJFePXVV1FQUKBu6QmFNI7MGcfdLC1w8OBB5ObmokOHDnj77bfRt29ffQn5C+qMlGJZO7pZuVOckx6QdqD1OsvoDJC9u5w/LCtiBbvuMq63iKnAvljxXcKdmnto591NvdPUws7lSUcgd+jQIeTm5sLlcmH16tVISkqSkDFyEmU3y5wcObtZVlVxN0uSKCkpCfX19Rg9ejRSUlKwePHi4O+k88V7+qWI7g2j01UCjeTISFftsZyi6Z/RayPievqawiZymqXWfLCc6KP1+skIuGS8q0ztd2HZMUbPNRQ9HVv0lGwj9aody5LGQM7tdmPx4sVISUnBXXfdhfr6egZydAVfTTQRf+GE0ywtEhMTg5dffhn33Xcf8vPzUV1djcrKSvTs2VNdAnl5cjMIaB8l0fvwtaIHMhx72WXWbkZG1NRMBZaRtp7jQ7FcGCEqkAfEvzNQVrp6jmW5uZodWlvB8iCrXhORltllSsdo3IkTJzB9+nQ0NjZi/fr1SEtLk5Axcjq3W3x1EG5zDhnMWSwtLQ1NTU2YOXMm+vfvj/LycmRnZ1/+gBlBWzBqGiWh1ugJ9H3skkd/rGwkaWn8aM2n1nIie62LN7uXCyPMKFNap7Zp7TySueulkfRCtdyYWQ9pKTt6R8ns9poKf+eSUZ50BHLr1q1DcXEx0tPT0dTUhLi4OPH5IiIADOZsIS4uDm+//Taqqqowffp0VFdX47Xz5xGrZXMUs/hqGMnqgbRrI8fo95XZ6LCLQA1oM0ZzrLh2Tm+w26G8BWs0i+g0CnYvzL4OZjbKRbNDmQlG5HRJO9U3/ujJS6CypjGQa21txWOPPYZNmzahrKwMU6ZM0Z4fCisypkXa6SdpBgc8LcJHTk4OmpqacPz4cQzYtQvbjh+3Okv+mTExOVQnP4fThG/vNSgyamzvdO147cya+B8KCwz8TZkU2SiXfQ4R7F5e7HStvMnKo3c9Y/froJave6vjlUjKKwdOnjyJpqYmBnIUclpaWlBQUIA+ffqgc+fOuPnmm/Hcc8/hwoULluaLwZzN9OrVCzU1NSgpKcH99fUo7tQJbRYXEiLDzGjwhErDylsoNK61MuN7hcu1C4fyApj3vULx2nlbvlzTx9va2lBcXIzs7GyUlJSgpqYGvXr1kpQ5CjVG+5TMrN4OHjwIl8uFxYsX48CBA3jllVfw5ptv4plnnpFzQpX4agIbU3oADh8+jIqKCqStWmV1loiIiCgUaQziAKC2thbTp0/HLbfcgsrKSvTu3Vt8vigkKa8muP/+VkRFdRWa9sWLbfi//zPn1QQLFixAWVkZvvrqK6nnCYQjczbWu3dv1NbW4k9/+hOys7NRFBODttJSq7NFREREoUTHaFxRUREmTJiAZ555Btu2bWMgR7rIHJlra2u74u/8+fPC89/a2orrrrtOeLpaMJizucjISDzyyCNoamrCkSNH0L9/f7w7ebKuHjQiIiKiK2hsT2zevBn9+/fHV199hf3796O4uBgRERGSMkekX3x8PGJjY//398ILLwhN//DhwygtLUVxcbHQdLXibpYO0bt3b2zbtg0VFRV48MEHkZ6ejtdee+3Se+ns8PoCIiIicg6NQdyJEyfw+OOPo7a2FgsWLEBBQQGDODJM5l5F33777RXTLGNiYnx+vqSkBPPmzQuYZnNz8xUvvD927BgyMjIwadIkFBYWGs+0AVwz50AnT57EE088gS1btmD+/PkoKChAZGQkgzoiIiIKTkMg53K5UFFRgaeffhoZGRl49dVXL3UkExmgrJnLzJSzZm7TJvVr5r7//nucPn064GduuukmRP/6yrDjx4/j7rvvxrBhw7Bs2bJLbXALMZhzsHfffRczZszAjTfeiPLy8ss9BgzqiIiIyJvG0bjm5mYUFRXhm2++waJFizB27FhJGaNwowRzY8fKCebefVfOBijHjh3DPffcg5SUFKxatQodOnQQmr4eXDPnYGPHjsWBAwcwePBgDBo0CHPnzsVPP/10qbLmmjoiIiJSaGgXnD17FnPnzkVKSgruvPNOHDhwgIEcSeGkVxMcO3YMd999NxISEvDSSy/h+++/x8mTJ3Hy5Ek5J1SJI3Mh4vPPP8fMmTNx4sQJvPzyy8jOzr48l50jdUREROFJQxDndruxfv16zJ49G7169cLChQsxaNAgiZmjcKWMzN13n5yRufffFz8yt2zZMuTn5/v8NyvDKQZzIcTlcmH58uWYM2cO7rjjDpSWliIxMfHyBxjUERERhQ8NgdzBgwfx2GOPoaGhAfPmzUNeXp7la4EodCnB3L33ygnmtmwx5z1zdsBfaQiJjIxEfn4+vvjiCyQmJuKOO+5ASUkJzpw5c+kDyvRLTsEkIiIKXRqe9WfOnMGcOXMwcOBAJCUl4dChQ8jPz2cgR+QQ/KWGoLi4OJSWlqK+vh51dXXo27cvKioq8Msvv1z+EIM6IiKi0KLh2d7e3o6Kigr07dsXu3btQn19PV5//XV069ZNbh6JPDhpzZxdcZpliHO73XjnnXdQUlKCzp07Y/78+bjvvvt8vxuG0zCJiIicSWUQ53a78d5772HOnDk4d+4cXnjhBUycOJHvjCNTKdMs09LkTLOsreU0SwoRERERmDRpEpqbm1FYWIhp06bh97//Pfbu3Xv1hzlaR0RE5Cwant179+7FmDFjkJeXh6KiIvzrX//CpEmTGMiRZdxu8aNy4TZMxWAuTERHR+Pxxx/HkSNHMHjwYKSmpmLatGloaWm5+sNcW0dERGRvGp7TLS0tePDBB5GamoohQ4bg8OHDeOyxx/73EmQici4Gc2GmW7dumDdvHg4ePIiIiAgkJSWhqKjId1AHMKgjIiKyEw3P5aNHj6KwsBBJSUmIjIzEwYMH8eKLL3JdHNkG18wZx2AuTCUkJGDFihVoaGjATz/9hKSkJBQWFuLo0aO+D+BonT6RkWL+7JAXUofXiij8mFW3agzi+vXrh3PnzqGxsRErVqxAQkKCji9HJA+DOePY6ghzSUlJWLVqFRobG3Hu3Dn069cvcFAHMLCzgh0CQgZ1wSnXxw73yzNPdslLKLPTdRbVicR7H5io66TmHqh85h49ehTTp0+/IohbuXLlle+cJaKQwpqaAACJiYlYuXLlFUFdQUEBmpubAx/IwC78sJHnm+hrYqfGOO+5fzKusx3uOflm9nVeulTV87W5uRkFBQXo168fLly4gP379zOII0fgyJxxrPXpCkpQt3//frjdbgwcOBCZmZnYsWMHgr7FwjOwsyq4Y2PHPFZfT6vP752XcBAu31MNu5S9cGD1tbairlm69NJfAG63Gzt27EBmZiYGDhwIt9uN/fv3Y8WKFejbt69JGSUiq/E9cxTQiRMnUFpairKyMtx666148sknkZ2djY4dO2pLSOY77EQ/YEV26YRbY09Wd5je62hG91y43WPA3G5PNdfXbvkJJWZdWz3XVWberLrPQQI44NLLvtevX4+XXnoJhw8fxqOPPopZs2bhhhtuMCGDRGIo75lLTW1Fx45i3wXX3t6Gjz8On/fMMZgjVc6cOYN//OMfeOWVVwAAs2fPxsMPP4xrr71WX4JGgzsrHrR6Gg7h1vBTGG1kybxuDNbFkNGQFnU97Zw3pxF9LWVdRxH5tPIeqwjivJ/Df/zjH5Gfn6//OUxkIQZz4jCYI02UHsEFCxbgyy+/RH5+PmbOnIlbbrlFf6JqAzs7N6b8NSTsnGezqGlk2eE6aW0M2iHPdqC3EW329XNKPu3GiddNbZ7tcG9VBHFffvklFi1ahKVLl+LWW2/FU089pW+GDJGNKMHciBFygrlduxjMEQXkdrtRX1+P0tJSrFu3DmPGjMGsWbOQkZGBSCMPSO/Azg4PWxLDs4HllPvKIF2dQI1nu14rJ+bZKk7/Hdit7lERwLlcLtTU1KC0tBTbt2/HxIkTMWvWLAwbNgwREREmZJJILgZz4jCYI8NOnDiBJUuW4M0330SXLl0wY8YM5OfnIy4uznji+fnG07CCU6YJ6iHiu1n9HfTw/N5OzD+RHqFQ7o3WWaK+t4og7scff8TSpUuxcOFC/Pzzz3jkkUdQVFSEnj17iskDkU0owdywYXKCufp6BnNEml28eBHr16/HG2+8gb179yI3NxeFhYUYMmSI+J5EuwZ5duj1dSK7NhLNuJ9Wf3c7r2GSTcZ3t8P3ll1u7fAdfbFb/atcJxW7Un766acoLy9HVVUVUlJSMGvWLNx///2IiooyIaNE5lOCuSFD5ARzn37KYI7IkIaGBpSXl2PVqlXo06cPioqKMHXqVHTr1k3uia0M8uzWkHA6KxqMvIdy2KHxz3srnpX31Qn3s7Iy4D//5z//wapVq7BkyRK0tLRg6tSpKC4uRnJyskkZJLIOgzlxGMyRVGfPnsXatWtRXl6OxsZGTJ48GUVFRRg+fLi58/5lBnlOaFSECu5SGBr4yojQEoqvCDAiQBDndrvxySefoLy8HGvXrkVycjKKioowefJkXHPNNSZmkshaSjA3eLCcYG7PHgZzRMLt378fS5YswcqVK9GrVy/k5+dj6tSp1r4bx0iQ58RGRqhx4k57dCVRgQDvqT2E628yyCjciRMn8NZbb2Hp0qU4duwYHnroIRQWFuL22283KYNE9sJgThwGc2S6n376CevWrcPy5cuxc+dOpKWlIS8vD+PGjUOnTp2szt4lgYI8pzc6Qp3Td94Ld055lQUFFi6/wwBB3Llz51BdXY1ly5Zh27ZtGD16NPLy8jBhwgR06dLFxEwS2Y8SzKWktKJDB7EB1y+/tOHzzxnMEZnim2++wcqVK7Fs2TKcOnUKOTk5yMvLw9ChQ+25/XJxsdU5ID3a263OAemhBAShFgCEA6PvQLPzbzbINMrdu3dj2bJlWLNmDXr06IG8vDxMmzYNCQkJJmaSyN4YzInDYI5sQVlHsHz5cqxZswbdu3dHTk4OcnJy0L9/f6uzJxcDROexc0PTDuz2MmPer+Dsds9EEnX/AwRx//znP7F69WpUVVXh9OnTmDJlCvLy8sxfH07kEEowN3CgnGBu3z4Gc0SWOXfuHN5//31UVVVh06ZNuOmmm5Cbm4spU6bglltusTp7zsJA0TmsCjhCuREvkxX3i/fKPMr9DRDAHT58GFVVVaiqqsJXX32FcePGIScnBxkZGfZZMkBkUwzmxGEwR7Z25swZbNq0CatXr8aWLVtw++23Izs7G1lZWejXrx97PK3EQJGI7G7xYmFJud1uNDc3Y8OGDVi/fj2ampqQkZGBnJwcZGZm4tprrxV2LqJQpwRzyclygrnGRgZzRLbz448/YuPGjdiwYQO2bNmC+Ph4ZGVlISsrC8OGDUMk19WEFgaLRNYTGAw5kcvlQn19PTZs2IANGzbg22+/xb333ousrCyMHz8ecXFxVmeRyJGUYO722+UEc01NDOaIbO3s2bOora3Fhg0bsGnTJkRFRSE9PR1paWlIS0tDz549rc4i2R2DRTJLmAdETnPy5EnU1taitrYWW7duxcWLF5GZmYmsrCykpaXxfXBEAjCYE4fBHDlee3s76urqsHXrVmzduhV79+7FbbfdhvT0dPTu3ZtbQJM1li+3OgehJS/P6hxQCFOmUG7duhUHDhzAoEGDkJ6ejvT0dIwcORIduV6RSCglmLvtNjnB3IEDDOaIHOv06dP44IMPsHPnTnz55ZdwiXopMZFdnD8PXLhw5X/z/v/R0Vf//5gYufkicrAbb7wR6enpGDNmDK6//nqrs0MU0hjMicNgjoiIiIiITKMEc/36yQnmmpvDJ5jjjhFEREREREQOxEngRERERERkOpcLEP2WqXBbXcOROSIiIiIiIgfiyBwREREREZmOI3PGMZgjIiIiIiLTMZgzjtMsiYiIiIiIHIgjc0REREREZDq3W/xIWri9dI0jc0RERERERA7EkTkiIiIiIjKdjPVtXDNHREREREREtseROSIiIiIiMh1H5ozjyBwREREREZEDcWSOiIiIiIhMx5E54xjMERERERGR6RjMGcdplkRERERERA7EkTkiIiIiIjIdR+aM48gcERERERGRA3FkjoiIiIiITMeROeM4MkdERERERORAHJkjIiIiIiLTcWTOOI7MERERERERORBH5oiIiIiIyHQcmTOOwRwREREREZnO7RYffLndYtOzO06zJCIiIiIiciCOzBERERERkelcLiAiQmyaHJkjIiIiIiIi2+PIHBERERERmY4jc8ZxZI6IiIiIiMiBODJHRERERESm48iccRyZIyIiIiIiciCOzBERERERkek4MmccgzkiIiIiIjIdgznjOM2SiIiIiIjIgTgyR0REREREpuPInHEcmSMiIiIiInIgjswREREREZHpODJnHEfmiIiIiIiIHIjBHBERERERmc7lkvMny7hx45CQkIBOnTrhhhtuwLRp03D8+HF5J1SBwRwREREREVEQ99xzD9auXYsvvvgC69atw5EjRzBx4kRL8xThdofbzFIiIiIiIrJKW1sbYmNjAbQC6Co6dQCxaG1tRdeuotO+UnV1NbKysnD+/HlERUVJPZc/3ACFiIiIiIgs0CYtzba2K9OOiYlBTEyMsLP88MMPeOuttzBixAjLAjmA0yyJiIiIiMhE0dHR6NmzJ4B4ALGC/+Jx7bXXIj4+HrGxsf/7e+GFF4Tkfc6cObjmmmtw/fXX45tvvsHGjRuFpKsXp1kSEREREZGpzp07hwsXLkhJ2+12I8LrnQf+RuZKSkowb968gOk1NzcjKSkJAHDq1Cn88MMP+Prrr/HXv/4VsbGx2Lx581XnMwuDOSIiIiIiCkvff/89Tp8+HfAzN910E6Kjo6/679999x3i4+Oxa9cuDB8+XFYWA+KaOSIiIiIiCks9evRAjx49dB3r+vU9COfPnxeZJU04MkdERERERBTA7t278dlnnyE1NRVxcXE4cuQI/vKXv+Df//43Dhw4IHRzFS24AQoREREREVEAXbp0wfr16zFmzBgkJiaioKAAAwYMwI4dOywL5ACOzBERERERETkSR+aIiIiIiIgciMEcERERERGRAzGYIyIiIiIiciAGc0RERERERA7EYI6IiIiIiMiBGMwRERERERE5EIM5IiIiIiIiB2IwR0RERERE5EAM5oiIiIiIiByIwRwREREREZEDMZgjIiIiIiJyoP8HaxrW0YkM+kAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -676,43 +671,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { - "collapsed": true, "jupyter": { "outputs_hidden": true }, "tags": [] }, "outputs": [ - { - "data": { - "text/plain": [ - "[stderr:0] [4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/plain": [ @@ -724,7 +690,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7gklEQVR4nOydeXgUxdbG3wnZCCFhB5F9V0FQBAERUJawCKLs6iUgsiig4gYqriCo4HZFNkXAFa6oqIiIchFEEBRF8FMQr6KgLLKEGEIIyfT3R+ykp9NLVXf1NnN+z5NHmempruk5XX3eOqdOhSRJkkAQBEEQBEEQBEFEHXFed4AgCIIgCIIgCIJwBhJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEESUQoKPIAiCIAiCIAgiSiHBRxAEQRAEQRAEEaWQ4CMIgiAIgiAIgohSSPARBEEQBEEQBEFEKST4CIIgCIIgCIIgohQSfARBEARBEARBEFEKCT6CIAiCIAiCIGKexx9/HKFQCLfffnvxa3l5eRg/fjwqV66M1NRUDBgwAIcPH/aukxYgwUcQBEEQBEEQREzz1VdfYcGCBbjwwgsjXp80aRI++OADvPXWW9iwYQP+/PNPXHvttR710hok+AiCIAiCIAiCiFlycnJw/fXX48UXX0TFihWLXz958iQWLVqEp59+GldeeSVat26NxYsXY/Pmzfjyyy897DEf8V53gCAIgiAIgiCI2CIvLw/5+fmOtC1JEkKhUMRrSUlJSEpK0jx+/Pjx6NOnD7p164bp06cXv759+3acPXsW3bp1K36tWbNmqFOnDrZs2YJ27do50n/RkOAjCIIgCIIgCMI18vLyUL9sWRxyqP3U1FTk5OREvPbQQw/h4YcfLnXssmXL8M033+Crr74q9d6hQ4eQmJiIChUqRLxevXp1HDrkVO/FQ4KPIAiCIAiCIAjXyM/PxyEA+0MhpAluOxtA7Zwc7N+/H2lpJa1rRff279+P2267DZ988gmSk5MF98Q/kOAjCIIgCIIgCMJ10gCkqVIvbSNJRW2npUUIPi22b9+OI0eO4OKLLy5+rbCwEBs3bsScOXPw8ccfIz8/H1lZWRFRvsOHD6NGjRpi++0gJPgIgiAIgiAIgnCfuDjACcFXWMh0aNeuXbFr166I10aOHIlmzZph8uTJqF27NhISErBu3ToMGDAAALBnzx78/vvvaN++vdh+OwgJPoIgCIIgCIIgYo7y5cujefPmEa+VK1cOlStXLn591KhRuOOOO1CpUiWkpaVh4sSJaN++fWAKtgAk+AiCIAiCIAiC8AKPI3wsPPPMM4iLi8OAAQNw5swZZGRkYO7cucLad4OQJP2T6EoQBEEQBEEQBOEw2dnZSE9Px8mEBOFr+LIlCelnz+LkyZOma/hiBYrwEQRBEARBEAThPk5F+IgI4rzuAEEQBEEQBEEQBOEMFOEjCIIgCIIgCMJ9KMLnCiT4CIIgCIIgCIJwHxJ8rkApnQRBEARBEARBEFEKRfgIgiAIgiAIgnAfivC5AkX4CIIgCIIgCIIgohSK8BEEQRAEQRAE4T4U4XMFivARBEEQBEEQBEFEKRThIwiCIAiCIAjCfSjC5woU4SMIgiAIgiAIgohSKMJHEARBEARBEIT7hEJFUT6RhMNi24sCSPARBEEQBEEQBOE+cXHiBR9RCrrCBEFEPZ999hlCoRA+++wz02O7dOmCLl26MLWbk5ODatWq4fXXX7fXQYKLUCiEhx9+2OtuBAL1tVqyZAlCoRD27dvH3daUKVNw6aWXiuscQRAE4Qok+AgiQDz88MMIhUI4evSo5vvNmzdnFitukZeXh2eeeQaXXnop0tPTkZycjCZNmmDChAn46aefvO6eLZ577jmUL18eQ4cOLX5t3bp1uPHGG9GkSROkpKSgQYMGuOmmm3Dw4EHNNjZv3oyOHTsiJSUFNWrUwK233oqcnBxH+33s2DHMmjULnTp1QtWqVVGhQgW0a9cOy5cv1zz+zJkzmDx5MmrWrImyZcvi0ksvxSeffOJoH51ixowZWLlypdfdEMrq1atdEcC33347vvvuO7z//vuOn4sgiBhBjvCJ/iMioJROgiAc4+jRo+jZsye2b9+Oq666Ctdddx1SU1OxZ88eLFu2DAsXLkR+fr7j/ejUqRNOnz6NxMREYW2ePXsWzz33HCZNmoQyZcoUvz558mQcP34cgwYNQuPGjfHLL79gzpw5WLVqFXbs2IEaNWoUH7tjxw507doV5513Hp5++mkcOHAAs2fPxt69e/HRRx8J66uaLVu24P7770fv3r0xdepUxMfH4+2338bQoUPxww8/4JFHHok4fsSIEVixYgVuv/12NG7cGEuWLEHv3r2xfv16dOzY0bF+6nH69GnEx1t7fM2YMQMDBw5E//79xXbKQ1avXo0XXnhBU/TZuVZqatSogauvvhqzZ89Gv379hLRJEARBOA8JPoIgHGPEiBH49ttvsWLFCgwYMCDivWnTpuH+++939Px5eXlITExEXFwckpOThba9atUq/PXXXxg8eHDE608//TQ6duyIOMUMY8+ePdG5c2fMmTMH06dPL379vvvuQ8WKFfHZZ58hLS0NAFCvXj2MHj0aa9euRY8ePYT2WeaCCy7A3r17Ubdu3eLXbrnlFnTr1g1PPPEE7rnnHpQrVw4AsG3bNixbtgyzZs3CXXfdBQAYPnw4mjdvjnvuuQebN292pI9GiP4tg0Bubi5SUlK4Pyf6Wg0ePBiDBg3CL7/8ggYNGghtmyCIGIQicq5AV5ggYpCCggJMmzYNDRs2RFJSEurVq4f77rsPZ86ciTiuXr16uOqqq7Bp0ya0bdsWycnJaNCgAV555RXTc2zduhUffvghRo0aVUrsAUBSUhJmz57N1N8XXngBDRo0QNmyZdG2bVt8/vnnpdbayev0li1bhqlTp+Lcc89FSkoKsrOzddfwLVy4EA0bNoxol5WVK1eiXr16aNiwYcTrnTp1ihB78muVKlXCjz/+WPxadnY2PvnkE9xwww3FYg8oElOpqan4z3/+Y3j+zMxMJCcnR7QJABkZGahYsSL+/PNP3c/Wr18/QuwBRWu9+vfvjzNnzuCXX34pfn3FihUoU6YMxowZU/xacnIyRo0ahS1btmD//v2G/ezSpQuaN2+O7du3o0OHDihbtizq16+P+fPnlzr2yJEjGDVqFKpXr47k5GS0bNkSS5cuLXWcel2anOr8888/Y8SIEahQoQLS09MxcuRI5ObmRnzu1KlTWLp0KUKhEEKhEEaMGAEA+Pvvv3H77bejXr16SEpKQrVq1dC9e3d88803ht9PPvfu3bsxePBgpKWloXLlyrjtttuQl5dX6vjXXnsNrVu3RtmyZVGpUiUMHTq01DVUXrNOnTohJSUF9913n+b5R4wYgRdeeKH4+8l/etdKj48++giXX345ypUrh/Lly6NPnz74v//7v1LHdevWDQDw3nvvmbZJEARB+AMSfAQRg9x000148MEHcfHFF+OZZ55B586dMXPmzIi1aDI///wzBg4ciO7du+Opp55CxYoVMWLECE1nUIm8zudf//qXrb7OmzcPEyZMQK1atfDkk0/i8ssvR//+/XHgwAHN46dNm4YPP/wQd911F2bMmKGbxrlo0SKMHTsWNWrUwJNPPonLLrsM/fr1MxUwMps3b8bFF1/MdGxOTg5ycnJQpUqV4td27dqFgoICXHLJJRHHJiYmolWrVvj2228N23zuuedQtWpVZGZmorCwEACwYMECrF27Fs8//zxq1qzJ1Dclhw4dAoCIfn777bdo0qRJhCgFgLZt2wIoSks148SJE+jduzdat26NJ598ErVq1cLNN9+Ml19+ufiY06dPo0uXLnj11Vdx/fXXY9asWUhPT8eIESPw3HPPMfV/8ODB+PvvvzFz5kwMHjwYS5YsiUhPffXVV5GUlITLL78cr776Kl599VWMHTsWADBu3DjMmzcPAwYMwNy5c3HXXXehbNmypQS10bnz8vIwc+ZM9O7dG//+978jRDIAPPbYYxg+fDgaN26Mp59+GrfffjvWrVuHTp06ISsrK+LYY8eOoVevXmjVqhWeffZZXHHFFZrnHTt2LLp37178/eQ/Hl599VX06dMHqampeOKJJ/DAAw/ghx9+QMeOHUsVd0lPT0fDhg3xxRdfcJ2DIAhCE1rD5w4SQRCB4aGHHpIASH/99Zfm+xdccIHUuXNnwzZ27NghAZBuuummiNfvuusuCYD03//+t/i1unXrSgCkjRs3Fr925MgRKSkpSbrzzjsNz3PNNddIAKQTJ04YfykDzpw5I1WuXFlq06aNdPbs2eLXlyxZIgGI+K7r16+XAEgNGjSQcnNzI9qR31u/fr0kSZKUn58vVatWTWrVqpV05syZ4uMWLlxYql0tzp49K4VCIdNrIDNt2jQJgLRu3bri1956661S11Zm0KBBUo0aNUzb/fjjjyUA0vTp06VffvlFSk1Nlfr378/UJzXHjh2TqlWrJl1++eURr19wwQXSlVdeWer4//u//5MASPPnzzdst3PnzhIA6amnnip+7cyZM1KrVq2katWqSfn5+ZIkSdKzzz4rAZBee+214uPy8/Ol9u3bS6mpqVJ2dnbx6wCkhx56qPjf8n1x4403Rpz7mmuukSpXrhzxWrly5aTMzMxS/UxPT5fGjx9v+F20kM/dr1+/iNdvueUWCYD03XffSZIkSfv27ZPKlCkjPfbYYxHH7dq1S4qPj494Xb5mZtdWZvz48ZLe41x9rRYvXiwBkH799VdJkiTp77//lipUqCCNHj064nOHDh2S0tPTS70uSZLUo0cP6bzzzmPqG0EQhBYnT56UAEgna9aUpFq1hP6drFmzqO2TJ73+mr6BJDBBxBirV68GANxxxx0Rr995550AgA8//DDi9fPPPx+XX3558b+rVq2Kpk2bRqT9aZGdnQ0AKF++vOW+fv311zh27BhGjx4dUXji+uuvR8WKFTU/k5mZibJly5q2e+TIEYwbNy4iAjhixAikp6eb9uv48eOQJEm3D0o2btyIRx55BIMHD8aVV15Z/Prp06cBFKW2qklOTi5+34gePXpg7NixePTRR3HttdciOTkZCxYsMP2cmnA4jOuvvx5ZWVl4/vnnI947ffq0bh+V38OI+Pj44kgaUBTFHDt2LI4cOYLt27cDKLLLGjVqYNiwYcXHJSQkFFct3bBhg+l5xo0bF/Hvyy+/HMeOHSu2RSMqVKiArVu3GqbCGjF+/PiIf0+cOBFAyf32zjvvIBwOY/DgwTh69GjxX40aNdC4cWOsX78+4vNJSUkYOXKkpb7w8MknnyArKwvDhg2L6FeZMmVw6aWXluoXAFSsWFG3UjBBEAQXFOFzBSraQhBRhnL9jha//fYb4uLi0KhRo4jXa9SogQoVKuC3336LeL1OnTql2qhYsSJOnDhheB45BfDvv/9GhQoVDI89ffo0Tp48Wao/cl/UfY2Pj0e9evU026pfv77huQAUt9u4ceOI1xMSErgKUUiSZPj+7t27cc0116B58+Z46aWXIt6TRal63SRQVGzGTLTKzJ49G++99x527NiBN954A9WqVWPsfQkTJ07EmjVr8Morr6Bly5al+qnXR/l9M2rWrFlcBEamSZMmAIB9+/ahXbt2+O2339C4ceNS6x/PO+88AChll1qobVUW5CdOnCiVkqrmySefRGZmJmrXro3WrVujd+/eGD58OLM9qG2pYcOGiIuLK06J3Lt3LyRJKnWcTEJCQsS/zz33XKFVZfXYu3cvAERMRijRum6SJJmOMwRBEEyQQHMFEnwEESDMoiq5ubnMVflYHTbllgNKzMROs2bNABStVVNGCLVYvnx5qWiGWft6sAolO1SqVAmhUMhQ9O7fvx89evRAeno6Vq9eXSrSec455wCA5v58Bw8eZF6D9+233+LIkSMAiq61MkLGwiOPPIK5c+fi8ccf11xvec455+CPP/7Q7CMAS2sFncKqrQJFa/Auv/xyvPvuu1i7di1mzZqFJ554Au+88w569erF3Rf1/RUOhxEKhfDRRx9p9jM1NTXi327YsdwvoGgdn3LLEBmtLR1OnDgRsc6TIAiC8Dck+AgiQMiVFffs2YPatWtHvJebm1ssMszaCIfD2Lt3b3H0BAAOHz6MrKysUtUbrdK3b1/MnDkTr732mqngy8jI0NzIW+7Lzz//HFG0oqCgAPv27cOFF15oqW9yu3v37o2IbJw9exa//vprqSiXmvj4eDRs2BC//vqr5vvHjh1Djx49cObMGaxbt65Y3Clp3rw54uPj8fXXX0ds7ZCfn48dO3aU2u5Bi1OnTmHkyJE4//zz0aFDBzz55JO45ppr0KZNG9PPAijeu+3222/H5MmTNY9p1aoV1q9fj+zs7Ihoz9atW4vfN+PPP//EqVOnIqJ8P/30EwAUR2rr1q2LnTt3IhwOR0T5du/eXfy+CIwmOs455xzccsstuOWWW3DkyBFcfPHFeOyxx5gE3969eyOiyz///DPC4XDx92vYsCEkSUL9+vWLo5uisBNtk6vMVqtWrbgCpxks9whBEAQTFOFzBbrCBBEgunbtisTERMybN694Zl5m4cKFKCgoMHVOe/fuDQB49tlnI15/+umnAQB9+vQR0tf27dujZ8+eeOmll7By5cpS7+fn5xfv63bOOeegW7duEX8AcMkll6By5cp48cUXUVBQUPzZ119/3TSl1IhLLrkEVatWxfz58yM2fl+yZEmpaolG3+/rr78u9fqpU6fQu3dv/PHHH1i9erVuCl96ejq6deuG1157DX///Xfx66+++ipycnIwaNAg0z5MnjwZv//+O5YuXYqnn34a9erVQ2ZmpmYKpprly5fj1ltvxfXXX1/822sxcOBAFBYWYuHChcWvnTlzBosXL8all15aauJBi4KCgoi1hfn5+ViwYAGqVq2K1q1bAyiyy0OHDmH58uURn3v++eeRmpqKzp07m56HhXLlypX6jQsLC0ulFFerVg01a9ZkupYAirdGkJHXQsr347XXXosyZcrgkUceKRVxlCQJx44d4/kaEchCmtV2lWRkZCAtLQ0zZszA2bNnS73/119/Rfz75MmT+N///ocOHTpY6itBEAThPhThI4gAUa1aNTz44IOYOnUqOnXqhH79+iElJQWbN2/Gm2++iR49eqBv376GbbRs2RKZmZlYuHAhsrKy0LlzZ2zbtg1Lly5F//79dcu/W+GVV15Bjx49cO2116Jv377o2rUrypUrh71792LZsmU4ePCg4V58iYmJePjhhzFx4kRceeWVGDx4MPbt24clS5agYcOGliMbCQkJmD59OsaOHYsrr7wSQ4YMwa+//orFixczr9m6+uqr8eqrr+Knn36KiNhcf/312LZtG2688Ub8+OOPEWX9U1NT0b9//+J/P/bYY+jQoQM6d+6MMWPG4MCBA3jqqafQo0cP9OzZ0/D8//3vfzF37lw89NBDxdtDLF68GF26dMEDDzyAJ598Uvez27Ztw/Dhw1G5cmV07doVr7/+esT7HTp0KL4Ol156KQYNGoR7770XR44cQaNGjbB06VLs27cPixYtYrpWNWvWxBNPPIF9+/ahSZMmWL58OXbs2IGFCxcWr10bM2YMFixYgBEjRmD79u2oV68eVqxYgS+++ALPPvusreI/Slq3bo1PP/0UTz/9NGrWrIn69eujadOmqFWrFgYOHIiWLVsiNTUVn376Kb766is89dRTTO3++uuv6NevH3r27IktW7bgtddew3XXXVccCWvYsCGmT5+Oe++9F/v27UP//v1Rvnx5/Prrr3j33XcxZsyY4gkQK98JAG699VZkZGSgTJkymlusaJGWloZ58+bhX//6Fy6++GIMHToUVatWxe+//44PP/wQl112GebMmVN8/KeffgpJknD11Vdb6itBEEQEFOFzB4+qgxIEYYPXXntNateunVSuXDkpKSlJatasmfTII49IeXl5TJ8/e/as9Mgjj0j169eXEhISpNq1a0v33ntvqc/XrVtX6tOnT6nPd+7c2XTrApnc3Fxp9uzZUps2baTU1FQpMTFRaty4sTRx4kTp559/Zmrj3//+t1S3bl0pKSlJatu2rfTFF19IrVu3lnr27Fl8jLz1wltvvVXq8+ptGWTmzp0r1a9fX0pKSpIuueQSaePGjczf7cyZM1KVKlWkadOmRbwub2Wh9Ve3bt1S7Xz++edShw4dpOTkZKlq1arS+PHjI7Yg0CI7O1uqW7eudPHFF0dsVyFJkjRp0iQpLi5O2rJli+7n5dL8en+LFy+OOP706dPSXXfdJdWoUUNKSkqS2rRpI61Zs8b4Av1D586dpQsuuED6+uuvpfbt20vJyclS3bp1pTlz5pQ69vDhw9LIkSOlKlWqSImJiVKLFi1K9UWS9LdlUG9Xot6CQJIkaffu3VKnTp2ksmXLSgCkzMxM6cyZM9Ldd98ttWzZUipfvrxUrlw5qWXLltLcuXNNv5987h9++EEaOHCgVL58ealixYrShAkTpNOnT5c6/u2335Y6duwolStXTipXrpzUrFkzafz48dKePXtKXTNWCgoKpIkTJ0pVq1aVQqFQxBYN6muldU0kqegeycjIkNLT06Xk5GSpYcOG0ogRI6Svv/464rghQ4ZIHTt2ZO4bQRCEFsXbMjRoIEmNGgn9O9mgAW3LoCIkSRYrIxAEQXhEOBxG1apVce211+LFF1/0rB/Tpk3D4sWLsXfvXt2CIbFOly5dcPToUXz//fded8URHn74YTzyyCP466+/or6QyaFDh1C/fn0sW7aMInwEQdgiOzsb6enpONmwIdIEPz+zCwuR/r//4eTJk6YVmmMFiqESBOFr8vLySq15euWVV3D8+HF06dLFm079w6RJk5CTk4Nly5Z52g+CcINnn30WLVq0ILFHEAQRMGgNH0EQvubLL7/EpEmTMGjQIFSuXBnffPMNFi1ahObNmzMVNnGS1NTU4i0RCCLaefzxx73uAkEQ0YYTa/goebEUJPgIgvA19erVQ+3atfHvf/8bx48fR6VKlTB8+HA8/vjjrmxMTRAEQRCEQ5DgcwVaw0cQBEEQBEEQhGsUr+Fr2tSZNXx79tAaPgUU4SMIgiAIgiAIwn0owucKVLSFIAiCIAiCIAgiSqEIHxF1HD16FOvWrcPatWvx+++/e90dghCPJAEFBRH/LAyX3oReuS+9VCYe8TTiE4QudevWRffu3dG1a9eo32KDIHwDRfhcgR7/ROApKCjApk2bsHbtWqxduxbffvstmjdvjh49eqBDhw4IhUo7wgThKFlZwL59XvciatiBVmjVyuteENGMJEnYvXs3ZsyYgeuuuw4XXXQRevTogR49eqBjx46Ip9kSgiACDBVtIQLJqVOnsHbtWqxcuRKrVq1CQkICMjIy0L17d3Tr1g01atTwuouE3/ngA697QMQKfft63QOCg0OHDuHTTz/FJ598go8//hhnz57FVVddhf79+6NHjx4oV66c110kiMBTXLSlRQtnirbs2kVFWxSQ4CMCw4kTJ7By5UqsXLkSa9euRe3atXHNNdegf//+uPTSSxEnOiWA8BYSZAThPTEuVsPhMLZu3YqVK1fi3Xffxf79+9GjRw/0798f/fv3R8WKFb3uIkEEEhJ87kKCj/A1OTk5eP/99/Hmm2/i448/RsuWLXHttdeif//+aNasGaVregkJMoIgfMwH6CtUr8ppnytXrsQ777yDnTt3IiMjA0OHDkW/fv2Qmpoq7mQEEeUUC76WLZ0RfN99R4JPAQk+wnfk5eVh9erVWLZsGVatWoWGDRti2LBhGDJkCBo2bOh194LFli32Pl+hgrXP/fyzvfMSBEEI4uAl1lXfOefov/fzzz9j+fLlWLZsGf73v/+hb9++GDp0KHr16oXk5GTL5ySIWKBY8F10kTOC79tvSfApIMFH+AJJkrB582YsXboUy5cvR9WqVYtFXvPmzb3unrPYFWVOYVXsOQEJSCJK2VKFXYwcPepgR3zGJZd43YPSGIm/77//HsuWLcOyZcvw119/YciQIcjMzKTCYQShAwk+dyHBR3jKb7/9hldffRVLly7F0aNHMWzYMGRmZqJt27b+fEj++GPRf7OyPO2G4/hJ7ImiWjVg82YxbXXrJqYdQZxGWa+7EIEfbw8/9clPfQHEC0k/ijWRGAk/SZKwdetWLF26FMuWLUPVqlUxfPhwDB8+HHXq1HGvkwThc4oFX+vWzgi+7dtJ8CkgwUe4Tm5uLlasWIGlS5fi888/R48ePZCZmYm+ffv6Jw1GFnZG+M1rE0E0Cj2ZatUi/52S4k0/HMBvgk8k0bq7RbQPH9E8lCgxEn95eXn44IMPsGTJEnzyySe4/PLLkZmZiYEDByIlisYfgrACCT53IcFHuMbOnTuxcOFCvPbaa6hVqxZGjhyJ66+/3tstFFiEnRnR4rlFk4emFndmBNz5iibBl5tr/P6RI+70ww1iceiIpmFGiZHwA4q2enj99dexePFiHDhwAP/6178wevRoXHjhhe50kCB8RrHgu+QSpAne5zK7oADpX39Ngk8BCT7CUU6dOoXly5dj4cKF2LlzJ4YMGYIxY8agXbt27qZsihB2ZgTVewu6B8Yr7swIoPgLuuAzE3lmBF0EBnHoEDlsBH0IUmOW8vnll19i4cKFWL58OS688EKMGTMGQ4YMof39iJiCBJ+7kOAjHGHHjh1YsGABXn/9ddSvXx9jx47FddddhwpOP9ndEHZmBMl7C6KnJVrgGREQ8Rc0wWdX4JkRRAEYlGHDzSEjiMOTErOoX1ZWFl5//XUsXLgQv/76K66//nqMHTsWrVq1cqV/BOElxYKvbVtnBN+2bST4FJDgI4SRn5+Pd955B3PmzMG3336LYcOGYcyYMWjTpo34aJ4fhJ0ZTnhwosSOnbWS2dli+sCCm+KOBZ8KwCAIPqdFnhlBEIF+Fn1+El9BE51lTW5PSZLw1VdfYeHChXjzzTdx8cUXY8KECbj22muRkJBgvwME4UNI8LkLCT7CNgcPHsTChQuxYMECpKSkYPz48RgxYgQqVqxov/Fjx4LhqemRlgbk5Xndi0j8UBhHSzT6TdyZIUr8JSbabqIQ1he85+fbPr0mXgs8M5wcVuz4F3aHC9Hfy09Czwytvvqp/2bCDwBOnDiBJUuW4IUXXkBubi7Gjh2LsWPHervWnSAcoFjwtWvnjOD78ksmwTdv3jzMmzcP+/6pEHbBBRfgwQcfRK9evQAUFV+68847sWzZMpw5cwYZGRmYO3cuqlevLrTPTkOCj7CEJEnYsmULnn/+ebzzzjvo1q0bJkyYgIyMDMTFxVlv+Ngx4/f9KP7MvDs/CT4/iD0ASE0t/VpBgfv9sENqKiD4IWUFO2JPNH6OULHgl1vVL/1ITnY3oC8K5dyRT4PypuIvHA5jzZo1mDNnDtatW4cBAwZgwoQJaN++vT+3LCIITooFX4cOzgi+zZuZBN8HH3yAMmXKoHHjxpAkCUuXLsWsWbPw7bff4oILLsDNN9+MDz/8EEuWLEF6ejomTJiAuLg4fPHFF0L77DQk+AguCgoK8Pbbb2P27NnYu3cvbrzxRtxyyy1o1KiR9UbNRJ4ebos/q9P2fvLevEZL6OnhFwFo1mePRZ9fBJ/ez5WT424/eND76fzQZz8MG0ZDhp+EIGtygB/FH0vU7+eff8bcuXPx8ssvo3HjxrjrrrswYMAAxPtgwokgrOKG4Nu/f3+E4EtKSkJSUpLp5ytVqoRZs2Zh4MCBqFq1Kt544w0MHDgQALB7926cd9552LJlC9q1aye0305Cgo9gIicnB4sWLcIzzzyDuLg4TJo0CSNHjkQqjwMvY1XgGSFK/DmR6+215xY0oaeH0wLQTh89dLy8FnxWfhYvBJWVn8hr4RfUocMNMSgiA9xPApBF+OXk5GDx4sV4+umnAQCTJk3CjTfeaO05TBAeUyz4OnZ0RvBt2lTq9YceeggPP/yw7ucKCwvx1ltvITMzE99++y0OHTqErl274sSJExFFB+vWrYvbb78dkyZNEtpvJ6HpIcKQgwcP4vnnn8e8efPQuHFjzJo1C9dccw3/zKITIk+J8ulvJv5iaQGvl2JPtBOitjk7AlB03woKPI/0eYHVn0Dr8osWVyJ+DrmfXgm/5GTvRZ8V9IZYu0JQ9DJf5TpTr8Xf6dNF/zUSfqmpqZg4cSJuvvlmvPvuu5g1axYeeugh3HzzzZg4cSLOMSsLShAxhlaET4tdu3ahffv2yMvLQ2pqKt59912cf/752LFjBxITE0tVmK9evToOHTrkZNeFE3seCsHEnj178MQTT+CNN95Ajx498N577+Hyyy/nWzvgtMjTQ/YK4uO9n6L3Eq/EnluzzSwC0M2Z7xgTfaIDrno/Fcst7PRl91L4BVX0aWE016YnBt2q5eQX8cci/OLj4zFo0CAMHDgQn3/+OWbPno369evjuuuuw+TJk9G0aVN3OksQIoiLK/oT3SaAtLQ0piqdTZs2xY4dO3Dy5EmsWLECmZmZ2LBhg9g+eYzgK0wEnT179uCGG25Ay5YtEQqFsGPHDrz//vvo1KmTudg7dizyz23i4yP/AHcdfj/hhdhLTfX2eleqVPQn98OLvvhl3aHDuPk1lT+n/Kd1q7vZF7fxQ1a206SlRf7VrFn05wW5uSV/XnH6dIn40yMUCqFTp054//338e233yIUCqFly5b417/+hT179rjTUYKIAhITE9GoUSO0bt0aM2fORMuWLfHcc8+hRo0ayM/PR5aqItnhw4cDVzmXBB8BoGgRqiz0UlJSsHv3bixatAjNmjUz/qDfBJ4WQRd9NWqw/9WqVfRXpYr2n2i8FFdApIcok5goZKsDy0Sx6Cso8PbryT+t+id3Gy9M3m3R55dscK/EvYzT4k+2ab2/wsKiPzPOO+88LFq0CD/++COSk5PRsmVL3HDDDST8CP8jR/hE/9kgHA7jzJkzaN26NRISErBu3bri9/bs2YPff/8d7du3t/vNXSV28o8ITXbv3o1p06bh7bffxvDhw7F7927Uq1dP/wNnzhT9NyhVF2RSU93vsyyw3PKQWa6PXdF39GjRf70U0ayeviz6nNpozghB6Z1SnHlBljLQr7tVGBZXvt1roaeF0hS8qBrpRKqn2S3K8jsEbGlJBDxFcd22Sb20Tzfml2TRV8ZkSKhfvz5efPFF3H///ZgxYwZatmyJgQMHYurUqeYTuAQRg9x7773o1asX6tSpg7///htvvPEGPvvsM3z88cdIT0/HqFGjcMcdd6BSpUpIS0vDxIkT0b59+0BV6ARI8MUsv/32Gx544AH85z//QWZmJrvQk1E/lZ0QU6Knc50QfU5Ezazg0tS3VPPcUq+Fsk86f2I74RwPhF9hfJLwJQlahAzEHgCUiRNThPlMvjf7fvE40l6KP+Vw6HRkLD7eXOiIyDSKjy+Z33EL3nkkkXWceFD3083lu6zCr169eli4cCHuu+8+zJgxA61atcLgwYMxffp01KlTx/mOEgQrDq7hY+HIkSMYPnw4Dh48iPT0dFx44YX4+OOP0b17dwAork4/YMCAiI3XgwZtyxBjZGVlYcaMGZgzZw4GDhyIRx99lE/osWJFWLn1xOTtmx1R54YH4sJ1kxLN961RIkQEOpWzJ1D4FcYbXxenRZ+Z4BNCOKz71pkCZ7aEEBkxcUr8pafpX3unBbIfhhXRYtCJpAER18muCHUSM9GnZN++fXjggQfw9ttvY+LEibj33ntLVR4kCDcp3pahWzdntmX49FOmjddjBYrwxQj5+fmYO3cupk2bhosuughffPEFLrroIu2DrYo8JSwRQD9VNPRLpI4XH4o9AJDS0ku9xiQC3RiYExO5RZ+ZsItVkuJLLy6yIwKdSI0TEfkzEndaJCVKjoo+liifXcyiVkZDJq8YdCpD3EoE0G5f5HO48XhjjfYBRRG/V199FZMmTcLdd9+NRo0a4YEHHsDNN9+MRC/XPBME4QoU4YtyJEnCW2+9hXvvvRcpKSl48skn0bNnT+2KmyKEnhHyQ8WLxTb/IAuRUL7D3xVw3iNz2KOwIvR4KBaAXs6+qYSfE8LOySif4xE+g+geL0ZC0At/U28Y4hV3RgQ90id6iNESgl4uB5avn5N98GPET5IkfPTRR7jnnntw+vRpzJw5E4MGDeLbdokgbFIc4eveHWkJCWLbPnsW6Z98QhE+BST4opgdO3ZgwoQJ+OWXXzBt2jSMGDECZdRPBLdEnhYOCz+tKJNM4AWfg16E00IPKL2vWNlk94eh03lFzo3TYiOwgk+g2NODpSiN07iRFuuk8AvoMFNMUqKEk9neCA2lH+jGEl83ridPmmdBQQGWLl2KBx54AA0aNMALL7yAli1bOtc5glBAgs9daFuGKOTEiROYMGEC2rdvj8svvxw//fQTRo0aFSn2zpxxTuwpa0obIbi2upSWHvEXtQRY7OXlaW8ifTovVCzAnEI+h/pcTjt6LuimYJKfj1De6Yg/t4g4p55RCiQp0TlR6afMeF7k65KeJkX8OY3Wo4f1sWUHN7Y1Yd3GASjawH3UqFH46aef0LFjR7Rr1w4TJ04stecYQTiKD7dliEboikQR4XAYL7/8Mpo2bYq9e/dix44dmDlzJlLlfBVZ5Dkt9HixKPrsCDzHo1hOPdUd8u6kxCRHrwmrT60lyOzA2p4XOzf4GqdVqs4Fd1L8mbbtsPBzUvRFG2oBKEoEss4xxprwS01NxeOPP44dO3Zgz549aNKkCV5++WWEabaKIKIGSumMErZv347x48fj4MGDeOaZZ3DNNdeU5OM7mbYp+qlokOYpOmrnaFon49P873A55iZZnr3pyfzfyWmhZxeedE+7QtFJJ8+JCUdH0hGddPIsKmspuazlU1oWjw7ur+BEimfA5pgA2BPBvGmgdpNJnJwUsnqNmbdd4VibJ0kS3n33XUyaNAk1a9bEnDlz0Lp1a2sdJAgDilM6e/VyJqXzo48opVNBgJNBCADIycnBAw88gAULFuDOO+8sLs4CKGb3/ilEUaZAkMBx0itOSwOyswOVknkyL1IwpSef4RJyLLD64Oq+6KF0DitVstAhE0QGSpQiTkv8iUwFzc/3poCIGtbfuwwYDuRRmj4Ue0Bp0WYmAIVECPPyHBN9Vqp4JuUZV7lNAph/61Nx5bnO7QR2I57qqJ+eABTl6ynHBdHiTx6Pk+ILUYgywvbPLEae12cQfqFQCNdeey169uyJmTNn4vLLL8fYsWMxbdq0kmwhgiACB0X4AsyHH36Im2++uXiD1WbNmgFgT+PgEoAueMFKx93pzYsBvggfq5ACxEdynPDBzaIBVkWgw0uhkJsL/DOf4SiizF19nUVHS8qA8WZnxama8g6GR5Tiz7F1gKIHpOPHi/7rRPjMwQHoTLK4iTinU1xPZoccLwBsx6y1tjSJwKk1SJyVOH/88UeMHTsWv/32G+bOnYs+ffo40y8i5iiO8PXp40yE78MPKcKngCJ8AeTQoUO47bbbsHbtWsyaNQs33ngj4uLimIWejFYJ+ggR6LLIU+Lg5LomPIIu6LCkfsn+qBo9Iei00AOKxJ7yv04KP95InxsbYTuO8kvofSErAsXhBZKhvNPOzwTIBm5lUNK7mQDzze58hlGUkUcMurGeMT3xNPDPz2YnJdgI1qifqbjTIhx2RvRxRPsA4LzzzsNnn32GRYsW4YYbbkCPHj3w3HPPoUaNGuL7RsQmThRZoaItpaArEiDC4TBefPFFnHfeeQiFQvjxxx9x0003QZL4xZ4ehfFJOB3+58+Bqol6lRK1cEJEHD9e8ncsJwkn85KEij0/R/dEFApQXr9Dh5wvcJibW/Kn9Z6TqB04+fpp/XmB8OgeC7wXwelqOErjMDIWURgZvPLmUP6ZIdqIRKcEMA5qSXkndf9cR/UbuVEJVl3lMym+sPjPMuGwc2nWHMldcXFxGD16NH788UcARSLwxRdfBCWIEURwoJTOgLBv3z6MGjUKe/fuxbx589CnTx9hIg8w98vs7JNmRzjajfIZ+Vt+z6YSLfZEomUvFSqIa5/XZxcd3FF+P5GRZpE251g6pyjy8pzLEmA1EKeifnLZetHfT6SB+HUwAkpszeMFxKIjf6UEpWj78Emap7ycpHHjxli0aBHq1avnTL+IqKY4pfPqq51J6XzvPUrpVEARPp8TDocxb948tGjRAo0aNcL333+Pnj3Fib38fLZJeN5S+aLK6/NEj6xMrovEr/6VG2IPKPKB5T+rWA3Q2A3qyPcB6/1gFd+mfjoh9gBnLirPjy0y4qdl4E5V74gVRA/anOkGIiJ/hm2Itn2nIn6c8/59+vTB999/j0aNGuHCCy/E/PnzaQsHgvA5FOHzMb/++itGjRqF//3vf1i0aBGuuKKbsLbtPoOcrpaoRivKYtc3EB3hEyX4/Cr2rNqMWeRPdAYeS1CH97v4MconNMIn0lBYnW7e6IcIQ+GN+LHOXvg10hcNs1CsUUCBueUskT9LIjEIET/OaN8nn3yCm266CY0aNaJoH8FFcYTvmmucifC9+y5F+BRQhM+HyFG9Cy+8EE2aNMF3330vROyJnGxXr8VzUuwB3kfvzPCb2BO9LMiOzehF/pxabqXVpt0InhtFaTzDC7EH8P0oogyFxeishKpFR3JE/SbREHXxYPA3itrZigg6EfETDWcMoHv37ti1axcaNWqEFi1aYN68eRTtIwgfQhE+n/HHH39g5MiR2LNnDxYuXIRu3cQIPZFo+Uuil8po+Vp+nUQH+ATfkSPar2s9I6tV4++LX4SeUXtOb+eUny/eJv0W5RMW4RNlMCJVsXyzO12ZBygyFDt5yGpEDlR+ivT5NfUAcGevFqcqwYqyF6u/sd7vWqYMd1OffvopRo0ahaZNm2Lx4sU499xzrfWJiAmKI3wDBjgT4Xv7bYrwKQhOPegY4M0338Qtt9yC/v37Y/nyFbaN1A2hp3zP7rNQpM/lJGrB5mT1Xz1xqIXyuV2lir3zOrGOTdlmTk7Rf0ULP+U5RPtnbm8V4gp+XTOWn18y4Di5PUxOTtGfyHPw7ulhhNVtG1gGKd7ZpLg4/0YMlQ8PkdWjZNR7wgDiBhd50LJrM+Fwkb0kJor5neRCARzCr1u3bti5cyduu+02tGjRAnPnzsXQoUPt94UgCNuQ4PMBx48fx/jx4/Hpp5/i5ZdfxjXXXFP8npXiLF7WR3BqiYyb8IgsUYj2o44e1X6dRQg6FdXTIifHvugzat+tjdpZUGor32y9JmqjddE5r8qBR/kDixJS8oyD+hyi2hfVnnwj251V0trTzcpApxyorKQfOIF6AFA/VOwKQL2HoOgNQXlsxmiiRm5H1CBTWMgl+tLT07FkyRK88847GDNmDN577z3MnTsXFStWFNMfIvqgffhcwS9uR8yydu1ajBw5EhdddBF27dpVajNTrXFWSwTK/osof8VqJpWZg+0HgSfKhxLVhgixx9qGkRB0U+gpsRLt4+mrSNFnFuXza8DMFKOOmzmOToo9NXaFlFroiW5fqz2ztvRuSiVObcJtBzPB6BdBaCf6x/IgdFr4WR1UrEaHteAUfQBw7bXXokOHDhg1ahRatGiBxYsXo3v37mL6QxAENyT4POLMmTOYMmUKXnrpJTz11FMYPXo0QozVsZTj7knVnrZ2/BWRdRGUzz5RIs9KphSLL+Ulboo9Iw4dKvl/u1tjWRWOLMLPatsiRV9gRZ0aVqFm9IVFXgyeAYg36mcm9LTaFx3ty862145d0SdCNPKkdRoJQif232OBVfzZ3RvG7mCjLO5iJ49cVAQfsJTiWaNGDaxatQovvvgirr32Wtx00014/PHHkZSUZL8/RPQQComf0OKsNhsLUNEWD/jxxx8xbNgwxMfH44033kCTJk2421ALPSPM/BYn6iKIXhYjI2KyHIie6J4IsWfms7P6ZqIjhLLwE9muFT9M6/qIWMtntw3bRVtERObUbVh1LEUMQlqDA6/QY22XFXVFSbuOtx8GLqdmqawsPBY1OCjFn8gHIs+AY/ZdRAw6wvaE4S/o8tNPP+G6665DQUEB3nzzTZx33nli+kIEluKiLUOHIk2ww5idn4/0ZcuoaIsCn+WIRDeSJGHhwoVo06YNMjIysHnzZsfFHqBd+VyuTi7y2SbXPxDhY7Fw9GjpvyDhtdhj3brBrBq6E5uVFxQUTca7WXhIPq/6j9BBSzBauXiiBiHlQCdyIOIxcLPtA+walF+LpojAywFd3objyBGxDzCzhyzPXjF5efYnaUQNaBaKCzRp0gSbN29GRkYG2rRpgxdffBEUbyAI96CUTpc4duwYRo8ejS+//BLvvfceunbtyt0Gr9DTQs5ocar2gRKRWVGy7+SXYhdeT5KLEHtWkH+HgoKiJTpOCD0lThRdURaKsXodvK7Y6YvoHgvqC6y+gZ3eiFHkgKE3oPHuC2d3bZXXqZ1uVutUiz5lFNCJUsIyossIq9M97fTd7uAjKs3TQopnYmIinnjiCXTv3h3Dhw/HmjVr8OKLL6KSVym+hD+goi2uQFfEBTZt2oRWrVqhsLAQO3fu5BZ7J0/aF3vqiUY7zxueSJ7V8/h5k3W7BFXsqTlyRNz6TKOAkMhItHztKHpnE6uCURn9Ey32tAxF9I8sR2PsDk5eR/qCGilURv9EPxy0Hlai01by84sGTbu2H/Bon7x9Q0FBAVq2bIlNmzaJ6QtBELqQ4HOQcDiMmTNnIiMjA5MnT8bKlStRhWOdgl2hZ5a2yZuK53S6plsCT0TdAqt46aeJEDlabcjZUE73yaqPFA6X/Mk4sXwtZhB18bR+GKsYGYcodS8belaWmPa8Fn3RgogHB8uD0O4DUH0OETNZdoWfqHvDguirUqUKVq5ciXvuuQcZGRl4/PHHESabjk3kCJ/oPyICnyTIRR9HjhzB8OHDsXfvXmzcuBGtW7dm/qyIaB4PRqmXIgSeqEwor1AWm6tWzd4+fXaeZ3Y2U3fDP+Wpfm61P6wpnizX2eu0TM/wo1JV/mC8D2rWAc9qKpvebIaIsvdepnfa+axfN2FXP1ScSBVUPhRZUj7NxKSIbR3ke9rqgKYUfhbbsLJnMBDCLbdMxKWXdsCwYYOxYcMGvPLKK6hataqlPhAEoQ8JPgfYsGEDhg0bho4dO+Kbb75Beno60+fcFnpKlNs5OBXF86vA4xFwduoI2PWPjM5tJAZFRPV4kX1ktfATITz1RJ8X/qcd0RhIwelGaJRV/Fkd8FiFH0vYWsR6KLuiz84MlIh0Bb/st6eF8qGjJ/7srm+QUYs/3nbdEn4O5bKXQSEKwV+9EwBat26Nr776BmPH3oRWrVrhzTffRKdOnQT3kPAttIbPFUjwCURO4ZwxYwZmzZqFm2++mWlvvWPHSv7fynNfxFIYuY3cXLF1DpQ+k5cFV7yu4Om0GNH6fuGw/Qluu75BVlZRP0RXRZZFn93rGkjRFWR4BaOe+BMx6GmJNTu5yU6KPqcGMBFRPisbsHsRIdSK/oks/KIs9GKnXVHCz2rEzsagaEf0paen4803/4MFC+aiV69euP/++zFlyhTEkeNOEEIgwSeIEydOYPjw4fi///s/fP7557j44otNP6MUejJKB9vMfxAp9NR9sOO7iCrkYQUnhZ2dzCm3kc9pNcNJ1CSw3I/sbLGir6CgqE0RRfSs+jd+zGgzxU6ELjfX3qyp3eigfMFFp6TKxmTXsbQb7ZP3InEbERuyG2EkCK3mqYsYoI4fL2nHLAedB+VvaEe0WRF+ogZuGymidkRfKBTCuHHj0b59ewwcOBBffvklXnnlFVQQ+fsQ/oMifK5Agk8AO3bswIABA3Deeedh+/btqFixouHxWkJPCz3x55TQU5+bx2/xwk/xOmrnV4yECIsAFOEzaPUhO7vov1aFn1a/lFssOI3edXVi6wjfor4IrA9VUSJNmUInKmVANkxRwodn8NTKc48lR0VvELezYJkV5YDCswCZtU1ATLTOrA2zAdvO+j6Ls2F2RB8AtGx5MbZv344bbrgBrVu3xjvvvIOWLVtabo/wOST4XIGuiE2WLl2Kjh07YuTIkXj//feFiT01BQX2i4TxbrbOUqSDp0KjHSEhF2HzapP1oET3eM+nvK6iCraZ9UH2r1kx65eINadqPaIsICmqkGSg0Rs0WC6UE2IP4N/gXU12dmljFPVj6/WJZb8ZL1MCeHHKqfLDJuy8s5hGdiiiIqeyDSu2b/U+tFgJtAwKbe0XmpZWER988AFGjBiByy67DK+88orltgiCoAifZc6cOYPbb78d//nPf/D2228jIyPD8HirQg/QdkYB9metneeMerLarUieXwu88OB3safG7iQ3z/lZon08vozdSB+JOoGIvpAsip4nnZJlxoF3kNXrE+/shvL8NEMdiVL0iVigzIJe9Sk1vHvLWI34hcMl94PViJ2dz7oc7ZOkONx33wNo27YtrrvuOmzZsgXPPvsskpKSLLVH+BSK8LkCCT4LHDp0CNdeey3y8/PxzTffoG7durrHihR6asx8ElH7GsvRRSfxs8ALwrhhx8fW+iyrn2P33Oq1fXYijDyiTy8QZbWASyDSOq3O8NsZSNTn5L2ZeAceM+HHK8CsCi/1zJiVNtwWfUETmXa2YOAdaIxmw6wMWrzCzyhy7qJ48yrFs1u3DHzzzTcYMGAArrzySrz99tuoUaOG5fYIIhYJ0OjuD77++mtccsklaNCgAT7//HNHxB5vBoUyOsGbtmmEnPFkdZLaCJbMpiDjZrRItNhTYpbdJOJ7ZmeL28vaSB9QeqbLaA1iPD+CnVkmdbqbnYGMtb9GN4tVowuCsfpFJLr1UFH+znYHLbMHNovtWd183eXP2UnvBIBateri888/R7169dCmTRt8/fXXttojfARtvO4KFOHj4LXXXsO4cePw8MMP484779TdcsGO0LOK7BvZrWOg5xOJmPyV/aAg3IdurxG0WqPATT9SGfUT5Ycq2xFVgEUZNeTtp9vbNPh+WwhRaQJaGO23JyqlQOSgozUI8uS4Wx1E3Yy8BS3KZ4ReBFBkCWK7laiUKKN+VgZYO1E7wJXtG+xG+hITy+K1117D7Nmz0aVLFyxYsADXX3+95fYIIpYgwcdAYWEhpkyZgpdeegkrVqxAz549NY/zUujJWK0M7kQUz8vtGYzwY3VPsz5pCUIvggbhcIkfZaeYnV4fRIk+O9/RTRFmJeKYgLP8JxK53xgLdvbbEyUylYOjiDV5ynbcXptnR4i5NeC5UVnTDvLAFQ6L3YYBiLQHO+JPue7TykDodpqnhfPJkT47WzfcfffdaNGiBYYNG4bvvvsOM2fORJky1oUk4TGhkPiJJoY9sGMNEnwmZGdnY+jQofj111+xdetWNGnSpNQxf/0V+W83KpWbTYCzVAZ3YjmLX0SeH0WdHdT1CmR4fSyR6Z886/x4zm9F9KnbdXO7BhmtdXy+ycgz64jWjW1VeIkc2Kw6AXoDpF3hpxzg7JTuFSn6/DLYsfTDL6LQyQpVVqN+6sijciN3XqwKP6tFZVyM9hUWAmXKAD179sTWrVtx9dVX4/vvv8eyZcuQJnKzV4KIMkjwGfD777/jqquuwjnnnIMvv/wS6enppY5Riz3AfKsqJ4WeEj3RJzqaF60brQcB9ffX86ecXucHGPtNvOdnEWxmbdoRfTG1GTvg345bEWgsgySv6NJbl+em6JNv9iCnXBoN2F6JQfVvayYAWe8Vnqgfy74zVoWf0UAmcnNRD0RfkyZN8OWXX2LQoEHo2LEjVq1ahTp16nC3R3gMVel0BRJ8Omzbtg39+vXDNddcg+effx7xKuWkJfT0kMdUWehZsUOrS1pk0SdK5Ml+itsiLxp8HRGY+RpaAtBJsadES/jZObeeYONp04tIX0zj1GyW0Xo/ls8btWk0qJgNdHYihmaiT08cRdM6OyVubMLOWnxHRi3+rA5oelE/3r1nAP4BTR3tY/0OVqJ9Hoi+9PR0fPjhh5g4cSLatm2LDz74AG3atOFuj/AQEnyuQIJPgxUrVmDEiBGYPn06brvttlLFWXjEnozSD+LxEezWLpA/L8L2RWQzsRLrkTstrPgayuvIU7XcjlDLyhJX2EW2Xy+2PHBpktufWK3eZxWegU5rALUzUGq1xzujZSdNE+CvKhmtok8LrYeBG3vwAfZTP9UohZ/V4jFWc95lAWclzZNX9HGex67oS0hIwLx589C0aVNcccUVWLp0KQYMGMDdHkFEMyT4FEiShCeffBKPPfYY3nzzTfTt2zfifbtCT42TRerUnxe1nZRTkMAzRoR4UvqURv6SiHPJduOHJRWs/pFfsxptY0eI8cAShdPC6mCn3ItGBMqqi1Y/z/O9o3E/GrdgzWUXiYhqVTLKB6uVFASWaJ/egGZlfZ8Ls192RV8oFMKkSZPQsGFDXH/99fjf//6Hu+++W7eaOuEjKMLnCiT4/qGwsBC33347VqxYgQ0bNuCiiy6KeF+02FMjwncx85t4/BEnhZ5VcRer968TQkRP/Ik+l3pjdavY3dhcS/RFrcCzixWBqB64zBYyy9id2RIl9kTmvAP631ekyIulKJ8ZLAJQ1A0vuuCLnTV6Wp9l/Z686QgupHjaFX0A0K9fP2zcuBG9e/fGgQMH8Mwzz1AFT4IACT4AQF5eHv71r39h165d2LJlC+rVq1f8ntNCT8ZOcTrebCi9tp3cUooms63hhig5frzkt3QiIidqqyq7og/gv54izklAO/oXbWJPiXKAdHLwI9Gnjeg0UL2Bg1f8GQ1AdoVfOGx/fR8LVlI8XRZ9F110ETZv3oyePXti2LBheOWVV5AcFbn2UQpF+Fwh5gVfVlYW+vfvj7y8PGzatAlVFDODvGJPhNCTYVnnZycTSm7XqUheUAWeE6mlbm+qzovSxkTuI6xGRLTPigCTv19urjvr66JmHR8rvMJLObhZNXIRYs8Joadu242bmEQfG6w57VYxK1fMagu8wk/Zrp3CLk5G+zgLx5RBGIVxCZZuH1n01a9fH1988QWuuuoq9OrVCytXrtSstE4QsUJMC74//vgDvXr1Qp06dfDhhx+iXLlyALyL6mmh9Sy3OzHulJ/jR5Hnh7WBrH1QCkMvxJ4Sp4RfdnbROe1UzmQRfXrfy4oYC3SUj3dgcmu9n1bJYt7qgXZwahBUt2tH1PLgl43Z/bLPnhk84o/399OK+lmxATPxJjpaKCraZ9Qvjlm3MuGzCCOBvS//nDocBhL++ViVKlWwbt06DB48GJ06dcJHH32EmjVrcrVJuABF+FwhZgXfL7/8gq5du+LKK6/EggULirdd8DKqp4eo2gSifZxw2B8brftB1IlA73s4MRnNOhY6Jfzsbpeg5WcEdXwPdETQyqCkN2iaib8gCT0lXok+LwZGnnP6RRyqZypFDrgiqlfZWadnZaC1Eu1LSXFk7WACzuIsp+gDgLNnS0RfuXLlsHLlSowdOxaXXXYZ/vvf/6J+/frcbRJE0IlJwbd7925069YNgwYNwtNPP41QKORLoSfjN6HnZCaUEdEi7HjRipza8UmsCCMRkTmtSLVd0efEXsSEg7AOnGrxJ0Ls5eSIFV88A6H8fZyuwBQk/LgJO+BM6qeImTOre9S4Ee3j3fLBZdGXkJCARYsWYdKkSbj88suxbt06NG3alLtNwiEowucKMXdFdu7cic6dO2PEiBGWxV5ubknqAMvzOyfHmtjLzbXu52Rnl/yJQHR7Zhw/XvqPKOH48aLJY/mPFatjoLLOhhVbdqpIo93Ps8J7H7qVGSkU3k6LKprixnmUhmLXubB6E8jntkOsDIxHj+r/uUlWlv8epFYdA167tTLRwjOGcBybgLN8/dAgFArhmWeeQWZmJjp16oRdu3bZbpMQhDwmi/5jZObMmWjTpg3Kly+PatWqoX///tizZ0/EMXl5eRg/fjwqV66M1NRUDBgwAIcPHxZ9JRwlpgTf119/jSuuuAK33norpk+fzi329MZZPfHnpdATAcuzScQkSqz4MCJRX3cW8Wflt9IbN1ltm2Xc9UL0sfgaFp8dsUFeHv+F8UIFGxkqb//VbdmdPWFBvqlpYCzh6FFvHhZOzaJaxY7w00PLmeE9j49E31nVR0KhEB577DHceuut6NKlC7Zv387dJhF9bNiwAePHj8eXX36JTz75BGfPnkWPHj1w6tSp4mMmTZqEDz74AG+99RY2bNiAP//8E9dee62HveYnJEmS5HUn3GDLli3o1asXHn74Ydx+++2Wono85OVZKwFvFZHPIF6srGmnPdCsw+MvxsVZ3yeY9TxamUJWfGE76Z1WP6vMKmLpM08qqFPHMjs+ThZsMTpW6+a2KvbszAbwRjOstmV1MNP6nNGMDQ2a7IhIxWQdxEQtcLbTjtWqUqmpfHbFcx6HBkAr6Z0JGh955pln8Mgjj+Cjjz5C+/btudsk7JOdnY309HScnDwZaUlJYts+cwbpTzyBkydPIo3z3vrrr79QrVo1bNiwAZ06dcLJkydRtWpVvPHGGxg4cCCAoqVh5513HrZs2YJ27doJ7btTxMQavu3bt6NXr16YMWMGbrnlFu6oHg9Kv4Z12Ybdzdbt+gGyL+OUP+GHwi7RghUhZVYt3O45lEtE7GbKxcVZ812srgekyN0/iIy+qS+q1QHOLbEH6A/WrGFsrc+yfo41SuVW8ZdowMlCLGpEVbay046VTdHj4vjX3vGULOZZB8hxrJU1fcr1fDKTJk1CYmIievXqhXXr1qF169ZcbRLBIFsVxUhKSkKSibg8efIkAKDSP+PG9u3bcfbsWXTr1q34mGbNmqFOnTok+PzEzp070aNHDzz00EOOij0jf0nPHxDlB1n1A0Stf1KfnwSeM/CKE620Txk98WcnS022ZzuROsD6NghWRF+gt1zwCjdSM60OTnYHNfkGsJLqwDMQWx0kSfRZQ329zWa/rFa2kj9rZxC0UyGLRfhpfTeeSlZW9uATXMxFlOgbP348zpw5gx49euCzzz5DixYtuNokBBEKiZ99DYUAALVr1454+aGHHsLDDz+s+7FwOIzbb78dl112GZo3bw4AOHToEBITE1FBNW5Ur14dhw4dEtptJ4lqwSdX47zjjjtwww2TmMWeU+uUlYUvrGD0OVY/QEQbWgRN5B09WlQITnQNAKeKy9kVe2q0on6iliRZEV5aQSE3I32sOOC7cCGieIGriF5jZHYuu9Uw5XNbHQyNPqc3SPKei0QfH1oDG68A5D2X1Q3QRbWhFmUsg7vV7RhY8Ino0+KOO+5Abm4uunXrhg0bNqBZs2a22yT8w/79+yNSOs2ie+PHj8f333+PTZs2Od0114lawfe///0PXbt2xZgxYzBmzP3Mn3NqbbKMFV+G9TNGfoDoaoZ+FHjHj/P5QU4UfGPNzuLJMBIt9pRkZQH/bEHJnUlkdB5W4WXUhlvRNz9E+dh/MwdyUB0qsmAJUXvXWBF+WqkTvG2oP8c6UPpJ9AVlFkwkLOkPZuhVt5KxOiCKEH6sn7WyHUOARJ9WlA8Apk6ditOnT6Nr167YuHEjGjZsyNwmIQAHt2VIS0tjXsM3YcIErFq1Chs3bkStWrWKX69Rowby8/ORlZUVEeU7fPgwatSoIbTbThKVgu/PP/9E165dMXToUEybNg2hkPmG6k6XXXdS6ClR+gF2P6/GDyLPz4XqWMeruDj9a6n2NZwUe0CJ2AP4lpCwnMfIT2HtJ48/IX8Xv+yz53l1T68XKFoZVOPjgYICcedhEW1mA6UVceV0SqgVvBo8WQVkXJyza+1YUf52oiJ/gLlwYy1nbEX48aY+OJXiybuuz0XRN336dJw+fRrdunXDF198gZo1azK3SQQbSZIwceJEvPvuu/jss89Qv379iPdbt26NhIQErFu3DgMGDAAA7NmzB7///nugCv5EneDLyspCz549ceWVV2L27NkI/ZPHW7Vq6WNlEShXGJcxeub6VegpkfcJFIFXE9Tq88ZKBpPye8s26VSxlXidu99I+FnREEpfw8rnjUSf3ndwMzvJa12lCc9ApfcF1DcdT5t2ZtCUP6qZ+GM9j52iLPLnWQYhtdDjFbA8A6nesX6YmbOKkSj1QgyyRv54t/eQsTIwWhV+vJ/jjfY5ke/uougLhUJ46qmncPz4cfTq1QsbN25Eeno6c5uEDRyM8LEwfvx4vPHGG3jvvfdQvnz54nV56enpKFu2LNLT0zFq1CjccccdqFSpEtLS0jBx4kS0b98+MAVbgCjbliEvLw8ZGRkoX748Vq5ciXg9b1DB/v3G7yufpzz+jttCT+uzdkSSlclg3vPJx7P4J6xteyUMeaJ7do+zGwVkuC0ikIWfnfFYPqed1En5szz95xF9PH1jPZb1/KzHlUEh24Gsg5VTIk50yoSWaPJqHxutQcasPd6oJctAJg+cPINeNA6koguwsBxvdxBWf9btPWl4P6M1QOl9Zye2Y2A8jkf0aUX5AODs2bPo378/Tp06hTVr1iDZD+kiUUrxtgwPPog0wdc5Oy8P6Y8+yrQtgxwYUrN48WKMGDECQJG+uPPOO/Hmm2/izJkzyMjIwNy5cwOV0hk1gq+wsBCDBg3CwYMHsW7dOqSYeGRmQk8Jr1/BK9z0NnMXcS7WdtT+Cq9/wnoupbhzwvfwwk8RLfZ4jo2P51t7xyv2lJ+x4ldonc+q6LNSrZz3GcLaN9HbUfle8Hkp9tQUFNgTe/JnrQxyMuEwv2i0K/pE7NEXjYJPC6vVqKwIN95B2Oh8VoWf1f1srAg/1mskerbLRdF36tQpdOvWDTVr1sR//vMflClThrlNgh2/CL5YwY/JSNxIkoTx48dj9+7dWLVqlWdiLydHjNgD2NL57aZ+ZmeX/KmxIgy0yMqK/HMSP6d9OiX2AOPfUet4HpSf4bG3+Hj98/HcU3I78fHWfHyeCro8v5EdvaGFGzsduIKTm73L5OdbH6CUP5yRkbK0w/tZ3uNzctgHTzdTDIKAWw8e9SDMg16BFp6BVjlw5eZam53mOZ8TBZ6cyEZg5KxO0eNy5cph1apV+OGHHzBhwgRESVzEv8h2LPqPiCAq1vA98cQT+OCDD7BlyxZUrlzZ8FhWsccr9HhhaV9riYaV/YTVbdjJZjI7l5+LqjiBV2nnZuvvgMhJZ1G+KcsyEJZzma2ZMxKLvBPZestAtK61Xwq+uIIT0T2g9IXVm4mx4sCpBRvAFjkz+g487agHYN41embnsrsGkIhEtkWntmFQozcAqxFRoEWvDSubsPMUdeEt0iJwrR7LcaKKuFSuXBkff/wx2rdvj3r16mHy5MnMbRKEHwm84Fu2bBlmzJiBjRs3ok6dOobHOiH25MJygH2/QwtZsNmJ5hlVhTSCxddwSjwGAa8m1VnFW3a2tS0XWNrX8kd4RaWWeBMhFvWImQk/r8KFeufVqohlV+wpMRuAWQddowHPaAC2IsqUn2EJzbO0z1rwRfRxQURLAIpeDK1X/UpEgRaWNngHypycou8kekuGAIg+PerUqYNVq1ahc+fOqFevHoYMGWK7TUIDj4u2xAqBFnybNm3CTTfdhLfeegutWrXSPc4poafGyO+wkgKmnsy2MtErPy9EThQHReRNnnAq8gWGh0khzHP1tX77uXO1j/VK7KmPZdlywUp2W16evXoDcmYcr4Bj9TXk65qfL76AnB/27wsc8g/CKyZYBlCtAZh34FW3wTrTxjPrB5TckKzHeyX6YgXlhqSA9TV5WrBG/YxQCj8ruedmA5Xyu/NuyeCW6FN+b4YBPQGFTM9zADh1Svv1cuWAiy66CMuXL8egQYNw7rnnomPHjkxtEoTfCKzg++mnn3D11Vfj6aefRq9evXSPc0vsKVE+++0KPXW7VrKO7OI3gXf3jcciXxBZFcMit9wS+W8tG1myRPuzTos9JaJSPpWfsVolXHlOK+JJ7zNBmNgr9/DdkS842ekHHyz9muh0Titre1j3wrEi2nJz7c1w5eVZ+7zZIG0nZVO06NPjyJHS7TmFH/bd08JMpNldQ2q1ApZ871gZLNWfM/oOPFsysIpKszaVs3Ms52YQkWU4RJ8WshDs1KkXZsx4CldffTW+/PJLNG7c2HKbhAYU4XOFQAq+Y8eOoXfv3hg9ejTGjBmje5xosWelgjnP85x1EttK1hFvX7wWeXcO/ufHczGEYjW6x8o/1X2LkX/vFSvMPytC7KnJzgYSE8VV32RdBiJyfV5+ftF3YBnbndgmSovKM+4s+YcfHjqPPhr5by0xMGWKO33hSfsE7M2Y8UbdZJRpEVY+rx5oRaVsiuDPPyP/7bV9ai36VttntWrO98No0FT/flajdHoVsKwMmlbW6cmf40mpcCraB7j2bGcRfcnJ5s/2UaPGYt++X9C7d298+eWXpvUiCMJvBG5bhvz8fGRkZKBSpUp46623EKfzwGIReyKjeizt2l1iotUWbzSPZ/KZ5TN2jg2HFcJOC5YHgsDonijBx3KM2W+uFIFOiD2gSCgpsSPW1Gi1xfpZVj9Abo9XmImoAl579m1sX8iPVRFZoj/yMbffbn6sE5X75GN5hZDRjWXWltFgakWQ8VawYj0Hy3H79omzT7dFIY991qxpfJzT6ROs4o+lfb0BmOWzvIMmz2dkWAdOkXvbCHq+s0b5zIancDiMG24YhOzs41i7di0S9PZ1IJgo3pZhxgxntmW47z7alkFBoASfJEkYN24ctm3bhk2bNqFcuXKax7GIPfWNLaKQHKtwk5/Xdkq726k0zTP5rPUZq8dOumpvyT/Mbm6RO1u7+EBgPYblt1e2s2aN+fF2xJ4SO36HVjtWsp/0fn69tpzc67f27Nv4OqMk6A61Hkoh6ERZdfWxIitiabXFOnNmRTTKKWoi2tc6bt8+7WNYb7xotFFZCLqZL6/nVFodOK18lnfgNPqMFiyDp3zNWY4NoOgr2qPvMrRv3w7z58/T3bSbMKdY8D3+uDOCb8oUEnwKApXS+fzzz+O9997DV199JVTsAaUzipwQejLx8dZTJu1mGwHupGtGiDs1om5sl9fuiRJ7Vs7Vs2fkv9UCUJTYA0qvybO6XEX2c618Xp0dZNaGqHTNxs+OZzthrPPss5GDz4QJxsfbjQIqfw+7VbGUgydvioRe+qVRO4mJ7KKPJb1z9+6SY40oKIhdO5ZTV5XXsl49Z88pojgLEPmQ5823V6d6ii57rLUOz+u0YMCV9Xwy5cqVw3/+8z66dGmL5s0vwMSJE223SRBuEJinwZo1a3Dvvfdi3bp1qF27tqPnys8vGcPMJhp5xZ6V5SUiirAo2+DxP1iZ2GVX0f+Yed2iZv0EIuIhwIOITbt79ix59m7axPYZM6GnRm7fyho/5bmsVrPMz+f7nJV1d8UCj4iEt/DHnDmR/zYTgHqwCEP14Gn1hpIXgPIOhlYEox3RJws8IhIWG1VeS3UkVBaATi2QBuyv97NaEUteq8faX941gSyFVVgGZJaHg8DNUUWt56tduw7eeONd9O3bDU2aNEFGRoaQ/sUsoZD4iQOKvJYiEILvf//7H4YNG4YFCxagXbt2usdZje4ZIaqWgJXKmyy+hNmEsF4bvH6O+jzFAk+JmztW+zC65xXKKtF64o9X7GnVF2DxOfTOwyP67FbvNKLFnLGxG/UQjdHgIwtA+f1x45w5v+zY8qQ6qAdjK6LPyiwcz3m+/95fdhoOuxvJcWPbCKUAlO2nWTNx7ScmRj44WEWbXkUs1jbUAyjAPoiaHc9rA26KPkZhKEr0XXppezz33HwMHToU27dvR4MGDUzPTRBe4vs1fLm5uejQoQM6d+6M5557Tvc4UWKP5RieZ72VZSVWfAkrn+fxcW7uqCHw1LgZ3fNZXj/rMbxr9+wcI4s/O2JPCy2fg+ccbi8zaTFnLPuJRB8T1PVRrMeZCS2t9/XEn5OVscw+J2M2KOoNrjyCU+8cO3ZE/pvsVMwxLL+N1jFq8ccrwJ1cKG3l87wzZ/LxZr97jD/377rrVmzZshGbN29GCm3MykXxGr5Zs5BWtqzYtk+fRvrdd9MaPgW+FnySJCEzMxO//PIL/vvf/yJRZwB1U+wpjzF6jljNMrJajMXq54z8m5sv+arkHyIGdScWces98Bmje2dhXmXLzC7k56GfBJ/6/Z07zdvk8Wdkf4NXTMrwLDFRf8aMNi+NNT7A7KSsnYpmR5r1OCuCT824ceIXTdtd56c1MJrNpPEuqM7PLy3ylMS64AO8F31Kmjc3b0OGdWC0U6BF+XknBlLWMshePfsBW89/lmc/YD40FRTko3fvK9CkSSMsWbKEirhwQILPXXyUM1Ka+fPnY+3atfjmm290xZ6bqG98rXV4djda580uslvERX2+CJEnIyI10sqArzeYO53qw4lZkR8/rGm/8MKi/+oJP15fQ7Yzq7dlQQG/WRll/rSZO9Jeh3ix4pzplel3y0D8usm1cv3fTTcZH8s6wCoHRCuDsnJgZE2ZYE0ttRp6dxOy1dJ8/33J79uqlf5xPL+rnQIt8ucTE/nGI7O0Td6xTVS6pdYAr37W5+YKW6qRgLPMos+I+PhELF36Fi6//GIsWLAA45xIX492aON1V/Ct4Nu2bRvuuusufPTRR6hpsNeOW9E9o/fl8ZG3+qWeH8Ii+vR8EN7lLKMu1BB4vIhaK8ci5ASuyxMx2LMgfy0nosy8yMIPKBJ/VnSL8ifgXWOn9IWsrMVXnq9Y5PHg1Loorx1kFuQ+Gt1noh1t3gHppZeK/qsl/KxuWGq1SpWVEshGM2+s1ZWU53fCXqPNVnmLt9g5RkYdmTUSgGbYKdAiD6hWNmJXfsbIzgQWTWHC7LcUuJ6PRfSxrOc755yaWLJkOQYO7I2LL74Ybdu2NT03QbiNLwVfdnY2hg0bhoceegidOnXSPc7NVE4z5NoBgP1lJIC2jyKiWicAjGq0QfEvkweEW9E9kQ+UGCnWogdrammjRkX/r7eNlxq9y8ria+hNelvxJSwJPVHIudN+co5FohQDSsfL7YiLLPyAIvFnRewpbwTZAFmEn/pcsoHyDAayeOAVebwYiUJlnn9Q7dVIzHlhq3qiUCkAeZx9OwVatAZVK8IvP9/+vjcio3yint8ChSqL6OvYsTMmT34Qw4YNw44dO1C+fHkh544JKMLnCr5cw5eZmYk//vgDa9euRZzOj8Yi9oDSz251cyIEIWv9ACs+S36+/SIugFrk/YPZQ8GqUFM/oF3cXJX1OFH5+6zHsB5nZq8s7Vi1VyPhx/PcVP7crNlNZu13Xng9W2Nmx/CseTJaGCtyzVNQ1/BVqiRmbZTZ+0qRNmKE+fkA85tAT/iZDdKsN/vatea2yGLPrPZqtog72u2V5RgWexVhz0rbUpZQVmNl0TQgpkKW1vmd8geAyN/HTX/AxbX8ABAOh3H11d1Rr15tLFmyhOncsUzxGr7nnnNmDd9tt9EaPgW+i/AtW7YMq1atws6dO3XFHitaz27e5V92IjxWUz1l5P6zzC5pnTuznobIE4k8mBpdVLerVvk0ume1oIv60oreP1GJvC2VUvhZuZwFBfw/u9Z+vp0XXs/XiJ01UUqH2U/l8P3M8eOlDbRCBfHnUaY7yE6UnvBjvWnVET/W2TizaN/atWztyOe2arNO2KvbWy+wwpKyyXIMi73ypiBrobRXOcJrJPxYsLMfHxA5IFu1F56ImRvr7H2Y2hkXF4cFC15Bhw4XYvny5RgyZIjpuQnCLXzl2fz2228YN24clixZgnPPPVf3OJbonpVqiFaedSwTwjxLSPTa4xF9mTU+Nh/k7MzmyYO5qEHd7ZTPAKO85E75ZjVqFP3XSuVX5ZISq1qfW+hZwWpZW8IY9XV1QgACJcIPKBF/VmZoEhOtpV4oB2Q9kWdH0Kkhe3UGK/ZqRRQqU3s7drS+eLqgwNqMWm5ukS0aPUftbnoaDrOlZLq82brbqZ01a56L559/CePG3Yh27dqhbt26Qs4d1VBKpyv4RvCFw2EMHz4cQ4cORf/+/XWPY03lNEPrppWdadYy+zzZP2ZLSFh8DqPBJrPGx+YNWMVnVTHtIrJYi5dr/LTEn8j+yL4Pi69pdzlJxkuDnK1aKH8Jit65S1ZWpHPshABcsqRoYB0+nO9zdsojA8CqVf6wWZbiLiKjd9EcCZSvuWyzVu3VyJ5k8ZefD/TowdaeWrDwrtWT7dRM/JiJMfXnta6lKIElMILHgqiqnQDQt+81+PTTNcjMzMR///tf29lqBCEC33g/8+bNw/79+7F69WrbbVndA09GWWZf9H2qfg7w9lUt+jSFnt3oXmKi+YPTqX117BBl6Zw87SiDrkY2a2WJkpHwY/F3jXyIjJcGmTdgFYqK+A/lbyJa/L3yStF/WYSf1o3AWthlxQq+fvFANqsNi5hzAr0IoIjUTyAyOqwn/swEGqA/wDo1IWH3t7AbTeTF5dROAHjssafQvn0LzJ8/H7fccgtrT2MTivC5gi8E3759+zBlyhSsXLkS5cqV0z3OqVROI9RRP9bzGJ1DHoOtPtuFR/P8HsEL4FYMXuJU2qda+PH4Emq/pJTQE1HgwuyGErVJNSEG5e9lZQ8yPWThB5QWf6wlkoHSws8Joec3gefX6J1fUP5eBQViJy1k8acUfqzPPvUAazReWo3yyQ8WlrRNP0b5XE7tTE1NxfPPv4TrruuP3r17o568SJ4gPMJz70aSJIwePRrXXXcdunbtqnucqFROFozSPQH7z0N5bObNIhqS+K79Slry5+2IvCiP7rEShC0bRIs/eSmIVYRH9JQOmJ83slbjRsl8p9bPOYFTkT9l1I83nUI5QIsWe0G3WydFoZ3fX1SBF9Z9+4zs1uwBr/e+MurXr59xH9TIA7RIm3JqQlhklM+D1E4W0delS1cMHDgMo0ePwdq1HyMUCgnpY9RBET5X8FzwLVq0CLt378bbb79teByL4yo6uqeHXDBLrx885zDLIhqS+C57Y2aEw2JSNUX0g5WACzmlTTo9/pj1W/75rfbDTqr0NW8IFHpeR0WMLiCvkHPSKPSuk9b95ydx6IT4k/f1u+46vs+98Yb3hVdEbcBudPPz2q2TkUCj6+RGVVirOGG38kTDwIFsx7NWzTITSDk59j7PegyL6PNAGIpczzdt2iy0a9ccixYtwk033SSkTYKwgqeC7/Dhw7jrrrvwxhtvGO6T8dtvkf/WWydshuhN2PXSPY3Qc5rVk32aQs9KdI93/xszeKJ7PksV9TqdU+tyxMW5N1Ehn8eNSp8y1yy5uuh/7DrNZs6yW1GSrKzonDnUur6yoXjpVMv9ys8X04833ij6r5nwY91Dy6wSZ36+/UXlLLCIwmi0Xat2KyrKx9IvI9tljQKaCT9R45+Xz2y75xZZ2ZMRlihfeno6nn12AUaPvh59+/ZF9erV3elckKAInyt4KvjuvvtudO/eHb179/ayG1wY7ZUWF2fPMRcWzbM6cIoaLFnOL3LBdoCjgF5rYlG2q6RY5NlFuYGlF2vrvI4k+gW96+C2EBQZQdETfqI2S/bSdu3abdDX8clizg27ZRWFomxXS/jpiT2eyJjWg8hulJD1GFFbObDiQZQvI6M3OnfuinvuuQdLly4V0mZUEQqJH3MofbYUngm+DRs24N1338WPP/5oeJw6uqeFF9E9LcxS5mxN9NqtrOlWdI/W5RXjxsS+KOymewIOCT23oG0b+MnKihxz3BSA8u8lSvjxbsmgB9mus4io1ilfL6/SQ9W2a2VLEOWaUt40ZRl5k+BowqcFXABg5sxn0Lbt+bjxxhvRuXNnIecmCB48eULk5+fjlltuwcMPP4xatWrpHsci9tyEtTKnFcf5GliI7okMD7kprtwsx/wPXqdzOo3oiKOrE/x5ee5WwKHInTNoXVennWjlOT0YVwDYF3m8G7Tbsd9Y2I+PFbV41NqCQcT2C3qCjtV2rQhCGbOKm3YRFeUTtd5PMCILuNSqVRtTpjyEW265BTt27EBCQnT7JFxQSqcreHJFnnvuOcTFxeHWW2+13ZZfontq1PVRhEb31I3b3XcvyAQ8CuiFbbIg1H6NnFkWZ9lu5CIrK/KPcA83r312tvsRNjfOx3oNRewLFy2IcPZYr7uIyKpsu1bsSY5Ss6Ic2M0eLn5LUxG54N2DB+vNN98GSQrh2Wefdf3cBOF6hO/w4cOYNm0a3n//fcMZDjejeyI2xtZrQ1gQzsnFXqJSNSmd07d4br9KnHaS/SDqaHZRG6trmXiiHLJ9KQuB2YmS6LXvJGobFlWpk5WgR++cQG8TdhbM7E8ZSXTKfp3yIdyM8onsEyMio3wJCQmYPXsOhg7th8zMTFSrVk1IHwMPRfhcwfUr8tBDD6Fbt27o0qWL7bbcio7YneQy64NpOqfRQO2BMLJFjKRz+m1i1Bc4GYExm4mPhfVNQcPp6J+dqIkS2dG22hZrUY8gRqG9qDol0pFjaUtv7FD+XvJeTSIRZb+5uca/UzRG+VhhdBATcFbYKS+/vAs6d+6KBx98SFibBMGCq17Qrl27sHTpUuzcudPwOL9F99xoQxe7gs6tYi0iYT1fwKOAotryfWTSKZEntytKzJEo9BanNl8HimwlPz8yasLzWbOtF6wUv/C6Cm20I6LACw92IoBmyPYLaNvwG29YL94igiiP8rHCWsDl0UefRIcOF2LChPFo3ry58x3zOxThcwXXnjKSJOHOO+/EzTffjMaNG9tuz63oXl5eid048eywVKyFFRaDFzUgBi3SGBBEiTknbRjQqdApO7SiKsF5UQFRBEYRGzcfSn7apNoMp8SfVrocy/Giz+8lVtI1yYb5UdswT1qnFvLneW0YMBc/dt93m4Bv09CoUWPceOM43HnnXfj44zVC2iQIM1wTfGvXrsX27duxfPlyw+P27y/9/FA7qV5FNLScZrO+2Oqr2SCkfl994bweoH3QH9YBWrRNaflAXu25p/xuTgs/AGKd2uxsf0c/9BxhP84u6pWjV+M3p1rud0GBtQidFmZOs9tCz+01ekqCaMOAsR3z2LDTm7AD7tiwE1E+HhsQJQr12rFijz6O8k2e/CAuuqgR1q5dix49ejjfMT9DET5XcOUJI0kSpk6diilTpqBixYrcn1f/bixOq5MRQFFOs5DontNGzTJYelEF1Gsxa4CeXWnZsVciUNkXsz4w3Sd6Dq1ZdE/vfT9EQmTUDnG0P0iMhKEVMSiitL2M0i5EOM5Kp1kZPRGB6JRNFlGod4wVGw5y4RbRNswCq50b2bCVe0X0WKn3m4sQT6xtuG13HkT5KlasiNtvn4z775+K7t27I0QbhRMO44rg++CDD7B//36MHz/e8Lj9+/naNYsE2sVu9M7R6J5Xa/P8IDA9won1e36IBPpmDaCW4+Jm1IOlWEZQHWBRqK9ROOxdRFCk+FOukbKL15MVbhd98bMw1JpV07o+btmxWtDx2rCdap0saZteTN5q2Y7b6/0EwxrlGz16PObMeQqrVq1C3759ne+YX6EInys47k2Fw2E88MADuPfee5EiYDAxuonk31fkVi1O4ejaPUDcQCjqpvHpwAx4bwtqgmTHtvHKOdY6Lz0grOHFhutqsrPFpstZOb9fzkt2bA0zOxYZqdZC/i3t2PH8+cC4ceL6xAurUHNTWLIKQw+ifOXKlcOkSffigQceQJ8+fRAXq/cuCT5XcPyKvP322zh27BjGjh1reBxvdM9p7DrSvnfE/ZqqyQKjePRiOwaCkZwcZ0qZ66Esce51BCYWUG8zYHbNRUVy3f6NWe1YZEqriO/oVS65SNzYnsELO46Pd86Oo82x8Vt/FLDOcY8aNQ5//XUU77zzjrMdImIeRyN8kiRh+vTpuO+++5AsIMIjYoN01nZEnMcydtM53YymBXyzddG4/fxhTR1x8hzX/PsKtobcFnhK/Fz4JVZQ/yZOR+OsVDPUQ731glu2THbsP+zaMW+kUJ32KWITdj1EVL9kiZSxnMeLLRo8iPIlJyfjzjvvw7Rp0zBgwIDYXMtHET5XcPSKrF27FgcPHsTIkSMNj4u26J4Zjqdz+g0Sco7h6DpSEW3IERAnHWR11IMieMHArd9Mbt+uDRrZsogInh/tmCKB5rj5m7GcY/58Z/vgN/z6cAa763PDDSPx559/4pNPPnG2Q0RM4+hIOHv2bEyYMAFly5a13ZafNqk2i+45Ov64VazFr+mcjHi1HYNfz2kVy311U+SZQVER5xDpTNt1ms1+5/h4a3bpli2LSvv0QqRFgzBkgcXec3OdF4B2JtLMBnVPHRwHz8XalgcP6LJly2L06AmYNWu26+f2BXKET/QfEYFjV+Tbb7/F5s2bccsttxgeJzK6JyrN0lNbsRMNi4uL/nTOKIgWsiAqNdnMloWnJvM4IbxCTMuJIjEXnbjlMNs9xipWv5+TRUOCiBvr+OyiFQFkmZxgfd/t9dAs10nU+hsfk4CzTMexuixjxozHF19swo4dO6x3iiAMcMxbeuqppzBy5EhUqVLFdltuTrgoU+Od2KRaeDqn32cxYkSgAf6O3PHsu2cJLYfDbA8+ljb9bt+seJ2e57fN1HlQVi8ExK79k+02NbX0a6Lx2gZE4YfvES327IQtA85U61SOxeo1rV4jeI2eF1SuXAXXXz8Ss2fPxmuvveZ1d9yF1vC5giOC78iRI3jrrbfw/fffGx7ndnTP7kbrgLkv4Eo6px1DjoF0TsIY4eOgSAfZzZlqJVYuipHj67eHDc/ebF5tbcCK6M3XgSK7c6IQhtKe/WYT6v3z9OzZb/0G+O1Zaz8+P+CELQNsjoqRLyAXVfHDb++FSBNcvIW1uNrNN9+G9u1b4JlnnkHVqlVZekoQzDgi+JYuXYqOHTuicePGTjTvKXImhSOZNUYDTHy8PwZfGZ/OkjmBnyN3dnHUnlnRc078YO9qJ9gPfXIa+TtrOcheikGt6oZOOcx28GrSggUr9uznjdVZEG3PLOLRyp59WtU/jdpwcl9AEf6GqGqdIs/ncxo3boJ27S7D0qVLcdddd3ndHfcIhcSPMbFY7dQE4YJPkiQsXLgQ06dPF9Kem6ngPBO8yhR61jGXO52Td32Sn1IseBC8fo8KthThtD0DwDUz2rAfrMYvjnF2drAdWjfRigLJzq/Xgis7u6gvyvRMHuyWuyd7Dh5e2rOZYJPtGbBm07NnAzyiIVbWQ/tcGI4YMQYzZz6IO++8M3a2aKCUTlcQfod/9tlnyMrKQv/+/Q2PE5nOqR6ntMZQJ8vTy+cX8rz3atB14rw+HlT9jlUBJvLcjpxXeZN4Yet+WH8UrWhdWy9EoNLGrIo/K+cys2cnImV69hz0qJwf8Is9A9prTUVhdRy2u46P57wxlNbZt+81uPvuCdiwYQO6dOnC0FGCYEP4E+HFF19EZmYmkpKSRDfNTHx85J/b57X0wdRU4w+LGOyUbehdpKBGCaMIdZBB66dyI1JYUCDo/nFjLz6j8/ppX7NYw+u95ZyyPS/sWT4v2bM1RAjgaLJnswFe9Cy5ns8hcu1sFKy/SEpKwnXXjcCLL77odVfcwwfbMmzcuBF9+/ZFzZo1EQqFsHLlyoj3JUnCgw8+iHPOOQdly5ZFt27dsHfvXoEXwXmECr5Tp07hvffew/Dhw4W0J+relcc1o7FN5Jijda5S6ZyiFamRUFMPtHbPSZG7Urj5nBH1U7L22dK5cnPdd4qVzpBf0uuI0njlMNu1C7dtS23PZNP+QV3sxsrWC7znUZOTUzSI89qFWzPhXs28syB4Tz7RWzQMHfovrFy5EqdOnWL7AGGbU6dOoWXLlnjhhRc033/yySfx73//G/Pnz8fWrVtRrlw5ZGRkIC9AkwxC78JVq1ahbt26aNGiheFxItM5eYUaS/qnFma/qdb7mqlxbg20hBCCcC9btWk759I9h5t7K+Xk+NPWKZWOD3VRDTfTMFnOpbRpI3sTERLPyvImNZQQC6tNiyq8omfTynV8ToyV6rROJ8djn6+9E0nz5heidu06+PDDDzF48GCvu+M8PljD16tXL/Tq1UvzPUmS8Oyzz2Lq1Km4+uqrAQCvvPIKqlevjpUrV2Lo0KG2u+sGQq/w8uXLMWTIkEAtNHVjAio+HsYnMRvEzN7380yaGTFUsMUt3LLpiPZzc50XexTtiA3c/J2NzhELNu3HrQq8xgkx7aVNu/Uw0DsHy8PWiS1RAkwoFMK11w7FsmXLve5K4MnOzo74O3PmDHcbv/76Kw4dOoRu3boVv5aeno5LL70UW7ZsEdldRxE2CmRnZ2P16tWYMWOGkPa8qGboVKGMvvhAXGMyvAM4i2ASuX7P6Zk4nYey0aM6Fn0bx4u/6DnEZvbJYr8k6ggg0g4KCpyJAMrncLpCUlBtmqKKYnHTpo0wi5rpve/niWXRm7Crj9O5DxJQiEKUMWwqHGYv3jJgwBBcdtlMZGdnI83rCshO42CEr3bt2hEvP/TQQ3j44Ye5mjp06BAAoHr16hGvV69evfi9ICDsrv3www/RtGlTNGvWzPA4t9M5rQpH5Xjmi2e00QAbpEIr6pua9SYXMBgom7BzWqvC0euoopeVP5nx80bVTmN1PVu0OwNq3KzCKQKyaX7Ipksw2/fPyf341OcJOh76H8pmWJpr1qwZGjVqgtWrVwcmZdCP7N+/P0Iwe1lQ0muE3cGrVq1Cv379zE/o4nojUZg5yo458vKJ/TTQmm0OLxPFjo3WV/ObXZtNhigzcHy56ToLbt8XOTn6jqjSsXXb9kUUPgmqg+1X8eeLWUIBeGXXTtk0y6bprLC0ZeV8atvx0q5Z0kHtbs/Ag1FUTt3PKPBBevbsgzVr1kS/4HMwwpeWlmY7QlqjRg0AwOHDh3HOOecUv3748GG0atXKVttuIsRjKigowEcffYTVq1fzd0CjB3l5PnFGNRAeJVEPXn4Sd2qCuEbQBbTEldZlYrFpL5YyuB75y81172Es4jxKByxaS+EbbUAt43dRmJPjXuEXLdy0a7tEiyA1wmiPQiVe27VZhM6uXU+dCkyfztcfJSKKpbC0wSIcWX2QggJfZz6xpnV269YTI0YMQTgcRlxQxhYr+KBoixH169dHjRo1sG7dumKBl52dja1bt+Lmm28Wdh6nEeK9b9myBfHx8WjTpo3hcQcP8retdW8XFIhzjO20I0z7uLn/HgtuiTrBBVvM8ud5cSpyq3d5RVWMtQPPT993ygXsB7tZvZOXnJzgOOpeYiR2/RRdA9yL/PnZrrOzya5ZiHW7zsvz3/d0ywcRvN6vDMM6Ph7ateuA06dP47vvvsNFF10krF2iNDk5Ofj555+L//3rr79ix44dqFSpEurUqYPbb78d06dPR+PGjVG/fn088MADqFmzJvr37+9dpzkRcletWrUKvXv3RpkyYh1uPeLjS0/SOZVqadaGelJKLSB1C7bIH/IyYubUhus+nlkDvF9LpwerXYuA5RoY2TUTfnOGYyGq4RV619YPjqTaSbZ7U5Fdxw5BsWurE8N+eFYr/RAWfyiGtmdISEhAly7d8NFHH0W34PNBhO/rr7/GFVdcUfzvO+64AwCQmZmJJUuW4J577sGpU6cwZswYZGVloWPHjlizZg2SA2SLQtTGmjVrcN9994loyjJ+yTSUx09NB9mJwZW1Tb9cIIILr342tf0a2rUS2Rm223G7g7/sDFGEw1vk30E9k+GVw6xMj0tJ4ftsbq59u7Zb7ZLs2h+4bddmawHz8tjt2gk/hHUdH/kh3HTv3hPLlr3iuY8d7XTp0gWSJOm+HwqF8Oijj+LRRx91sVdisX33HTp0CN9//z26du0qoj9Coy/q8cfN9VEl5/ZgBk39xUUNsgGayYhmtJ6rbtm27jPdy6gHRTiCh9ZvxivAtOApkqG0Wb1zk10TPGj9Zqmp7u4JpGXXU6cCTz7pXh9klA8MlmsgsgCMm8VkFLCmdbKu4+vevSduv/1mZGVloUKFCvY76Ed8EOGLBWwrgU8//RQXXXQRqlSpYniclfV7erA4t1rHqO99z5+nZoMRq8DyQ1oGYYjTaaSeTG544Qwrz0kDenThZXVC2a68rBIm94HFrmlfPOu4XalTGVWWccu2RY3RrGmUQfRFRO/bJ5hatWqjadNm+PTTTzFw4EDXz09ED7YF3yeffILu3buL6IvrmJXSt+ukZ+Bjew3owbP2LogDMGEbv20TYRm/rZci3ENrRi5asgyM7NqvYs6v/QoiWpMbXg7SVqNhTtUBICLo3r0X1qxZE72CLxQSP7aEQmLbiwJsCT5JkvDpp5/i1VdfFdIZr4tp8GY+upYiqtcxUc6PFwVbBFfoJIwJxKbrAF+UQxTkxAYHljRMOzi5ibUXtk0EA3UU0AnbFoUf1uHFUOEWoEjwjR07HJIkIURChrCIrTt3z549OHbsGDp06CCqP75COZ64KkblE/thYPUKTqeItRRyfn5J0yKyerzYN88MM1uNj/fQttVQBI+witp2/OYkk20TVrFi2yJTVZWw+iN+FGGi1vHJTgNjezzr+JQ+hN7P165dBxw9ehQ//fQTmjZtytLjYEFr+FzBlqJYv349OnToYFqW1O31eyzwOrnCHWTloOG3QVIL3j6a3Ww+uBmNupCXZ95F0c9Wr8SjcNs2cgwoysG/eJj1WikN0g9l491Gti2rVThFnZ9smx2ybTbctm2nfBIWweRUsRUjW8vP94UfptfFlJRkXHppB6xfv54EH0+bRAS2BZ9y3wo9WNegi8Jpx1keF+LibDjIZoOLX6N7ARBybsE6RsWcbauJtkhHEL6P3YpUXjjVoiMUTqd/qs8RDQTh+5BtW7PtCROAOXOMjzHySwoK/OmXxIhP0rnzFVi/fj3GjRvndVeIgGL57pUkCZ999hluvfVWIR0xGku8WHNkdk7Z8daLjpQq2OKD2SMm9H6EKBk0vSAuzl+2zYrlyJ+Z0+hnWwqCw+sGrE6139Io9VD+ruGw9X4XFPgzj5sFsu0iRNu2U6mUrNix7SD7JQUFMVUopnPnK7BgwZzoXMdHET5XsCz4/u///g+nTp1C27ZtRfZHE6NJJT89eyPGzjz1Cx5gNBjK7/lxxi6GCKJt5+UBGePqRx6gVIR+Hmi1nF4/99fvGIkIP4tB3ghJEOxb77fwa3958EJUuW3bor6jmW177ZfoofRXosAvYV3Hl5jI9qy/5JK2yMnJwQ8//IALLrhAQA+JWMPyXbV+/Xp07NgRiSYzLIcPWz1DabSiIXqnN7qBXClS4fSgGuQ9cfz6wPEZWj9fYqL9jCa7UcXin8/rsrp60F59/kAdeVDiJzGo5SD71baB6ForGNStHtRi0K8VNtX9dPrZK2q/PpHpo6xrAln77tGG7omJiWjf/jKsX78++gQfRfhcwZbgY1m/5zay0NO6H/0UMRGOH8Sd6D744TsJQKTd6T1rXLdtPzjElKIWXPR+O68ng3JzvU3PU/aDCCZe2rbX6aVaRMlz3A906nQF/vvf9ZgwYYLXXSECiCUJHA6HsWHDBl8KPiMSE4v+kpM99ivMBkCzma3k5JIvI/85ic8HbNYtGaIZpSnYtW9fTozk5ZX+I6KP3NzSf7EA2Xb0o2XbvPZtN2px3XX2Pm+G275JjNG58xXYsOEzhP0m6u0iR/hE/xERWIrw7dy5E2fPnkXr1q2FdMIP5ehl8vLYC7bo0RkbrHdKjdcz3lGEaDvzpTBSoGffvodlTwwiWNiJPGg5xUEeFwNxExKuEST7VqZa+qGPHqVXsiJ6Hd9FF7VGfn4+du3ahZYtWwroIRFLWBJ8mzZtQvv27RFvEokSuX7PLZKTIwUfbbgee0SzP+apfWvheQeIQKJlN35wQNVo9ZMmM2ITnkkPr+zbSEAF2T8RLQw9EpoJCQlo164DNm3aFF2Cj9bwuYKlO3fr1q1o166d6L4YIqp8PW9URj3GCvVPrQ7gLAONj2e9CP/gqH1r4fewKBFcZOOVnWovBCCLfYsqVBLUgieENdy2bz9OoDgNa+EWD7nkkkuxdetWjB8/3uuuiIMEnytYFnzDhg0T3RfbuOFLJidHTnBxpeDL1bv8MkPml34Qnk1oqLFl31pY6RAN1IQI3IiS0AQGAXhTLEW0fYvyT0RFv/y60bvHtGlzKd55Z7nX3SACCPfddPz4cezdu5dp/z2WvOSgPy/VFZgjHGSt8szROoAlJrJ9Nw8jj6w6gvUnio+P/poShvatRX6+fwSbX/qhhxPhVJ/PTnuO+przjkd+sm+/Q/btPjz27eX2EV6kRLI+2D26vxMT2SZ+27Zti59++gknTpxAxYoVne+YG1CEzxW41cdXX32FBg0aoEqVKkzH89zTfhB/diMtnVO+AuCjfXjsIP94LD+iaCEbAGFcUOCuffvh/ijlI/ihU24RhPWGovsY7Q620n59sd+Jh5B9Rx9q+5Vt3E97BdqBx0fxCNbCLaxUrVoVDRo0wLZt25CRkSGsXSL64faqd+zYgYsvvtj0uBMn+DtjdM/KYt3r56+o1Dtd3BI6AYjIRRtBsG9mAtNRE3gcyFicMWS5PnIqW9CdSNmmo6nkOdm3MazXx082bid9ND8fGDgQWL3a+vndSrVk9VG8wsOU05YtL8J3330XPYIvFBI//oRCYtuLAritdefOnbjwwgud6IsuSpFl5jQHYZLSFWJEqEXbHnxGP1tiIpCT415fAg8NBu7Ckt8c7REVN4mWSZcgEQs27qagcxPW7+XzrR4AoHnzC7Fz506vu0EEDEuCb/DgwU70RQh6Y21eXhQ+H/W+rJ9nxQjLFBQY+xIxpW+i7maOEcyM1OeOlquQjQcTsvFI7AhgKtyiSYsWF2LlyhVed0MctIbPFbjupPz8fOzevdv1CB8LZqmW6uqDSnxdeEOdQkKDX6Bw02fTs3FX7Vv0IEtOb2xh9HtHq6NMNh5bRKONx1KBOh/QvPmF2L17N/Lz85EYVJshXIfrjtyzZw+SkpJQt25dp/rjCcqxShaOrotAt7dsiLHB2PG1lz5G/Sz2zMaNUDpBNDNHaKHnKAfB4VH3nWyc0CIINp6SIsZ/oOhdKeLj2XyVevXqITExET/99BOaN2/ufMechiJ8rsB1t/30009o2rQp4gRdSD9PbOqtzc7OttGoPLj5YeE3oQmrTQZVQCr7rWWGjotAP9/0RDBR25Rc0MIrJ5lsnBCNFzZOfoowRFfqjIuLQ+PGTUjwmbVJRMAl+Pbu3YvGjRubHmelQqcfYHHiU1NLvyYX0miDr4wPJgMkfE5KSukCcOpCMW16VjZviJxewmucjpaQjRNeI8rGg+6rBKDQimgaNWqMvXv3et0NIkBwR/iaNGniVF8CS8lYqaEGeaD0BsKHaE1yRBDUcCcRm2g5yWbOYizYeDgcPEef0IbFxk0HdsIUD9NSGzUqivBFBRThcwWuK+KF4PPTczaatmcSCuuAF2MzcFFLQUHkH0EEnfz8kj+1fZONE9GA0sa7dbPXVlDvCdZ+ByB6L6d0EgQrXFMTv/76K+rXr+9UX4igYyb8WGdcOGbMWGcsRJ86qM87M2hSQweaLSQIwi/Y2XydYHvQs475jMeJ9lUaNmyAX3/9lbFVn0MRPldg9qwLCgpw6NAh1K5d27xRxlb1fg/e/cRYnO9oddCFobVXjgMCLVoQaeNkmwFAXiMSgJlfYVBEPjYhGyf8nt4bxf4Ka6XOc8+thUOHDqGwsBBlyogrCEP4gzNnzmDr1q347bffkJubi6pVq+Kiiy6yFXRjtvzDhw9DkiScc845lk/GivJeZjF8dVEJAuabnfp80It2eG08pjZVdxI76jqWHGHA/velMcYbaAaJHbJx72HZmJ2ucynOOeccFBYW4vDhw6hZs6bX3bEHRfiK+eKLL/Dcc8/hgw8+wNmzZ5Geno6yZcvi+PHjOHPmDBo0aIAxY8Zg3LhxKF++PFfbzHfRgQMHUK1aNSQkJHB/AS1EZiOwVA8uKPDZvmNWMfuyATVywpjkZLZ7xta2IUHDzFmje8FbeIUHOXXaGNk52bi3WBHXsWLniYnilnkQpUhMTES1atVw4MCB4As+AgDQr18/fPPNN7juuuuwdu1aXHLJJShbtmzx+7/88gs+//xzvPnmm3j66afxyiuvoHv37sztM488f/zxB2rVqsXXe59hppXCYY+jhWYdjJUHBWEZ39s4C7EWSSOKKChgm9UwS8MLwvomsvHYhfW393u6qYh9+vyeOiqQECRICAlt89xza+GPP/4Q2qYnUIQPANCnTx+8/fbbuoG1Bg0aoEGDBsjMzMQPP/yAgwcPcrXPFeE799xzTY/7+2+u8/sOo0rFtpzl1NRAGqCfET14Bh3WyWbHbJwFSjcj7MLiMHs9OUZ2TtjFazunbRt8T82a5+LAgQNed8M+JPgAAGPHjmU+9vzzz8f555/P1X5MRfhEYDwGGrwZQOMjYhNbz3lydAk/YGaHdh1lsnPCKiIj0HbsnASdGDzci69WrSiJ8BGl2L9/P0KhULHu2rZtG9544w2cf/75GDNmjKU2mVXIH3/8wRThCyp+zwASitez30Sw0dqnjPYrI4KEkQ2z/PmFmHpwEdwEwYZFEYP3Qs2a50aH4AuFSqJ8ov5Cwc4Au+6667B+/XoAwKFDh9C9e3ds27YN999/Px599FFLbTILPtaUzlilNvZ73QUiionBZxlBEARBeEMARPG550ZJSidRiu+//x5t27YFAPznP/9B8+bNsXnzZrz++utYsmSJpTaZQz0HDx6kSkAEQRAEQRBEMPEwBVM0NWueiz///NPrbtiH1vCV4uzZs0hKSgIAfPrpp+jXrx8AoFmzZtzFWmSYr8jx48dRuXJlSyexip8mWByPsATcOP2Mn+yIIAiCIAjCLpUqVcKJEye87gbhABdccAHmz5+Pzz//HJ988gl69uwJAPjzzz8tazGmaQ5JknDixAlUqFDB0kkIIgKXxS3L6ShlkiAIgiAYiZUtFTz4jvHxbD5JenoFnDhxApIkIRTkNWsU4SvFE088gWuuuQazZs1CZmYmWrZsCQB4//33i1M9eWESfDk5OSgsLETFihVNjxW5dYza4K1unE4RHkTumePVjeXjG1DuGmumh8ivIsrOCR8gpwv5fdCJkpQmwmP8audk38GHfBZTKleuiIKCApw6dQqpVHU1KsjNzUVKSgq6dOmCo0ePIjs7O0J7jRkzBikW98BkGhWzsrIQCoWQnp5u6SSi0PqOLLMgesf4egNqrZuXZfDx+QBFmBNTdi4a5UXwKmzrVydYidd9JIfcHn6wcz/jtX3L+NnOmzUDdu8W1x75LK4j++RZWVnBFnwU4SumSpUquPLKK9GvXz9cffXVqF69esT79erVs9w202h04sQJpKenIy6gF1APnvtD65manW3wgbS0yH9H2bUjgoOjdm4XclZjE9EOud/HV7Lz2CRIdq72WXJySr9G+IoyZcogPT0dJ06cCPY+2ST4itm9ezfee+89/Oc//8Gtt96Kli1bol+/fujXrx9atGhhq21mwUfr90oTORbG6MAY0JuKYMfwmU+OLOEH7Nqh2ThGdk74AdF2bjS4+yliFCvrBS1QoUIFKtwSRdSpUwcTJ07ExIkTcfLkSaxevRrvvfceZs2ahUqVKhWLv86dO6NMmTJcbTPdQVlZWUzr9wgiyJBPx0g4XPJHENGA0qa1/ggiGiC79pQQJOFtVqxYEVlZWcLbdRXRm647ETH0gPT0dAwbNgzLli3DX3/9hfnz56OwsBAjR45E1apV8frrr3O1xxzhI8FH2CIKbj6CIAiCIAi/UKFCRYrwxQAJCQno0aMHevTogeeffx7ffvstCjhTximlkyAIgiAIgiACRlSkdNIaPk3y8vKwc+dOHDlyBGFFRD4UCqFv377c7TEJvtOnT1suA0oQ0QZlwhAEQRAE4TUpKSk4ffq0190gBLNmzRoMHz4cR48eLfVeKBRCYWEhd5tMEvjs2bNISEjgbpwgCIIgCIIgCPEkJCTg7NmzXnfDHj5Zw/fCCy+gXr16SE5OxqWXXopt27Y58GXZmDhxIgYNGoSDBw8iHA5H/FkRe4BgwXfmjKU+EARBEARBENEEpcM4TlQIPh+wfPly3HHHHXjooYfwzTffoGXLlsjIyMCRI0c86c/hw4dxxx13lNqHzw5Mgi8/Px+JiYnCTkoQBEEQBEEQhHUSExORn5/vdTfs4YMI39NPP43Ro0dj5MiROP/88zF//nykpKTg5ZdfduhLGzNw4EB89tlnQttkWsNXWFiI+HjzQ5MSxZecDQ4xug+fh7CWOC7DeN+zHkcQBEEQgYc2Vncd0X5LQnwZ7mqNsUR2dnbEv5OSkpCUlBTxWn5+PrZv34577723+LW4uDh069YNW7ZscaWfaubMmYNBgwbh888/R4sWLUplWd56663cbTIJvjJlygR/BoEgCIIgCIIgooSCggIkJSd73Q1bSAhBQkh4mwBQu3btiNcfeughPPzwwxGvHT16FIWFhaXSJ6tXr47du3cL7Rcrb775JtauXYvk5GR89tlnCIVKrk8oFHJO8CUmJuLkyZPcjRMEQRAEQRAEIZ78/HxUDPiSq3BY/HJPub39+/cjTRHJVkf3/Mr999+PRx55BFOmTEGcoC0mmAQf86LQUAiQYjmtkyAIgiAIgiCc52xBAVXRNyAtLS1C8GlRpUoVlClTBocPH454/fDhw6hRo4aT3dMlPz8fQ4YMESb2AMaiLVQFiCAIgiAIgiD8QzRsmyZH+ET/sZKYmIjWrVtj3bp1ij6FsW7dOrRv396Bb2xOZmYmli9fLrRNpghf2bJlkZubK/TEBEEQBEEQBEFYIzc3F2XLlvW6G4HnjjvuQGZmJi655BK0bdsWzz77LE6dOoWRI0d60p/CwkI8+eST+Pjjj3HhhReWEvVPP/00d5tMgq9ixYrIysribpwgCIIgCIIgCPFkZWWhYsWKXnfDFk6u4WNlyJAh+Ouvv/Dggw/i0KFDaNWqFdasWSN0Hzwedu3ahYsuuggA8P3330e8pyzgwgOz4Dtx4oSlExAEQRAEQRAEIZYTJ04EXvD5hQkTJmDChAledwMAsH79euFtMgm+ChUqkOBTo9rb4yTSI/6dnkbFa4goQWXrBEEQRPA5mR0ZKSC/JXicOHECFSpU8LobtvBDhC8WiN2UzpwcvuM5rUc9kFoptFM+lQZfwiZO2LnSmGlUJaIFo0Ga7JyIFgzsXOm3kM8SDKIhpZMoYty4cZg6dSpq1apleuzy5ctRUFCA66+/nrl9ZsF38uRJhMNhoSVCucjL0349ORkwKygT0If13zn8otHomLLJNBj7Hj07Z7FhL+zc7ngQ0HuT8CFOPpvIzgk/4JX/xQj5LO5SWFiIkydPBl7wUYSviKpVq+KCCy7AZZddhr59++KSSy5BzZo1kZycjBMnTuCHH37Apk2bsGzZMtSsWRMLFy7kaj8kSeYb5/39999IS0vD8ePHzQ3rzBmuDhjC+ouZHSfilzdpQ53SqUbEOG138BTZFyvtyceVifPpIM4z6ogcTUSJORfsHABQs6b98zhFEEf5WCReZ66Rfj826DoFAx/b+ck/Txm+Tz6Lz32WcBjHjx9H5WrV8PfffyM1NdXrHnGTnZ2N9PR0HDhw0nSvPCtt16qVjpMnxbftJIcPH8ZLL72EZcuW4Ycffoh4r3z58ujWrRtuuukm9OzZk7ttpghfamoqypQpE9zFoXFxvhhgiSIKw8YVhlgH4xAYB2H67WMHpfF4PRteUODt+bXQc0CJYEF2bgzZOSEQ130WgMlvOXHiBOLj41GuXDn2dglfU716ddx///24//77ceLECfz+++84ffo0qlSpgoYNG1qu0AkwCr5QKBSd6/gIgiCcgpxOIhYgOycIsTBOUsvr9+yIAD9AKZ3aVKxYUWiQjXlqsFKlSjh27JiwEzPh9cylEj/1heCDfjuCIAiCIKIIpmVWBPEPzFNz55xzDv78808n+0IQBEEQBEEQjhBN879//Pknavp5TT0jFOFzB2bTr1WrFv744w8n+xJo0nHS6y4Q0Uw0PaUIgiAIwscE4ZH7xx9/MJXwJwiAI8J37rnnkuAz2YA626RSp1/2xgyHgzGYER5BG60TRDCggZywiNkw7xd/hdDnjz//xLnnnut1N2wjSeIjcub7D8QeXIJv3bp1TvbFexx2dM2aD1DlWCLIGBkiy6hrVKTBjxX7CEILO8VGyM4Jq7iZa2bDxslfYcPLOZcDBw6g+/nne9cBIlAwjwbMKZ1JSWL34hNFTo7XPTCFpYs0yJYgIcRX5jjaiYszf0o77WyYORjkKBNu4WT1SJr0IPyAhxVSyV/xnj/+/DMqUjppDV8JelVX09PT0aRJE9x1113o3r27pba5InwHDhywdBJHyc0N7i9rgdxc82Pi4oCUFOf7QrhItNg5i4NCDjNhRGKi8fte3ydk44RdzGwc8N7OGTDzV+ToWCz4K05MTh84cCAqUjpJ8JXw7LPPar6elZWF7du346qrrsKKFSvQt29f7ra5InxHjhzB2bNnkZCQwH0iZvLyIv9ND0ZLmA20ap8kOdm5vhAaKO2cbDwSFmcHAPLzne0H4T6sv33QIRuPXWLExnmCj7z+CkA+S35+Po4cORIVET6ihMzMTMP3W7VqhZkzZzor+KpXr45QKISDBw+iTp06xgezPqSCKsGjELXOBthz0+XBOKb23yUb9x5ex4mEtbvE1IDgEFbEAdm5u5CdO4re5VX7LLHmrxw8eBBlypRB9erVve6KbSjCx85VV12F6dOnW/oss8nHx8ejRo0a2L9/v7ngc5u4OPNfNz6eHoSc8FbzNLu8rANsOOzAYMx693thI2Sb7mDHqOQbIZYiLqxiI1qfrEHFrp1Hg40nJrJ9D7JxTWKh+Ksof0X4tWL0BQ7s348aNWqgTJkygjtA+JkzZ84g0WKWANeToX79+vj1119x2WWXWToZQRA+h2XyJBaRZz9iJB2LiGGixcaj5XtoQWN0zPPLL7+gfv36XndDCBThY2fRokVo1aqVpc9yCb4mTZrgp59+snQiy/gp+qHlDCtKVWkVrUpNdbZLfqCggL1OQdDTKGKSAFS4JQiCINj48cuTpRwWHl8lqBFAVv8jCH7KT3v3okmTJl53gxDMHXfcofn6yZMn8c033+Cnn37Cxo0bLbXNLfh27Nhh6URRQU4O97SB0leWB0m9gZU2RCc8h8XGlU9Dv0zGEIQdlNEgtf3Hio3Twye6MYl48vgqRBFeCsOf9u7FxZdc4l0HBEIRvhK+/fZbzdfT0tLQvXt3vPPOO5Yju1zm2rhxY7z11lvmB5YvD/z9t6UOeYocwbMY0TgPP+JHnGd6nF7zNLgSrmEnardpE9CxY9H/q594sbjWjQgWvKl+ZONE0BCUzqr3mPDb/nqxOFex9+efMWTYMK+7QQhm/fr1jrXNHeHbs2cPwuEw4kTcYX5YL6SuB+zgbK5ZBC8nR3vGKBb2qPENrCnEfko1NsNFGy9Gy+EgB5lwGyfXcZGNE37Ag7WKWtsokJ+ij+g9+MLhcFSldFKEzx24BF/Tpk1x5swZ/Pbbb8FaLCqPTkFx0FWoB1dZFNoZYGNuPV2QBJoVgmDjeo4JOcmEXYxSMr3qhxKyccIufrFxHfT8FEDbV4nFqJwpjM/vffv2IT8/nwSfSZtEJFwuf2JiIpo1a4adO3f6T/DFxcVccQmjzUopPdQniI5im+1Q6zVWFqKqnWRKmSP0CGrlRbJxgoWg2rcK9WSy1mOLfBTr7Ny1C82aNbNcnp+ITbhjPBdeeCF27tyJq6++2on+GKO1OzgP0R7lUWB2qZKT3ekHwYnRDxcjtluM0cOMHOXoJNYcGLLx2CLW7NsAFneORKE2O3ftwoUXXuh1N4RBET53sCT4vv76a/E9Mbv7Y83ZdZi8PPOUziCIQgkh4fnxjkFiThxmjhM5y/7FaGChp3QJZOPBJOD27adUSxZRyOqnRNOWDDt37ULbdu287gYRMLhNu1WrVli4cKH5geXLAydOmB8XtIeWUYpeTg6QWpJZamV2yk9r6+TBlmVSsqAgGAJRKKwiLWg2rkeQUqYTE809F7sZA0RpjBYWB8DZDRRk4+6QnFySk+gH+7Z5nq9W/1W8B58VH8Uv/olMXh6bjyK6315eh2+/+w6jx471rgOCkSTxt48UkDiAm3CbbJs2bfDLL7/g6NGjqFKlihN98haetE8NB/i8nK/wFdpovh3N6Qmsl62ggG1wzs93IPuFdUTxa7TN7ZRkI4GXmBh8ISvPULBOacea8xxzMzgosmt5nAi6fQNFvyHZtz6sNh4tJShVD9Vo8FFY/QTWRyfr7SIPE2bHM2cgMeY1/vXXX/jll1/Qtm1btnYJ4h+4BV+lSpXQuHFjbNu2Db1797bfgyA5jjYrIcqDq4gqm37Dicgkqz4rA4ocCIHXvtVPWr/dx1YKyBjhhAAS6WTHokCzi5G36Hf7Fo1T9iPKxsm++eGcNVVvDeWUj+K3KKEdzPwUZv+E8bm77euv0aRJE1SsWJGt3QBAa/jcwdJtd+mll2Lr1q1iBJ9IREdAHK6I6PVeNn5KH415RNkuTzui7Vt2LuxWIBQt1PwMixPLO+VM6JOcbP06ibLvWMPMxqPBvv3SNzv2rYH6EcHin4jyKcg30Wbrtm249NJLve4GEUAsC74PPvhAdF+MccMh9sFeZrm55jNsLEKNxBxRCrftO9YiJIT/cDIqZNW+RU1mxMqkCKGPy1FPFv8kyAShiOrWr75Cv/79ve6GUCjC5w6WJEHHjh1x3333oaCgAPFGqqJiRbbCLV7g9/3M/sHrKGBMEqQ0Yz38aN/qCAkQm+uGCGeQnV+vnvRk34QRdu3SBfvmnSTWesykpYnpi0iipWDL2bNnsfnLL/Hk7NnedMAhSPC5gyWzvfDCC5GQkIDt27eLCS274WArH7xm5zKLJpq83wYlhVucIDe39EwULW9gQHTKr1/2dVQ7lUESq2rDJQc5OhH19E1OLrGRIAx6ZN+EVXxo3yxCR8vEnfoqfo/IlUEh24GMfsT2b75BUlISWrRoYaNXRKxiSfDFxcWhc+fOWL9+vT9ziX3+UDVLt7SSjqn3lUVU3XKkYqZAClGGfWANOm7YtpdCVqtyps/vZ8IF5LSGcNiXjjAzWlUzyb5jG2XKjtnEiN0tGVb+YevzVlGbeBCrgfqB9Rs2oHPnzoiLsnRuivC5g+XA9BVXXIFVq1ZhypQpIvvDh18jGbm5kDMdvEy/NAqcOiHgRK8bjJp1iFYi2H61bcD9dFE9B58c5egjFvPVteybbDv6cMO2Tbxclu0EncZtvySaWL9hQ9St3yPcw5bgmzJlCvLz85FodJfaXcenHhlERB6cSCHVcYKVL4scZO1G3eSvn59fWlQ5Pej6PWLoKko7dCuqZiWC58c1gXo3lB/7SkSi99v5YVpWmTbqFbFi21EWqShG6/fzg23/g1N+id3nuvw4jI8v7aJZbZt10pi1fa8mofPz87Fp82Y889xz3nTAQSjC5w6WTfeCCy5AuXLl8NVXX+Gyyy6z1wul+ggSnA9f5eFuLGy2KqzMfgYSaxwE1bYBY/tetgwYMaLk3147yEqUHozaoYw2h9nvKFMx/YzSZgoKIqNuQbbt1NTosHk/2g9PKiYLTn1HE0Xntl9iFaNHqB99EtHr97Zu24by5cvj/PPPt9ErIpaxLPhCoRC6dOmC9evXmwu+IDq7elEQxod/Z2zABnTWfV/dTJCWpbD+nFGRjmlEQUEwbVsPnsJGapQGbPZZL/fZ03J+5L5Eg2PsNkFNweTpt9K24+P9ayd63yklxb999jOsNuJ3McpIYmLkI8DvPolS5MWCT7J+wwZ06dIFoVDI664IhyJ87mDL/K+44gqsWLECU6dOFdUfMYhO2XRhhldLAAZ5cALMC50a4YoeMBoR/FB9U4sg2LbS2QiSo8nqJAXpO1klNdX9J6bT5xMVbZTbCZIdkG2XEKO2veGlvVxNqsVf0P0RwOc+iYmNrN+wAUOGDXO4E0Q0Y1vw3XHHHThz5gySkpL0D6xeHTh82M6pShBVQdDMcc7Lc9TpN0u3zMsrGYD8MNPm9ro7x56PrA17sY7HreqYDtt2RLUdtaMZDQ6lmfNs5hnk5Ijrix5UBq8IJyOQWrYd9DVpZNv+JTnZs6orSn9E7ooVWHwIL4Qly/fx0ifJy8vDlq1bMX/hQoc64S0U4XMHW7dW06ZNUalSJXzxxRe48sorRfXJG/y0TkNFkNM/3YJ5awbRETI/btKu7pOfbFt2VOLiokP8WSFWHVY3SEnx7kmfkkLpwWTbzmIk9Fy0e63UTz+uoxPdJ9b2mNfvMfoOm7/8EpUrV0aTJk3Y2g0YJPjcwZbgC4VC6NmzJ9asWSNG8LnpPOfn23eEPXL25W7n5RUNtnYHNZHbH7BGAuW+i2qPUCDCtt3AL9E/L9cUEvYQHekQFfn2i20TwUVtQz71YNWPGjee17HmE6xdtw7du3ePyvV7hHvY9nJ69uyJjz76SERfnCU/P/KPBZsqqDM22Po8K+qvpvx6fgs+EQ5gxbb9SEpK5B9BqAmqjfD026+TD37tVzSQnOypbYsUUNHyOPITn/z3v+jevbvX3XAMSSqJ8on6kySvv5X/sB3X6d69O4YNG4YDBw6gVq1a+gd6sY7PbLRxap2Wok116+pihkYDrZ3Im9ZXj7VZMV8hMhrs5VPUzcihltNDkZLYQp0i6PQaV7cqWtqNAJL4so7ISJnVtty2a9irwGln7lvUfnpOwXotvOr3X3/9hR3ffYdu3bp50wEiarAt+CpUqIB27dphzZo1uOmmm+z3yIpj7JdpJAZnWD7Ei3V4dkUgpVd6gB9sW8+uvahWqHSU4+PdKRJBuIOI9V92nPmUlCLHm+yaEInXkeiUFHz85HcRL3mx/YLsOxj5ISILtnjlq4hev7fus8/QokULVK9e3Uav/A2t4XMHIbdXr169xAk+M+SZMD84wjIWoh7yR8JhewMu61o4PbQuYzSUXw4cfrPrcJi9L05sw8C6rk5LJJCz7H+0fjcvntBGzrgTds0amSO7DiZO2bVZG+r3OURmXp59P8SuaCQ/RJ+P1q5FRkaG190gogBhgu/JJ5/E2bNnkZCQIKLJIuymOYhIo7O5AXsGPsbHML5Z/VCFUxm9M7rsLLNmvo8EellZ0y/7+9m0a11kR8PLDaqVTpfSwSaH2Ru82PdMD6uDq2zXXk7IkF37Cz/ZtYAoot82Xdd7VHodMHWTwsJCrP74Y7z77rted8VRKMLnDkIEX6tWrZCcnIwtW7agU6dO+geq1/Hp/SIsTrEop51nHZ9L65dEb3gqUoAZ3US8y0pEV+pk3pqBFatrPO3YNQt+2Xz96aeBO+7Qf99vG7DrpQySwywGP5fkl/tm9x70m00D+tc9Lo5s2yqpqSXXLsrtWuvZ6jfxp0SkDyJ6/Z5Q/wPAtq+/RjgcRrt27YS2S8QmQlZ+x8XFFW/PYIqyjI4efhphCgqKRj+HxJ6Z3y7vke2XwJARrNWTAo3WF4qPF/cF3QqNOmzXpfCqsiLL75Gaqv9HlJCWpv3n12vl9O8YhGqhZNfmaNk04N614n24c/6O6vV7VrDrg7A81kQ8+vQeyb7zPxgnbD/86CP06tUL8VGe3yq6QqfTv/Vjjz2GDh06ICUlBRUqVNA85vfff0efPn2QkpKCatWq4e6770aBx468MCvq2bMnHn/8ccyYMUNUk97B+6O4lCKo7JZX97/dNYNA5I3o2QDMemLfPCE40YpO+mXWICWlxIDtRCBEbiCph9qp0ptCzs52th9OIzu5SoJo+16JGWUqcxCianrpoUqCbtNAabt2u0KniPP5KHVUywdxc35exLmC5H+8/+GHuPf++x3ujPcELaUzPz8fgwYNQvv27bFo0aJS7xcWFqJPnz6oUaMGNm/ejIMHD2L48OFISEjwVCMJ85b69OmDkSNHYs+ePWjatKn+geecAxw8KOakLEKLVYwZOcNObd9gA2V3c3Jo0jYQuG1HfhF4RigNNwiOsh5Kx9JqyXwrDraWUIs1lDbkB8c4Gm0aILt2Ex6b9micD8LjJcj8uHs3fvr5Z/Tp08frrgSabNX4k5SUhKSkJFttPvLIIwCAJUuWaL6/du1a/PDDD/j0009RvXp1tGrVCtOmTcPkyZPx8MMPI9GjIhfCNvNJS0tD7969sXz5cjENujFtJO8M6uSeRvn5yMj/wPGNSM02O2U5r8i++aXYZMzhxo63LOcw8wa03o/1lDO9lEmjv1gkSOmJQeqrEXaekWTX5jhoJ0bDtZnfybrG3k8brbP60qwuJutxzOv3GCd9l7/9Nvr07o20GLgfnEzprF27NtLT04v/Zs6c6fj32bJlS6mtNDIyMpCdnY3/+7//c/z8egjNhxoyZAgefvhhPPDAAwiFQiKbFoObo5HBueS3lPvSGA1SVtIo/b7ZqQzrd2M9jrlwiw+jtpbw2qad2qg6NZUqERIliCq6YnYO2ca1bFpE+rDfon+0gXtp3IoSu2XTCtS+hxMoHxOJie6t34smJEnC8nfewSOPPup1VwLP/v37I0Sz3egeC4cOHSq1b6L870OHDjl+fj2EjvZXXXUVfv/9d+zatcv4wHPOEXdSs5FC1P5mZmpDqd4Yz+XmrFh+fsnCa0rF4MBPBYSAkh/QzelUs3O5UbgiSJESP6QVBh03f2+tc1ixaV5BqPUddQoAREAiLZho/d5OPIwV5/hgyheah4h6fJi5XyL9Dr89ip1k5/ffY/+BAzGTzulkhC8tLS3iT0/wTZkyBaFQyPBv9+7dLl4V8QiN8JUrVw5XX301XnnlFcyePdt+g1aiMFqjCssD0m7hFdkJ16EvPsAH6Gv4cRkrE8m8Wy9oXSbW84oo3BJ1OFW4x0l1bnR/FRQU3Tc895+bJetlh0lE8RfCe9LS3J2JYhWRsk27sQWD3Cf5v2TT/sVsUkeUPZudJznZ1vYRchfdKgKnviReFZ/zezrnq2++iauvvhrlypVja5ewzZ133okRI0YYHtOgQQOmtmrUqIFt27ZFvHb4ny3patSoYal/IhB+u40ePRqDBw/GY4895nzoVB49vAxZCTq3UkRpiT8RIsusDXkWTikco7wasP+QhZaZeHQqJVXUvZSSUmRIbjmtWs4OOcz+xMs1KVajhbI9A97ZNNmzPZyMvAfQppW+gJbwEzGpa9aG7G+IqkAeDamhZ86cwZLXX8eKFSu87opr+KFKZ9WqVVG1alUh527fvj0ee+wxHDlyBNWqVQMAfPLJJ0hLS8P5558v5BxWEO7Od+nSBRUqVMDKlSsxZMgQ/QN5q3WKyAew6yDLbej1xQEn3O0ZOL3zK2Hti8gN36MSv+TWurWGxG2HVR0FjIYy80FDdoS9THNV2qAIW7cagbObiqm2Z0Dfpint0znS0qLLnhXwNOfUs12vnpfbeBXde/f991GpUiV07tyZrV3CdX7//XccP34cv//+OwoLC7Fjxw4AQKNGjZCamooePXrg/PPPx7/+9S88+eSTOHToEKZOnYrx48e7soZQD+EyIhQKYcyYMVi4cKGx4NNDK+ZvdqOISqcza8dmIrpZWqcR6lNriS63BJbRZbAiTKO6cIsVexaFw/YMAHjwQYB1YbnXBSv0ZuFJCIrBT9XkrHiIvM8Qr+0Z0L7mZM/WSU0tuX5O2zPP2GvBnvXW77Hi9WSzEpH+ht+XoyxcvBhjxozxZ+FDh/BDhI+HBx98EEuXLi3+90UXXQQAWL9+Pbp06YIyZcpg1apVuPnmm9G+fXuUK1cOmZmZeNTjIjyO3MqZmZmYOnUq9u7di8aNGxsf7Jcohx4u9o8nbdPrTdj1+mqUox/YSWczYSiPLH63ZcA/fUxNNV9/Fw67YzRpadrnIcdZGyc3szbCzHbdXgeohMWe3UK0PQd24GZEac/hsLnQY7F3EXZoVjTIJVu36muw+DJ2J6iVfUtOjvxpgmi2P+3diy++/BLLYyidEwAkSfxjRJLEtqdkyZIlunvwydStWxerV692rhMWcEQqVKtWDYMGDcJzzz2HOXPm6B94zjnA/v1iTsoS5eOJ6FhN2zQphCG3KjISpuyq2QDKIiqdihQa3dDq93wxWCs7FeTKi045BqLa9UOkREtcajl+ymOiVRD6IQ2TFT9FFWX8WnTFaCP1aLVlwPsUTB6Uv5HN8dUoQmfmA+i970XUz2pETu8nZ/E1XE3nVHTouRdewKBBg4StJSMIJY7dtnfddRcuu+wyPPzww6hSpYq9xtzaM421YIbVtgFcg3fxLq5xLEKXm+uvoitWi82wDtZ6lAHjgSIdAT/t7edkQSPWNq3MHPhB/LFiJDb86EzLJf+D4vzq4ZTIS00Va3PRaMuAP+xZuX0F2XMp3r2rJJ3TCZEWF+evlE87VTe1zMcLP+PosWNY/Prr2LJlC1ubUUTQUjqDimO3aqtWrdChQwfMnTsXDz74oP6BtWu7G+VT43RaBEP7yoFT9JYHTqZ+iuyr6HV8gcdKxNqKLYuIeluNaBQUGBulMk1Oz8k0a8MP8DjThDZOpmvK9puf75xIY7FlFvxg63r27IUti/Tq3PIQWWzZ6vsGa/2cGiq1fAw30jm9JgFn2Q5kfL6+sHAhOl52GVq2bGmjVwShj6Mj9F133YU5c+bg9OnT9hsT5eUnJ9vfCZQlH8JC+/JHjPwMOwEkZftmvoxbe3o7xVkksB3ohXoUrehFFF/Rg8eWndwoOy2t5I8Xv6xbjEacLnXP85vzOslmtuq2LYvyxr0QXrEycWF1/Z6d8YsFRlstKLCeziljJNREP45EPipF770nktOnT2POiy/irrvvdv/kPsDJjdeJEhwdpXv06IFzzjkHixcvNj6wdm0nu1EEz0hkZ+qJ4RzX4F3D90VoUjPU53DSJ/ZLlqMt/BJW5P3RHLZlXZxyloFI58mPa7gIazj9uyonJHhsk+V4q2LN77YcDULObc9P/Zu6bMvvjvvY8KNuPPPV53HyXH55NGvC6Pwsfu011KxZE927d3e4Q0Qs4+hoHgqFMHXqVMyYMQN5Irx+njwBo9HGiR1FBY5q6kulbtrsUlqNzlkZoEWKORKGGrj11NQ6Jyu33qr/npPCT8bvTjOhjZu/m932ExPdt2UiOPD8bnbG8bQ0oc8Y9VDv5GbryscYyzykn6N7zOmcDJw+fRqPzZ6NBx54IKa2YlBCET53cHz6bsCAAahcuTIWLFhgfKDIKJ8Ix5g1MqLnHDsw7STS72cRV7m59s/jBKzCkDmt06+4mYrotKh0Mt1TDQlAf2L0uzhhd07ZgBU7thIBdNKOKXJnry2930aEHRulhNrETIyZ4bd1d9EQ3Vvw8suoWq0arr32Woc7RMQ6jq8Aj4uLw7Rp0zBmzBiMHj0aKWZ7y5jBUmQiJcVcrditqBgO2xrc5Wqddk4vo/XsdmsTdlZ8XWzFT9U1lQTAji3hdtn6tLTSDrcfKg1GO8pKim7amFsin+w4NpDt2O1x0oIdm6VzmiH7FVbnA1ie8XZdQF78HN07deoUZj7zDF566SXERcMkjEWoSqc7uFLyq2/fvqhTpw5eeOEF3G20KFVkxU4RaFVKVFqRmUNuwxk3E0i5uSUDp9XNRkWJMC+qdXqCSGHopchUj4QswtIJUlNLZiXcrsKp5UyxOO5ubQYfNJTizgu83nTdzI6dQm3HXghAP98PvF6f03ZsZqNmdmyjmprZc1UpxLzewJzFB/CtnwCwV+Z88UXUq1sXV111lcMd8jck+NzBFcEXCoUwbdo0XHfddbjppptQsWJF508qOjrigPXYjfJpIbqbSmHpJ2JGGIrEqnHY+T5moWb5faXj6lXUQsvZy8pyuxf+Rn2NrFYtFIWoaF5yspjSxHJ/nLBhlomPSpW0X7dix34WcnaxYsdmWLVz0SmhgpEvjYjnrR99CcCb6N7x48fx+DPPYNmyZTG7do9wF9c29enRowcuueQSTJs2DU8//bT+gSxRPrcdaqOHgU+ifFY+7zZe9OcsEtgGab+KNBEkJjr/3UQ6un4QfzJaIlB2hKNVDPp9g3bRKZtpaUViz0sbdnp/PbUdK8VcEO3YzDZ5bNiLSQsHbPjd694S2yYnInfOEoUn/g/js3bak0+ibZs26NGjh8Md8j8U4XMH1wRfKBTCU089hTZt2uDmm29G48aN7TUoai2fGQ47y05E+XjwY1onocCrdEteRowAliwRH+FQrlvyWvypMUr/8qtDXaFCMJ+EFSqI3xxUz+mOdhtWR+707JhsWCxm4S0zUall/4zCkSed08rn3cYLUSgyuvfT3r2Y//LL+Oqrr4S1SRBmuCb4AKB58+bIzMzE5MmT8c477+gf6OZaPhGRHQedcrtCiuXzdiOJomH9zp6ITD+u4/NjdNKJ1Da9qImodX5OrRdkFYZEJE6tp2KNrrDaME91LD9Fr3kIog17LQrV10zUhIWG/QYhusfiQ8RKdG/yQw9hRGYmmjdv7nCHggFF+NzBVcEHAI888ggaN26Mzz77DF26dLHXmFtRPrsOtcnn7UT5RIgxNwdGX6d1isSPIswL0tKKHGLRzi2v4+yUmCPE4qTIs+pwV6lS9F+rNqxnd0obDkIUXwsvxJ7b2zGwpHPKxzhZ9MViGihF9+y3JdJ/+Ozzz/HfjRuxd+9eYW0SBAuue0DVq1fHAw88gIkTJ+Kbb75BQoLOXml+i/KZHROU1DsNWEQYi7AMfLXOaBZpXtuvk5ENWVTK+CH9jKp5ssFa8t6qWJPtzu8FWZRCQct+3Z6sINtlQ5T96n1epP06RLRH95jFHoPvcPbsWUy46y5MnToV1apVs9mz6IEifO7gyah+2223IRwO49///rf9xkTV73VaXdho32wcyc019tVFaRj5pvTTjeSJPnPzyRQO+2OK1U4f1M4K7ybCvAUTKlSI/CP8g1u/jROblbvRNmD9+lAEuwSnHlJa9utEZU0OG7OTzulWdE+U3yDSlfPisfrcvHmQQiHcfvvt7p+ciHk8eUIkJiZi7ty5uOqqqzBkyBDUqlVL+0CrUT6nBnujKInsmFtUIHaLtyQn29s7hzeipnWJ4+LErBl0Ak/SOq3gxdYJXil4ZcSEZx0UL7JjJjvEfogAxgoVKrhTaj4lpciO3Np0HSg5l91ZJyPbF227IiN3QY8Csox7qan2z8MandOzXQf33rO73x6vAFNfcvmcfpiT10JkdG//gQN45PHH8eGHH+pntsUoFOFzh5AkSZJXJx8+fDhOnz6Nt94ymaEyE33hMNtDV8Qx6vfVVsX7+X9gEXtmA57e+6yDqhPBUr2HiMhZOOF5+KJsieW4KLDdUixZUvo1M0FntnG1WfSCRTDqtaF0olmiJKyeEctxfl4DZaWkvVZUimcNlB5GTi9LBU+99wcOjPz3G2+UPoZs115bIiHbLWb5wEi/ScuMjJ6NZv6C2edZ3uc9xsikvIjuMfkMjM/Fgf/6F8qlp2Pp0qVsJ48BsrOzkZ6ejoULTyIlRexkXW5uNsaMScfJkyeR5uZEoI/xNAdk1qxZaNq0KVavXo3evXuzfchr2S5HUvT6YSHS4vS2DHJXvdi3T+8yxdx6P6/tVolA29VkxIii/2oJPzO8qGKodPQoCsiOl+Xx7aaDqoWezHXXFf1XS/iZES22GwuRO1G2ayV6bcN21SJPSX5+pOiz+kyUL4uIdE+7EUAZkVXCvSjU8uGaNVi3YQN2794trM1oQpLEP0q8C2X5F08FX/Xq1TF79myMHTsW//d//6evwmvXBn77zbgxEYVXWI+xY5mK9nmFnpmwcUP4iErZ9MJP9CStk+WLirJLlvO4WVjIjvAD+IpkqL0du+g5ZbEoBP20DtIpoaeGVfjp2Zxsu4mJ7tiMMrqndY1i0W4BfXtxa7P1lJSisUmvH4zRPSOhp9WckxnyfsWv2zCcPHkS4yZNwqxZs1C9enUXOhU8KKXTHTxN6QQASZLQo0cPNGjQAAsWLNA/0EzwyTiR+qaFmeNs1EZenu2ont7gZrcEM0sbomb2WGftAp/WySKy3ErrtGO3rH0wQs+BZk2bM3JczdpgSXljLXyhFQVR901k+pxItJ6EWg6plbQ4LeymxdlJ2ZTp18+8D3qsWKH/HqvdAvq265bd6tmZFbv1SzpnlNvt8n6vm/dBB6MsNje2aiA/oYgxt96KfQcO4OO1axEKhdjajRHklM55806ibFmxaZenT2fj5psppVOJ52W9QqEQXnzxRbRo0QKDBw9G165dtQ+sW5dd9NnF4fL8y/MjxR7PbJx68NNahmV3E3URkURRWz2wwhrdFBrli+ZtHNTYcfCUTo0cYTFyoo0wK1/vJWrn0+iaudV3qw6x14iKKvboYb+N4cOL/vvKK/bakb+T8rf3QyjGa7utUKF0u04KOSfFnrLfFsXeB0NLRJ78eLSSmHHkSNF//Vr9Pxa2Yfh0/Xq8uWIFvv/+exJ7BlCEzx08F3wAUK9ePTz++OMYPXo0du7ciVS9ylgsos+t9Dizfcs0zrE8u5fmoaxpGFriSPlsjlYD92SNHlGE2vmTjZDVAzErliELP7OUTK33ecUfy+brbm3Qrux70NdM2SU1tej3c1LkWR1ElIOuaOEH+G/vVjNblPsu2mb9lDbMi6C+K4WeGp5tUtWujVr4+SW6x4LI/fuE+hAM/mNOTg5G33ornnjiCdStW1fgyQnCGp6ndMqEw2FcccUVOO+88zB//nz9A0WldrqYHqcn9PTQ8nt5ImEsW7cFLWVD5KAe1WmdotKRWR06o7Z4yomvWMGXHmf2vp4AdDo9jvcYnuNE4WSlQy3M0t5Yoiks0RLWaJ6oQemVV8hm3SJKbdZI5Glhd7/datX84RuwPs9F+QZeVOUce9tt2PPLL/jvf/+LuFif1NNBTul8/nlnUjonTqSUTiW+iPABQFxcHF555RW0bNkSPXv2RP/+/bUPFJXaKSISyBDlW/r7FcVNsaKO+PGmPcbFlTyPozXqZ4eoTuu02x+l8bCgdQ9Y2Tdq4MCSfq9dy/95NX5O/YxlnIjkdOzIF5U1ivbxDLZyxG/ZMvbPGKFls1WqmNuvyO0YWPCr8+qU2LNiswZj4LobFpf8gzPAqzXc8gz3R44Ufb0GDfTbNyKo0T0WRBZ0e/eDD/Cfd9/Fd999R2KP8A2+EXwAULduXcyfPx+jRo1CmzZtcO655+od6PvUTlnoycin4RV+cpEvnqUeevvgKZ91XmzRoIeIdYWETdSbL/HcF8o0T6ubBCvPJ0dqRAg/oHTpehKA7uKUyLODekC2upg4JQW48cai/3/55cj37KzPU14zrTVuhHOY2avF6p0RQs8GssthxXWRu/7LL0X/VQo/Eevp3S7UwoLbqZx//Pknbpo4EfPnz0edOnUEnjx6oTV87uCblE4lmZmZ+OOPP7B27Vr92RGWKF9cnP2qhCzHKM6hFnp6WE2rYPEhWAa4cNi92Tz5PEY3IKV1gs1eWc7Hk4psNPvI41EohR7PuiTWc6xdy2b8Vioeqp1pSo9jP07E5tU8G1cbCT2ray8rVeL/jNmA9fLL9tM9AXc3XA+yvVq1abW9Ct5onUXk8S7jlJvPyeH7nF63ZdHnpj9g9nMFNZUzHA6j+9VXo3a9elhidTuiGEJO6XzuOWdSOm+7jVI6lfgqwiczZ84ctGrVCrNnz8Y999yjfZBWlM/Kg0hgaier2AOMI35Gg51ZgRfWAS4uzjzqKKoap/KcWrA+q0VG+TxP6/QyzSMlha2/8sU2O1Yd1WMt7MJzzeSo32efsX+GFbXTJyoKGA77N/1NFG4U22CN5skeLavwk4uD8W5exuKNylG/115ja5MXr6LWQbZnl5w+3kgeS0EWrcQJ2XzNhJ+ZPpWjfc2bGx9nBs/kr5YZsW74znouVkSmcs567jn8duAAVn7wgbA2YwGK8LmDLwVf+fLl8eabb+KKK65Au3bt0KlTJ+0D69YF9u83boxlNLWZ2rno+0sj/s27nETuAsCeyqB8AMh+it0idAD/Ng8smKVsyuJT1CAuNP1T5Bo9t5wloz6LnBQxS980En5W85GUzv+mTfxtsEKbV0eiFwUTsTm1Hq1aWfucWaVVvSrQZsLPSp7ZmDFF/124kP+zLMjf08heq1QBjh935vxOY9Vr07JXEbaq08aWESV7CKeAP2qn56awZMinpmqLPt6v+803Rf+9+OLS74kowmJ2+8TF+XerBpbn1YZNm/DoE09g/fr1KF++vMCTRz8k+NzBl4IPANq2bYvZs2dj8ODB+Oabb1CzZk3tA2vXdkf0qd5XizwlvBPNQFHTen6IGfJaP17MtnkA2G4aN9fXBTrKx3KMExMUWiKPp863fE6g6Lzx8XyfVQs/O4tPlFgRf3a2XVBHVZQE1aFWo3SURTwxeb1OLZHHu4hZPq/6N2IdYLXOZ3eAlYUfwC7+7G4PorRX5e+qZatBjNzJ38mNTdRVKAWeFrzDq/ozvEuhlaLPiq5Vnk8WfkCR+PPb2nk/pnL+8eefGJyZiaeeegpt27ZlOzlBuIwv1/DJSJKEESNG4Oeff8b69euRqPfQNxN8gLCy+Iu+bmnejgqz57aWH2JnM3aWc+p9zgijPrm5/UKg1/KJ2DaBpR1RWyuokb0Jq/uH5eeLW3yix7Ztxu+b3Rysjjbv2ik9UeiWs83jILMeZ3d9HsCXS8Yr/OymnFr5POvAarbGR9R2DKLsVGSksFIl47Z4bNUlwbflhhfM21DBO0wWFPAPj8rPAnyfZxWWHTrovxfrz/78/Hxc0acPGjdrhsWLF9MG6xzIa/hmzXJmDd/dd9MaPiW+FnwAkJubiw4dOqBz58547rnn9A90WPTN21xa6PH6HlrPXbNJZyubsbOcl1fsaQ2g6ues3f19WNrgOS4mBZ/SceOJpJmdU8sZ4vFmtDwLFs+EV+xpnWfHjsh/e+VI2zlGJH4QfM2alfw/bySLdeBVDq5WomVWPs8zsKqPnTs38t9kp2KOsSj2vhujLfB4hj2WY7W6xyParHyeN4Ion0NrdU2sP/dvvftufL51KzZv3oyyZcuytUsAIMHnNr5N6ZRJSUnB22+/jUsuuQRt2rTBDTfcoH2gA6mdWiJPCe9af3WWEUuGEe859M4LlJxbhNgD+J//ftx+ISrSOvV+CJ7UT731dkbOEmtxFj3vQnkDiFiEonceZZqgWvwR7qAUeGp402zNUjy1Blaec+h9HtBvg3dQ1Tr+lltK/l8t/rRwU+zFCHoizyp6Q7nZ0Ka3Lo+1Db2CLlaFnszGjSX/36mTu89qN/cABMD07Hz1zTfx6vLl2L59O4k9G9AaPnfwveADgIYNG2LZsmW49tpr0ahRI7Rr1077QAGi7/m1TYv/n9U/4FliUlBQNBjzTjhrFWnh9THkwdvOMiYj8vMjB1wnbzjRFURN8dMG67KDxuKoWdlTLzeXT2wZCT9WD0PtoYgSe2patYpse/duvvMQJRj9RvXqFf2XdaCxK/pYZs+sFnMxa0OE2FNzyy0lg9e//83XvhP4MbongD23lGQNOTW8K10OnmFNRDEWZRt2xZ4aWfwVFAC9e2sf42Yqp9vr9rZs3YpxkybhnXfeQQO9newJwkcEQvABQEZGBmbOnIn+/ftj27ZtQje0VIo8JTzFV1gjcbJPYaWwi/pcduoIKAdzJ8QfoF0AJuqjfCyI2saBtR3W7RWAIsNITCz6s1J1ALC3AXtqKv9CFp5zqb0YdeSJBGARvA63LPDU8Ag5K6KPdw89vYGXp2KW3IaVNCErg/att0b+2w8C0A9wpnMqxZ0deAuyFBRYLxBqtxgLUDL8sw6TPOeRj129uuQ1Wfy5vW6PBVFi7/f9+9H/uuvw+OOPIyMjQ0DPYhtJEj/H4+/Fat7g+zV8SiRJwrhx47Bt2zZs2rQJ5cqV0z7QJMr3zIraxf8vsj6DErXwM/MneNpXt8XzWbNBWN0Wz2Ar8tgg5/S7egzPcUbH6j3lrRRnsVI9wKgfRu2InrbWOm7fPu1jYnltVM2a7P3mGaBYj1WKLRFVV3lRDqROrO/jqYQxe7b2+6z9ikIb3X/7U8X/zzqE+WnJs7otUUMpAGRn8x1v59hwGBg8WP99N6N7op7xOTk56JiRgXbt22Pe/PlUpMUG8hq+xx8/ieRksevs8vKyMWUKreFTEijBBwBnz55Fjx49UKlSJbz11luI03sQKUSfUuBp4YQ/AhSJPt6tFqxU9GT9PO/kcny8d4LP7WMAcbN/rgs+O8eyPrlZvRU7FQjM+qLVjp3onp1j9+0Tuz7KTYea15nW2xIHcFf0GT20eUWfnYIuRgOpiDV+rAOWUZuzZ8fEhIRS2OnhhODTapdlePHDMAqUFn1OiT09Bg8OptgLh8MY+K9/ISsnBx9//DESEhLY2iU0kQXfjBnOCL777iPBpyRwgg8Ajh07hksvvRQDBw7E448/rnvcM8/wtSta+Mk2ZmUC2kpFT6PP291GinW5GCt2fBre6qCsxwgTfHrHqS+ioK1CLB0r59fyYHQ8ixdg5LHw5ivl5LgT3TNCz6P588+S/w+K4KtWLfLfTvTb6gDL+rBmaV9vEBW9j43oCllW+6JuT/28DIjg++ueWaVeYx3ueIY5K1E+3qHLzjAqcgjNzub/jAixp3fciBGR7/lxMnfygw/inVWr8OWXX6Jy5cpsJyd0kQXf9OnOCL6pU0nwKQnMGj4llStXxurVq9G+fXvUr18fY8eO1Txu0iQ+0SdiuYmWXVlZr6f+DG+k0M4aQS3UA7iXhd3U59brC29OONNaPr11c6yd4oVnvZ/ZseoLwrsYxUolTyV6peOsLE5JTi552uvlKNk9h1WUETE9IzxyxJ2+AKXXubHYZjgs9jheUlL4By+jAdxsABVdhbOgwH9iDwCmTDE/7tFH2doXwN9Tnyj1ml9qY+khm4qVZc5mbZqhVcjFytCmNk+zIZTnHFZ3fdHallJ9jLKQLSuixN78RYuw6NVXsWXLFhJ7RCAJZIRPZtOmTejZsyfeeust9OrVS/c43kgfwD8ZzTOBYGW9nh3hJg/sIjOXlMj+nlsRPqvtsRxTBoXmB4lcW+dEvpH6WLMnsJ3FJXY8npwc696KHlqeixP5SoC4fcJ4jhOFyMiOqCif1iBqNz2Cd6ZM3YaV1Ai9zxl9F57B0+1BkbFvZ2Ge3ubF0mURET6RS5zlz9mZg7I6dALmn7Oa7skzhIkcOkUx+Za/I18oX774f1evXo3Bgwfj448/xmWXXeZux6IYOcL36KPORPgefJAifEoCvQFPx44d8dJLL2HIkCHYYbC/1qRJRX88sA5yaWnWJn9Z2lf6KvJneAd5Zd942uD5TvIeKk7speI2hShjfpDIsmEinTflsYmJ7D+IUwZs1kZysvXQtR5paSV/ThJ0Q2fBCbGq/v3Mfi874QurYk/ZBi8pKfqf07tvvBJ7AmERe0FAedlYnpdWTCQctvfzhMNF5+Ud4liHbbldnmGeZ6jwpdibjCKBp/z7h2+//RZDhw7FokWLSOwRgSaQKZ1Khg4din379qFPnz7YsmWL4XYNVlI8AbbUTatpm1YykFjPZfQwEp3yabT/nl/29XV7uwfmdEzW1ErelE0RG6+rUXsArJ8zakMv1dPsc2akpZV8xm9pn7FMairfoMCTa68cmK2mm8r2KN9PrG2wev9KO+MRpaLFnsui0KtUTSvbKIhGS8CwbK5u1kZamth0TBm1WWZl6R8rel7IT3Npv//+O/r06YP7778fQ4YM8bo7UQttvO4OPnHF7TF58mT07dsXPXv2xLFjxwyP5Y30AZHbLpkFD3iDH1rHs/oAogIt6nasZjHpEbQIoNAon9O5q2YXltep441OKD/H8h2M2khNtReVMTqX8ub1W3pHEG4KM4y+Q4UKkX9WYI3s8vRLjZ79sQxcvIMmr617JfZcFoVBxOinMTMdFhMwa0NkgFzvXFq3Ls/z3M9ib/Jk7dePHTuGjIwMXH311bjnnnvc7RRBOEBUCL5QKIQXXngB5513Hq666iqcOnXK8HieFE95oBOdeaZ1fEGBNX9Xyxe3ItrkdliCIXZwYlD3ZPbYS9GXnMx+Ia2IPrkvvLMKLGFlM2RnWJ3TLBK1+OO58fzsvbDixHdQHmsm8KxcGy0bYBHwLJ6pHc/bitjjQfQMnGCiJZ1Txu6cE+/kpt75eCdIlbcB77DNei75lk5LY5+78fNwqSf2Tp06hT59+uD888/HnDlzaK89h1EHBUT9EZFEheADgDJlyuD1119HYmIihgwZgrNnzSszaYk+o8loXiPiGXRlv8WOocrns+MfyL6+1TWDfodVGDJF+ZzAKeeOV/QVFBStA7SCOtpnx5BSU63PXrAie0p2o1CxjJUonlXRZzVSq5dXx+vhy4M0a1RbfT4enJjYiYHontuOX0qKuHPZaceqOVs93uy2D6LYO3v2LAYPHozk5GS8/vrrKFPGI1+AIAQT+DV8SpKTk/Hee++hU6dOGDNmDF5++WXDmZlFiyJ9BtalGrxLO3jWAlo9h0xqauTgKWL9nNJ31voOorIGtcjNLd2+X9YEAmBfJ8dynPzD8az9A9gXqLC0K2KNnvKz4TDfQhU18jWRbxQn1uLp5TApMVrEEu2o18IZCTredXM8x8vntbo2T/lZu2EcK5+3IvZktGxUeQ08EnGs0T3RlTeV+GUmn3dNnvqzdjJr1NdAvlVErL3jOV49NBw/LqZdt5AkCaNHj8aBAwewceNGJAd40iNI0Bo+d/CT6yyEChUqYM2aNfjss89w5513Qt51YtGi0n9qeI2O16C0lhSxnMNOagjP51mXYHkd+dML34vaE0mGOcrH62yJzj/gUdDK/euUOFWODrC+Nk/rmni1Dk+dyxQNkUAWm6tUqejPye/Muv6P9TNmyBMRVrBqy3bEnh7yuOGEUxoAR9fJ6J3IpcRGKId/O8FmPURlVFu9zvLwof6z265dtKJ7kiThzjvvxIYNG/DRRx8hPT3d/Y7FKEFK6dy3bx9GjRqF+vXro2zZsmjYsCEeeugh5OfnRxy3c+dOXH755UhOTkbt2rXx5JNPOtMhDqIqwidTs2ZNfPrpp+jUqRNSUlJQv/50rs/zTCBbifZZ8ZnMzmP2oBAd9QP8me7JcpPn5jqUOcly8sREcRFBJbyl6OT2razPMzuP3nVgrcZp1IYSpeiTp8dFRPd40LuZgxQRVG/Mbhc7ETgZlkGS9zzqQdLu5536nBPbNPC0GwCx51dYo3xGww5LGzzDljLa55bQM4NlyDl61Jlz66VyTp06FcuXL8fGjRtRs2ZNZ05OBJ7du3cjHA5jwYIFaNSoEb7//nuMHj0ap06dwuzZswEU7S/Yo0cPdOvWDfPnz8euXbtw4403okKFChgzZoxnfQ/0xutm7N69G507d8att96K+++/XzOqZwaPP2B2rJYPY9UvUn7Oqh+ibMOOAHK6BoETG7rztJkA8/WgAJzJW+LNceINc1rNQdI7D4+HoHduq16G/DkeseVkSJ8VpzybKlWcaZcV3sHNqvA0Ow/LAGXUhltCD/Be7HEcy1OsxYmhkXeo42nbbsaIiKFNqw27QyPAPjxGY0rcqFHar0+fPh3PP/88NmzYgGbNmrnbqRhG3nh9yhRnNl5//HF3Nl6fNWsW5s2bh19++QUAMG/ePNx///04dOgQEv+phTBlyhSsXLkSu3fvdrQvRkRlhE+mWbNm+PTTT9GlSxeULVsWd9xxB7fosxvtM5uotrpWT720yQoiBnS3Ul9E48iefCLX81k5FuCP9PFE3dTnAUrOZcWYtM4twqNR3nQiF7E4hdfCzEuUv5XVyKDe53grr9ptQ4k6bZTle/khsuZAH7zaf48HraGAdyjlaZsFZaTPzlClt74P0B4e/TIsusVTTz2FZ599FuvXryexF4VkqxbHJiUlISkpSeg5Tp48iUqKCcstW7agU6dOxWIPADIyMvDEE0/gxIkTqFixotDzsxJ1a/jUtGjRAmvXrsWjjz6KF154QXeGxwgra/vCYb7UTSs5x3KBFrv5ym6LNtFr7ZzGkbLjToQtZayEa+04tnbzY+XFKyLEnppoWW8XRPR+FxFl/Yw+Z2fNqN11p4D2/WA2UDt5jzsg4qJhKwYn1/oon80i2rECy/nVt2E0iz0t3++FF17AtGnTsHbtWrRo0cL9ThEAAEkSv35Pzl2sXbs20tPTi/9mzpwptO8///wznn/+eYwdO7b4tUOHDqF69eoRx8n/PvT/7d17eBXlnQfwby6EgEgIBBuKXNRdAg9okFA1cqu1BFwXRBQEWUCuglRdqjYISvtYWhbownora8ALxpZolQ1gDSSgFbWiokCQJ6hYWRQILqhJAUmAnP0jnTCZzDln5p33fWfOyffzPHlayTkzk3PmzHm/83svlZVS9+9GXFf4DDk5OSgpKcENN9yA2tpazP3Hegyyq3128wqIVu5EeimJVAv9qNDZzTQua1yhm8qdr1U+VY81Xli3lUHA+zRzos81N7IBb7N6RmJt2ajq+knnGRdBt3e/RC4Isi5mXrbjJIhZK39BCXtBqDAqpPsj3LatnDVt3W5H5O80fzydzKwZa+zC3vLly/HII49g06ZN6Nevn/6DIi2+/PLLRl06w1X35s2bhyVLlkTcVkVFRaMq8KFDhzB8+HCMGTMGM2bMkHPACjWLwAcAubm52Lp1K/Ly8nDq1CksWLAA06aJhT7gfHtEdZdNkV5Govt0S2ZYtPuSCtLyC2fQwvlYPt2hL1LVQCT0AWKhS+S5dsduPrFkzl5gfY7Trp/knteJYJyGPpljM7xsS7TKbX6ek3M5AIuwqxi75/axTsj4/vDarVNm6AMib0tWoDV/dOMh/NmFvUWLFmHFihXYunUrcnJy9B8UNaKi0n5+2FNbR2P47rvvPtxxxx0RH3PppZc2/P/Dhw/juuuuw7XXXouCgoJGj8vMzMTRo0cb/Zvx35mZmQ6OXo1mE/iA+krfX/7yF/z0pz/FqVOnsGjRIkybluA69Im0ZWQEPy8LqsocnqKLcfzKZtUMCrehD3C39h6gv9oHyAlrkbYl8xvC7s4NQ6Bzsmf6BCKHvqAEPUD84mS9AFv/Vuv5HYTZrgIqSDcHVbILkCorl7Ee/qxhLxQKYcGCBXjmmWfwl7/8hd04qUHHjh3RsWNHR489dOgQrrvuOuTk5ODZZ59FouUClJubiwULFuDMmTNo0aL+BllZWRmysrJ8G78HxPksneF88sknuP766zFmzBgsX768YXF2u+Cnoh0DuP+CktW+kTG7p6F1a7EvWpG2hcohK0pm7ASCNRunyD4MKqas89JKOXFCzXi/aGKxxaNCRobe/nHmi4zs2daCEvaiUXlRc/FYt2P3VF4CRS5nsicldkpGlc9ue7o+huG+51VNMCyDXdibO3cuXn75ZWzduhVZWVn+HBg1MGbpvO++KrRsKffaXlNTjf/8T/mzdB46dAg//vGP0a1bN6xZswZJSefXazaqd1VVVcjKykJeXh7y8/Px8ccfY+rUqVixYoWvyzI0qwqfISsrC2+99RZ+8pOfoKqqCgUFBUhOTm7o4qkq5Jn50WPJ2K+M7RrtHFVj8bxQMjbvH5R27QScP16kr5HbLp6yWhPWKp2MmQwA+a2oaMJdGOI5CIabQTQxUV9rU8WU2rES9AC1YU+hWJid0wkZ32myunYajA4JOi49kf5+6+Xh2LH6fwtaEDxz5gzuvPNOvPHGG3jrrbdwySWX+H1IZKKyS6dsZWVl2L9/P/bv34+LL7640e+M+llaWhpKS0sxZ84c5OTkICMjAwsXLvQ17AHNtMJnOHz4MIYPH46uXbvixRdfxAUXXAAA+J//0XscOnotyd6uk/ZOuL9LdYVPZB/KqnxA7FX6Il0pZUyxqiKoOdmmH7fDg9bysSO6LITq19MasGXsT8bFz24Bd5HnOSF6sXR6TC63L3v8nvmjonJdPYPTCp/dd5fXuaQSE733Eg/3naoi+Km8eavismhcxo4da1zdO3nyJMaOHYuvvvoKJSUlXFQ9QIwK39y5aip8K1boWYcvVjTLCp/hhz/8IbZt24ZRo0bh+uuvx6uvvoqMjAzcfHP973UFP+v4PpXnps7zPojVPxlcVfncUr3unrEPoOl+nE4a4TX0OZmBQHSb4bbrV98np2FKdgtIx9p+Kqp8kbpXeNmfjLnnwwU24z2PtF2dYc98TNG4eE2dhj1j126u934v1aPyu8m6Lq9I6It2fMbHRlbwU/1drfLyZA57x44dw4033ojWrVtj27ZtSEtLU7djEhZLFb5Y1qwDHwC0a9cOmzZtwsSJEzFgwABs3rwZ3bt3BwDcfLPeap/RJlF1osoKe6K9mczBVvWH0W23TpXdQF2HOJHQB4gFv8RE74uui1IR/MzbVbFtVZrz4utu+tC7vXjYTcYjcgFyEtjCBT/dYc/tPhy27t1kgFjozuk21LiZxyra8k1OQ5/bY2zf3lvoi/WbsjfddP7/f/HFFxg+fDiys7NRWFgofbFtolgT4x9vOVJTU1FUVIS8vDzk5uZi586dDb+7+WY0VPxUad++cZsnMVH+hTdoFW3jbzT/xBLXCw/rGIfjtMEn60WXseg6UH9yquy/3K6dnoG5zZHoOWRc9ETeFyf7DLewu3kbTrYjsgC7+fMV9LDn0DkkRX9QwCUm1l8OVH3fuLmsRlvOycsxZmSc/3EqFr+Drcxhb+fOnbj22msxbNgwFBUVMewFnOxF11VUDONBjH/E5UlKSsJjjz2GuXPnYsiQIdi4cWOj38sOfU7aO7IuwkEKe5HaP34HQLd3pWMq9EV6YUUatU726ZaK4Gf+e72EDPLO3BL1+gEP9/xoQc/pdgDv0xi3aeP+gqYj7DUTKr5P7E4J0e1bT1Ovx2r3XCfhL9aDHtA47G3YsAGDBw/G3Llz8eijjzaZMp+ouWr2XTrNEhIS8Itf/AKXXXYZxo8fj1//+tf493//94ZlG2SM7fNyQ1vkjoWMoStm5i881XdQzNdpkS6XSrtp6iKyeLoxzk5lnyW7fQJiXUStVHX1NLN+EGUMfmmuDYtwXSSjlRi89u02P99NyLPbDnB+WzKCXqT9mPdlpivsKa7u+dWdU+fHT9a+2rdXN5GLlXlSEzfPCzoj7IVCIaxYsQILFy7E888/j9GjR/t7YOQYx/DpwcBn45ZbbkGXLl0wcuRIfPrpp3jssccaFk8E3AW/cG0ekZPRbfCzu4Mouu9IxyNzm35zGxJdT+AiEuBEQ59Iy8vpoulW1gUeZUxpZ5zAoi0iNy0aFQGwOXI7FtFr6GvfXu4FrW1b4OxZ8W04DYvWi6euO1MxfwfsPN2BJfkfraV27eTcizKOX9VELuFYC+yxMJFwOEbYO3PmDO6++26sX78eb7zxBn70ox/5e2BEAdSsl2WI5uDBg/jXf/1XZGZm4k9/+pPtDE92oc9Nm8dLWyXSc53e8Hazf6dtGdmT1RlE2iq6nqN0qQbdzzE4CW3RWh0iwS/SNlXNduDkudFaRvFyy9wp64VO1cXMjvUC5zX02XUldhv8RC9udhccpzPmythXBCJj92SvLBPuY6X60gacD3l2REOf18ubikubWawEQCPsVVVVYcyYMaisrMSrr76Krl27+ntg5JixLMPs2WqWZVi5kssymLHCF0HXrl3x9ttvY/z48bjmmmuwfv169OjRo9FjjGrfW2+J7cNL1S3cc0WHsMgKakGq/J0+bd8uinRcWrqCuqnaGS+ozCUYnIhUqXPa6nBb7Yu2XfPJ7bUvlFt2d3JipXXklZO7WF6qdU6eG20SFsD9/iM1BIzWfrTgp+IulvVzYP274iTsWQXhnkmkkCfK6d8VqdqnOugZzF0/zR/7IF3qjLD36aefYuTIkbjsssvwzjvv4MILL/T3wEgIu3TqEYDLa7C1bdsWGzZswIgRI3D11Vdj06ZNto8bNMjbfmQM1nY7X4HMY4i2zSB8kZvZzRLq5VhdT+ACNJ4W3enBiE7QIJpgrRO6iLxATieFcbvdcCe8rpYRcH5GhIsuajxDQiwus2A9/qD8LW4ubE7fPzcTBCUnh08BurosmK8HGsKeTkH4jjDeYjdhz8npI/J32Z3uOi9pBuvHPiiXByPslZSU4KqrrsJNN92EDRs2MOwRRcEKnwNJSUlYunQpsrOzceutt+KXv/wl7r///obJXAxG6BOt9gHiN6plTs5irdB5ncPAvN0gVf8iqa1130Y6hxZIwjl3TxIZaye6+LnIWECD0brxMjYv0vhALy0a88mfmKi/8heOk5aQztvmQV+MXeYkLJGOQbR7j7Xip7t/uujzBJ7jR3VPNxmVvLZt7bt2ygivGRmxs6beRRe5f47IZWLAgPrJWZYtW4ZHHnkEBQUFuP32291viAIlFJLfHuRgtaYY+FyYMGECsrKyMGrUKOzatQurV69Gq1atmjxOZ/CLVuCQEf6Sk73NY2Cwto+i9VqS5dSpOJy5XFfos75JMiZksQY/WS0T8ywIgPvg50eJQSSEiRynzrsroqHPmDhHxsXG7gIqaxyHsR3R11Rn2KNGjNOibVuxy6cdY7FzmZcPI4ya55JyGv50X8Z0XY4GDAC+//57TJ8+Hdu2bcObb76JnJwc9xsiaqYC1tEu+Pr3748dO3bgwIEDGDRoEP73f/837GO9dvMEwncJcdrLyWtXGaNtI9LlxS2v3SplE7ljLbRAsWhDzkv3zkj7jPYmeF23z+C1D7JZpA+JrH242Tc5Y7c2osyLjDHzpqywZ/7MiVysdIc9TdU9Uaqrgrq+U2Qs7RntO1bXur1u6Ax7Bw4cwMCBA3HgwAF88MEHDHtxhAuv68GWioDMzEy8/vrr+NGPfoR+/fph8+bNYR87aJC84AeIt19FvgzCtZF0hD8geAHQqZgIfdZ9irzQoqHPevIYDXLRRrmTYzaHP9nj/qipSK+nXcizknFxMd5rGRer1q0jf9acfH5iIOyJCkp3TjffGV4unXbfgaL3ldyennYfHT+Cns6wt2nTJuTk5ODqq6/G66+/jszMTPcbImrm2KVTUMuWLbFy5Urk5ubilltuQX5+PhYsWIDEMFdBL908rRd3Lz2enHb3dDOfgSHScckoCNm9tKrv4mhdvF10jJ1o907zBBCiLTa36/ZFa9m4XXRdtKVjbp0lJ8f/untextbJ2KdICcTpLJlW4VreIn3TRVKBtTuplwuI5rCns7ong86g4ySUuVlTz+s9CPO4OZ1DgUVfc5HLT25uHR55ZBGWLl2KlStXYuLEiWI7p0DjLJ16MPB5NGnSJGRnZ2P06NF47733UFhYiPT09LCPdxr8nN78lhH+rB8Mr3MaAHKG4TjhNATqHsd3DknuJ3AB1Ia+aNUHL7fpowU/t60bJ8FPZmtPZLCM7GOIJ8bYRBkXAqdBzUmJxU2I9HrBsM6o6fa14Ji9RqyXEBkfvWiXTZFQFi30ySheW7ehY/kEnUEPAHr1+gYjRkzEJ598gnfeeQfZ2dliGyIiAOzSKUV2djZ27NiBhIQE5OTk4KOPPor6HLtunk56OlnJ6K1k7p4ha6iLrm6fdmQss2AmmoOE75bL6t7p9kWQ0cC0K+V6OQnCdfeUFbTsjs38QXT7gWyOIs3TLusCEG47ouM0I12conXfdMq6DfNFMdrr4kNVUPR6paI7p/Wlsnu5VN7A8/rdZXc6yvg+dLINFcsl6A57rVp9hJycHCQlJWHHjh0Me3GOY/j0YOCTJD09HevXr8f06dMxaNAgPPnkkwhFmRfWPL7Pa5tSxpdJ+/ZqQlrbtv6Pw/Nr376Evtatxf/gaBO6OGFM6tK2rdyTyQh+sgKYyMAZBkD3i3CpCH2yJuOxHpusoOdkO+ESTQyFPRmchDvdxyHDRRfJ26boNowlQs0/bukMe6FQCDt3PoFBgwZhxowZKC4uRjvVk26R7xj49EgIRUsl5Nqbb76J22+/Hddeey1Wr16NtLQ0R8/bu1feMbjpPRTteuq1V1akto+bD6WMApQfw2mEunYavNw+93rrXfT51haCrPnPgaatHi9r7slohdlRPaDGy90Lpx84u5ah129QGd0727evXyRTtjZt5GzXa2C0u8g4fd08XNxUV/fCfVS8XqK8XlpSUur/1+tKM+G2axAdIiyj944bX38t/lwzkUvFiRNVWLVqGt59912sXbsWgwcPFj8AignV1dVIS0vDpElVSEmR1L3sH2prq/H882moqqpCW1ld12Icx/ApMGTIEOzatQsTJ05Ev3798NJLLzmaQrh37/r/lRH8nA5VkT3sxSpa+0fXWnx+MhpTWsf0eX2u8XzA+TbCtRCMk8Br68yu9WM+gd2EP5VlhGhVL50zLIQjcqvfK9EFPa0V1ZQUeaHP3AXZ3EoX2b6KsAdEPlclhGgZ1T2Rj5MfM3tag5hBxvKi4bYNnF+rzyndQc9gXBZEnm+ERZHv8H37duC3v70NPXr0wK5du9CxY0f3G6GYxUlb9GDgU6Rjx4547bXXsHTpUgwePBj/8R//gZ/97GdISEiI+lwdwU+kl4SOSVlkLhovm9YZO838DH3RtuGmZeAl+DmdIs+ge9YENzIyvN0+133r3bxfrx9Kp6EvWrdZo3UtGvyiTRvsZvsyuoGKXliM89CnfpB+db90KlIIsxINfU73YZzSkYKfjNfTr0tLbq7754RCITzxxBOYN28eFi5ciAceeCDsTOdE5E3AL9exLTExEfPmzcPAgQMxfvx4bNmyBU8//TQyHI6mVhH8ADlLJDgJfzImuaN/8Br6ALnVPi9vjpvgJ9oCEq38xTs/lmdwSmRspNtqn9uLX7Tg52fYM3hICV6qe7pmYnbLTcizchr6vOzDLvj5HfS8Pv+yy9w/59ixY5g6dSp27tyJ0tJSDBgwQPwAKKaxwqcHm9QaDBw4ELt370ZycjKuuOIKbN261dXze/c+H/68MOabSEnx9oVlpWuwvYyB/X4NawMkdJ3y2jCU0bA0JmSRIdrkFrJOKPMEH35X92KdjLsw5tdPxkQ4Ti5oXs9bYx/m/TTjsBck5rdG5vdapH3JkJlZ/yNzlm0/ni8S9rZs2YIrrrgCLVq0wO7duxn2iDRoxi0Xvdq3b4+XX34Zq1evxk033YS77roLixYtQoqLbw+Ril+kdpTXXlF2jC8v1V+85n2ZBfWus0F4fT6DjHF5bp4faep6WZOx2FX8VIQq67i1eF9sXRWvVUKjh4PsyVfsqn2ybk6YmavHXv4GH8NeLDN/t6SkyJ0TCmha5VPxXWbepugaejLuvegOerW1tXjooYfw+9//Hv/1X/+FadOmORrmQvGNFT49OEunD/bt24fx48cjKSkJf/zjH9GjRw+h7YQLfl5ulstog9m1sfycAM8aAv2e7RPwOHMnoLZU6bYhKbPFpWvavHCchEC/ZlSQuQ2v34ZOnx+t+7qKGTeNbcoOe9EuQG7+Fp/Dntfqnowba04uYU4+trIDH1D/VsvuCe42OIYLf0G4fIiEvU8//RTjx49HXV0d1q5di549e3o7CIp5xiyd48apmaWzqIizdJqxS6cPevbsie3bt2Pw4MHIycnBU089FXXNPjvWrp4ylgjz2jUmXBvL63a99J6ydgUNQhUwEN07jW147Ssro2ub9eSQ2XXUzUkXbb29ZlpVaSJci9HtGn2yyyft2okvOBaJk3Pcad9CVvbCEumeKWsBdqOHubE9Wcu/iX7v2X2MZIzT0x32QqEQnnrqKeTk5GDIkCHYvn07wx41wnX49GCFz2dlZWWYMmUKsrOz8fTTTyMzM9PR844fj/x7mTfOnW5LtH2uayI8s2htLieh0PcqHyCne6bM+dFFbrc7bQ2pnELP6bZkLKkQhFv0Mr4N6+qchTqnvFy0IrXOvZSAZF14amvldC2QEPZkjN2TcdNMZoNM9C12+vaKVPtkj5O3Mq+Z54QfVb0jR45g+vTp2L17N5599lkMHTrU20FQXDEqfGPGVKFFC7lVuDNnqvGnP7HCZxa/twpjxNChQ7Fnzx7MmTMHffr0QUFBAUaPHt3w+2jBLhyZ4/OcLE/ldT6EaNvXTfHSVwAkjOcD7MfkuW0Uyli6weBmBk63LSLzSaZ6Kr1wIgWcIKyv55TbcXjhKmYyy+VuZ9x0WoIRWQ5E9h2mSBdIjV0OdIa9aJchmdd6N0OKRd7adu2chT7Zl5xIr2G4j6Q1CMq4vyQS9l555RXceeedyMvLw549e5Cenu79QIhIGANfAKSnp+OPf/wjioqKMH36dGzYsAG//OWjaNs2zfO2ZU/MYrc9mUNlghj+rMxrG3q94S4t9HltNMpYusEsUiNbRqvIOOnCBT/ZLS8n24v1MCjSDVJ2H+looc9LPzunwU922It27oS7iFhf1wB25QzgITUh6+2MFPp0Br1oRBZPj1QtdBv2qqqqcM8992Djxo1YuXIlbrvtNncboGaHk7boEQOX6+Zj3LhxGDRoEKZMmYIf//gKrFjxNIYM+amUbasIfkbbS8WgeWMf5v8f1ADolZTQJ6vhrTL4qai42VX9dEwR65YRBkVacm76brkJbbK+EXWEPlkDqoDwwU930IvGfK64ab2HeV/tqnsi1Z/mFPKszKEvSCHPyu37anfZuPBC9/vdsmULpk2bhp49e2LPnj3o3Lmz+40QkRIxcOluXjp37oxNmzbhqaeewuTJN+P222/Hgw8uw4UXyumDLKOCZm17mb9cVc2YBjT9gg1CAJRR5QMCFvoAed08jTfN+F9VdweA+vBnnCwyp9jzO0DatcZkjQMMcuhT1Wo3qNy+zHPG7Xtt8/gQEqTM0Bbku+Yd2ofw/Wn1U/ybh9nLWNnFz6AXjtuwV11djQceeABr167FkiVLMGvWLC63QI6xwqcHZ+kMoMTERMyePRt79uzB/v37MWTI5fjoozLp+3E7e5h5/epwrDOdeRVpO9YZ3fxulweCl1XprcwzeboR6Q2ReXJE2q5xsjo5aSPhSaWXeYZU0fPPoVBqqyY/UvgZ9pqJVqmhJj/Gv6tgnIrW09HLzNgyL9UyZt8E6oOe27BXVlaGyy+/HPv370d5eTlmz57NsEcUQKzwBVj37t1RVlbWMJHL+PHj8bvf/Q5nzsidcShad0/R9rLqyp8du7aW6kpgoKp8Bt3VPreNXJGJNKJtKxLzSSx7gS2ngtgXzu8qn5PWssxJhYCIwc78u4TT37vbsOybA5LCXgix3/h2E+Rapcqp9Lm512CcxjqW8bTys6p3//33o6ioCMuWLcPMmTMZ9EgIK3x68PZhwCUmJmLWrFnYs2cPPv/8c/Tp0wfbt/8ZHTrI35e1KOO1OGImUvmTVQiKpSqgjFn0GshsWdjd3pbxonopCYs+z2n1L+gnSxBFO+eirXMYjoRqn9sqnqvKXzMIezobUHbVO7fPFxGukudUtCU8ZXff9Cvsvfrqq+jTpw/+9re/oby8HHfeeSfDHlHABfCWM9np3r07tmzZgtWrV+Pf/u3fkJeXh0cffRSZmZnCSzdY2X1JyVyizeCk8qd6eI3dF6+XgpisKh8Q4EpfcvL5SVJUlE3dVP1kniDW0Pfdd/UDdWQM0IkFMqt8QNNzTrTPmx2BSYVkdNW0bqOh+hfQoBdLVHXDdFrpU9VruH37+ktIhzY1qDrdUtp2ZZ4iboPekSNHcO+996KsrAzLli3DtGnTGPTIM1b49Gh+3y4xLCEhATNmzEBFRQUSEhLQq1cvrFq1CunpdUIVPyc3273e8YzGXOAx2vCq52oIx7gDa/ejm++VvmgvgsrqV6TKnaoxgGbGrAwilahmrCY17fxPmw5qX7soFyTp4/Jstl+T2Ao1Z5NQc1bSZ1Vy2AtaV86kszWNflol1igLe4Zw21f9vQYACbU16NCmBgCQllrT5MctmRU9wF3Yq6urQ0FBAXr16oXExERUVFRg+vTpDHtEMSQhFAqpveKSMn/+859x1113oVu3bigoKEDPnj0B2C/WLrvdpaLyZzC+pFXOuCY7rxgFDdnhUFqlz6BibS8d06WeOqXnToBIC9CPgTuA/GqQw1uiNanO1wdtmaLh68V0MVIV8MzcnO4tkx1+fgMe9pzeLU866zLIaOg2bXyPqAx3hoRa90HOzK4SKPtj7raqV1FRgZkzZ+LgwYP4/e9/jxtvvFHuAVGzVV1djbS0NNx4YxVatJA7N8WZM9X485/TUFVVhbZt5W47VrFLZwy78cYbsXfvXixcuBD9+vXDz3/+c8yfPx8dOtQ3jI8f13ODXVb4s96Ntf63jim3RRntebdfztEaUq66dzrZeUqK/L4Oshd5NGlowHuZTMMpLwN37MR4l1A3wS7sNmoT1Ie+1FRUVSdA9Xe6yOkdrvrXKAjGWDdO16HOT9XVMK4cIQnnsx2vIc+sUeXPQVf8v9dd4Gr7bsLeyZMnsXjxYixfvhyzZs1CSUkJ2pjXPSWShF069WCFL058+OGHmDNnDo4cOYLly5dj9OjRDd0tdL3DosHPS7ce0RCo8sayivZbAiS/iSqvhhKCn9NKjbTwp/D2f02tu3O05ekqZw90eKKdTHTeylPVfVl26KuqDv+ayg5+KgvYbl7vpERnr6GT6l5CncueAzLXWLSSeTGuro76kFBbOcFPZtBrRMVrfYHzYBgKhbBu3TrMnTsXnTt3xpNPPol+/frJPyZq9owK3w03qKnwlZSwwmfGwBdH6urqsGbNGuTn56Nv3754/PHHkZWV1fB7ne+00/AnewyH0wDY7AOfIUDBz2t3POHwp7ivl9vA55SKdqHq8apegl+kkBeOl+951T2VVbzW0ruAG4Ia+BwEvHBEgp+ykAeoe41dhL19+/bhnnvuwa5du7BkyRJMnjwZiTFWgabYYQS+YcPUBL7Nmxn4zPhJjiOJiYmYMmUKPvnkE2RlZaFv376YN28eTpw4AQBISDj/o1q0QfGi021H42Q671icbV/ZBAwqv8wdLtkga3INoUW0YzTsqaKyXQ+4fz2qqhMafkRUV5//cUN1VY9hz8Tpi21+M0XeVIuE6iokVEevpifU1jT8KHH2rLqqnsOwd+LECeTn5+PKK69Ez5498emnn2LKlCkMe0RxhJ/mOJSeno7HH38c27dvxzvvvIMePXpg9erVOHfufINAV/ADmoY/1TOzmVkDoI59qyqaKQ19PgQ/lbMomrcfdh86ZnGIQX6GPnPAEw154TjJCLW1wenC2exJDHeRhAt+SkMeEIigd/bsWaxevRo9evTAX//6V2zfvh2PPfYY2slagJfIAWMMn+wfaoxdOuNcKBTCyy+/jHnz5qFVq1ZYunQpbrjhBtvplFWdCRHvovpRag/TojuXHMy1kqyUde80KLhSWiev8LvKWl0NpLVV+zqqru6pDGY6gonRvVN2sHPDuPzomGhW5WuqrLoHqL8DANRfEBSGOidCbdOQcPhQ/X9kZKjZierX0mHQC4VCeO2115Cfn4/Tp09j8eLFuPXWW7nMAmlldOkcOlRNl86yMnbpNGPgayZqa2uxcuVKPPLII+jbty+WLVsWdiC21zPCSTeZsII41R7EwmBzDX1u1iXTHfwitSllB8BYDnyAmoBy7FjTf/Nr4j+710/FsagOz0rDHiD/RPvHEANbukugkY7FzGsADEjQA4CPPvoI999/P8rLy7Fw4ULMmjULKX7fgaNmyQh8P/1pFZKT5bb9zp6txpYtDHxm7GDSTKSkpODee+/F5MmTsXjxYgwcOBC33HILfv3rX6N79+6NHmu+yeck/HkKeFbWFrnMD6qH2/iRpiKXWRl0KoQEtaHPSKsOgp+XhafNb4nKNoeT4kG4SpNIEIy1sXt2zp4Vb3/bBbtwjDa3ruAXqe1t1/73clwxH/ZEOQ1SVl5OOqdEjs16QjsNgAEKegcOHMBDDz2EdevW4Z577sG6devYdZOoGWHga2batWuHJUuWYM6cOXjooYfQs2dPTJo0CfPnz28S/IDz4c8c/KQGvGhkBUCFfbbChcFQitogqDz0AfXBzxT6vIS7aFSEPxm9xGQGwXjjJthFozL4eWl3h8sHkY5TR6FKS9iL9sKJBrto+5T5Aqo4RrsT3xwCAxT0vvjiC/z2t79FYWEhxo4di3379qFr164KD47IHa7DpwcDXzPVtWtXPP/885g/fz4WLVqEnj17YuLEiZg/fz4uueSSJo8PTNd+kQCoY4COjYTaGmkNl1CifdByE/rO1Ym+ifX71jGUx+A1/OkYDhQuCJ44oW4IkFlysvr3xGh7ywx20cgKfqpfm3DVwLibmEVFYIrGS+jz43gB4KuvxJ+bmen8sQ7DnjnojRkzBrt37260TBNRUDDw6RFvX03kUs+ePfHCCy/g4YcfxqJFi9CrV6+IwQ8AkGZav6hKY7XPTrQA6FPYk83JQsnnoK76Bpxvf+kMfoC78OfzvA8NbU0ZAUlWaKys9L4NPyY0FQl+us9Ns9at6xsZXi45Tm9uRK3uxcN1z2no8yvgAc4XnI0m2oc0M9NV0PvNb36DF154gUGPiBpwWQYCAGRlZaGwsBC7d+/G6dOn0atXL0ybNg0VFRWRn5iWdv4nCDRN5R1EusbzqFpHzAlj2ny79qzfb7fsduexY9F/Kiuj/8hw+rS8tq1bJ05Efm2N2e39CnutW9f/yGA+v8P9JNV+H/1B8SLcm2qcFH6EPePDoOsDcdlljsJeRUUFpk2bhl69eqG2thbl5eUoLCxk2KPAi7VlGUaOHImuXbsiNTUVnTp1wsSJE3H48OFGjykvL8egQYOQmpqKLl26YOnSpeoOyCEGPmrECH7l5eUIhUK48sorMWLECLz55puIOqGrOfz5FQDNrb+zZxs3DPxsJGiicxIHI/j5Ff6++eb8T7yFvaDyK/QBTT+6foY8QG7Qc6oVvte7w6A4fLj+p7mEPKA+6F12WcSHhEIhvPnmmxgxYgSuvPJKhEIhlJeX4/nnn0ePHj00HShR83LdddfhpZdewieffIJXXnkFn3/+OW699daG31dXVyMvLw/dunXDhx9+iGXLluFXv/oVCgoKfDxqLstAURw5cgSPP/44Vq5ciX/+53/G/fffj9GjRyPZbStfZddP2a0+mbNG+JSGVHfvDEdVA1y0jafj5Y+HHmVu6ezi6STMX3SR+uMw6A55Bt/C3qlTevbz9dfun6NyunW/PlxRQh5Qv2D6unXr8Lvf/Q779+/H7Nmz8bOf/QydOnXScIBEchjLMgwcqGZZhrff1rMsw4YNGzBq1CjU1NSgRYsWWLlyJRYsWIDKysqGJU/mzZuH4uJi7Nu3T+mxRMLAR46cOHECzzzzDFasWAEAmDt3LqZOnYo2ouHIawD049a+yN/q4wwOfoU+wPvbozJEBX0CQDf8rLipCH2yKrUqAqBfQQ/wubInO/CJBDsnZDTq/PxAOQh61u/hn//855gyZYr49zCRj3QEvi+//LJR4GvZsiVatpQ3g/o333yD2bNn49ChQ3j77bcBAJMmTUJ1dTWKi4sbHvfGG2/gJz/5Cb755hukp6dL278b7NJJjrRp0wb33HMPPvvsMyxZsgSFhYW4+OKLMXfuXOzfv9/9BkW6fvo9WCdc91C/W/1hJOGcb+t0ue3uqfPltPb6FT2lAvq2a+O1h5t1uK3Mbrlff930R5QfXTfNYrYbp92boCrsAWInkrmrpp8VvShh77PPPsPcuXNx8cUXo7CwEEuWLMFnn32Gu+++m2GPYp7KMXxdunRBWlpaw8/ixYulHHN+fj4uuOACdOjQAQcPHsT69esbfldZWYkf/OAHjR5v/HelrIH1Ahj4yJXk5GSMHTsW77//PkpKSnD06FH07t0b//Iv/4LXXnsNdSIjZSOFP79DnlMBDoJ+L85sF/wC+DK5CoFBOeYgiNZOtgt2foy5dJM7jJDnZ9ADAhL2Ir0I4UKdymDnRKSTze+AB5wPeRGCXl1dHV577TXccMMN6NOnD77++muUlJTg/fffx9ixY90PqyBqhr788ktUVVU1/Dz44IO2j5s3bx4SEhIi/pi7Yz7wwAPYuXMnSktLkZSUhEmTJkWf58Jn7NJJnh05cgSrVq3Cf//3f6N169a46667MGXKFDll6+PHvW/DDypbioKrksvq4iljEkBdw4JkMrdhFQ8JcMzPNqtVPEwO2b2730dwXiDCHgB89539/48lXo9bVh9hB902v/32Wzz77LN48skn8f3332PWrFmYOXMmMt2s1UcUA4wunddco6ZL5/btzsfw/d///R+OR2lvXnrppQ1j8sy++uordOnSBX/961+Rm5sb2C6dvEVEnnXq1AkLFy7Egw8+iHXr1uGJJ57Aww8/jPHjx2PGjBm46qqrkCC6cnuHDvb/HtQgqKMkINiyNuLe92gl71gEWV+moAbAcIUKmRUqL+ExNdV76FNVjGnXTs12ZbIeo4w8I+Pv9hz2VAUz448LavBTdVyiHxIjKDqYbfP9999HQUEBioqKkJOTg8WLF+Pmm29GixYtxPZNFCOCsPB6x44d0bFjR8F91e+spqYGAJCbm4sFCxbgzJkzDZ/fsrIyZGVl+Rb2AFb4SJFdu3ahoKAAL7zwAi655BLMnDkTEyZMQDvVrUA/g6Df/b9cCELoi8aPEOh3TzQRQW17mwUh/AXhGJzohCN+H4Jzfp58sXDi5+ZG/PV3332HF154AatWrcKBAwcwYcIE3HnnncjOztZ0gET+MSp8V12lpsL3/vvyZ+l877338MEHH2DgwIFIT0/H559/jocffhhHjx7F3r170bJlS1RVVSErKwt5eXnIz8/Hxx9/jKlTp2LFihWYOXOmtGNxi4GPlDp58iReeuklFBQUYPfu3Rg7dixmzpyJ3Nxc8aqfCJVBMIaCnlkshD4rFSEwFkOeWSy0e610hK9YCXhmMRX2zFSehLF4gkcIeqFQCO+++y4KCgrw0ksvITs7GzNnzsTYsWNxgYMF1onihRH4+vdXE/h27JAf+Pbs2YN7770Xu3fvxsmTJ9GpUycMHz4cDz30EDp37tzwuPLycsyZMwcffPABMjIycPfddyM/P1/acYhg4CNtysvLsWrVKhQWFqJz586YMmUKJkyY4O/aQV6CYIwGPatYDH4G0QAY6yHPLBbbw2ayglksBjxDzAY9O6InZKyfyFGqeUeOHMEf/vAHPPvsszh06BAmTZqEGTNm4PLLL9d0gETBEouBL5Yx8JF2p06dwiuvvII1a9Zg27ZtGDp0KCZPnoyRI0ciVeeKzpFECoJxEvTMYjn0WYULgfEU8sxivZ1s5SS4xXK4s4qrsGcW7sSMtxM2QtA7ffo0NmzYgOeeew5btmzB4MGDMXnyZNxyyy1oHYffI0RuGIEvJ6cKSUlyQ9m5c9X48EMGPjMGPvLVwYMHUVhYiOeeew7Hjh3DuHHjMHnyZFx99dV6u3w6dSROG2cBdgTeK8Dx1sY0i+e/zQh28RTwzOI27AHAjh3enp+RIec4VIjSZfO9997Dc889hxdffBEdO3bE5MmTMXHiRHTt2lXjQRIFGwOfXgx8FAjGuIY1a9bgxRdfREZGBsaNG4dx48ahT58+fh+eWnEWImUEtKALUsgK0rEYjh3z+wga69/f7yNoKnBhz2tACzJZ4TFC0Pv444+xdu1aFBUV4fjx47jtttswefJk/ePViWKEEfiuvFJN4Nu5k4HPjIGPAuf06dMoKSlBUVERNm7ciEsvvRTjx4/Hbbfdhn/6p3/y+/Bii8cw2RzCW1B4CW5enhu0cBYrvIRI4bAXz6EsaIyQGCHk7d+/H0VFRSgqKsLf/vY3jBw5EuPGjcPw4cODMzyBKKAY+PRi4KNAO3HiBDZu3Ii1a9di8+bNuPzyyzF69GiMGjUKvXr14p1TH8VZYTKmMQcExwhs9PsQyNC/PyBxUrBQKISKigoUFxdj3bp12LNnD4YPH45x48ZhxIgRaNOmjbR9EcU7I/BlZ6sJfLt3M/CZMfBRzPj222+xfv16FBcXY/PmzejSpQtGjRqFUaNG4ZprrkFiYqLfh0gSMVA6x8DnDkOZCyNG+H0Evqqrq8P27dtRXFyM4uJifPnllxg2bBhGjRqFm266ydeFlIlimRH4Lr9cTeDbs4eBz4yBj2LSyZMnUVZWhuLiYmzcuBEtWrRAXl4ehg4diqFDhyIzM9PvQ6SAi6dAGW+BL+4CWTMPTbGmsrISZWVlKCsrQ2lpKc6cOYMRI0Zg1KhRGDp0KNfLI5KAgU8vBj6KeWfPnsU777yD0tJSlJaW4qOPPkLv3r2Rl5eH7t27c/pr8oXOyVQOHNC3L0Nf7NK3s+7d43eqTgoEo7tmaWkp9u7di379+iEvLw95eXkYMGAAkpOT/T5EorhiBL7evdUEvr17GfjMGPgo7hw/fhxbt27Ftm3b8Nlnn6Gurs7vQyKSKxSC9cp9rvZco/9OTrI8IDkZ4JhXorC6deuGvLw8XH/99ejQoYPfh0MU1xj49GLgIyIiIiIibYzA16uXmsBXUcHAZ8ZZLoiIiIiIiOIUO6UTEREREZF2dXXyRxtwJE9TrPARERERERHFKVb4iIiIiIhIO1b49GDgIyIiIiIi7Rj49GCXTiIiIiIiojjFCh8REREREWkXCsmvyHHBuaZY4SMiIiIiIopTrPAREREREZF2KsbbcQxfU6zwERERERERxSlW+IiIiIiISDtW+PRghY+IiIiIiChOscJHRERERETascKnBwMfERERERFpx8CnB7t0EhERERERxSlW+IiIiIiISDtW+PRghY+IiIiIiChOscJHRERERETascKnByt8REREREREcYoVPiIiIiIi0o4VPj1Y4SMiIiIiIopTrPAREREREZF2rPDpwcBHRERERETahULyA1ooJHd78YBdOomIiIiIiOIUK3xERERERKRdXR2QkCB3m6zwNcUKHxERERERUZxihY+IiIiIiLRjhU8PVviIiIiIiIjiFCt8RERERESkHSt8erDCR0REREREFKdY4SMiIiIiIu1Y4dODgY+IiIiIiLRj4NODXTqJiIiIiIjiFCt8RERERESkHSt8erDCR0REREREFKdY4SMiIiIiIu1Y4dODFT4iIiIiIqI4xcBHRERERETa1dWp+VGtpqYGffv2RUJCAnbt2tXod+Xl5Rg0aBBSU1PRpUsXLF26VP0BRcHAR0RERERE5NAvfvEL/PCHP2zy79XV1cjLy0O3bt3w4YcfYtmyZfjVr36FgoICH47yPI7hIyIiIiIi7UKh2BtzV1JSgtLSUrzyyisoKSlp9Ls//OEPqK2txTPPPIOUlBT07t0bu3btwvLlyzFz5kyfjpiBj4iIiIiIfFGtbJvV1Y233bJlS7Rs2dLTlo8ePYoZM2aguLgYrVu3bvL7d999F4MHD0ZKSkrDvw0bNgxLlizBt99+i/T0dE/7F8UunUREREREpE1KSgoyMzMBdAGQJvmnC9q0aYMuXbogLS2t4Wfx4sWejjkUCuGOO+7ArFmz0L9/f9vHVFZW4gc/+EGjfzP+u7Ky0tP+vWCFj4iIiIiItElNTcUXX3yB2tpaJdsPhUJIsKz3EK66N2/ePCxZsiTi9ioqKlBaWoq///3vePDBB6Udpy4MfEREREREpFVqaipSU1P9Pgzcd999uOOOOyI+5tJLL8Xrr7+Od999t0lw7N+/PyZMmIA1a9YgMzMTR48ebfR747/rK5r+SAiFYm2oJBERERERkT4HDx5sNC7w8OHDGDZsGF5++WVcffXVuPjii7Fy5UosWLAAR48eRYsWLQAA8+fPx7p167Bv3z6/Dp2Bj4iIiIiIyI0DBw7gkksuwc6dO9G3b18AQFVVFbKyspCXl4f8/Hx8/PHHmDp1KlasWMFZOomIiIiIiGJZWloaSktLMWfOHOTk5CAjIwMLFy70NewBrPARERERERHFLS7LQEREREREFKcY+IiIiIiIiOIUAx8REREREVGcYuAjIiIiIiKKUwx8REREREREcYqBj4iIiIiIKE4x8BEREREREcUpBj4iIiIiIqI4xcBHREREREQUpxj4iIiIiIiI4hQDHxERERERUZz6fxmfG80RIsWlAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7gklEQVR4nOydeXgUxdbG3wnZCCFhB5F9V0FQBAERUJawCKLs6iUgsiig4gYqriCo4HZFNkXAFa6oqIiIchFEEBRF8FMQr6KgLLKEGEIIyfT3R+ykp9NLVXf1NnN+z5NHmempruk5XX3eOqdOhSRJkkAQBEEQBEEQBEFEHXFed4AgCIIgCIIgCIJwBhJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEESUQoKPIAiCIAiCIAgiSiHBRxAEQRAEQRAEEaWQ4CMIgiAIgiAIgohSSPARBEEQBEEQBEFEKST4CIIgCIIgCIIgohQSfARBEARBEARBEFEKCT6CIAiCIAiCIGKexx9/HKFQCLfffnvxa3l5eRg/fjwqV66M1NRUDBgwAIcPH/aukxYgwUcQBEEQBEEQREzz1VdfYcGCBbjwwgsjXp80aRI++OADvPXWW9iwYQP+/PNPXHvttR710hok+AiCIAiCIAiCiFlycnJw/fXX48UXX0TFihWLXz958iQWLVqEp59+GldeeSVat26NxYsXY/Pmzfjyyy897DEf8V53gCAIgiAIgiCI2CIvLw/5+fmOtC1JEkKhUMRrSUlJSEpK0jx+/Pjx6NOnD7p164bp06cXv759+3acPXsW3bp1K36tWbNmqFOnDrZs2YJ27do50n/RkOAjCIIgCIIgCMI18vLyUL9sWRxyqP3U1FTk5OREvPbQQw/h4YcfLnXssmXL8M033+Crr74q9d6hQ4eQmJiIChUqRLxevXp1HDrkVO/FQ4KPIAiCIAiCIAjXyM/PxyEA+0MhpAluOxtA7Zwc7N+/H2lpJa1rRff279+P2267DZ988gmSk5MF98Q/kOAjCIIgCIIgCMJ10gCkqVIvbSNJRW2npUUIPi22b9+OI0eO4OKLLy5+rbCwEBs3bsScOXPw8ccfIz8/H1lZWRFRvsOHD6NGjRpi++0gJPgIgiAIgiAIgnCfuDjACcFXWMh0aNeuXbFr166I10aOHIlmzZph8uTJqF27NhISErBu3ToMGDAAALBnzx78/vvvaN++vdh+OwgJPoIgCIIgCIIgYo7y5cujefPmEa+VK1cOlStXLn591KhRuOOOO1CpUiWkpaVh4sSJaN++fWAKtgAk+AiCIAiCIAiC8AKPI3wsPPPMM4iLi8OAAQNw5swZZGRkYO7cucLad4OQJP2T6EoQBEEQBEEQBOEw2dnZSE9Px8mEBOFr+LIlCelnz+LkyZOma/hiBYrwEQRBEARBEAThPk5F+IgI4rzuAEEQBEEQBEEQBOEMFOEjCIIgCIIgCMJ9KMLnCiT4CIIgCIIgCIJwHxJ8rkApnQRBEARBEARBEFEKRfgIgiAIgiAIgnAfivC5AkX4CIIgCIIgCIIgohSK8BEEQRAEQRAE4T4U4XMFivARBEEQBEEQBEFEKRThIwiCIAiCIAjCfSjC5woU4SMIgiAIgiAIgohSKMJHEARBEARBEIT7hEJFUT6RhMNi24sCSPARBEEQBEEQBOE+cXHiBR9RCrrCBEFEPZ999hlCoRA+++wz02O7dOmCLl26MLWbk5ODatWq4fXXX7fXQYKLUCiEhx9+2OtuBAL1tVqyZAlCoRD27dvH3daUKVNw6aWXiuscQRAE4Qok+AgiQDz88MMIhUI4evSo5vvNmzdnFitukZeXh2eeeQaXXnop0tPTkZycjCZNmmDChAn46aefvO6eLZ577jmUL18eQ4cOLX5t3bp1uPHGG9GkSROkpKSgQYMGuOmmm3Dw4EHNNjZv3oyOHTsiJSUFNWrUwK233oqcnBxH+33s2DHMmjULnTp1QtWqVVGhQgW0a9cOy5cv1zz+zJkzmDx5MmrWrImyZcvi0ksvxSeffOJoH51ixowZWLlypdfdEMrq1atdEcC33347vvvuO7z//vuOn4sgiBhBjvCJ/iMioJROgiAc4+jRo+jZsye2b9+Oq666Ctdddx1SU1OxZ88eLFu2DAsXLkR+fr7j/ejUqRNOnz6NxMREYW2ePXsWzz33HCZNmoQyZcoUvz558mQcP34cgwYNQuPGjfHLL79gzpw5WLVqFXbs2IEaNWoUH7tjxw507doV5513Hp5++mkcOHAAs2fPxt69e/HRRx8J66uaLVu24P7770fv3r0xdepUxMfH4+2338bQoUPxww8/4JFHHok4fsSIEVixYgVuv/12NG7cGEuWLEHv3r2xfv16dOzY0bF+6nH69GnEx1t7fM2YMQMDBw5E//79xXbKQ1avXo0XXnhBU/TZuVZqatSogauvvhqzZ89Gv379hLRJEARBOA8JPoIgHGPEiBH49ttvsWLFCgwYMCDivWnTpuH+++939Px5eXlITExEXFwckpOThba9atUq/PXXXxg8eHDE608//TQ6duyIOMUMY8+ePdG5c2fMmTMH06dPL379vvvuQ8WKFfHZZ58hLS0NAFCvXj2MHj0aa9euRY8ePYT2WeaCCy7A3r17Ubdu3eLXbrnlFnTr1g1PPPEE7rnnHpQrVw4AsG3bNixbtgyzZs3CXXfdBQAYPnw4mjdvjnvuuQebN292pI9GiP4tg0Bubi5SUlK4Pyf6Wg0ePBiDBg3CL7/8ggYNGghtmyCIGIQicq5AV5ggYpCCggJMmzYNDRs2RFJSEurVq4f77rsPZ86ciTiuXr16uOqqq7Bp0ya0bdsWycnJaNCgAV555RXTc2zduhUffvghRo0aVUrsAUBSUhJmz57N1N8XXngBDRo0QNmyZdG2bVt8/vnnpdbayev0li1bhqlTp+Lcc89FSkoKsrOzddfwLVy4EA0bNoxol5WVK1eiXr16aNiwYcTrnTp1ihB78muVKlXCjz/+WPxadnY2PvnkE9xwww3FYg8oElOpqan4z3/+Y3j+zMxMJCcnR7QJABkZGahYsSL+/PNP3c/Wr18/QuwBRWu9+vfvjzNnzuCXX34pfn3FihUoU6YMxowZU/xacnIyRo0ahS1btmD//v2G/ezSpQuaN2+O7du3o0OHDihbtizq16+P+fPnlzr2yJEjGDVqFKpXr47k5GS0bNkSS5cuLXWcel2anOr8888/Y8SIEahQoQLS09MxcuRI5ObmRnzu1KlTWLp0KUKhEEKhEEaMGAEA+Pvvv3H77bejXr16SEpKQrVq1dC9e3d88803ht9PPvfu3bsxePBgpKWloXLlyrjtttuQl5dX6vjXXnsNrVu3RtmyZVGpUiUMHTq01DVUXrNOnTohJSUF9913n+b5R4wYgRdeeKH4+8l/etdKj48++giXX345ypUrh/Lly6NPnz74v//7v1LHdevWDQDw3nvvmbZJEARB+AMSfAQRg9x000148MEHcfHFF+OZZ55B586dMXPmzIi1aDI///wzBg4ciO7du+Opp55CxYoVMWLECE1nUIm8zudf//qXrb7OmzcPEyZMQK1atfDkk0/i8ssvR//+/XHgwAHN46dNm4YPP/wQd911F2bMmKGbxrlo0SKMHTsWNWrUwJNPPonLLrsM/fr1MxUwMps3b8bFF1/MdGxOTg5ycnJQpUqV4td27dqFgoICXHLJJRHHJiYmolWrVvj2228N23zuuedQtWpVZGZmorCwEACwYMECrF27Fs8//zxq1qzJ1Dclhw4dAoCIfn777bdo0qRJhCgFgLZt2wIoSks148SJE+jduzdat26NJ598ErVq1cLNN9+Ml19+ufiY06dPo0uXLnj11Vdx/fXXY9asWUhPT8eIESPw3HPPMfV/8ODB+PvvvzFz5kwMHjwYS5YsiUhPffXVV5GUlITLL78cr776Kl599VWMHTsWADBu3DjMmzcPAwYMwNy5c3HXXXehbNmypQS10bnz8vIwc+ZM9O7dG//+978jRDIAPPbYYxg+fDgaN26Mp59+GrfffjvWrVuHTp06ISsrK+LYY8eOoVevXmjVqhWeffZZXHHFFZrnHTt2LLp37178/eQ/Hl599VX06dMHqampeOKJJ/DAAw/ghx9+QMeOHUsVd0lPT0fDhg3xxRdfcJ2DIAhCE1rD5w4SQRCB4aGHHpIASH/99Zfm+xdccIHUuXNnwzZ27NghAZBuuummiNfvuusuCYD03//+t/i1unXrSgCkjRs3Fr925MgRKSkpSbrzzjsNz3PNNddIAKQTJ04YfykDzpw5I1WuXFlq06aNdPbs2eLXlyxZIgGI+K7r16+XAEgNGjSQcnNzI9qR31u/fr0kSZKUn58vVatWTWrVqpV05syZ4uMWLlxYql0tzp49K4VCIdNrIDNt2jQJgLRu3bri1956661S11Zm0KBBUo0aNUzb/fjjjyUA0vTp06VffvlFSk1Nlfr378/UJzXHjh2TqlWrJl1++eURr19wwQXSlVdeWer4//u//5MASPPnzzdst3PnzhIA6amnnip+7cyZM1KrVq2katWqSfn5+ZIkSdKzzz4rAZBee+214uPy8/Ol9u3bS6mpqVJ2dnbx6wCkhx56qPjf8n1x4403Rpz7mmuukSpXrhzxWrly5aTMzMxS/UxPT5fGjx9v+F20kM/dr1+/iNdvueUWCYD03XffSZIkSfv27ZPKlCkjPfbYYxHH7dq1S4qPj494Xb5mZtdWZvz48ZLe41x9rRYvXiwBkH799VdJkiTp77//lipUqCCNHj064nOHDh2S0tPTS70uSZLUo0cP6bzzzmPqG0EQhBYnT56UAEgna9aUpFq1hP6drFmzqO2TJ73+mr6BJDBBxBirV68GANxxxx0Rr995550AgA8//DDi9fPPPx+XX3558b+rVq2Kpk2bRqT9aZGdnQ0AKF++vOW+fv311zh27BhGjx4dUXji+uuvR8WKFTU/k5mZibJly5q2e+TIEYwbNy4iAjhixAikp6eb9uv48eOQJEm3D0o2btyIRx55BIMHD8aVV15Z/Prp06cBFKW2qklOTi5+34gePXpg7NixePTRR3HttdciOTkZCxYsMP2cmnA4jOuvvx5ZWVl4/vnnI947ffq0bh+V38OI+Pj44kgaUBTFHDt2LI4cOYLt27cDKLLLGjVqYNiwYcXHJSQkFFct3bBhg+l5xo0bF/Hvyy+/HMeOHSu2RSMqVKiArVu3GqbCGjF+/PiIf0+cOBFAyf32zjvvIBwOY/DgwTh69GjxX40aNdC4cWOsX78+4vNJSUkYOXKkpb7w8MknnyArKwvDhg2L6FeZMmVw6aWXluoXAFSsWFG3UjBBEAQXFOFzBSraQhBRhnL9jha//fYb4uLi0KhRo4jXa9SogQoVKuC3336LeL1OnTql2qhYsSJOnDhheB45BfDvv/9GhQoVDI89ffo0Tp48Wao/cl/UfY2Pj0e9evU026pfv77huQAUt9u4ceOI1xMSErgKUUiSZPj+7t27cc0116B58+Z46aWXIt6TRal63SRQVGzGTLTKzJ49G++99x527NiBN954A9WqVWPsfQkTJ07EmjVr8Morr6Bly5al+qnXR/l9M2rWrFlcBEamSZMmAIB9+/ahXbt2+O2339C4ceNS6x/PO+88AChll1qobVUW5CdOnCiVkqrmySefRGZmJmrXro3WrVujd+/eGD58OLM9qG2pYcOGiIuLK06J3Lt3LyRJKnWcTEJCQsS/zz33XKFVZfXYu3cvAERMRijRum6SJJmOMwRBEEyQQHMFEnwEESDMoiq5ubnMVflYHTbllgNKzMROs2bNABStVVNGCLVYvnx5qWiGWft6sAolO1SqVAmhUMhQ9O7fvx89evRAeno6Vq9eXSrSec455wCA5v58Bw8eZF6D9+233+LIkSMAiq61MkLGwiOPPIK5c+fi8ccf11xvec455+CPP/7Q7CMAS2sFncKqrQJFa/Auv/xyvPvuu1i7di1mzZqFJ554Au+88w569erF3Rf1/RUOhxEKhfDRRx9p9jM1NTXi327YsdwvoGgdn3LLEBmtLR1OnDgRsc6TIAiC8Dck+AgiQMiVFffs2YPatWtHvJebm1ssMszaCIfD2Lt3b3H0BAAOHz6MrKysUtUbrdK3b1/MnDkTr732mqngy8jI0NzIW+7Lzz//HFG0oqCgAPv27cOFF15oqW9yu3v37o2IbJw9exa//vprqSiXmvj4eDRs2BC//vqr5vvHjh1Djx49cObMGaxbt65Y3Clp3rw54uPj8fXXX0ds7ZCfn48dO3aU2u5Bi1OnTmHkyJE4//zz0aFDBzz55JO45ppr0KZNG9PPAijeu+3222/H5MmTNY9p1aoV1q9fj+zs7Ihoz9atW4vfN+PPP//EqVOnIqJ8P/30EwAUR2rr1q2LnTt3IhwOR0T5du/eXfy+CIwmOs455xzccsstuOWWW3DkyBFcfPHFeOyxx5gE3969eyOiyz///DPC4XDx92vYsCEkSUL9+vWLo5uisBNtk6vMVqtWrbgCpxks9whBEAQTFOFzBbrCBBEgunbtisTERMybN694Zl5m4cKFKCgoMHVOe/fuDQB49tlnI15/+umnAQB9+vQR0tf27dujZ8+eeOmll7By5cpS7+fn5xfv63bOOeegW7duEX8AcMkll6By5cp48cUXUVBQUPzZ119/3TSl1IhLLrkEVatWxfz58yM2fl+yZEmpaolG3+/rr78u9fqpU6fQu3dv/PHHH1i9erVuCl96ejq6deuG1157DX///Xfx66+++ipycnIwaNAg0z5MnjwZv//+O5YuXYqnn34a9erVQ2ZmpmYKpprly5fj1ltvxfXXX1/822sxcOBAFBYWYuHChcWvnTlzBosXL8all15aauJBi4KCgoi1hfn5+ViwYAGqVq2K1q1bAyiyy0OHDmH58uURn3v++eeRmpqKzp07m56HhXLlypX6jQsLC0ulFFerVg01a9ZkupYAirdGkJHXQsr347XXXosyZcrgkUceKRVxlCQJx44d4/kaEchCmtV2lWRkZCAtLQ0zZszA2bNnS73/119/Rfz75MmT+N///ocOHTpY6itBEAThPhThI4gAUa1aNTz44IOYOnUqOnXqhH79+iElJQWbN2/Gm2++iR49eqBv376GbbRs2RKZmZlYuHAhsrKy0LlzZ2zbtg1Lly5F//79dcu/W+GVV15Bjx49cO2116Jv377o2rUrypUrh71792LZsmU4ePCg4V58iYmJePjhhzFx4kRceeWVGDx4MPbt24clS5agYcOGliMbCQkJmD59OsaOHYsrr7wSQ4YMwa+//orFixczr9m6+uqr8eqrr+Knn36KiNhcf/312LZtG2688Ub8+OOPEWX9U1NT0b9//+J/P/bYY+jQoQM6d+6MMWPG4MCBA3jqqafQo0cP9OzZ0/D8//3vfzF37lw89NBDxdtDLF68GF26dMEDDzyAJ598Uvez27Ztw/Dhw1G5cmV07doVr7/+esT7HTp0KL4Ol156KQYNGoR7770XR44cQaNGjbB06VLs27cPixYtYrpWNWvWxBNPPIF9+/ahSZMmWL58OXbs2IGFCxcWr10bM2YMFixYgBEjRmD79u2oV68eVqxYgS+++ALPPvusreI/Slq3bo1PP/0UTz/9NGrWrIn69eujadOmqFWrFgYOHIiWLVsiNTUVn376Kb766is89dRTTO3++uuv6NevH3r27IktW7bgtddew3XXXVccCWvYsCGmT5+Oe++9F/v27UP//v1Rvnx5/Prrr3j33XcxZsyY4gkQK98JAG699VZkZGSgTJkymlusaJGWloZ58+bhX//6Fy6++GIMHToUVatWxe+//44PP/wQl112GebMmVN8/KeffgpJknD11Vdb6itBEEQEFOFzB4+qgxIEYYPXXntNateunVSuXDkpKSlJatasmfTII49IeXl5TJ8/e/as9Mgjj0j169eXEhISpNq1a0v33ntvqc/XrVtX6tOnT6nPd+7c2XTrApnc3Fxp9uzZUps2baTU1FQpMTFRaty4sTRx4kTp559/Zmrj3//+t1S3bl0pKSlJatu2rfTFF19IrVu3lnr27Fl8jLz1wltvvVXq8+ptGWTmzp0r1a9fX0pKSpIuueQSaePGjczf7cyZM1KVKlWkadOmRbwub2Wh9Ve3bt1S7Xz++edShw4dpOTkZKlq1arS+PHjI7Yg0CI7O1uqW7eudPHFF0dsVyFJkjRp0iQpLi5O2rJli+7n5dL8en+LFy+OOP706dPSXXfdJdWoUUNKSkqS2rRpI61Zs8b4Av1D586dpQsuuED6+uuvpfbt20vJyclS3bp1pTlz5pQ69vDhw9LIkSOlKlWqSImJiVKLFi1K9UWS9LdlUG9Xot6CQJIkaffu3VKnTp2ksmXLSgCkzMxM6cyZM9Ldd98ttWzZUipfvrxUrlw5qWXLltLcuXNNv5987h9++EEaOHCgVL58ealixYrShAkTpNOnT5c6/u2335Y6duwolStXTipXrpzUrFkzafz48dKePXtKXTNWCgoKpIkTJ0pVq1aVQqFQxBYN6muldU0kqegeycjIkNLT06Xk5GSpYcOG0ogRI6Svv/464rghQ4ZIHTt2ZO4bQRCEFsXbMjRoIEmNGgn9O9mgAW3LoCIkSRYrIxAEQXhEOBxG1apVce211+LFF1/0rB/Tpk3D4sWLsXfvXt2CIbFOly5dcPToUXz//fded8URHn74YTzyyCP466+/or6QyaFDh1C/fn0sW7aMInwEQdgiOzsb6enpONmwIdIEPz+zCwuR/r//4eTJk6YVmmMFiqESBOFr8vLySq15euWVV3D8+HF06dLFm079w6RJk5CTk4Nly5Z52g+CcINnn30WLVq0ILFHEAQRMGgNH0EQvubLL7/EpEmTMGjQIFSuXBnffPMNFi1ahObNmzMVNnGS1NTU4i0RCCLaefzxx73uAkEQ0YYTa/goebEUJPgIgvA19erVQ+3atfHvf/8bx48fR6VKlTB8+HA8/vjjrmxMTRAEQRCEQ5DgcwVaw0cQBEEQBEEQhGsUr+Fr2tSZNXx79tAaPgUU4SMIgiAIgiAIwn0owucKVLSFIAiCIAiCIAgiSqEIHxF1HD16FOvWrcPatWvx+++/e90dghCPJAEFBRH/LAyX3oReuS+9VCYe8TTiE4QudevWRffu3dG1a9eo32KDIHwDRfhcgR7/ROApKCjApk2bsHbtWqxduxbffvstmjdvjh49eqBDhw4IhUo7wgThKFlZwL59XvciatiBVmjVyuteENGMJEnYvXs3ZsyYgeuuuw4XXXQRevTogR49eqBjx46Ip9kSgiACDBVtIQLJqVOnsHbtWqxcuRKrVq1CQkICMjIy0L17d3Tr1g01atTwuouE3/ngA697QMQKfft63QOCg0OHDuHTTz/FJ598go8//hhnz57FVVddhf79+6NHjx4oV66c110kiMBTXLSlRQtnirbs2kVFWxSQ4CMCw4kTJ7By5UqsXLkSa9euRe3atXHNNdegf//+uPTSSxEnOiWA8BYSZAThPTEuVsPhMLZu3YqVK1fi3Xffxf79+9GjRw/0798f/fv3R8WKFb3uIkEEEhJ87kKCj/A1OTk5eP/99/Hmm2/i448/RsuWLXHttdeif//+aNasGaVregkJMoIgfMwH6CtUr8ppnytXrsQ777yDnTt3IiMjA0OHDkW/fv2Qmpoq7mQEEeUUC76WLZ0RfN99R4JPAQk+wnfk5eVh9erVWLZsGVatWoWGDRti2LBhGDJkCBo2bOh194LFli32Pl+hgrXP/fyzvfMSBEEI4uAl1lXfOefov/fzzz9j+fLlWLZsGf73v/+hb9++GDp0KHr16oXk5GTL5ySIWKBY8F10kTOC79tvSfApIMFH+AJJkrB582YsXboUy5cvR9WqVYtFXvPmzb3unrPYFWVOYVXsOQEJSCJK2VKFXYwcPepgR3zGJZd43YPSGIm/77//HsuWLcOyZcvw119/YciQIcjMzKTCYQShAwk+dyHBR3jKb7/9hldffRVLly7F0aNHMWzYMGRmZqJt27b+fEj++GPRf7OyPO2G4/hJ7ImiWjVg82YxbXXrJqYdQZxGWa+7EIEfbw8/9clPfQHEC0k/ijWRGAk/SZKwdetWLF26FMuWLUPVqlUxfPhwDB8+HHXq1HGvkwThc4oFX+vWzgi+7dtJ8CkgwUe4Tm5uLlasWIGlS5fi888/R48ePZCZmYm+ffv6Jw1GFnZG+M1rE0E0Cj2ZatUi/52S4k0/HMBvgk8k0bq7RbQPH9E8lCgxEn95eXn44IMPsGTJEnzyySe4/PLLkZmZiYEDByIlisYfgrACCT53IcFHuMbOnTuxcOFCvPbaa6hVqxZGjhyJ66+/3tstFFiEnRnR4rlFk4emFndmBNz5iibBl5tr/P6RI+70ww1iceiIpmFGiZHwA4q2enj99dexePFiHDhwAP/6178wevRoXHjhhe50kCB8RrHgu+QSpAne5zK7oADpX39Ngk8BCT7CUU6dOoXly5dj4cKF2LlzJ4YMGYIxY8agXbt27qZsihB2ZgTVewu6B8Yr7swIoPgLuuAzE3lmBF0EBnHoEDlsBH0IUmOW8vnll19i4cKFWL58OS688EKMGTMGQ4YMof39iJiCBJ+7kOAjHGHHjh1YsGABXn/9ddSvXx9jx47FddddhwpOP9ndEHZmBMl7C6KnJVrgGREQ8Rc0wWdX4JkRRAEYlGHDzSEjiMOTErOoX1ZWFl5//XUsXLgQv/76K66//nqMHTsWrVq1cqV/BOElxYKvbVtnBN+2bST4FJDgI4SRn5+Pd955B3PmzMG3336LYcOGYcyYMWjTpo34aJ4fhJ0ZTnhwosSOnbWS2dli+sCCm+KOBZ8KwCAIPqdFnhlBEIF+Fn1+El9BE51lTW5PSZLw1VdfYeHChXjzzTdx8cUXY8KECbj22muRkJBgvwME4UNI8LkLCT7CNgcPHsTChQuxYMECpKSkYPz48RgxYgQqVqxov/Fjx4LhqemRlgbk5Xndi0j8UBhHSzT6TdyZIUr8JSbabqIQ1he85+fbPr0mXgs8M5wcVuz4F3aHC9Hfy09Czwytvvqp/2bCDwBOnDiBJUuW4IUXXkBubi7Gjh2LsWPHervWnSAcoFjwtWvnjOD78ksmwTdv3jzMmzcP+/6pEHbBBRfgwQcfRK9evQAUFV+68847sWzZMpw5cwYZGRmYO3cuqlevLrTPTkOCj7CEJEnYsmULnn/+ebzzzjvo1q0bJkyYgIyMDMTFxVlv+Ngx4/f9KP7MvDs/CT4/iD0ASE0t/VpBgfv9sENqKiD4IWUFO2JPNH6OULHgl1vVL/1ITnY3oC8K5dyRT4PypuIvHA5jzZo1mDNnDtatW4cBAwZgwoQJaN++vT+3LCIITooFX4cOzgi+zZuZBN8HH3yAMmXKoHHjxpAkCUuXLsWsWbPw7bff4oILLsDNN9+MDz/8EEuWLEF6ejomTJiAuLg4fPHFF0L77DQk+AguCgoK8Pbbb2P27NnYu3cvbrzxRtxyyy1o1KiR9UbNRJ4ebos/q9P2fvLevEZL6OnhFwFo1mePRZ9fBJ/ez5WT424/eND76fzQZz8MG0ZDhp+EIGtygB/FH0vU7+eff8bcuXPx8ssvo3HjxrjrrrswYMAAxPtgwokgrOKG4Nu/f3+E4EtKSkJSUpLp5ytVqoRZs2Zh4MCBqFq1Kt544w0MHDgQALB7926cd9552LJlC9q1aye0305Cgo9gIicnB4sWLcIzzzyDuLg4TJo0CSNHjkQqjwMvY1XgGSFK/DmR6+215xY0oaeH0wLQTh89dLy8FnxWfhYvBJWVn8hr4RfUocMNMSgiA9xPApBF+OXk5GDx4sV4+umnAQCTJk3CjTfeaO05TBAeUyz4OnZ0RvBt2lTq9YceeggPP/yw7ucKCwvx1ltvITMzE99++y0OHTqErl274sSJExFFB+vWrYvbb78dkyZNEtpvJ6HpIcKQgwcP4vnnn8e8efPQuHFjzJo1C9dccw3/zKITIk+J8ulvJv5iaQGvl2JPtBOitjk7AlB03woKPI/0eYHVn0Dr8osWVyJ+DrmfXgm/5GTvRZ8V9IZYu0JQ9DJf5TpTr8Xf6dNF/zUSfqmpqZg4cSJuvvlmvPvuu5g1axYeeugh3HzzzZg4cSLOMSsLShAxhlaET4tdu3ahffv2yMvLQ2pqKt59912cf/752LFjBxITE0tVmK9evToOHTrkZNeFE3seCsHEnj178MQTT+CNN95Ajx498N577+Hyyy/nWzvgtMjTQ/YK4uO9n6L3Eq/EnluzzSwC0M2Z7xgTfaIDrno/Fcst7PRl91L4BVX0aWE016YnBt2q5eQX8cci/OLj4zFo0CAMHDgQn3/+OWbPno369evjuuuuw+TJk9G0aVN3OksQIoiLK/oT3SaAtLQ0piqdTZs2xY4dO3Dy5EmsWLECmZmZ2LBhg9g+eYzgK0wEnT179uCGG25Ay5YtEQqFsGPHDrz//vvo1KmTudg7dizyz23i4yP/AHcdfj/hhdhLTfX2eleqVPQn98OLvvhl3aHDuPk1lT+n/Kd1q7vZF7fxQ1a206SlRf7VrFn05wW5uSV/XnH6dIn40yMUCqFTp054//338e233yIUCqFly5b417/+hT179rjTUYKIAhITE9GoUSO0bt0aM2fORMuWLfHcc8+hRo0ayM/PR5aqItnhw4cDVzmXBB8BoGgRqiz0UlJSsHv3bixatAjNmjUz/qDfBJ4WQRd9NWqw/9WqVfRXpYr2n2i8FFdApIcok5goZKsDy0Sx6Cso8PbryT+t+id3Gy9M3m3R55dscK/EvYzT4k+2ab2/wsKiPzPOO+88LFq0CD/++COSk5PRsmVL3HDDDST8CP8jR/hE/9kgHA7jzJkzaN26NRISErBu3bri9/bs2YPff/8d7du3t/vNXSV28o8ITXbv3o1p06bh7bffxvDhw7F7927Uq1dP/wNnzhT9NyhVF2RSU93vsyyw3PKQWa6PXdF39GjRf70U0ayeviz6nNpozghB6Z1SnHlBljLQr7tVGBZXvt1roaeF0hS8qBrpRKqn2S3K8jsEbGlJBDxFcd22Sb20Tzfml2TRV8ZkSKhfvz5efPFF3H///ZgxYwZatmyJgQMHYurUqeYTuAQRg9x7773o1asX6tSpg7///htvvPEGPvvsM3z88cdIT0/HqFGjcMcdd6BSpUpIS0vDxIkT0b59+0BV6ARI8MUsv/32Gx544AH85z//QWZmJrvQk1E/lZ0QU6Knc50QfU5Ezazg0tS3VPPcUq+Fsk86f2I74RwPhF9hfJLwJQlahAzEHgCUiRNThPlMvjf7fvE40l6KP+Vw6HRkLD7eXOiIyDSKjy+Z33EL3nkkkXWceFD3083lu6zCr169eli4cCHuu+8+zJgxA61atcLgwYMxffp01KlTx/mOEgQrDq7hY+HIkSMYPnw4Dh48iPT0dFx44YX4+OOP0b17dwAork4/YMCAiI3XgwZtyxBjZGVlYcaMGZgzZw4GDhyIRx99lE/osWJFWLn1xOTtmx1R54YH4sJ1kxLN961RIkQEOpWzJ1D4FcYbXxenRZ+Z4BNCOKz71pkCZ7aEEBkxcUr8pafpX3unBbIfhhXRYtCJpAER18muCHUSM9GnZN++fXjggQfw9ttvY+LEibj33ntLVR4kCDcp3pahWzdntmX49FOmjddjBYrwxQj5+fmYO3cupk2bhosuughffPEFLrroIu2DrYo8JSwRQD9VNPRLpI4XH4o9AJDS0ku9xiQC3RiYExO5RZ+ZsItVkuJLLy6yIwKdSI0TEfkzEndaJCVKjoo+liifXcyiVkZDJq8YdCpD3EoE0G5f5HO48XhjjfYBRRG/V199FZMmTcLdd9+NRo0a4YEHHsDNN9+MRC/XPBME4QoU4YtyJEnCW2+9hXvvvRcpKSl48skn0bNnT+2KmyKEnhHyQ8WLxTb/IAuRUL7D3xVw3iNz2KOwIvR4KBaAXs6+qYSfE8LOySif4xE+g+geL0ZC0At/U28Y4hV3RgQ90id6iNESgl4uB5avn5N98GPET5IkfPTRR7jnnntw+vRpzJw5E4MGDeLbdokgbFIc4eveHWkJCWLbPnsW6Z98QhE+BST4opgdO3ZgwoQJ+OWXXzBt2jSMGDECZdRPBLdEnhYOCz+tKJNM4AWfg16E00IPKL2vWNlk94eh03lFzo3TYiOwgk+g2NODpSiN07iRFuuk8AvoMFNMUqKEk9neCA2lH+jGEl83ridPmmdBQQGWLl2KBx54AA0aNMALL7yAli1bOtc5glBAgs9daFuGKOTEiROYMGEC2rdvj8svvxw//fQTRo0aFSn2zpxxTuwpa0obIbi2upSWHvEXtQRY7OXlaW8ifTovVCzAnEI+h/pcTjt6LuimYJKfj1De6Yg/t4g4p55RCiQp0TlR6afMeF7k65KeJkX8OY3Wo4f1sWUHN7Y1Yd3GASjawH3UqFH46aef0LFjR7Rr1w4TJ04stecYQTiKD7dliEboikQR4XAYL7/8Mpo2bYq9e/dix44dmDlzJlLlfBVZ5Dkt9HixKPrsCDzHo1hOPdUd8u6kxCRHrwmrT60lyOzA2p4XOzf4GqdVqs4Fd1L8mbbtsPBzUvRFG2oBKEoEss4xxprwS01NxeOPP44dO3Zgz549aNKkCV5++WWEabaKIKIGSumMErZv347x48fj4MGDeOaZZ3DNNdeU5OM7mbYp+qlokOYpOmrnaFon49P873A55iZZnr3pyfzfyWmhZxeedE+7QtFJJ8+JCUdH0hGddPIsKmspuazlU1oWjw7ur+BEimfA5pgA2BPBvGmgdpNJnJwUsnqNmbdd4VibJ0kS3n33XUyaNAk1a9bEnDlz0Lp1a2sdJAgDilM6e/VyJqXzo48opVNBgJNBCADIycnBAw88gAULFuDOO+8sLs4CKGb3/ilEUaZAkMBx0itOSwOyswOVknkyL1IwpSef4RJyLLD64Oq+6KF0DitVstAhE0QGSpQiTkv8iUwFzc/3poCIGtbfuwwYDuRRmj4Ue0Bp0WYmAIVECPPyHBN9Vqp4JuUZV7lNAph/61Nx5bnO7QR2I57qqJ+eABTl6ynHBdHiTx6Pk+ILUYgywvbPLEae12cQfqFQCNdeey169uyJmTNn4vLLL8fYsWMxbdq0kmwhgiACB0X4AsyHH36Im2++uXiD1WbNmgFgT+PgEoAueMFKx93pzYsBvggfq5ACxEdynPDBzaIBVkWgw0uhkJsL/DOf4SiizF19nUVHS8qA8WZnxama8g6GR5Tiz7F1gKIHpOPHi/7rRPjMwQHoTLK4iTinU1xPZoccLwBsx6y1tjSJwKk1SJyVOH/88UeMHTsWv/32G+bOnYs+ffo40y8i5iiO8PXp40yE78MPKcKngCJ8AeTQoUO47bbbsHbtWsyaNQs33ngj4uLimIWejFYJ+ggR6LLIU+Lg5LomPIIu6LCkfsn+qBo9Iei00AOKxJ7yv04KP95InxsbYTuO8kvofSErAsXhBZKhvNPOzwTIBm5lUNK7mQDzze58hlGUkUcMurGeMT3xNPDPz2YnJdgI1qifqbjTIhx2RvRxRPsA4LzzzsNnn32GRYsW4YYbbkCPHj3w3HPPoUaNGuL7RsQmThRZoaItpaArEiDC4TBefPFFnHfeeQiFQvjxxx9x0003QZL4xZ4ehfFJOB3+58+Bqol6lRK1cEJEHD9e8ncsJwkn85KEij0/R/dEFApQXr9Dh5wvcJibW/Kn9Z6TqB04+fpp/XmB8OgeC7wXwelqOErjMDIWURgZvPLmUP6ZIdqIRKcEMA5qSXkndf9cR/UbuVEJVl3lMym+sPjPMuGwc2nWHMldcXFxGD16NH788UcARSLwxRdfBCWIEURwoJTOgLBv3z6MGjUKe/fuxbx589CnTx9hIg8w98vs7JNmRzjajfIZ+Vt+z6YSLfZEomUvFSqIa5/XZxcd3FF+P5GRZpE251g6pyjy8pzLEmA1EKeifnLZetHfT6SB+HUwAkpszeMFxKIjf6UEpWj78Emap7ycpHHjxli0aBHq1avnTL+IqKY4pfPqq51J6XzvPUrpVEARPp8TDocxb948tGjRAo0aNcL333+Pnj3Fib38fLZJeN5S+aLK6/NEj6xMrovEr/6VG2IPKPKB5T+rWA3Q2A3qyPcB6/1gFd+mfjoh9gBnLirPjy0y4qdl4E5V74gVRA/anOkGIiJ/hm2Itn2nIn6c8/59+vTB999/j0aNGuHCCy/E/PnzaQsHgvA5FOHzMb/++itGjRqF//3vf1i0aBGuuKKbsLbtPoOcrpaoRivKYtc3EB3hEyX4/Cr2rNqMWeRPdAYeS1CH97v4MconNMIn0lBYnW7e6IcIQ+GN+LHOXvg10hcNs1CsUUCBueUskT9LIjEIET/OaN8nn3yCm266CY0aNaJoH8FFcYTvmmucifC9+y5F+BRQhM+HyFG9Cy+8EE2aNMF3330vROyJnGxXr8VzUuwB3kfvzPCb2BO9LMiOzehF/pxabqXVpt0InhtFaTzDC7EH8P0oogyFxeishKpFR3JE/SbREHXxYPA3itrZigg6EfETDWcMoHv37ti1axcaNWqEFi1aYN68eRTtIwgfQhE+n/HHH39g5MiR2LNnDxYuXIRu3cQIPZFo+Uuil8po+Vp+nUQH+ATfkSPar2s9I6tV4++LX4SeUXtOb+eUny/eJv0W5RMW4RNlMCJVsXyzO12ZBygyFDt5yGpEDlR+ivT5NfUAcGevFqcqwYqyF6u/sd7vWqYMd1OffvopRo0ahaZNm2Lx4sU499xzrfWJiAmKI3wDBjgT4Xv7bYrwKQhOPegY4M0338Qtt9yC/v37Y/nyFbaN1A2hp3zP7rNQpM/lJGrB5mT1Xz1xqIXyuV2lir3zOrGOTdlmTk7Rf0ULP+U5RPtnbm8V4gp+XTOWn18y4Di5PUxOTtGfyHPw7ulhhNVtG1gGKd7ZpLg4/0YMlQ8PkdWjZNR7wgDiBhd50LJrM+Fwkb0kJor5neRCARzCr1u3bti5cyduu+02tGjRAnPnzsXQoUPt94UgCNuQ4PMBx48fx/jx4/Hpp5/i5ZdfxjXXXFP8npXiLF7WR3BqiYyb8IgsUYj2o44e1X6dRQg6FdXTIifHvugzat+tjdpZUGor32y9JmqjddE5r8qBR/kDixJS8oyD+hyi2hfVnnwj251V0trTzcpApxyorKQfOIF6AFA/VOwKQL2HoOgNQXlsxmiiRm5H1CBTWMgl+tLT07FkyRK88847GDNmDN577z3MnTsXFStWFNMfIvqgffhcwS9uR8yydu1ajBw5EhdddBF27dpVajNTrXFWSwTK/osof8VqJpWZg+0HgSfKhxLVhgixx9qGkRB0U+gpsRLt4+mrSNFnFuXza8DMFKOOmzmOToo9NXaFlFroiW5fqz2ztvRuSiVObcJtBzPB6BdBaCf6x/IgdFr4WR1UrEaHteAUfQBw7bXXokOHDhg1ahRatGiBxYsXo3v37mL6QxAENyT4POLMmTOYMmUKXnrpJTz11FMYPXo0QozVsZTj7knVnrZ2/BWRdRGUzz5RIs9KphSLL+Ulboo9Iw4dKvl/u1tjWRWOLMLPatsiRV9gRZ0aVqFm9IVFXgyeAYg36mcm9LTaFx3ty862145d0SdCNPKkdRoJQif232OBVfzZ3RvG7mCjLO5iJ49cVAQfsJTiWaNGDaxatQovvvgirr32Wtx00014/PHHkZSUZL8/RPQQComf0OKsNhsLUNEWD/jxxx8xbNgwxMfH44033kCTJk2421ALPSPM/BYn6iKIXhYjI2KyHIie6J4IsWfms7P6ZqIjhLLwE9muFT9M6/qIWMtntw3bRVtERObUbVh1LEUMQlqDA6/QY22XFXVFSbuOtx8GLqdmqawsPBY1OCjFn8gHIs+AY/ZdRAw6wvaE4S/o8tNPP+G6665DQUEB3nzzTZx33nli+kIEluKiLUOHIk2ww5idn4/0ZcuoaIsCn+WIRDeSJGHhwoVo06YNMjIysHnzZsfFHqBd+VyuTi7y2SbXPxDhY7Fw9GjpvyDhtdhj3brBrBq6E5uVFxQUTca7WXhIPq/6j9BBSzBauXiiBiHlQCdyIOIxcLPtA+walF+LpojAywFd3objyBGxDzCzhyzPXjF5efYnaUQNaBaKCzRp0gSbN29GRkYG2rRpgxdffBEUbyAI96CUTpc4duwYRo8ejS+//BLvvfceunbtyt0Gr9DTQs5ocar2gRKRWVGy7+SXYhdeT5KLEHtWkH+HgoKiJTpOCD0lThRdURaKsXodvK7Y6YvoHgvqC6y+gZ3eiFHkgKE3oPHuC2d3bZXXqZ1uVutUiz5lFNCJUsIyossIq9M97fTd7uAjKs3TQopnYmIinnjiCXTv3h3Dhw/HmjVr8OKLL6KSVym+hD+goi2uQFfEBTZt2oRWrVqhsLAQO3fu5BZ7J0/aF3vqiUY7zxueSJ7V8/h5k3W7BFXsqTlyRNz6TKOAkMhItHztKHpnE6uCURn9Ey32tAxF9I8sR2PsDk5eR/qCGilURv9EPxy0Hlai01by84sGTbu2H/Bon7x9Q0FBAVq2bIlNmzaJ6QtBELqQ4HOQcDiMmTNnIiMjA5MnT8bKlStRhWOdgl2hZ5a2yZuK53S6plsCT0TdAqt46aeJEDlabcjZUE73yaqPFA6X/Mk4sXwtZhB18bR+GKsYGYcodS8belaWmPa8Fn3RgogHB8uD0O4DUH0OETNZdoWfqHvDguirUqUKVq5ciXvuuQcZGRl4/PHHESabjk3kCJ/oPyICnyTIRR9HjhzB8OHDsXfvXmzcuBGtW7dm/qyIaB4PRqmXIgSeqEwor1AWm6tWzd4+fXaeZ3Y2U3fDP+Wpfm61P6wpnizX2eu0TM/wo1JV/mC8D2rWAc9qKpvebIaIsvdepnfa+axfN2FXP1ScSBVUPhRZUj7NxKSIbR3ke9rqgKYUfhbbsLJnMBDCLbdMxKWXdsCwYYOxYcMGvPLKK6hataqlPhAEoQ8JPgfYsGEDhg0bho4dO+Kbb75Beno60+fcFnpKlNs5OBXF86vA4xFwduoI2PWPjM5tJAZFRPV4kX1ktfATITz1RJ8X/qcd0RhIwelGaJRV/Fkd8FiFH0vYWsR6KLuiz84MlIh0Bb/st6eF8qGjJ/7srm+QUYs/3nbdEn4O5bKXQSEKwV+9EwBat26Nr776BmPH3oRWrVrhzTffRKdOnQT3kPAttIbPFUjwCURO4ZwxYwZmzZqFm2++mWlvvWPHSv7fynNfxFIYuY3cXLF1DpQ+k5cFV7yu4Om0GNH6fuGw/Qluu75BVlZRP0RXRZZFn93rGkjRFWR4BaOe+BMx6GmJNTu5yU6KPqcGMBFRPisbsHsRIdSK/oks/KIs9GKnXVHCz2rEzsagaEf0paen4803/4MFC+aiV69euP/++zFlyhTEkeNOEEIgwSeIEydOYPjw4fi///s/fP7557j44otNP6MUejJKB9vMfxAp9NR9sOO7iCrkYQUnhZ2dzCm3kc9pNcNJ1CSw3I/sbLGir6CgqE0RRfSs+jd+zGgzxU6ELjfX3qyp3eigfMFFp6TKxmTXsbQb7ZP3InEbERuyG2EkCK3mqYsYoI4fL2nHLAedB+VvaEe0WRF+ogZuGymidkRfKBTCuHHj0b59ewwcOBBffvklXnnlFVQQ+fsQ/oMifK5Agk8AO3bswIABA3Deeedh+/btqFixouHxWkJPCz3x55TQU5+bx2/xwk/xOmrnV4yECIsAFOEzaPUhO7vov1aFn1a/lFssOI3edXVi6wjfor4IrA9VUSJNmUInKmVANkxRwodn8NTKc48lR0VvELezYJkV5YDCswCZtU1ATLTOrA2zAdvO+j6Ls2F2RB8AtGx5MbZv344bbrgBrVu3xjvvvIOWLVtabo/wOST4XIGuiE2WLl2Kjh07YuTIkXj//feFiT01BQX2i4TxbrbOUqSDp0KjHSEhF2HzapP1oET3eM+nvK6iCraZ9UH2r1kx65eINadqPaIsICmqkGSg0Rs0WC6UE2IP4N/gXU12dmljFPVj6/WJZb8ZL1MCeHHKqfLDJuy8s5hGdiiiIqeyDSu2b/U+tFgJtAwKbe0XmpZWER988AFGjBiByy67DK+88orltgiCoAifZc6cOYPbb78d//nPf/D2228jIyPD8HirQg/QdkYB9metneeMerLarUieXwu88OB3safG7iQ3z/lZon08vozdSB+JOoGIvpAsip4nnZJlxoF3kNXrE+/shvL8NEMdiVL0iVigzIJe9Sk1vHvLWI34hcMl94PViJ2dz7oc7ZOkONx33wNo27YtrrvuOmzZsgXPPvsskpKSLLVH+BSK8LkCCT4LHDp0CNdeey3y8/PxzTffoG7durrHihR6asx8ElH7GsvRRSfxs8ALwrhhx8fW+iyrn2P33Oq1fXYijDyiTy8QZbWASyDSOq3O8NsZSNTn5L2ZeAceM+HHK8CsCi/1zJiVNtwWfUETmXa2YOAdaIxmw6wMWrzCzyhy7qJ48yrFs1u3DHzzzTcYMGAArrzySrz99tuoUaOG5fYIIhYJ0OjuD77++mtccsklaNCgAT7//HNHxB5vBoUyOsGbtmmEnPFkdZLaCJbMpiDjZrRItNhTYpbdJOJ7ZmeL28vaSB9QeqbLaA1iPD+CnVkmdbqbnYGMtb9GN4tVowuCsfpFJLr1UFH+znYHLbMHNovtWd183eXP2UnvBIBateri888/R7169dCmTRt8/fXXttojfARtvO4KFOHj4LXXXsO4cePw8MMP484779TdcsGO0LOK7BvZrWOg5xOJmPyV/aAg3IdurxG0WqPATT9SGfUT5Ycq2xFVgEUZNeTtp9vbNPh+WwhRaQJaGO23JyqlQOSgozUI8uS4Wx1E3Yy8BS3KZ4ReBFBkCWK7laiUKKN+VgZYO1E7wJXtG+xG+hITy+K1117D7Nmz0aVLFyxYsADXX3+95fYIIpYgwcdAYWEhpkyZgpdeegkrVqxAz549NY/zUujJWK0M7kQUz8vtGYzwY3VPsz5pCUIvggbhcIkfZaeYnV4fRIk+O9/RTRFmJeKYgLP8JxK53xgLdvbbEyUylYOjiDV5ynbcXptnR4i5NeC5UVnTDvLAFQ6L3YYBiLQHO+JPue7TykDodpqnhfPJkT47WzfcfffdaNGiBYYNG4bvvvsOM2fORJky1oUk4TGhkPiJJoY9sGMNEnwmZGdnY+jQofj111+xdetWNGnSpNQxf/0V+W83KpWbTYCzVAZ3YjmLX0SeH0WdHdT1CmR4fSyR6Z886/x4zm9F9KnbdXO7BhmtdXy+ycgz64jWjW1VeIkc2Kw6AXoDpF3hpxzg7JTuFSn6/DLYsfTDL6LQyQpVVqN+6sijciN3XqwKP6tFZVyM9hUWAmXKAD179sTWrVtx9dVX4/vvv8eyZcuQJnKzV4KIMkjwGfD777/jqquuwjnnnIMvv/wS6enppY5Riz3AfKsqJ4WeEj3RJzqaF60brQcB9ffX86ecXucHGPtNvOdnEWxmbdoRfTG1GTvg345bEWgsgySv6NJbl+em6JNv9iCnXBoN2F6JQfVvayYAWe8Vnqgfy74zVoWf0UAmcnNRD0RfkyZN8OWXX2LQoEHo2LEjVq1ahTp16nC3R3gMVel0BRJ8Omzbtg39+vXDNddcg+effx7xKuWkJfT0kMdUWehZsUOrS1pk0SdK5Ml+itsiLxp8HRGY+RpaAtBJsadES/jZObeeYONp04tIX0zj1GyW0Xo/ls8btWk0qJgNdHYihmaiT08cRdM6OyVubMLOWnxHRi3+rA5oelE/3r1nAP4BTR3tY/0OVqJ9Hoi+9PR0fPjhh5g4cSLatm2LDz74AG3atOFuj/AQEnyuQIJPgxUrVmDEiBGYPn06brvttlLFWXjEnozSD+LxEezWLpA/L8L2RWQzsRLrkTstrPgayuvIU7XcjlDLyhJX2EW2Xy+2PHBpktufWK3eZxWegU5rALUzUGq1xzujZSdNE+CvKhmtok8LrYeBG3vwAfZTP9UohZ/V4jFWc95lAWclzZNX9HGex67oS0hIwLx589C0aVNcccUVWLp0KQYMGMDdHkFEMyT4FEiShCeffBKPPfYY3nzzTfTt2zfifbtCT42TRerUnxe1nZRTkMAzRoR4UvqURv6SiHPJduOHJRWs/pFfsxptY0eI8cAShdPC6mCn3ItGBMqqi1Y/z/O9o3E/GrdgzWUXiYhqVTLKB6uVFASWaJ/egGZlfZ8Ls192RV8oFMKkSZPQsGFDXH/99fjf//6Hu+++W7eaOuEjKMLnCiT4/qGwsBC33347VqxYgQ0bNuCiiy6KeF+02FMjwncx85t4/BEnhZ5VcRer968TQkRP/Ik+l3pjdavY3dhcS/RFrcCzixWBqB64zBYyy9id2RIl9kTmvAP631ekyIulKJ8ZLAJQ1A0vuuCLnTV6Wp9l/Z686QgupHjaFX0A0K9fP2zcuBG9e/fGgQMH8Mwzz1AFT4IACT4AQF5eHv71r39h165d2LJlC+rVq1f8ntNCT8ZOcTrebCi9tp3cUooms63hhig5frzkt3QiIidqqyq7og/gv54izklAO/oXbWJPiXKAdHLwI9Gnjeg0UL2Bg1f8GQ1AdoVfOGx/fR8LVlI8XRZ9F110ETZv3oyePXti2LBheOWVV5AcFbn2UQpF+Fwh5gVfVlYW+vfvj7y8PGzatAlVFDODvGJPhNCTYVnnZycTSm7XqUheUAWeE6mlbm+qzovSxkTuI6xGRLTPigCTv19urjvr66JmHR8rvMJLObhZNXIRYs8Joadu242bmEQfG6w57VYxK1fMagu8wk/Zrp3CLk5G+zgLx5RBGIVxCZZuH1n01a9fH1988QWuuuoq9OrVCytXrtSstE4QsUJMC74//vgDvXr1Qp06dfDhhx+iXLlyALyL6mmh9Sy3OzHulJ/jR5Hnh7WBrH1QCkMvxJ4Sp4RfdnbROe1UzmQRfXrfy4oYC3SUj3dgcmu9n1bJYt7qgXZwahBUt2tH1PLgl43Z/bLPnhk84o/399OK+lmxATPxJjpaKCraZ9Qvjlm3MuGzCCOBvS//nDocBhL++ViVKlWwbt06DB48GJ06dcJHH32EmjVrcrVJuABF+FwhZgXfL7/8gq5du+LKK6/EggULirdd8DKqp4eo2gSifZxw2B8brftB1IlA73s4MRnNOhY6Jfzsbpeg5WcEdXwPdETQyqCkN2iaib8gCT0lXok+LwZGnnP6RRyqZypFDrgiqlfZWadnZaC1Eu1LSXFk7WACzuIsp+gDgLNnS0RfuXLlsHLlSowdOxaXXXYZ/vvf/6J+/frcbRJE0IlJwbd7925069YNgwYNwtNPP41QKORLoSfjN6HnZCaUEdEi7HjRipza8UmsCCMRkTmtSLVd0efEXsSEg7AOnGrxJ0Ls5eSIFV88A6H8fZyuwBQk/LgJO+BM6qeImTOre9S4Ee3j3fLBZdGXkJCARYsWYdKkSbj88suxbt06NG3alLtNwiEowucKMXdFdu7cic6dO2PEiBGWxV5ubknqAMvzOyfHmtjLzbXu52Rnl/yJQHR7Zhw/XvqPKOH48aLJY/mPFatjoLLOhhVbdqpIo93Ps8J7H7qVGSkU3k6LKprixnmUhmLXubB6E8jntkOsDIxHj+r/uUlWlv8epFYdA167tTLRwjOGcBybgLN8/dAgFArhmWeeQWZmJjp16oRdu3bZbpMQhDwmi/5jZObMmWjTpg3Kly+PatWqoX///tizZ0/EMXl5eRg/fjwqV66M1NRUDBgwAIcPHxZ9JRwlpgTf119/jSuuuAK33norpk+fzi329MZZPfHnpdATAcuzScQkSqz4MCJRX3cW8Wflt9IbN1ltm2Xc9UL0sfgaFp8dsUFeHv+F8UIFGxkqb//VbdmdPWFBvqlpYCzh6FFvHhZOzaJaxY7w00PLmeE9j49E31nVR0KhEB577DHceuut6NKlC7Zv387dJhF9bNiwAePHj8eXX36JTz75BGfPnkWPHj1w6tSp4mMmTZqEDz74AG+99RY2bNiAP//8E9dee62HveYnJEmS5HUn3GDLli3o1asXHn74Ydx+++2Wono85OVZKwFvFZHPIF6srGmnPdCsw+MvxsVZ3yeY9TxamUJWfGE76Z1WP6vMKmLpM08qqFPHMjs+ThZsMTpW6+a2KvbszAbwRjOstmV1MNP6nNGMDQ2a7IhIxWQdxEQtcLbTjtWqUqmpfHbFcx6HBkAr6Z0JGh955pln8Mgjj+Cjjz5C+/btudsk7JOdnY309HScnDwZaUlJYts+cwbpTzyBkydPIo3z3vrrr79QrVo1bNiwAZ06dcLJkydRtWpVvPHGGxg4cCCAoqVh5513HrZs2YJ27doJ7btTxMQavu3bt6NXr16YMWMGbrnlFu6oHg9Kv4Z12Ybdzdbt+gGyL+OUP+GHwi7RghUhZVYt3O45lEtE7GbKxcVZ812srgekyN0/iIy+qS+q1QHOLbEH6A/WrGFsrc+yfo41SuVW8ZdowMlCLGpEVbay046VTdHj4vjX3vGULOZZB8hxrJU1fcr1fDKTJk1CYmIievXqhXXr1qF169ZcbRLBIFsVxUhKSkKSibg8efIkAKDSP+PG9u3bcfbsWXTr1q34mGbNmqFOnTok+PzEzp070aNHDzz00EOOij0jf0nPHxDlB1n1A0Stf1KfnwSeM/CKE620Txk98WcnS022ZzuROsD6NghWRF+gt1zwCjdSM60OTnYHNfkGsJLqwDMQWx0kSfRZQ329zWa/rFa2kj9rZxC0UyGLRfhpfTeeSlZW9uATXMxFlOgbP348zpw5gx49euCzzz5DixYtuNokBBEKiZ99DYUAALVr1454+aGHHsLDDz+s+7FwOIzbb78dl112GZo3bw4AOHToEBITE1FBNW5Ur14dhw4dEtptJ4lqwSdX47zjjjtwww2TmMWeU+uUlYUvrGD0OVY/QEQbWgRN5B09WlQITnQNAKeKy9kVe2q0on6iliRZEV5aQSE3I32sOOC7cCGieIGriF5jZHYuu9Uw5XNbHQyNPqc3SPKei0QfH1oDG68A5D2X1Q3QRbWhFmUsg7vV7RhY8Ino0+KOO+5Abm4uunXrhg0bNqBZs2a22yT8w/79+yNSOs2ie+PHj8f333+PTZs2Od0114lawfe///0PXbt2xZgxYzBmzP3Mn3NqbbKMFV+G9TNGfoDoaoZ+FHjHj/P5QU4UfGPNzuLJMBIt9pRkZQH/bEHJnUlkdB5W4WXUhlvRNz9E+dh/MwdyUB0qsmAJUXvXWBF+WqkTvG2oP8c6UPpJ9AVlFkwkLOkPZuhVt5KxOiCKEH6sn7WyHUOARJ9WlA8Apk6ditOnT6Nr167YuHEjGjZsyNwmIQAHt2VIS0tjXsM3YcIErFq1Chs3bkStWrWKX69Rowby8/ORlZUVEeU7fPgwatSoIbTbThKVgu/PP/9E165dMXToUEybNg2hkPmG6k6XXXdS6ClR+gF2P6/GDyLPz4XqWMeruDj9a6n2NZwUe0CJ2AP4lpCwnMfIT2HtJ48/IX8Xv+yz53l1T68XKFoZVOPjgYICcedhEW1mA6UVceV0SqgVvBo8WQVkXJyza+1YUf52oiJ/gLlwYy1nbEX48aY+OJXiybuuz0XRN336dJw+fRrdunXDF198gZo1azK3SQQbSZIwceJEvPvuu/jss89Qv379iPdbt26NhIQErFu3DgMGDAAA7NmzB7///nugCv5EneDLyspCz549ceWVV2L27NkI/ZPHW7Vq6WNlEShXGJcxeub6VegpkfcJFIFXE9Tq88ZKBpPye8s26VSxlXidu99I+FnREEpfw8rnjUSf3ndwMzvJa12lCc9ApfcF1DcdT5t2ZtCUP6qZ+GM9j52iLPLnWQYhtdDjFbA8A6nesX6YmbOKkSj1QgyyRv54t/eQsTIwWhV+vJ/jjfY5ke/uougLhUJ46qmncPz4cfTq1QsbN25Eeno6c5uEDRyM8LEwfvx4vPHGG3jvvfdQvnz54nV56enpKFu2LNLT0zFq1CjccccdqFSpEtLS0jBx4kS0b98+MAVbgCjbliEvLw8ZGRkoX748Vq5ciXg9b1DB/v3G7yufpzz+jttCT+uzdkSSlclg3vPJx7P4J6xteyUMeaJ7do+zGwVkuC0ikIWfnfFYPqed1En5szz95xF9PH1jPZb1/KzHlUEh24Gsg5VTIk50yoSWaPJqHxutQcasPd6oJctAJg+cPINeNA6koguwsBxvdxBWf9btPWl4P6M1QOl9Zye2Y2A8jkf0aUX5AODs2bPo378/Tp06hTVr1iDZD+kiUUrxtgwPPog0wdc5Oy8P6Y8+yrQtgxwYUrN48WKMGDECQJG+uPPOO/Hmm2/izJkzyMjIwNy5cwOV0hk1gq+wsBCDBg3CwYMHsW7dOqSYeGRmQk8Jr1/BK9z0NnMXcS7WdtT+Cq9/wnoupbhzwvfwwk8RLfZ4jo2P51t7xyv2lJ+x4ldonc+q6LNSrZz3GcLaN9HbUfle8Hkp9tQUFNgTe/JnrQxyMuEwv2i0K/pE7NEXjYJPC6vVqKwIN95B2Oh8VoWf1f1srAg/1mskerbLRdF36tQpdOvWDTVr1sR//vMflClThrlNgh2/CL5YwY/JSNxIkoTx48dj9+7dWLVqlWdiLydHjNgD2NL57aZ+ZmeX/KmxIgy0yMqK/HMSP6d9OiX2AOPfUet4HpSf4bG3+Hj98/HcU3I78fHWfHyeCro8v5EdvaGFGzsduIKTm73L5OdbH6CUP5yRkbK0w/tZ3uNzctgHTzdTDIKAWw8e9SDMg16BFp6BVjlw5eZam53mOZ8TBZ6cyEZg5KxO0eNy5cph1apV+OGHHzBhwgRESVzEv8h2LPqPiCAq1vA98cQT+OCDD7BlyxZUrlzZ8FhWsccr9HhhaV9riYaV/YTVbdjJZjI7l5+LqjiBV2nnZuvvgMhJZ1G+KcsyEJZzma2ZMxKLvBPZestAtK61Xwq+uIIT0T2g9IXVm4mx4sCpBRvAFjkz+g487agHYN41embnsrsGkIhEtkWntmFQozcAqxFRoEWvDSubsPMUdeEt0iJwrR7LcaKKuFSuXBkff/wx2rdvj3r16mHy5MnMbRKEHwm84Fu2bBlmzJiBjRs3ok6dOobHOiH25MJygH2/QwtZsNmJ5hlVhTSCxddwSjwGAa8m1VnFW3a2tS0XWNrX8kd4RaWWeBMhFvWImQk/r8KFeufVqohlV+wpMRuAWQddowHPaAC2IsqUn2EJzbO0z1rwRfRxQURLAIpeDK1X/UpEgRaWNngHypycou8kekuGAIg+PerUqYNVq1ahc+fOqFevHoYMGWK7TUIDj4u2xAqBFnybNm3CTTfdhLfeegutWrXSPc4poafGyO+wkgKmnsy2MtErPy9EThQHReRNnnAq8gWGh0khzHP1tX77uXO1j/VK7KmPZdlywUp2W16evXoDcmYcr4Bj9TXk65qfL76AnB/27wsc8g/CKyZYBlCtAZh34FW3wTrTxjPrB5TckKzHeyX6YgXlhqSA9TV5WrBG/YxQCj8ruedmA5Xyu/NuyeCW6FN+b4YBPQGFTM9zADh1Svv1cuWAiy66CMuXL8egQYNw7rnnomPHjkxtEoTfCKzg++mnn3D11Vfj6aefRq9evXSPc0vsKVE+++0KPXW7VrKO7OI3gXf3jcciXxBZFcMit9wS+W8tG1myRPuzTos9JaJSPpWfsVolXHlOK+JJ7zNBmNgr9/DdkS842ekHHyz9muh0Titre1j3wrEi2nJz7c1w5eVZ+7zZIG0nZVO06NPjyJHS7TmFH/bd08JMpNldQ2q1ApZ871gZLNWfM/oOPFsysIpKszaVs3Ms52YQkWU4RJ8WshDs1KkXZsx4CldffTW+/PJLNG7c2HKbhAYU4XOFQAq+Y8eOoXfv3hg9ejTGjBmje5xosWelgjnP85x1EttK1hFvX7wWeXcO/ufHczGEYjW6x8o/1X2LkX/vFSvMPytC7KnJzgYSE8VV32RdBiJyfV5+ftF3YBnbndgmSovKM+4s+YcfHjqPPhr5by0xMGWKO33hSfsE7M2Y8UbdZJRpEVY+rx5oRaVsiuDPPyP/7bV9ai36VttntWrO98No0FT/flajdHoVsKwMmlbW6cmf40mpcCraB7j2bGcRfcnJ5s/2UaPGYt++X9C7d298+eWXpvUiCMJvBG5bhvz8fGRkZKBSpUp46623EKfzwGIReyKjeizt2l1iotUWbzSPZ/KZ5TN2jg2HFcJOC5YHgsDonijBx3KM2W+uFIFOiD2gSCgpsSPW1Gi1xfpZVj9Abo9XmImoAl579m1sX8iPVRFZoj/yMbffbn6sE5X75GN5hZDRjWXWltFgakWQ8VawYj0Hy3H79omzT7dFIY991qxpfJzT6ROs4o+lfb0BmOWzvIMmz2dkWAdOkXvbCHq+s0b5zIancDiMG24YhOzs41i7di0S9PZ1IJgo3pZhxgxntmW47z7alkFBoASfJEkYN24ctm3bhk2bNqFcuXKax7GIPfWNLaKQHKtwk5/Xdkq726k0zTP5rPUZq8dOumpvyT/Mbm6RO1u7+EBgPYblt1e2s2aN+fF2xJ4SO36HVjtWsp/0fn69tpzc67f27Nv4OqMk6A61Hkoh6ERZdfWxIitiabXFOnNmRTTKKWoi2tc6bt8+7WNYb7xotFFZCLqZL6/nVFodOK18lnfgNPqMFiyDp3zNWY4NoOgr2qPvMrRv3w7z58/T3bSbMKdY8D3+uDOCb8oUEnwKApXS+fzzz+O9997DV199JVTsAaUzipwQejLx8dZTJu1mGwHupGtGiDs1om5sl9fuiRJ7Vs7Vs2fkv9UCUJTYA0qvybO6XEX2c618Xp0dZNaGqHTNxs+OZzthrPPss5GDz4QJxsfbjQIqfw+7VbGUgydvioRe+qVRO4mJ7KKPJb1z9+6SY40oKIhdO5ZTV5XXsl49Z88pojgLEPmQ5823V6d6ii57rLUOz+u0YMCV9Xwy5cqVw3/+8z66dGmL5s0vwMSJE223SRBuEJinwZo1a3Dvvfdi3bp1qF27tqPnys8vGcPMJhp5xZ6V5SUiirAo2+DxP1iZ2GVX0f+Yed2iZv0EIuIhwIOITbt79ix59m7axPYZM6GnRm7fyho/5bmsVrPMz+f7nJV1d8UCj4iEt/DHnDmR/zYTgHqwCEP14Gn1hpIXgPIOhlYEox3RJws8IhIWG1VeS3UkVBaATi2QBuyv97NaEUteq8faX941gSyFVVgGZJaHg8DNUUWt56tduw7eeONd9O3bDU2aNEFGRoaQ/sUsoZD4iQOKvJYiEILvf//7H4YNG4YFCxagXbt2usdZje4ZIaqWgJXKmyy+hNmEsF4bvH6O+jzFAk+JmztW+zC65xXKKtF64o9X7GnVF2DxOfTOwyP67FbvNKLFnLGxG/UQjdHgIwtA+f1x45w5v+zY8qQ6qAdjK6LPyiwcz3m+/95fdhoOuxvJcWPbCKUAlO2nWTNx7ScmRj44WEWbXkUs1jbUAyjAPoiaHc9rA26KPkZhKEr0XXppezz33HwMHToU27dvR4MGDUzPTRBe4vs1fLm5uejQoQM6d+6M5557Tvc4UWKP5RieZ72VZSVWfAkrn+fxcW7uqCHw1LgZ3fNZXj/rMbxr9+wcI4s/O2JPCy2fg+ccbi8zaTFnLPuJRB8T1PVRrMeZCS2t9/XEn5OVscw+J2M2KOoNrjyCU+8cO3ZE/pvsVMwxLL+N1jFq8ccrwJ1cKG3l87wzZ/LxZr97jD/377rrVmzZshGbN29GCm3MykXxGr5Zs5BWtqzYtk+fRvrdd9MaPgW+FnySJCEzMxO//PIL/vvf/yJRZwB1U+wpjzF6jljNMrJajMXq54z8m5sv+arkHyIGdScWces98Bmje2dhXmXLzC7k56GfBJ/6/Z07zdvk8Wdkf4NXTMrwLDFRf8aMNi+NNT7A7KSsnYpmR5r1OCuCT824ceIXTdtd56c1MJrNpPEuqM7PLy3ylMS64AO8F31Kmjc3b0OGdWC0U6BF+XknBlLWMshePfsBW89/lmc/YD40FRTko3fvK9CkSSMsWbKEirhwQILPXXyUM1Ka+fPnY+3atfjmm290xZ6bqG98rXV4djda580uslvERX2+CJEnIyI10sqArzeYO53qw4lZkR8/rGm/8MKi/+oJP15fQ7Yzq7dlQQG/WRll/rSZO9Jeh3ix4pzplel3y0D8usm1cv3fTTcZH8s6wCoHRCuDsnJgZE2ZYE0ttRp6dxOy1dJ8/33J79uqlf5xPL+rnQIt8ucTE/nGI7O0Td6xTVS6pdYAr37W5+YKW6qRgLPMos+I+PhELF36Fi6//GIsWLAA45xIX492aON1V/Ct4Nu2bRvuuusufPTRR6hpsNeOW9E9o/fl8ZG3+qWeH8Ii+vR8EN7lLKMu1BB4vIhaK8ci5ASuyxMx2LMgfy0nosy8yMIPKBJ/VnSL8ifgXWOn9IWsrMVXnq9Y5PHg1Loorx1kFuQ+Gt1noh1t3gHppZeK/qsl/KxuWGq1SpWVEshGM2+s1ZWU53fCXqPNVnmLt9g5RkYdmTUSgGbYKdAiD6hWNmJXfsbIzgQWTWHC7LcUuJ6PRfSxrOc755yaWLJkOQYO7I2LL74Ybdu2NT03QbiNLwVfdnY2hg0bhoceegidOnXSPc7NVE4z5NoBgP1lJIC2jyKiWicAjGq0QfEvkweEW9E9kQ+UGCnWogdrammjRkX/r7eNlxq9y8ria+hNelvxJSwJPVHIudN+co5FohQDSsfL7YiLLPyAIvFnRewpbwTZAFmEn/pcsoHyDAayeOAVebwYiUJlnn9Q7dVIzHlhq3qiUCkAeZx9OwVatAZVK8IvP9/+vjcio3yint8ChSqL6OvYsTMmT34Qw4YNw44dO1C+fHkh544JKMLnCr5cw5eZmYk//vgDa9euRZzOj8Yi9oDSz251cyIEIWv9ACs+S36+/SIugFrk/YPZQ8GqUFM/oF3cXJX1OFH5+6zHsB5nZq8s7Vi1VyPhx/PcVP7crNlNZu13Xng9W2Nmx/CseTJaGCtyzVNQ1/BVqiRmbZTZ+0qRNmKE+fkA85tAT/iZDdKsN/vatea2yGLPrPZqtog72u2V5RgWexVhz0rbUpZQVmNl0TQgpkKW1vmd8geAyN/HTX/AxbX8ABAOh3H11d1Rr15tLFmyhOncsUzxGr7nnnNmDd9tt9EaPgW+i/AtW7YMq1atws6dO3XFHitaz27e5V92IjxWUz1l5P6zzC5pnTuznobIE4k8mBpdVLerVvk0ume1oIv60oreP1GJvC2VUvhZuZwFBfw/u9Z+vp0XXs/XiJ01UUqH2U/l8P3M8eOlDbRCBfHnUaY7yE6UnvBjvWnVET/W2TizaN/atWztyOe2arNO2KvbWy+wwpKyyXIMi73ypiBrobRXOcJrJPxYsLMfHxA5IFu1F56ImRvr7H2Y2hkXF4cFC15Bhw4XYvny5RgyZIjpuQnCLXzl2fz2228YN24clixZgnPPPVf3OJbonpVqiFaedSwTwjxLSPTa4xF9mTU+Nh/k7MzmyYO5qEHd7ZTPAKO85E75ZjVqFP3XSuVX5ZISq1qfW+hZwWpZW8IY9XV1QgACJcIPKBF/VmZoEhOtpV4oB2Q9kWdH0Kkhe3UGK/ZqRRQqU3s7drS+eLqgwNqMWm5ukS0aPUftbnoaDrOlZLq82brbqZ01a56L559/CePG3Yh27dqhbt26Qs4d1VBKpyv4RvCFw2EMHz4cQ4cORf/+/XWPY03lNEPrppWdadYy+zzZP2ZLSFh8DqPBJrPGx+YNWMVnVTHtIrJYi5dr/LTEn8j+yL4Pi69pdzlJxkuDnK1aKH8Jit65S1ZWpHPshABcsqRoYB0+nO9zdsojA8CqVf6wWZbiLiKjd9EcCZSvuWyzVu3VyJ5k8ZefD/TowdaeWrDwrtWT7dRM/JiJMfXnta6lKIElMILHgqiqnQDQt+81+PTTNcjMzMR///tf29lqBCEC33g/8+bNw/79+7F69WrbbVndA09GWWZf9H2qfg7w9lUt+jSFnt3oXmKi+YPTqX117BBl6Zw87SiDrkY2a2WJkpHwY/F3jXyIjJcGmTdgFYqK+A/lbyJa/L3yStF/WYSf1o3AWthlxQq+fvFANqsNi5hzAr0IoIjUTyAyOqwn/swEGqA/wDo1IWH3t7AbTeTF5dROAHjssafQvn0LzJ8/H7fccgtrT2MTivC5gi8E3759+zBlyhSsXLkS5cqV0z3OqVROI9RRP9bzGJ1DHoOtPtuFR/P8HsEL4FYMXuJU2qda+PH4Emq/pJTQE1HgwuyGErVJNSEG5e9lZQ8yPWThB5QWf6wlkoHSws8Joec3gefX6J1fUP5eBQViJy1k8acUfqzPPvUAazReWo3yyQ8WlrRNP0b5XE7tTE1NxfPPv4TrruuP3r17o568SJ4gPMJz70aSJIwePRrXXXcdunbtqnucqFROFozSPQH7z0N5bObNIhqS+K79Slry5+2IvCiP7rEShC0bRIs/eSmIVYRH9JQOmJ83slbjRsl8p9bPOYFTkT9l1I83nUI5QIsWe0G3WydFoZ3fX1SBF9Z9+4zs1uwBr/e+MurXr59xH9TIA7RIm3JqQlhklM+D1E4W0delS1cMHDgMo0ePwdq1HyMUCgnpY9RBET5X8FzwLVq0CLt378bbb79teByL4yo6uqeHXDBLrx885zDLIhqS+C57Y2aEw2JSNUX0g5WACzmlTTo9/pj1W/75rfbDTqr0NW8IFHpeR0WMLiCvkHPSKPSuk9b95ydx6IT4k/f1u+46vs+98Yb3hVdEbcBudPPz2q2TkUCj6+RGVVirOGG38kTDwIFsx7NWzTITSDk59j7PegyL6PNAGIpczzdt2iy0a9ccixYtwk033SSkTYKwgqeC7/Dhw7jrrrvwxhtvGO6T8dtvkf/WWydshuhN2PXSPY3Qc5rVk32aQs9KdI93/xszeKJ7PksV9TqdU+tyxMW5N1Ehn8eNSp8y1yy5uuh/7DrNZs6yW1GSrKzonDnUur6yoXjpVMv9ys8X04833ij6r5nwY91Dy6wSZ36+/UXlLLCIwmi0Xat2KyrKx9IvI9tljQKaCT9R45+Xz2y75xZZ2ZMRlihfeno6nn12AUaPvh59+/ZF9erV3elckKAInyt4KvjuvvtudO/eHb179/ayG1wY7ZUWF2fPMRcWzbM6cIoaLFnOL3LBdoCjgF5rYlG2q6RY5NlFuYGlF2vrvI4k+gW96+C2EBQZQdETfqI2S/bSdu3abdDX8clizg27ZRWFomxXS/jpiT2eyJjWg8hulJD1GFFbObDiQZQvI6M3OnfuinvuuQdLly4V0mZUEQqJH3MofbYUngm+DRs24N1338WPP/5oeJw6uqeFF9E9LcxS5mxN9NqtrOlWdI/W5RXjxsS+KOymewIOCT23oG0b+MnKihxz3BSA8u8lSvjxbsmgB9mus4io1ilfL6/SQ9W2a2VLEOWaUt40ZRl5k+BowqcFXABg5sxn0Lbt+bjxxhvRuXNnIecmCB48eULk5+fjlltuwcMPP4xatWrpHsci9tyEtTKnFcf5GliI7okMD7kprtwsx/wPXqdzOo3oiKOrE/x5ee5WwKHInTNoXVennWjlOT0YVwDYF3m8G7Tbsd9Y2I+PFbV41NqCQcT2C3qCjtV2rQhCGbOKm3YRFeUTtd5PMCILuNSqVRtTpjyEW265BTt27EBCQnT7JFxQSqcreHJFnnvuOcTFxeHWW2+13ZZfontq1PVRhEb31I3b3XcvyAQ8CuiFbbIg1H6NnFkWZ9lu5CIrK/KPcA83r312tvsRNjfOx3oNRewLFy2IcPZYr7uIyKpsu1bsSY5Ss6Ic2M0eLn5LUxG54N2DB+vNN98GSQrh2Wefdf3cBOF6hO/w4cOYNm0a3n//fcMZDjejeyI2xtZrQ1gQzsnFXqJSNSmd07d4br9KnHaS/SDqaHZRG6trmXiiHLJ9KQuB2YmS6LXvJGobFlWpk5WgR++cQG8TdhbM7E8ZSXTKfp3yIdyM8onsEyMio3wJCQmYPXsOhg7th8zMTFSrVk1IHwMPRfhcwfUr8tBDD6Fbt27o0qWL7bbcio7YneQy64NpOqfRQO2BMLJFjKRz+m1i1Bc4GYExm4mPhfVNQcPp6J+dqIkS2dG22hZrUY8gRqG9qDol0pFjaUtv7FD+XvJeTSIRZb+5uca/UzRG+VhhdBATcFbYKS+/vAs6d+6KBx98SFibBMGCq17Qrl27sHTpUuzcudPwOL9F99xoQxe7gs6tYi0iYT1fwKOAotryfWTSKZEntytKzJEo9BanNl8HimwlPz8yasLzWbOtF6wUv/C6Cm20I6LACw92IoBmyPYLaNvwG29YL94igiiP8rHCWsDl0UefRIcOF2LChPFo3ry58x3zOxThcwXXnjKSJOHOO+/EzTffjMaNG9tuz63oXl5eid048eywVKyFFRaDFzUgBi3SGBBEiTknbRjQqdApO7SiKsF5UQFRBEYRGzcfSn7apNoMp8SfVrocy/Giz+8lVtI1yYb5UdswT1qnFvLneW0YMBc/dt93m4Bv09CoUWPceOM43HnnXfj44zVC2iQIM1wTfGvXrsX27duxfPlyw+P27y/9/FA7qV5FNLScZrO+2Oqr2SCkfl994bweoH3QH9YBWrRNaflAXu25p/xuTgs/AGKd2uxsf0c/9BxhP84u6pWjV+M3p1rud0GBtQidFmZOs9tCz+01ekqCaMOAsR3z2LDTm7AD7tiwE1E+HhsQJQr12rFijz6O8k2e/CAuuqgR1q5dix49ejjfMT9DET5XcOUJI0kSpk6diilTpqBixYrcn1f/bixOq5MRQFFOs5DontNGzTJYelEF1Gsxa4CeXWnZsVciUNkXsz4w3Sd6Dq1ZdE/vfT9EQmTUDnG0P0iMhKEVMSiitL2M0i5EOM5Kp1kZPRGB6JRNFlGod4wVGw5y4RbRNswCq50b2bCVe0X0WKn3m4sQT6xtuG13HkT5KlasiNtvn4z775+K7t27I0QbhRMO44rg++CDD7B//36MHz/e8Lj9+/naNYsE2sVu9M7R6J5Xa/P8IDA9won1e36IBPpmDaCW4+Jm1IOlWEZQHWBRqK9ROOxdRFCk+FOukbKL15MVbhd98bMw1JpV07o+btmxWtDx2rCdap0saZteTN5q2Y7b6/0EwxrlGz16PObMeQqrVq1C3759ne+YX6EInys47k2Fw2E88MADuPfee5EiYDAxuonk31fkVi1O4ejaPUDcQCjqpvHpwAx4bwtqgmTHtvHKOdY6Lz0grOHFhutqsrPFpstZOb9fzkt2bA0zOxYZqdZC/i3t2PH8+cC4ceL6xAurUHNTWLIKQw+ifOXKlcOkSffigQceQJ8+fRAXq/cuCT5XcPyKvP322zh27BjGjh1reBxvdM9p7DrSvnfE/ZqqyQKjePRiOwaCkZwcZ0qZ66Esce51BCYWUG8zYHbNRUVy3f6NWe1YZEqriO/oVS65SNzYnsELO46Pd86Oo82x8Vt/FLDOcY8aNQ5//XUU77zzjrMdImIeRyN8kiRh+vTpuO+++5AsIMIjYoN01nZEnMcydtM53YymBXyzddG4/fxhTR1x8hzX/PsKtobcFnhK/Fz4JVZQ/yZOR+OsVDPUQ731glu2THbsP+zaMW+kUJ32KWITdj1EVL9kiZSxnMeLLRo8iPIlJyfjzjvvw7Rp0zBgwIDYXMtHET5XcPSKrF27FgcPHsTIkSMNj4u26J4Zjqdz+g0Sco7h6DpSEW3IERAnHWR11IMieMHArd9Mbt+uDRrZsogInh/tmCKB5rj5m7GcY/58Z/vgN/z6cAa763PDDSPx559/4pNPPnG2Q0RM4+hIOHv2bEyYMAFly5a13ZafNqk2i+45Ov64VazFr+mcjHi1HYNfz2kVy311U+SZQVER5xDpTNt1ms1+5/h4a3bpli2LSvv0QqRFgzBkgcXec3OdF4B2JtLMBnVPHRwHz8XalgcP6LJly2L06AmYNWu26+f2BXKET/QfEYFjV+Tbb7/F5s2bccsttxgeJzK6JyrN0lNbsRMNi4uL/nTOKIgWsiAqNdnMloWnJvM4IbxCTMuJIjEXnbjlMNs9xipWv5+TRUOCiBvr+OyiFQFkmZxgfd/t9dAs10nU+hsfk4CzTMexuixjxozHF19swo4dO6x3iiAMcMxbeuqppzBy5EhUqVLFdltuTrgoU+Od2KRaeDqn32cxYkSgAf6O3PHsu2cJLYfDbA8+ljb9bt+seJ2e57fN1HlQVi8ExK79k+02NbX0a6Lx2gZE4YfvES327IQtA85U61SOxeo1rV4jeI2eF1SuXAXXXz8Ss2fPxmuvveZ1d9yF1vC5giOC78iRI3jrrbfw/fffGx7ndnTP7kbrgLkv4Eo6px1DjoF0TsIY4eOgSAfZzZlqJVYuipHj67eHDc/ebF5tbcCK6M3XgSK7c6IQhtKe/WYT6v3z9OzZb/0G+O1Zaz8+P+CELQNsjoqRLyAXVfHDb++FSBNcvIW1uNrNN9+G9u1b4JlnnkHVqlVZekoQzDgi+JYuXYqOHTuicePGTjTvKXImhSOZNUYDTHy8PwZfGZ/OkjmBnyN3dnHUnlnRc078YO9qJ9gPfXIa+TtrOcheikGt6oZOOcx28GrSggUr9uznjdVZEG3PLOLRyp59WtU/jdpwcl9AEf6GqGqdIs/ncxo3boJ27S7D0qVLcdddd3ndHfcIhcSPMbFY7dQE4YJPkiQsXLgQ06dPF9Kem6ngPBO8yhR61jGXO52Td32Sn1IseBC8fo8KthThtD0DwDUz2rAfrMYvjnF2drAdWjfRigLJzq/Xgis7u6gvyvRMHuyWuyd7Dh5e2rOZYJPtGbBm07NnAzyiIVbWQ/tcGI4YMQYzZz6IO++8M3a2aKCUTlcQfod/9tlnyMrKQv/+/Q2PE5nOqR6ntMZQJ8vTy+cX8rz3atB14rw+HlT9jlUBJvLcjpxXeZN4Yet+WH8UrWhdWy9EoNLGrIo/K+cys2cnImV69hz0qJwf8Is9A9prTUVhdRy2u46P57wxlNbZt+81uPvuCdiwYQO6dOnC0FGCYEP4E+HFF19EZmYmkpKSRDfNTHx85J/b57X0wdRU4w+LGOyUbehdpKBGCaMIdZBB66dyI1JYUCDo/nFjLz6j8/ppX7NYw+u95ZyyPS/sWT4v2bM1RAjgaLJnswFe9Cy5ns8hcu1sFKy/SEpKwnXXjcCLL77odVfcwwfbMmzcuBF9+/ZFzZo1EQqFsHLlyoj3JUnCgw8+iHPOOQdly5ZFt27dsHfvXoEXwXmECr5Tp07hvffew/Dhw4W0J+relcc1o7FN5Jijda5S6ZyiFamRUFMPtHbPSZG7Urj5nBH1U7L22dK5cnPdd4qVzpBf0uuI0njlMNu1C7dtS23PZNP+QV3sxsrWC7znUZOTUzSI89qFWzPhXs28syB4Tz7RWzQMHfovrFy5EqdOnWL7AGGbU6dOoWXLlnjhhRc033/yySfx73//G/Pnz8fWrVtRrlw5ZGRkIC9AkwxC78JVq1ahbt26aNGiheFxItM5eYUaS/qnFma/qdb7mqlxbg20hBCCcC9btWk759I9h5t7K+Xk+NPWKZWOD3VRDTfTMFnOpbRpI3sTERLPyvImNZQQC6tNiyq8omfTynV8ToyV6rROJ8djn6+9E0nz5heidu06+PDDDzF48GCvu+M8PljD16tXL/Tq1UvzPUmS8Oyzz2Lq1Km4+uqrAQCvvPIKqlevjpUrV2Lo0KG2u+sGQq/w8uXLMWTIkEAtNHVjAio+HsYnMRvEzN7380yaGTFUsMUt3LLpiPZzc50XexTtiA3c/J2NzhELNu3HrQq8xgkx7aVNu/Uw0DsHy8PWiS1RAkwoFMK11w7FsmXLve5K4MnOzo74O3PmDHcbv/76Kw4dOoRu3boVv5aeno5LL70UW7ZsEdldRxE2CmRnZ2P16tWYMWOGkPa8qGboVKGMvvhAXGMyvAM4i2ASuX7P6Zk4nYey0aM6Fn0bx4u/6DnEZvbJYr8k6ggg0g4KCpyJAMrncLpCUlBtmqKKYnHTpo0wi5rpve/niWXRm7Crj9O5DxJQiEKUMWwqHGYv3jJgwBBcdtlMZGdnI83rCshO42CEr3bt2hEvP/TQQ3j44Ye5mjp06BAAoHr16hGvV69evfi9ICDsrv3www/RtGlTNGvWzPA4t9M5rQpH5Xjmi2e00QAbpEIr6pua9SYXMBgom7BzWqvC0euoopeVP5nx80bVTmN1PVu0OwNq3KzCKQKyaX7Ipksw2/fPyf341OcJOh76H8pmWJpr1qwZGjVqgtWrVwcmZdCP7N+/P0Iwe1lQ0muE3cGrVq1Cv379zE/o4nojUZg5yo458vKJ/TTQmm0OLxPFjo3WV/ObXZtNhigzcHy56ToLbt8XOTn6jqjSsXXb9kUUPgmqg+1X8eeLWUIBeGXXTtk0y6bprLC0ZeV8atvx0q5Z0kHtbs/Ag1FUTt3PKPBBevbsgzVr1kS/4HMwwpeWlmY7QlqjRg0AwOHDh3HOOecUv3748GG0atXKVttuIsRjKigowEcffYTVq1fzd0CjB3l5PnFGNRAeJVEPXn4Sd2qCuEbQBbTEldZlYrFpL5YyuB75y81172Es4jxKByxaS+EbbUAt43dRmJPjXuEXLdy0a7tEiyA1wmiPQiVe27VZhM6uXU+dCkyfztcfJSKKpbC0wSIcWX2QggJfZz6xpnV269YTI0YMQTgcRlxQxhYr+KBoixH169dHjRo1sG7dumKBl52dja1bt+Lmm28Wdh6nEeK9b9myBfHx8WjTpo3hcQcP8retdW8XFIhzjO20I0z7uLn/HgtuiTrBBVvM8ud5cSpyq3d5RVWMtQPPT993ygXsB7tZvZOXnJzgOOpeYiR2/RRdA9yL/PnZrrOzya5ZiHW7zsvz3/d0ywcRvN6vDMM6Ph7ateuA06dP47vvvsNFF10krF2iNDk5Ofj555+L//3rr79ix44dqFSpEurUqYPbb78d06dPR+PGjVG/fn088MADqFmzJvr37+9dpzkRcletWrUKvXv3RpkyYh1uPeLjS0/SOZVqadaGelJKLSB1C7bIH/IyYubUhus+nlkDvF9LpwerXYuA5RoY2TUTfnOGYyGq4RV619YPjqTaSbZ7U5Fdxw5BsWurE8N+eFYr/RAWfyiGtmdISEhAly7d8NFHH0W34PNBhO/rr7/GFVdcUfzvO+64AwCQmZmJJUuW4J577sGpU6cwZswYZGVloWPHjlizZg2SA2SLQtTGmjVrcN9994loyjJ+yTSUx09NB9mJwZW1Tb9cIIILr342tf0a2rUS2Rm223G7g7/sDFGEw1vk30E9k+GVw6xMj0tJ4ftsbq59u7Zb7ZLs2h+4bddmawHz8tjt2gk/hHUdH/kh3HTv3hPLlr3iuY8d7XTp0gWSJOm+HwqF8Oijj+LRRx91sVdisX33HTp0CN9//z26du0qoj9Coy/q8cfN9VEl5/ZgBk39xUUNsgGayYhmtJ6rbtm27jPdy6gHRTiCh9ZvxivAtOApkqG0Wb1zk10TPGj9Zqmp7u4JpGXXU6cCTz7pXh9klA8MlmsgsgCMm8VkFLCmdbKu4+vevSduv/1mZGVloUKFCvY76Ed8EOGLBWwrgU8//RQXXXQRqlSpYniclfV7erA4t1rHqO99z5+nZoMRq8DyQ1oGYYjTaaSeTG544Qwrz0kDenThZXVC2a68rBIm94HFrmlfPOu4XalTGVWWccu2RY3RrGmUQfRFRO/bJ5hatWqjadNm+PTTTzFw4EDXz09ED7YF3yeffILu3buL6IvrmJXSt+ukZ+Bjew3owbP2LogDMGEbv20TYRm/rZci3ENrRi5asgyM7NqvYs6v/QoiWpMbXg7SVqNhTtUBICLo3r0X1qxZE72CLxQSP7aEQmLbiwJsCT5JkvDpp5/i1VdfFdIZr4tp8GY+upYiqtcxUc6PFwVbBFfoJIwJxKbrAF+UQxTkxAYHljRMOzi5ibUXtk0EA3UU0AnbFoUf1uHFUOEWoEjwjR07HJIkIURChrCIrTt3z549OHbsGDp06CCqP75COZ64KkblE/thYPUKTqeItRRyfn5J0yKyerzYN88MM1uNj/fQttVQBI+witp2/OYkk20TVrFi2yJTVZWw+iN+FGGi1vHJTgNjezzr+JQ+hN7P165dBxw9ehQ//fQTmjZtytLjYEFr+FzBlqJYv349OnToYFqW1O31eyzwOrnCHWTloOG3QVIL3j6a3Ww+uBmNupCXZ95F0c9Wr8SjcNs2cgwoysG/eJj1WikN0g9l491Gti2rVThFnZ9smx2ybTbctm2nfBIWweRUsRUjW8vP94UfptfFlJRkXHppB6xfv54EH0+bRAS2BZ9y3wo9WNegi8Jpx1keF+LibDjIZoOLX6N7ARBybsE6RsWcbauJtkhHEL6P3YpUXjjVoiMUTqd/qs8RDQTh+5BtW7PtCROAOXOMjzHySwoK/OmXxIhP0rnzFVi/fj3GjRvndVeIgGL57pUkCZ999hluvfVWIR0xGku8WHNkdk7Z8daLjpQq2OKD2SMm9H6EKBk0vSAuzl+2zYrlyJ+Z0+hnWwqCw+sGrE6139Io9VD+ruGw9X4XFPgzj5sFsu0iRNu2U6mUrNix7SD7JQUFMVUopnPnK7BgwZzoXMdHET5XsCz4/u///g+nTp1C27ZtRfZHE6NJJT89eyPGzjz1Cx5gNBjK7/lxxi6GCKJt5+UBGePqRx6gVIR+Hmi1nF4/99fvGIkIP4tB3ghJEOxb77fwa3958EJUuW3bor6jmW177ZfoofRXosAvYV3Hl5jI9qy/5JK2yMnJwQ8//IALLrhAQA+JWMPyXbV+/Xp07NgRiSYzLIcPWz1DabSiIXqnN7qBXClS4fSgGuQ9cfz6wPEZWj9fYqL9jCa7UcXin8/rsrp60F59/kAdeVDiJzGo5SD71baB6ForGNStHtRi0K8VNtX9dPrZK2q/PpHpo6xrAln77tGG7omJiWjf/jKsX78++gQfRfhcwZbgY1m/5zay0NO6H/0UMRGOH8Sd6D744TsJQKTd6T1rXLdtPzjElKIWXPR+O68ng3JzvU3PU/aDCCZe2rbX6aVaRMlz3A906nQF/vvf9ZgwYYLXXSECiCUJHA6HsWHDBl8KPiMSE4v+kpM99ivMBkCzma3k5JIvI/85ic8HbNYtGaIZpSnYtW9fTozk5ZX+I6KP3NzSf7EA2Xb0o2XbvPZtN2px3XX2Pm+G275JjNG58xXYsOEzhP0m6u0iR/hE/xERWIrw7dy5E2fPnkXr1q2FdMIP5ehl8vLYC7bo0RkbrHdKjdcz3lGEaDvzpTBSoGffvodlTwwiWNiJPGg5xUEeFwNxExKuEST7VqZa+qGPHqVXsiJ6Hd9FF7VGfn4+du3ahZYtWwroIRFLWBJ8mzZtQvv27RFvEokSuX7PLZKTIwUfbbgee0SzP+apfWvheQeIQKJlN35wQNVo9ZMmM2ITnkkPr+zbSEAF2T8RLQw9EpoJCQlo164DNm3aFF2Cj9bwuYKlO3fr1q1o166d6L4YIqp8PW9URj3GCvVPrQ7gLAONj2e9CP/gqH1r4fewKBFcZOOVnWovBCCLfYsqVBLUgieENdy2bz9OoDgNa+EWD7nkkkuxdetWjB8/3uuuiIMEnytYFnzDhg0T3RfbuOFLJidHTnBxpeDL1bv8MkPml34Qnk1oqLFl31pY6RAN1IQI3IiS0AQGAXhTLEW0fYvyT0RFv/y60bvHtGlzKd55Z7nX3SACCPfddPz4cezdu5dp/z2WvOSgPy/VFZgjHGSt8szROoAlJrJ9Nw8jj6w6gvUnio+P/poShvatRX6+fwSbX/qhhxPhVJ/PTnuO+przjkd+sm+/Q/btPjz27eX2EV6kRLI+2D26vxMT2SZ+27Zti59++gknTpxAxYoVne+YG1CEzxW41cdXX32FBg0aoEqVKkzH89zTfhB/diMtnVO+AuCjfXjsIP94LD+iaCEbAGFcUOCuffvh/ijlI/ihU24RhPWGovsY7Q620n59sd+Jh5B9Rx9q+5Vt3E97BdqBx0fxCNbCLaxUrVoVDRo0wLZt25CRkSGsXSL64faqd+zYgYsvvtj0uBMn+DtjdM/KYt3r56+o1Dtd3BI6AYjIRRtBsG9mAtNRE3gcyFicMWS5PnIqW9CdSNmmo6nkOdm3MazXx082bid9ND8fGDgQWL3a+vndSrVk9VG8wsOU05YtL8J3330XPYIvFBI//oRCYtuLAritdefOnbjwwgud6IsuSpFl5jQHYZLSFWJEqEXbHnxGP1tiIpCT415fAg8NBu7Ckt8c7REVN4mWSZcgEQs27qagcxPW7+XzrR4AoHnzC7Fz506vu0EEDEuCb/DgwU70RQh6Y21eXhQ+H/W+rJ9nxQjLFBQY+xIxpW+i7maOEcyM1OeOlquQjQcTsvFI7AhgKtyiSYsWF2LlyhVed0MctIbPFbjupPz8fOzevdv1CB8LZqmW6uqDSnxdeEOdQkKDX6Bw02fTs3FX7Vv0IEtOb2xh9HtHq6NMNh5bRKONx1KBOh/QvPmF2L17N/Lz85EYVJshXIfrjtyzZw+SkpJQt25dp/rjCcqxShaOrotAt7dsiLHB2PG1lz5G/Sz2zMaNUDpBNDNHaKHnKAfB4VH3nWyc0CIINp6SIsZ/oOhdKeLj2XyVevXqITExET/99BOaN2/ufMechiJ8rsB1t/30009o2rQp4gRdSD9PbOqtzc7OttGoPLj5YeE3oQmrTQZVQCr7rWWGjotAP9/0RDBR25Rc0MIrJ5lsnBCNFzZOfoowRFfqjIuLQ+PGTUjwmbVJRMAl+Pbu3YvGjRubHmelQqcfYHHiU1NLvyYX0miDr4wPJgMkfE5KSukCcOpCMW16VjZviJxewmucjpaQjRNeI8rGg+6rBKDQimgaNWqMvXv3et0NIkBwR/iaNGniVF8CS8lYqaEGeaD0BsKHaE1yRBDUcCcRm2g5yWbOYizYeDgcPEef0IbFxk0HdsIUD9NSGzUqivBFBRThcwWuK+KF4PPTczaatmcSCuuAF2MzcFFLQUHkH0EEnfz8kj+1fZONE9GA0sa7dbPXVlDvCdZ+ByB6L6d0EgQrXFMTv/76K+rXr+9UX4igYyb8WGdcOGbMWGcsRJ86qM87M2hSQweaLSQIwi/Y2XydYHvQs475jMeJ9lUaNmyAX3/9lbFVn0MRPldg9qwLCgpw6NAh1K5d27xRxlb1fg/e/cRYnO9oddCFobVXjgMCLVoQaeNkmwFAXiMSgJlfYVBEPjYhGyf8nt4bxf4Ka6XOc8+thUOHDqGwsBBlyogrCEP4gzNnzmDr1q347bffkJubi6pVq+Kiiy6yFXRjtvzDhw9DkiScc845lk/GivJeZjF8dVEJAuabnfp80It2eG08pjZVdxI76jqWHGHA/velMcYbaAaJHbJx72HZmJ2ucynOOeccFBYW4vDhw6hZs6bX3bEHRfiK+eKLL/Dcc8/hgw8+wNmzZ5Geno6yZcvi+PHjOHPmDBo0aIAxY8Zg3LhxKF++PFfbzHfRgQMHUK1aNSQkJHB/AS1EZiOwVA8uKPDZvmNWMfuyATVywpjkZLZ7xta2IUHDzFmje8FbeIUHOXXaGNk52bi3WBHXsWLniYnilnkQpUhMTES1atVw4MCB4As+AgDQr18/fPPNN7juuuuwdu1aXHLJJShbtmzx+7/88gs+//xzvPnmm3j66afxyiuvoHv37sztM488f/zxB2rVqsXXe59hppXCYY+jhWYdjJUHBWEZ39s4C7EWSSOKKChgm9UwS8MLwvomsvHYhfW393u6qYh9+vyeOiqQECRICAlt89xza+GPP/4Q2qYnUIQPANCnTx+8/fbbuoG1Bg0aoEGDBsjMzMQPP/yAgwcPcrXPFeE799xzTY/7+2+u8/sOo0rFtpzl1NRAGqCfET14Bh3WyWbHbJwFSjcj7MLiMHs9OUZ2TtjFazunbRt8T82a5+LAgQNed8M+JPgAAGPHjmU+9vzzz8f555/P1X5MRfhEYDwGGrwZQOMjYhNbz3lydAk/YGaHdh1lsnPCKiIj0HbsnASdGDzci69WrSiJ8BGl2L9/P0KhULHu2rZtG9544w2cf/75GDNmjKU2mVXIH3/8wRThCyp+zwASitez30Sw0dqnjPYrI4KEkQ2z/PmFmHpwEdwEwYZFEYP3Qs2a50aH4AuFSqJ8ov5Cwc4Au+6667B+/XoAwKFDh9C9e3ds27YN999/Px599FFLbTILPtaUzlilNvZ73QUiionBZxlBEARBeEMARPG550ZJSidRiu+//x5t27YFAPznP/9B8+bNsXnzZrz++utYsmSJpTaZQz0HDx6kSkAEQRAEQRBEMPEwBVM0NWueiz///NPrbtiH1vCV4uzZs0hKSgIAfPrpp+jXrx8AoFmzZtzFWmSYr8jx48dRuXJlSyexip8mWByPsATcOP2Mn+yIIAiCIAjCLpUqVcKJEye87gbhABdccAHmz5+Pzz//HJ988gl69uwJAPjzzz8tazGmaQ5JknDixAlUqFDB0kkIIgKXxS3L6ShlkiAIgiAYiZUtFTz4jvHxbD5JenoFnDhxApIkIRTkNWsU4SvFE088gWuuuQazZs1CZmYmWrZsCQB4//33i1M9eWESfDk5OSgsLETFihVNjxW5dYza4K1unE4RHkTumePVjeXjG1DuGmumh8ivIsrOCR8gpwv5fdCJkpQmwmP8audk38GHfBZTKleuiIKCApw6dQqpVHU1KsjNzUVKSgq6dOmCo0ePIjs7O0J7jRkzBikW98BkGhWzsrIQCoWQnp5u6SSi0PqOLLMgesf4egNqrZuXZfDx+QBFmBNTdi4a5UXwKmzrVydYidd9JIfcHn6wcz/jtX3L+NnOmzUDdu8W1x75LK4j++RZWVnBFnwU4SumSpUquPLKK9GvXz9cffXVqF69esT79erVs9w202h04sQJpKenIy6gF1APnvtD65manW3wgbS0yH9H2bUjgoOjdm4XclZjE9EOud/HV7Lz2CRIdq72WXJySr9G+IoyZcogPT0dJ06cCPY+2ST4itm9ezfee+89/Oc//8Gtt96Kli1bol+/fujXrx9atGhhq21mwUfr90oTORbG6MAY0JuKYMfwmU+OLOEH7Nqh2ThGdk74AdF2bjS4+yliFCvrBS1QoUIFKtwSRdSpUwcTJ07ExIkTcfLkSaxevRrvvfceZs2ahUqVKhWLv86dO6NMmTJcbTPdQVlZWUzr9wgiyJBPx0g4XPJHENGA0qa1/ggiGiC79pQQJOFtVqxYEVlZWcLbdRXRm647ETH0gPT0dAwbNgzLli3DX3/9hfnz56OwsBAjR45E1apV8frrr3O1xxzhI8FH2CIKbj6CIAiCIAi/UKFCRYrwxQAJCQno0aMHevTogeeffx7ffvstCjhTximlkyAIgiAIgiACRlSkdNIaPk3y8vKwc+dOHDlyBGFFRD4UCqFv377c7TEJvtOnT1suA0oQ0QZlwhAEQRAE4TUpKSk4ffq0190gBLNmzRoMHz4cR48eLfVeKBRCYWEhd5tMEvjs2bNISEjgbpwgCIIgCIIgCPEkJCTg7NmzXnfDHj5Zw/fCCy+gXr16SE5OxqWXXopt27Y58GXZmDhxIgYNGoSDBw8iHA5H/FkRe4BgwXfmjKU+EARBEARBENEEpcM4TlQIPh+wfPly3HHHHXjooYfwzTffoGXLlsjIyMCRI0c86c/hw4dxxx13lNqHzw5Mgi8/Px+JiYnCTkoQBEEQBEEQhHUSExORn5/vdTfs4YMI39NPP43Ro0dj5MiROP/88zF//nykpKTg5ZdfduhLGzNw4EB89tlnQttkWsNXWFiI+HjzQ5MSxZecDQ4xug+fh7CWOC7DeN+zHkcQBEEQgYc2Vncd0X5LQnwZ7mqNsUR2dnbEv5OSkpCUlBTxWn5+PrZv34577723+LW4uDh069YNW7ZscaWfaubMmYNBgwbh888/R4sWLUplWd56663cbTIJvjJlygR/BoEgCIIgCIIgooSCggIkJSd73Q1bSAhBQkh4mwBQu3btiNcfeughPPzwwxGvHT16FIWFhaXSJ6tXr47du3cL7Rcrb775JtauXYvk5GR89tlnCIVKrk8oFHJO8CUmJuLkyZPcjRMEQRAEQRAEIZ78/HxUDPiSq3BY/HJPub39+/cjTRHJVkf3/Mr999+PRx55BFOmTEGcoC0mmAQf86LQUAiQYjmtkyAIgiAIgiCc52xBAVXRNyAtLS1C8GlRpUoVlClTBocPH454/fDhw6hRo4aT3dMlPz8fQ4YMESb2AMaiLVQFiCAIgiAIgiD8QzRsmyZH+ET/sZKYmIjWrVtj3bp1ij6FsW7dOrRv396Bb2xOZmYmli9fLrRNpghf2bJlkZubK/TEBEEQBEEQBEFYIzc3F2XLlvW6G4HnjjvuQGZmJi655BK0bdsWzz77LE6dOoWRI0d60p/CwkI8+eST+Pjjj3HhhReWEvVPP/00d5tMgq9ixYrIysribpwgCIIgCIIgCPFkZWWhYsWKXnfDFk6u4WNlyJAh+Ouvv/Dggw/i0KFDaNWqFdasWSN0Hzwedu3ahYsuuggA8P3330e8pyzgwgOz4Dtx4oSlExAEQRAEQRAEIZYTJ04EXvD5hQkTJmDChAledwMAsH79euFtMgm+ChUqkOBTo9rb4yTSI/6dnkbFa4goQWXrBEEQRPA5mR0ZKSC/JXicOHECFSpU8LobtvBDhC8WiN2UzpwcvuM5rUc9kFoptFM+lQZfwiZO2LnSmGlUJaIFo0Ga7JyIFgzsXOm3kM8SDKIhpZMoYty4cZg6dSpq1apleuzy5ctRUFCA66+/nrl9ZsF38uRJhMNhoSVCucjL0349ORkwKygT0If13zn8otHomLLJNBj7Hj07Z7FhL+zc7ngQ0HuT8CFOPpvIzgk/4JX/xQj5LO5SWFiIkydPBl7wUYSviKpVq+KCCy7AZZddhr59++KSSy5BzZo1kZycjBMnTuCHH37Apk2bsGzZMtSsWRMLFy7kaj8kSeYb5/39999IS0vD8ePHzQ3rzBmuDhjC+ouZHSfilzdpQ53SqUbEOG138BTZFyvtyceVifPpIM4z6ogcTUSJORfsHABQs6b98zhFEEf5WCReZ66Rfj826DoFAx/b+ck/Txm+Tz6Lz32WcBjHjx9H5WrV8PfffyM1NdXrHnGTnZ2N9PR0HDhw0nSvPCtt16qVjpMnxbftJIcPH8ZLL72EZcuW4Ycffoh4r3z58ujWrRtuuukm9OzZk7ttpghfamoqypQpE9zFoXFxvhhgiSIKw8YVhlgH4xAYB2H67WMHpfF4PRteUODt+bXQc0CJYEF2bgzZOSEQ130WgMlvOXHiBOLj41GuXDn2dglfU716ddx///24//77ceLECfz+++84ffo0qlSpgoYNG1qu0AkwCr5QKBSd6/gIgiCcgpxOIhYgOycIsTBOUsvr9+yIAD9AKZ3aVKxYUWiQjXlqsFKlSjh27JiwEzPh9cylEj/1heCDfjuCIAiCIKIIpmVWBPEPzFNz55xzDv78808n+0IQBEEQBEEQjhBN879//Pknavp5TT0jFOFzB2bTr1WrFv744w8n+xJo0nHS6y4Q0Uw0PaUIgiAIwscE4ZH7xx9/MJXwJwiAI8J37rnnkuAz2YA626RSp1/2xgyHgzGYER5BG60TRDCggZywiNkw7xd/hdDnjz//xLnnnut1N2wjSeIjcub7D8QeXIJv3bp1TvbFexx2dM2aD1DlWCLIGBkiy6hrVKTBjxX7CEILO8VGyM4Jq7iZa2bDxslfYcPLOZcDBw6g+/nne9cBIlAwjwbMKZ1JSWL34hNFTo7XPTCFpYs0yJYgIcRX5jjaiYszf0o77WyYORjkKBNu4WT1SJr0IPyAhxVSyV/xnj/+/DMqUjppDV8JelVX09PT0aRJE9x1113o3r27pba5InwHDhywdBJHyc0N7i9rgdxc82Pi4oCUFOf7QrhItNg5i4NCDjNhRGKi8fte3ydk44RdzGwc8N7OGTDzV+ToWCz4K05MTh84cCAqUjpJ8JXw7LPPar6elZWF7du346qrrsKKFSvQt29f7ra5InxHjhzB2bNnkZCQwH0iZvLyIv9ND0ZLmA20ap8kOdm5vhAaKO2cbDwSFmcHAPLzne0H4T6sv33QIRuPXWLExnmCj7z+CkA+S35+Po4cORIVET6ihMzMTMP3W7VqhZkzZzor+KpXr45QKISDBw+iTp06xgezPqSCKsGjELXOBthz0+XBOKb23yUb9x5ex4mEtbvE1IDgEFbEAdm5u5CdO4re5VX7LLHmrxw8eBBlypRB9erVve6KbSjCx85VV12F6dOnW/oss8nHx8ejRo0a2L9/v7ngc5u4OPNfNz6eHoSc8FbzNLu8rANsOOzAYMx693thI2Sb7mDHqOQbIZYiLqxiI1qfrEHFrp1Hg40nJrJ9D7JxTWKh+Ksof0X4tWL0BQ7s348aNWqgTJkygjtA+JkzZ84g0WKWANeToX79+vj1119x2WWXWToZQRA+h2XyJBaRZz9iJB2LiGGixcaj5XtoQWN0zPPLL7+gfv36XndDCBThY2fRokVo1aqVpc9yCb4mTZrgp59+snQiy/gp+qHlDCtKVWkVrUpNdbZLfqCggL1OQdDTKGKSAFS4JQiCINj48cuTpRwWHl8lqBFAVv8jCH7KT3v3okmTJl53gxDMHXfcofn6yZMn8c033+Cnn37Cxo0bLbXNLfh27Nhh6URRQU4O97SB0leWB0m9gZU2RCc8h8XGlU9Dv0zGEIQdlNEgtf3Hio3Twye6MYl48vgqRBFeCsOf9u7FxZdc4l0HBEIRvhK+/fZbzdfT0tLQvXt3vPPOO5Yju1zm2rhxY7z11lvmB5YvD/z9t6UOeYocwbMY0TgPP+JHnGd6nF7zNLgSrmEnardpE9CxY9H/q594sbjWjQgWvKl+ZONE0BCUzqr3mPDb/nqxOFex9+efMWTYMK+7QQhm/fr1jrXNHeHbs2cPwuEw4kTcYX5YL6SuB+zgbK5ZBC8nR3vGKBb2qPENrCnEfko1NsNFGy9Gy+EgB5lwGyfXcZGNE37Ag7WKWtsokJ+ij+g9+MLhcFSldFKEzx24BF/Tpk1x5swZ/Pbbb8FaLCqPTkFx0FWoB1dZFNoZYGNuPV2QBJoVgmDjeo4JOcmEXYxSMr3qhxKyccIufrFxHfT8FEDbV4nFqJwpjM/vffv2IT8/nwSfSZtEJFwuf2JiIpo1a4adO3f6T/DFxcVccQmjzUopPdQniI5im+1Q6zVWFqKqnWRKmSP0CGrlRbJxgoWg2rcK9WSy1mOLfBTr7Ny1C82aNbNcnp+ITbhjPBdeeCF27tyJq6++2on+GKO1OzgP0R7lUWB2qZKT3ekHwYnRDxcjtluM0cOMHOXoJNYcGLLx2CLW7NsAFneORKE2O3ftwoUXXuh1N4RBET53sCT4vv76a/E9Mbv7Y83ZdZi8PPOUziCIQgkh4fnxjkFiThxmjhM5y/7FaGChp3QJZOPBJOD27adUSxZRyOqnRNOWDDt37ULbdu287gYRMLhNu1WrVli4cKH5geXLAydOmB8XtIeWUYpeTg6QWpJZamV2yk9r6+TBlmVSsqAgGAJRKKwiLWg2rkeQUqYTE809F7sZA0RpjBYWB8DZDRRk4+6QnFySk+gH+7Z5nq9W/1W8B58VH8Uv/olMXh6bjyK6315eh2+/+w6jx471rgOCkSTxt48UkDiAm3CbbJs2bfDLL7/g6NGjqFKlihN98haetE8NB/i8nK/wFdpovh3N6Qmsl62ggG1wzs93IPuFdUTxa7TN7ZRkI4GXmBh8ISvPULBOacea8xxzMzgosmt5nAi6fQNFvyHZtz6sNh4tJShVD9Vo8FFY/QTWRyfr7SIPE2bHM2cgMeY1/vXXX/jll1/Qtm1btnYJ4h+4BV+lSpXQuHFjbNu2Db1797bfgyA5jjYrIcqDq4gqm37Dicgkqz4rA4ocCIHXvtVPWr/dx1YKyBjhhAAS6WTHokCzi5G36Hf7Fo1T9iPKxsm++eGcNVVvDeWUj+K3KKEdzPwUZv+E8bm77euv0aRJE1SsWJGt3QBAa/jcwdJtd+mll2Lr1q1iBJ9IREdAHK6I6PVeNn5KH415RNkuTzui7Vt2LuxWIBQt1PwMixPLO+VM6JOcbP06ibLvWMPMxqPBvv3SNzv2rYH6EcHin4jyKcg30Wbrtm249NJLve4GEUAsC74PPvhAdF+MccMh9sFeZrm55jNsLEKNxBxRCrftO9YiJIT/cDIqZNW+RU1mxMqkCKGPy1FPFv8kyAShiOrWr75Cv/79ve6GUCjC5w6WJEHHjh1x3333oaCgAPFGqqJiRbbCLV7g9/3M/sHrKGBMEqQ0Yz38aN/qCAkQm+uGCGeQnV+vnvRk34QRdu3SBfvmnSTWesykpYnpi0iipWDL2bNnsfnLL/Hk7NnedMAhSPC5gyWzvfDCC5GQkIDt27eLCS274WArH7xm5zKLJpq83wYlhVucIDe39EwULW9gQHTKr1/2dVQ7lUESq2rDJQc5OhH19E1OLrGRIAx6ZN+EVXxo3yxCR8vEnfoqfo/IlUEh24GMfsT2b75BUlISWrRoYaNXRKxiSfDFxcWhc+fOWL9+vT9ziX3+UDVLt7SSjqn3lUVU3XKkYqZAClGGfWANOm7YtpdCVqtyps/vZ8IF5LSGcNiXjjAzWlUzyb5jG2XKjtnEiN0tGVb+YevzVlGbeBCrgfqB9Rs2oHPnzoiLsnRuivC5g+XA9BVXXIFVq1ZhypQpIvvDh18jGbm5kDMdvEy/NAqcOiHgRK8bjJp1iFYi2H61bcD9dFE9B58c5egjFvPVteybbDv6cMO2Tbxclu0EncZtvySaWL9hQ9St3yPcw5bgmzJlCvLz85FodJfaXcenHhlERB6cSCHVcYKVL4scZO1G3eSvn59fWlQ5Pej6PWLoKko7dCuqZiWC58c1gXo3lB/7SkSi99v5YVpWmTbqFbFi21EWqShG6/fzg23/g1N+id3nuvw4jI8v7aJZbZt10pi1fa8mofPz87Fp82Y889xz3nTAQSjC5w6WTfeCCy5AuXLl8NVXX+Gyyy6z1wul+ggSnA9f5eFuLGy2KqzMfgYSaxwE1bYBY/tetgwYMaLk3147yEqUHozaoYw2h9nvKFMx/YzSZgoKIqNuQbbt1NTosHk/2g9PKiYLTn1HE0Xntl9iFaNHqB99EtHr97Zu24by5cvj/PPPt9ErIpaxLPhCoRC6dOmC9evXmwu+IDq7elEQxod/Z2zABnTWfV/dTJCWpbD+nFGRjmlEQUEwbVsPnsJGapQGbPZZL/fZ03J+5L5Eg2PsNkFNweTpt9K24+P9ayd63yklxb999jOsNuJ3McpIYmLkI8DvPolS5MWCT7J+wwZ06dIFoVDI664IhyJ87mDL/K+44gqsWLECU6dOFdUfMYhO2XRhhldLAAZ5cALMC50a4YoeMBoR/FB9U4sg2LbS2QiSo8nqJAXpO1klNdX9J6bT5xMVbZTbCZIdkG2XEKO2veGlvVxNqsVf0P0RwOc+iYmNrN+wAUOGDXO4E0Q0Y1vw3XHHHThz5gySkpL0D6xeHTh82M6pShBVQdDMcc7Lc9TpN0u3zMsrGYD8MNPm9ro7x56PrA17sY7HreqYDtt2RLUdtaMZDQ6lmfNs5hnk5Ijrix5UBq8IJyOQWrYd9DVpZNv+JTnZs6orSn9E7ooVWHwIL4Qly/fx0ifJy8vDlq1bMX/hQoc64S0U4XMHW7dW06ZNUalSJXzxxRe48sorRfXJG/y0TkNFkNM/3YJ5awbRETI/btKu7pOfbFt2VOLiokP8WSFWHVY3SEnx7kmfkkLpwWTbzmIk9Fy0e63UTz+uoxPdJ9b2mNfvMfoOm7/8EpUrV0aTJk3Y2g0YJPjcwZbgC4VC6NmzJ9asWSNG8LnpPOfn23eEPXL25W7n5RUNtnYHNZHbH7BGAuW+i2qPUCDCtt3AL9E/L9cUEvYQHekQFfn2i20TwUVtQz71YNWPGjee17HmE6xdtw7du3ePyvV7hHvY9nJ69uyJjz76SERfnCU/P/KPBZsqqDM22Po8K+qvpvx6fgs+EQ5gxbb9SEpK5B9BqAmqjfD026+TD37tVzSQnOypbYsUUNHyOPITn/z3v+jevbvX3XAMSSqJ8on6kySvv5X/sB3X6d69O4YNG4YDBw6gVq1a+gd6sY7PbLRxap2Wok116+pihkYDrZ3Im9ZXj7VZMV8hMhrs5VPUzcihltNDkZLYQp0i6PQaV7cqWtqNAJL4so7ISJnVtty2a9irwGln7lvUfnpOwXotvOr3X3/9hR3ffYdu3bp50wEiarAt+CpUqIB27dphzZo1uOmmm+z3yIpj7JdpJAZnWD7Ei3V4dkUgpVd6gB9sW8+uvahWqHSU4+PdKRJBuIOI9V92nPmUlCLHm+yaEInXkeiUFHz85HcRL3mx/YLsOxj5ISILtnjlq4hev7fus8/QokULVK9e3Uav/A2t4XMHIbdXr169xAk+M+SZMD84wjIWoh7yR8JhewMu61o4PbQuYzSUXw4cfrPrcJi9L05sw8C6rk5LJJCz7H+0fjcvntBGzrgTds0amSO7DiZO2bVZG+r3OURmXp59P8SuaCQ/RJ+P1q5FRkaG190gogBhgu/JJ5/E2bNnkZCQIKLJIuymOYhIo7O5AXsGPsbHML5Z/VCFUxm9M7rsLLNmvo8EellZ0y/7+9m0a11kR8PLDaqVTpfSwSaH2Ru82PdMD6uDq2zXXk7IkF37Cz/ZtYAoot82Xdd7VHodMHWTwsJCrP74Y7z77rted8VRKMLnDkIEX6tWrZCcnIwtW7agU6dO+geq1/Hp/SIsTrEop51nHZ9L65dEb3gqUoAZ3US8y0pEV+pk3pqBFatrPO3YNQt+2Xz96aeBO+7Qf99vG7DrpQySwywGP5fkl/tm9x70m00D+tc9Lo5s2yqpqSXXLsrtWuvZ6jfxp0SkDyJ6/Z5Q/wPAtq+/RjgcRrt27YS2S8QmQlZ+x8XFFW/PYIqyjI4efhphCgqKRj+HxJ6Z3y7vke2XwJARrNWTAo3WF4qPF/cF3QqNOmzXpfCqsiLL75Gaqv9HlJCWpv3n12vl9O8YhGqhZNfmaNk04N614n24c/6O6vV7VrDrg7A81kQ8+vQeyb7zPxgnbD/86CP06tUL8VGe3yq6QqfTv/Vjjz2GDh06ICUlBRUqVNA85vfff0efPn2QkpKCatWq4e6770aBx468MCvq2bMnHn/8ccyYMUNUk97B+6O4lCKo7JZX97/dNYNA5I3o2QDMemLfPCE40YpO+mXWICWlxIDtRCBEbiCph9qp0ptCzs52th9OIzu5SoJo+16JGWUqcxCianrpoUqCbtNAabt2u0KniPP5KHVUywdxc35exLmC5H+8/+GHuPf++x3ujPcELaUzPz8fgwYNQvv27bFo0aJS7xcWFqJPnz6oUaMGNm/ejIMHD2L48OFISEjwVCMJ85b69OmDkSNHYs+ePWjatKn+geecAxw8KOakLEKLVYwZOcNObd9gA2V3c3Jo0jYQuG1HfhF4RigNNwiOsh5Kx9JqyXwrDraWUIs1lDbkB8c4Gm0aILt2Ex6b9micD8LjJcj8uHs3fvr5Z/Tp08frrgSabNX4k5SUhKSkJFttPvLIIwCAJUuWaL6/du1a/PDDD/j0009RvXp1tGrVCtOmTcPkyZPx8MMPI9GjIhfCNvNJS0tD7969sXz5cjENujFtJO8M6uSeRvn5yMj/wPGNSM02O2U5r8i++aXYZMzhxo63LOcw8wa03o/1lDO9lEmjv1gkSOmJQeqrEXaekWTX5jhoJ0bDtZnfybrG3k8brbP60qwuJutxzOv3GCd9l7/9Nvr07o20GLgfnEzprF27NtLT04v/Zs6c6fj32bJlS6mtNDIyMpCdnY3/+7//c/z8egjNhxoyZAgefvhhPPDAAwiFQiKbFoObo5HBueS3lPvSGA1SVtIo/b7ZqQzrd2M9jrlwiw+jtpbw2qad2qg6NZUqERIliCq6YnYO2ca1bFpE+rDfon+0gXtp3IoSu2XTCtS+hxMoHxOJie6t34smJEnC8nfewSOPPup1VwLP/v37I0Sz3egeC4cOHSq1b6L870OHDjl+fj2EjvZXXXUVfv/9d+zatcv4wHPOEXdSs5FC1P5mZmpDqd4Yz+XmrFh+fsnCa0rF4MBPBYSAkh/QzelUs3O5UbgiSJESP6QVBh03f2+tc1ixaV5BqPUddQoAREAiLZho/d5OPIwV5/hgyheah4h6fJi5XyL9Dr89ip1k5/ffY/+BAzGTzulkhC8tLS3iT0/wTZkyBaFQyPBv9+7dLl4V8QiN8JUrVw5XX301XnnlFcyePdt+g1aiMFqjCssD0m7hFdkJ16EvPsAH6Gv4cRkrE8m8Wy9oXSbW84oo3BJ1OFW4x0l1bnR/FRQU3Tc895+bJetlh0lE8RfCe9LS3J2JYhWRsk27sQWD3Cf5v2TT/sVsUkeUPZudJznZ1vYRchfdKgKnviReFZ/zezrnq2++iauvvhrlypVja5ewzZ133okRI0YYHtOgQQOmtmrUqIFt27ZFvHb4ny3patSoYal/IhB+u40ePRqDBw/GY4895nzoVB49vAxZCTq3UkRpiT8RIsusDXkWTikco7wasP+QhZaZeHQqJVXUvZSSUmRIbjmtWs4OOcz+xMs1KVajhbI9A97ZNNmzPZyMvAfQppW+gJbwEzGpa9aG7G+IqkAeDamhZ86cwZLXX8eKFSu87opr+KFKZ9WqVVG1alUh527fvj0ee+wxHDlyBNWqVQMAfPLJJ0hLS8P5558v5BxWEO7Od+nSBRUqVMDKlSsxZMgQ/QN5q3WKyAew6yDLbej1xQEn3O0ZOL3zK2Hti8gN36MSv+TWurWGxG2HVR0FjIYy80FDdoS9THNV2qAIW7cagbObiqm2Z0Dfpint0znS0qLLnhXwNOfUs12vnpfbeBXde/f991GpUiV07tyZrV3CdX7//XccP34cv//+OwoLC7Fjxw4AQKNGjZCamooePXrg/PPPx7/+9S88+eSTOHToEKZOnYrx48e7soZQD+EyIhQKYcyYMVi4cKGx4NNDK+ZvdqOISqcza8dmIrpZWqcR6lNriS63BJbRZbAiTKO6cIsVexaFw/YMAHjwQYB1YbnXBSv0ZuFJCIrBT9XkrHiIvM8Qr+0Z0L7mZM/WSU0tuX5O2zPP2GvBnvXW77Hi9WSzEpH+ht+XoyxcvBhjxozxZ+FDh/BDhI+HBx98EEuXLi3+90UXXQQAWL9+Pbp06YIyZcpg1apVuPnmm9G+fXuUK1cOmZmZeNTjIjyO3MqZmZmYOnUq9u7di8aNGxsf7Jcohx4u9o8nbdPrTdj1+mqUox/YSWczYSiPLH63ZcA/fUxNNV9/Fw67YzRpadrnIcdZGyc3szbCzHbdXgeohMWe3UK0PQd24GZEac/hsLnQY7F3EXZoVjTIJVu36muw+DJ2J6iVfUtOjvxpgmi2P+3diy++/BLLYyidEwAkSfxjRJLEtqdkyZIlunvwydStWxerV692rhMWcEQqVKtWDYMGDcJzzz2HOXPm6B94zjnA/v1iTsoS5eOJ6FhN2zQphCG3KjISpuyq2QDKIiqdihQa3dDq93wxWCs7FeTKi045BqLa9UOkREtcajl+ymOiVRD6IQ2TFT9FFWX8WnTFaCP1aLVlwPsUTB6Uv5HN8dUoQmfmA+i970XUz2pETu8nZ/E1XE3nVHTouRdewKBBg4StJSMIJY7dtnfddRcuu+wyPPzww6hSpYq9xtzaM421YIbVtgFcg3fxLq5xLEKXm+uvoitWi82wDtZ6lAHjgSIdAT/t7edkQSPWNq3MHPhB/LFiJDb86EzLJf+D4vzq4ZTIS00Va3PRaMuAP+xZuX0F2XMp3r2rJJ3TCZEWF+evlE87VTe1zMcLP+PosWNY/Prr2LJlC1ubUUTQUjqDimO3aqtWrdChQwfMnTsXDz74oP6BtWu7G+VT43RaBEP7yoFT9JYHTqZ+iuyr6HV8gcdKxNqKLYuIeluNaBQUGBulMk1Oz8k0a8MP8DjThDZOpmvK9puf75xIY7FlFvxg63r27IUti/Tq3PIQWWzZ6vsGa/2cGiq1fAw30jm9JgFn2Q5kfL6+sHAhOl52GVq2bGmjVwShj6Mj9F133YU5c+bg9OnT9hsT5eUnJ9vfCZQlH8JC+/JHjPwMOwEkZftmvoxbe3o7xVkksB3ohXoUrehFFF/Rg8eWndwoOy2t5I8Xv6xbjEacLnXP85vzOslmtuq2LYvyxr0QXrEycWF1/Z6d8YsFRlstKLCeziljJNREP45EPipF770nktOnT2POiy/irrvvdv/kPsDJjdeJEhwdpXv06IFzzjkHixcvNj6wdm0nu1EEz0hkZ+qJ4RzX4F3D90VoUjPU53DSJ/ZLlqMt/BJW5P3RHLZlXZxyloFI58mPa7gIazj9uyonJHhsk+V4q2LN77YcDULObc9P/Zu6bMvvjvvY8KNuPPPV53HyXH55NGvC6Pwsfu011KxZE927d3e4Q0Qs4+hoHgqFMHXqVMyYMQN5Irx+njwBo9HGiR1FBY5q6kulbtrsUlqNzlkZoEWKORKGGrj11NQ6Jyu33qr/npPCT8bvTjOhjZu/m932ExPdt2UiOPD8bnbG8bQ0oc8Y9VDv5GbryscYyzykn6N7zOmcDJw+fRqPzZ6NBx54IKa2YlBCET53cHz6bsCAAahcuTIWLFhgfKDIKJ8Ix5g1MqLnHDsw7STS72cRV7m59s/jBKzCkDmt06+4mYrotKh0Mt1TDQlAf2L0uzhhd07ZgBU7thIBdNKOKXJnry2930aEHRulhNrETIyZ4bd1d9EQ3Vvw8suoWq0arr32Woc7RMQ6jq8Aj4uLw7Rp0zBmzBiMHj0aKWZ7y5jBUmQiJcVcrditqBgO2xrc5Wqddk4vo/XsdmsTdlZ8XWzFT9U1lQTAji3hdtn6tLTSDrcfKg1GO8pKim7amFsin+w4NpDt2O1x0oIdm6VzmiH7FVbnA1ie8XZdQF78HN07deoUZj7zDF566SXERcMkjEWoSqc7uFLyq2/fvqhTpw5eeOEF3G20KFVkxU4RaFVKVFqRmUNuwxk3E0i5uSUDp9XNRkWJMC+qdXqCSGHopchUj4QswtIJUlNLZiXcrsKp5UyxOO5ubQYfNJTizgu83nTdzI6dQm3HXghAP98PvF6f03ZsZqNmdmyjmprZc1UpxLzewJzFB/CtnwCwV+Z88UXUq1sXV111lcMd8jck+NzBFcEXCoUwbdo0XHfddbjppptQsWJF508qOjrigPXYjfJpIbqbSmHpJ2JGGIrEqnHY+T5moWb5faXj6lXUQsvZy8pyuxf+Rn2NrFYtFIWoaF5yspjSxHJ/nLBhlomPSpW0X7dix34WcnaxYsdmWLVz0SmhgpEvjYjnrR99CcCb6N7x48fx+DPPYNmyZTG7do9wF9c29enRowcuueQSTJs2DU8//bT+gSxRPrcdaqOHgU+ifFY+7zZe9OcsEtgGab+KNBEkJjr/3UQ6un4QfzJaIlB2hKNVDPp9g3bRKZtpaUViz0sbdnp/PbUdK8VcEO3YzDZ5bNiLSQsHbPjd694S2yYnInfOEoUn/g/js3bak0+ibZs26NGjh8Md8j8U4XMH1wRfKBTCU089hTZt2uDmm29G48aN7TUoai2fGQ47y05E+XjwY1onocCrdEteRowAliwRH+FQrlvyWvypMUr/8qtDXaFCMJ+EFSqI3xxUz+mOdhtWR+707JhsWCxm4S0zUall/4zCkSed08rn3cYLUSgyuvfT3r2Y//LL+Oqrr4S1SRBmuCb4AKB58+bIzMzE5MmT8c477+gf6OZaPhGRHQedcrtCiuXzdiOJomH9zp6ITD+u4/NjdNKJ1Da9qImodX5OrRdkFYZEJE6tp2KNrrDaME91LD9Fr3kIog17LQrV10zUhIWG/QYhusfiQ8RKdG/yQw9hRGYmmjdv7nCHggFF+NzBVcEHAI888ggaN26Mzz77DF26dLHXmFtRPrsOtcnn7UT5RIgxNwdGX6d1isSPIswL0tKKHGLRzi2v4+yUmCPE4qTIs+pwV6lS9F+rNqxnd0obDkIUXwsvxJ7b2zGwpHPKxzhZ9MViGihF9+y3JdJ/+Ozzz/HfjRuxd+9eYW0SBAuue0DVq1fHAw88gIkTJ+Kbb75BQoLOXml+i/KZHROU1DsNWEQYi7AMfLXOaBZpXtuvk5ENWVTK+CH9jKp5ssFa8t6qWJPtzu8FWZRCQct+3Z6sINtlQ5T96n1epP06RLRH95jFHoPvcPbsWUy46y5MnToV1apVs9mz6IEifO7gyah+2223IRwO49///rf9xkTV73VaXdho32wcyc019tVFaRj5pvTTjeSJPnPzyRQO+2OK1U4f1M4K7ybCvAUTKlSI/CP8g1u/jROblbvRNmD9+lAEuwSnHlJa9utEZU0OG7OTzulWdE+U3yDSlfPisfrcvHmQQiHcfvvt7p+ciHk8eUIkJiZi7ty5uOqqqzBkyBDUqlVL+0CrUT6nBnujKInsmFtUIHaLtyQn29s7hzeipnWJ4+LErBl0Ak/SOq3gxdYJXil4ZcSEZx0UL7JjJjvEfogAxgoVKrhTaj4lpciO3Np0HSg5l91ZJyPbF227IiN3QY8Csox7qan2z8MandOzXQf33rO73x6vAFNfcvmcfpiT10JkdG//gQN45PHH8eGHH+pntsUoFOFzh5AkSZJXJx8+fDhOnz6Nt94ymaEyE33hMNtDV8Qx6vfVVsX7+X9gEXtmA57e+6yDqhPBUr2HiMhZOOF5+KJsieW4KLDdUixZUvo1M0FntnG1WfSCRTDqtaF0olmiJKyeEctxfl4DZaWkvVZUimcNlB5GTi9LBU+99wcOjPz3G2+UPoZs115bIiHbLWb5wEi/ScuMjJ6NZv6C2edZ3uc9xsikvIjuMfkMjM/Fgf/6F8qlp2Pp0qVsJ48BsrOzkZ6ejoULTyIlRexkXW5uNsaMScfJkyeR5uZEoI/xNAdk1qxZaNq0KVavXo3evXuzfchr2S5HUvT6YSHS4vS2DHJXvdi3T+8yxdx6P6/tVolA29VkxIii/2oJPzO8qGKodPQoCsiOl+Xx7aaDqoWezHXXFf1XS/iZES22GwuRO1G2ayV6bcN21SJPSX5+pOiz+kyUL4uIdE+7EUAZkVXCvSjU8uGaNVi3YQN2794trM1oQpLEP0q8C2X5F08FX/Xq1TF79myMHTsW//d//6evwmvXBn77zbgxEYVXWI+xY5mK9nmFnpmwcUP4iErZ9MJP9CStk+WLirJLlvO4WVjIjvAD+IpkqL0du+g5ZbEoBP20DtIpoaeGVfjp2Zxsu4mJ7tiMMrqndY1i0W4BfXtxa7P1lJSisUmvH4zRPSOhp9WckxnyfsWv2zCcPHkS4yZNwqxZs1C9enUXOhU8KKXTHTxN6QQASZLQo0cPNGjQAAsWLNA/0EzwyTiR+qaFmeNs1EZenu2ont7gZrcEM0sbomb2WGftAp/WySKy3ErrtGO3rH0wQs+BZk2bM3JczdpgSXljLXyhFQVR901k+pxItJ6EWg6plbQ4LeymxdlJ2ZTp18+8D3qsWKH/HqvdAvq265bd6tmZFbv1SzpnlNvt8n6vm/dBB6MsNje2aiA/oYgxt96KfQcO4OO1axEKhdjajRHklM55806ibFmxaZenT2fj5psppVOJ52W9QqEQXnzxRbRo0QKDBw9G165dtQ+sW5dd9NnF4fL8y/MjxR7PbJx68NNahmV3E3URkURRWz2wwhrdFBrli+ZtHNTYcfCUTo0cYTFyoo0wK1/vJWrn0+iaudV3qw6x14iKKvboYb+N4cOL/vvKK/bakb+T8rf3QyjGa7utUKF0u04KOSfFnrLfFsXeB0NLRJ78eLSSmHHkSNF//Vr9Pxa2Yfh0/Xq8uWIFvv/+exJ7BlCEzx08F3wAUK9ePTz++OMYPXo0du7ciVS9ylgsos+t9Dizfcs0zrE8u5fmoaxpGFriSPlsjlYD92SNHlGE2vmTjZDVAzErliELP7OUTK33ecUfy+brbm3Qrux70NdM2SU1tej3c1LkWR1ElIOuaOEH+G/vVjNblPsu2mb9lDbMi6C+K4WeGp5tUtWujVr4+SW6x4LI/fuE+hAM/mNOTg5G33ornnjiCdStW1fgyQnCGp6ndMqEw2FcccUVOO+88zB//nz9A0WldrqYHqcn9PTQ8nt5ImEsW7cFLWVD5KAe1WmdotKRWR06o7Z4yomvWMGXHmf2vp4AdDo9jvcYnuNE4WSlQy3M0t5Yoiks0RLWaJ6oQemVV8hm3SJKbdZI5Glhd7/datX84RuwPs9F+QZeVOUce9tt2PPLL/jvf/+LuFif1NNBTul8/nlnUjonTqSUTiW+iPABQFxcHF555RW0bNkSPXv2RP/+/bUPFJXaKSISyBDlW/r7FcVNsaKO+PGmPcbFlTyPozXqZ4eoTuu02x+l8bCgdQ9Y2Tdq4MCSfq9dy/95NX5O/YxlnIjkdOzIF5U1ivbxDLZyxG/ZMvbPGKFls1WqmNuvyO0YWPCr8+qU2LNiswZj4LobFpf8gzPAqzXc8gz3R44Ufb0GDfTbNyKo0T0WRBZ0e/eDD/Cfd9/Fd999R2KP8A2+EXwAULduXcyfPx+jRo1CmzZtcO655+od6PvUTlnoycin4RV+cpEvnqUeevvgKZ91XmzRoIeIdYWETdSbL/HcF8o0T6ubBCvPJ0dqRAg/oHTpehKA7uKUyLODekC2upg4JQW48cai/3/55cj37KzPU14zrTVuhHOY2avF6p0RQs8GssthxXWRu/7LL0X/VQo/Eevp3S7UwoLbqZx//Pknbpo4EfPnz0edOnUEnjx6oTV87uCblE4lmZmZ+OOPP7B27Vr92RGWKF9cnP2qhCzHKM6hFnp6WE2rYPEhWAa4cNi92Tz5PEY3IKV1gs1eWc7Hk4psNPvI41EohR7PuiTWc6xdy2b8Vioeqp1pSo9jP07E5tU8G1cbCT2ray8rVeL/jNmA9fLL9tM9AXc3XA+yvVq1abW9Ct5onUXk8S7jlJvPyeH7nF63ZdHnpj9g9nMFNZUzHA6j+9VXo3a9elhidTuiGEJO6XzuOWdSOm+7jVI6lfgqwiczZ84ctGrVCrNnz8Y999yjfZBWlM/Kg0hgaier2AOMI35Gg51ZgRfWAS4uzjzqKKoap/KcWrA+q0VG+TxP6/QyzSMlha2/8sU2O1Yd1WMt7MJzzeSo32efsX+GFbXTJyoKGA77N/1NFG4U22CN5skeLavwk4uD8W5exuKNylG/115ja5MXr6LWQbZnl5w+3kgeS0EWrcQJ2XzNhJ+ZPpWjfc2bGx9nBs/kr5YZsW74znouVkSmcs567jn8duAAVn7wgbA2YwGK8LmDLwVf+fLl8eabb+KKK65Au3bt0KlTJ+0D69YF9u83boxlNLWZ2rno+0sj/s27nETuAsCeyqB8AMh+it0idAD/Ng8smKVsyuJT1CAuNP1T5Bo9t5wloz6LnBQxS980En5W85GUzv+mTfxtsEKbV0eiFwUTsTm1Hq1aWfucWaVVvSrQZsLPSp7ZmDFF/124kP+zLMjf08heq1QBjh935vxOY9Vr07JXEbaq08aWESV7CKeAP2qn56awZMinpmqLPt6v+803Rf+9+OLS74kowmJ2+8TF+XerBpbn1YZNm/DoE09g/fr1KF++vMCTRz8k+NzBl4IPANq2bYvZs2dj8ODB+Oabb1CzZk3tA2vXdkf0qd5XizwlvBPNQFHTen6IGfJaP17MtnkA2G4aN9fXBTrKx3KMExMUWiKPp863fE6g6Lzx8XyfVQs/O4tPlFgRf3a2XVBHVZQE1aFWo3SURTwxeb1OLZHHu4hZPq/6N2IdYLXOZ3eAlYUfwC7+7G4PorRX5e+qZatBjNzJ38mNTdRVKAWeFrzDq/ozvEuhlaLPiq5Vnk8WfkCR+PPb2nk/pnL+8eefGJyZiaeeegpt27ZlOzlBuIwv1/DJSJKEESNG4Oeff8b69euRqPfQNxN8gLCy+Iu+bmnejgqz57aWH2JnM3aWc+p9zgijPrm5/UKg1/KJ2DaBpR1RWyuokb0Jq/uH5eeLW3yix7Ztxu+b3Rysjjbv2ik9UeiWs83jILMeZ3d9HsCXS8Yr/OymnFr5POvAarbGR9R2DKLsVGSksFIl47Z4bNUlwbflhhfM21DBO0wWFPAPj8rPAnyfZxWWHTrovxfrz/78/Hxc0acPGjdrhsWLF9MG6xzIa/hmzXJmDd/dd9MaPiW+FnwAkJubiw4dOqBz58547rnn9A90WPTN21xa6PH6HlrPXbNJZyubsbOcl1fsaQ2g6ues3f19WNrgOS4mBZ/SceOJpJmdU8sZ4vFmtDwLFs+EV+xpnWfHjsh/e+VI2zlGJH4QfM2alfw/bySLdeBVDq5WomVWPs8zsKqPnTs38t9kp2KOsSj2vhujLfB4hj2WY7W6xyParHyeN4Ion0NrdU2sP/dvvftufL51KzZv3oyyZcuytUsAIMHnNr5N6ZRJSUnB22+/jUsuuQRt2rTBDTfcoH2gA6mdWiJPCe9af3WWEUuGEe859M4LlJxbhNgD+J//ftx+ISrSOvV+CJ7UT731dkbOEmtxFj3vQnkDiFiEonceZZqgWvwR7qAUeGp402zNUjy1Blaec+h9HtBvg3dQ1Tr+lltK/l8t/rRwU+zFCHoizyp6Q7nZ0Ka3Lo+1Db2CLlaFnszGjSX/36mTu89qN/cABMD07Hz1zTfx6vLl2L59O4k9G9AaPnfwveADgIYNG2LZsmW49tpr0ahRI7Rr1077QAGi7/m1TYv/n9U/4FliUlBQNBjzTjhrFWnh9THkwdvOMiYj8vMjB1wnbzjRFURN8dMG67KDxuKoWdlTLzeXT2wZCT9WD0PtoYgSe2patYpse/duvvMQJRj9RvXqFf2XdaCxK/pYZs+sFnMxa0OE2FNzyy0lg9e//83XvhP4MbongD23lGQNOTW8K10OnmFNRDEWZRt2xZ4aWfwVFAC9e2sf42Yqp9vr9rZs3YpxkybhnXfeQQO9newJwkcEQvABQEZGBmbOnIn+/ftj27ZtQje0VIo8JTzFV1gjcbJPYaWwi/pcduoIKAdzJ8QfoF0AJuqjfCyI2saBtR3W7RWAIsNITCz6s1J1ALC3AXtqKv9CFp5zqb0YdeSJBGARvA63LPDU8Ag5K6KPdw89vYGXp2KW3IaVNCErg/att0b+2w8C0A9wpnMqxZ0deAuyFBRYLxBqtxgLUDL8sw6TPOeRj129uuQ1Wfy5vW6PBVFi7/f9+9H/uuvw+OOPIyMjQ0DPYhtJEj/H4+/Fat7g+zV8SiRJwrhx47Bt2zZs2rQJ5cqV0z7QJMr3zIraxf8vsj6DErXwM/MneNpXt8XzWbNBWN0Wz2Ar8tgg5/S7egzPcUbH6j3lrRRnsVI9wKgfRu2InrbWOm7fPu1jYnltVM2a7P3mGaBYj1WKLRFVV3lRDqROrO/jqYQxe7b2+6z9ikIb3X/7U8X/zzqE+WnJs7otUUMpAGRn8x1v59hwGBg8WP99N6N7op7xOTk56JiRgXbt22Pe/PlUpMUG8hq+xx8/ieRksevs8vKyMWUKreFTEijBBwBnz55Fjx49UKlSJbz11luI03sQKUSfUuBp4YQ/AhSJPt6tFqxU9GT9PO/kcny8d4LP7WMAcbN/rgs+O8eyPrlZvRU7FQjM+qLVjp3onp1j9+0Tuz7KTYea15nW2xIHcFf0GT20eUWfnYIuRgOpiDV+rAOWUZuzZ8fEhIRS2OnhhODTapdlePHDMAqUFn1OiT09Bg8OptgLh8MY+K9/ISsnBx9//DESEhLY2iU0kQXfjBnOCL777iPBpyRwgg8Ajh07hksvvRQDBw7E448/rnvcM8/wtSta+Mk2ZmUC2kpFT6PP291GinW5GCt2fBre6qCsxwgTfHrHqS+ioK1CLB0r59fyYHQ8ixdg5LHw5ivl5LgT3TNCz6P588+S/w+K4KtWLfLfTvTb6gDL+rBmaV9vEBW9j43oCllW+6JuT/28DIjg++ueWaVeYx3ueIY5K1E+3qHLzjAqcgjNzub/jAixp3fciBGR7/lxMnfygw/inVWr8OWXX6Jy5cpsJyd0kQXf9OnOCL6pU0nwKQnMGj4llStXxurVq9G+fXvUr18fY8eO1Txu0iQ+0SdiuYmWXVlZr6f+DG+k0M4aQS3UA7iXhd3U59brC29OONNaPr11c6yd4oVnvZ/ZseoLwrsYxUolTyV6peOsLE5JTi552uvlKNk9h1WUETE9IzxyxJ2+AKXXubHYZjgs9jheUlL4By+jAdxsABVdhbOgwH9iDwCmTDE/7tFH2doXwN9Tnyj1ml9qY+khm4qVZc5mbZqhVcjFytCmNk+zIZTnHFZ3fdHallJ9jLKQLSuixN78RYuw6NVXsWXLFhJ7RCAJZIRPZtOmTejZsyfeeust9OrVS/c43kgfwD8ZzTOBYGW9nh3hJg/sIjOXlMj+nlsRPqvtsRxTBoXmB4lcW+dEvpH6WLMnsJ3FJXY8npwc696KHlqeixP5SoC4fcJ4jhOFyMiOqCif1iBqNz2Cd6ZM3YaV1Ai9zxl9F57B0+1BkbFvZ2Ge3ubF0mURET6RS5zlz9mZg7I6dALmn7Oa7skzhIkcOkUx+Za/I18oX774f1evXo3Bgwfj448/xmWXXeZux6IYOcL36KPORPgefJAifEoCvQFPx44d8dJLL2HIkCHYYbC/1qRJRX88sA5yaWnWJn9Z2lf6KvJneAd5Zd942uD5TvIeKk7speI2hShjfpDIsmEinTflsYmJ7D+IUwZs1kZysvXQtR5paSV/ThJ0Q2fBCbGq/v3Mfi874QurYk/ZBi8pKfqf07tvvBJ7AmERe0FAedlYnpdWTCQctvfzhMNF5+Ud4liHbbldnmGeZ6jwpdibjCKBp/z7h2+//RZDhw7FokWLSOwRgSaQKZ1Khg4din379qFPnz7YsmWL4XYNVlI8AbbUTatpm1YykFjPZfQwEp3yabT/nl/29XV7uwfmdEzW1ErelE0RG6+rUXsArJ8zakMv1dPsc2akpZV8xm9pn7FMairfoMCTa68cmK2mm8r2KN9PrG2wev9KO+MRpaLFnsui0KtUTSvbKIhGS8CwbK5u1kZamth0TBm1WWZl6R8rel7IT3Npv//+O/r06YP7778fQ4YM8bo7UQttvO4OPnHF7TF58mT07dsXPXv2xLFjxwyP5Y30AZHbLpkFD3iDH1rHs/oAogIt6nasZjHpEbQIoNAon9O5q2YXltep441OKD/H8h2M2khNtReVMTqX8ub1W3pHEG4KM4y+Q4UKkX9WYI3s8vRLjZ79sQxcvIMmr617JfZcFoVBxOinMTMdFhMwa0NkgFzvXFq3Ls/z3M9ib/Jk7dePHTuGjIwMXH311bjnnnvc7RRBOEBUCL5QKIQXXngB5513Hq666iqcOnXK8HieFE95oBOdeaZ1fEGBNX9Xyxe3ItrkdliCIXZwYlD3ZPbYS9GXnMx+Ia2IPrkvvLMKLGFlM2RnWJ3TLBK1+OO58fzsvbDixHdQHmsm8KxcGy0bYBHwLJ6pHc/bitjjQfQMnGCiJZ1Txu6cE+/kpt75eCdIlbcB77DNei75lk5LY5+78fNwqSf2Tp06hT59+uD888/HnDlzaK89h1EHBUT9EZFEheADgDJlyuD1119HYmIihgwZgrNnzSszaYk+o8loXiPiGXRlv8WOocrns+MfyL6+1TWDfodVGDJF+ZzAKeeOV/QVFBStA7SCOtpnx5BSU63PXrAie0p2o1CxjJUonlXRZzVSq5dXx+vhy4M0a1RbfT4enJjYiYHontuOX0qKuHPZaceqOVs93uy2D6LYO3v2LAYPHozk5GS8/vrrKFPGI1+AIAQT+DV8SpKTk/Hee++hU6dOGDNmDF5++WXDmZlFiyJ9BtalGrxLO3jWAlo9h0xqauTgKWL9nNJ31voOorIGtcjNLd2+X9YEAmBfJ8dynPzD8az9A9gXqLC0K2KNnvKz4TDfQhU18jWRbxQn1uLp5TApMVrEEu2o18IZCTredXM8x8vntbo2T/lZu2EcK5+3IvZktGxUeQ08EnGs0T3RlTeV+GUmn3dNnvqzdjJr1NdAvlVErL3jOV49NBw/LqZdt5AkCaNHj8aBAwewceNGJAd40iNI0Bo+d/CT6yyEChUqYM2aNfjss89w5513Qt51YtGi0n9qeI2O16C0lhSxnMNOagjP51mXYHkd+dML34vaE0mGOcrH62yJzj/gUdDK/euUOFWODrC+Nk/rmni1Dk+dyxQNkUAWm6tUqejPye/Muv6P9TNmyBMRVrBqy3bEnh7yuOGEUxoAR9fJ6J3IpcRGKId/O8FmPURlVFu9zvLwof6z265dtKJ7kiThzjvvxIYNG/DRRx8hPT3d/Y7FKEFK6dy3bx9GjRqF+vXro2zZsmjYsCEeeugh5OfnRxy3c+dOXH755UhOTkbt2rXx5JNPOtMhDqIqwidTs2ZNfPrpp+jUqRNSUlJQv/50rs/zTCBbifZZ8ZnMzmP2oBAd9QP8me7JcpPn5jqUOcly8sREcRFBJbyl6OT2razPMzuP3nVgrcZp1IYSpeiTp8dFRPd40LuZgxQRVG/Mbhc7ETgZlkGS9zzqQdLu5536nBPbNPC0GwCx51dYo3xGww5LGzzDljLa55bQM4NlyDl61Jlz66VyTp06FcuXL8fGjRtRs2ZNZ05OBJ7du3cjHA5jwYIFaNSoEb7//nuMHj0ap06dwuzZswEU7S/Yo0cPdOvWDfPnz8euXbtw4403okKFChgzZoxnfQ/0xutm7N69G507d8att96K+++/XzOqZwaPP2B2rJYPY9UvUn7Oqh+ibMOOAHK6BoETG7rztJkA8/WgAJzJW+LNceINc1rNQdI7D4+HoHduq16G/DkeseVkSJ8VpzybKlWcaZcV3sHNqvA0Ow/LAGXUhltCD/Be7HEcy1OsxYmhkXeo42nbbsaIiKFNqw27QyPAPjxGY0rcqFHar0+fPh3PP/88NmzYgGbNmrnbqRhG3nh9yhRnNl5//HF3Nl6fNWsW5s2bh19++QUAMG/ePNx///04dOgQEv+phTBlyhSsXLkSu3fvdrQvRkRlhE+mWbNm+PTTT9GlSxeULVsWd9xxB7fosxvtM5uotrpWT720yQoiBnS3Ul9E48iefCLX81k5FuCP9PFE3dTnAUrOZcWYtM4twqNR3nQiF7E4hdfCzEuUv5XVyKDe53grr9ptQ4k6bZTle/khsuZAH7zaf48HraGAdyjlaZsFZaTPzlClt74P0B4e/TIsusVTTz2FZ599FuvXryexF4VkqxbHJiUlISkpSeg5Tp48iUqKCcstW7agU6dOxWIPADIyMvDEE0/gxIkTqFixotDzsxJ1a/jUtGjRAmvXrsWjjz6KF154QXeGxwgra/vCYb7UTSs5x3KBFrv5ym6LNtFr7ZzGkbLjToQtZayEa+04tnbzY+XFKyLEnppoWW8XRPR+FxFl/Yw+Z2fNqN11p4D2/WA2UDt5jzsg4qJhKwYn1/oon80i2rECy/nVt2E0iz0t3++FF17AtGnTsHbtWrRo0cL9ThEAAEkSv35Pzl2sXbs20tPTi/9mzpwptO8///wznn/+eYwdO7b4tUOHDqF69eoRx8n/PvT/7d17eBXlnQfwby6EgEgIBBuKXNRdAg9okFA1cqu1BFwXRBQEWUCuglRdqjYISvtYWhbownora8ALxpZolQ1gDSSgFbWiokCQJ6hYWRQILqhJAUmAnP0jnTCZzDln5p33fWfOyffzPHlayTkzk3PmzHm/83svlZVS9+9GXFf4DDk5OSgpKcENN9yA2tpazP3Hegyyq3128wqIVu5EeimJVAv9qNDZzTQua1yhm8qdr1U+VY81Xli3lUHA+zRzos81N7IBb7N6RmJt2ajq+knnGRdBt3e/RC4Isi5mXrbjJIhZK39BCXtBqDAqpPsj3LatnDVt3W5H5O80fzydzKwZa+zC3vLly/HII49g06ZN6Nevn/6DIi2+/PLLRl06w1X35s2bhyVLlkTcVkVFRaMq8KFDhzB8+HCMGTMGM2bMkHPACjWLwAcAubm52Lp1K/Ly8nDq1CksWLAA06aJhT7gfHtEdZdNkV5Govt0S2ZYtPuSCtLyC2fQwvlYPt2hL1LVQCT0AWKhS+S5dsduPrFkzl5gfY7Trp/knteJYJyGPpljM7xsS7TKbX6ek3M5AIuwqxi75/axTsj4/vDarVNm6AMib0tWoDV/dOMh/NmFvUWLFmHFihXYunUrcnJy9B8UNaKi0n5+2FNbR2P47rvvPtxxxx0RH3PppZc2/P/Dhw/juuuuw7XXXouCgoJGj8vMzMTRo0cb/Zvx35mZmQ6OXo1mE/iA+krfX/7yF/z0pz/FqVOnsGjRIkybluA69Im0ZWQEPy8LqsocnqKLcfzKZtUMCrehD3C39h6gv9oHyAlrkbYl8xvC7s4NQ6Bzsmf6BCKHvqAEPUD84mS9AFv/Vuv5HYTZrgIqSDcHVbILkCorl7Ee/qxhLxQKYcGCBXjmmWfwl7/8hd04qUHHjh3RsWNHR489dOgQrrvuOuTk5ODZZ59FouUClJubiwULFuDMmTNo0aL+BllZWRmysrJ8G78HxPksneF88sknuP766zFmzBgsX768YXF2u+Cnoh0DuP+CktW+kTG7p6F1a7EvWpG2hcohK0pm7ASCNRunyD4MKqas89JKOXFCzXi/aGKxxaNCRobe/nHmi4zs2daCEvaiUXlRc/FYt2P3VF4CRS5nsicldkpGlc9ue7o+huG+51VNMCyDXdibO3cuXn75ZWzduhVZWVn+HBg1MGbpvO++KrRsKffaXlNTjf/8T/mzdB46dAg//vGP0a1bN6xZswZJSefXazaqd1VVVcjKykJeXh7y8/Px8ccfY+rUqVixYoWvyzI0qwqfISsrC2+99RZ+8pOfoKqqCgUFBUhOTm7o4qkq5Jn50WPJ2K+M7RrtHFVj8bxQMjbvH5R27QScP16kr5HbLp6yWhPWKp2MmQwA+a2oaMJdGOI5CIabQTQxUV9rU8WU2rES9AC1YU+hWJid0wkZ32myunYajA4JOi49kf5+6+Xh2LH6fwtaEDxz5gzuvPNOvPHGG3jrrbdwySWX+H1IZKKyS6dsZWVl2L9/P/bv34+LL7640e+M+llaWhpKS0sxZ84c5OTkICMjAwsXLvQ17AHNtMJnOHz4MIYPH46uXbvixRdfxAUXXAAA+J//0XscOnotyd6uk/ZOuL9LdYVPZB/KqnxA7FX6Il0pZUyxqiKoOdmmH7fDg9bysSO6LITq19MasGXsT8bFz24Bd5HnOSF6sXR6TC63L3v8nvmjonJdPYPTCp/dd5fXuaQSE733Eg/3naoi+Km8eavismhcxo4da1zdO3nyJMaOHYuvvvoKJSUlXFQ9QIwK39y5aip8K1boWYcvVjTLCp/hhz/8IbZt24ZRo0bh+uuvx6uvvoqMjAzcfHP973UFP+v4PpXnps7zPojVPxlcVfncUr3unrEPoOl+nE4a4TX0OZmBQHSb4bbrV98np2FKdgtIx9p+Kqp8kbpXeNmfjLnnwwU24z2PtF2dYc98TNG4eE2dhj1j126u934v1aPyu8m6Lq9I6It2fMbHRlbwU/1drfLyZA57x44dw4033ojWrVtj27ZtSEtLU7djEhZLFb5Y1qwDHwC0a9cOmzZtwsSJEzFgwABs3rwZ3bt3BwDcfLPeap/RJlF1osoKe6K9mczBVvWH0W23TpXdQF2HOJHQB4gFv8RE74uui1IR/MzbVbFtVZrz4utu+tC7vXjYTcYjcgFyEtjCBT/dYc/tPhy27t1kgFjozuk21LiZxyra8k1OQ5/bY2zf3lvoi/WbsjfddP7/f/HFFxg+fDiys7NRWFgofbFtolgT4x9vOVJTU1FUVIS8vDzk5uZi586dDb+7+WY0VPxUad++cZsnMVH+hTdoFW3jbzT/xBLXCw/rGIfjtMEn60WXseg6UH9yquy/3K6dnoG5zZHoOWRc9ETeFyf7DLewu3kbTrYjsgC7+fMV9LDn0DkkRX9QwCUm1l8OVH3fuLmsRlvOycsxZmSc/3EqFr+Drcxhb+fOnbj22msxbNgwFBUVMewFnOxF11VUDONBjH/E5UlKSsJjjz2GuXPnYsiQIdi4cWOj38sOfU7aO7IuwkEKe5HaP34HQLd3pWMq9EV6YUUatU726ZaK4Gf+e72EDPLO3BL1+gEP9/xoQc/pdgDv0xi3aeP+gqYj7DUTKr5P7E4J0e1bT1Ovx2r3XCfhL9aDHtA47G3YsAGDBw/G3Llz8eijjzaZMp+ouWr2XTrNEhIS8Itf/AKXXXYZxo8fj1//+tf493//94ZlG2SM7fNyQ1vkjoWMoStm5i881XdQzNdpkS6XSrtp6iKyeLoxzk5lnyW7fQJiXUStVHX1NLN+EGUMfmmuDYtwXSSjlRi89u02P99NyLPbDnB+WzKCXqT9mPdlpivsKa7u+dWdU+fHT9a+2rdXN5GLlXlSEzfPCzoj7IVCIaxYsQILFy7E888/j9GjR/t7YOQYx/DpwcBn45ZbbkGXLl0wcuRIfPrpp3jssccaFk8E3AW/cG0ekZPRbfCzu4Mouu9IxyNzm35zGxJdT+AiEuBEQ59Iy8vpoulW1gUeZUxpZ5zAoi0iNy0aFQGwOXI7FtFr6GvfXu4FrW1b4OxZ8W04DYvWi6euO1MxfwfsPN2BJfkfraV27eTcizKOX9VELuFYC+yxMJFwOEbYO3PmDO6++26sX78eb7zxBn70ox/5e2BEAdSsl2WI5uDBg/jXf/1XZGZm4k9/+pPtDE92oc9Nm8dLWyXSc53e8Hazf6dtGdmT1RlE2iq6nqN0qQbdzzE4CW3RWh0iwS/SNlXNduDkudFaRvFyy9wp64VO1cXMjvUC5zX02XUldhv8RC9udhccpzPmythXBCJj92SvLBPuY6X60gacD3l2REOf18ubikubWawEQCPsVVVVYcyYMaisrMSrr76Krl27+ntg5JixLMPs2WqWZVi5kssymLHCF0HXrl3x9ttvY/z48bjmmmuwfv169OjRo9FjjGrfW2+J7cNL1S3cc0WHsMgKakGq/J0+bd8uinRcWrqCuqnaGS+ozCUYnIhUqXPa6nBb7Yu2XfPJ7bUvlFt2d3JipXXklZO7WF6qdU6eG20SFsD9/iM1BIzWfrTgp+IulvVzYP274iTsWQXhnkmkkCfK6d8VqdqnOugZzF0/zR/7IF3qjLD36aefYuTIkbjsssvwzjvv4MILL/T3wEgIu3TqEYDLa7C1bdsWGzZswIgRI3D11Vdj06ZNto8bNMjbfmQM1nY7X4HMY4i2zSB8kZvZzRLq5VhdT+ACNJ4W3enBiE7QIJpgrRO6iLxATieFcbvdcCe8rpYRcH5GhIsuajxDQiwus2A9/qD8LW4ubE7fPzcTBCUnh08BurosmK8HGsKeTkH4jjDeYjdhz8npI/J32Z3uOi9pBuvHPiiXByPslZSU4KqrrsJNN92EDRs2MOwRRcEKnwNJSUlYunQpsrOzceutt+KXv/wl7r///obJXAxG6BOt9gHiN6plTs5irdB5ncPAvN0gVf8iqa1130Y6hxZIwjl3TxIZaye6+LnIWECD0brxMjYv0vhALy0a88mfmKi/8heOk5aQztvmQV+MXeYkLJGOQbR7j7Xip7t/uujzBJ7jR3VPNxmVvLZt7bt2ygivGRmxs6beRRe5f47IZWLAgPrJWZYtW4ZHHnkEBQUFuP32291viAIlFJLfHuRgtaYY+FyYMGECsrKyMGrUKOzatQurV69Gq1atmjxOZ/CLVuCQEf6Sk73NY2Cwto+i9VqS5dSpOJy5XFfos75JMiZksQY/WS0T8ywIgPvg50eJQSSEiRynzrsroqHPmDhHxsXG7gIqaxyHsR3R11Rn2KNGjNOibVuxy6cdY7FzmZcPI4ya55JyGv50X8Z0XY4GDAC+//57TJ8+Hdu2bcObb76JnJwc9xsiaqYC1tEu+Pr3748dO3bgwIEDGDRoEP73f/837GO9dvMEwncJcdrLyWtXGaNtI9LlxS2v3SplE7ljLbRAsWhDzkv3zkj7jPYmeF23z+C1D7JZpA+JrH242Tc5Y7c2osyLjDHzpqywZ/7MiVysdIc9TdU9Uaqrgrq+U2Qs7RntO1bXur1u6Ax7Bw4cwMCBA3HgwAF88MEHDHtxhAuv68GWioDMzEy8/vrr+NGPfoR+/fph8+bNYR87aJC84AeIt19FvgzCtZF0hD8geAHQqZgIfdZ9irzQoqHPevIYDXLRRrmTYzaHP9nj/qipSK+nXcizknFxMd5rGRer1q0jf9acfH5iIOyJCkp3TjffGV4unXbfgaL3ldyennYfHT+Cns6wt2nTJuTk5ODqq6/G66+/jszMTPcbImrm2KVTUMuWLbFy5Urk5ubilltuQX5+PhYsWIDEMFdBL908rRd3Lz2enHb3dDOfgSHScckoCNm9tKrv4mhdvF10jJ1o907zBBCiLTa36/ZFa9m4XXRdtKVjbp0lJ8f/untextbJ2KdICcTpLJlW4VreIn3TRVKBtTuplwuI5rCns7ong86g4ySUuVlTz+s9CPO4OZ1DgUVfc5HLT25uHR55ZBGWLl2KlStXYuLEiWI7p0DjLJ16MPB5NGnSJGRnZ2P06NF47733UFhYiPT09LCPdxr8nN78lhH+rB8Mr3MaAHKG4TjhNATqHsd3DknuJ3AB1Ia+aNUHL7fpowU/t60bJ8FPZmtPZLCM7GOIJ8bYRBkXAqdBzUmJxU2I9HrBsM6o6fa14Ji9RqyXEBkfvWiXTZFQFi30ySheW7ehY/kEnUEPAHr1+gYjRkzEJ598gnfeeQfZ2dliGyIiAOzSKUV2djZ27NiBhIQE5OTk4KOPPor6HLtunk56OlnJ6K1k7p4ha6iLrm6fdmQss2AmmoOE75bL6t7p9kWQ0cC0K+V6OQnCdfeUFbTsjs38QXT7gWyOIs3TLusCEG47ouM0I12conXfdMq6DfNFMdrr4kNVUPR6paI7p/Wlsnu5VN7A8/rdZXc6yvg+dLINFcsl6A57rVp9hJycHCQlJWHHjh0Me3GOY/j0YOCTJD09HevXr8f06dMxaNAgPPnkkwhFmRfWPL7Pa5tSxpdJ+/ZqQlrbtv6Pw/Nr376Evtatxf/gaBO6OGFM6tK2rdyTyQh+sgKYyMAZBkD3i3CpCH2yJuOxHpusoOdkO+ESTQyFPRmchDvdxyHDRRfJ26boNowlQs0/bukMe6FQCDt3PoFBgwZhxowZKC4uRjvVk26R7xj49EgIRUsl5Nqbb76J22+/Hddeey1Wr16NtLQ0R8/bu1feMbjpPRTteuq1V1akto+bD6WMApQfw2mEunYavNw+93rrXfT51haCrPnPgaatHi9r7slohdlRPaDGy90Lpx84u5ah129QGd0727evXyRTtjZt5GzXa2C0u8g4fd08XNxUV/fCfVS8XqK8XlpSUur/1+tKM+G2axAdIiyj944bX38t/lwzkUvFiRNVWLVqGt59912sXbsWgwcPFj8AignV1dVIS0vDpElVSEmR1L3sH2prq/H882moqqpCW1ld12Icx/ApMGTIEOzatQsTJ05Ev3798NJLLzmaQrh37/r/lRH8nA5VkT3sxSpa+0fXWnx+MhpTWsf0eX2u8XzA+TbCtRCMk8Br68yu9WM+gd2EP5VlhGhVL50zLIQjcqvfK9EFPa0V1ZQUeaHP3AXZ3EoX2b6KsAdEPlclhGgZ1T2Rj5MfM3tag5hBxvKi4bYNnF+rzyndQc9gXBZEnm+ERZHv8H37duC3v70NPXr0wK5du9CxY0f3G6GYxUlb9GDgU6Rjx4547bXXsHTpUgwePBj/8R//gZ/97GdISEiI+lwdwU+kl4SOSVlkLhovm9YZO838DH3RtuGmZeAl+DmdIs+ge9YENzIyvN0+133r3bxfrx9Kp6EvWrdZo3UtGvyiTRvsZvsyuoGKXliM89CnfpB+db90KlIIsxINfU73YZzSkYKfjNfTr0tLbq7754RCITzxxBOYN28eFi5ciAceeCDsTOdE5E3AL9exLTExEfPmzcPAgQMxfvx4bNmyBU8//TQyHI6mVhH8ADlLJDgJfzImuaN/8Br6ALnVPi9vjpvgJ9oCEq38xTs/lmdwSmRspNtqn9uLX7Tg52fYM3hICV6qe7pmYnbLTcizchr6vOzDLvj5HfS8Pv+yy9w/59ixY5g6dSp27tyJ0tJSDBgwQPwAKKaxwqcHm9QaDBw4ELt370ZycjKuuOIKbN261dXze/c+H/68MOabSEnx9oVlpWuwvYyB/X4NawMkdJ3y2jCU0bA0JmSRIdrkFrJOKPMEH35X92KdjLsw5tdPxkQ4Ti5oXs9bYx/m/TTjsBck5rdG5vdapH3JkJlZ/yNzlm0/ni8S9rZs2YIrrrgCLVq0wO7duxn2iDRoxi0Xvdq3b4+XX34Zq1evxk033YS77roLixYtQoqLbw+Ril+kdpTXXlF2jC8v1V+85n2ZBfWus0F4fT6DjHF5bp4faep6WZOx2FX8VIQq67i1eF9sXRWvVUKjh4PsyVfsqn2ybk6YmavHXv4GH8NeLDN/t6SkyJ0TCmha5VPxXWbepugaejLuvegOerW1tXjooYfw+9//Hv/1X/+FadOmORrmQvGNFT49OEunD/bt24fx48cjKSkJf/zjH9GjRw+h7YQLfl5ulstog9m1sfycAM8aAv2e7RPwOHMnoLZU6bYhKbPFpWvavHCchEC/ZlSQuQ2v34ZOnx+t+7qKGTeNbcoOe9EuQG7+Fp/Dntfqnowba04uYU4+trIDH1D/VsvuCe42OIYLf0G4fIiEvU8//RTjx49HXV0d1q5di549e3o7CIp5xiyd48apmaWzqIizdJqxS6cPevbsie3bt2Pw4MHIycnBU089FXXNPjvWrp4ylgjz2jUmXBvL63a99J6ydgUNQhUwEN07jW147Ssro2ub9eSQ2XXUzUkXbb29ZlpVaSJci9HtGn2yyyft2okvOBaJk3Pcad9CVvbCEumeKWsBdqOHubE9Wcu/iX7v2X2MZIzT0x32QqEQnnrqKeTk5GDIkCHYvn07wx41wnX49GCFz2dlZWWYMmUKsrOz8fTTTyMzM9PR844fj/x7mTfOnW5LtH2uayI8s2htLieh0PcqHyCne6bM+dFFbrc7bQ2pnELP6bZkLKkQhFv0Mr4N6+qchTqnvFy0IrXOvZSAZF14amvldC2QEPZkjN2TcdNMZoNM9C12+vaKVPtkj5O3Mq+Z54QfVb0jR45g+vTp2L17N5599lkMHTrU20FQXDEqfGPGVKFFC7lVuDNnqvGnP7HCZxa/twpjxNChQ7Fnzx7MmTMHffr0QUFBAUaPHt3w+2jBLhyZ4/OcLE/ldT6EaNvXTfHSVwAkjOcD7MfkuW0Uyli6weBmBk63LSLzSaZ6Kr1wIgWcIKyv55TbcXjhKmYyy+VuZ9x0WoIRWQ5E9h2mSBdIjV0OdIa9aJchmdd6N0OKRd7adu2chT7Zl5xIr2G4j6Q1CMq4vyQS9l555RXceeedyMvLw549e5Cenu79QIhIGANfAKSnp+OPf/wjioqKMH36dGzYsAG//OWjaNs2zfO2ZU/MYrc9mUNlghj+rMxrG3q94S4t9HltNMpYusEsUiNbRqvIOOnCBT/ZLS8n24v1MCjSDVJ2H+looc9LPzunwU922It27oS7iFhf1wB25QzgITUh6+2MFPp0Br1oRBZPj1QtdBv2qqqqcM8992Djxo1YuXIlbrvtNncboGaHk7boEQOX6+Zj3LhxGDRoEKZMmYIf//gKrFjxNIYM+amUbasIfkbbS8WgeWMf5v8f1ADolZTQJ6vhrTL4qai42VX9dEwR65YRBkVacm76brkJbbK+EXWEPlkDqoDwwU930IvGfK64ab2HeV/tqnsi1Z/mFPKszKEvSCHPyu37anfZuPBC9/vdsmULpk2bhp49e2LPnj3o3Lmz+40QkRIxcOluXjp37oxNmzbhqaeewuTJN+P222/Hgw8uw4UXyumDLKOCZm17mb9cVc2YBjT9gg1CAJRR5QMCFvoAed08jTfN+F9VdweA+vBnnCwyp9jzO0DatcZkjQMMcuhT1Wo3qNy+zHPG7Xtt8/gQEqTM0Bbku+Yd2ofw/Wn1U/ybh9nLWNnFz6AXjtuwV11djQceeABr167FkiVLMGvWLC63QI6xwqcHZ+kMoMTERMyePRt79uzB/v37MWTI5fjoozLp+3E7e5h5/epwrDOdeRVpO9YZ3fxulweCl1XprcwzeboR6Q2ReXJE2q5xsjo5aSPhSaWXeYZU0fPPoVBqqyY/UvgZ9pqJVqmhJj/Gv6tgnIrW09HLzNgyL9UyZt8E6oOe27BXVlaGyy+/HPv370d5eTlmz57NsEcUQKzwBVj37t1RVlbWMJHL+PHj8bvf/Q5nzsidcShad0/R9rLqyp8du7aW6kpgoKp8Bt3VPreNXJGJNKJtKxLzSSx7gS2ngtgXzu8qn5PWssxJhYCIwc78u4TT37vbsOybA5LCXgix3/h2E+Rapcqp9Lm512CcxjqW8bTys6p3//33o6ioCMuWLcPMmTMZ9EgIK3x68PZhwCUmJmLWrFnYs2cPPv/8c/Tp0wfbt/8ZHTrI35e1KOO1OGImUvmTVQiKpSqgjFn0GshsWdjd3pbxonopCYs+z2n1L+gnSxBFO+eirXMYjoRqn9sqnqvKXzMIezobUHbVO7fPFxGukudUtCU8ZXff9Cvsvfrqq+jTpw/+9re/oby8HHfeeSfDHlHABfCWM9np3r07tmzZgtWrV+Pf/u3fkJeXh0cffRSZmZnCSzdY2X1JyVyizeCk8qd6eI3dF6+XgpisKh8Q4EpfcvL5SVJUlE3dVP1kniDW0Pfdd/UDdWQM0IkFMqt8QNNzTrTPmx2BSYVkdNW0bqOh+hfQoBdLVHXDdFrpU9VruH37+ktIhzY1qDrdUtp2ZZ4iboPekSNHcO+996KsrAzLli3DtGnTGPTIM1b49Gh+3y4xLCEhATNmzEBFRQUSEhLQq1cvrFq1CunpdUIVPyc3273e8YzGXOAx2vCq52oIx7gDa/ejm++VvmgvgsrqV6TKnaoxgGbGrAwilahmrCY17fxPmw5qX7soFyTp4/Jstl+T2Ao1Z5NQc1bSZ1Vy2AtaV86kszWNflol1igLe4Zw21f9vQYACbU16NCmBgCQllrT5MctmRU9wF3Yq6urQ0FBAXr16oXExERUVFRg+vTpDHtEMSQhFAqpveKSMn/+859x1113oVu3bigoKEDPnj0B2C/WLrvdpaLyZzC+pFXOuCY7rxgFDdnhUFqlz6BibS8d06WeOqXnToBIC9CPgTuA/GqQw1uiNanO1wdtmaLh68V0MVIV8MzcnO4tkx1+fgMe9pzeLU866zLIaOg2bXyPqAx3hoRa90HOzK4SKPtj7raqV1FRgZkzZ+LgwYP4/e9/jxtvvFHuAVGzVV1djbS0NNx4YxVatJA7N8WZM9X485/TUFVVhbZt5W47VrFLZwy78cYbsXfvXixcuBD9+vXDz3/+c8yfPx8dOtQ3jI8f13ODXVb4s96Ntf63jim3RRntebdfztEaUq66dzrZeUqK/L4Oshd5NGlowHuZTMMpLwN37MR4l1A3wS7sNmoT1Ie+1FRUVSdA9Xe6yOkdrvrXKAjGWDdO16HOT9XVMK4cIQnnsx2vIc+sUeXPQVf8v9dd4Gr7bsLeyZMnsXjxYixfvhyzZs1CSUkJ2pjXPSWShF069WCFL058+OGHmDNnDo4cOYLly5dj9OjRDd0tdL3DosHPS7ce0RCo8sayivZbAiS/iSqvhhKCn9NKjbTwp/D2f02tu3O05ekqZw90eKKdTHTeylPVfVl26KuqDv+ayg5+KgvYbl7vpERnr6GT6l5CncueAzLXWLSSeTGuro76kFBbOcFPZtBrRMVrfYHzYBgKhbBu3TrMnTsXnTt3xpNPPol+/frJPyZq9owK3w03qKnwlZSwwmfGwBdH6urqsGbNGuTn56Nv3754/PHHkZWV1fB7ne+00/AnewyH0wDY7AOfIUDBz2t3POHwp7ivl9vA55SKdqHq8apegl+kkBeOl+951T2VVbzW0ruAG4Ia+BwEvHBEgp+ykAeoe41dhL19+/bhnnvuwa5du7BkyRJMnjwZiTFWgabYYQS+YcPUBL7Nmxn4zPhJjiOJiYmYMmUKPvnkE2RlZaFv376YN28eTpw4AQBISDj/o1q0QfGi021H42Q671icbV/ZBAwqv8wdLtkga3INoUW0YzTsqaKyXQ+4fz2qqhMafkRUV5//cUN1VY9hz8Tpi21+M0XeVIuE6iokVEevpifU1jT8KHH2rLqqnsOwd+LECeTn5+PKK69Ez5498emnn2LKlCkMe0RxhJ/mOJSeno7HH38c27dvxzvvvIMePXpg9erVOHfufINAV/ADmoY/1TOzmVkDoI59qyqaKQ19PgQ/lbMomrcfdh86ZnGIQX6GPnPAEw154TjJCLW1wenC2exJDHeRhAt+SkMeEIigd/bsWaxevRo9evTAX//6V2zfvh2PPfYY2slagJfIAWMMn+wfaoxdOuNcKBTCyy+/jHnz5qFVq1ZYunQpbrjhBtvplFWdCRHvovpRag/TojuXHMy1kqyUde80KLhSWiev8LvKWl0NpLVV+zqqru6pDGY6gonRvVN2sHPDuPzomGhW5WuqrLoHqL8DANRfEBSGOidCbdOQcPhQ/X9kZKjZierX0mHQC4VCeO2115Cfn4/Tp09j8eLFuPXWW7nMAmlldOkcOlRNl86yMnbpNGPgayZqa2uxcuVKPPLII+jbty+WLVsWdiC21zPCSTeZsII41R7EwmBzDX1u1iXTHfwitSllB8BYDnyAmoBy7FjTf/Nr4j+710/FsagOz0rDHiD/RPvHEANbukugkY7FzGsADEjQA4CPPvoI999/P8rLy7Fw4ULMmjULKX7fgaNmyQh8P/1pFZKT5bb9zp6txpYtDHxm7GDSTKSkpODee+/F5MmTsXjxYgwcOBC33HILfv3rX6N79+6NHmu+yeck/HkKeFbWFrnMD6qH2/iRpiKXWRl0KoQEtaHPSKsOgp+XhafNb4nKNoeT4kG4SpNIEIy1sXt2zp4Vb3/bBbtwjDa3ruAXqe1t1/73clwxH/ZEOQ1SVl5OOqdEjs16QjsNgAEKegcOHMBDDz2EdevW4Z577sG6devYdZOoGWHga2batWuHJUuWYM6cOXjooYfQs2dPTJo0CfPnz28S/IDz4c8c/KQGvGhkBUCFfbbChcFQitogqDz0AfXBzxT6vIS7aFSEPxm9xGQGwXjjJthFozL4eWl3h8sHkY5TR6FKS9iL9sKJBrto+5T5Aqo4RrsT3xwCAxT0vvjiC/z2t79FYWEhxo4di3379qFr164KD47IHa7DpwcDXzPVtWtXPP/885g/fz4WLVqEnj17YuLEiZg/fz4uueSSJo8PTNd+kQCoY4COjYTaGmkNl1CifdByE/rO1Ym+ifX71jGUx+A1/OkYDhQuCJ44oW4IkFlysvr3xGh7ywx20cgKfqpfm3DVwLibmEVFYIrGS+jz43gB4KuvxJ+bmen8sQ7DnjnojRkzBrt37260TBNRUDDw6RFvX03kUs+ePfHCCy/g4YcfxqJFi9CrV6+IwQ8AkGZav6hKY7XPTrQA6FPYk83JQsnnoK76Bpxvf+kMfoC78OfzvA8NbU0ZAUlWaKys9L4NPyY0FQl+us9Ns9at6xsZXi45Tm9uRK3uxcN1z2no8yvgAc4XnI0m2oc0M9NV0PvNb36DF154gUGPiBpwWQYCAGRlZaGwsBC7d+/G6dOn0atXL0ybNg0VFRWRn5iWdv4nCDRN5R1EusbzqFpHzAlj2ny79qzfb7fsduexY9F/Kiuj/8hw+rS8tq1bJ05Efm2N2e39CnutW9f/yGA+v8P9JNV+H/1B8SLcm2qcFH6EPePDoOsDcdlljsJeRUUFpk2bhl69eqG2thbl5eUoLCxk2KPAi7VlGUaOHImuXbsiNTUVnTp1wsSJE3H48OFGjykvL8egQYOQmpqKLl26YOnSpeoOyCEGPmrECH7l5eUIhUK48sorMWLECLz55puIOqGrOfz5FQDNrb+zZxs3DPxsJGiicxIHI/j5Ff6++eb8T7yFvaDyK/QBTT+6foY8QG7Qc6oVvte7w6A4fLj+p7mEPKA+6F12WcSHhEIhvPnmmxgxYgSuvPJKhEIhlJeX4/nnn0ePHj00HShR83LdddfhpZdewieffIJXXnkFn3/+OW699daG31dXVyMvLw/dunXDhx9+iGXLluFXv/oVCgoKfDxqLstAURw5cgSPP/44Vq5ciX/+53/G/fffj9GjRyPZbStfZddP2a0+mbNG+JSGVHfvDEdVA1y0jafj5Y+HHmVu6ezi6STMX3SR+uMw6A55Bt/C3qlTevbz9dfun6NyunW/PlxRQh5Qv2D6unXr8Lvf/Q779+/H7Nmz8bOf/QydOnXScIBEchjLMgwcqGZZhrff1rMsw4YNGzBq1CjU1NSgRYsWWLlyJRYsWIDKysqGJU/mzZuH4uJi7Nu3T+mxRMLAR46cOHECzzzzDFasWAEAmDt3LqZOnYo2ouHIawD049a+yN/q4wwOfoU+wPvbozJEBX0CQDf8rLipCH2yKrUqAqBfQQ/wubInO/CJBDsnZDTq/PxAOQh61u/hn//855gyZYr49zCRj3QEvi+//LJR4GvZsiVatpQ3g/o333yD2bNn49ChQ3j77bcBAJMmTUJ1dTWKi4sbHvfGG2/gJz/5Cb755hukp6dL278b7NJJjrRp0wb33HMPPvvsMyxZsgSFhYW4+OKLMXfuXOzfv9/9BkW6fvo9WCdc91C/W/1hJOGcb+t0ue3uqfPltPb6FT2lAvq2a+O1h5t1uK3Mbrlff930R5QfXTfNYrYbp92boCrsAWInkrmrpp8VvShh77PPPsPcuXNx8cUXo7CwEEuWLMFnn32Gu+++m2GPYp7KMXxdunRBWlpaw8/ixYulHHN+fj4uuOACdOjQAQcPHsT69esbfldZWYkf/OAHjR5v/HelrIH1Ahj4yJXk5GSMHTsW77//PkpKSnD06FH07t0b//Iv/4LXXnsNdSIjZSOFP79DnlMBDoJ+L85sF/wC+DK5CoFBOeYgiNZOtgt2foy5dJM7jJDnZ9ADAhL2Ir0I4UKdymDnRKSTze+AB5wPeRGCXl1dHV577TXccMMN6NOnD77++muUlJTg/fffx9ixY90PqyBqhr788ktUVVU1/Dz44IO2j5s3bx4SEhIi/pi7Yz7wwAPYuXMnSktLkZSUhEmTJkWf58Jn7NJJnh05cgSrVq3Cf//3f6N169a46667MGXKFDll6+PHvW/DDypbioKrksvq4iljEkBdw4JkMrdhFQ8JcMzPNqtVPEwO2b2730dwXiDCHgB89539/48lXo9bVh9hB902v/32Wzz77LN48skn8f3332PWrFmYOXMmMt2s1UcUA4wunddco6ZL5/btzsfw/d///R+OR2lvXnrppQ1j8sy++uordOnSBX/961+Rm5sb2C6dvEVEnnXq1AkLFy7Egw8+iHXr1uGJJ57Aww8/jPHjx2PGjBm46qqrkCC6cnuHDvb/HtQgqKMkINiyNuLe92gl71gEWV+moAbAcIUKmRUqL+ExNdV76FNVjGnXTs12ZbIeo4w8I+Pv9hz2VAUz448LavBTdVyiHxIjKDqYbfP9999HQUEBioqKkJOTg8WLF+Pmm29GixYtxPZNFCOCsPB6x44d0bFjR8F91e+spqYGAJCbm4sFCxbgzJkzDZ/fsrIyZGVl+Rb2AFb4SJFdu3ahoKAAL7zwAi655BLMnDkTEyZMQDvVrUA/g6Df/b9cCELoi8aPEOh3TzQRQW17mwUh/AXhGJzohCN+H4Jzfp58sXDi5+ZG/PV3332HF154AatWrcKBAwcwYcIE3HnnncjOztZ0gET+MSp8V12lpsL3/vvyZ+l877338MEHH2DgwIFIT0/H559/jocffhhHjx7F3r170bJlS1RVVSErKwt5eXnIz8/Hxx9/jKlTp2LFihWYOXOmtGNxi4GPlDp58iReeuklFBQUYPfu3Rg7dixmzpyJ3Nxc8aqfCJVBMIaCnlkshD4rFSEwFkOeWSy0e610hK9YCXhmMRX2zFSehLF4gkcIeqFQCO+++y4KCgrw0ksvITs7GzNnzsTYsWNxgYMF1onihRH4+vdXE/h27JAf+Pbs2YN7770Xu3fvxsmTJ9GpUycMHz4cDz30EDp37tzwuPLycsyZMwcffPABMjIycPfddyM/P1/acYhg4CNtysvLsWrVKhQWFqJz586YMmUKJkyY4O/aQV6CYIwGPatYDH4G0QAY6yHPLBbbw2ayglksBjxDzAY9O6InZKyfyFGqeUeOHMEf/vAHPPvsszh06BAmTZqEGTNm4PLLL9d0gETBEouBL5Yx8JF2p06dwiuvvII1a9Zg27ZtGDp0KCZPnoyRI0ciVeeKzpFECoJxEvTMYjn0WYULgfEU8sxivZ1s5SS4xXK4s4qrsGcW7sSMtxM2QtA7ffo0NmzYgOeeew5btmzB4MGDMXnyZNxyyy1oHYffI0RuGIEvJ6cKSUlyQ9m5c9X48EMGPjMGPvLVwYMHUVhYiOeeew7Hjh3DuHHjMHnyZFx99dV6u3w6dSROG2cBdgTeK8Dx1sY0i+e/zQh28RTwzOI27AHAjh3enp+RIec4VIjSZfO9997Dc889hxdffBEdO3bE5MmTMXHiRHTt2lXjQRIFGwOfXgx8FAjGuIY1a9bgxRdfREZGBsaNG4dx48ahT58+fh+eWnEWImUEtKALUsgK0rEYjh3z+wga69/f7yNoKnBhz2tACzJZ4TFC0Pv444+xdu1aFBUV4fjx47jtttswefJk/ePViWKEEfiuvFJN4Nu5k4HPjIGPAuf06dMoKSlBUVERNm7ciEsvvRTjx4/Hbbfdhn/6p3/y+/Bii8cw2RzCW1B4CW5enhu0cBYrvIRI4bAXz6EsaIyQGCHk7d+/H0VFRSgqKsLf/vY3jBw5EuPGjcPw4cODMzyBKKAY+PRi4KNAO3HiBDZu3Ii1a9di8+bNuPzyyzF69GiMGjUKvXr14p1TH8VZYTKmMQcExwhs9PsQyNC/PyBxUrBQKISKigoUFxdj3bp12LNnD4YPH45x48ZhxIgRaNOmjbR9EcU7I/BlZ6sJfLt3M/CZMfBRzPj222+xfv16FBcXY/PmzejSpQtGjRqFUaNG4ZprrkFiYqLfh0gSMVA6x8DnDkOZCyNG+H0Evqqrq8P27dtRXFyM4uJifPnllxg2bBhGjRqFm266ydeFlIlimRH4Lr9cTeDbs4eBz4yBj2LSyZMnUVZWhuLiYmzcuBEtWrRAXl4ehg4diqFDhyIzM9PvQ6SAi6dAGW+BL+4CWTMPTbGmsrISZWVlKCsrQ2lpKc6cOYMRI0Zg1KhRGDp0KNfLI5KAgU8vBj6KeWfPnsU777yD0tJSlJaW4qOPPkLv3r2Rl5eH7t27c/pr8oXOyVQOHNC3L0Nf7NK3s+7d43eqTgoEo7tmaWkp9u7di379+iEvLw95eXkYMGAAkpOT/T5EorhiBL7evdUEvr17GfjMGPgo7hw/fhxbt27Ftm3b8Nlnn6Gurs7vQyKSKxSC9cp9rvZco/9OTrI8IDkZ4JhXorC6deuGvLw8XH/99ejQoYPfh0MU1xj49GLgIyIiIiIibYzA16uXmsBXUcHAZ8ZZLoiIiIiIiOIUO6UTEREREZF2dXXyRxtwJE9TrPARERERERHFKVb4iIiIiIhIO1b49GDgIyIiIiIi7Rj49GCXTiIiIiIiojjFCh8REREREWkXCsmvyHHBuaZY4SMiIiIiIopTrPAREREREZF2KsbbcQxfU6zwERERERERxSlW+IiIiIiISDtW+PRghY+IiIiIiChOscJHRERERETascKnBwMfERERERFpx8CnB7t0EhERERERxSlW+IiIiIiISDtW+PRghY+IiIiIiChOscJHRERERETascKnByt8REREREREcYoVPiIiIiIi0o4VPj1Y4SMiIiIiIopTrPAREREREZF2rPDpwcBHRERERETahULyA1ooJHd78YBdOomIiIiIiOIUK3xERERERKRdXR2QkCB3m6zwNcUKHxERERERUZxihY+IiIiIiLRjhU8PVviIiIiIiIjiFCt8RERERESkHSt8erDCR0REREREFKdY4SMiIiIiIu1Y4dODgY+IiIiIiLRj4NODXTqJiIiIiIjiFCt8RERERESkHSt8erDCR0REREREFKdY4SMiIiIiIu1Y4dODFT4iIiIiIqI4xcBHRERERETa1dWp+VGtpqYGffv2RUJCAnbt2tXod+Xl5Rg0aBBSU1PRpUsXLF26VP0BRcHAR0RERERE5NAvfvEL/PCHP2zy79XV1cjLy0O3bt3w4YcfYtmyZfjVr36FgoICH47yPI7hIyIiIiIi7UKh2BtzV1JSgtLSUrzyyisoKSlp9Ls//OEPqK2txTPPPIOUlBT07t0bu3btwvLlyzFz5kyfjpiBj4iIiIiIfFGtbJvV1Y233bJlS7Rs2dLTlo8ePYoZM2aguLgYrVu3bvL7d999F4MHD0ZKSkrDvw0bNgxLlizBt99+i/T0dE/7F8UunUREREREpE1KSgoyMzMBdAGQJvmnC9q0aYMuXbogLS2t4Wfx4sWejjkUCuGOO+7ArFmz0L9/f9vHVFZW4gc/+EGjfzP+u7Ky0tP+vWCFj4iIiIiItElNTcUXX3yB2tpaJdsPhUJIsKz3EK66N2/ePCxZsiTi9ioqKlBaWoq///3vePDBB6Udpy4MfEREREREpFVqaipSU1P9Pgzcd999uOOOOyI+5tJLL8Xrr7+Od999t0lw7N+/PyZMmIA1a9YgMzMTR48ebfR747/rK5r+SAiFYm2oJBERERERkT4HDx5sNC7w8OHDGDZsGF5++WVcffXVuPjii7Fy5UosWLAAR48eRYsWLQAA8+fPx7p167Bv3z6/Dp2Bj4iIiIiIyI0DBw7gkksuwc6dO9G3b18AQFVVFbKyspCXl4f8/Hx8/PHHmDp1KlasWMFZOomIiIiIiGJZWloaSktLMWfOHOTk5CAjIwMLFy70NewBrPARERERERHFLS7LQEREREREFKcY+IiIiIiIiOIUAx8REREREVGcYuAjIiIiIiKKUwx8REREREREcYqBj4iIiIiIKE4x8BEREREREcUpBj4iIiIiIqI4xcBHREREREQUpxj4iIiIiIiI4hQDHxERERERUZz6fxmfG80RIsWlAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -745,7 +711,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6hklEQVR4nOydd3gVxdfHvzeNEEISeq/SVKoICiJFOogiIGAjIIgi+FPE3sCGBWyvCIIiYKEICChYEERQwYYiolKsFEFECDGEkHL3/SNu2LvZMrM72+49n+fJo9y7OzN39+zs+c45MxOSJEkCQRAEQRAEQRAEEXXEed0AgiAIgiAIgiAIwhlI8BEEQRAEQRAEQUQpJPgIgiAIgiAIgiCiFBJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEESUQoKPIAiCIAiCIAgiSiHBRxAEQRAEQRAEEaWQ4CMIgiAIgiAIgohSSPARBEEQBEEQBEFEKST4CIIgCIIgCIKIeR5//HGEQiHccsstJZ/l5eVh/PjxqFSpElJTUzF48GD89ddf3jXSAiT4CIIgCIIgCIKIab766ivMnj0bLVu2jPh84sSJeOedd7B06VJs3LgRf/75JwYNGuRRK61Bgo8gCIIgCIIgiJglJycHV111FV566SVUqFCh5PPjx49j7ty5ePrpp3HRRRehbdu2mDdvHjZv3ozPP//cwxbzkeB1AwiCIAiCIAiCiC3y8vKQn5/vSNmSJCEUCkV8VqZMGZQpU0bz+PHjx6N///7o0aMHHnnkkZLPt27dioKCAvTo0aPks2bNmqFu3brYsmULzj//fEfaLxoSfARBEARBEARBuEZeXh4alC2LQw6Vn5qaipycnIjPJk+ejClTppQ6dvHixfjmm2/w1Vdflfru0KFDSEpKQkZGRsTn1apVw6FDTrVePCT4CIIgCIIgCIJwjfz8fBwCsC8UQprgsrMB1MnJwb59+5CWdrp0rejevn37cPPNN+PDDz9EcnKy4Jb4BxJ8BEEQBEEQBEG4ThqANFXqpW0kqbjstLQIwafF1q1bcfjwYZxzzjklnxUVFWHTpk2YMWMGPvjgA+Tn5yMrKysiyvfXX3+hevXqYtvtICT4CIIgCIIgCIJwn7g4wAnBV1TEdGj37t3x/fffR3w2atQoNGvWDHfeeSfq1KmDxMRErF+/HoMHDwYA7Nq1C3v37kWHDh3EtttBSPARBEEQBEEQBBFzlC9fHs2bN4/4rFy5cqhUqVLJ56NHj8att96KihUrIi0tDTfddBM6dOgQmAVbABJ8BEEQBEEQBEF4gccRPhaeeeYZxMXFYfDgwTh16hR69+6NmTNnCivfDUKS9F+iK0EQBEEQBEEQhMNkZ2cjPT0dxxMThc/hy5YkpBcU4Pjx46Zz+GIFivARBEEQBEEQBOE+TkX4iAjivG4AQRAEQRAEQRAE4QwU4SMIgiAIgiAIwn0owucKJPgIgiAIgiAIgnAfEnyuQCmdBEEQBEEQBEEQUQpF+AiCIAiCIAiCcB+K8LkCRfgIgiAIgiAIgiCiFIrwEQRBEARBEAThPhThcwWK8BEEQRAEQRAEQUQpFOEjCIIgCIIgCMJ9KMLnChThIwiCIAiCIAiCiFIowkcQBEEQBEEQhPuEQsVRPpGEw2LLiwJI8BEEQRAEQRAE4T5xceIFH1EKusIEQUQ1v//+O0KhEObPn2967MiRI1G/fn2mcsPhMJo3b45HH33UXgMJLurXr4+RI0d63YxAoL5WH3/8MUKhED7++GPusl588UXUrVsXp06dEtdAgiAIwhVI8BFEQLjkkkuQkpKCf//9V/eYq666CklJSfjnn39cbJk+RUVFmDdvHrp27YqKFSuiTJkyqF+/PkaNGoWvv/7a6+bZYtGiRdi3bx8mTJhQ8tlXX32FCRMm4Oyzz0a5cuVQt25dDB06FLt379Ys46effkKfPn2QmpqKihUr4pprrsHff//taLtzc3PxwgsvoFevXqhRowbKly+PNm3aYNasWSgqKip1fDgcxpNPPokGDRogOTkZLVu2xKJFixxto1PMnDmTSfgHic2bN2PKlCnIyspytJ6RI0ciPz8fs2fPdrQegiBiDDnCJ/qPiICuCEEEhKuuugonT57EihUrNL/Pzc3FqlWr0KdPH1SqVMnl1pXm5MmTuPjii3HttddCkiTcc889mDVrFkaMGIEtW7agffv22L9/v+PtqFevHk6ePIlrrrlGaLnTpk3D8OHDkZ6eXvLZE088geXLl6N79+547rnnMHbsWGzatAnnnHMOduzYEXH+/v370blzZ/z888+YOnUqbrvtNqxZswY9e/ZEfn6+0LYq+fXXX3HTTTdBkiTceuutmD59Oho0aIAbb7wR1157banj7733Xtx5553o2bMnnn/+edStWxdXXnklFi9e7Fgbjdi1axdeeuklS+dGq+B78MEHNQWfnWulJjk5GZmZmXj66ach0Qp4BEEQwUIiCCIQ5ObmSuXLl5d69+6t+f3ChQslANLixYtdbpk248ePlwBIzzzzTKnvCgsLpWnTpkn79u1zrP6CggLp1KlTXOdkZmZK9erVMz3um2++kQBI69ati/j8s88+K1Xn7t27pTJlykhXXXVVxOfjxo2TypYtK/3xxx8ln3344YcSAGn27Nlc7ebh77//lnbs2FHq81GjRkkApD179pR8tn//fikxMVEaP358yWfhcFi68MILpdq1a0uFhYWOtdMJzj77bKlLly5eN4ObnJwc3e+mTZsmAZB+++0303I2bNggAZA2bNhgqR1ff/21BEBav369pfMJgiBkjh8/LgGQjlevLkk1awr9O169enHZx497/TN9A0X4CCIglC1bFoMGDcL69etx+PDhUt8vXLgQ5cuXxyWXXGJa1syZM3H22WejTJkyqFmzJsaPH18qQtC1a1c0b94cP/74I7p164aUlBTUqlULTz75pGn5+/fvx+zZs9GzZ0/ccsstpb6Pj4/Hbbfdhtq1a5uWtXTpUpx11llITk5G8+bNsWLFilJz7eR5etOnT8ezzz6LM844A2XKlMGPP/6oO4dv5cqVaN68eUS5rKxcuRJJSUno3LlzxOcdO3ZEUlJSxGeNGzfG2WefjZ9++ini8+XLl+Piiy9G3bp1Sz7r0aMHmjRpgjfffNOw/smTJyMuLg7r16+P+Hzs2LFISkrCd999p3tu5cqVcfbZZ5f6/LLLLgOAiHauWrUKBQUFuPHGG0s+C4VCGDduHPbv348tW7YYtnPkyJFITU3Fr7/+it69e6NcuXKoWbMmHnrooVJRohMnTmDSpEmoU6cOypQpg6ZNm2L69OmljlPPS5s/fz5CoRA+++wz3HrrrahSpQrKlSuHyy67LCI9tn79+vjhhx+wceNGhEIhhEIhdO3aFQBQUFCABx98EI0bN0ZycjIqVaqETp064cMPPzT8fXLdmzZtwvXXX49KlSohLS0NI0aMwLFjx0od/9577+HCCy9EuXLlUL58efTv3x8//PCD5jX75Zdf0K9fP5QvXx5XXXWVZv1TpkzB7bffDgBo0KBBye/6/fffNa+VHl988QX69OmD9PR0pKSkoEuXLvjss89KHde2bVtUrFgRq1atMi2TIAiC8A8k+AgiQFx11VUoLCwsJQiOHj2KDz74AJdddhnKli1rWMaUKVMwfvx41KxZE0899RQGDx6M2bNno1evXigoKIg49tixY+jTpw9atWqFp556Cs2aNcOdd96J9957z7CO9957D4WFhbbTKNesWYNhw4YhMTERjz32GAYNGoTRo0dj69atmsfPmzcPzz//PMaOHYunnnoKFStW1Dxu7dq1GDx4MEKhEB577DEMHDiQa17h5s2b0bx5cyQmJpoeK0kS/vrrL1SuXLnkswMHDuDw4cM499xzSx3fvn17fPvtt4Zl3nfffWjdujVGjx5dMqfzgw8+wEsvvYQHHngArVq1YvodSg4dOgQAEe389ttvUa5cOZx55pml2ih/b0ZRURH69OmDatWq4cknn0Tbtm0xefJkTJ48ueQYSZJwySWX4JlnnkGfPn3w9NNPo2nTprj99ttx6623MrX/pptuwnfffYfJkydj3LhxeOeddyLmVz777LOoXbs2mjVrhtdeew2vvfYa7r33XgDFz8SDDz6Ibt26YcaMGbj33ntRt25dfPPNN0x1T5gwAT/99BOmTJmCESNG4I033sDAgQMjxOprr72G/v37IzU1FU888QTuv/9+/Pjjj+jUqVOJQJMpLCxE7969UbVqVUyfPh2DBw/WrHfQoEG44oorAADPPPNMye+qUqUKU7sB4KOPPkLnzp2RnZ2NyZMnY+rUqcjKysJFF12EL7/8stTx55xzjqYYJAiCsATN4XMHT+OLBEFwUVhYKNWoUUPq0KFDxOcvvviiBED64IMPDM8/fPiwlJSUJPXq1UsqKioq+XzGjBkSAOmVV14p+axLly4SAOnVV18t+ezUqVNS9erVpcGDBxvWM3HiRAmA9O2333L8utK0aNFCql27tvTvv/+WfPbxxx9LACJSL3/77TcJgJSWliYdPnw4ogz5u3nz5pV81rp1a6lGjRpSVlZWyWdr164tVa4etWvXNr0GMq+99poEQJo7d27JZ1999VWpaytz++23SwCkvLw8w3K///57KSkpSRozZox07NgxqVatWtK5554rFRQUMLVLyalTp6SzzjpLatCgQcT5/fv3lxo2bFjq+BMnTkgApLvuusuw3MzMTAmAdNNNN5V8Fg6Hpf79+0tJSUnS33//LUmSJK1cuVICID3yyCMR5w8ZMkQKhULSzz//XPJZvXr1pMzMzJJ/z5s3TwIg9ejRQwqHwyWfT5w4UYqPj4+4x3opna1atZL69+9v+Fu0kOtu27atlJ+fX/L5k08+KQGQVq1aJUmSJP37779SRkaGdN1110Wcf+jQISk9PT3ic/mamV1bGaOUTvW1Uqd0hsNhqXHjxlLv3r0jrl1ubq7UoEEDqWfPnqXKHDt2rFS2bFmmthEEQehRktJZs6Yk1a4t9O94zZqU0qmCJDBBBIj4+HgMHz4cW7ZsiYgKLFy4ENWqVUP37t0Nz1+3bh3y8/Nxyy23IE4xAnbdddchLS0Na9asiTg+NTUVV199dcm/k5KS0L59e/z666+G9WRnZwMAypcvz/rTSvHnn3/i+++/x4gRI5CamlryeZcuXdCiRQvNcwYPHmwa3Th48CC2bduGzMzMiAVXevbsibPOOoupbf/88w8qVKhgetzOnTsxfvx4dOjQAZmZmSWfnzx5EgBQpkyZUuckJydHHKNH8+bN8eCDD+Lll19G7969ceTIESxYsAAJCfzbq06YMAE//vgjZsyYEXH+yZMnbbVRWb5MKBTChAkTkJ+fj3Xr1gEA3n33XcTHx+N///tfxHmTJk2CJEmmEWWgOJ01FAqV/PvCCy9EUVER/vjjD9NzMzIy8MMPP2DPnj1Mv0erbmW0d9y4cUhISMC7774LAPjwww+RlZWFK664AkeOHCn5i4+Px3nnnYcNGzaUKnPcuHGW2sLDtm3bsGfPHlx55ZX4559/Stp14sQJdO/eHZs2bUJYtYFxhQoVcPLkSeTm5jrePoIgYgCK8LkCXRGCCBjyfJ6FCxcCKJ4v98knn2D48OGIj483PFd2fps2bRrxeVJSEho2bFjKOa5du3aEEw0UO3xa85OUpKWlAYDhFhIy+fn5OHToUMSf0lFv1KhRqXO0PgOK5zGZIZfbuHHjUt+pr4sRkslKhYcOHUL//v2Rnp6OZcuWRdwbOe1Wa0+zvLy8iGOMuP3229GqVSt8+eWXmDx5MrNgVTJt2jS89NJLePjhh9GvX7+I78qWLWu7jXFxcWjYsGHEZ02aNAGAkkGLP/74AzVr1iw1QCCnkrKINuVcSAAlgtzMVgHgoYceQlZWFpo0aYIWLVrg9ttvx/bt203Pk1HbUmpqKmrUqFHy+2QhedFFF6FKlSoRf2vXri01JzchIYFpfqtd5HZlZmaWatfLL7+MU6dO4fjx4xHnyHav7hcIgiAsQYLPFfiHggmC8JS2bduiWbNmWLRoEe655x4sWrQIkiTpLuxgBz0BaSZ2mjVrBgD4/vvv0bp1a8NjN2/ejG7dukV89ttvv7E3UgGLABFBpUqVDIXE8ePH0bdvX2RlZeGTTz5BzZo1I76vUaMGgOJoo5qDBw+W7Floxq+//lritH///fc8PwFA8aIjd955J2644Qbcd999pb6vUaMGNmzYAEmSIhx8ud3q3+UlVm0VADp37oxffvkFq1atwtq1a/Hyyy/jmWeewYsvvogxY8bYbpscJXvttddQvXr1Ut+ro7JlypSJiMA7hdyuadOm6T6nyug6UCygU1JSXHvWCIIgCPuQ4COIAHLVVVfh/vvvx/bt27Fw4UI0btwY7dq1Mz2vXr16AIr351JGXfLz8/Hbb7+hR48eQtrXt29fxMfH4/XXXzdduKVVq1alVkOsXr16yWqXP//8c6lztD5jRb4GWul7u3btYiqjWbNmuqI0Ly8PAwYMwO7du7Fu3TrNqFutWrVQpUoVzUVivvzyS1ORDBQ76yNHjkRaWhpuueUWTJ06FUOGDMGgQYOYfsOqVaswZswYDBo0CC+88ILmMa1bt8bLL7+Mn376KeJ3fPHFFyXfs7Tz119/LYnqASjZiF5eabVevXpYt24d/v3334go386dO0u+F4FRVKpixYoYNWoURo0ahZycHHTu3BlTpkxhEnx79uyJGLTIycnBwYMHSyKmZ5xxBgCgatWqwp4xGTuRNrldaWlpzO367bffSi3iQxAEYRmKyLkCXWGCCCByNO+BBx7Atm3bmKN7PXr0QFJSEv7v//4vIvIxd+5cHD9+HP379xfSvjp16uC6667D2rVr8fzzz5f6PhwO46mnnsL+/ftRoUIF9OjRI+IvOTkZNWvWRPPmzfHqq68iJyen5NyNGzdaimbJ1KhRA61bt8aCBQsi0tU+/PBD/Pjjj0xldOjQATt27CiV7lhUVIRhw4Zhy5YtWLp0KTp06KBbxuDBg7F69Wrs27ev5LP169dj9+7duPzyy03b8PTTT2Pz5s2YM2cOHn74YXTs2BHjxo3DkSNHTM/dtGkThg8fjs6dO+ONN97QjSZdeumlSExMxMyZM0s+kyQJL774ImrVqoWOHTua1gUAM2bMiDh/xowZSExMLJlz2q9fPxQVFUUcBxSvPBkKhdC3b1+meswoV66c5gbl//zzT8S/U1NT0ahRI810Vi3mzJkTscLtrFmzUFhYWNLu3r17Iy0tDVOnTi21Ei6AiO0jeClXrhwAaP4uM9q2bYszzjgD06dPj3jGjNr1zTffMN93giAIwh9QhI8gAkiDBg3QsWPHkv2wWAVflSpVcPfdd+PBBx9Enz59cMkll2DXrl2YOXMm2rVrF7FAi12eeuop/PLLL/jf//6Ht956CxdffDEqVKiAvXv3YunSpdi5cyeGDx9uWMbUqVNx6aWX4oILLsCoUaNw7NgxzJgxA82bN9d0UFl57LHH0L9/f3Tq1AnXXnstjh49iueffx5nn302U7mXXnopHn74YWzcuBG9evUq+XzSpEl4++23MWDAABw9ehSvv/56xHnK63vPPfdg6dKl6NatG26++Wbk5ORg2rRpaNGiBUaNGmVY/08//YT7778fI0eOxIABAwAUp2e2bt0aN954o+E+fn/88QcuueQShEIhDBkyBEuXLo34vmXLlmjZsiWA4jmct9xyC6ZNm4aCggK0a9cOK1euxCeffII33njDdM4oULzAy/vvv4/MzEycd955eO+997BmzRrcc889JQvsDBgwAN26dcO9996L33//Ha1atcLatWuxatUq3HLLLSWRKLu0bdsWs2bNwiOPPIJGjRqhatWquOiii3DWWWeha9euJfvMff3111i2bFnEYjNG5Ofno3v37hg6dGjJ89SpU6eSPTHT0tIwa9YsXHPNNTjnnHMwfPhwVKlSBXv37sWaNWtwwQUXlBK7PL8JAO69914MHz4ciYmJGDBgQIkQNCIuLg4vv/wy+vbti7PPPhujRo1CrVq1cODAAWzYsAFpaWl45513So7funUrjh49iksvvdRSWwmCIEpBET538Gp5UIIg7PHCCy9IAKT27dtznztjxgypWbNmUmJiolStWjVp3Lhx0rFjxyKO6dKli3T22WeXOjczM5Np6wJJKt5G4uWXX5YuvPBCKT09XUpMTJTq1asnjRo1innLhsWLF0vNmjWTypQpIzVv3lx6++23pcGDB0vNmjUrOUbeemHatGmlztfalkGSJGn58uXSmWeeKZUpU0Y666yzpLfeeovrt7Vs2VIaPXp0xGfyVhZ6f2p27Ngh9erVS0pJSZEyMjKkq666Sjp06JBhvYWFhVK7du2k2rVrR2w5IEmS9Nxzz0kApCVLluieLy/Nr/c3efLkiOOLioqkqVOnSvXq1ZOSkpKks88+W3r99ddNrk4xmZmZUrly5aRffvml5HdWq1ZNmjx5csS2IJJUvHXBxIkTpZo1a0qJiYlS48aNpWnTpkVsFyBJ+tsyfPXVV5q/U96CQJKKt0Ho37+/VL58eQlAyRYNjzzyiNS+fXspIyNDKlu2rNSsWTPp0UcfjdhqQQu57o0bN0pjx46VKlSoIKWmpkpXXXWV9M8//5Q6fsOGDVLv3r2l9PR0KTk5WTrjjDOkkSNHSl9//XWpa8bDww8/LNWqVUuKi4uL2KLBbFsGmW+//VYaNGiQVKlSJalMmTJSvXr1pKFDh0rr16+POO7OO++U6tatW+qeEARB8FKyLUPDhpLUqJHQv+MNG9K2DCpCksQwo50gCMJHtG7dGlWqVCk1989NXnvtNYwfPx579+5FRkaGZ+3wMyNHjsSyZctsRWP9zPz58zFq1Ch89dVXOPfcc71ujqOcOnUK9evXx1133YWbb77Z6+YQBBFwsrOzkZ6ejuNnnIE0hmwRrrKLipD+yy84fvx4yarhsQ7FUAmC8C0FBQUoLCyM+Ozjjz/Gd999h65du3rTqP+46qqrULduXd0FTwgimpg3bx4SExNxww03eN0UgiAIghOaw0cQhG85cOAAevTogauvvho1a9bEzp078eKLL6J69eqeO55xcXHYsWOHp20gCLe44YYbPH/mCIKIQpyYw0fJi6UgwUcQhG+pUKEC2rZti5dffhl///03ypUrh/79++Pxxx9HpUqVvG4eQRAEQRB2IMHnCjSHjyAIgiAIgiAI1yiZw9e0qTNz+Hbtojl8CijCRxAEQRAEQRCE+1CEzxVo0RaCIAiCIAiCIIgohSJ8RNRx5MgRrF+/HmvXrsXevXu9bg5BiKewEIVFodP/liRIcRopMaHTxyQkRPyTIAgV9erVQ8+ePdG9e3dUrlzZ6+YQRGxAET5XIMFHBJ7CwkJ8+umnWLt2LdauXYtvv/0WzZs3R69evdCxY0eEyMsl3GbbNmxDa69bETXUrw/QVoeEk0iShJ07d2Lq1Km48sor0aZNG/Tq1Qu9evVCp06dkJBA7hJBEMGFFm0hAsmJEyewdu1arFy5EqtXr0ZiYiJ69+6Nnj17okePHqhevbrXTSR8zjvveN0CIlYYMMDrFhA8HDp0COvWrcOHH36IDz74AAUFBbj44osxcOBA9OrVC+XKlfO6iQQReEoWbWnRwplFW77/nhZtUUCCjwgMx44dw8qVK7Fy5UqsXbsWderUwWWXXYaBAwfivPPOQ5zolADCU0iQEYT3xLpYDYfD+OKLL7By5UqsWLEC+/btQ69evTBw4EAMHDgQFSpU8LqJBBFISPC5Cwk+wtfk5OTg7bffxqJFi/DBBx+gVatWGDRoEAYOHIhmzZpRuqaHkCAjCMLPnHsuUKOGuPLktM+VK1firbfewvbt29G7d28MHz4cl1xyCVJTU8VVRhBRTonga9XKGcH33Xck+BSQ4CN8R15eHt59910sXrwYq1evxhlnnIErrrgCw4YNwxlnnOF18wLFwYP2zq8BawW887VAL4sgCMIGjRpZP/fMM/W/+/nnn7FkyRIsXrwYv/zyCwYMGIDhw4ejb9++SE5Otl4pQcQAJYKvTRtnBN+335LgU0CCj/AFkiRh8+bNWLBgAZYsWYIqVaqUiLzmzZt73TxHsSvKnMKq2HMCEpBEtNKjB/uxWVmONcN3+PG3Gom/HTt2YPHixVi8eDH+/vtvDBs2DJmZmbRwGEHoQILPXUjwEZ7yxx9/4LXXXsOCBQtw5MgRXHHFFcjMzET79u19+ZL86afi/0b7ioF+EnvCyMrCOz8beGwcDKi8RUg5wvCbQfqtPYCv2nQSZb1uQgSixZUfxZpIjISfJEn44osvsGDBAixevBhVqlTBiBEjMGLECNStW9e9RhKEzykRfG3bOiP4tm4lwaeABB/hOrm5uVi2bBkWLFiATz75BL169UJmZiYGDBjgmzQYWdgZ4SP/URhRKfRk1F5oNHml0WiMMvXre90CR/Cb6BNBbu7p/z982Lt2uImR+MvLy8M777yD+fPn48MPP8SFF16IzMxMDBkyBCkpKe41kiB8CAk+dyHBR7jG9u3bMWfOHLz++uuoXbs2Ro0ahauuusrTLRRYhJ0Z0eJrR5XY4xVzQRd/0WKEAFC1qvH3UeQoR4voUwo9M6JVCBoJP6B4q4c33ngD8+bNw/79+3HNNdfguuuuQ8uWLd1pIEH4jBLBd+65SBO8z2V2YSHSv/6aBJ8CEnyEo5w4cQJLlizBnDlzsH37dgwbNgxjx47F+eef72rKpghhZ0ZQfe7ACz3KRwuu8cmYiTwzAi4Cgyj8eESeGdEmAs1SPj///HPMmTMHS5YsQcuWLTF27FgMGzaM9vcjYgoSfO5Cgo9whG3btmH27Nl444030KBBA1x//fW48sorkeGwY+qGsDMjSL53IMWem4IsKOIvSEYH2Bd4ZgRQAAZF9IkUemYEXQiaRf2ysrLwxhtvYM6cOfjtt99w1VVX4frrr0fr1q1daR9BeEmJ4Gvf3hnB9+WXJPgUkOAjhJGfn4+33noLM2bMwLfffosrrrgCY8eORbt27YRH8/wg7MxwwgcXVWZZnLR+ciwLLr+1RyYIgs9pkWdGAESgn0Wfm0LPDDeFoAhfsVYt4+8lScJXX32FOXPmYNGiRTjnnHMwYcIEDBo0CImJifYbQBA+hASfu5DgI2xz8OBBzJkzB7Nnz0ZKSgrGjx+PkSNHokKFCrbLPnAAyM4W0EiPqFrVf36mLbEnCi3h5FcxpYeo9ooQQnYWO3LqAfNa4Jnh5IOZlGT51CLYW7wgP9/W6aXwk9AzQ0sI+snXMxN+AHDs2DHMnz8fL7zwAnJzc3H99dfj+uuv93SuO0E4QYngO/98ZwTf558zCb5Zs2Zh1qxZ+P333wEAZ599Nh544AH07dsXQPHiS5MmTcLixYtx6tQp9O7dGzNnzkS1atWEttlpSPARlpAkCVu2bMHzzz+Pt956Cz169MCECRPQu3dvxMXFWS73wAHj7/0o/oK0xoQvxB6g7UUGLX8rLQ3Iy/O6FfbEnmj81BYr+CRSalf0iaKwEMjJ8boV/Ch9R7+230z8hcNhvP/++5gxYwbWr1+PwYMHY8KECejQoYMvtywiCF5KBF/Hjs4Ivs2bmQTfO++8g/j4eDRu3BiSJGHBggWYNm0avv32W5x99tkYN24c1qxZg/nz5yM9PR0TJkxAXFwcPvvsM6FtdhoSfAQXhYWFWL58OaZPn449e/bg2muvxY033ohGjRpZLtNM5OnhtvizGrDwi+DzhdgL4nJ+ZiECr0WfX0RWaqr254WF7raDB702C3Y+rOAH0Wd06/wkpFhvl5/aLMMS9fv5558xc+ZMvPLKK2jcuDFuu+02DB48GAk+sFOCsIobgm/fvn0Rgq9MmTIoU6aM6fkVK1bEtGnTMGTIEFSpUgULFy7EkCFDAAA7d+7EmWeeiS1btuD8888X2m4nIcFHMJGTk4O5c+fimWeeQVxcHCZOnIhRo0YhVc9hMsCqwDNClPhzIgvNa8EXOKGnh9MC0E7ul5eiz2vBZ6EP8EQEWmmnxw6116LP6m1yQ1iJuDV+EoAswi8nJwfz5s3D008/DQCYOHEirr32WkvvYYLwmhLB16mTM4Lv009LfT558mRMmTJF97yioiIsXboUmZmZ+Pbbb3Ho0CF0794dx44di1h0sF69erjlllswceJEoe12EhoeIgw5ePAgnn/+ecyaNQuNGzfGtGnTcNlll3GPLDoh8pQofXUz8ef3qUUi8VTsiZ78o75xdgSg6Ik9ycneR/q8wKqjqdV/iBaBIpxguU0eCb94FHku+qygd+ntCizRt0HZTq/Fn/yONBJ+qampuOmmmzBu3DisWLEC06ZNw+TJkzFu3DjcdNNNqFGjhjuNJYiAoBXh0+L7779Hhw4dkJeXh9TUVKxYsQJnnXUWtm3bhqSkpFIrzFerVg2HDh1ysunCIcFHaLJr1y488cQTWLhwIXr16oVVq1bhwgsv5Jo74LTI00N+tlNT/Z1N5jSeiT23VnlgEYBurtgQa6JPdFRBz5tneYidjnB4KPyCKvq0MLpNeoLLrUvuF/HHIvwSEhJw+eWXY8iQIfjkk08wffp0NGjQAFdeeSXuvPNONG3a1J3GEoQI4uKK/0SXCSAtLY1plc6mTZti27ZtOH78OJYtW4bMzExs3LhRbJs8RvAVJoLOrl27cPXVV6NVq1YIhULYtm0b3n77bXTu3NlU7B04EPnnNqmpkX+A5xlZnuGJ2MvN9XZJv5o1i//S0k7/uY3X6ZVu4WYKWUJC6T+th90NCgs9GUWKR5HrdbqN+pZWrFj853VbvILlPRoKhdC5c2e8/fbb+PbbbxEKhdCqVStcc8012LVrlzsNJYgoICkpCY0aNULbtm3x2GOPoVWrVnjuuedQvXp15OfnI0u1Kvdff/0VuJVzSfARAIonocpCLyUlBTt37sTcuXPRrFkzw/P8JvC0CLroS0pi/yubVISySUX6B4hGFnleCT2lCJDx2lOLZtHn9bWVhbxT9syKB8LPbdHnZXaE8tYqx2+8GMNxWvxVrmz8d+pU8Z8ZZ555JubOnYuffvoJycnJaNWqFa6++moSfoT/kSN8ov9sEA6HcerUKbRt2xaJiYlYv359yXe7du3C3r170aFDB7u/3FUC7goTdtm5cycefvhhLF++HCNGjMDOnTtRv3593ePlF8+RI+60T4mdF25CgvsOjNtRRiaH0K6TLG/y5WUkj/WCyjfAi/wsUemdLCOIRtdD5IPqtdDTQmnPojegY8GBVE8pTj99Mw5ACObrrBWFg7tsv1kXxTNfWzR6aZ+VKztft/zuNVtgsEGDBnjppZdw7733YurUqWjVqhWGDBmC++67z3QAlyBikbvvvht9+/ZF3bp18e+//2LhwoX4+OOP8cEHHyA9PR2jR4/GrbfeiooVKyItLQ033XQTOnToEKgVOgESfDHLH3/8gfvvvx9vvvkmMjMzmYWejPoF54QAdGKKkB/XhRCBa6P/8qiZ2xNe7DjUXgi/ypXdGWEwuy6iPFGv5ibyhHS8FH+Key0lmS/5bQcJIVPRFx9nf/Ht+IQwThW6O3eQdzxKbR5uCcD0NAnpqrpP5bsjslmFX/369TFnzhzcc889mDp1Klq3bo2hQ4fikUceQd26dZ1vKEGw4uAcPhYOHz6MESNG4ODBg0hPT0fLli3xwQcfoGfPngBQsjr94MGDIzZeDxq0LUOMkZWVhalTp2LGjBkYMmQIHnroIS6hx4oVAeiWeOL1w+1GFp3GFbHHe9FEiCunLp5I4WcmqJwWfS4YmJGACWUfd6ZSkbl7Dom/ogT96yLad1HDEuWzTThs+LVoMehEhq4IAZiexnet3RJ+gLnoU/L777/j/vvvx/Lly3HTTTfh7rvvLrXyIEG4Scm2DD16OLMtw7p1TBuvxwoU4YsR8vPzMXPmTDz88MNo06YNPvvsM7Rp00bzWKsiTwlLBNAv0THAX23hwZdiD9C+oCxCyw2FnJrKL/rcyNkKIFJaeqnPbIlAJ17MAiJ/RuJOi3DYWdHHEuWzTVycoegrk6Df9/CKQaemY1qJAPIKPDVlkorPd0P4sUb7gOKI32uvvYaJEyfi9ttvR6NGjXD//fdj3LhxSPJyPixBEK5AEb4oR5IkLF26FHfffTdSUlLw5JNPok+fPporbooQekbIL8Lj2d7NL5EdADcyvpzWLo6LPaejU7Lo8nJVHbXwc0LYOXkdHb52ItMTDYWgFyOwOp0Ar7gzIvCRPpMoHy9aQtBLrSELQLsizwg/RvwkScJ7772HO+64AydPnsRjjz2Gyy+/nGvbJYKwS0mEr2dPpCUmii27oADpH35IET4FJPiimG3btmHChAn49ddf8fDDD2PkyJGIj4984bol8rRwWvgZPeNBF3yOij035p6pvTy3V1/A6ehUKN/hhyCggs/puWiAS6mJJrixwImTws/RayhY8GmSnw8puazz9WgQylNsX+PC6rpuiD+eNM/CwkIsWLAA999/Pxo2bIgXXngBrVq1cq5xBKGABJ+70LYMUcixY8cwYcIEdOjQARdeeCF2796N0aNHR4g91qWerVAmSSr5M6J44rs4Z8Xr5bvdItBiT285fRdumpSWHvFX8rnTwibo+4I4RF4ecDIvFPHnFso68/OdHwByUjdJCHBU5r8LH8o7GfHnNJr15OWd/nMIlveiXXje7QkJCRg9ejR2796NTp064fzzz8dNN91Uas8xgnAUH27LEI3QFYkiwuEwXnnlFTRt2hR79uzBtm3b8NhjjyH1v/lU8ovAaaHHi1XRZ0fgOZ1G5JSP75jYc3pfMdZ90wQrdi2Bp3mcC9GsIOH09dDzqZ0Uf2ZlOy383AiWRQtqAShKBDKXFWPCLzU1FY8//ji2bduGXbt2oUmTJnjllVcQJqMliKiBUjqjhK1bt2L8+PE4ePAgnnnmGVx22WUl+fhOpm2KfmkZpXmKDgA56dyxCj6e5dNZRvJDYQuC0GmhZxeOdE8zYWeGo+mdTlxnB0YWnBR7Vn3ossnW+xmr4tHJQSEnBp8dS+100um30QnzpoHaFo0OpnxaTfUsk8e4QFI6e78oSRJWrFiBiRMnombNmpgxYwbatm1rqX0EYURJSmffvs6kdL73HqV0KqBco4CTk5OD+++/H7Nnz8akSZNKFmcBABwvfhnI7tupZHvOsIyTI5PpaRKOZ4cClZKpXq3uVGG8kH2wlLCmbRlt2qxE6cPFwwEhItJbNtlp2a7IiygrqYzzc/oY+Ddcjum4MIOASk9m/z1+FHtAadFmJgBFRAjz850TfVZW8TTXXSH2DAA/pDvZHHFTCzg9ASgsRVRpwILFX8k79ehRnEqtxC7kWPnPF2ARfqFQCIMGDUKfPn3w2GOP4cILL8T111+Phx9+uCRbiCCI4EERvgCzZs0ajBs3rmSD1WbNmhV/cZztZcEjAJ1OPwEQ8UJ1YxI/j79htAR5KQQ7U07M0TFzHuMLLYoeh3NlT+aF3FhbQZjoO54XKaBE+9migy9yELJiRbHlOrlvu1L8OTUPULRZy9fZidRv4Wnfysi0yAY7PHFSSi7r/HxAO53R0aPG3zs1L4Aj2gcAP/30E66//nr88ccfmDlzJvr37+9Mu4iYoyTC17+/MxG+NWsowqeAInwB5NChQ7j55puxdu1aTJs2Dddeey3i4uKYhZ6M1iiiUgS6LfKUhPJOurpyG5egCzgsIkFvaXpdIejC2uqyMy+bjJPCjzfSpxZ2QUTp1+v5olaEoJNiDyi2i9xcQE5scAJZm1gxc6NM3sLCgK3pY/RjeH6IC8skh47+c/ofThkHa9TPTNxp4ZRxcET7AODMM8/Exx9/jLlz5+Lqq69Gr1698Nxzz6F69eri20bEJk4ssuKHLAafQVckQITDYbz00ks488wzEQqF8NNPP2HMmDGI+/dfbrGnR5m84yiT8w/K5Pxj7SVlhnIlNBNP0InRWeUiAGXCJ1EmoUis2PNxdC8cth8RKkooU/J3MlyGfTEWixgttOG0kFCnNx7PK6P75wVerKdw9Kj+nxZO36Pc3OI/5f/L/3YCo4Vd5HWP1H9miF4vqQh8m56bwio69C6AG9u8qFEbgRvGoX6vmT0cLDh5/Th8hri4OFx33XX46aefABSLwJdeegmUIEYQwYFSOgPC77//jtGjR2PPnj2YNWtWcVqFIJEHwPylYifHy4bXZzfKZyganRAqAgWfaLEnEi2n187CGmp4U/NER/uUPprIQXaR4wFOpXOKIj8fyMgQW6YMq9/uVGBHtn/RdifS1oSmdoo2Dvmd4EQfzCPqRBuIejsD0b/PJ2me8nSSxo0bY+7cuahfv74z7SKimpKUzksvdSalc9UqSulUQBE+nxMOhzFr1iy0aNECjRo1wo4dO9C/UydxYo91BJF3pFLQnkY8UT6nlvJmJobFHiBmSX2r59uNJLFEq0Tg11XOnRB7QLH/K/+JgsefFxnUkaN7SvsXHcH0IhjmKcqLKmJfDN6bLSLyZ2Tkovf6cCrix+lP9O/fHzt27ECjRo3QsmVLvPjii7SFA0H4HIrw+ZjffvsNo0ePxi+//IK5c+eiR7t24gq3+9LQivg5mL+lFemzLehEj74KEnx+FXtW/RY3VlRUwhJ14RV1fozyiby3In1IVjvhjf6JEG68AR3W3+LXSJ9vo3w87wrWflpkuiaLoVgZxQhCxI8z2vfhhx9izJgxaNSoEUX7CC5KInyXXeZMhG/FCorwKaAInw+Ro3otW7ZEkyZNsOOzz8SIPZFzKuRQiKBInhmeR+/M8JnYEzFfT4mdQWq9yJ9TG2xrmaLdCF40R168EHtAZGDEzHcW5cuzBHOsBJtEd4Gi7onw+XxeIDoKyIJR5M9OyNqJiJ9oOKN9PXv2xPfff49GjRqhRYsWmDVrFkX7CMKHUITPZxw4cACjRo3Crl27MPf//g89una1X6hT+VpKRE/W0XrRip5vIXK0lUfw6bwMtZwzKzrSL0JPC/m2OrmiIlDsj/l5MF3E+ICo+yyqexBpK3J34uQaGzIpKWLbLjLa56tIn1cRPhbcGJHJyXFmzqGoMq0ay+HD2p83bsxd1Lp16zB69Gg0bdoU8+bNQ61atay1iYgJSiJ8gwc7E+FbvpwifAqCtCB01LNo0SLceOONGDhwIJbNnWvfSN0QejJZWfZFnxvenQjU1zUhwbHJWTzFitwuy4lBdOXtdUr4KQfeRW+c7eUS+lo+mdo2qlblL9evkcusrNM26ORez3LARaQd5uWJE32+2rYhIcG/BqPssJwQZTk5ztVjZ88PJYWFwJEjQPXq+iKOhz17iv/LIfx69OiB7du34+abb0aLFi0wc+ZMDB8+3H5bCIKwDUX4fMDRo0cxfvx4rFu3DnPmzMFll112+ksri7N4laMFODsxx60IH+/1E+CRiUi9Ymk2S1OdiurpYfe2mmVXifT/7NxqpQ/mlwifXEblyvbKEW0zeuWJEn965YvuYuwKP/mZFiEghUT5lJE5Ow+DyAifWQdjtwOQxZ5T5Vsp78gR82NELglsIdr31ltvYezYsejZsydmzpyJChUqiGsPERWURPguv9yZCN/SpRThU+CXscOYZe3atRg1ahTatGmD77//vvRmploTqLVE4KFDxf+167nJWPXgzCJ9fojiyb9NxAsxQGLP6LiEBPeFnvo4HmebZwqNyEifWcRFxMC6Fxj5j2ZdiltiDzjte1sVfmZtFR15Zon2sTy7IqOGwjBruF9Ck3aicmZiT1m+UxE/FnGnRTgsTvTt2cMt+gYNGoSOHTti9OjRaNGiBebNm4eePXuKaQ9BENz4pEeOPU6dOoW77roLL7/8Mp566ilcd911CIUYF7BQisBduyK/k18OVoSfKM9NLfpErrjg1DJ7HuGm2DNC6dfY9Vus3m4WZ9vOWgmi/LGgijo1rBFCI39T5MApz6OqtFcW8cfbDVjpavSQg1l29Y9d0VeEePtRvuRk9uicH9M/WcUfi9CzWjYLojYClR9yEcLPQopn9erVsXr1arz00ksYNGgQxowZg8cffxxlypSx3x4iegiFxEak5TKJCCil0wN++uknXHHFFUhISMDChQvRpEkT/kLUQs8It4fo5TKdmHxj5oW5uY66D6J7InwqM//Ni1XRgdO3WuQeblb8MC3BI+LdZLcMuymdIlJC1fantVsLCyK6IK3uRkS5doSf+vrY7XZ8kdopIh1Tqwwr/amoTkfZMVgReyzlmmG2fLCIiKkop9pCiufu3btx5ZVXorCwEIsWLcKZZ54ppi1EYClJ6Rw+HGmCU6Oz8/ORvngxpXQqoG0ZXESSJMyZMwft2rVD7969sXnzZufFHlDsscp/Mk4sce3mstnq+tysVxBeiz3WpeTNLq/Iza1lcnKKI2kixR5gbiLKR0X9yBCRaNmfle0vRD22OTmn/0R2Bzz2rdz5Ruv62NVKDu9+4y3qi+dmhFA2mKws8XPgjQyR52ERcU1ELS4mR/s4aNKkCTZv3ozevXujXbt2eOmll0DxBoJwD4rwucQ///yD6667Dp9//jlee+01dO/enb8QXqGnhfzCsDoUr8bMqxK9yoKoPCu7Q+U2R1v9IPbskJtbnLXrhNBTI3pNhKNHixeyA+wJOruD5XbO92N0jwV1t+PEGI2yXaIXYdEqz8p18DrS53mUz+r5yn7Xifng6jKdmIeYlGRtM1AlAY/2rVu3DiNGjECHDh3w0ksvoaIof4QIFCURviuvdCbCt3AhRfgUUITPBT799FO0bt0aRUVF2L59O7/Y27XLvthTjw7aeeHwRNSspscEOHJnRtDFnoxy6Xy7yJEZLUSagGz2FL2zh1UbVAY0RD/WWgEQ0ZpAjvbZDUJ5HekL7IbsygsfDovdDkfLWERHG7OyilMX7JYX8GifvH1DYWEhWrVqhU8//VRMWwiC0IUEn4OEw2E89thj6N27N+68806sXLkSlXkWU7Er9MxeVjx5V4Dz4sstgedhdM9LsceawmmEVnqbnVtmJPTUWK1DK2tKhP/m0NaLvkfEtSssLPZ95T8R5ekhKuVY1hfhsHPT2Nw8P2pQ3hirsBiIXZGlNnQRos1uGaJEswXRV7lyZaxcuRJ33HEHevfujccffxzhWO1UY524OGf+iAholU6HOHz4MEaMGIE9e/Zg06ZNaNu2LfvJIqJ5PBw9qp/iKUJ85eQ4t6KCG4jc0dwieXneb3tl5hPxLFJnJ/DLkvnBOiXGLyvHu4kffSqlL8y7lSdrd2d1ywW96yViqwS7Zdg539aqnTyrdbqJ+mY54fTxvg/MRjTk8ux0RnbLCIftpzxYOD8E4KZzz0XHGTMw9JFHsHHjRrz66quoUqWKvbYQBFGKGHR3nGfjxo244oor0KlTJ3zzzTdI19pLTwu3hZ4S2UOuWNE5IeZXgcdz3Xwa3TNqloioHi96W1OJWABPT/TZnRZjBStbXYnYgN2uaLO6Xaeo6J4RrOLPaltYhR/LNZafLa9Em4jzoxrlTdR72OyEf43EH2/o2i3h51Quu419/9o2a4ZvXnwRY+bMQevWrbFo0SJ07txZcAMJ3+JERI4ifKUgwScQOYVz6tSpmDZtGsaNG8e2t95nn53+fyuemEgv7PBh/iF2lnKzssSvoGClHcnJnuwPZUfssQg2vRUB7Uaw7KbC5ecXlyE6kiaLPrsiz6kon9/36rOz0bodeB89PfEn4hHWEn5WhXRQRZtnUT4vIoRa0T+RkzyVYstOnrIo4Sd3jm46vjZEX3pqKt6cOBEzu3ZF3759ce+99+Kuu+5CHDnuBCEEEnyCOHbsGEaMGIEffvgBn3zyCc455xzzk5RCT0bpiZl5Xk4Nt6s3ThdRpls4WbdFj8xpsWd0nvpysPoQovwguRzRwkr2p0SUabVt0broi97vCoftLe5r99GU77no7T3lRVjslms32mdH9HmW2mkHG+JAiFgMh8WIKzXKUSg7YsVK27xIc1Bj476GQiGMP+ccdPjkEwwZMgSff/45Xn31VWSIHIQm/AdF+FyBrogAtm3bhnPPPReSJGHr1q3mYu+zz7TFnhq9zcDcmOxtJR3F7b2TvNy3yQXsij0tWC6XCLGntVCGiDUP1It8uHnLaX8+a/vsAeLuUzgMZGcX/4lCbpuo/bZ5nlvleiPhsL1nz49T6kxRXwDRK28aobzhot4hasMU8XvM2mX2QLp5TZV12uCcU6ewdetWFBUVoW3btvjuu+8ENYzwJbRoiyvQFbHJggUL0KlTJ4waNQpvv/02KlSoYHwCi9DT4siR4jwxO7livC81lsnmPOXZ8Wbkl5ZX4s7l6J4TYk8L+VLm5IhbzdCsDCtpfUam6ESgmzZgj0TPf1MLQC2fU6TYUyILP6viT6sb4Vk11gi955BF13gh+ixnITiVh+qVCASsv2OMDFG08LMy6uKF6LNRZ4WdO/HOO+9g5MiRuOCCC/Dqq68KbBxBxB6U0mmRU6dO4ZZbbsGbb76J5cuXo3fv3sYnWBV6QOlOU7nACgt2wyqiJ8+w4MTLyeVJMn4Xe2pY1jcwgsdRZclW4gky200ZPXqUBgRFofZB7e55y9IVyL42S10sXZgs+uykeeblsa0oq0VurrdTnn2J0hDspIPywJpWyTrqIP8Gq21XdopWyrBbvxVs3Ku4L77A/T16oH379rjyyiuxZcsWPPvssyhTpozgRhKeQimdrkCCzwKHDh3CoEGDkJ+fj2+++Qb16tXTP1ik0FNjJvxEbhYreuKMGj+uFS/jolD0QuxpncvjF9hd5E7pS9ld64BV9GkNjLvlQwYNO49mOGxvywXeus2EH2+XqLejjBlyu+3M67Mq+qzO5/NsLp9V7GzBwBvGNVqN00qImVd4aXWMdsSb252dzfp6p6Xhm2++weDBg3HRRRdh+fLlqF69usAGEkT0Q+4NJ19//TXOPfdcNGzYEJ988okzYo83FUKZ2iEy5dHJdBqv0nVcwkp0zy9iT4mT6Wcy8oJyTm/AbSULirCOls3wbLZup1tQp3ra6RJZ0zyNnhWrz6jV58vV+XxWB8REhzDdeqco37F2J5OatZflYbH6e91+99qsq96ff+KTTz5B/fr10a5dO3z99deCGkZ4Ds3hcwWK8HHw+uuv44YbbsCUKVMwadIk/S0X7Ag9q8gbp9pdzUqvDdnZ9nOz5Bek09FCLaw6JRbO4xV7Tgo2kecpB5RFreKp9JdEDTofOXJ6gVtecRewgW/HcdIfNIr8iapX5MqeWtE+nnZajby5GekLXJTPCL0IoKjVeZTliHiIlR2sldEvq52JiDRPnknOVataXoug7Nq1eP311zF9+nR07doVs2fPxlVXXWWpLIKINUjwMVBUVIS77roLL7/8MpYtW4Y+ffpoH+iV0FMivyiczp1iIeirZrog9uzgRURQ6ePYmTOnNzAuSgDZieK5KcLcWgzGyb31tODtTpT+rd1xJa02iJiTpyzHanDKC9HHO48wjHgkooDvpKSk4s0x/YxsEE484HYnQMt4OUfP6LqI7KhsblIaCoVw++23o0WLFrjiiivw3Xff4bHHHkN8vHvvXkIwoZD4Z5JlD+wYgwSfCdnZ2Rg+fDh+++03fPHFF2jSpEnpg1ativw3q3clUuipYdlLz8oEGTNvzC8iLwrTRGWU0TXePlKU2AOsbRPFkgFlxR9TD4j7JXLml9U9zdqh1WVZfYS8nPNn1ga7wk8u1+rcPkC86PNNV8fSED88lIB9gWYUJbQqurQ6MSvl2DlXFmN+uU9arFoFXHop+vTpgy+++AKXXnopduzYgcWLFyNN1GgRQUQhJPgM2Lt3Ly6++GLUqFEDn3/+OdLT00sfpBZ7QGnvSu1NOSn0lOiJPtEegpcizzfejrvz9mRY1y0QKfTUsAg/3qkuLIKNZWqLVb+F51y/iDo7aP0G2bbcjg4qsZKwwNIl8Ao2rTK9En2851mpqwCJ/FE+FnzUX5fAu/gLa0ooj6g06sycXJxFr/Pyy4iZHv+JviZNmuDzzz/H5Zdfjk6dOmH16tWoW7eu160jeKFVOl2BrogOX375Jdq3b48LLrgAa9asKS32Vq3SFntayBt52dlHz+oEa/lFImoyu+y5u70fnta+TKy/xUoulAsrc1oRYWZz57Quj5NiT4mWOdjZJ83OOgZmZVglFvfn4/nNTo1lsSz2wtu9sSzGYlamnX373EzJdmURF5e3vbGE3dV3rN5svfJ4OzMRi7Owdl5+X1DtP/8rPT0da9asQceOHdG+fXt89dVXHjeM4IYWbXEFivBpsGzZMowcORKPPPIIbr755tKLs7AKPSXqDhdgGzq32+GGw8UTmuwu5qJsS6xv06CBGwu1WFkoxWr6p511DeTtEewuYAecTvHzou8+fDh23xlmj5+Wr8i6LaiV+pRoRf3sdBdaaZ685VmN9lndtsFqhJAHx6J8SpKTXV5SlBNRc/PU5VldmEUug7ctQZnUzMt/kb7ExETMmjULTZs2Rbdu3bBgwQIMHjzY69YRhK8gwadAkiQ8+eSTePTRR7Fo0SIMGDAg8gC7Qk+N0msSmfapdT7LnD6WcpzCTwKP05Pyq9hT18Pqu9hdxE7k4nUitmpg9VdiIVrnJEqfkkf8WX30ZdsQNW3H7oIsdtJE3dho3Q2R6Bq8aZgiELW6J2C/Y2NJ8xS5/0wARF8oFMLEiRNxxhln4KqrrsIvv/yC22+/XX81dcI/UEqnK5Dg+4+ioiLccsstWLZsGTZu3Ig2bdpEHiBa7KmRvU0nh8l5RJ+TAsxq2Va8Fae9KBcQIfbU6Ik/Oz6N1rlW/QTRi7BonU8CTxsRj77a19Tr1kTUZbbZOi92xJfZojAiu1UrAo73HO4on1cROxYBKFKw2UFE6oOMlvBzaqNREds3OMV/og8ALrnkEmzatAn9+vXD/v378cwzz9AKngQBEnwAgLy8PFxzzTX4/vvvsWXLFtSvX//0l04LPTVyZ+3UELmR6OOdAGN1ONvOagdO47PonhNiT004fNoXsvouF7VondkcLbu+Bq/I8/PAdpDQiv6JHlMSKfzk505EtI/1d1oRmlEVtROJaONyYuNRkYTDxWW7kSnj105RIfratGmDzZs3o0+fPrjiiivw6quvIpkeFP9CET5XiHnBl5WVhYEDByIvLw+ffvopKitTK3nFnsjOlkX42cmFkkWfUy8IP6Vo8sDR7gIkMh0n9ztOiz2rA+tKscY7iMszaK7nJ/BkN7k9fYUQj3w/4uLEReWUiBZ+VkRfXJy1FTXdEH2OR/n8irLj8OL95JTYU5Yr/0anf5/daB/LyFvlyvwjdArR16BBA3z22We4+OKL0bdvX6xcuVJ7pXWCiBFCkiRJXjfCKw4cOIC+ffuibt26WLJkCcqVK1f8hdtRPTPUok9UXXY9InWUjqddViJ8vN5TSgpfmzjLZxV8AJsYU747vRB7Wui9z+1kR2VnF4832JnGYuZniBZ5bgwWikwxtbqVglt+sNb1dGoLLVHlsggxrd/lViY6bz08x3MLPt4OycvUBzOjFxHdc0LssW5q6jR+zJUfPbrkf0+cOIGhQ4di//79eO+991CzZk0PG0Yoyc7ORnp6Oo5PnIi0MmXEln3qFNKfeQbHjx+n/Rn/I2YjfL/++iu6d++Oiy66CLNnz0aCvInY3LmlDzbyntzoUGXvVcRKmyLJyfH3HDkH741osQdY30bBitjj3UpK1Dw/GRFrFqj9DD9G8rzyfVjr9WKPPT3xrPRfRb6fRZVrFH0zGhCwknbpt/TOqInyaaG+eaLfG07MHWQVkHFxzr0HlR2ulWick8ydWyL6ypUrh5UrV+L666/HBRdcgI8++ggNGjTwuIEE4T4xKfh27tyJHj164PLLL8fTTz9dvIqTltCTEb0GOS/yCyk7W7wnRCMfxXB4Sjxijxc/iT0l4bD9gW7Rg9xZWf7JHPaTr8ODUbud6OJYI6VOiL+4OPvTh5Vz+3iivla2X3B65c6Ymv/H01GKTP1UT44WUR5vGaLqNhpR82MHqBB9iYmJmDt3LiZOnIgLL7wQ69evR9OmTT1uIFECzeFzhZi7Itu3b0eXLl0wcuRINrGnx9Gjp/+cQushsLOTtRZOzSuwi9VN1mV84snw+BlWspqsbDZtBT+JPeUj4FafLl9jrU3I/ejriEDZxbnR3elhZ3NzGXWE2m55Vp8Hv87jZYFroMsn/a9tRC3WImNnU2ileLRyPu95yk3h/Zg+wUkoFMIzzzyDzMxMdO7cGd9//73XTSJkPN54/bHHHkO7du1Qvnx5VK1aFQMHDsSuXbsijsnLy8P48eNRqVIlpKamYvDgwfjrr79EXwlHiSnB9/XXX6Nbt2743//+h0ceecS62FMj2htiMVa/CDURL0QWcefkULdD0T2nxZ4SFl1sxcnNzbV3i0WOT+iV5ZToUwudaBV2vBw9etoX5EnNtXufrAg1o67UrvCzei5vsMnJqL+f9zw3xI5wcguWCdIs7dczVDvCTw+tBzsry9/X2QiVfxcKhfDoo4/if//7H7p27YqtW7d61DDCT2zcuBHjx4/H559/jg8//BAFBQXo1asXTpw4UXLMxIkT8c4772Dp0qXYuHEj/vzzTwwaNMjDVvMTM4u2bNmyBX379sWUKVNwyy23iBF6RsTF8c+5s9Kpisp3slMOrxiLi7O2AAsPPOUHTPDxCLC8POuZPHaFnijcWpsgCgaxXcOoq9Lq9qz6i2bnGaVn8tRpJ83T6rla3Y5Rm51clIX1WK55fE4qT56NRq2UD7g/GqDVifFOtrZSJ+8yyUFEsYiLzDPPPIMHH3wQ7733Hjp06OBBo4iSRVvuvNOZRVueeMLSoi1///03qlatio0bN6Jz5844fvw4qlSpgoULF2LIkCEAiqeGnXnmmdiyZQvOP/98oW13ipiYw7d161b07dsXU6dOxY033uis2FO+seWO1Ez42Rk9E7GnnYjJLWbl+5UoFnsyvFM4vBR6shnylmNlbQI/zQGMJtT+o9W5gKzBD6B018Xb5ZhtmO7EufJzzzqW5Yc5d1yLt/Bswi56w3Yv3zlWhaK6o+Ypx8o8PflB5ek8nVwExkkU8/lkJk6ciKSkJPTt2xfr169H27ZtPWoc4STZKmeiTJkyKGMiLo8fPw4AqPjfy2vr1q0oKChAjx49So5p1qwZ6tatGyjB52NPXAzbt29Hr169MHnyZGfFnlF6hV7uk91cfPlcOy8YES9GtUKwmEctDI+9Ir+IPXXZLLfEqtiTs45E3G67/pIR6owlP49F+BXea+ZG+qfS/uyOn1m1PycWY1TjVN8S2NROp7BzM+12KvImjlbPNatf62HkabPfU2n10PD9xo8fjwceeAC9evWiOX1eEgqJn78XCgEA6tSpg/T09JK/xx57zLAp4XAYt9xyCy644AI0b94cAHDo0CEkJSUhQxW8qVatGg4dOuTIJXGCqI7wyatx3nrrrZiYluas2GNB7mSdGPJmjdCJKIO33CiANbrnV7GnRmtA2I7YU5fNOwgsogy98+xuAUFYR90tKO+FXuKDnfRPO5E6Zd1WV8i00oXy1sUT6XMiKhi4LRpEL7zCUpeViJuMiJU91eeydIK8na7T0T6nNmdXceuttyI3Nxc9evTAxo0b0axZM1vlEf5i3759ESmdZtG98ePHY8eOHfj000+dbprrRK3g++WXX9C9e3eMHTsW91av7kwlVqNzrKmevPUYeRtRLshKcGjunmi8FHtKlE4yL0bnsfoCIspQwyvw/JCl5MSCME7ssSeyG9ESf6Lm+lkRfuoylFsw8GClbidFH0+ZAGs7GG9USoq7gstLtH6n0qisdogixCMrvHVZ6TxFTpbm7TifeAK4885SH9933304efIkunfvjk2bNuGMM84Q1ECCCSeixv+Vl5aWxjyHb8KECVi9ejU2bdqE2rVrl3xevXp15OfnIysrKyLK99dff6G6U/rCAaJS8P3555/o3r07hg8fjocffrg4tCs6usdrnFrHmwk/Kw+AUvTZPZ8AID665xexBzibvmbkO7DWy+NPWJmS4iRHj3rbDla/yqktRXm6n6wsIOG/txHv+lFmSQuAvcVdrET7EhL4RZlT++7xzhVkoQjxiEcR28GshuCXBzcv77QxFhaKK9dMTLGs6ml0vhrl3KWEBL7fwjuvT6tdeiNvrGU7ZQ86ou+RRx7ByZMn0aNHD3z22WeoWbOm+LoJXyJJEm666SasWLECH3/8MRo0aBDxfdu2bZGYmIj169dj8ODBAIBdu3Zh7969gVrwJ+pW6czKykLnzp1x7rnnYu7cucVbL+ghi0B1x2QUeRMh9PSwO8ytrNOLZed4zzPyhtTXgNVzEnycEwu18B7H+s5zQ+xZFYhW1iHQOl+NUTSP11ew6lsYCSuv/FfeKTlaqLtBEWXqkaAz9Ggm/njrsbO4C4tg0vodTi5IzLPSp+gulFnwieoYlQ+TF6NmRoLJahTTTseo17mYrXjFK2J5RtzS0thTLFjLdaoT1RB9kiRh1KhR+Pbbb7Fp0yakp6c7UzcBQLFK5333IU1wykJ2Xh7SH3mEaZXOG2+8EQsXLsSqVavQtGnTks/T09NRtmxZAMC4cePw7rvvYv78+UhLS8NNN90EANi8ebPQdjtJVAm+vLw89O7dG+XLl8fKlSuRoOdFKHnqKePvlV6Pkx4PYG+oXas+t0WfVcHHcq18LvicEnta2F1x3ItFKeRz7by7eaajqM8RcayyXq99FTN4gio8ZYrOQpcx66q13td2xsVE70Jj1n4nRZ9dgWjnOCbR58TEZh6B5USahFo02Ulbzc21F0mUOxmepY1FiD69jlhkp2ulTFY0BB8AFBQUYODAgThx4gTef/99JHu9NG4UUyL4HnjAGcH30ENMgk8vMDRv3jyMHDkSQLG+mDRpEhYtWoRTp06hd+/emDlzZqBSOqNG8BUVFeHyyy/HwYMHsX79eqSYvQXNhJ4SpWfB4vGI8HZYPRKzulhFmLocK/k/vIKPtQ4n5uUxHOdlKqcTfg9gffN1QNwUEiciaXpYjfKZiUonfBqRiBZ8RsfZiQQC5mJJTVqaPbEn12cnxTElhb/dfhB9gY/yyTgl+KwsV2pHsKnbZrWcnBxr51oRfl5F8FwUfSdOnECPHj1Qs2ZNvPnmm4iPjxdfN+EbwRcrRMVKHpIkYfz48di5cydWr17tnNgDjNcXtzLxVM9rMButEzHJ1Wid/iBOtBftzQgk6GIP4DM3o+XtecrJzj79x+tg89Sl3DqAdUE7ohjldeO1MSv3NDfXerRZWV9urvVuLj/f+fm1TmQtOjE45XucfFjlC5+QwG/MWjeNtxxlR2ulDSznKDthK3sDun0cD088oflxuXLlsHr1avz444+YMGECoiQu4l9Eb8ngxCIwUUBUXJEnnngC77zzDt5//31UqlTJ+GBWsWdmMEovx6rQY+loedulRm/VLyceBjc2onIJJ7ZhEFme02JPzxlmMR2eBV30kP0LNSJFn5bAi6V3hFN+ltI/NBq3snIvlefw7Jln1N3yCD91OVZEn9EzrvZV/C68iuDzyId8Ad1yBGUDMTNuM8NhKUPP+K0KPyVGDzBP+QEWfZUqVcIHH3yAt99+G08++aT4egnCZQK/SufixYsxdepUbNq0CXXr1jU+mEfssZKQcLpTZAkb83bE2dn2c5hycqxNWmFZNs6K1xYluDlvT4kbGUpmaC3MZmUFcHWWDss0FN4F52RiZT8+r0QrS7KC3A3ZFXtKzFbiZK3LqLszKsPK6prKFTzN7hfrap+s7WAtT+jWD8nJ/lKv6oseDvO3j0W0Afbm++mVwdLZ8naUsi/Deg5r+aJX5XRxNde6deti9erV6NKlC+rXr49hw4a5Um/M4eC2DMRpAu2tf/rppxgzZgyWLl2K1q1b6x/olNBTYyT87Hg48gvCykIqyjJErcsdFJH30EOR/+a4vyzxPeUx/96nPUroF7HHssq4lfS2vDx76w3ExVmbfsLqa/CsY6Bsk8/8jqhBvh8JCXxjUCxdjpbws5plJ3eVPGJReZ4ZcXHFaaGiN1AXLfpY4Nqiwa+oHU6RD7bSiKx2lsoOnGdkjXV7CatbOLgp+g4fLn2sKHTm8uGJJ9CmTRssWbIEl19+OWrVqoVOnTqJq5cgXCQgnntpdu/ejUsvvRRPP/00+vbtq3+gW2JPiVL4iR7KZhF9ogWZ3wTe449H/pvl3jk82lP+EdUL47+XVnnFR3/fMU3zXDcje3q+hxWxp5y+oi6PBaXfYiVqp3eOFZHnNjfeGPlvFuc7EQXmB2nc+Gkvli/1megMKp4uQj5WK/Jnt2yg2K4SEuwtUpyfb218zExwqa8nj/ASLfr0UPrbublsdcaDwZnXcuT9OgpvJv7sTP60mqKgnKtnpbMEIs9jybdmqYf1WL39+mT+/FP7eD3CYeft5z8h2BfAUxdcgEsvvhiff/UVGjdu7Gy9sQZF+FzBZ548G//88w/69euH6667DmPHjtU/cNKk0/9vtImmU16N/FJgHcpmHca2mrvE4wnIZckvKLeZPj2yHVFAlSdvj/zgvxffvlvMByWcSOOUTdSK76G33gBLWUZTT3jbIpu06FRQO9G7/1ZxBuDJ+kCluP2GfyM/0DCQp16t4kpbeNI+jY5nqYNl03Wj83mjdjLqblZUyqYIrIg5YWildaofsqSk0se44biZTaxUYrVjUHaavFE/dadpdZQtIaG4rPx89uNFR/v27j19fIC4vnVr/JqdjX49e+LzrVvN14sgCJ8RuG0Z8vPz0bt3b1SsWBFLly5FnN7LQCn2tKhZU2xUj+VYPeFnpeOTvRjec428F72ynNjoSS5XFnY87VHig+heKVgcApNjlCLQqTl7VlYEZ22LVlmsmUis/oUsEnh9HtbjjW7R0KFspi5y4VirET47xzyzrI7poSK6Ri2SkqyLNS3MyjI6141darzYalSkDXthn64fpz6WtTNh6Tj1ymLpOFnboSyLVfTx1qE87vff9Y8L4Ps9LEm4fPVqHK1UCWs/+giJiWyLuxHalGzLMHWqM9sy3HMPbcugIFCCT5Ik3HDDDfjyyy/x6aefoly5ctoHmok9oHTnVb++9nFOeDN2Vi6QYd0BWQul98LaBhGi7//+j71ekauABVDwAYiw0V03Pmd6uKhl3PXe67xZTHI5VhZv1WuDXiSPR/TxCr6hQ7W/j2WHWikEWR9VXrGnRGQmu1ZZorpBrXI82kbU9bKE2SfrcV4IQ6NjRXecAH/naUU08gg/ls5z587i/7I8VAEUfSfy83HBm2/i/H79MGvOHN1NuwlzSgTf4487I/juuosEn4JAxdSff/55rFq1Cl999ZVYsQdEjkTVr+/csDVQ7LVWrMh3jrouq/lKyjKcRCnunKrfZy8CAOIm+6tstOnMmyP+rRaAIvfsUmcLWZ2uYmdRPnV2kFnKpqjMo379iv8ran2jaGXikH0RhvH82qaGx9sRe0Ckv2pHsCnLSk21tqiLlm0YlSN6nl44zJad72aqKDNur9ap7I+dfheIWJxFWY6VjlfdebMIxqQkvhRPZfnAaYHnJW7M5/uPcklJePuSS9B+4UKc3bIlbrrpJlfqJQi7BEbwvf/++7j77ruxfv161KljnmZki59/Pv3/zZoZH8vrMcjeDI9gEyGQ1JtHifZoZ84sXY9ZO+wcE2QEiMKmM28ueel+N/YFpnN4/QfejB8ldhdkAYr9Qp42WKlHFniECk7H/KZeuyL+bSYA9dASe2rUXafV7iI/39riLMq5fax12xF9QVkJtgCJbFE+UbDYaErK6RumvpBWNjvkmSANWBd+cpvlB4K3M5bn6rHCW8+OHafr0aOw0PwBYTnGRTHHSt20NKwYMAA9br8dTZo0Qe/evb1uUrAJhcTfY4q8liIQKZ2//PILzj33XDz//PO4+uqr9Q+0Gt1jPUYp/qwKPS3sbiBlJBpFTkxRHi8LPNa6RB/jx+ge4Eg6J88xeuKPV+xpHW9nQRbW87XKEJlx1Lkzm+PN8mhEdUon63FmhvVfGbM2t2KqkkXwKZG7Cp5EB606eLtCuV7e81jvdThsfqybNsp6HLPgczNlk6XzU27Qbrc+vXpFzPdj6Qy1OmFe4alXz7Ztkf+O8Xf+az/8gP9t2oSt27ahYcOGrtYdDZSkdD7xBNLKlhVb9smTSL/zTkrpVOB7wZebm4uOHTuiS5cueO45g3lMTos9Jc2bmx8jw+rB2Nk8yur5PN7K/Pnmx7gZ3fNh5++12FMjiz8RYs+sap7BZLenmXTuHPlvEnzuCz4leuKPR+zpdRNmws+sDitz9FjOU6J3v9VdA9mpB4JPidYeGjw4OVFar0MUMeKmrkMt8tTE+Hv/fx99hE25udj81VdIobkAXJQIvmnTnBF8t99Ogk+BrwWfJEnIzMzEr7/+io8++ghJem9rN8We8hijzd55h6plrC7GYvU8ow5qzpzT/2/2e7wa6Tt61PwYp5HnY/pJ8Km+3zJytmmRPMLQzoIsVs9nFX0dOxp/LyJywlKOyGOA6BF8amZtbiVE7CnREn48dfDO09M7x4jkZOPuIOYFH+txToo+JTyjTlaWM7YyZ09uk4gRNzWfflr8X7+++wFfvP/z09PRbdkyNOrUCfNfe40WceGABJ+7+Hqy1Isvvoi1a9fim2++0Rd7bqLuKOWRL6Xws9JOZUfHurm6uj5Rm0YpRZ66DjtY6fB90JkzcfSosedmdYEegXSYfz0AfeHn5vw+oNi34h1wNlpb4Jxziv/r1iIVvlsMI8CMO+eLkv+fu+M8w2NZAwHKeX5Wui9lt8haJ+vUaLmrCMrcPBmhi8C4vXiLCJR7BBq9g3g6U9m4rF6LpCT+zttsfqEs9FgRNVdP6xgtH8Bn7/+k48extGNHnLNiBWbPno0bbrjB6yYFD9p43RV8K/i+/PJL3HbbbXjvvfdQ02jT9FGjIv+t5Vw7EDGJQBZ+7dub16NErwNkEX16Xgzvgiyvv85+rB52FlnJyjr9/z5M1xCC/NJSe3hO2aoBsvADisWflUFl5Tk8C7wB9hdzUdYnizwegirUXF0MQyScjv3o5sXiT0v4WelmCguL/6xkWsm2yVOv0bgbr8Bzc5VNkXX5fvEWO+XI6C0AYwW5TisLtMi/Sb55PMJRKfyMRF5+vphBXyNkP6ByZf2BXhmWRVxcXuilZrlyWNKtG/rdcgvOOecctOf1BQnCBXyZ0pmdnY02bdrg+uuvxx133KF/oFrsacESyhXhZCs76U6djI+1uhgLa6dr5t288gp7mSx1suTwK4WdFqyds19Foah0ThH2ymLPCntdf/U88+Nh7i8Z+Skip5YYTaE1c1rtpsnJt9DttE/XF8MAIm+43jMlIlXO5Pu5O86zJPa0rivLfdPr8ngFUUqK/ZRNO/aqrNvtBV5cT+t0y1ZZjhG16qeZ8DP6PTxtWLuW7T0vKrVThC8g0l8QyBPffYc5hw5h2w8/oHz58q7WHURKUjqfecaZlM6JEymlU4EvBV9mZiYOHDiAtWvXIk7vgWURe0DpN656rptosadELfysLsZiZXRN/YZXijwZp8SeukN3ewUuPy7Wwnqcmb0C9gWfjr0aCT+eSKCyeNapJWZNbthQjNPK40Ab3S5RDjTrcZ4LPi3i4lwRfMo6FuztZl4frM/TNOvyeFbZNLMRkYLPrGuJentlsUMWexXRHhbxyVqXjLJT5emMjepYuzby304O/ip9Ajf9AZd9gbAkoeeHH6LOhRdivojsqSinRPA995wzgu/mm0nwKfBdSufixYuxevVqbN++XV/ssaL1FlSLEbPUSTsbqMppEl27Wjs/Odl6TlJuLrB4sbV6WZE7bqMRO7f31PNryqfVCCCvvdqg++vFgyhK4Wcl5bOwkH9Kita0Et5VrkWlpAVtbpVnuHWhFOl4mXU3ANAXfqw2oE69ZB1Tk+2adaVNs7JE2Kyo2+DbtE5RKZssF0rE3EKtvf/svpes7senleqpFnqs8KR2mkXxRODD1M64UAivXnABWq5ciSVLlmDYsGGu1U0QZvhK8P3xxx+44YYbMH/+fNSqVUv/QJboHutqiMqOycpKl2YdcH5+cQfbqxdbeXpvXJ65ea++an+0zuh7+ZqJEnM+HKnzLXbtlYHur1wFAHhn+Bvc5yqnlFj1m2g7I8IMWfgBp8WfFbGSm1vc1fEmUSjFkd6rhnc6NREQrHRuSiOJi7PWOSo3Y7ci/JYtMzZ0u3P1WP0Ctzdbd1n01SpXDi936IBrr7sO559/PurVq+da3YGFFm1xBd+kdIbDYXTr1g1nnnkmXnzxRf0DraZyqjGK3MmOtNVUTqPv9YQfq7ei50G8+mrkv0UKPr3ROj9uqBpN6Zxa6Nkkq80C3HbLIvzsTiepWtX+dgluLj8f9SlygL/mPDGk4i3J7mtejgJ1F8grzkRsjk42i5i2Web3lV5ZrMJv2bLT/+8H38Dtffc8cP6v37wZuzIy8NEnn9jPVotSSlI6n3/emZTOm26ilE4FvonwzZo1C/v27cO7775rvzC7OS5ZWacdZ9FRFHW0j3dYWj1srBZ6gP0OPTfX/GXlpthjxa+dqhv788kv3sJCY5u1MEgxYLF+xI/FvzIaEK9a1fx8gmBhWNp7AMAk/LS6QNadbSjl1wP8to2DqPaoI39aGHWyZqmeSqEnErspmyxRPpG4HOUDgKfatUOLt9/Giy++iBtvvNHVugMHRfhcwReC7/fff8ddd92FlStXoly5cvoHikzlZEXu2NROtJXonoycQ3/JJeztUKIl8uyg7rz9sOehEqMHl3dbB6s4lD7pCA6lfaqFH8/8PvVUErXQE7UZOksb7B5DCEawMy8LP6C0+GPp2vSEXywIPd/O44sFtOb7sXayauFnJPTMUjf1vle+V8weJFGCTsQ8PV4fISPDuqBVvG9TExPx8vnnY+Btt6Ffv36oX7++tTIJQhCep3RKkoRevXqhYcOGmD1be1NoAOJSOQH7qxxmZNgTfMrvhgwxLkfJwoXi0jGMOjRRyy+bodf5qtvm05QNTVvTElhuRPhYjrFrt4rvlwxZat4WDfQyK0QIPhErdNrNrLZSVsynx7EcY3N1xSXZfW0tdqz3eAbJbt3eSgQgu7W9KqiVgZD5851P2xSxXRPrMQH3E8Zu3Yrf69bFBxs2IBQKuV6/nylJ6Zw1y5mUznHjKKVTgecRvrlz52Lnzp1Yvny58YEsUQvR0T09Dh82bgfPhGp5JE5P+C1cyF6WGdnZ5h2sG9E9+V76tIO2hfolpLRJp6OEZradlVVsm1bbobDrYcsuB8Au/KKpvxW5EAdFFN1hWNIKAMAKXMZ1Xm6u9/dIVNRN5CIybm4KX4Lf0jr9yPz5xf+1GsWTOXLE2FdgWeCFJcrHcszRo4FdwAUAprVsieYbNmDu3LkYM2aMq3UThBJPBd9ff/2F2267DQsXLjRW4JepXtJaI05ubbCu1Q4eB9oo114p+rSEnpVRu+zs0/8vIsWCZ9TOjaWZg4TW9cjIcG+gQrY9gSmfZsLPrexgt5zPoI0/2EL+sX7IZYyLE9KOy2BN+OlhJnzcWqmTRYB5YbuepHWy2C2LeBS1RUNennGI2KgO1jbIQs8uSn/Bbez6Cx6IORbSExMxu0ULXDVxIgYMGIBq1ap53ST/QXP4XMFTwXf77bejZ8+e6Nevn/3C1J2FU9EULcGmFH68yyUrERXNs9ppi1iSGYiNxVpEOcFZWWybrTuFINsdtuzyEtEnSuR53V97Xb9v0LsQbgtBZTts1i1a+Knx0nbs1h346J1clht2y9pugbZbCj2xx7PNgpbPYBZ9sxvl4/EZArxNAwD0q1ED3Q8cwB0TJ2KByKytaCEUEn9PKH22FJ4Jvo0bN2LFihX46aefjA9UR/e0ELVhtd0oiry6p1600Y4YNOtY8/KMXzwio3tubbQedI/b6ovdrcELdZ1GtstAkIWeXGfQTc5V1KOybgpAQdFH0cKPbNdhRAhDvQvmlv2qbderVNX8fHfr9ctm7DzHCeSZs87CWW+9hWs3bkSXLl1crZsgAI8EX35+Pm688UZMmTIFtWvX1j+QReyxIiKNzUywyYIxO5vfcbYiBpWjcna9bb9ttE6cRrlNCKBtvyJSPoHTNuXipDu3N6cm83MIrQvrtBMt15mSwrdsrANNsApvRM1OfSKjd55EAkWiFlpaAlCEGNMrg/VG2mmDXhRO7uft+g1mUT6/bsbuAXVSUjC5aVPcOGYMtv34IxITE71ukn+glE5X8OSKPPfcc4iLi8P//vc/+4VZmf+UlXX6T+8Yu2RnRwoykdE9ddkiVtVUorw+fp+HF+R0TtayWOxXNALt165TKMqpdOKdQphAF1wIsu0aXU6/rmdSAA8cWxGdBmuH4bXqHTmS73ieft2KX+Tk+0nUitc8xwnk5kaNEMrKwrPPPut63QTheoTvr7/+wsMPP4y3337beIRDZHTPCNZN1q12jHLnavel4ORkajc3WmeFHEU2RG247rT9xhh0uQRjN9IS8BUe3Vr8RSbw8/j8htlvM4tQi7g2TvkQ+fnm/oOoFTtZ8Wk0MDEuDjPOOguXTJmCzMxMVFVvSBurUITPFVy/IpMnT0aPHj3QtWtX+4U5scm61siUneicfL46YsJSvnyOUUdtJSVDWa7bq3LFykPoxcqGTo6semErAnE7bZSIHuz62dGqYQCPfptIJSpqA0M/j/AcOWLcd9sZDPTiveB2ho1gulatiu5VqmDyvfe6XjcR27ga4fv++++xYMECbN++3fhAt6J7gH5nxrPlAo+oZJnfJ3JunjxiZqdTFhm5Y0EpCo3Ei9vikXULBVZElaVlfwK3XojAgzl+ZojytfzssxH+xe3oWxDxZHuGaI4Yqhk5Unu1TtFiTK88URE8p6J8Rn5ExYquT115slkztFywAONvvhnNmzd3tW5fQhE+V3DNk5ckCZMmTcK4cePQuHFj+wW6tXfZkSOn/1+Uk6t0mpWja050zmadp6jO1co8QT38+qBqbaGgRvSKmiJsWJm27IQNA1hxJdsG7ARBeIuvF1uJZpHmZlqn2pewuxH70aPuD/wawSrmWHwJkRu7M9K4qAg3VK+O2/73P7z/0Ueu1k3ELq49wWvXrsXWrVuxZMkS4wO7dSv9mdqJ9mojYK3ohplDbpQukZ1t/D3vRuvqTt7rDlrdEftVyIlE/s1aNurm/npKlDYqOkJnZUVaDmLBZAhGBG2+7kd8LcL8iBP79hkhahVYJ2145Ejg//5PbJk8g9CionN65VjxJ3w6lw8AHmjYEI0+/xxr165Fr169vG6Ot1CEzxVcUQSSJOG+++7DXXfdhQoVKvAXoH7Q5Q7TyIFmiYxYjZ6Icprtzg1UtsUpWDrwnBxn26CFnx9mvRe6lh17JQKVdmNmx2Z2amCDZk6sXiqcn28vwYnILRMc2vfvMqwQvgm7aBtmSR2lbRc8RMQm7B5uL1KCnbRNM1jLcHt1cA+EYYXERNxZqxbuu/129OzZEyHaKJxwGFcE3zvvvIN9+/Zh/PjxxgdqRfeMcHqDajNBePRo8X/d3mg9J6e407Q7wmml89Z6GYjsKP3s6Tsxf0/rxea2CDSzY5fQuvWiNnMXBTnAPsKrTd9N8HMX5gS+FoZ+SxFNSor0C3ht2Ik9+WS8StvUE5hmD5KPo3esjK9TB099+SVWr16NAQMGeN0c76AInys4fkXC4TDuv/9+3H333UgRMbPdqFOUVyg8etQ88iVy3z0rK1VZEYM5OezRNBEdt3o1TzvRRHr42AmSHduEZX8xgjAlLs7TFHayY3OY9+Pzq3p0emUe2YDs2LGVvY15/AozWN5H8nvNrfeNj/flKxcfj7tr1cL9d9yBsI8GrVxH2YGK/CMicPyKLF++HP/88w+uv/564wN5o3ss2BErVhxpZT0i0jWB052x6LRJrZeK+np5PQdQj1h7kN3eRsOFehIS/GtehAOY3WxRTr5sWC4ZF2tVol4HovBT0Msybm/PALhjx8nJztmx0hCt+BV2psE48V6JApF0Q61aOHLgAN566y2vm0JEOY6+FSVJwiOPPIJ77rkHySI6QpaH2+gYubMRMVJn1PFlZxd/n5pqrez8fGMPQcTKm6I63lhJ52TFjReQ+t45NfKsrMfg+V1xwwdMxbkp8EhM+hD1TREZnTaqT0A96rRFt+yL7NiH2LVjdVonT32FhfbTVI1Enqh5eiI2YheZsslalgdposnx8binZk08fN99GDx4cGzO5aOUTldw9IqsXbsWBw8exKhRo4wPdCK6Z4RZxESUI6I3gqbX2TsRyVNCm61bx68jiYWFzttyYaFl23Qj4KKsgyKHAcKtmyaoDqNiRETM/GjHFAlkwM2bxlKHXlpntPoXfn03czCqZk38uW8fPvzwQ6+bQkQxjvZO06dPx4QJE1C2bFn7hTm5STXPioV6ZRh9L3eyWhE/3g6Y54Wi1/GylOEHbyNacfIFxWvLZvDYsgI3/B5W/LbwS1QhclEMdSRDdFuU33OU75Yti1r8xItFVFjr9GQDdpGwROdSUyPt0IlINu+zovQzzBZvMYu+Kb93WtzFSJSvbHw8JtSogemPPhqbWzRQhM8VHHuVffvtt9i8eTMWLVpkfKDI6J4IR1pOxwTEr1qYk3PaUdYTena805wcd43cyXROt0cJtfBqywSAzZbNXvQstmzVGdERfjzOMa9TqlW2X9d3IGxiV/yxlm9QttNBRyuY+epRA+tAgtv78VlBKwXUTDjyDF4Y2bITET0WP4MlZVPUvn128IOfAQAZGRhfqxae2LIF27ZtQ+vWrb1uERGFOPa0PfXUUxg1ahQqV65svzA3Q/ZOblINnF4CXxRe7IHHg/LFYNS5+nE0hmcvoLQ0f6eWiI78yfxnf06IMb+ktYlAz7zZzZ7hwLw8/QL9bJtmyEYg/waRAlDDWXbK5siWS460VxEQPfbshC0DxWmdU6eKKxuI9DX8tiWCuj0B9DUqAxhVoQKmT52K19980+sWuQtF+FzBkVfQ4cOHsXTpUuzYscP4wLZttT+34pCKiIjooew8zBbIcHIhArlDtyPynEzndHqPPj+Tna1vgx7vb1cKHntmQKQj65VTbEWcGpm278xe2SCW/a38jBPRv4QER16GfhZ56jRM+0LORXjt2W/78ck4Fck2MzzWtE4/DCjriUu1v+FLQ+Xj5qpV0WLFCjzz99+oUqWK180hogxHXkcLFixAp06d0LhxY2sFqB9k2QHxg+PMOIfJEiybrfuB7Oyo6FxdI1btmRE9s/ZD6pq6bTFh9vKP1LoxTq+saYRWGpzTqZ8W8Es3rYUVe/b1xuosiLZnlnl8VgSmun08aZ2iEeFviErrZPU3/BZ1tECT5GRckJGBBQsW4LbbbvO6Oe4RCom/d7G42qkJwp8OSZIwZ84cjB07VkyBytFmvY3AnVzQRQ8r++PxbsbEW4foB0brejuR8x7wTpoLFnsWhdP2DOCduz7jbNRp/JKyqbU6ol/aBgDxKPK6Cafx88Wy2Y4BeMfL6oXh1S1i1R5FiHe2ITyoL1Bqqns30mxEy+6Ne+ABvuOd2vOXBzf8DZ9nMIxNS8Oc55+HJEleN8U9aON1VxDeq3388cfIysrCwIEDjQ/US+fkRSuVTityImL0V6+jkDtIEcOgXnW2ynpFPSj0wPGjNYjhdiTQwaif1w6x1/UrCXTURAu/RARdjPrx2JMTC67o1R/4qBzgzcItSvxizwDTIkOWsepz2I2oyfVmZJgLuyiI3rFyWUYGJvz0EzZu3IiuXbt63RwiihD+BL300kvIzMxEmTJlRBfNjtMjRHpYHR3LzS32BozOFeGpKstQjuY5IfYI66gHFrTs2Q3HIytLyACEV0EgPwahYg6vb4JD9XplT2TPNhChtqPJns36d1F7uMro+Rw8i6OZ4fPoHQtl4uIwMiMDL730ktdNcQ8fRPg2bdqEAQMGoGbNmgiFQli5cmXE95Ik4YEHHkCNGjVQtmxZ9OjRA3v27BF4EZxHqHd/4sQJrFq1CiNGjBBToKiHV+7YnO7cZLTqUqdz5uae/hOBkXGrO1q7TjyJwtK4+aLJzhZzL1nbbKGupCT3/SFyhgOCVzcqIcGW0+92k73WFoQBSjvSu1EiQqxGZcgpqLw2LdLvMEKkzyEanwvDaypUwMrly3HixAmvmxIznDhxAq1atcILL7yg+f2TTz6J//u//8OLL76IL774AuXKlUPv3r2R58fFoHQQ+gpZvXo16tWrhxYtWhgfKCqdE+B/cNUdD2vamlk9RnvgKOtwq6MlYgerNm2nLp063FxoRRaVfiPwqXRuI99E2Xh45zrzojRShrqUzTKybxFplOGw+TMUM3vxBRlWm2ZZAIYFPZt+4AHgoYeK/98J30Odaumk7xFDaZ0ty5ZF3bJlsWbNGgwdOtTr5jiPD7Zl6Nu3L/r27av5nSRJePbZZ3Hffffh0ksvBQC8+uqrqFatGlauXInhw4fbbq4bCL3CS5YswbBhwxAK0uo4boxA5eQYj6qZea1m3/t5JM2MGOnAXcUtm1aUn5TkvBMq1+FGXYSHuHmjDeqIBZt2WlsHEidGbLy0aacjembvG5bsKZ9H3NwmFApheEoKlrz6qtdNCTzZ2dkRf6dOneIu47fffsOhQ4fQo0ePks/S09Nx3nnnYcuWLSKb6yjCxsezs7Px7rvvYqqozT692Gxd2WGJjJL4YaI1SyhEpPhyWshZmZvph20Q3MYpm/4PPd/FzKdh8alI1BEAIg1B9GbVqjqcNrmg2jRr9JL1uCLEs60+69f98+ziok0bYrYtgt73fp73zxoJtBoxtLMuBIcPMqxCBTy2di2ys7ORFu2+i4MRvjp16kR8PHnyZEyZMoWrqEOHDgEAqlWrFvF5tWrVSr4LAsIE35o1a9C0aVM0a9bM+EC30zmtCkdlhyZgc2rbGAk8v3W4Rni5WaqoBXysdr5ej2I6LP5E4McUTcJn+HDvPSPIpl0g6MLQyKbNfpuotFAzgpY9pIXXm7Vz+CDNADRJSMC7774bmJRBP7Jv374IwezpgpIeI+xVtHr1alxyySXmB6oNPggjF2aOslNOh5yG4SdBZ7Y4TCyg1WmzbA3iJmY2mZNzus0+3HSdBbejJcnJ+ppd+Vh49riyVqx1nNeDEVbxqfiLFpEXaLvWsmmR4oilLCv1qY3HS7vOzTW//m7OrTOqS+l/pKW5u0K7Q/QvWxbvr1oV/YLPwQhfWlqa7Qhp9erVAQB//fUXatSoUfL5X3/9hdatW9sq202EvJYKCwvx3nvv4d133+U/2eyh9FskQnSURN25u7Goi1VycvwlPv2ClmNhZNdGduOF4+1y5C852T2HWIQo9IXT6zRaP4zFgfYTCQmn8wk9iPa4add2iVmb1vrca7s2i+DZteunnwZuvZX9eLUPIkLQmaWOstbD6oNEgdgDgD4pKRj2/vsIh8OIi9oHFb5YtMWIBg0aoHr16li/fn2JwMvOzsYXX3yBcePGCavHaYS8nrZs2YKEhAS0a9fO+MDGjfkL14oapaaK66TtjJ6J2nDdSOSJMFpeL8StSF00d2BG6F1fUSvG2kHZNhO7/uDJ75iL9fPKlQkJsWuKXOhdpIQEX0XXAEQanIPiz892XVgY3DmDrqJl1ykpxZG5WLDrwkL/rd7jlg/i85U/O5Yti5OHD+O7775DmzZtvG5OVJOTk4Off/655N+//fYbtm3bhooVK6Ju3bq45ZZb8Mgjj6Bx48Zo0KAB7r//ftSsWRMDBw70rtGcCBF8q1evRr9+/RAfHy+iOHOU6WgyWs6yCMfYrIxwOFKwqef76b0w5HO8HBL288TrWITVrkXA8mwY2TUDfnOGgxJ9CSR6F9cPDrPaEG06t2TXMURQ7NqqTQfRD/G5SBNJYiiEHikpeO+996Jb8Pkgwvf111+jW7duJf++9b+oeGZmJubPn4877rgDJ06cwNixY5GVlYVOnTrh/fffR7LfXggGCHnK33//fdxzzz0iirKO1oiQF4utyB2oVt1OpGuyGnWszK+LNryya7UgNLJrBXLfZzeyYLcPlesnZ9hj9G6AVxGF5OTTfSZnhCQ52b5d292rj+zaJ7ht12ZR9LS003Wb2bUb+/HpQX4IN32SkvDq0qXe+9hRTteuXSFJku73oVAIDz30EB6S97UMILZfG4cOHcKOHTvQvXt3Ee0Ri5sbUquRO1UvRgLVHbqokZMYGVXzPXppzm6g4yx4OchFaWsBROumiXCWedJLGdLjYsGufb+RO+vCJ35YqVPvQro5wKFl108/Ddxwg3ttkOH1RWIoesdKn3LlMG77dmRlZSEjI8Pr5jiDDyJ8sYBtwbdu3Tq0adMGlStXNj7Qyvw9Paxux6B2lL0OxZoN07IarJ8XeiHcwQPb9uLxUfpTvnZSCX7UN9QDJ9nLN4L880VsnxYEmPfiE43IlTpZBhicGtxgQVQnzSrEguiL+Fxk1klMRLPUVKxbtw5DhgzxujlEgLH9yvjwww/Rs2dPEW1xH3XnpE5XszsH0OntGgDzjsrHHRnhIGa2HRBI1MUwWjff6wiOIIzs2q8RN9Z0VL+231f4zbatjiDw+CKEZfomJOD999+PXsEXCom3n1BIbHlRgK0rLEkS1q1bF1zBpyY3N/LPDLeWc9ZrV5BTNenl4C48du0hycmn50q55TSScxogZANxKLzcBRsdKReItG0iALh5o5KSHLdtYfjhXeL1Vhou0zclBe+vWmU4x4wgzLAV4du1axf++ecfdOzYUVR7/IXNVQpt1xvLooh3cjfrtVK+KETMe/Pji8esTbm5kcd4GP3zu29D+Bi18fgs+ke2TVjGim2LTFVVwuqP+Dw10hZWFpsR6JN0TE7GkYMHsXv3bjRt2pS/LX6H5vC5gi3Bt2HDBnTs2NF8WVK35+85UY5o8adMn/B51AUA/8MThN9kd8Uw0QuleCUeBdu20cC43FUEff6RHRx7DykL9uNAhNPIxiWn0rssAMm2ybYdw23bdur9zSIKnRKOAfZJkgF0TEzEhg0bSPDxlElEYFvwKfet0IXlQRMZZXD6hSD/nnDYervNrolfjTUInaZbsArGWLNtFdEW6RC11pKjGDWCRZF4sbqw6AiFC5uvk217ANm2NduePx8YOdL4GKP3u18jeDHik3RLTMSGd9/FDV6stkpEBZYFnyRJ+Pjjj/G///1PTEuMHlovUs5YNlwH9KMj6peKulP2Y8cJ6N8Hv7Y3CPjNtlmxGPkzc4L9HAExik76ud3CYf2xXu2nx4vSKBMSLDuJ+fnFW54FEbLt/xBt2zxbgTiBHdsmvyQwdEtKwoxNmyBJEkLRtiAJRfhcwXI3/8MPP+DEiRNo3769yPZoo3zY1ULMTw6zsp1JSd7PKTEyeJon6A+CaNspKdj48p6Ir/3UVCO0nF5aRMMGZstN+hWlwTI4yEGwb71bERX2zSqqWCNpVrdTkHHCtkVFAc1s22u/RI9oW/GTNSIaF8eUudM+KQk5x4/jxx9/xNlnny2ggUSsYVnwbdiwAZ06dUKS2dukVi2rVZRG66HQ6tDM0tHcmAPgdKcarXviEKfRu39288js2v9/7fKrE6zskmIqcuE3lDdC3V/5SQxqOMh+tW3g9GWNBtv2bC8+u6j9HqV9+9W2Aef9ElH79fk1fdRDkkIhXJCSgg0bNkSf4KMInyvYEnxM8/fcRivVUsbPb3G7+HXUjhBLOOwL2/bDoxQVkYtYRe/mee0sp6TAB6ZNtu0XrETdvLRtr9NLtSDfRBjdJAkb3n0XEyZM8LopRACxJPjC4TA2btyIO++8U3R7nEXtKHs1497uZul5ee6OXvh9pMTv7XMDLRFo1b59uApetC2OQeigdaNjwGH02r6t7rvtVnlRgd5N5rFvu4Lu7beBSy6xfr4ZbvsmMUa3MmUw/ZNPEA6HERdN15kifK5gqUvevn07CgoK0LZtW9HtcRetjjY5mX3BFqvf8xADzo5r+FDIOIqeffuclBRzZ5GcyYBhx1FV2mxycnE5AU5XD8AjqEt+PkUfhaNedAXwr30rUy394Jv4PfVT8Dy+tomJyD9+HN9//z1atWoloIFELGHJbfr000/RoUMHJJh5XSLn77lFXl7kg+fm29nrdCYi+vHSvjXwQ2ooEUC0DMeHTjLZN1ECz6CHV/ZtJFDIP/GcxFAIHcuVw6effhpdgo8ifK5gSfB98cUXOP/880W3xRivojPqUSyRDrLVDpQMmRCFk/atAUv0jiAsITvJslPtgQBksW9R6Y6UNhmFGIlCt+2bBJ4vOa+wEF988QXGjx/vdVPEQYLPFSwLviuuuEJ0W+zjxeqbPPktcgfqF0P0SzuMEJk24udcKr+km9qxbw2sRDjIiSWE4EKUhCJ4BABvFksRbd+i/BNRaZZ+T9cEPPFPzktKwpKPPxZXLxEzcLtWR48exZ49e9j238vL87eTLQL1KJjSQdYaIfN7B2YHP+T0G+FE+2LZvjVITfWPiftdOLJfJ8YDGeeBxDQpKZHXKCeH63S37Dsaonee2bfIvfiChiwC5etkZN+xFsGLEv+kfTiM3fv24dixY6hQoYLDjXIJivC5Avcr5auvvkLDhg1RuXJlthPMjFjZgfthuNSuw+T3ToUHnt8Sqw8XyzWSbcquffvBmVc5CampHrXDA1gdcE8fBZbKeZREtDnEapQGrOEck32XxjP75hForD8mluwbOG3j0SL2YtBHqRIXh4blyuHLL79E7969vW4OESC4Bd+2bdtwzjnnmB9YqRJ/a1jSEaI9ouIW0dLhB4kosu9ocYSTk6PGD3AGFsfZT6v22eE/o44S0wZA9m0Ki30nJJwebPODjduJTKamAh99BHTqJLZNTkA+ii5t4uLw3XffRY/gC4XEd1ShkNjyogBuwbd9+3a0bNnSibawYdbh0prRxVBnGUzIvoUREO0cPZhd8MJCfzjMUUJycvDTPgOHkY3LIizoNu7W3Dm3fZQgzAlkpGVhIbZv3+51M4iAYUnwDR061Im2iEGvE4lGR5lEXexhdM+j0cZ1IDEXUMxuHOecumgmVmxcQgghSF43QxxGNy4c9uX2IY5CfopwWsbHY9mWLV43Qxw0h88VuARffn4+du7c6W2EzypBdZTV7SYjDhZuzrvzwWCHaPP0w7RewkWMbniUOspO23gUBTaCT1xcdNp4rC1Q5zEt4+Ox848/kJ+fjyQ/+6+Er+ASfLt27UKZMmVQr149p9rjDcrOSnbQ3X6IaBSMcAq1bXll4wYofSBKUyM0Ue9DJsPrJHuwmqnaxycbJzQRZeNOQr6K59SPi0NSXBx2796N5s2be90c+1CEzxW4Xju7d+9G06ZNESfqQvph1UE9nIiWyNeNOkzCK5TPnJYdOiwC/bRtAxElqNUUy5L0DkJR6WKiYWsJ3+CFjZOf4lviQiE0KVuWBJ9ZmUQEXN3xnj170LhxY/MDrazQ6QdYBKiRk6w+P9qXfCaiDwYR+NOmv02LiZZVPIkAo2eEgpxksnEiAi/29TOycZ4BdfJVAkdjScKePXu8bgYRILgjfE2aNHGqLcGFRsKIaMbEvpU+h9mgGg26EZ6TmlraGTYRgTw2HtQ5c6wROYrcBQAWGyeRF2iaFBRg9+7dXjdDDBThcwVuwXfRRRc51RYiqNCDFVNQZIOIOhRGTeZNRCXKjnvbNiAaUgF5CepojAZN4uPx8bffet0MIkBwCb7ffvsNDRo0cKotRNCJpUinjxY8IZyHIhqxQx3swz7U8boZhBt4kYYpAg8WHooqosBXaRgO47eff/a6GWKgCJ8rMLsxhYWFOHToEOrUYXgR2n2YyLtynyC+9LyEbDymkP1Cs9vm6TuGtXJW26M+ISZhMQ/P7Jy14qQkNkFENh5M6L6hdiiEQydOoKioCPHx8V43hxBIVlYWVqxYgU8++QR//PEHcnNzUaVKFbRp0wa9e/dGx44dLZXL7HX+9ddfkCQJNWrUsFQRF7wPMznPpTETJDT64S1k455gZzPrmLsFdqPYeXli2kFwYcfGY+61kJBg70eTjduHZfA05gzTnBqhEIrCYfz111+oWbOm182xB0X4AAB//vknHnjgAbzxxhuoWbMm2rdvj9atW6Ns2bI4evQoNmzYgOnTp6NevXqYPHkyhg0bxlU+swuzf/9+VK1aFYmJidw/wnFYoy3RkIYXBakIhAUKC9lGrKPBxhkxW/4+gP19dKFWHmb266e9xnyEkZ2TjXsMr40Dnm0X4jrkqzhKUiiEqmXKYP/+/cEXfAQAoE2bNsjMzMTWrVtx1llnaR5z8uRJrFy5Es8++yz27duH2267jbl8ZsF34MAB1K5dm7lgX8LSAXk5jE9pCoRd/G7jDLDsY0aObhSSksLmMGdnG38fgPlNZOMWCcC9NYXl5ofD/heG5K94Tu2EBBw4cMDrZtiHInwAgB9//BGVTLa1K1u2LK644gpcccUV+Oeff7jK54rw1apVy/zA8uW5GuA7zDoxq84ydY6EX3DKxhmgFT4J27AYkZkodBiyc8I2Xts5+Sy+p5YkYf/+/V43wz4k+ADAVOzZPT62InwioE6QiHZs2HhamsB2EIRVzAwxK8ty0eEwkJFh+XQi1hEZpTSy83DYWBCSLxN4ahcUREeEjyjFggULULlyZfTv3x8AcMcdd2DOnDk466yzsGjRItSrV4+7TC7Bp5dTSgSMAI58EP6BRB0ReEyMOCgmHkXbihFOQJ11VFMrFMLOaBB8oZD4jiwUEluey0ydOhWzZs0CAGzZsgUvvPACnnnmGaxevRoTJ07EW2+9xV0mV0pnz549uSsgCEIAQZ+3QhAEQbARDXMVCcepFQph3c6dXjeDcIB9+/ahUaNGAICVK1di8ODBGDt2LC644AJ07drVUpnMkvrgwYO0EhBBEARBEARBeEytUAh/HjzodTPsI8/hE/0XYFJTU0sWZVm7dm1JwC05ORknT560VCZzhO/o0aPcEwQJgiAIgiCMkBBCCJLXzSCIQFExFMKxf//1uhmEA/Ts2RNjxoxBmzZtsHv3bvTr1w8A8MMPP6B+/fqWymQSfJIk4dixY8igmeqECPw4WdznWxUQBEEQPsdPqZh+akuQ8aO/8h8ZcXE4lpMDSZIQCvKcNVqlsxQvvPAC7rvvPuzbtw/Lly8vCbht3boVV1xxhaUymbzcnJwcFBUVoUKFCuYHO/lwkFNuHWXHTy+B0vipUyc7DyzxcRKKwiHEx3kQrWB9wcXF+cveicDiWzund1zwIZ/FlApFRSgMh3HixAmk0l4wUcErr7yCSy65BJUrV8aMGTNKff/ggw9aLpvJs8zKykIoFEJ6errlioQg2knx8wgAdXCxSyzZuWDKJnufFuaJE8yL14MKeXne1h9w/GDnvsYvc3j8bOd//gmIXJeBfBbXkT3yrKysYAs+ivCV8Prrr+PGG2/EOeecg0svvRSXXnopmjVrJqRsprf+sWPHkJ6ejriAXkBd7HZQRteDOj/CLzhp5zYpn0qOa0ySnCy2vJwcseUJhuw8RgmSnavfE5QS6nviQyGkJybi2LFjwd4nmwRfCR999BGOHTuGNWvW4O2338ajjz6KatWq4ZJLLsGll16KTp06WdZizIKP5u9pQJ0hEQsY2Hl6GjmyhA+wO7pttEE1yM4JnyDazo18GPJvAkFGQgKOHTvmdTMIgVSoUAFXX301rr76auTn5+Ojjz7C22+/jauuugonT55Ev379cMkll6Bv374oV64cc7nMKZ1M8/cIgoh6yPklog7VBtXptGIkEY3QRuxRR4X4eGRlZXndDHtQhE+XpKQk9OnTB3369MHMmTPx9ddf4+2338bDDz+Mn376Cffffz9zWcwRPhJ8BEEQBEEQBOEPKgAU4Yshzj33XJx77rl46KGHUFBQwHUupXQSBEEQBEEQRMDI+G/btEBDEb5SSJKEZcuWYcOGDTh8+DDCihTrUCiE5cuXIzExkatMJsF38uRJpKSk8LWWIAiCIAiCIAhHSJEknDx50utmEIK55ZZbMHv2bHTr1g3VqlUTss8ik+ArKCjgVpIEQRAEQRAEQThDYjjMndrnO3wS4XvhhRcwbdo0HDp0CK1atcLzzz+P9u3bi20XI6+99hreeust9OvXT1iZTFeEWfCVLWu3PQRBEARBEARBmJAoScEXfD5gyZIluPXWWzF58mR88803aNWqFXr37o3Dhw970p709HQ0bNhQaJlMgi8/Px9JSUlCKyYIgiAIgiAIwhpJ4TDy8/O9boY95Aif6D8Onn76aVx33XUYNWoUzjrrLLz44otISUnBK6+84tCPNmbKlCl48MEHhabrMqV0FhUVISGB6VCCIAiCIAiCIBwmIRxGYWGh183wLdmqvSfLlCmDMmXKRHyWn5+PrVu34u677y75LC4uDj169MCWLVtcaaeaoUOHYtGiRahatSrq169fKsvym2++4S6TScXFx8cHfwSBIAgxGG1SLSIPn6UMUcewwloWT52Mx0pgm6zNuk+y6ONYYSlP1DF2y0jHceMDyM6Fl0l2zn+M3TLS7VdBeExhXBzKBDwgIyHE/PzzlAkAderUifh88uTJmDJlSsRnR44cQVFREapVqxbxebVq1bBz506h7WIlMzMTW7duxdVXX+3uoi1JSUk4ftzkBUgQBEEQBEEQhCvkx8WhQsCnXIXDzg287Nu3D2lpaSWfq6N7fmXNmjX44IMP0KlTJ2FlMgm+xMREtkmhJ0/Swi0EQRAEYZeA7yMFIDp+A0H4mIJQiFbRNyAtLS1C8GlRuXJlxMfH46+//or4/K+//kL16tWdbJ4uderUMW03L0y9MbPgIwiCIAiCIAjCcQri4gIv+OQIn+g/VpKSktC2bVusX79e0aYw1q9fjw4dOjjwi8156qmncMcdd+D3338XViZThK9s2bLIzc0VVilBEARBEARBENbJDYVQljLrbHPrrbciMzMT5557Ltq3b49nn30WJ06cwKhRozxpz9VXX43c3FycccYZSElJKSXqjx49yl0mk+CrUKECsrKyuAsnCIIgCIIgCEI8WaEQKlSo4HUzbOHkHD5Whg0bhr///hsPPPAADh06hNatW+P9998vtZCLWzz77LPCy2QWfMeOHRNeOUEQBEEQBEEQ/BwDAi/4/MKECRMwYcIEr5sBoHiVTtEwCb6MjAwSfGrMJqOLHq4gCK+ghRcIgiCiD3XfTn5L4DhWVISMjAyvm2ELP0T4/MCJEydQrlw5x45n8uSiMqUzLs7en9Plk5NNiMAJO8zOPv1HEFFChFkr/+GEnVP/TniEoVmTzxI4sgoLKcIXJTRq1AiPP/44Dh48qHuMJEn48MMP0bdvX/zf//0fV/nMKZ3Hjx9HOBxGnFcPtd7GkoWF0dvRiP5dQRzyiDX07Nyv907tNZjZrPr71FSx7SFilpyc0/9v9rhwP05k54QP4LFx1mOEQj6LqxRJEo4XFARe8FGEr5iPP/4Y99xzD6ZMmYJWrVrh3HPPRc2aNZGcnIxjx47hxx9/xJYtW5CQkIC7774b119/PVf5zCmdkiTh+PHj5oal57A6RUJCMO+sF8idsdcCubDQ2/r1cNt2iUgPRoblPujZcEqKvfYQrqC36DNLV+7X7sMQtZ3bsXGA7Dwg+NnO6zRjTwXzDPJZ9ElIwHFJAk6dopROnTKDRtOmTbF8+XLs3bsXS5cuxSeffILNmzfj5MmTqFy5Mtq0aYOXXnoJffv2RXx8PHf5TB5uamoq4uPjcezYscCPJBA+gIQV4RRKD8uuU62E1WaVx3ntpGgQDrP7LqzHsb5Y/egzBRayc0PIzgmh+NRnOSZJSIiL45rHRfifunXrYtKkSZg0aZLQcpmsOPTfsq9RN4+PIIjYJhx2zmE18xAF1xvEEU0iCjAyPAeeLT/buZ/Enp+vEyGGLElChdRUhEIhr5tiC4rwuQNzb1yxYkX8888/TraFIAiCIIgYQ0KwHVaC8IKjkoQK5ct73QwiIDDHqWvUqIE///zTybYQBEEQBEEQBGHCAUlCzRo1vG6GbSjC5w7MEb7atWvjwIEDTraFIAg9fDhPhiAIghCPn1JDCf9yQJJQu1kzr5tBBATmCF+tWrVI8NmduOuXXtzJeUtE8PHpBHWCIFTQs0pYxcx2/OKvELockCTUqlXL62bYRpLER+QkSWx5brFjxw40b97ckbK5BN/69esdaYRvcPrlSR0s4Qfs2rnWVgoyaWn2yiYIlzAyY8Dgy7g42lePsIybqWbGNm4C+Su+Z39iInpGgeAjTtOyZUu0a9cOY8aMwfDhw1Fe4BxNZs+POaXz338BP04iTUoyP8brpF8WR5w6WcIIMzt32sbNPAwShIRLGJmi7cfAqHASg4RLOGrjZpC/4jkHQiHUrl3b62bYhubwnWbjxo2YN28eJk2ahIkTJ2Lw4MEYM2YMLrzwQttlc0X49u/fb7tC4cRaSguLcAWA/Hxn20G4S7TYud5OxEpIFBIGmJmQ5z5mTo7580o2bgnP761LsHSTgbgW5K84yv7CwqhI6STBd5oLL7wQF154IZ5//nm8+eabmD9/Prp06YJGjRph9OjRyMzMRPXq1S2VzRXhO3z4MAoKCpCYmGipMrYWRYlj6zWsHa1MIN4eUQTZuT4s3k5CApCc7HxbCFdhufVRAdl4oBDpPMaMjfOsE8DrrwAx77PkSxIOnzoVFRE+ojTlypXDqFGjMGrUKPz888+YN28eXnjhBdx///3o06cP3n77be4ymb3OatWqIRQK4eDBg6hbt67xwawPb1AleDRiR4DIHXssjdKRjXtPXp7x92qbJufZVdS3J8b9M2vw2jhAdu4yyltENu4iVn2WKPFXDkoS4uPiUK1aNa+bYhuK8BnTqFEj3HPPPahXrx7uvvturFmzxlI5zE9MQkICqlevjn379pkLPiI2sTJKRxBuoec889gty0IGURK9ZXVeA+43RR9adi7SxgNAXh77FDMWOycbj0IC7q/sLyhA9XLlEB8f73VTCAfZtGkTXnnlFSxfvhxxcXEYOnQoRo8ebaksrp69QYMG+O2333DBBRdYqowgCCKQyEKOxTtkTWViHIIMg+2FzjqiSVEIY87ET143wVuiwMYBtp8R1GchqO0mxPFrOIwGTZp43QwhUIQvkj///BPz58/H/Pnz8fPPP6Njx474v//7PwwdOhTlypWzXC6X4GvSpAl2795tubKoRDlKpGVhsdAz075+0U3AR0IJgiCI05zZqVLpEGgs+CpR5KfsLipCkzZtvG4GIZi+ffti3bp1qFy5MkaMGIFrr70WTZs2FVI2t+Dbtm2bkIoDiRXHV9mpRknuOBHFsNi4ci1w3iXooyjlkYgeIpe3V611z2vjQbVv1nbTAFAgMd2Tj3yVQLE7MRHnUITPsMwgkpiYiGXLluHiiy8Wnq7L9WZq3Lgxli5dan7gP/8AlSpZbZN3xMUVW4nVF5p8vhl65VPnSriFHaetXz/g3XeL/1/tRchOQ0qK9fIJwkFyczmDGWTjBAN+CpBlZwsqiHwV37InFMKwxo29bgYhGCurb7LCHeHbtWsXwuEw4kSExlkFkpOoOzQn22OW+kidK+EEbtq4jNba4+QgEy7j6BL4ZOPGBDXSGTA82eZBy1chP8U1wpKE3SdPoglF+AzLJCLh6pGbNm2KU6dO4Y8//kCDBg2capN4gp6Com4/pVsQaoJg47JnonYEyUkmbKJ0es0iLY5GYnJztYUO2TjBiJ598ti4J+j5KQD5KoL5PRxGfjhMgs+kTCISLsGXlJSEZs2aYfv27f4UfEFwekVi9Hupg/UHoqPYfrdxK3P01EPU8m+k/cQIFXl5Ae3avLRxv/cZMYSZUAusfatRZzJRRFAo24uK0KxePSTRs01wwJ1z0bJlS2zfvh2XXnqpE+0xxuzlSJL+NGYdAXW2/sTIxmPNvo02neZdSIMIBGb7jEcdZOMoYtySIRqIOfs2gkWskJ+iyfaiIrTs0MHrZgiDInzuYEnwff311+JbYpbyQndPLElJ5ksU09tJLEY2TvbNh5kjQCOfvoV8OEbIxgNJ4O3bT1sXsETAWf0UP/0um2xPSED7li29bgYRMLgFX+vWrTFnzhzzA//5B6hVy0qbgktSUnHnI7+Ig97zy50ta0cZawIx1lIOg+Rg5uebi+gg/Z6AYNTl+XLeUZAhG3eFnBy2V7pb9m23nnaX1IgeHwUofg+z+ChR5J98Gw7julatvG6GMCRJ/Ji3JIktLxrgFnzt2rXDr7/+iiNHjqBy5cpOtMlbeOZcab1Mk5NPn6/+Pho6VyNECyDRHXTQBZrbq9oaOYu5ucFfiIL3eYyxVQdZL080dWvFU+3+m28XdPsG+G6Oz+3bCUEVazZeakXPaPBRWAeknXr/i/JTUlKY3u9/FxXh16NH0b59ezH1EjEDdw9fsWJFNG7cGF9++SX69evnRJv8i9xhWHW65c6VVtlkg7WDZu3wKW3SGF77VnsPfnOQRW/yzupxeuQ4s942irSdxnBJey/t24vIXJTYN6v/Ha2vX+Vt5N6yQT3VI1ovkkjM/BTB/smXBQVoUqcOKlSowFZuAKA5fO5gqec+77zz8MUXX/hP8ImOgDgdEfJ65SqzfQEJ9/BiT0rR9i17F3ZXIMzPp1Q0whFsrYIoyr6JqMMvgyjCV/m0EgEU5VOQb6LJF/n5OK9/f6+bQQQQy4LvnXfeEd0WY9xwiO1G8ESgHmHTGq4koUZYwW37VtsuOciEyzg6bceqfYsazPB5CibBD69Yc31aGot/QjjKFwkJuOS887xuhlAowucOlt4YnTp1wj333IPCwkIkGL10Dhzw78ItQXE+tdpJnSxhhh/tW7ZbZZ/hx3YSgUQ2L8+iLWTfhAF2I2+u2DfvQLKWfVMaqGMUSBI2nziBJzt18ropQiHB5w6WBF/Lli2RmJiIrVu34rygjDQo51+YWYJZNNHu93bRWpWKRKA5XqRNuoF6blGQfqPVKAmlfQYKUU5qdvZpEwlElxdtUe6gtz9A+NK+WQShm4PUfs90Ejx/b2tBAcokJ6NFixY2GkXEKpYEX1xcHLp06YINGzb4U/D5bfEINWYpmVZSNvVexCI6Wr+nkPq9fSJxw7a9FMZa9krCLuZRBg186Qiz4lf7Ft0GP/ymgMBj23YHTroMr2GvAKuo/ZNAP8TeseHUKXTp1AlxUebvUITPHSxPAujWrRtWr16Nu+66S2R7+NBzfr2+0ykpp3tmLzu2uDj9a8S9fBfhKn61bcD9ARW9FCFyKqOOmMwG0/rRZNu+QKQ9umHbpnX4ITxOfollNoRCuMRviyUSgcGW4LvrrruQn5+PJKOXk915fE6kqzkRwdDrwJQjWyI7WbtRLWV71eVQp+sePKnGorBi/36MmpMQDCy+FnZ5ed6nLsaIbRch3usmOIKv7Rtwzi+xG3mS3zNa5cS4X5IvSfg0NxfPdOvmdVOEQxE+d7As+M4++2yUK1cOX331FS644AJ7rUhJCeZGzrztVXaybrwRrIpCrd+lLCfGO14ugmbTSozaPmYMMGPG6X977SArMXq2aGVDV5ETHfzuAJfyeZUfBNm2o8TeWe3HzT34lOmVIspzKuhmWq7bfolVjPwSP/okgufvfZGfj/LlyuGss86y0SgilrH8NgiFQujatSs2bNhgLvhYnF6/OcZ6URDWiExCgnHCvfr3+rHD0oP1XgXpN1khNTW6hpHsRBuVXoVZFEL0hug8aD2TcluibF6EG4TD/tmDjAcu55rHtr1Ez7ZjaY6zQFht248ayZJ4TEiI7Jf9/v5W2nQM+CQb8vPRtWtXhEIhr5siHIrwuYMtr6tbt25YtmwZ7rvvPlHtEYPolE03xKiWAAz6S9roupn9tpwcsW3RIjXV+TpEEwTb9mt0xAyz6yp/H/TnkgEnXsBmOO04y2Zpux65ILLtQBKrtt37hgZ8hSrfDdHgjwD+9klM/JENWVkYRvP3CBvYFny33norTp06hTJlyugfuGcP0LixnapOI8rhNSsnJcXZt4JZlCMlxV/pCm6PEgdRjNnFrdUxnbZt5ZYJ0bYsPcDuPOvhwnNk1IRYGvl0feP1oKdQkm37lpwcD9dcUfojgHWfhMU+vBCWLHV66JPkhcPYcuoUXozC+XsARfjcwtbbqWnTpqhYsSI+++wzXHTRRaLa5A1+SylVEuT0z2jHj3v7qdvkJ9tWRkeC7hxbxSF78ZsZekFhoYcLECoXeyHbDkKxgcPItl1NLVVH/4DoiAD6lM15eaiUkYEmTZp43RRHIMHnDrbeSqFQCH369MH7778fPMGXmmp/8olXzr56hU27AtCLOR40r8Q5RNi2G6jb6JWT7IdVGQlLiDbz3vhATEF+sW3CMl5vFReELhxA6ZU13RiQjjHfYW1uLnoOGBCV8/cI97D91PTp0wfvvfeeiLY4S2pq5B8LdjsVt17yKSml/2RomCP6sWLbfqSw8PSfH1dCIDxHaSKBcYgBPtv268IwrIMiNHjCTU6Ox7Yt0lfR80UIy3woSejZs6fXzXAMSTod5RP1J0le/yr/Yfsp79mzJ6644grs378ftWvX1j/Q7Xl8aWnmx5itpGkVZSenLl85+mU2j89OFEzZBrkONxZCIZzHS1Hn5gucNqSOeVzX/cr5p07Xo4S3zih4Drzag88Pm6l7Mp6llYbJiqg9fxMS/OeH+Dxa+HdhIbZlZaFHjx5eN4UIOLYFX0ZGBs4//3y8//77GDNmjIg28eOXqAbP9hNezMPTuk48nS+lYbqP1j1zO2qrZ9ey1+Km86n0lOLiKFUuivB6L7OS+mPNrn0uHlnvqdcpmHp4rW/y84EBd50d+aEd8WcV2aaN/BDyL0qxPjcXLRo1QrVq1bxuimPQHD53EPJW6du3r3uCT+4s/HQ3rUQ95HMSEux1uHZFmHw9lWV4/YaKRfxm12lp7NFvpbMqynlkjbQY7atH+Ba/pGMaikwn7Jq1HLLrQOKUXZuJWbUdcw2epKTY90PsCjXyQ3R5r6AAvS+7zOtmEFGAMMH35JNPoqCgAImJiSKKLMZu5E7Eoip6ZSjbZtTLs6SN+mEVTqVwNLrutEKoPfwSjWaxayvInoaX0Tfl86Z0IMhh9gQ/zbez7EN6EfVTQ3btK/xk10JSRL2I+hmh9y7yQ9tcokiS8G5uLlYMGOB1UxyFInzuIORN0bp1ayQnJ2PLli3o3Lmz/oHqeXxpadrHsdwpUStk8szjc8tZF73hqdlcQR6MrgGvNxWtKaJ27JoF0avDWrXr++4DHnlE/3vlc+UHp1TvOfdD26IAvzi/Wghrm99sGtD/cbR4imVyck7f3qi3ay079pv4UyLSB/G5//FlXh7CCQk4//zzvW4KEQUIeWPFxcWVbM9gKPgAfWc4skD/yPPUVO83YA/KoivKjtioI83Odr4tThE0MaeH03atxitHmSU11Gio3i9OvQ/Qu0R+dYgdb5cfxZ8asmtTvLZr3ugcb7tKzd/jRfnOs+qDsNibCPGllRqqJkD+x5rcXPTt3RsJUf68Bi3C9+ijj2LNmjXYtm0bkpKSkJWVVeqYvXv3Yty4cdiwYQNSU1ORmZmJxx57zNN7KazmPn364PHHH8fUqVNFFekdvBEPp1b7VKNsl1fiT0RUTvkCsVqWlU6bZbAhWtCySb+kkyoFlp3Oz43985TXsLBQvz6fjxSbofVy9KuQM8KzNssVi8ymcBIWsRpwmwZK27XIhV1YhJqI+vyUOqrpg7hpJyLqCpD/8fb+/bh70CD+ugJG0ARffn4+Lr/8cnTo0AFz584t9X1RURH69++P6tWrY/PmzTh48CBGjBiBxMRETzWSsDdT//79MWrUKOzatQtNmzbVP3DrVqBtWzGVskRDWCMmRs6wnyKOMur2+i3twmmCKN7ctiO/CDwjghAlYUF5X1nvsfo4C86HiGqDjm+cYZlotGmtf2uRnOyJXft1hU6rKE3I7Ld59tvl90us+R6AK/7HTydPYndBAfr37+94XdFMtkqclylTBmXKlLFV5oMPPggAmD9/vub3a9euxY8//oh169ahWrVqaN26NR5++GHceeedmDJlCpI8mgsubGgmLS0N/fr1w5IlS8QU6MaokbxRdUaGs3VkZDi/EanZ5tssXpFITzDavMqg4MYG7Cx1WPFSArmjtkB0dpA12lw2FgnU5uuBaqwBdiLpGoZbEI5nsutoE3J6OGomRr6H2YAEy4CFme/hNqy+o88j2EuOHUP/Xr2QFsTBbU5Eb7qu7Efq1KmD9PT0kr/HHnvM8d+zZcsWtGjRImIrjd69eyM7Oxs//PCD4/XrIXT4cdiwYZgyZQruv/9+hEIhkUWLwc3OyKgu9V58ZmlAVtKE1PX7df5ftC7c4hZe27RTKWyFhbQSIVGCMmPS2ToMUo1FpA/7LfpHC7uUwi2R6Z5NK3BjH2B12qdb8/eiCEmSsCQ3Fw+OGOF1UwLPvn37IkSz3egeC4cOHSq1b6L870OHDjlevx5Cn7KLL74Ye/fuxffff2984Nat4io16yjkGy1iiwcjlJuKstbldNRPid9G4QhrpKUV/7l5H83qciN6EaRISayEJRzEzdutWYeVinnFk9aPZHGOfb5ROqGN1u0Wsp2CQT2XTW2nfZAov8PMLxLpd8SQKNx+8iT25eXFTDqnkxG+tLS0iD89wXfXXXchFAoZ/u3cudPFqyIeoUOM5cqVw6WXXopXX30V06dPt1+glTlPWuHvjAzzl7fdhVdSU43PT0oy7t3tLsjCGynT6nxZ66WoXGmcmp/nZDqHUZtl++B5JtyMXqiHx/0QLSEs47aOZ67LTfuSo+Vk077HTKgVFooZ9zErw/b2EXI/71YGkF8yj3zuv7x27BguHTQI5cqV87opMcOkSZMwcuRIw2MaNmzIVFb16tXx5ZdfRnz2119/lXznFcLfKNdddx2GDh2KRx991PnQqewMezmZRVSURbl8vJb4E5E6Z1aGXK/ymAAtYRwVsNq0UyvDirJn2YN3y2nVuhbkMPsSLwO0lusWtbIsb51KyJ5t4WTgPZA2rYwUawk/EfZmVkZqaulj7PgcPhdyLJwKhzE/KwvLrrvO66a4hh9W6axSpQqqVKkipO4OHTrg0UcfxeHDh1G1alUAwIcffoi0tDScddZZQuqwgvA3SNeuXZGRkYGVK1di2LBh+gfyrtZpN9IhwkGWIyJ6TrETTrjbI3BqtK47a4dMkUBj/DIZ28nUUC/nLMl1+zUFzo1tJXxCIB1iswJ57dmuHfLYcxTYFatA8yKDOqrsWYnyXWB2YZ16t2u9F/26BoEDrMjKQsUqVdClSxevm0LosHfvXhw9ehR79+5FUVERtm3bBgBo1KgRUlNT0atXL5x11lm45ppr8OSTT+LQoUO47777MH78eFfmEOoh3AMLhUIYO3Ys5syZYyz49NB62EVtvWCGmWBLS7PX25qldRqhHgnT6gDdElhpafr1WBmdi2ZhaMWeReG0PQPA9OnAbbexHeu3BSsCQiIKUIBEr5sRKKyY9WVYYb0SsmdmkelnW3ZTPPK4ApbsWW/+HiteDzYr0RscteJv+NzXmJOdjbF33unPhQ8dwg8RPh4eeOABLFiwoOTfbdq0AQBs2LABXbt2RXx8PFavXo1x48ahQ4cOKFeuHDIzM/HQQw851ygGHHlLZWZm4r777sOePXvQuHFj44P9EuXQw832KdM6zfB6E3Y9kaa+XspjojU91A+pxaz45XkrLDx9vfRewDzPAxH1mDnI4bDHG6+b2XNQiYJooUhYFrgUIRzNXuuuiVOrvgbLIIjdgRKjTdQD6G/szsvDZ1lZWJKZ6XVTXEWSxLtPkiS2PCXz58/X3YNPpl69enj33Xeda4QFHBF8VatWxeWXX47nnnsOM2bM0D9w61agWzcxlbJE+XhSLvUcY7MyjL5PTT3ttVgRaXpzopQdstnbiGVelVNzr4zEhh87a+X+jEEQc3o4JfJEpYIqr61XznIMpVdGE758LIMi/GLI3oOycK5QezaK0JkNpOm9/72I+ll9jvTee37zNRR+xnM//YTLL7tM2FwyglDiWB7KbbfdhgsuuABTpkxB5cqV7RXm1AqIauQOwsnFMOS0TqcidCkp/lp0xWq6Jmtn7SfcslMW3LBlM6yIKD+Iv4CSnBwcx9YOfnnETCFbJhhwwp4v+z/FQLoTIk05GOq1jwHY22xdy9fw4Hk9kp+PeYcPY8u997pet9cELaUzqDhm1a1bt0bHjh0xc+ZM4wM3bBBXqVVhIf85Acv+M8pjRG/M4+TvE/lEsZYVK08xiy2rR2Gt3GueSK7ovf/MotEs9zoWFA4BwBmnwDVENdyNPVt9gBcLtrjZleTlGduzWddoqa1OLc6l9d5xI50zynjhwAF06tABrVq18ropRJTi6BN322234ZprrsHtt9+OsmXL2itM5MIsdl+aLGmdVtJllB2ynvCzk26pFgJGbxU3l9SPNURGAp2ek2fVlv1Ebm7MOMpu4ye97YiT7CainjMvntcoWLCFBbfm7zmGclqJHmbvfaPv5fdRQoKYyJ/ISJudKKDDnCwqwoyDB/GGWYAkSqEInzs4atm9evVCjRo1MG/ePOMDRUb59OCJftgROix1mOXPJyWdjqY4NSqXkBB5TZwUDtHw5PklJYv3njltywRBRO+AQtAHe+BzAeYAEemcWjjtW8i45V/45d1sg3l//omadeqgZ8+eXjeFiGIcfVJCoRDuu+8+TJ06FXkiel2WB1s+xqizcWJDUZGdmnoETt05m83Lsjpvy0oH7UVap58R/fJx66WpVScrL77oXFsIwg9EgfAh/IFdV0iogFX7Fk5utq58j7HUE0PRvUcPHMD9jzwSU1sxKJEjfKL/iEgct+7BgwejUqVKmD17tvGBdqN8GRmn/0Q4xqwdn55z7MRy8iJH5lhEYUqKN4LDjGh+kkXbMSt+u8dETBH1URi/CUa/tccCfpy/J6IclrRRy+j5Jax+hahpHqL8iiiI7s0+cABVatfGoEGDvG4KEeU4PkkrLi4ODz/8MMaOHYvrrrsOKXZTX+T5T8pVotSwbL/As0WDFl5uwi7XL6OVK+/m1gosq39F8+bqdgi6HQcF9SAB2aLjRPO4jGcE2I5Z5+/5TfzLl9xv7dLCNJ3TDPn9bnX+ndXFWqz6FSz4OLp3oqgIjx04gJcXLUJcgJ5l0dAcPndwZVWOAQMGoG7dunjhhRdw++236x+4YUPpffm0HGK37qSWM61eicrIWWYRdWlp2p2r2abTyu/NxJ8eokRhaqp+OVlZfGX5WRjaWWzFSztWo5XibFc0WsVszzKn9sezeu1pvz5NvH65el2/Z3vv+UEA+vh54BVpTtuRWXvM6jf9PXr+BMC2doCyHBkvtl1ISNB+Zyr9Cb/6CRy8sH8/6jdqhIsvvtjrpngKCT53cEXwhUIhPPzww7jyyisxZswYVKhQQf9go4gHD6KjI6JT3eTy8vPtj6pplQuIyQ2xKwqV91PdQfOKQSV+FYby7/Vjb2PVhvUGLljKMxNI8vd+2LNM65750cY8RH2JvN45Q9RjdhlWiCnISeHHIqySksTZsY+FnF2s2LEZVu1cWbeQZ0WkP6EsT4Q/YXeAWc+fsONLqMtyiaMFBXh8/34sXrkyZufuEe7i2rr7vXr1wrnnnouHH34YTz/9tP6BK1YAl11mXJhbG1xnZABHjhg7trxRPqOy1KNqPFE+Lfy+CbueuBfZkYskI8OfQs4I+RqL3N/R6Xl+fhB/MkG73wLx60/3a7si4LVhp8VVIC4aO6zCSNSAhOhBC0c2W59/aeQHTgk/vfJETSGxUk6QfIn/2vrwtm1of/756NWrl7ft8QEU4XMH1wRfKBTCU089hXbt2mHcuHFo3LixvQJZRJ/VVDVl51G5sjhnWW9xF6Poicg3jVaahqi0TqfmDBpFfL0WA25gxYZFRcnVGAm9hQuBK68UXyf12sR/BNYU/NZwH28hEYR5claxu0+k5WuTlmZ+slm6p/Ld7nW6J2Dt3c8iCl1i97//4sU//sBXKwRlFhAEA65aevPmzZGZmYk777zT+EA3HwK5I1Oujmi1DCOsRkWSk+2tZKUnFpQrZJk5AG4v6sHqIHnhSHmxVLQZahsWjd9X7/TTEntE7BHFqY+i8GLDdUdXu/QZpaJ7apzqw3m2WRB1DCs+HhC+c+dOjMzMRPPmzb1uii+gbRncwbUIn8yDDz6Ixo0b4+OPP0bXrl3tFWY3yic7x0eOGJdhdUVNZQdrdD5r+VopFWZpnSwkJUWW4WTqg1/n3onGjbRjpbhzQpSLchDcSsE2ghZbiWlsdTnygJhVG/ZxRM02HjxTbm/H4EXKp1C0FmNR+hA80T091AONTvoQfhx05eDjw4fx0d9/Y8+jj7peNxHbuG7t1apVw/3334+bbroJBQUF+gc6FeXTiuRVrmx+Hm/Kg5MREdF7pqnFpvIaydeJRVCIFB1eCwS/YjUS7bX9xsWd/osFfO0BBg+r0RrZ5IREe7y0X7eFVcCFnN+wms4pm5zwayOyf9d6t6jfUxTdAwAUhMOY8OOPuG/KFFStWtXr5vgGivC5gydPxc0334xwOIz/+7//s18Yy4NdubK5kyxyQ1Et7EThjKJ/aWnFL2ejF7RdIaYWgE7NEbNCtKd1ZmSw2a8IjISeHftVezu8jnMs5WYRQnBUm/l14MKnEexoT+d0QqjymJhpOqceaWliontmiPQbWC6Kj/fde+7nnyFlZOCWW25xvW6CcD2lEwCSkpIwc+ZMXHzxxRg2bBhq166tfSDLip1aOOUYG6Ve2l0N0e5G7Oq0TN7J1LypoXp75LAs3hIraZ1WsGq7dvbSc2IlTxZkG6B0S8Imsum62q2IqsxN2xeZXhrwZ9atVE1W8alnTrbEq9k73e4CLCw+g9If0Ev9ZBGWAfcZ9uXm4sFdu7Bm7VokJro/COJnaJVOd/BE8AFAly5dcNlll2HixIlYunSp/oEsoq9iRTErdjq9IqKRqNNa4XD+/NP/z7tFg7ojF7GKplkZWukb0bjXHissc9e83OpB1MDIkCHF/5VtmzcaqBzOpl6a4EQ2HStdhWyyS1D8jhmWZGEqAdmua0Rb2qecrmnnNbdi5CoAFiJ96n5a9DYOLKh9Brf20/PAr5j4448YNGgQOnfu7HrdBAF4KPgAYNq0aWjatCneffdd9OvXj+0kr9MJZdGm1w4rkTq95exHjiz+r1L4WYF1M3YRC8Co0btOWVniOl0vhCHvQiRe260SUbYrCz01VoUfEHkfvUzXJefdFC/HYuzWrWfmS/IFCD8g2LYb8Pl7LBExUbZrpd1OPTcrRq6KFH1W3+WsG63zRvdYjtF7N4kUoR50XGsOHsT6I0ew85lnXK87CEiS+C5TksSWFw14KviqVauG6dOn4/rrr8cPP/yANL35QytWAKNGGRcmal8+s2MyMuynXsrns+5bphR+djZiByI7VCujaSyRQpZjMjL0O16/bJBqBfULi6UXc3JPSRnRaZt6Yk+JHeEH8DmwotNC9WwzBoWgn4LsTgk9NczCT8/m5IampLhjM8pUTa2L5JHdejF/T4mdNEkRIlQuQ68dZnXwpnNajvZpYddXEInRwLGMnzoqBccLCnDD999j2jPPoFq1al43x5dQSqc7hCTJWx0sSRJ69eqFhg0bYvbs2foHmgk+GZa7bOY4q7/X6mzMPAej7/Pz7W9SvXCh9udmzrXe98qOU8REbpE5+UbHye12srPXe9mI3C9QhN2qjxFttwBwySXmbTBC71qaiTWWpfHNymARhKxznFjKYhWgDMexOs4i5yWxHCfKcTY6hmWVTbM67PirwzI+0P+S1W4Bfdt1y24F2iNrWWS39uqwM3/vsoWX639p109wIrqnR8D9hLGffILfq1fHBxs2IBQKOVd/AMnOzkZ6ejpmzTqOsmXFrgx+8mQ2xo1Lx/Hjx/WDSTGGpxE+AAiFQnjppZfQokULDB06FN27d9c+cN48dtFnFzma4lQa3pgxkf/m6dVlh1yOsCxbVvp7K1FA9W81apOoKJ+IVExlu/2e1ukWTthtr17Wz1U6o6KifoA/rz0hBFGPsoiA9oJDvQEAmdUNhB8LWhHrgC98IgK399VzUuwp7daq2NManLDSXX4wpnhthN4vGwg/XuR3i4hlUN3chkFut8s+wroDB7Bo717s+OADEnsGUITPHTwXfABQv359PP7447juuuuwfft2pKamah/IIvr8shm71vcjRmgfKzvEZp2oVn3K1Dq1+LODn9I5gr54ixvw7JfIg1royV4Kq6OqF3lQCz+zlMzc3NJl8Yo/lrRPrXoIRxG9wqZWN5mSYs1HVTrlwoWfHxEoQL1O53QLUbfT6DXLM71e3X2VEn5Wo3vK75XHaDVclJgL8DYMOQUFuO7zz/HE9OmoV6+eq3UThBa+efOMGzcOderUwW233Wa/MCsPtpXN2FkZMUJf7ClJSTF3kI0YMqT4z27anhonN2IXOQzj1yEdUS8t9UvUyv5GrC/7Xr2Mo3p5eebD4CzCKT9fTBhGubG7nx1qIgI7K2yqMTMlo+5VjZF5LzjUu0T82YZslgk/rc4ZF1dsZyJuW1bW6T8zzLpJM/uWhZ9wrLyHREb3WPDg+Zr01Veod+aZuOGGG1yvO2jQxuvu4IsIHwDExcXh1VdfRatWrdCnTx8MHDhQ+0BRqZ0saZtmC2WwRPnkBVd43ljqiB+vQzxkyOn61q7lO5cF0UspBxk30zozMpzZWkRJp058L2OtqJmVCFl+/ul6RTgDlPrpS5zwuwoL+bpIo2gfTzddEvGrv5H9JCO0bJZl0ReR8/dYEFhWENI5rdisUT2//376/3kvpVakj6e7/WDMUiQnA13mXKV9gN3oX0aGu1ss+HSgZMXvv+PNffvw3XvvIc6nbSRiD98IPgCoV68eXnzxRYwePRrt2rVDrVq1tA+0mtqpJe7spsDpiT5Z6MnIPTuv8JMdYZ58JGUdyiiNUvxZneunhd4m7KywpGzGYlqnm1s5dOp0+v9592xUpnlaTYdUnic/k06kBfl13mUU45TIs4N6TM2q8CgsBOb+3AUAMLqRSvjZSQ0mm/UMM3u1aitKoWcH+dVsxbxkN2Tj2DcAqISfiC2Z/LjJust+w4ETJzBmyxa8OHcu6tat62rdQYXm8LmDrwQfAAwfPhzvvfceMjMzsXbtWnujI5Ur2/cMeCMmaqGnhlX4qUUk6zw/I/TEn1WMhIGys3czEuhXYcjitLHYq90Inhql0FPCK/rkebe8ezkaeS3K38nSFtatGdT2QW8GYTjx6Cm7PD3TtzpHLyUFOHqU/zytdsjCD9AQf1rwhHfcsFmfzt8TuYKnGvVlFRFxVNqhmcizspuM1XEErXo2jn1DP9qnxq4gVGYGifAFfBgBDEsSRnz2GQYMHIhhw4a5WjdBmOH5tgxa/Pvvv2jdujWuv/563HHHHfoHqqN8FSuWPkbUXDOzY/LzzcWeFlpvGJb8JBE5STIff6z/nYjll82+59mE3YedPAD+rRe0bBUQY4ssZbRvb36MjNn901tkycx2rHguZssri1ji3uUtF4K8LYOIY8y+591zmVX4qbvZnBy283jGW0a3/Er/Szdt0WW7Z7FXv9mhqGN+/NG8DDU8u3uoMetmWbuqLvNNsqac3q6JZ+sEny7U8sR33+Glv/7Ctzt2oHz58q7WHUTkbRmeecaZbRkmTqRtGZT4LsIHAOXLl8eiRYvQrVs3nH/++ejcubP2gfPmAZMmGRcmYrN1M+xss6CO+LFORlG+AezkJRUWRkZ5Pv008nveiI1eHUYdvXpOoIyVoXfAX1E+pbBzK5JkZM+tW/OXp3f/9ISejNEWDFbEXkoKf9SPCCxWu2SzaJ9eFyubs57ws9KeWV+3AwCMO9dA+NmBdY++gEax/bRYC6Dfnu3bI//N2zXpRfpY173S6mJ5I4df3TgPANBupobwc2NvXuX8PyVW/QCXfYCNBw/ioe3bsWHTJhJ7nFBKpzv41mNq3749pk+fjqFDh+Kbb75BzZo1tQ986il3RJ/6e7XIU2Il/TI5mX/1AWV9Vs7T+r3qFD+1ANQrxwnnWy8KpuzIrb4MRMEj6OxuGcJzjBItkccr5JXz6pKT+e63WvhZFXt6bZLbxYKVHCotXE4LTUSBK8vci/aReB12LbO2kq6pdQ5rF5maWlr0WRF7yvpk4QdwiD+RC62YLWLk03ROI+Sf5MYm6mrUAk+NlVeismvi7SKV3bmVW6msTxZ+wH/iT8TcPjuo/QB1J6XlA7gl9v5r24F//8XQjz/GU88+i/Y82TME4SK+FXwAcMMNN+Dzzz/H5Zdfjg0bNiDJ644nIYEvbZNV+Cm9CStiUfYslBEX1vwkM5QC8MsvrZcjarN2NXqiEPBPlM8rzKJ5VjZBt+MY5uebRwW1YPF+5GcoJ8daHbyo9+vTszUfrRYqcgsEkbCIKSvdYkqK9alCsglZOd9MWJZE/Tp9z1+4CLQMgMVOBUYKza6RH22V9/Vn5XWWkGBdX1kZczXrWkuifi9fb69iUcdoGYSWD+Ci4eQXFWHou++i72WX4frrDa4ToQtF+NzBl3P4lOTm5qJjx47o0qULnnvuOf0DzaJ8gL35UVp7qfAOX2t5K2ZtsrIZuxot8cc7ZK1Vz7Ztkf+2O5eP9RjAn3P5eOfx6WHHTps1O/3/PB6AmZehJaKsLOrCez7vULfW8Wo7EDVXSdRy+IwiugjxpseIjGSIiJzofa98DHijd6zHKx8RK+NfVs7nSbRQP8I3dVUJQLJTU5yM7uklt/AIMpYuTqtrtLvulVm9vN2qfOtbzNAQNDH+3v/fRx/hk5Mnsfmrr1C2bFlX6w468hy+adOcmcN3++00h0+JryN8AJCSkoLly5fj3HPPRbt27XD11VdrH+hEaqfZhpm8Wy2o84ycGtpWo56cIkLsAaUjSDt2GJfjVJTPL7CkbDqR1qkUeUp4rqVetM8oWsa6fYJeGWYpmSLEHhB5vf0UMoghjEyeN2XT7HitR0crTZP3fEC/DN6Meq06nv+4Rcn/lxJ/Wrgp9hhhEXt+hmUGAw92pj/bWfNKr2u2KvRkvp8wu+T/W8y43t13tQ/F3ms//IDXdu3C1m3bSOzZgCJ87hAIz/qMM87A4sWLMWjQIDRq1Ajnn3++9oEiRN+ECaf/n1XIJSfzib7CQmuTUmSsbsguv2UKC8WlfCpp3jzy2u7cKb4OmVjeu69+/eL/srxseQW07GnwpEUaCT/WctRliBJ7atRvlmi0D5cw6vLkS8z60rUr+ljGsMxEn9UyRIg9Nc9/3KLkuIkX7+GrwAlc3mzdrcVa3n//9P87pV2UXTBPt6on+ni6RmXddsWeGln8JScDjZ8dr32Qk6mcVo4RyJYDB3DDunV4a9UqNGzY0NW6CcIKgRB8ANC7d2889thjGDhwIL788kuxG1oqRZ4Sngge67HyW9xO5E4+185CLU7M91Ojjjzt3Bn9UT4WrGykLIs8JazXiWcjczn1wco9UNZjdR5dYaFzYg8o7cWo7wMJQAD83ZKeOfOOhfGKPt4tG/QidTxJD3IZovbvM+OZ1Y0j/u0LAaiB29E93nROpbizA+96V6mp1l9nyrqs7r/HOyeQR9vLx+655YWSz0rEn5tiz2X2Zmdj4Dvv4PFp09C7d2+vmxN4JEl8RM7fk9W8wfdz+JRIkoQbbrgBX375JT799FOUK1dO+0CzKN8tt5z+f5GbARkdb3eunlFZPILNrB12hq95vBn5WL2daQOc0y9kLl/Nmuzt5vEm9I7Vy3G34qnIHrGoVQSMyhE9bM1TbozPjWLtsni6Tivz86xmu9vZ+1lZP6votNI9GiF3IZOG7tM+gPXZEGSjouyT9Tij+75s2en/Z+2G/DTlWV2WyAVZ9MqyIvRYjqsz/Wb9AwIY3cvJz0enN9/E+f36YdacOQiFQq7VHW3Ic/gef/w4kpPFzrPLy8vGXXfRHD4lgRJ8AFBQUIBevXqhYsWKWLp0KeL0HnSl6FMKPC14PBLeY3mHdHlW9NTCbs6SuiynBZ8ev/8eyJcBAH7Bp7flCE+7rYo+1o6QtXw7no6Zg2p3nh+PR+Om4GM8zm+Cj+c4EaLPqMvgFX12FnQxaoee+BMt9gDjbmbS0H0xMSChFHZ6OCH4AL7pzrx1ONmNapXllNjTo870mwP5fg9LEoasXo2sSpXwwUcfITHRnS1IohVZ8E2d6ozgu+ceEnxKAif4AOCff/7BeeedhyFDhuDxxx/XP3CfzsinHqKFn/xGtjIEbWVFTyUiNpLiHcZ2y6v588/If/vspQBAu91Vq0b+W3S7eTyWtDRra4brYdfb4Y3UJSR4G90zKk95zwIi+NTmKnIlT94y1eWydhUsbdEri0X08XRvcnfJ2+2KEHtGx91+7T+RH7gY3QOs2+f8+aU/czMBQgtZ8PFmr9vpRkV3obxTMwV2ZwAi21xpqiozy4fv9Ts3bcJbhw7h86+/RqVKlVytOxqRBd8jjzgj+O67jwSfkkBOlKpUqRLeffdddOjQAQ0aNNDf+6ROHT7RxzPhRO9YrTex1U2klOfweg5my8rxon5geCfPiEQdEdPzfg4fdr4tMmabw1qFZ+EZs3l36nvIO09Pby6g1YVZZKxMTklK4pubKHITazOU9qhnm26OSoeN/60Fa1doZVN0FpKSxGy2LmPWfZp1l7zdb1pa8Tk83aTTYg8Apr1S2klVH3fnhBNsFXCiZU8zZ5b+zIdTtiJQdqOipprzdKEiuk/5HPnem11zJyKA6nb/c89TpmWVm3I7e0ME8+K332Luzp3Y8uWXJPaIQBJIwQcATZo0wapVq9CnTx/UrVsXffv21T7QiugD+BdqYXkLWxF+8jCilQgdUPwmUW5KLQrlW89L8QfoL4Kijqi5uU6vyFVE7Yo+o9EtO4uzpKVZ886UQs2Ot6IuTy5TjehUThFYUGFhhiiKSDEnGrN61V2cFTFpZfVOJXZ3sFHXy9pNWq3HLlr28sQMnbnxAvC7mNNDZIBA7nLtrGtltesEtM8zWrhYdFRPrw0s5Z2YMo27zngUsTXqnnsi//3EEyX/++677+K2F17ABx98gMaNG4MQC23L4A6BFXwA0KlTJ7z88ssYNmwYNm3ahNbqfeFk6tQp/q8T0b5wuFiU8XhQrMJP6QVobcvAgrIMnpU5eTwQ5cqOgPcCMEg4JfoyMsRFBtWI8H5kW+TdOsPMUzATf6JwM2LoEU5E+dRlmnUzVkVfOGxvfCs11dqiLka/R35s1N0jT1drJ7pHmKO0N5Zuzsp4mVWhJyN3gbx18+xcExfnTlTPbnnCiI+PEHhKvv32WwwfPhxz587FBRdc4HLDCEIcgRZ8ADB8+HD8/vvv6N+/P7Zs2WK8XYPIaJ/6jcq7CTtgPQfJimBUIzrlU1mXn9I/lVjZDsEOosWc2XEZGdbKBdjTI9X3ljUnSIna42Etg3dIu7CQz7tyK7rnIF5F73hITubrdnhEn/Lx5tlsXasMPYGmB6twUz5CPFs7iBZ7botCr6J7rMJIvi9OTPfR6oZECDaWMqxmzLNuV+qV2BMa3dNh79696N+/P+69914MGzbMVlmEPhThc4fACz4AuPPOO/H777+jT58++OSTT4zzq3lFH3Dai2LNlwL4Np8CrOUh2dnLT0Yr6ic6v8ivAtANnBZ9apFntVwZPQ/CzAtiFW1GAsyKeLRal5+IgmihU3P5WMvX65p5RJ9eGSzCj7fLlOtSPr5GEcWgiz0/IkrYGYkusy5IhGAzGqsTta6VVtfsRKa8J2IvXjtV/p9//kHv3r1x6aWX4o477mAriyB8TCBX6dSiqKgIQ4cOxZ9//ol169bp79GnhFf48Xo0Voba7YghO5NX1PDmM1n1eMzq4/FMROx/5xSsIsbsOKWHyCOMrIiohARrXpFeXVYEmFyWlWFqnvqSk9mvkehJLYzHFYBtCXDRW4s6sY8eYC36pi6f53E2qo+nHDspmTx1yV2i6C6Qt0xRiOoCeY8D+LsyOwsYW+nmRIg1ZTlOLWAsw1N+EMXeiRMn0L17d9SqVQtvvvkm4nWOI+whr9L5wAPOrNL50EO0SqeSgE6hLk18fDzeeOMNJCUlYdiwYSgoKDA/SZ7bx0pKCv++X6y9WGFh8R9vHVrtsyP25Nh6WtrpPzfIyCj95wR+XzVA7YmJuia8Hl5GhvUImTo/IzXVXllOiz1lXU7klsQAVi6blVskz88TVZ+VcuRuUe6yeeCpKyOjuB7Wx97PYs9t1N2m06+xlBR73Zy6LKsuQFKS+abwaqJN7DGjI+IKCgowdOhQJCcn44033iCxR0QNUZHSKZOcnIxVq1ahc+fOGDt2LF555RWEQiH9E/7+O7IHsZOGadww/fL1PAar6ZrhMN/iLCyYLTXnlNcjezqs0UA/w5Jaqd7agaVMgF3EsrRBax4gTx3qc+16QFbO5z1Hy4tQ25zfBwocRD0v0Ojx5Z1DaGWendW5ecpz7YqecPj0o8LaHfHWqTxeS/Qp6/W72HMiaifj1NigGVrTma12E4WF9kSp3sLFRpFKJ4We2xu5K7Ezb0+SJFx33XXYv38/Nm3ahOQoSLcPAjSHzx2izovJyMjA+++/j48//hiTJk1CScbq33+X/lPDE5ED7OVNsA4P8wz3aVk4z7AjyxPiduRPC61oYEYGv2ByG/n6Vqyo/We3XNZjtY43iyBa6T2VK3HaOd8PyL8hihwAnp/iZPDTDU2vRI7GWEHrGrAE3+2IPT3UXZ/fuz+76HX7TqD3ahb9+pNfz6mp1p4vM/dA73e4JfaU/YZWH+KZ2NOI2kmShEmTJmHjxo147733kJ6ezlYWYRs9O7H75wS///47Ro8ejQYNGqBs2bI444wzMHnyZOTn50cct337dlx44YVITk5GnTp18OSTTzrTIA6iKsInU7NmTaxbtw6dO3dGSkoKHrn5Zr4CeIaprUb7eIeozeoxs27RUT/g9FsvHPZP1I3V6zlyRHzdlSuLL5MV3uFl+Xgej8nuwiw80UKrHrmI6F7AcWKlTjtbLzgFb6RP3UXaPV+NXsTPCbGnh173d/RocEa8vYrY6cEj7li7YbO1q0QuWKyM9jkp9AD28uW0UyOblK+BG2IPAO677z4sWbIEmzZtQs2aNdnKImKOnTt3IhwOY/bs2WjUqBF27NiB6667DidOnMD06dMBFM9N7NWrF3r06IEXX3wR33//Pa699lpkZGRg7NixnrU9KgUfAJxxxhlYv349unTpgrJly+Lee+/VjurpYWW1TZ70S6vbImgJP6uTWZR12/UG1G9pvwhAPbwUZ07B6m3Y9aiM6mERXGbCz6rYkyd4OZV+6VROUxTiRmon63lGXRtLN2xl+ivAt+WC1bpYidVxMBneboFnG1OeuniSbbTKsDq3z+p8WVacSOGUEypYnolEMKzZAACJ2gtfPfLII3j55ZexceNGnHHGGWxlEcIIUkpnnz590KdPn5J/N2zYELt27cKsWbNKBN8bb7yB/Px8/H979x5dRXXvAfybB0lASoiAhmIAbUvCAgwQfHAFrKUEKBdKQZBAAZGnUrVYbSIo9Sq3NOAFH7XUiM9oiVZYPFoiCb6oFkSUEHQFFStLBYL1lRQwBMy5f8SByXAeM/sxM+ec72ets1rJOTOTk3ns7/z27P3YY48hJSUFvXr1QlVVFVasWMHAp0tOTg62bt2KH//4x2jdujVuueUWZ6EP0FvtA+SDn+zswgbR0UFDHVXRFgBjRaiWQqiQJ/qMnvVzooOkWNctE/asy7Uu2yrOQxng/PSmeuoF859KdPmhQp+TC76KZVg/Z3fKBdl1qeSHcOaFYKdHVfeOZLoPywxSLLp+nSN86niv7bAXwv/93//hvvvuw8svv4ycnBypZZH/1FvatqmpqUhNTVW6jrq6Opxruqu2fft2DBkyBCmmEZSGDx+O4uJifPXVV8jIyFC6frtiOvABQJ8+fVBRUYGhQ4ciNTUV8+fPFwt9gD+Dn4qumjoGerGyXlFFbn+TPeaWgpMh/kQHZpF9oMVo6YouJ1wLxW74iwKtcNL21Ax+ECpMhgs2KkKfaHAyn4JlwleoR2QNwcKfH8JevNHZdbRNGzWnGzeDnsj6oirsBanuPfTQQ7jnnnvw0ksvoU+fPvaXRUoFAurPgcbwHVmW0fh/97vf4a677lK2nv379+PBBx88Xd0DgNraWlx44YUt3nf++eef/hkDn0Z5eXkoLy/HyJEj0djYiAULFjT/QHW1z7rHijzMIhr8RD8baqAXg47wZ739DbACqIrs4C9OWimqRi5wawAg875ujJJgl0zLK4Y4DWTGKdDpVy0a+gC5qUxll2N3sBXD118z7LnFjWcDzZdOmQqhzKBEIp81ApbdbXbaOULHtAuyYW/FihW4++678cILL6B///72l0VR5ZNPPmkxD1+o6l5RURGKi4vDLqumpqZFFfjgwYMYMWIEJkyYgNmzZ6vZYI3iIvABwMCBA/Hiiy8iPz8fx48fb36mr1Mn+WpfpKu10+qgwe3gJ7IslS2VSOOOU2gqh+ez08VTZUCTXZbMHH3m3zHGWt1O7jXpGGRF9quV6T7arp186DOWA9hblujuYz7tsdODWioCnp0AJDsAi91l6fqsNWRF6hThdVUPkA97S5YswcqVK/Hiiy8iLy/P/rJIC53P8LVr187WxOu/+c1vcO2114Z9z0UXXXT6/x86dAhXXXUV/uu//gslJSUt3peZmYkjR460+DfjvzMzM21svR5xE/iA5krfK6+8gp/+9Kc4fvw4lixZggSR0Ac0n52c3uoGvAl+oT7v9CGXcMvSIdgVm62i5gdtdAeUYC0V1ZU4L8JeKMFaNqLfcYw/GxgsjIVr1IoOyOKH0GcsCwi9PFWHovW+DU919nkxsqfKWWP8EPSCsYa/aA97gUAAixYtwmOPPYZXXnmF3TjptE6dOqFTp0623nvw4EFcddVVyMvLw+OPP45EywVw4MCBWLRoEU6ePIlW3+2DlZWVyM7O9qw7JxBngQ9ofqZv27ZtGDp0KI4fP44VK1Y0hz7AefATeVZPNPiJTsRu0FH1A9S1quwKN+54LPJ6qgeg+TtXHTC9CntOWkdOxwWPI067qnkV+gC1wc+6LJ33XcynusREPSNoRiPRDg0yjynLjk2lekBimc+LnM788myfbNhbsGABnn/+ebz66qvIzs62vyzSKppG6Tx48CB+/OMfo1u3brj33nvxb1NuMKp3kydPxv/8z/9g5syZKCwsxDvvvIP7778fK1eu1LNRNsVd4AOA7Oxs/OMf/8BPfvIT1NXVoaSkBMnJyWJdPAGxVondflTWvVZV8FN9+9vgdgA0WFsB5itsNLSUnAa7xET9VT5dMznLhj3zhO7Rzidh0mm3Trfm2lNBR7XPzd7mxqks2CkiGk5tovwykbyKjg2yodFK9H5X3IQ9i5MnT2Lu3Ll4+eWX8Y9//OOsATXIW9EU+CorK7F//37s378fF1xwQYufBb4bKSY9PR0VFRWYP38+8vLy0LFjRyxevNjTKRkAICFgbGEcOnToEEaMGIGuXbvi2WefxTnnnNP8A5HQZxAJYqFaTnb2WBXjpOsKabr7QIUj+rS86haU7gqdju8yXEtLZn1GvyuZZUSa1F3ks+HItpDsPuNrk5NROu0GMuNQcXoqEQl8Tqp81kNYtnOCqtOcdbt0di7wy2lMF/Pp0U+XBR3jSKlYZqjwFen38lvQc/p+x2HPVN07duwYJk6ciE8//RTl5eWcVN1H6uvrkZ6ejgUL6pCaqvagO3GiHitXpqOurs7WM3zxIC4rfIbvf//72LZtG8aOHYuhQ4fib3/7Gzp27Nhc6QPEq32AXDdPkdEDZYKf+WBQGf78Uv1zItomolJZ6bNzS110feaHbIzWidPlhAtskUYJUfnATTjWVlKklpjodxFBYqL+WShEByEOF9x0PAtoLNfYBUWrc6G2zThsVAc/mb+fk9OYH+5xeV2s19ke1Bn0DKHG2hLtQBArYe/zzz/HqFGj0KZNG2zbtg3p6enOlkWuiKYKXzSL68AHAO3bt8cLL7yAqVOn4oorrsCWLVvQvXv35h+KdvEExLp5ykymriL4AeoffAm27MRE/c/cqZo1NxrIhAaRAWCcrC/caAqawo6y0Tfd7G5pc191skc7DWQ6JlYPxhrcnI5iKFMlBJp3Saehz842qgx+bp66ou0elyp+D3mA8+Blvuy5UdUTWY9bYe+jjz7CiBEjkJubi9LSUuWTbRNFm7gPfACQlpaGsrIy/PrXv8bAgQOxefNm9OvXr/mHblT7rFd3mQFWVAc/QE/4C1ZNitWBV9xit/qmqoUXKbDZHTrPTvATrdAlJsbWM38+I/osn0ygsRP6Ii3fbrVPZDvNpzaRU1q83Kdym/F30XUaUBkgZQYgdtKjXGZ9OoMeIBf2du/ejZ/97GeYMGEC7rvvvrNGUSR/YYXPHQx830lKSsIDDzyArKwsXHnllXjmmWcwevToM2+QrfYBLUOYnROQiuBnXa8IleEv3O/NccnlhQp94UKebKUt2DpFxkkPtR2qxiyP4Xn3ooH565fpnhnu807bdeGqfbJtxMTEloedna6TbJeq49agL15V86yCnSbtnPJiLext3LgRU6ZMwZ133onbbrsNCQkJzpZFFKMY+EwSEhLw29/+Fj/4wQ9QUFCAe+65B7/+9a/PnDBkqn1A85lV5Ha4TPAzVzhUTMlgbsjrHqpONgDGU7dOMyOAuTnyp/E9t28vH6bMwU/Xs3fW/cK6zW71h/IZlQMO25mwWlXokznMrdU+FUEvmEjhLx5PVSq5OaqnqpDXtq386dLuKdJ6P82NoCfyGdGwFwgEsHLlSixevBhPPfUUxo0b52w55BlW+NzBwBfE+PHjkZWVhTFjxuD999/HAw88cHryRABywU90Hj7AeXBT2VU0GDfDHxA6wETLkHS6Wb8fkTOeaLXPOiiL7NnW3KI6dUpsGSJz7sUYt6dPcGt+PkP79up6nLdv37z9Mqcyu7+/NfzF6O6nldvTNphPcSoak8bpSfR0KdPL3Y3gJvIZ0bB38uRJ3HjjjdiwYQNefvllXHLJJc6WQxQHGPhCuPTSS7Fz507893//N0aNGoW//vWvZ4/wJNPNU3fwizTcnUF2BASD2+HPLN4mqDJEquDJVuxkBmWR6SZqvX2ebDpN2Q1/MpXBUK2UOLllaLfKZz4diHZeAMRCn3mXUDHPnvl3ER3NUzS0nXfe2f8WD6cvQ6TDKtRpTvepDQh/ehNdf7iul7pmlzGIjkOluwsnIB726urqMGHCBNTW1uKNN95A165dna+cPMUKnzsY+MLo2rUrXnvtNRQUFODyyy/Hhg0b0KNHj5Zvku3mqSP4OR32ziAaIK28DH8Gcysh2LZHU4tKZpAVmeAVrlXjZEAWJ+uO1FdKJPypEmw/ipOrip3DX6aaaCf0JYe5WokOLmznHpaOgV0ifdZ6yEfT6UqGH0YMFXn8OBIn3S5DnVK8CHoiA8C4Gfbef/99jBkzBj/4wQ/w+uuv43vf+57zlZPnGPjcwcAXQbt27bBx40bcfvvtuOyyy7BmzRqMGDHi7DfKVPsANcFPdnAW1V0+AX+Ev2AitSzcbGG50coRvSVtDYwqB2OxcvpgjJEArMHPzZaRzBjoPuanLobhgp6V3WqfyP2rYKcvHWEvmFjqza6i57lqoqe1SNsucioKdrr0OuwB4fdXY1vdDHvl5eUoKCjA3Llz8fvf/x5JSUnOV04URxj4bEhKSsKyZcuQm5uLq6++Gr/73e9w6623nj36k2y1DxAPfioHZ7FW/VS1/oyHZAx+CoBWoiFM5Ltyq8Uj0w/J+D5kqmrhgp/MKAjmRNCmjT9akHYItI6S8C2+hbOGjUjlTbRap6rK5yTkWUUKfaKnM5WDu6g6pfrpvhXgjwqdXSoqeaFOqSrGmmrXzptpREUGcxH5TBK+/e7/OTgYkpIQCASwfPly3H333SgpKcHkyZOdr5x8JRBQf9kOBNQuLxYw8DkwZcoUZGdnY+zYsaiqqsLq1avRunXrs9/oZvAL1nIQfUYvmLZtm1tfKkZGsG6r9YqrKwDG62idwTgNfdaREZKT5btSWoOf6nHNRbuxxliVzisyc/O1a6dm8vdgXTxVhyzRWWPcnlTdz/eg3KZ64BVjmV9/rXZAYfOALgadXSoB8UGGRdZ3Juw5+VASvvnmG8yaNQvbtm3Dq6++iry8POfLIYpTDHwODRgwALt27cL48eMxePBgrF27Ft26dQv+ZtlunkDo4Gf3Ki5b9TNuteueiB1wLwDqJBIuVYxq6XR9QOh1Rhr+LlRXSqeM9ah4Fi9Ya8WtefdiNCi6McJnsENFZGqIUNq1U9tD3Vx5FJlg3e37Tn4Pe7rXpeN5vFDrkT2NRQqMkU7bMqehaAh7Bw4cwPjx45GWloY333wTmZmZzpdDvsRn+NzBsoeAzMxMvPTSS7jkkkvQv39/bNmyJfSbO3U6U/GTYZxZExPFruJt2zq/BRmqX1W7dmdeOrVv3/IVLWSelXOTeZ3nnnvmZZdovzvr3zM5+cxLhJ3WinHchDp+YjS0eSXc1xnuz2BQMaWhsUupOH1E2j3tHD7REPainZNLhsz3E+wSKHr6cnppDnbsyFT1ROfjczPsvfDCC8jLy8Nll12Gl156iWGPSAArfIJSU1OxatUqDBw4EOPHj0dhYSEWLVqExFBXEZlunsYyjTOzzG13u9097V697Fb+VLQ+grWmRPtV+ZHblT7zAzeit6edVvsitcKcLk80GVjnFHB7xE+XefFMnvmzIoe/8ad1Wu0Ldeoyut6pWFY4xmnKODV5fS/HiWi7K+7mfUA79zed9HiX7QIqMoJmqM87IRouRcJeU0ICltx9N5YtW4ZVq1Zh6tSpYisnX2OFzx0MfJKmTZuG3NxcjBs3Dm+88QZKS0uRkZER+gN2g1+4K7b5jKsi/FmDn+itSje6fVrZDYFuP8cnuj6doS/ciAqyz+ZFCmpOW2Z2gp+KMpB1fZHWacXKYFDG16nikLPbxdPOacvJHHsyA8cAzacm8zKicURNP7Ge6lXco4l0uhXpxBLpVKriWT/racdJ7/VoCHoA8GVdHaZOnYr33nsPr7/+OnJzc8U2gIgAsEunErm5udi1axcSEhKQl5eHt99+O/KHgnXztNPXyUq0b4WZuU+JbCvH4Fa3z2DM/aucdlNUSWZmYBU6dmz5ikTF3z7YMmRuw4fq7qkq7AVbjnmdMl1NY0Sk00u4r0vnn8m6bifCdflT9Se3LsPp4SgqFqp7dk7hOg9L2UtXsG0TearCys7lPlwzIlrC3tt79iAvLw9JSUnYtWsXw16MMyp8ql/UUny3ZBTKyMjAhg0b8Ic//AGDBw/GsmXLcMMNN5w9dYOZudon28iXmcfPYL7CqRo1AWh5tfZqIBbr7XYrXbff3ar0nXfe2esVoWJAFmMZ554LNDaKLyfUctu2VbNcJ60f674T411Aw3Ha0FY1CIt5Oaoa+9ZunrrueQSjY3L1aAx7Xt2Ps1J9b1J2WgUz0cCVmCh/P9jNsBcIBPDQn/98+hGZoqKi0I/JUMxgl053MPAplJiYiIULF+KKK67A5MmT8corr2D16tVIT08P/0Ej+H3xhfxGiAS/SLcCVYY/L0fiPHUqdGvMbxNaAWeHPmuoc/JZp2S6eJpbcCkpakOfcYs8JaX5f1Uu24nk5NAtITvfmwddQZ08j2c9TNq2lbuXpCr0tW+vdtRNY5kpKWoeB5YJjKGmUPjsM3uf93O7ONTp1ev7JsblSPV2yM4QY/AqrMl+ViTs1dXVYeacOdi+fTvKy8sxZMgQ8Q0gorMw8Glw5ZVXoqqqClOnTkX//v3x3HPP2ZsvpkOH5v91M/jZaSWIjp4ARG4BRctUDKITWpm5fftdRegD7LeGQt2qVxXOgvWHMpbtdPkqn/+zirTPe93KhTe9VEVDn/lPDLScoF2Wedki0yyYyX6noU4P4e7z2A2D4ai4Ey7SRdWLwyBcN17Z7Ql3SnF6KvYy6Ml+XiTs7dq1C9dMnowePXqgqqoKnVSMbE5RgxU+dzDwadKpUyds3rwZy5Ytw5AhQ/CHP/wBv/rVr8J38TS4Efxkhs0D1Fb9zMxXZL+FP68mcJcJbioGgQnXGnLSH0sm+Nl5+MVu+FMR9mRaRB4+EyizahXz8tkNfdaQZyU7vWik5VtH2gxHxZ9T9LRihEGZ05LM6cHvjSonjw+Lhj67pxM71T4VhX/PqnpJp/+f7c8EAgH88Y9/RFFRERYvXozbbruNXTiJNGHg0ygxMRFFRUUYNGgQCgoKsHXrVjz66KPoaPd2qI7gB6h//ilUC062JWS9WqvuyxVNZEMfoLbaJ/PgjZPgJzrKgWjlL8apqGToEimEBeO02ud0HZGCn5dhT8XnYzHsyY4RZef4kLlnFOx07HXQk/18kv2Md9rnn3+O6667Drt370ZFRQWuuOIK8Q2gqMYKnzt4K8UFgwYNwp49e5CcnIyLL74YL774orMFdOhwJvzJMIafE51tNRRjeTq7yQFqRt6Ube162ULysmUINPfbysxsfqmQkhK+Ba5i/HLreryu7kU5Fb+6+U9g/GlEwp7BzuiHsusIdtqJ57DnJ04mW5el8jJn7LcqgppsVc/tsLd161ZcfPHFaNWqFfbs2cOwR+QCVvhccu655+L555/H6tWr8fOf/xw33HADlixZghQnrRCRil+4VonMs3mRlulGVSUaJ2KX7RYq20XT6edDVaNVDsYSrOKnKuyZWVuDrPwJke3aaYQv1b3Cg1X7ZEJeKOb7HTJjOXl9/yZaWU/7qg9ja5VPx31M8zK9nALU7aDX2NiIO+64A3/6059w3333YebMmfYec6GYxgqfOxICgUDA642IN/v27UNBQQGSkpLwl7/8BT169BBbUKjgJ3PrWUUrLFgrS0V3TNHWmzUERvuteUD+bBbu805HYFDZ4jJCmeo0YLfVZud3kW1pKdj/vnXwnEwwsoVuu4Ev0iGr41Fg41SjOuxFWp6T8BfLpw+77OyDdjpy6Lhvo2rmFzOnwTHU9+N10APEwt7777+PgoICNDU1Yc2aNcjJyZHbCIp69fX1SE9Px6RJdUhJUTsvSmNjPcrK0lFXV4d2XswH7UNxeo/QWzk5OdixYweGDBmCvLw8PPzwwxDK3daunipmDJbtnhmqVWT0X1HxTJZT1q6gfjj4/dC901iG7IzQKlrW1v5YKvtOOVmOuY9hsN8rjrtzmoX6GiJ9fVaqqydt2jQPZOJkBhM77Pwudg8jr8Oen4n02lcV7K2XKFXLFT2VGZdz8yXd6+6fgPOwFwgE8PDDDyMvLw9XXnklduzYwbBHLXDidXewwuexyspKzJgxA7m5uXj00UeRaff5qBMnwv9cdjg9M7u34UWvkHaqf368Xe+HlpvM5OwGlaN4iNwWt/vgjUg5SGWiSElR813FQIUPaD7FqDwsZap94f7MMoP9qvr9Pv9czeHu9ilD5zJU3ncTrcbZvf8osnyVp55gIc3pMexFVe/w4cOYNWsW9uzZg8cffxzDhg2T2wiKKUaFb8KEOrRqpfZG/MmT9fjrX1nhM+MzfB4bNmwY9u7di/nz56N3794oKSnBuHHjzrwhUrALRWQC9lDsjMgpO+qCwS8jcYa7Ra9qEnYV0zwEeybPaXlD5dCNTkbgdDrCgtNpQXQ8fBMurPl1+MsgnP7Jg/3aqru9OZ2nz+6f19jNnAQ/1feXwt3HUzGXnl1uhr1InQVU7jtOHikW6WRid/mqTznhQlqoU5H1uFbRKUEk7K1duxZz585Ffn4+9u7di4yMDPkNISJhDHw+kJGRgb/85S8oKyvDrFmzsHHjRty/bBnS09PlF64y+AHBB3pR2TryY/izMrdkRKo15hZeuNDnJLipmGsPcCf4qRhKL9KAQ6pbXnb28SgPgyK7ssqxe4DIoU/mz2o3+KkOe5G+11CHuTUI+rErp0gPcLepHOw31L7uZtCLxNjfVE336TTs1dXV4aabbsKmTZuwatUqXHPNNWo2hGIWB21xBwOfj0yaNAmDBw/GjBkzcPEll+DRVavw06FD1SxcR/AzWka6JmE3X6nbtPHfROyigrXwdFT6ROgMfjrGTA9W9dM9PYgI43sV+Ts7+Ls6WbyqBqEboU/lnzRU8HM76EViPk04+buGqhgG241EnnWMgnsXWgb5BVru634KeVYqjm3R6RZmzpyJnJwc7N27F126dJHfECJSgoHPZ7p06YIXXngBDz/8MH5xzTWYPHkyli9Zoq4PsvmqIhr+rC0jp13tnDKWbw0MfgiAp06pubrq6t4pSlU3T+vICyqfLbVq0waBtNYAgISGb9QtV8fY/k4E2S9UFHtU7i46Qp9uugaEBdSFacD5aSFYiFP1d/Zz2DvvPH33Hs3MlyEV+7zfgh7gPOzV19fjtttuw5o1a1BcXIx58+ZxugWyjRU+dzDw+VBiYiKuv/56jBw5EjNnzkSfAQOwevVqDBsyRO2KnFb9nA67p+LqG67lF6xi5IcQ6CWjdehltS/c8HqqK83fMYJeqP8WDoBeh7040zrt7DHEvmnQ03A0dkVzg1vFNJ5ehr14EaqzgNPnQO0KdRly8siyVSwEPaB54LlZs2bhhz/8Iaqrq9G9e3c1G0NESjHw+Vj37t1RWVl5eiCXgoIC3HvvvWiXmqp2RZEa4aKNXt2Vv2C8CIF+qvIZ3K722R1D3aAw+FnDXaT3KK3+OeHD1rvXVb5gAS/Ye1SGvnANbfNu7DT8qQx6gLrdJRbudDvpDa4q9DmdzQVwZxpPKy+rerfeeivKysqwfPlyzJkzh1U9EsIKnzv81wKhFhITEzFv3jzs3bsXH374IXr37o2/b90KqA59wNmT9NidTMsOkfn9VPXrMuZ4s8715kcqz1IqA0awOR6dTpgVjLHPCbSCAmmtbYW9UJ+L+HlW9xyL9JW1Tgu0eNnl9P3BON3NnOze8RD23OzOKXvKFr10qJiGNtwUnqqrel6Fvb/97W/o3bs3/vWvf6G6uhpz585l2CPyOVb4okT37t2xdetWrF69Gr/85S+Rn5+P+++/v3nePtGpG6yMq4f5iXeVD+YY7FT+dD7E07598CuvTH8uVVU+wLeVvhNpZ0aNTU3RMH2ng6qfSNCzu6yEhm9wIrE1UvGtsnX4mcoqH3B2pU82qJkZy3JS8VPRyLaGPuNU4degF0103YOzW+nTdakxjoO2bdWGZZX7nNOgd/jwYdx8882orKzE8uXLMXPmTAY9ksYKnzvi8PISvRISEjB79mzU1NQgISEBPXv2xCOPPIKmVq3EKn7GLcJwtwrD3bJUwXxL1bjyejXKovmWvvXlNo8rfSfS0s96tfh5o8aLfJhb4aJVPSdOJDYv/8SppNMviizp1InTr9aJJ5RU5UKJtFyJwrEt554LdGh7AulpzS8VVIc9vzV4rKfUzEz9HS5CXUpkK3l2pKScuXdqvdSKhDaVFT3AWdhrampCSUkJevbsicTERNTU1GDWrFkMe0RRJCEQCOi5IpN2f//733HDDTegW7duKCkpQU5OTvMPglX8VN+K1lH5+46WkRatVLcEo+WWv6UVaA1yIrRU+6waGrQHPUBst05NtlEJ1FC6CUBtY8tuQEg65SDguNAt1lzt0xXwzBIa7f/+dQ32bsT5PezZrVA5vTemc9Beg5uztcju7sG+Z9WXFKdVvZqaGsyZMwcff/wx/vSnP2HUqFFqN4jiVn19PdLT0zFqVB1atVI0Ev13Tp6sx9//no66ujp1o9xHOXbpjGKjRo3Cu+++i8WLF6N///645ZZbsHDhQrQxrmwnTqi/WhjMVzZF4U/bSItu+K6l47TyldpQF/4NDrp3Hkv8XuQ3JarfJYzfWUfwq6s3vs/WwHe7ma5zt+huHKoCaCsI+pijYBdKY6P20Nc6LQDU1yPQTv7mRThOgp4hVPXPHASjrRunFx0eRDVXmZv/v67RXlXu3uZzs539wmmwdxL2jh07hqVLl2LFihWYN28eysvL0VbXBIcU19il0x2s8MWIt956C/Pnz8fhw4exYsUKjBs37kx3i29dangKtphlKjfCIVBjKUBHd0fVAyboug8AqAl+Z4JeeKrCn8aCtePvOinR3vdnt8KX0OTg+Nc1Mofq0FdfH/JHqoOfSNCzzcH3/Z+mc2y9z05Dx2k31ECKhkHCvqOyymenC7Gq4KfrPoaOGwBOel4GAgGsW7cOCxYsQJcuXfDQQw+hf//+6jeK4p5R4Rs5Uk+Fr7ycFT4zBr4Y0tTUhCeffBKFhYXo27cvHnzwQWRnZ595g1vBD7DdglbdTc92AIzzwGfwU/CzG/JCET2n6wx7gL7vOEnHoDK6h2KUaSWHCXmhyIQ/rUEP0PNda9rZ/Br4ZJ4RFQl+OovVuiq9TsLevn37cNNNN6GqqgrFxcWYPn06EqOtBE1Rwwh8w4frCXxbtjDwmfFIjiGJiYmYMWMG3nvvPWRnZ6Nv374oKirC0aNHm9+QlHTmpVuEwV50Db5ha8h9Nx70UUxXaNDZvj/RmGAr/NbVJ0iHPaA5D5hfdkRr2NNG9wY7/cKd/kEtEurrTr8cfU53VY9h7zS7p2PrlB6yAwLZXYbuccsSE/VV9eyGvaNHj6KwsBD9+vVDTk4O3n//fcyYMYNhjyiG8GiOQRkZGXjwwQexY8cOvP766+jRowdWr16Nb80VPreCH3DWFdONwTcM1gDoxrp1DWKiM/R5EfxUBb1QImUF3WEvankZ+kRSu012gl9C4wnfdOGMdyrDnZ31WOkMeYA/gt6pU6ewevVq9OjRA//85z+xY8cOPPDAA2jv9/lqKaYYz/CpflFL7NIZ4wKBAJ5//nkUFRWhdevWWLZsGUaOHBl8OGVNXT7DDWvvxdzWodqR6e3UHQo6py3Q3WbU0d7//POW/+31s/+nTunfBt25SUuXToMbwcQ4+BUHOyeMLp/au28Cer9TjTub7gof0NytU2eos+ObhgS0TmzeD75N1vM76y6Y2Q16gUAAmzdvRmFhIRoaGrB06VJcffXVnGaBXGV06Rw2TE+XzspKduk0Y+CLE42NjVi1ahXuvvtu9O3bF8uXLw/9ILZk8JOZt0x3ABRtW4qEwXgNfdZwF47bwS/c96Z6W6I68AF6djKje7mZV/1eg21Lx47q1+Png9UG1YEvbJXV7YaZzTK/bAD0S9ADgLfffhu33norqqursXjxYsybNw8pXtx5pbhnBL6f/rQOyclqj/1Tp+qxdSsDn1m0PWFCglJSUnDzzTdj+vTpWLp0KQYNGoTx48fjnnvuQffu3Vu+2dzV00b4UzkxtfX6q/I6JFNICNf1UGVl0K7kZL3tSGPZdtqSTgKelbnNrTP82fmugrX/AbHtirpn94KR2clCfZnBONnZVAi3bcF2ZpkQGOVhT5TTZyZPq6/XH/oE+nJbpyixGwD9FPQOHDiAO+64A+vWrcNNN92EdevWsesmURzx59WCtGnfvj2Ki4sxf/583HHHHcjJycG0adOwcOHCs4MfcCb8mYKfyoAXiaoAqLPXWKgwqHtsGN2hD2hevrlNKRPuItER/lR8PyqDYMxxEuwi0Rn8ZLYz1E4fLgi60SXWhbAXqbonHOzCUR36NDysG2yOSnMI9FPQ++ijj/D73/8epaWlmDhxIvbt24euXbvq2zgihzgPnzsY+OJU165d8dRTT2HhwoVYsmQJcnJyMHXqVCxcuBAXXnjh2R8wV/08HHdAJAB69YhQQ4O69nCotqWT0FdbK7cNbg5uKhv+3Ghvh/rbtmmjf90A8C2S9HfrNHYwlcEuElXBT/c2h6oGxtjALFpCXSQyoc+j0ZhaHIsOG5uBRPs3Ue2GPXPQmzBhAvbs2dNymiYin2DgcwcDX5zLycnB008/jTvvvBNLlixBz549wwc/AKmmm74nXBjrIJxIAdDD8SCUslNZUzmBcbjluz2rhZPw53Vb2wh7KtqcyrozR+twpCLBz81gatXQAHz6qdwyMjPtvS/Sd6KoFJ8AeFfKthv6vNy/FVVZE5rC37gJJCY5Cnr/+7//i6effppBj4hO47QMBADIzs5GaWkp9uzZg4aGBvTs2RMzZ85ETU1N2M+lpp55+UFjY8tXPHEriDU06A+XoRw9euZl5Zewp4p1Xw72svcmBdq0ca90aRVp3pBwO4UbVB4QtbWRX19/3Rzowr1iRbg5Vbw6yScnn3m5Icle2KupqcHMmTPRs2dPNDY2orq6GqWlpQx75HvRNi3DmDFj0LVrV6SlpaFz586YOnUqDh061OI91dXVGDx4MNLS0pCVlYVly5bp2yCbGPioBSP4VVdXIxAIoF+/fhg9ejReffVVRBrQ1Rz+vAqA5rbf0aNn2orWV6xys/pmtHO9Cn+HDp15ef039SoLuc7LX9R68HoZ8gBvdn63y+t+8eWXza94CXmArblyA4EAXn31VYwePRr9+vVDIBBAdXU1nnrqKfTo0cOlDSWKL1dddRWee+45vPfee1i7di0+/PBDXH311ad/Xl9fj/z8fHTr1g1vvfUWli9fjrvuugslJSUebjWnZaAIDh8+jAcffBCrVq3Cj370I9x6660YN24ckh1e+HR2/VTd5lN5Tfey6OAFXe1R0a65552ndjuC8TIDtcY33qz4+HH31vXZZ5Hf4+aw27F2cEXiVpdOkbs2OrfNqxFQI4Q8oHnC9HXr1uHee+/F/v37cf311+NXv/oVOnfu7MIGEqlhTMswaJCeaRlee82daRk2btyIsWPH4sSJE2jVqhVWrVqFRYsWoba29vSUJ0VFRVi/fj327dundVvCYeAjW44ePYrHHnsMK1euBAAsWLAA1113HdoKXnBlA6AXQUrk+u91AcIrsm1Tnc9eqgyBXlf2PAt8gJ7QZyfc2aHjAh/NB5QM1aFKVzlexXZ6Oc2FjaBnvQ7fcsstmDFjhvB1mMhLbgS+Tz75pEXgS01NRarCLmhffvklrr/+ehw8eBCvvfYaAGDatGmor6/H+vXrT7/v5Zdfxk9+8hN8+eWXyMjIULZ+J9ilk2xp27YtbrrpJnzwwQcoLi5GaWkpLrjgAixYsAD79+93vDyRrp9eP6oTqnuo190JQ0lL866d6LS7Z319y5dOn30W/OWU12HPc7LP9an4I4Ri3aFkdiov+y0D0duN0+2TpcgFwtxV08uKXoSw98EHH2DBggW44IILUFpaiuLiYnzwwQe48cYbGfYo6ul8hi8rKwvp6emnX0uXLlWyzYWFhTjnnHPQoUMHfPzxx9iwYcPpn9XW1uL8889v8X7jv2tlh0uXwMBHjiQnJ2PixInYuXMnysvLceTIEfTq1Qs/+9nPsHnzZjQJPCkbLvx5HfLs8nMQ9Lq9GKy97GbAs8tJ/oj7sGcW6ctQlbBlOdnpvH5A1eD1wQuEP/n69S6Y9WFuM68DHnAm5IUJek1NTdi8eTNGjhyJ3r1747PPPkN5eTl27tyJiRMnOn6sgigeffLJJ6irqzv9uv3224O+r6ioCAkJCWFf5u6Yt912G3bv3o2KigokJSVh2rRpEce58Bq7dJK0w4cP45FHHsGf//xntGnTBjfccANmzJihpGz9xRcKNtADOtuzor3VVLVdVfxu7dvLL8Nt5m32y/Z72qXT6sABr7dAnrK5MBTwQ9gDWoZjNx6K1UH2Do2q/cJGt82vvvoKjz/+OB566CF88803mDdvHubMmYNMu1N2EEUJo0vn5Zfr6dK5Y4f9Z/j+/e9/44sIDc6LLrro9DN5Zp9++imysrLwz3/+EwMHDvRtl07eIiJpnTt3xuLFi3H77bdj3bp1+OMf/4g777wTBQUFmD17Ni699FIk2J1EyKJDh+D/7tcg6EbhQrYi9vXXSjZDinUb/BKgrEJtl8rvUOZ3/wat5UOfql/G+ov4YUeLRMc2qghFfn0I1jjB+TX46Sq9i44MajQObYy2uXPnTpSUlKCsrAx5eXlYunQpfvGLX6BVq1Zi6yaKEn6YeL1Tp07o1KmT4LqaV3biu8EpBg4ciEWLFuHkyZOnj9/KykpkZ2d7FvYAVvhIk6qqKpSUlODpp5/GhRdeiDlz5mDKlClor7ll72UQ9KKXmqhoaIt7EQL9GjzD6YzDXm9CZH7Y4fywDXZE007oZfCLhn7VrVuH/fHXX3+Np59+Go888ggOHDiAKVOmYO7cucjNzXVpA4m8Y1T4Lr1UT4Vv5071o3S+8cYbePPNNzFo0CBkZGTgww8/xJ133okjR47g3XffRWpqKurq6pCdnY38/HwUFhbinXfewXXXXYeVK1dizpw5yrbFKQY+0urYsWN47rnnUFJSgj179mDixImYM2cOBg4cKFz1E6EzCEZT0DOLlvavmY62cDS1r4OJisBn5cbOxx3cPTqDXzQEO6swQS8QCGD79u0oKSnBc889h9zcXMyZMwcTJ07EOeec4+JGEnnLCHwDBugJfLt2qQ98e/fuxc0334w9e/bg2LFj6Ny5M0aMGIE77rgDXbp0Of2+6upqzJ8/H2+++SY6duyIG2+8EYWFhcq2QwQDH7mmuroajzzyCEpLS9GlSxfMmDEDU6ZM8XTuIJkgGK1Bzyoa28UG0fZxtLarg4nKwGemageMxx3Zj0TDXzQGO7MI1bzDhw/jmWeeweOPP46DBw9i2rRpmD17Nvr06ePSBhL5SzQGvmjGwEeuO378ONauXYsnn3wS27Ztw7BhwzB9+nSMGTMGaT4ZqCBcEIyVoGcWzW1lq1Bt51hqU5tFfeCzsrMzxsMOG+1CBb9oD3ZWYYJeQ0MDNm7ciCeeeAJbt27FkCFDMH36dIwfPx5tYu17IHLICHx5eXVISlIbyr79th5vvcXAZ8bAR576+OOPUVpaiieeeAKff/45Jk2ahOnTp+Oyyy5ztcunXYdjrG0dDXbtkl/GgAHyy/CrmAt8Zkawi6WAZxarYQ+Q/938/N1E6LL5xhtv4IknnsCzzz6LTp06Yfr06Zg6dSq6du3q4kYS+RsDn7sY+MgXjOcannzySTz77LPo2LEjJk2ahEmTJqF3795eb55WsRYiVQQ0v/NTgPRl4PPbTtCxo9dbcDa/BRq/bY9Kqn63MEHvnXfewZo1a1BWVoYvvvgC11xzDaZPn+768+pE0cIIfP366Ql8u3cz8Jkx8JHvNDQ0oLy8HGVlZdi0aRMuuugiFBQU4JprrsEPf/hDrzcvqsiGSb+122OZTIiUCn38I4uRCZF8+NT/jO86TMjbv38/ysrKUFZWhn/9618YM2YMJk2ahBEjRvjm8QQiv2LgcxcDH/na0aNHsWnTJqxZswZbtmxBnz59MG7cOIwdOxY9e/bknVMPbdrk9RaQYTT4x/ANP5V/49xhdIbKMcECgQBqamqwfv16rFu3Dnv37sWIESMwadIkjB49Gm3btlW3MqIYZwS+3Fw9gW/PHgY+MwY+ihpfffUVNmzYgPXr12PLli3IysrC2LFjMXbsWFx++eVITEz0ehNJIQZK+xj4HGIos8/DUZT9oKmpCTt27MD69euxfv16fPLJJxg+fDjGjh2Ln//8555OpEwUzYzA16ePnsC3dy8DnxkDH0WlY8eOobKyEuvXr8emTZvQqlUr5OfnY9iwYRg2bBgyMzO93kTyuVgKlDEX+GItkMV5aIo2tbW1qKysRGVlJSoqKnDy5EmMHj0aY8eOxbBhwzhfHpECDHzuYuCjqHfq1Cm8/vrrqKioQEVFBd5++2306tUL+fn56N69O4e/Jk9UVbm3rr5wcWWG7t1dW9XXaM/H10gro7tmRUUF3n33XfTv3x/5+fnIz8/HFVdcgeTkZK83kSimGIGvVy89ge/ddxn4zBj4KOZ88cUXePHFF7Ft2zZ88MEHaGpq8nqTiJQKBIBTp1r+W3LgpOUfLA3UhATwkVei0Lp164b8/HwMHToUHTp08HpziGIaA5+7GPiIiIiIiMg1RuDr2VNP4KupYeAz4ygXREREREREMYqd0omIiIiIyHVNTVD+uAGf5DkbK3xEREREREQxihU+IiIiIiJyHSt87mDgIyIiIiIi1zHwuYNdOomIiIiIiGIUK3xEREREROS6QEB9RY4Tzp2NFT4iIiIiIqIYxQofERERERG5TsfzdnyG72ys8BEREREREcUoVviIiIiIiMh1rPC5gxU+IiIiIiKiGMUKHxERERERuY4VPncw8BERERERkesY+NzBLp1EREREREQxihU+IiIiIiJyHSt87mCFj4iIiIiIKEaxwkdERERERK5jhc8drPARERERERHFKFb4iIiIiIjIdazwuYMVPiIiIiIiohjFCh8REREREbmOFT53MPAREREREZHrAgH1AS0QULu8WMAunURERERERDGKFT4iIiIiInJdUxOQkKB2mazwnY0VPiIiIiIiohjFCh8REREREbmOFT53sMJHREREREQUo1jhIyIiIiIi17HC5w5W+IiIiIiIiGIUK3xEREREROQ6VvjcwcBHRERERESuY+BzB7t0EhERERERxShW+IiIiIiIyHWs8LmDFT4iIiIiIqIYxQofERERERG5jhU+d7DCR0REREREFKMY+IiIiIiIyHVNTXpeup04cQJ9+/ZFQkICqqqqWvysuroagwcPRlpaGrKysrBs2TL9GxQBAx8REREREZFNv/3tb/H973//rH+vr69Hfn4+unXrhrfeegvLly/HXXfdhZKSEg+28gw+w0dERERERK4LBKLvmbvy8nJUVFRg7dq1KC8vb/GzZ555Bo2NjXjssceQkpKCXr16oaqqCitWrMCcOXM82mIGPiIiIiIi8kS9tmXW17dcdmpqKlJTU6WWfOTIEcyePRvr169HmzZtzvr59u3bMWTIEKSkpJz+t+HDh6O4uBhfffUVMjIypNYvil06iYiIiIjINSkpKcjMzASQBSBd8SsLbdu2RVZWFtLT00+/li5dKrXNgUAA1157LebNm4cBAwYEfU9tbS3OP//8Fv9m/Hdtba3U+mWwwkdERERERK5JS0vDRx99hMbGRi3LDwQCSLDM9xCquldUVITi4uKwy6upqUFFRQX+85//4Pbbb1e2nW5h4CMiIiIiIlelpaUhLS3N683Ab37zG1x77bVh33PRRRfhpZdewvbt288KjgMGDMCUKVPw5JNPIjMzE0eOHGnxc+O/myua3kgIBKLtUUkiIiIiIiL3fPzxxy2eCzx06BCGDx+O559/HpdddhkuuOACrFq1CosWLcKRI0fQqlUrAMDChQuxbt067Nu3z6tNZ+AjIiIiIiJy4sCBA7jwwguxe/du9O3bFwBQV1eH7Oxs5Ofno7CwEO+88w6uu+46rFy5kqN0EhERERERRbP09HRUVFRg/vz5yMvLQ8eOHbF48WJPwx7ACh8REREREVHM4rQMREREREREMYqBj4iIiIiIKEYx8BEREREREcUoBj4iIiIiIqIYxcBHREREREQUoxj4iIiIiIiIYhQDHxERERERUYxi4CMiIiIiIopRDHxEREREREQxioGPiIiIiIgoRjHwERERERERxaj/B0YzFoustYjfAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6hklEQVR4nOydd3gVxdfHvzeNEEISeq/SVKoICiJFOogiIGAjIIgi+FPE3sCGBWyvCIIiYKEICChYEERQwYYiolKsFEFECDGEkHL3/SNu2LvZMrM72+49n+fJo9y7OzN39+zs+c45MxOSJEkCQRAEQRAEQRAEEXXEed0AgiAIgiAIgiAIwhlI8BEEQRAEQRAEQUQpJPgIgiAIgiAIgiCiFBJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEESUQoKPIAiCIAiCIAgiSiHBRxAEQRAEQRAEEaWQ4CMIgiAIgiAIgohSSPARBEEQBEEQBEFEKST4CIIgCIIgCIKIeR5//HGEQiHccsstJZ/l5eVh/PjxqFSpElJTUzF48GD89ddf3jXSAiT4CIIgCIIgCIKIab766ivMnj0bLVu2jPh84sSJeOedd7B06VJs3LgRf/75JwYNGuRRK61Bgo8gCIIgCIIgiJglJycHV111FV566SVUqFCh5PPjx49j7ty5ePrpp3HRRRehbdu2mDdvHjZv3ozPP//cwxbzkeB1AwiCIAiCIAiCiC3y8vKQn5/vSNmSJCEUCkV8VqZMGZQpU0bz+PHjx6N///7o0aMHHnnkkZLPt27dioKCAvTo0aPks2bNmqFu3brYsmULzj//fEfaLxoSfARBEARBEARBuEZeXh4alC2LQw6Vn5qaipycnIjPJk+ejClTppQ6dvHixfjmm2/w1Vdflfru0KFDSEpKQkZGRsTn1apVw6FDTrVePCT4CIIgCIIgCIJwjfz8fBwCsC8UQprgsrMB1MnJwb59+5CWdrp0rejevn37cPPNN+PDDz9EcnKy4Jb4BxJ8BEEQBEEQBEG4ThqANFXqpW0kqbjstLQIwafF1q1bcfjwYZxzzjklnxUVFWHTpk2YMWMGPvjgA+Tn5yMrKysiyvfXX3+hevXqYtvtICT4CIIgCIIgCIJwn7g4wAnBV1TEdGj37t3x/fffR3w2atQoNGvWDHfeeSfq1KmDxMRErF+/HoMHDwYA7Nq1C3v37kWHDh3EtttBSPARBEEQBEEQBBFzlC9fHs2bN4/4rFy5cqhUqVLJ56NHj8att96KihUrIi0tDTfddBM6dOgQmAVbABJ8BEEQBEEQBEF4gccRPhaeeeYZxMXFYfDgwTh16hR69+6NmTNnCivfDUKS9F+iK0EQBEEQBEEQhMNkZ2cjPT0dxxMThc/hy5YkpBcU4Pjx46Zz+GIFivARBEEQBEEQBOE+TkX4iAjivG4AQRAEQRAEQRAE4QwU4SMIgiAIgiAIwn0owucKJPgIgiAIgiAIgnAfEnyuQCmdBEEQBEEQBEEQUQpF+AiCIAiCIAiCcB+K8LkCRfgIgiAIgiAIgiCiFIrwEQRBEARBEAThPhThcwWK8BEEQRAEQRAEQUQpFOEjCIIgCIIgCMJ9KMLnChThIwiCIAiCIAiCiFIowkcQBEEQBEEQhPuEQsVRPpGEw2LLiwJI8BEEQRAEQRAE4T5xceIFH1EKusIEQUQ1v//+O0KhEObPn2967MiRI1G/fn2mcsPhMJo3b45HH33UXgMJLurXr4+RI0d63YxAoL5WH3/8MUKhED7++GPusl588UXUrVsXp06dEtdAgiAIwhVI8BFEQLjkkkuQkpKCf//9V/eYq666CklJSfjnn39cbJk+RUVFmDdvHrp27YqKFSuiTJkyqF+/PkaNGoWvv/7a6+bZYtGiRdi3bx8mTJhQ8tlXX32FCRMm4Oyzz0a5cuVQt25dDB06FLt379Ys46effkKfPn2QmpqKihUr4pprrsHff//taLtzc3PxwgsvoFevXqhRowbKly+PNm3aYNasWSgqKip1fDgcxpNPPokGDRogOTkZLVu2xKJFixxto1PMnDmTSfgHic2bN2PKlCnIyspytJ6RI0ciPz8fs2fPdrQegiBiDDnCJ/qPiICuCEEEhKuuugonT57EihUrNL/Pzc3FqlWr0KdPH1SqVMnl1pXm5MmTuPjii3HttddCkiTcc889mDVrFkaMGIEtW7agffv22L9/v+PtqFevHk6ePIlrrrlGaLnTpk3D8OHDkZ6eXvLZE088geXLl6N79+547rnnMHbsWGzatAnnnHMOduzYEXH+/v370blzZ/z888+YOnUqbrvtNqxZswY9e/ZEfn6+0LYq+fXXX3HTTTdBkiTceuutmD59Oho0aIAbb7wR1157banj7733Xtx5553o2bMnnn/+edStWxdXXnklFi9e7Fgbjdi1axdeeuklS+dGq+B78MEHNQWfnWulJjk5GZmZmXj66ach0Qp4BEEQwUIiCCIQ5ObmSuXLl5d69+6t+f3ChQslANLixYtdbpk248ePlwBIzzzzTKnvCgsLpWnTpkn79u1zrP6CggLp1KlTXOdkZmZK9erVMz3um2++kQBI69ati/j8s88+K1Xn7t27pTJlykhXXXVVxOfjxo2TypYtK/3xxx8ln3344YcSAGn27Nlc7ebh77//lnbs2FHq81GjRkkApD179pR8tn//fikxMVEaP358yWfhcFi68MILpdq1a0uFhYWOtdMJzj77bKlLly5eN4ObnJwc3e+mTZsmAZB+++0303I2bNggAZA2bNhgqR1ff/21BEBav369pfMJgiBkjh8/LgGQjlevLkk1awr9O169enHZx497/TN9A0X4CCIglC1bFoMGDcL69etx+PDhUt8vXLgQ5cuXxyWXXGJa1syZM3H22WejTJkyqFmzJsaPH18qQtC1a1c0b94cP/74I7p164aUlBTUqlULTz75pGn5+/fvx+zZs9GzZ0/ccsstpb6Pj4/Hbbfdhtq1a5uWtXTpUpx11llITk5G8+bNsWLFilJz7eR5etOnT8ezzz6LM844A2XKlMGPP/6oO4dv5cqVaN68eUS5rKxcuRJJSUno3LlzxOcdO3ZEUlJSxGeNGzfG2WefjZ9++ini8+XLl+Piiy9G3bp1Sz7r0aMHmjRpgjfffNOw/smTJyMuLg7r16+P+Hzs2LFISkrCd999p3tu5cqVcfbZZ5f6/LLLLgOAiHauWrUKBQUFuPHGG0s+C4VCGDduHPbv348tW7YYtnPkyJFITU3Fr7/+it69e6NcuXKoWbMmHnrooVJRohMnTmDSpEmoU6cOypQpg6ZNm2L69OmljlPPS5s/fz5CoRA+++wz3HrrrahSpQrKlSuHyy67LCI9tn79+vjhhx+wceNGhEIhhEIhdO3aFQBQUFCABx98EI0bN0ZycjIqVaqETp064cMPPzT8fXLdmzZtwvXXX49KlSohLS0NI0aMwLFjx0od/9577+HCCy9EuXLlUL58efTv3x8//PCD5jX75Zdf0K9fP5QvXx5XXXWVZv1TpkzB7bffDgBo0KBBye/6/fffNa+VHl988QX69OmD9PR0pKSkoEuXLvjss89KHde2bVtUrFgRq1atMi2TIAiC8A8k+AgiQFx11VUoLCwsJQiOHj2KDz74AJdddhnKli1rWMaUKVMwfvx41KxZE0899RQGDx6M2bNno1evXigoKIg49tixY+jTpw9atWqFp556Cs2aNcOdd96J9957z7CO9957D4WFhbbTKNesWYNhw4YhMTERjz32GAYNGoTRo0dj69atmsfPmzcPzz//PMaOHYunnnoKFStW1Dxu7dq1GDx4MEKhEB577DEMHDiQa17h5s2b0bx5cyQmJpoeK0kS/vrrL1SuXLnkswMHDuDw4cM499xzSx3fvn17fPvtt4Zl3nfffWjdujVGjx5dMqfzgw8+wEsvvYQHHngArVq1YvodSg4dOgQAEe389ttvUa5cOZx55pml2ih/b0ZRURH69OmDatWq4cknn0Tbtm0xefJkTJ48ueQYSZJwySWX4JlnnkGfPn3w9NNPo2nTprj99ttx6623MrX/pptuwnfffYfJkydj3LhxeOeddyLmVz777LOoXbs2mjVrhtdeew2vvfYa7r33XgDFz8SDDz6Ibt26YcaMGbj33ntRt25dfPPNN0x1T5gwAT/99BOmTJmCESNG4I033sDAgQMjxOprr72G/v37IzU1FU888QTuv/9+/Pjjj+jUqVOJQJMpLCxE7969UbVqVUyfPh2DBw/WrHfQoEG44oorAADPPPNMye+qUqUKU7sB4KOPPkLnzp2RnZ2NyZMnY+rUqcjKysJFF12EL7/8stTx55xzjqYYJAiCsATN4XMHT+OLBEFwUVhYKNWoUUPq0KFDxOcvvviiBED64IMPDM8/fPiwlJSUJPXq1UsqKioq+XzGjBkSAOmVV14p+axLly4SAOnVV18t+ezUqVNS9erVpcGDBxvWM3HiRAmA9O2333L8utK0aNFCql27tvTvv/+WfPbxxx9LACJSL3/77TcJgJSWliYdPnw4ogz5u3nz5pV81rp1a6lGjRpSVlZWyWdr164tVa4etWvXNr0GMq+99poEQJo7d27JZ1999VWpaytz++23SwCkvLw8w3K///57KSkpSRozZox07NgxqVatWtK5554rFRQUMLVLyalTp6SzzjpLatCgQcT5/fv3lxo2bFjq+BMnTkgApLvuusuw3MzMTAmAdNNNN5V8Fg6Hpf79+0tJSUnS33//LUmSJK1cuVICID3yyCMR5w8ZMkQKhULSzz//XPJZvXr1pMzMzJJ/z5s3TwIg9ejRQwqHwyWfT5w4UYqPj4+4x3opna1atZL69+9v+Fu0kOtu27atlJ+fX/L5k08+KQGQVq1aJUmSJP37779SRkaGdN1110Wcf+jQISk9PT3ic/mamV1bGaOUTvW1Uqd0hsNhqXHjxlLv3r0jrl1ubq7UoEEDqWfPnqXKHDt2rFS2bFmmthEEQehRktJZs6Yk1a4t9O94zZqU0qmCJDBBBIj4+HgMHz4cW7ZsiYgKLFy4ENWqVUP37t0Nz1+3bh3y8/Nxyy23IE4xAnbdddchLS0Na9asiTg+NTUVV199dcm/k5KS0L59e/z666+G9WRnZwMAypcvz/rTSvHnn3/i+++/x4gRI5CamlryeZcuXdCiRQvNcwYPHmwa3Th48CC2bduGzMzMiAVXevbsibPOOoupbf/88w8qVKhgetzOnTsxfvx4dOjQAZmZmSWfnzx5EgBQpkyZUuckJydHHKNH8+bN8eCDD+Lll19G7969ceTIESxYsAAJCfzbq06YMAE//vgjZsyYEXH+yZMnbbVRWb5MKBTChAkTkJ+fj3Xr1gEA3n33XcTHx+N///tfxHmTJk2CJEmmEWWgOJ01FAqV/PvCCy9EUVER/vjjD9NzMzIy8MMPP2DPnj1Mv0erbmW0d9y4cUhISMC7774LAPjwww+RlZWFK664AkeOHCn5i4+Px3nnnYcNGzaUKnPcuHGW2sLDtm3bsGfPHlx55ZX4559/Stp14sQJdO/eHZs2bUJYtYFxhQoVcPLkSeTm5jrePoIgYgCK8LkCXRGCCBjyfJ6FCxcCKJ4v98knn2D48OGIj483PFd2fps2bRrxeVJSEho2bFjKOa5du3aEEw0UO3xa85OUpKWlAYDhFhIy+fn5OHToUMSf0lFv1KhRqXO0PgOK5zGZIZfbuHHjUt+pr4sRkslKhYcOHUL//v2Rnp6OZcuWRdwbOe1Wa0+zvLy8iGOMuP3229GqVSt8+eWXmDx5MrNgVTJt2jS89NJLePjhh9GvX7+I78qWLWu7jXFxcWjYsGHEZ02aNAGAkkGLP/74AzVr1iw1QCCnkrKINuVcSAAlgtzMVgHgoYceQlZWFpo0aYIWLVrg9ttvx/bt203Pk1HbUmpqKmrUqFHy+2QhedFFF6FKlSoRf2vXri01JzchIYFpfqtd5HZlZmaWatfLL7+MU6dO4fjx4xHnyHav7hcIgiAsQYLPFfiHggmC8JS2bduiWbNmWLRoEe655x4sWrQIkiTpLuxgBz0BaSZ2mjVrBgD4/vvv0bp1a8NjN2/ejG7dukV89ttvv7E3UgGLABFBpUqVDIXE8ePH0bdvX2RlZeGTTz5BzZo1I76vUaMGgOJoo5qDBw+W7Floxq+//lritH///fc8PwFA8aIjd955J2644Qbcd999pb6vUaMGNmzYAEmSIhx8ud3q3+UlVm0VADp37oxffvkFq1atwtq1a/Hyyy/jmWeewYsvvogxY8bYbpscJXvttddQvXr1Ut+ro7JlypSJiMA7hdyuadOm6T6nyug6UCygU1JSXHvWCIIgCPuQ4COIAHLVVVfh/vvvx/bt27Fw4UI0btwY7dq1Mz2vXr16AIr351JGXfLz8/Hbb7+hR48eQtrXt29fxMfH4/XXXzdduKVVq1alVkOsXr16yWqXP//8c6lztD5jRb4GWul7u3btYiqjWbNmuqI0Ly8PAwYMwO7du7Fu3TrNqFutWrVQpUoVzUVivvzyS1ORDBQ76yNHjkRaWhpuueUWTJ06FUOGDMGgQYOYfsOqVaswZswYDBo0CC+88ILmMa1bt8bLL7+Mn376KeJ3fPHFFyXfs7Tz119/LYnqASjZiF5eabVevXpYt24d/v3334go386dO0u+F4FRVKpixYoYNWoURo0ahZycHHTu3BlTpkxhEnx79uyJGLTIycnBwYMHSyKmZ5xxBgCgatWqwp4xGTuRNrldaWlpzO367bffSi3iQxAEYRmKyLkCXWGCCCByNO+BBx7Atm3bmKN7PXr0QFJSEv7v//4vIvIxd+5cHD9+HP379xfSvjp16uC6667D2rVr8fzzz5f6PhwO46mnnsL+/ftRoUIF9OjRI+IvOTkZNWvWRPPmzfHqq68iJyen5NyNGzdaimbJ1KhRA61bt8aCBQsi0tU+/PBD/Pjjj0xldOjQATt27CiV7lhUVIRhw4Zhy5YtWLp0KTp06KBbxuDBg7F69Wrs27ev5LP169dj9+7duPzyy03b8PTTT2Pz5s2YM2cOHn74YXTs2BHjxo3DkSNHTM/dtGkThg8fjs6dO+ONN97QjSZdeumlSExMxMyZM0s+kyQJL774ImrVqoWOHTua1gUAM2bMiDh/xowZSExMLJlz2q9fPxQVFUUcBxSvPBkKhdC3b1+meswoV66c5gbl//zzT8S/U1NT0ahRI810Vi3mzJkTscLtrFmzUFhYWNLu3r17Iy0tDVOnTi21Ei6AiO0jeClXrhwAaP4uM9q2bYszzjgD06dPj3jGjNr1zTffMN93giAIwh9QhI8gAkiDBg3QsWPHkv2wWAVflSpVcPfdd+PBBx9Enz59cMkll2DXrl2YOXMm2rVrF7FAi12eeuop/PLLL/jf//6Ht956CxdffDEqVKiAvXv3YunSpdi5cyeGDx9uWMbUqVNx6aWX4oILLsCoUaNw7NgxzJgxA82bN9d0UFl57LHH0L9/f3Tq1AnXXnstjh49iueffx5nn302U7mXXnopHn74YWzcuBG9evUq+XzSpEl4++23MWDAABw9ehSvv/56xHnK63vPPfdg6dKl6NatG26++Wbk5ORg2rRpaNGiBUaNGmVY/08//YT7778fI0eOxIABAwAUp2e2bt0aN954o+E+fn/88QcuueQShEIhDBkyBEuXLo34vmXLlmjZsiWA4jmct9xyC6ZNm4aCggK0a9cOK1euxCeffII33njDdM4oULzAy/vvv4/MzEycd955eO+997BmzRrcc889JQvsDBgwAN26dcO9996L33//Ha1atcLatWuxatUq3HLLLSWRKLu0bdsWs2bNwiOPPIJGjRqhatWquOiii3DWWWeha9euJfvMff3111i2bFnEYjNG5Ofno3v37hg6dGjJ89SpU6eSPTHT0tIwa9YsXHPNNTjnnHMwfPhwVKlSBXv37sWaNWtwwQUXlBK7PL8JAO69914MHz4ciYmJGDBgQIkQNCIuLg4vv/wy+vbti7PPPhujRo1CrVq1cODAAWzYsAFpaWl45513So7funUrjh49iksvvdRSWwmCIEpBET538Gp5UIIg7PHCCy9IAKT27dtznztjxgypWbNmUmJiolStWjVp3Lhx0rFjxyKO6dKli3T22WeXOjczM5Np6wJJKt5G4uWXX5YuvPBCKT09XUpMTJTq1asnjRo1innLhsWLF0vNmjWTypQpIzVv3lx6++23pcGDB0vNmjUrOUbeemHatGmlztfalkGSJGn58uXSmWeeKZUpU0Y666yzpLfeeovrt7Vs2VIaPXp0xGfyVhZ6f2p27Ngh9erVS0pJSZEyMjKkq666Sjp06JBhvYWFhVK7du2k2rVrR2w5IEmS9Nxzz0kApCVLluieLy/Nr/c3efLkiOOLioqkqVOnSvXq1ZOSkpKks88+W3r99ddNrk4xmZmZUrly5aRffvml5HdWq1ZNmjx5csS2IJJUvHXBxIkTpZo1a0qJiYlS48aNpWnTpkVsFyBJ+tsyfPXVV5q/U96CQJKKt0Ho37+/VL58eQlAyRYNjzzyiNS+fXspIyNDKlu2rNSsWTPp0UcfjdhqQQu57o0bN0pjx46VKlSoIKWmpkpXXXWV9M8//5Q6fsOGDVLv3r2l9PR0KTk5WTrjjDOkkSNHSl9//XWpa8bDww8/LNWqVUuKi4uL2KLBbFsGmW+//VYaNGiQVKlSJalMmTJSvXr1pKFDh0rr16+POO7OO++U6tatW+qeEARB8FKyLUPDhpLUqJHQv+MNG9K2DCpCksQwo50gCMJHtG7dGlWqVCk1989NXnvtNYwfPx579+5FRkaGZ+3wMyNHjsSyZctsRWP9zPz58zFq1Ch89dVXOPfcc71ujqOcOnUK9evXx1133YWbb77Z6+YQBBFwsrOzkZ6ejuNnnIE0hmwRrrKLipD+yy84fvx4yarhsQ7FUAmC8C0FBQUoLCyM+Ozjjz/Gd999h65du3rTqP+46qqrULduXd0FTwgimpg3bx4SExNxww03eN0UgiAIghOaw0cQhG85cOAAevTogauvvho1a9bEzp078eKLL6J69eqeO55xcXHYsWOHp20gCLe44YYbPH/mCIKIQpyYw0fJi6UgwUcQhG+pUKEC2rZti5dffhl///03ypUrh/79++Pxxx9HpUqVvG4eQRAEQRB2IMHnCjSHjyAIgiAIgiAI1yiZw9e0qTNz+Hbtojl8CijCRxAEQRAEQRCE+1CEzxVo0RaCIAiCIAiCIIgohSJ8RNRx5MgRrF+/HmvXrsXevXu9bg5BiKewEIVFodP/liRIcRopMaHTxyQkRPyTIAgV9erVQ8+ePdG9e3dUrlzZ6+YQRGxAET5XIMFHBJ7CwkJ8+umnWLt2LdauXYtvv/0WzZs3R69evdCxY0eEyMsl3GbbNmxDa69bETXUrw/QVoeEk0iShJ07d2Lq1Km48sor0aZNG/Tq1Qu9evVCp06dkJBA7hJBEMGFFm0hAsmJEyewdu1arFy5EqtXr0ZiYiJ69+6Nnj17okePHqhevbrXTSR8zjvveN0CIlYYMMDrFhA8HDp0COvWrcOHH36IDz74AAUFBbj44osxcOBA9OrVC+XKlfO6iQQReEoWbWnRwplFW77/nhZtUUCCjwgMx44dw8qVK7Fy5UqsXbsWderUwWWXXYaBAwfivPPOQ5zolADCU0iQEYT3xLpYDYfD+OKLL7By5UqsWLEC+/btQ69evTBw4EAMHDgQFSpU8LqJBBFISPC5Cwk+wtfk5OTg7bffxqJFi/DBBx+gVatWGDRoEAYOHIhmzZpRuqaHkCAjCMLPnHsuUKOGuPLktM+VK1firbfewvbt29G7d28MHz4cl1xyCVJTU8VVRhBRTonga9XKGcH33Xck+BSQ4CN8R15eHt59910sXrwYq1evxhlnnIErrrgCw4YNwxlnnOF18wLFwYP2zq8BawW887VAL4sgCMIGjRpZP/fMM/W/+/nnn7FkyRIsXrwYv/zyCwYMGIDhw4ejb9++SE5Otl4pQcQAJYKvTRtnBN+335LgU0CCj/AFkiRh8+bNWLBgAZYsWYIqVaqUiLzmzZt73TxHsSvKnMKq2HMCEpBEtNKjB/uxWVmONcN3+PG3Gom/HTt2YPHixVi8eDH+/vtvDBs2DJmZmbRwGEHoQILPXUjwEZ7yxx9/4LXXXsOCBQtw5MgRXHHFFcjMzET79u19+ZL86afi/0b7ioF+EnvCyMrCOz8beGwcDKi8RUg5wvCbQfqtPYCv2nQSZb1uQgSixZUfxZpIjISfJEn44osvsGDBAixevBhVqlTBiBEjMGLECNStW9e9RhKEzykRfG3bOiP4tm4lwaeABB/hOrm5uVi2bBkWLFiATz75BL169UJmZiYGDBjgmzQYWdgZ4SP/URhRKfRk1F5oNHml0WiMMvXre90CR/Cb6BNBbu7p/z982Lt2uImR+MvLy8M777yD+fPn48MPP8SFF16IzMxMDBkyBCkpKe41kiB8CAk+dyHBR7jG9u3bMWfOHLz++uuoXbs2Ro0ahauuusrTLRRYhJ0Z0eJrR5XY4xVzQRd/0WKEAFC1qvH3UeQoR4voUwo9M6JVCBoJP6B4q4c33ngD8+bNw/79+3HNNdfguuuuQ8uWLd1pIEH4jBLBd+65SBO8z2V2YSHSv/6aBJ8CEnyEo5w4cQJLlizBnDlzsH37dgwbNgxjx47F+eef72rKpghhZ0ZQfe7ACz3KRwuu8cmYiTwzAi4Cgyj8eESeGdEmAs1SPj///HPMmTMHS5YsQcuWLTF27FgMGzaM9vcjYgoSfO5Cgo9whG3btmH27Nl444030KBBA1x//fW48sorkeGwY+qGsDMjSL53IMWem4IsKOIvSEYH2Bd4ZgRQAAZF9IkUemYEXQiaRf2ysrLwxhtvYM6cOfjtt99w1VVX4frrr0fr1q1daR9BeEmJ4Gvf3hnB9+WXJPgUkOAjhJGfn4+33noLM2bMwLfffosrrrgCY8eORbt27YRH8/wg7MxwwgcXVWZZnLR+ciwLLr+1RyYIgs9pkWdGAESgn0Wfm0LPDDeFoAhfsVYt4+8lScJXX32FOXPmYNGiRTjnnHMwYcIEDBo0CImJifYbQBA+hASfu5DgI2xz8OBBzJkzB7Nnz0ZKSgrGjx+PkSNHokKFCrbLPnAAyM4W0EiPqFrVf36mLbEnCi3h5FcxpYeo9ooQQnYWO3LqAfNa4Jnh5IOZlGT51CLYW7wgP9/W6aXwk9AzQ0sI+snXMxN+AHDs2DHMnz8fL7zwAnJzc3H99dfj+uuv93SuO0E4QYngO/98ZwTf558zCb5Zs2Zh1qxZ+P333wEAZ599Nh544AH07dsXQPHiS5MmTcLixYtx6tQp9O7dGzNnzkS1atWEttlpSPARlpAkCVu2bMHzzz+Pt956Cz169MCECRPQu3dvxMXFWS73wAHj7/0o/oK0xoQvxB6g7UUGLX8rLQ3Iy/O6FfbEnmj81BYr+CRSalf0iaKwEMjJ8boV/Ch9R7+230z8hcNhvP/++5gxYwbWr1+PwYMHY8KECejQoYMvtywiCF5KBF/Hjs4Ivs2bmQTfO++8g/j4eDRu3BiSJGHBggWYNm0avv32W5x99tkYN24c1qxZg/nz5yM9PR0TJkxAXFwcPvvsM6FtdhoSfAQXhYWFWL58OaZPn449e/bg2muvxY033ohGjRpZLtNM5OnhtvizGrDwi+DzhdgL4nJ+ZiECr0WfX0RWaqr254WF7raDB702C3Y+rOAH0Wd06/wkpFhvl5/aLMMS9fv5558xc+ZMvPLKK2jcuDFuu+02DB48GAk+sFOCsIobgm/fvn0Rgq9MmTIoU6aM6fkVK1bEtGnTMGTIEFSpUgULFy7EkCFDAAA7d+7EmWeeiS1btuD8888X2m4nIcFHMJGTk4O5c+fimWeeQVxcHCZOnIhRo0YhVc9hMsCqwDNClPhzIgvNa8EXOKGnh9MC0E7ul5eiz2vBZ6EP8EQEWmmnxw6116LP6m1yQ1iJuDV+EoAswi8nJwfz5s3D008/DQCYOHEirr32WkvvYYLwmhLB16mTM4Lv009LfT558mRMmTJF97yioiIsXboUmZmZ+Pbbb3Ho0CF0794dx44di1h0sF69erjlllswceJEoe12EhoeIgw5ePAgnn/+ecyaNQuNGzfGtGnTcNlll3GPLDoh8pQofXUz8ef3qUUi8VTsiZ78o75xdgSg6Ik9ycneR/q8wKqjqdV/iBaBIpxguU0eCb94FHku+qygd+ntCizRt0HZTq/Fn/yONBJ+qampuOmmmzBu3DisWLEC06ZNw+TJkzFu3DjcdNNNqFGjhjuNJYiAoBXh0+L7779Hhw4dkJeXh9TUVKxYsQJnnXUWtm3bhqSkpFIrzFerVg2HDh1ysunCIcFHaLJr1y488cQTWLhwIXr16oVVq1bhwgsv5Jo74LTI00N+tlNT/Z1N5jSeiT23VnlgEYBurtgQa6JPdFRBz5tneYidjnB4KPyCKvq0MLpNeoLLrUvuF/HHIvwSEhJw+eWXY8iQIfjkk08wffp0NGjQAFdeeSXuvPNONG3a1J3GEoQI4uKK/0SXCSAtLY1plc6mTZti27ZtOH78OJYtW4bMzExs3LhRbJs8RvAVJoLOrl27cPXVV6NVq1YIhULYtm0b3n77bXTu3NlU7B04EPnnNqmpkX+A5xlZnuGJ2MvN9XZJv5o1i//S0k7/uY3X6ZVu4WYKWUJC6T+th90NCgs9GUWKR5HrdbqN+pZWrFj853VbvILlPRoKhdC5c2e8/fbb+PbbbxEKhdCqVStcc8012LVrlzsNJYgoICkpCY0aNULbtm3x2GOPoVWrVnjuuedQvXp15OfnI0u1Kvdff/0VuJVzSfARAIonocpCLyUlBTt37sTcuXPRrFkzw/P8JvC0CLroS0pi/yubVISySUX6B4hGFnleCT2lCJDx2lOLZtHn9bWVhbxT9syKB8LPbdHnZXaE8tYqx2+8GMNxWvxVrmz8d+pU8Z8ZZ555JubOnYuffvoJycnJaNWqFa6++moSfoT/kSN8ov9sEA6HcerUKbRt2xaJiYlYv359yXe7du3C3r170aFDB7u/3FUC7goTdtm5cycefvhhLF++HCNGjMDOnTtRv3593ePlF8+RI+60T4mdF25CgvsOjNtRRiaH0K6TLG/y5WUkj/WCyjfAi/wsUemdLCOIRtdD5IPqtdDTQmnPojegY8GBVE8pTj99Mw5ACObrrBWFg7tsv1kXxTNfWzR6aZ+VKztft/zuNVtgsEGDBnjppZdw7733YurUqWjVqhWGDBmC++67z3QAlyBikbvvvht9+/ZF3bp18e+//2LhwoX4+OOP8cEHHyA9PR2jR4/GrbfeiooVKyItLQ033XQTOnToEKgVOgESfDHLH3/8gfvvvx9vvvkmMjMzmYWejPoF54QAdGKKkB/XhRCBa6P/8qiZ2xNe7DjUXgi/ypXdGWEwuy6iPFGv5ibyhHS8FH+Key0lmS/5bQcJIVPRFx9nf/Ht+IQwThW6O3eQdzxKbR5uCcD0NAnpqrpP5bsjslmFX/369TFnzhzcc889mDp1Klq3bo2hQ4fikUceQd26dZ1vKEGw4uAcPhYOHz6MESNG4ODBg0hPT0fLli3xwQcfoGfPngBQsjr94MGDIzZeDxq0LUOMkZWVhalTp2LGjBkYMmQIHnroIS6hx4oVAeiWeOL1w+1GFp3GFbHHe9FEiCunLp5I4WcmqJwWfS4YmJGACWUfd6ZSkbl7Dom/ogT96yLad1HDEuWzTThs+LVoMehEhq4IAZiexnet3RJ+gLnoU/L777/j/vvvx/Lly3HTTTfh7rvvLrXyIEG4Scm2DD16OLMtw7p1TBuvxwoU4YsR8vPzMXPmTDz88MNo06YNPvvsM7Rp00bzWKsiTwlLBNAv0THAX23hwZdiD9C+oCxCyw2FnJrKL/rcyNkKIFJaeqnPbIlAJ17MAiJ/RuJOi3DYWdHHEuWzTVycoegrk6Df9/CKQaemY1qJAPIKPDVlkorPd0P4sUb7gOKI32uvvYaJEyfi9ttvR6NGjXD//fdj3LhxSPJyPixBEK5AEb4oR5IkLF26FHfffTdSUlLw5JNPok+fPporbooQekbIL8Lj2d7NL5EdADcyvpzWLo6LPaejU7Lo8nJVHbXwc0LYOXkdHb52ItMTDYWgFyOwOp0Ar7gzIvCRPpMoHy9aQtBLrSELQLsizwg/RvwkScJ7772HO+64AydPnsRjjz2Gyy+/nGvbJYKwS0mEr2dPpCUmii27oADpH35IET4FJPiimG3btmHChAn49ddf8fDDD2PkyJGIj4984bol8rRwWvgZPeNBF3yOij035p6pvTy3V1/A6ehUKN/hhyCggs/puWiAS6mJJrixwImTws/RayhY8GmSnw8puazz9WgQylNsX+PC6rpuiD+eNM/CwkIsWLAA999/Pxo2bIgXXngBrVq1cq5xBKGABJ+70LYMUcixY8cwYcIEdOjQARdeeCF2796N0aNHR4g91qWerVAmSSr5M6J44rs4Z8Xr5bvdItBiT285fRdumpSWHvFX8rnTwibo+4I4RF4ecDIvFPHnFso68/OdHwByUjdJCHBU5r8LH8o7GfHnNJr15OWd/nMIlveiXXje7QkJCRg9ejR2796NTp064fzzz8dNN91Uas8xgnAUH27LEI3QFYkiwuEwXnnlFTRt2hR79uzBtm3b8NhjjyH1v/lU8ovAaaHHi1XRZ0fgOZ1G5JSP75jYc3pfMdZ90wQrdi2Bp3mcC9GsIOH09dDzqZ0Uf2ZlOy383AiWRQtqAShKBDKXFWPCLzU1FY8//ji2bduGXbt2oUmTJnjllVcQJqMliKiBUjqjhK1bt2L8+PE4ePAgnnnmGVx22WUl+fhOpm2KfmkZpXmKDgA56dyxCj6e5dNZRvJDYQuC0GmhZxeOdE8zYWeGo+mdTlxnB0YWnBR7Vn3ossnW+xmr4tHJQSEnBp8dS+100um30QnzpoHaFo0OpnxaTfUsk8e4QFI6e78oSRJWrFiBiRMnombNmpgxYwbatm1rqX0EYURJSmffvs6kdL73HqV0KqBco4CTk5OD+++/H7Nnz8akSZNKFmcBABwvfhnI7tupZHvOsIyTI5PpaRKOZ4cClZKpXq3uVGG8kH2wlLCmbRlt2qxE6cPFwwEhItJbNtlp2a7IiygrqYzzc/oY+Ddcjum4MIOASk9m/z1+FHtAadFmJgBFRAjz850TfVZW8TTXXSH2DAA/pDvZHHFTCzg9ASgsRVRpwILFX8k79ehRnEqtxC7kWPnPF2ARfqFQCIMGDUKfPn3w2GOP4cILL8T111+Phx9+uCRbiCCI4EERvgCzZs0ajBs3rmSD1WbNmhV/cZztZcEjAJ1OPwEQ8UJ1YxI/j79htAR5KQQ7U07M0TFzHuMLLYoeh3NlT+aF3FhbQZjoO54XKaBE+9migy9yELJiRbHlOrlvu1L8OTUPULRZy9fZidRv4Wnfysi0yAY7PHFSSi7r/HxAO53R0aPG3zs1L4Aj2gcAP/30E66//nr88ccfmDlzJvr37+9Mu4iYoyTC17+/MxG+NWsowqeAInwB5NChQ7j55puxdu1aTJs2Dddeey3i4uKYhZ6M1iiiUgS6LfKUhPJOurpyG5egCzgsIkFvaXpdIejC2uqyMy+bjJPCjzfSpxZ2QUTp1+v5olaEoJNiDyi2i9xcQE5scAJZm1gxc6NM3sLCgK3pY/RjeH6IC8skh47+c/ofThkHa9TPTNxp4ZRxcET7AODMM8/Exx9/jLlz5+Lqq69Gr1698Nxzz6F69eri20bEJk4ssuKHLAafQVckQITDYbz00ks488wzEQqF8NNPP2HMmDGI+/dfbrGnR5m84yiT8w/K5Pxj7SVlhnIlNBNP0InRWeUiAGXCJ1EmoUis2PNxdC8cth8RKkooU/J3MlyGfTEWixgttOG0kFCnNx7PK6P75wVerKdw9Kj+nxZO36Pc3OI/5f/L/3YCo4Vd5HWP1H9miF4vqQh8m56bwio69C6AG9u8qFEbgRvGoX6vmT0cLDh5/Th8hri4OFx33XX46aefABSLwJdeegmUIEYQwYFSOgPC77//jtGjR2PPnj2YNWtWcVqFIJEHwPylYifHy4bXZzfKZyganRAqAgWfaLEnEi2n187CGmp4U/NER/uUPprIQXaR4wFOpXOKIj8fyMgQW6YMq9/uVGBHtn/RdifS1oSmdoo2Dvmd4EQfzCPqRBuIejsD0b/PJ2me8nSSxo0bY+7cuahfv74z7SKimpKUzksvdSalc9UqSulUQBE+nxMOhzFr1iy0aNECjRo1wo4dO9C/UydxYo91BJF3pFLQnkY8UT6nlvJmJobFHiBmSX2r59uNJLFEq0Tg11XOnRB7QLH/K/+JgsefFxnUkaN7SvsXHcH0IhjmKcqLKmJfDN6bLSLyZ2Tkovf6cCrix+lP9O/fHzt27ECjRo3QsmVLvPjii7SFA0H4HIrw+ZjffvsNo0ePxi+//IK5c+eiR7t24gq3+9LQivg5mL+lFemzLehEj74KEnx+FXtW/RY3VlRUwhJ14RV1fozyiby3In1IVjvhjf6JEG68AR3W3+LXSJ9vo3w87wrWflpkuiaLoVgZxQhCxI8z2vfhhx9izJgxaNSoEUX7CC5KInyXXeZMhG/FCorwKaAInw+Ro3otW7ZEkyZNsOOzz8SIPZFzKuRQiKBInhmeR+/M8JnYEzFfT4mdQWq9yJ9TG2xrmaLdCF40R168EHtAZGDEzHcW5cuzBHOsBJtEd4Gi7onw+XxeIDoKyIJR5M9OyNqJiJ9oOKN9PXv2xPfff49GjRqhRYsWmDVrFkX7CMKHUITPZxw4cACjRo3Crl27MPf//g89una1X6hT+VpKRE/W0XrRip5vIXK0lUfw6bwMtZwzKzrSL0JPC/m2OrmiIlDsj/l5MF3E+ICo+yyqexBpK3J34uQaGzIpKWLbLjLa56tIn1cRPhbcGJHJyXFmzqGoMq0ay+HD2p83bsxd1Lp16zB69Gg0bdoU8+bNQ61atay1iYgJSiJ8gwc7E+FbvpwifAqCtCB01LNo0SLceOONGDhwIJbNnWvfSN0QejJZWfZFnxvenQjU1zUhwbHJWTzFitwuy4lBdOXtdUr4KQfeRW+c7eUS+lo+mdo2qlblL9evkcusrNM26ORez3LARaQd5uWJE32+2rYhIcG/BqPssJwQZTk5ztVjZ88PJYWFwJEjQPXq+iKOhz17iv/LIfx69OiB7du34+abb0aLFi0wc+ZMDB8+3H5bCIKwDUX4fMDRo0cxfvx4rFu3DnPmzMFll112+ksri7N4laMFODsxx60IH+/1E+CRiUi9Ymk2S1OdiurpYfe2mmVXifT/7NxqpQ/mlwifXEblyvbKEW0zeuWJEn965YvuYuwKP/mZFiEghUT5lJE5Ow+DyAifWQdjtwOQxZ5T5Vsp78gR82NELglsIdr31ltvYezYsejZsydmzpyJChUqiGsPERWURPguv9yZCN/SpRThU+CXscOYZe3atRg1ahTatGmD77//vvRmploTqLVE4KFDxf+167nJWPXgzCJ9fojiyb9NxAsxQGLP6LiEBPeFnvo4HmebZwqNyEifWcRFxMC6Fxj5j2ZdiltiDzjte1sVfmZtFR15Zon2sTy7IqOGwjBruF9Ck3aicmZiT1m+UxE/FnGnRTgsTvTt2cMt+gYNGoSOHTti9OjRaNGiBebNm4eePXuKaQ9BENz4pEeOPU6dOoW77roLL7/8Mp566ilcd911CIUYF7BQisBduyK/k18OVoSfKM9NLfpErrjg1DJ7HuGm2DNC6dfY9Vus3m4WZ9vOWgmi/LGgijo1rBFCI39T5MApz6OqtFcW8cfbDVjpavSQg1l29Y9d0VeEePtRvuRk9uicH9M/WcUfi9CzWjYLojYClR9yEcLPQopn9erVsXr1arz00ksYNGgQxowZg8cffxxlypSx3x4iegiFxEak5TKJCCil0wN++uknXHHFFUhISMDChQvRpEkT/kLUQs8It4fo5TKdmHxj5oW5uY66D6J7InwqM//Ni1XRgdO3WuQeblb8MC3BI+LdZLcMuymdIlJC1fantVsLCyK6IK3uRkS5doSf+vrY7XZ8kdopIh1Tqwwr/amoTkfZMVgReyzlmmG2fLCIiKkop9pCiufu3btx5ZVXorCwEIsWLcKZZ54ppi1EYClJ6Rw+HGmCU6Oz8/ORvngxpXQqoG0ZXESSJMyZMwft2rVD7969sXnzZufFHlDsscp/Mk4sce3mstnq+tysVxBeiz3WpeTNLq/Iza1lcnKKI2kixR5gbiLKR0X9yBCRaNmfle0vRD22OTmn/0R2Bzz2rdz5Ruv62NVKDu9+4y3qi+dmhFA2mKws8XPgjQyR52ERcU1ELS4mR/s4aNKkCTZv3ozevXujXbt2eOmll0DxBoJwD4rwucQ///yD6667Dp9//jlee+01dO/enb8QXqGnhfzCsDoUr8bMqxK9yoKoPCu7Q+U2R1v9IPbskJtbnLXrhNBTI3pNhKNHixeyA+wJOruD5XbO92N0jwV1t+PEGI2yXaIXYdEqz8p18DrS53mUz+r5yn7Xifng6jKdmIeYlGRtM1AlAY/2rVu3DiNGjECHDh3w0ksvoaIof4QIFCURviuvdCbCt3AhRfgUUITPBT799FO0bt0aRUVF2L59O7/Y27XLvthTjw7aeeHwRNSspscEOHJnRtDFnoxy6Xy7yJEZLUSagGz2FL2zh1UbVAY0RD/WWgEQ0ZpAjvbZDUJ5HekL7IbsygsfDovdDkfLWERHG7OyilMX7JYX8GifvH1DYWEhWrVqhU8//VRMWwiC0IUEn4OEw2E89thj6N27N+68806sXLkSlXkWU7Er9MxeVjx5V4Dz4sstgedhdM9LsceawmmEVnqbnVtmJPTUWK1DK2tKhP/m0NaLvkfEtSssLPZ95T8R5ekhKuVY1hfhsHPT2Nw8P2pQ3hirsBiIXZGlNnQRos1uGaJEswXRV7lyZaxcuRJ33HEHevfujccffxzhWO1UY524OGf+iAholU6HOHz4MEaMGIE9e/Zg06ZNaNu2LfvJIqJ5PBw9qp/iKUJ85eQ4t6KCG4jc0dwieXneb3tl5hPxLFJnJ/DLkvnBOiXGLyvHu4kffSqlL8y7lSdrd2d1ywW96yViqwS7Zdg539aqnTyrdbqJ+mY54fTxvg/MRjTk8ux0RnbLCIftpzxYOD8E4KZzz0XHGTMw9JFHsHHjRrz66quoUqWKvbYQBFGKGHR3nGfjxo244oor0KlTJ3zzzTdI19pLTwu3hZ4S2UOuWNE5IeZXgcdz3Xwa3TNqloioHi96W1OJWABPT/TZnRZjBStbXYnYgN2uaLO6Xaeo6J4RrOLPaltYhR/LNZafLa9Em4jzoxrlTdR72OyEf43EH2/o2i3h51Quu419/9o2a4ZvXnwRY+bMQevWrbFo0SJ07txZcAMJ3+JERI4ifKUgwScQOYVz6tSpmDZtGsaNG8e2t95nn53+fyuemEgv7PBh/iF2lnKzssSvoGClHcnJnuwPZUfssQg2vRUB7Uaw7KbC5ecXlyE6kiaLPrsiz6kon9/36rOz0bodeB89PfEn4hHWEn5WhXRQRZtnUT4vIoRa0T+RkzyVYstOnrIo4Sd3jm46vjZEX3pqKt6cOBEzu3ZF3759ce+99+Kuu+5CHDnuBCEEEnyCOHbsGEaMGIEffvgBn3zyCc455xzzk5RCT0bpiZl5Xk4Nt6s3ThdRpls4WbdFj8xpsWd0nvpysPoQovwguRzRwkr2p0SUabVt0broi97vCoftLe5r99GU77no7T3lRVjslms32mdH9HmW2mkHG+JAiFgMh8WIKzXKUSg7YsVK27xIc1Bj476GQiGMP+ccdPjkEwwZMgSff/45Xn31VWSIHIQm/AdF+FyBrogAtm3bhnPPPReSJGHr1q3mYu+zz7TFnhq9zcDcmOxtJR3F7b2TvNy3yQXsij0tWC6XCLGntVCGiDUP1It8uHnLaX8+a/vsAeLuUzgMZGcX/4lCbpuo/bZ5nlvleiPhsL1nz49T6kxRXwDRK28aobzhot4hasMU8XvM2mX2QLp5TZV12uCcU6ewdetWFBUVoW3btvjuu+8ENYzwJbRoiyvQFbHJggUL0KlTJ4waNQpvv/02KlSoYHwCi9DT4siR4jwxO7livC81lsnmPOXZ8Wbkl5ZX4s7l6J4TYk8L+VLm5IhbzdCsDCtpfUam6ESgmzZgj0TPf1MLQC2fU6TYUyILP6viT6sb4Vk11gi955BF13gh+ixnITiVh+qVCASsv2OMDFG08LMy6uKF6LNRZ4WdO/HOO+9g5MiRuOCCC/Dqq68KbBxBxB6U0mmRU6dO4ZZbbsGbb76J5cuXo3fv3sYnWBV6QOlOU7nACgt2wyqiJ8+w4MTLyeVJMn4Xe2pY1jcwgsdRZclW4gky200ZPXqUBgRFofZB7e55y9IVyL42S10sXZgs+uykeeblsa0oq0VurrdTnn2J0hDspIPywJpWyTrqIP8Gq21XdopWyrBbvxVs3Ku4L77A/T16oH379rjyyiuxZcsWPPvssyhTpozgRhKeQimdrkCCzwKHDh3CoEGDkJ+fj2+++Qb16tXTP1ik0FNjJvxEbhYreuKMGj+uFS/jolD0QuxpncvjF9hd5E7pS9ld64BV9GkNjLvlQwYNO49mOGxvywXeus2EH2+XqLejjBlyu+3M67Mq+qzO5/NsLp9V7GzBwBvGNVqN00qImVd4aXWMdsSb252dzfp6p6Xhm2++weDBg3HRRRdh+fLlqF69usAGEkT0Q+4NJ19//TXOPfdcNGzYEJ988okzYo83FUKZ2iEy5dHJdBqv0nVcwkp0zy9iT4mT6Wcy8oJyTm/AbSULirCOls3wbLZup1tQp3ra6RJZ0zyNnhWrz6jV58vV+XxWB8REhzDdeqco37F2J5OatZflYbH6e91+99qsq96ff+KTTz5B/fr10a5dO3z99deCGkZ4Ds3hcwWK8HHw+uuv44YbbsCUKVMwadIk/S0X7Ag9q8gbp9pdzUqvDdnZ9nOz5Bek09FCLaw6JRbO4xV7Tgo2kecpB5RFreKp9JdEDTofOXJ6gVtecRewgW/HcdIfNIr8iapX5MqeWtE+nnZajby5GekLXJTPCL0IoKjVeZTliHiIlR2sldEvq52JiDRPnknOVataXoug7Nq1eP311zF9+nR07doVs2fPxlVXXWWpLIKINUjwMVBUVIS77roLL7/8MpYtW4Y+ffpoH+iV0FMivyiczp1iIeirZrog9uzgRURQ6ePYmTOnNzAuSgDZieK5KcLcWgzGyb31tODtTpT+rd1xJa02iJiTpyzHanDKC9HHO48wjHgkooDvpKSk4s0x/YxsEE484HYnQMt4OUfP6LqI7KhsblIaCoVw++23o0WLFrjiiivw3Xff4bHHHkN8vHvvXkIwoZD4Z5JlD+wYgwSfCdnZ2Rg+fDh+++03fPHFF2jSpEnpg1ativw3q3clUuipYdlLz8oEGTNvzC8iLwrTRGWU0TXePlKU2AOsbRPFkgFlxR9TD4j7JXLml9U9zdqh1WVZfYS8nPNn1ga7wk8u1+rcPkC86PNNV8fSED88lIB9gWYUJbQqurQ6MSvl2DlXFmN+uU9arFoFXHop+vTpgy+++AKXXnopduzYgcWLFyNN1GgRQUQhJPgM2Lt3Ly6++GLUqFEDn3/+OdLT00sfpBZ7QGnvSu1NOSn0lOiJPtEegpcizzfejrvz9mRY1y0QKfTUsAg/3qkuLIKNZWqLVb+F51y/iDo7aP0G2bbcjg4qsZKwwNIl8Ao2rTK9En2851mpqwCJ/FE+FnzUX5fAu/gLa0ooj6g06sycXJxFr/Pyy4iZHv+JviZNmuDzzz/H5Zdfjk6dOmH16tWoW7eu160jeKFVOl2BrogOX375Jdq3b48LLrgAa9asKS32Vq3SFntayBt52dlHz+oEa/lFImoyu+y5u70fnta+TKy/xUoulAsrc1oRYWZz57Quj5NiT4mWOdjZJ83OOgZmZVglFvfn4/nNTo1lsSz2wtu9sSzGYlamnX373EzJdmURF5e3vbGE3dV3rN5svfJ4OzMRi7Owdl5+X1DtP/8rPT0da9asQceOHdG+fXt89dVXHjeM4IYWbXEFivBpsGzZMowcORKPPPIIbr755tKLs7AKPSXqDhdgGzq32+GGw8UTmuwu5qJsS6xv06CBGwu1WFkoxWr6p511DeTtEewuYAecTvHzou8+fDh23xlmj5+Wr8i6LaiV+pRoRf3sdBdaaZ685VmN9lndtsFqhJAHx6J8SpKTXV5SlBNRc/PU5VldmEUug7ctQZnUzMt/kb7ExETMmjULTZs2Rbdu3bBgwQIMHjzY69YRhK8gwadAkiQ8+eSTePTRR7Fo0SIMGDAg8gC7Qk+N0msSmfapdT7LnD6WcpzCTwKP05Pyq9hT18Pqu9hdxE7k4nUitmpg9VdiIVrnJEqfkkf8WX30ZdsQNW3H7oIsdtJE3dho3Q2R6Bq8aZgiELW6J2C/Y2NJ8xS5/0wARF8oFMLEiRNxxhln4KqrrsIvv/yC22+/XX81dcI/UEqnK5Dg+4+ioiLccsstWLZsGTZu3Ig2bdpEHiBa7KmRvU0nh8l5RJ+TAsxq2Va8Fae9KBcQIfbU6Ik/Oz6N1rlW/QTRi7BonU8CTxsRj77a19Tr1kTUZbbZOi92xJfZojAiu1UrAo73HO4on1cROxYBKFKw2UFE6oOMlvBzaqNREds3OMV/og8ALrnkEmzatAn9+vXD/v378cwzz9AKngQBEnwAgLy8PFxzzTX4/vvvsWXLFtSvX//0l04LPTVyZ+3UELmR6OOdAGN1ONvOagdO47PonhNiT004fNoXsvouF7VondkcLbu+Bq/I8/PAdpDQiv6JHlMSKfzk505EtI/1d1oRmlEVtROJaONyYuNRkYTDxWW7kSnj105RIfratGmDzZs3o0+fPrjiiivw6quvIpkeFP9CET5XiHnBl5WVhYEDByIvLw+ffvopKitTK3nFnsjOlkX42cmFkkWfUy8IP6Vo8sDR7gIkMh0n9ztOiz2rA+tKscY7iMszaK7nJ/BkN7k9fYUQj3w/4uLEReWUiBZ+VkRfXJy1FTXdEH2OR/n8irLj8OL95JTYU5Yr/0anf5/daB/LyFvlyvwjdArR16BBA3z22We4+OKL0bdvX6xcuVJ7pXWCiBFCkiRJXjfCKw4cOIC+ffuibt26WLJkCcqVK1f8hdtRPTPUok9UXXY9InWUjqddViJ8vN5TSgpfmzjLZxV8AJsYU747vRB7Wui9z+1kR2VnF4832JnGYuZniBZ5bgwWikwxtbqVglt+sNb1dGoLLVHlsggxrd/lViY6bz08x3MLPt4OycvUBzOjFxHdc0LssW5q6jR+zJUfPbrkf0+cOIGhQ4di//79eO+991CzZk0PG0Yoyc7ORnp6Oo5PnIi0MmXEln3qFNKfeQbHjx+n/Rn/I2YjfL/++iu6d++Oiy66CLNnz0aCvInY3LmlDzbyntzoUGXvVcRKmyLJyfH3HDkH741osQdY30bBitjj3UpK1Dw/GRFrFqj9DD9G8rzyfVjr9WKPPT3xrPRfRb6fRZVrFH0zGhCwknbpt/TOqInyaaG+eaLfG07MHWQVkHFxzr0HlR2ulWick8ydWyL6ypUrh5UrV+L666/HBRdcgI8++ggNGjTwuIEE4T4xKfh27tyJHj164PLLL8fTTz9dvIqTltCTEb0GOS/yCyk7W7wnRCMfxXB4Sjxijxc/iT0l4bD9gW7Rg9xZWf7JHPaTr8ODUbud6OJYI6VOiL+4OPvTh5Vz+3iivla2X3B65c6Ymv/H01GKTP1UT44WUR5vGaLqNhpR82MHqBB9iYmJmDt3LiZOnIgLL7wQ69evR9OmTT1uIFECzeFzhZi7Itu3b0eXLl0wcuRINrGnx9Gjp/+cQushsLOTtRZOzSuwi9VN1mV84snw+BlWspqsbDZtBT+JPeUj4FafLl9jrU3I/ejriEDZxbnR3elhZ3NzGXWE2m55Vp8Hv87jZYFroMsn/a9tRC3WImNnU2ileLRyPu95yk3h/Zg+wUkoFMIzzzyDzMxMdO7cGd9//73XTSJkPN54/bHHHkO7du1Qvnx5VK1aFQMHDsSuXbsijsnLy8P48eNRqVIlpKamYvDgwfjrr79EXwlHiSnB9/XXX6Nbt2743//+h0ceecS62FMj2htiMVa/CDURL0QWcefkULdD0T2nxZ4SFl1sxcnNzbV3i0WOT+iV5ZToUwudaBV2vBw9etoX5EnNtXufrAg1o67UrvCzei5vsMnJqL+f9zw3xI5wcguWCdIs7dczVDvCTw+tBzsry9/X2QiVfxcKhfDoo4/if//7H7p27YqtW7d61DDCT2zcuBHjx4/H559/jg8//BAFBQXo1asXTpw4UXLMxIkT8c4772Dp0qXYuHEj/vzzTwwaNMjDVvMTM4u2bNmyBX379sWUKVNwyy23iBF6RsTF8c+5s9Kpisp3slMOrxiLi7O2AAsPPOUHTPDxCLC8POuZPHaFnijcWpsgCgaxXcOoq9Lq9qz6i2bnGaVn8tRpJ83T6rla3Y5Rm51clIX1WK55fE4qT56NRq2UD7g/GqDVifFOtrZSJ+8yyUFEsYiLzDPPPIMHH3wQ7733Hjp06OBBo4iSRVvuvNOZRVueeMLSoi1///03qlatio0bN6Jz5844fvw4qlSpgoULF2LIkCEAiqeGnXnmmdiyZQvOP/98oW13ipiYw7d161b07dsXU6dOxY033uis2FO+seWO1Ez42Rk9E7GnnYjJLWbl+5UoFnsyvFM4vBR6shnylmNlbQI/zQGMJtT+o9W5gKzBD6B018Xb5ZhtmO7EufJzzzqW5Yc5d1yLt/Bswi56w3Yv3zlWhaK6o+Ypx8o8PflB5ek8nVwExkkU8/lkJk6ciKSkJPTt2xfr169H27ZtPWoc4STZKmeiTJkyKGMiLo8fPw4AqPjfy2vr1q0oKChAjx49So5p1qwZ6tatGyjB52NPXAzbt29Hr169MHnyZGfFnlF6hV7uk91cfPlcOy8YES9GtUKwmEctDI+9Ir+IPXXZLLfEqtiTs45E3G67/pIR6owlP49F+BXea+ZG+qfS/uyOn1m1PycWY1TjVN8S2NROp7BzM+12KvImjlbPNatf62HkabPfU2n10PD9xo8fjwceeAC9evWiOX1eEgqJn78XCgEA6tSpg/T09JK/xx57zLAp4XAYt9xyCy644AI0b94cAHDo0CEkJSUhQxW8qVatGg4dOuTIJXGCqI7wyatx3nrrrZiYluas2GNB7mSdGPJmjdCJKIO33CiANbrnV7GnRmtA2I7YU5fNOwgsogy98+xuAUFYR90tKO+FXuKDnfRPO5E6Zd1WV8i00oXy1sUT6XMiKhi4LRpEL7zCUpeViJuMiJU91eeydIK8na7T0T6nNmdXceuttyI3Nxc9evTAxo0b0axZM1vlEf5i3759ESmdZtG98ePHY8eOHfj000+dbprrRK3g++WXX9C9e3eMHTsW91av7kwlVqNzrKmevPUYeRtRLshKcGjunmi8FHtKlE4yL0bnsfoCIspQwyvw/JCl5MSCME7ssSeyG9ESf6Lm+lkRfuoylFsw8GClbidFH0+ZAGs7GG9USoq7gstLtH6n0qisdogixCMrvHVZ6TxFTpbm7TifeAK4885SH9933304efIkunfvjk2bNuGMM84Q1ECCCSeixv+Vl5aWxjyHb8KECVi9ejU2bdqE2rVrl3xevXp15OfnIysrKyLK99dff6G6U/rCAaJS8P3555/o3r07hg8fjocffrg4tCs6usdrnFrHmwk/Kw+AUvTZPZ8AID665xexBzibvmbkO7DWy+NPWJmS4iRHj3rbDla/yqktRXm6n6wsIOG/txHv+lFmSQuAvcVdrET7EhL4RZlT++7xzhVkoQjxiEcR28GshuCXBzcv77QxFhaKK9dMTLGs6ml0vhrl3KWEBL7fwjuvT6tdeiNvrGU7ZQ86ou+RRx7ByZMn0aNHD3z22WeoWbOm+LoJXyJJEm666SasWLECH3/8MRo0aBDxfdu2bZGYmIj169dj8ODBAIBdu3Zh7969gVrwJ+pW6czKykLnzp1x7rnnYu7cucVbL+ghi0B1x2QUeRMh9PSwO8ytrNOLZed4zzPyhtTXgNVzEnycEwu18B7H+s5zQ+xZFYhW1iHQOl+NUTSP11ew6lsYCSuv/FfeKTlaqLtBEWXqkaAz9Ggm/njrsbO4C4tg0vodTi5IzLPSp+gulFnwieoYlQ+TF6NmRoLJahTTTseo17mYrXjFK2J5RtzS0thTLFjLdaoT1RB9kiRh1KhR+Pbbb7Fp0yakp6c7UzcBQLFK5333IU1wykJ2Xh7SH3mEaZXOG2+8EQsXLsSqVavQtGnTks/T09NRtmxZAMC4cePw7rvvYv78+UhLS8NNN90EANi8ebPQdjtJVAm+vLw89O7dG+XLl8fKlSuRoOdFKHnqKePvlV6Pkx4PYG+oXas+t0WfVcHHcq18LvicEnta2F1x3ItFKeRz7by7eaajqM8RcayyXq99FTN4gio8ZYrOQpcx66q13td2xsVE70Jj1n4nRZ9dgWjnOCbR58TEZh6B5USahFo02Ulbzc21F0mUOxmepY1FiD69jlhkp2ulTFY0BB8AFBQUYODAgThx4gTef/99JHu9NG4UUyL4HnjAGcH30ENMgk8vMDRv3jyMHDkSQLG+mDRpEhYtWoRTp06hd+/emDlzZqBSOqNG8BUVFeHyyy/HwYMHsX79eqSYvQXNhJ4SpWfB4vGI8HZYPRKzulhFmLocK/k/vIKPtQ4n5uUxHOdlKqcTfg9gffN1QNwUEiciaXpYjfKZiUonfBqRiBZ8RsfZiQQC5mJJTVqaPbEn12cnxTElhb/dfhB9gY/yyTgl+KwsV2pHsKnbZrWcnBxr51oRfl5F8FwUfSdOnECPHj1Qs2ZNvPnmm4iPjxdfN+EbwRcrRMVKHpIkYfz48di5cydWr17tnNgDjNcXtzLxVM9rMButEzHJ1Wid/iBOtBftzQgk6GIP4DM3o+XtecrJzj79x+tg89Sl3DqAdUE7ohjldeO1MSv3NDfXerRZWV9urvVuLj/f+fm1TmQtOjE45XucfFjlC5+QwG/MWjeNtxxlR2ulDSznKDthK3sDun0cD088oflxuXLlsHr1avz444+YMGECoiQu4l9Eb8ngxCIwUUBUXJEnnngC77zzDt5//31UqlTJ+GBWsWdmMEovx6rQY+loedulRm/VLyceBjc2onIJJ7ZhEFme02JPzxlmMR2eBV30kP0LNSJFn5bAi6V3hFN+ltI/NBq3snIvlefw7Jln1N3yCD91OVZEn9EzrvZV/C68iuDzyId8Ad1yBGUDMTNuM8NhKUPP+K0KPyVGDzBP+QEWfZUqVcIHH3yAt99+G08++aT4egnCZQK/SufixYsxdepUbNq0CXXr1jU+mEfssZKQcLpTZAkb83bE2dn2c5hycqxNWmFZNs6K1xYluDlvT4kbGUpmaC3MZmUFcHWWDss0FN4F52RiZT8+r0QrS7KC3A3ZFXtKzFbiZK3LqLszKsPK6prKFTzN7hfrap+s7WAtT+jWD8nJ/lKv6oseDvO3j0W0Afbm++mVwdLZ8naUsi/Deg5r+aJX5XRxNde6deti9erV6NKlC+rXr49hw4a5Um/M4eC2DMRpAu2tf/rppxgzZgyWLl2K1q1b6x/olNBTYyT87Hg48gvCykIqyjJErcsdFJH30EOR/+a4vyzxPeUx/96nPUroF7HHssq4lfS2vDx76w3ExVmbfsLqa/CsY6Bsk8/8jqhBvh8JCXxjUCxdjpbws5plJ3eVPGJReZ4ZcXHFaaGiN1AXLfpY4Nqiwa+oHU6RD7bSiKx2lsoOnGdkjXV7CatbOLgp+g4fLn2sKHTm8uGJJ9CmTRssWbIEl19+OWrVqoVOnTqJq5cgXCQgnntpdu/ejUsvvRRPP/00+vbtq3+gW2JPiVL4iR7KZhF9ogWZ3wTe449H/pvl3jk82lP+EdUL47+XVnnFR3/fMU3zXDcje3q+hxWxp5y+oi6PBaXfYiVqp3eOFZHnNjfeGPlvFuc7EQXmB2nc+Gkvli/1megMKp4uQj5WK/Jnt2yg2K4SEuwtUpyfb218zExwqa8nj/ASLfr0UPrbublsdcaDwZnXcuT9OgpvJv7sTP60mqKgnKtnpbMEIs9jybdmqYf1WL39+mT+/FP7eD3CYeft5z8h2BfAUxdcgEsvvhiff/UVGjdu7Gy9sQZF+FzBZ548G//88w/69euH6667DmPHjtU/cNKk0/9vtImmU16N/FJgHcpmHca2mrvE4wnIZckvKLeZPj2yHVFAlSdvj/zgvxffvlvMByWcSOOUTdSK76G33gBLWUZTT3jbIpu06FRQO9G7/1ZxBuDJ+kCluP2GfyM/0DCQp16t4kpbeNI+jY5nqYNl03Wj83mjdjLqblZUyqYIrIg5YWildaofsqSk0se44biZTaxUYrVjUHaavFE/dadpdZQtIaG4rPx89uNFR/v27j19fIC4vnVr/JqdjX49e+LzrVvN14sgCJ8RuG0Z8vPz0bt3b1SsWBFLly5FnN7LQCn2tKhZU2xUj+VYPeFnpeOTvRjec428F72ynNjoSS5XFnY87VHig+heKVgcApNjlCLQqTl7VlYEZ22LVlmsmUis/oUsEnh9HtbjjW7R0KFspi5y4VirET47xzyzrI7poSK6Ri2SkqyLNS3MyjI6141darzYalSkDXthn64fpz6WtTNh6Tj1ymLpOFnboSyLVfTx1qE87vff9Y8L4Ps9LEm4fPVqHK1UCWs/+giJiWyLuxHalGzLMHWqM9sy3HMPbcugIFCCT5Ik3HDDDfjyyy/x6aefoly5ctoHmok9oHTnVb++9nFOeDN2Vi6QYd0BWQul98LaBhGi7//+j71ekauABVDwAYiw0V03Pmd6uKhl3PXe67xZTHI5VhZv1WuDXiSPR/TxCr6hQ7W/j2WHWikEWR9VXrGnRGQmu1ZZorpBrXI82kbU9bKE2SfrcV4IQ6NjRXecAH/naUU08gg/ls5z587i/7I8VAEUfSfy83HBm2/i/H79MGvOHN1NuwlzSgTf4487I/juuosEn4JAxdSff/55rFq1Cl999ZVYsQdEjkTVr+/csDVQ7LVWrMh3jrouq/lKyjKcRCnunKrfZy8CAOIm+6tstOnMmyP+rRaAIvfsUmcLWZ2uYmdRPnV2kFnKpqjMo379iv8ran2jaGXikH0RhvH82qaGx9sRe0Ckv2pHsCnLSk21tqiLlm0YlSN6nl44zJad72aqKDNur9ap7I+dfheIWJxFWY6VjlfdebMIxqQkvhRPZfnAaYHnJW7M5/uPcklJePuSS9B+4UKc3bIlbrrpJlfqJQi7BEbwvf/++7j77ruxfv161KljnmZki59/Pv3/zZoZH8vrMcjeDI9gEyGQ1JtHifZoZ84sXY9ZO+wcE2QEiMKmM28ueel+N/YFpnN4/QfejB8ldhdkAYr9Qp42WKlHFniECk7H/KZeuyL+bSYA9dASe2rUXafV7iI/39riLMq5fax12xF9QVkJtgCJbFE+UbDYaErK6RumvpBWNjvkmSANWBd+cpvlB4K3M5bn6rHCW8+OHafr0aOw0PwBYTnGRTHHSt20NKwYMAA9br8dTZo0Qe/evb1uUrAJhcTfY4q8liIQKZ2//PILzj33XDz//PO4+uqr9Q+0Gt1jPUYp/qwKPS3sbiBlJBpFTkxRHi8LPNa6RB/jx+ge4Eg6J88xeuKPV+xpHW9nQRbW87XKEJlx1Lkzm+PN8mhEdUon63FmhvVfGbM2t2KqkkXwKZG7Cp5EB606eLtCuV7e81jvdThsfqybNsp6HLPgczNlk6XzU27Qbrc+vXpFzPdj6Qy1OmFe4alXz7Ztkf+O8Xf+az/8gP9t2oSt27ahYcOGrtYdDZSkdD7xBNLKlhVb9smTSL/zTkrpVOB7wZebm4uOHTuiS5cueO45g3lMTos9Jc2bmx8jw+rB2Nk8yur5PN7K/Pnmx7gZ3fNh5++12FMjiz8RYs+sap7BZLenmXTuHPlvEnzuCz4leuKPR+zpdRNmws+sDitz9FjOU6J3v9VdA9mpB4JPidYeGjw4OVFar0MUMeKmrkMt8tTE+Hv/fx99hE25udj81VdIobkAXJQIvmnTnBF8t99Ogk+BrwWfJEnIzMzEr7/+io8++ghJem9rN8We8hijzd55h6plrC7GYvU8ow5qzpzT/2/2e7wa6Tt61PwYp5HnY/pJ8Km+3zJytmmRPMLQzoIsVs9nFX0dOxp/LyJywlKOyGOA6BF8amZtbiVE7CnREn48dfDO09M7x4jkZOPuIOYFH+txToo+JTyjTlaWM7YyZ09uk4gRNzWfflr8X7+++wFfvP/z09PRbdkyNOrUCfNfe40WceGABJ+7+Hqy1Isvvoi1a9fim2++0Rd7bqLuKOWRL6Xws9JOZUfHurm6uj5Rm0YpRZ66DjtY6fB90JkzcfSosedmdYEegXSYfz0AfeHn5vw+oNi34h1wNlpb4Jxziv/r1iIVvlsMI8CMO+eLkv+fu+M8w2NZAwHKeX5Wui9lt8haJ+vUaLmrCMrcPBmhi8C4vXiLCJR7BBq9g3g6U9m4rF6LpCT+zttsfqEs9FgRNVdP6xgtH8Bn7/+k48extGNHnLNiBWbPno0bbrjB6yYFD9p43RV8K/i+/PJL3HbbbXjvvfdQ02jT9FGjIv+t5Vw7EDGJQBZ+7dub16NErwNkEX16Xgzvgiyvv85+rB52FlnJyjr9/z5M1xCC/NJSe3hO2aoBsvADisWflUFl5Tk8C7wB9hdzUdYnizwegirUXF0MQyScjv3o5sXiT0v4WelmCguL/6xkWsm2yVOv0bgbr8Bzc5VNkXX5fvEWO+XI6C0AYwW5TisLtMi/Sb55PMJRKfyMRF5+vphBXyNkP6ByZf2BXhmWRVxcXuilZrlyWNKtG/rdcgvOOecctOf1BQnCBXyZ0pmdnY02bdrg+uuvxx133KF/oFrsacESyhXhZCs76U6djI+1uhgLa6dr5t288gp7mSx1suTwK4WdFqyds19Foah0ThH2ymLPCntdf/U88+Nh7i8Z+Skip5YYTaE1c1rtpsnJt9DttE/XF8MAIm+43jMlIlXO5Pu5O86zJPa0rivLfdPr8ngFUUqK/ZRNO/aqrNvtBV5cT+t0y1ZZjhG16qeZ8DP6PTxtWLuW7T0vKrVThC8g0l8QyBPffYc5hw5h2w8/oHz58q7WHURKUjqfecaZlM6JEymlU4EvBV9mZiYOHDiAtWvXIk7vgWURe0DpN656rptosadELfysLsZiZXRN/YZXijwZp8SeukN3ewUuPy7Wwnqcmb0C9gWfjr0aCT+eSKCyeNapJWZNbthQjNPK40Ab3S5RDjTrcZ4LPi3i4lwRfMo6FuztZl4frM/TNOvyeFbZNLMRkYLPrGuJentlsUMWexXRHhbxyVqXjLJT5emMjepYuzby304O/ip9Ajf9AZd9gbAkoeeHH6LOhRdivojsqSinRPA995wzgu/mm0nwKfBdSufixYuxevVqbN++XV/ssaL1FlSLEbPUSTsbqMppEl27Wjs/Odl6TlJuLrB4sbV6WZE7bqMRO7f31PNryqfVCCCvvdqg++vFgyhK4Wcl5bOwkH9Kita0Et5VrkWlpAVtbpVnuHWhFOl4mXU3ANAXfqw2oE69ZB1Tk+2adaVNs7JE2Kyo2+DbtE5RKZssF0rE3EKtvf/svpes7senleqpFnqs8KR2mkXxRODD1M64UAivXnABWq5ciSVLlmDYsGGu1U0QZvhK8P3xxx+44YYbMH/+fNSqVUv/QJboHutqiMqOycpKl2YdcH5+cQfbqxdbeXpvXJ65ea++an+0zuh7+ZqJEnM+HKnzLXbtlYHur1wFAHhn+Bvc5yqnlFj1m2g7I8IMWfgBp8WfFbGSm1vc1fEmUSjFkd6rhnc6NREQrHRuSiOJi7PWOSo3Y7ci/JYtMzZ0u3P1WP0Ctzdbd1n01SpXDi936IBrr7sO559/PurVq+da3YGFFm1xBd+kdIbDYXTr1g1nnnkmXnzxRf0DraZyqjGK3MmOtNVUTqPv9YQfq7ei50G8+mrkv0UKPr3ROj9uqBpN6Zxa6Nkkq80C3HbLIvzsTiepWtX+dgluLj8f9SlygL/mPDGk4i3J7mtejgJ1F8grzkRsjk42i5i2Web3lV5ZrMJv2bLT/+8H38Dtffc8cP6v37wZuzIy8NEnn9jPVotSSlI6n3/emZTOm26ilE4FvonwzZo1C/v27cO7775rvzC7OS5ZWacdZ9FRFHW0j3dYWj1srBZ6gP0OPTfX/GXlpthjxa+dqhv788kv3sJCY5u1MEgxYLF+xI/FvzIaEK9a1fx8gmBhWNp7AMAk/LS6QNadbSjl1wP8to2DqPaoI39aGHWyZqmeSqEnErspmyxRPpG4HOUDgKfatUOLt9/Giy++iBtvvNHVugMHRfhcwReC7/fff8ddd92FlStXoly5cvoHikzlZEXu2NROtJXonoycQ3/JJeztUKIl8uyg7rz9sOehEqMHl3dbB6s4lD7pCA6lfaqFH8/8PvVUErXQE7UZOksb7B5DCEawMy8LP6C0+GPp2vSEXywIPd/O44sFtOb7sXayauFnJPTMUjf1vle+V8weJFGCTsQ8PV4fISPDuqBVvG9TExPx8vnnY+Btt6Ffv36oX7++tTIJQhCep3RKkoRevXqhYcOGmD1be1NoAOJSOQH7qxxmZNgTfMrvhgwxLkfJwoXi0jGMOjRRyy+bodf5qtvm05QNTVvTElhuRPhYjrFrt4rvlwxZat4WDfQyK0QIPhErdNrNrLZSVsynx7EcY3N1xSXZfW0tdqz3eAbJbt3eSgQgu7W9KqiVgZD5851P2xSxXRPrMQH3E8Zu3Yrf69bFBxs2IBQKuV6/nylJ6Zw1y5mUznHjKKVTgecRvrlz52Lnzp1Yvny58YEsUQvR0T09Dh82bgfPhGp5JE5P+C1cyF6WGdnZ5h2sG9E9+V76tIO2hfolpLRJp6OEZradlVVsm1bbobDrYcsuB8Au/KKpvxW5EAdFFN1hWNIKAMAKXMZ1Xm6u9/dIVNRN5CIybm4KX4Lf0jr9yPz5xf+1GsWTOXLE2FdgWeCFJcrHcszRo4FdwAUAprVsieYbNmDu3LkYM2aMq3UThBJPBd9ff/2F2267DQsXLjRW4JepXtJaI05ubbCu1Q4eB9oo114p+rSEnpVRu+zs0/8vIsWCZ9TOjaWZg4TW9cjIcG+gQrY9gSmfZsLPrexgt5zPoI0/2EL+sX7IZYyLE9KOy2BN+OlhJnzcWqmTRYB5YbuepHWy2C2LeBS1RUNennGI2KgO1jbIQs8uSn/Bbez6Cx6IORbSExMxu0ULXDVxIgYMGIBq1ap53ST/QXP4XMFTwXf77bejZ8+e6Nevn/3C1J2FU9EULcGmFH68yyUrERXNs9ppi1iSGYiNxVpEOcFZWWybrTuFINsdtuzyEtEnSuR53V97Xb9v0LsQbgtBZTts1i1a+Knx0nbs1h346J1clht2y9pugbZbCj2xx7PNgpbPYBZ9sxvl4/EZArxNAwD0q1ED3Q8cwB0TJ2KByKytaCEUEn9PKH22FJ4Jvo0bN2LFihX46aefjA9UR/e0ELVhtd0oiry6p1600Y4YNOtY8/KMXzwio3tubbQedI/b6ovdrcELdZ1GtstAkIWeXGfQTc5V1KOybgpAQdFH0cKPbNdhRAhDvQvmlv2qbderVNX8fHfr9ctm7DzHCeSZs87CWW+9hWs3bkSXLl1crZsgAI8EX35+Pm688UZMmTIFtWvX1j+QReyxIiKNzUywyYIxO5vfcbYiBpWjcna9bb9ttE6cRrlNCKBtvyJSPoHTNuXipDu3N6cm83MIrQvrtBMt15mSwrdsrANNsApvRM1OfSKjd55EAkWiFlpaAlCEGNMrg/VG2mmDXhRO7uft+g1mUT6/bsbuAXVSUjC5aVPcOGYMtv34IxITE71ukn+glE5X8OSKPPfcc4iLi8P//vc/+4VZmf+UlXX6T+8Yu2RnRwoykdE9ddkiVtVUorw+fp+HF+R0TtayWOxXNALt165TKMqpdOKdQphAF1wIsu0aXU6/rmdSAA8cWxGdBmuH4bXqHTmS73ieft2KX+Tk+0nUitc8xwnk5kaNEMrKwrPPPut63QTheoTvr7/+wsMPP4y3337beIRDZHTPCNZN1q12jHLnavel4ORkajc3WmeFHEU2RG247rT9xhh0uQRjN9IS8BUe3Vr8RSbw8/j8htlvM4tQi7g2TvkQ+fnm/oOoFTtZ8Wk0MDEuDjPOOguXTJmCzMxMVFVvSBurUITPFVy/IpMnT0aPHj3QtWtX+4U5scm61siUneicfL46YsJSvnyOUUdtJSVDWa7bq3LFykPoxcqGTo6semErAnE7bZSIHuz62dGqYQCPfptIJSpqA0M/j/AcOWLcd9sZDPTiveB2ho1gulatiu5VqmDyvfe6XjcR27ga4fv++++xYMECbN++3fhAt6J7gH5nxrPlAo+oZJnfJ3JunjxiZqdTFhm5Y0EpCo3Ei9vikXULBVZElaVlfwK3XojAgzl+ZojytfzssxH+xe3oWxDxZHuGaI4Yqhk5Unu1TtFiTK88URE8p6J8Rn5ExYquT115slkztFywAONvvhnNmzd3tW5fQhE+V3DNk5ckCZMmTcK4cePQuHFj+wW6tXfZkSOn/1+Uk6t0mpWja050zmadp6jO1co8QT38+qBqbaGgRvSKmiJsWJm27IQNA1hxJdsG7ARBeIuvF1uJZpHmZlqn2pewuxH70aPuD/wawSrmWHwJkRu7M9K4qAg3VK+O2/73P7z/0Ueu1k3ELq49wWvXrsXWrVuxZMkS4wO7dSv9mdqJ9mojYK3ohplDbpQukZ1t/D3vRuvqTt7rDlrdEftVyIlE/s1aNurm/npKlDYqOkJnZUVaDmLBZAhGBG2+7kd8LcL8iBP79hkhahVYJ2145Ejg//5PbJk8g9CionN65VjxJ3w6lw8AHmjYEI0+/xxr165Fr169vG6Ot1CEzxVcUQSSJOG+++7DXXfdhQoVKvAXoH7Q5Q7TyIFmiYxYjZ6Icprtzg1UtsUpWDrwnBxn26CFnx9mvRe6lh17JQKVdmNmx2Z2amCDZk6sXiqcn28vwYnILRMc2vfvMqwQvgm7aBtmSR2lbRc8RMQm7B5uL1KCnbRNM1jLcHt1cA+EYYXERNxZqxbuu/129OzZEyHaKJxwGFcE3zvvvIN9+/Zh/PjxxgdqRfeMcHqDajNBePRo8X/d3mg9J6e407Q7wmml89Z6GYjsKP3s6Tsxf0/rxea2CDSzY5fQuvWiNnMXBTnAPsKrTd9N8HMX5gS+FoZ+SxFNSor0C3ht2Ik9+WS8StvUE5hmD5KPo3esjK9TB099+SVWr16NAQMGeN0c76AInys4fkXC4TDuv/9+3H333UgRMbPdqFOUVyg8etQ88iVy3z0rK1VZEYM5OezRNBEdt3o1TzvRRHr42AmSHduEZX8xgjAlLs7TFHayY3OY9+Pzq3p0emUe2YDs2LGVvY15/AozWN5H8nvNrfeNj/flKxcfj7tr1cL9d9yBsI8GrVxH2YGK/CMicPyKLF++HP/88w+uv/564wN5o3ss2BErVhxpZT0i0jWB052x6LRJrZeK+np5PQdQj1h7kN3eRsOFehIS/GtehAOY3WxRTr5sWC4ZF2tVol4HovBT0Msybm/PALhjx8nJztmx0hCt+BV2psE48V6JApF0Q61aOHLgAN566y2vm0JEOY6+FSVJwiOPPIJ77rkHySI6QpaH2+gYubMRMVJn1PFlZxd/n5pqrez8fGMPQcTKm6I63lhJ52TFjReQ+t45NfKsrMfg+V1xwwdMxbkp8EhM+hD1TREZnTaqT0A96rRFt+yL7NiH2LVjdVonT32FhfbTVI1Enqh5eiI2YheZsslalgdposnx8binZk08fN99GDx4cGzO5aOUTldw9IqsXbsWBw8exKhRo4wPdCK6Z4RZxESUI6I3gqbX2TsRyVNCm61bx68jiYWFzttyYaFl23Qj4KKsgyKHAcKtmyaoDqNiRETM/GjHFAlkwM2bxlKHXlpntPoXfn03czCqZk38uW8fPvzwQ6+bQkQxjvZO06dPx4QJE1C2bFn7hTm5STXPioV6ZRh9L3eyWhE/3g6Y54Wi1/GylOEHbyNacfIFxWvLZvDYsgI3/B5W/LbwS1QhclEMdSRDdFuU33OU75Yti1r8xItFVFjr9GQDdpGwROdSUyPt0IlINu+zovQzzBZvMYu+Kb93WtzFSJSvbHw8JtSogemPPhqbWzRQhM8VHHuVffvtt9i8eTMWLVpkfKDI6J4IR1pOxwTEr1qYk3PaUdYTena805wcd43cyXROt0cJtfBqywSAzZbNXvQstmzVGdERfjzOMa9TqlW2X9d3IGxiV/yxlm9QttNBRyuY+epRA+tAgtv78VlBKwXUTDjyDF4Y2bITET0WP4MlZVPUvn128IOfAQAZGRhfqxae2LIF27ZtQ+vWrb1uERGFOPa0PfXUUxg1ahQqV65svzA3Q/ZOblINnF4CXxRe7IHHg/LFYNS5+nE0hmcvoLQ0f6eWiI78yfxnf06IMb+ktYlAz7zZzZ7hwLw8/QL9bJtmyEYg/waRAlDDWXbK5siWS460VxEQPfbshC0DxWmdU6eKKxuI9DX8tiWCuj0B9DUqAxhVoQKmT52K19980+sWuQtF+FzBkVfQ4cOHsXTpUuzYscP4wLZttT+34pCKiIjooew8zBbIcHIhArlDtyPynEzndHqPPj+Tna1vgx7vb1cKHntmQKQj65VTbEWcGpm278xe2SCW/a38jBPRv4QER16GfhZ56jRM+0LORXjt2W/78ck4Fck2MzzWtE4/DCjriUu1v+FLQ+Xj5qpV0WLFCjzz99+oUqWK180hogxHXkcLFixAp06d0LhxY2sFqB9k2QHxg+PMOIfJEiybrfuB7Oyo6FxdI1btmRE9s/ZD6pq6bTFh9vKP1LoxTq+saYRWGpzTqZ8W8Es3rYUVe/b1xuosiLZnlnl8VgSmun08aZ2iEeFviErrZPU3/BZ1tECT5GRckJGBBQsW4LbbbvO6Oe4RCom/d7G42qkJwp8OSZIwZ84cjB07VkyBytFmvY3AnVzQRQ8r++PxbsbEW4foB0brejuR8x7wTpoLFnsWhdP2DOCduz7jbNRp/JKyqbU6ol/aBgDxKPK6Cafx88Wy2Y4BeMfL6oXh1S1i1R5FiHe2ITyoL1Bqqns30mxEy+6Ne+ABvuOd2vOXBzf8DZ9nMIxNS8Oc55+HJEleN8U9aON1VxDeq3388cfIysrCwIEDjQ/US+fkRSuVTityImL0V6+jkDtIEcOgXnW2ynpFPSj0wPGjNYjhdiTQwaif1w6x1/UrCXTURAu/RARdjPrx2JMTC67o1R/4qBzgzcItSvxizwDTIkOWsepz2I2oyfVmZJgLuyiI3rFyWUYGJvz0EzZu3IiuXbt63RwiihD+BL300kvIzMxEmTJlRBfNjtMjRHpYHR3LzS32BozOFeGpKstQjuY5IfYI66gHFrTs2Q3HIytLyACEV0EgPwahYg6vb4JD9XplT2TPNhChtqPJns36d1F7uMro+Rw8i6OZ4fPoHQtl4uIwMiMDL730ktdNcQ8fRPg2bdqEAQMGoGbNmgiFQli5cmXE95Ik4YEHHkCNGjVQtmxZ9OjRA3v27BF4EZxHqHd/4sQJrFq1CiNGjBBToKiHV+7YnO7cZLTqUqdz5uae/hOBkXGrO1q7TjyJwtK4+aLJzhZzL1nbbKGupCT3/SFyhgOCVzcqIcGW0+92k73WFoQBSjvSu1EiQqxGZcgpqLw2LdLvMEKkzyEanwvDaypUwMrly3HixAmvmxIznDhxAq1atcILL7yg+f2TTz6J//u//8OLL76IL774AuXKlUPv3r2R58fFoHQQ+gpZvXo16tWrhxYtWhgfKCqdE+B/cNUdD2vamlk9RnvgKOtwq6MlYgerNm2nLp063FxoRRaVfiPwqXRuI99E2Xh45zrzojRShrqUzTKybxFplOGw+TMUM3vxBRlWm2ZZAIYFPZt+4AHgoYeK/98J30Odaumk7xFDaZ0ty5ZF3bJlsWbNGgwdOtTr5jiPD7Zl6Nu3L/r27av5nSRJePbZZ3Hffffh0ksvBQC8+uqrqFatGlauXInhw4fbbq4bCL3CS5YswbBhwxAK0uo4boxA5eQYj6qZea1m3/t5JM2MGOnAXcUtm1aUn5TkvBMq1+FGXYSHuHmjDeqIBZt2WlsHEidGbLy0aacjembvG5bsKZ9H3NwmFApheEoKlrz6qtdNCTzZ2dkRf6dOneIu47fffsOhQ4fQo0ePks/S09Nx3nnnYcuWLSKb6yjCxsezs7Px7rvvYqqozT692Gxd2WGJjJL4YaI1SyhEpPhyWshZmZvph20Q3MYpm/4PPd/FzKdh8alI1BEAIg1B9GbVqjqcNrmg2jRr9JL1uCLEs60+69f98+ziok0bYrYtgt73fp73zxoJtBoxtLMuBIcPMqxCBTy2di2ys7ORFu2+i4MRvjp16kR8PHnyZEyZMoWrqEOHDgEAqlWrFvF5tWrVSr4LAsIE35o1a9C0aVM0a9bM+EC30zmtCkdlhyZgc2rbGAk8v3W4Rni5WaqoBXysdr5ej2I6LP5E4McUTcJn+HDvPSPIpl0g6MLQyKbNfpuotFAzgpY9pIXXm7Vz+CDNADRJSMC7774bmJRBP7Jv374IwezpgpIeI+xVtHr1alxyySXmB6oNPggjF2aOslNOh5yG4SdBZ7Y4TCyg1WmzbA3iJmY2mZNzus0+3HSdBbejJcnJ+ppd+Vh49riyVqx1nNeDEVbxqfiLFpEXaLvWsmmR4oilLCv1qY3HS7vOzTW//m7OrTOqS+l/pKW5u0K7Q/QvWxbvr1oV/YLPwQhfWlqa7Qhp9erVAQB//fUXatSoUfL5X3/9hdatW9sq202EvJYKCwvx3nvv4d133+U/2eyh9FskQnSURN25u7Goi1VycvwlPv2ClmNhZNdGduOF4+1y5C852T2HWIQo9IXT6zRaP4zFgfYTCQmn8wk9iPa4add2iVmb1vrca7s2i+DZteunnwZuvZX9eLUPIkLQmaWOstbD6oNEgdgDgD4pKRj2/vsIh8OIi9oHFb5YtMWIBg0aoHr16li/fn2JwMvOzsYXX3yBcePGCavHaYS8nrZs2YKEhAS0a9fO+MDGjfkL14oapaaK66TtjJ6J2nDdSOSJMFpeL8StSF00d2BG6F1fUSvG2kHZNhO7/uDJ75iL9fPKlQkJsWuKXOhdpIQEX0XXAEQanIPiz892XVgY3DmDrqJl1ykpxZG5WLDrwkL/rd7jlg/i85U/O5Yti5OHD+O7775DmzZtvG5OVJOTk4Off/655N+//fYbtm3bhooVK6Ju3bq45ZZb8Mgjj6Bx48Zo0KAB7r//ftSsWRMDBw70rtGcCBF8q1evRr9+/RAfHy+iOHOU6WgyWs6yCMfYrIxwOFKwqef76b0w5HO8HBL288TrWITVrkXA8mwY2TUDfnOGgxJ9CSR6F9cPDrPaEG06t2TXMURQ7NqqTQfRD/G5SBNJYiiEHikpeO+996Jb8Pkgwvf111+jW7duJf++9b+oeGZmJubPn4877rgDJ06cwNixY5GVlYVOnTrh/fffR7LfXggGCHnK33//fdxzzz0iirKO1oiQF4utyB2oVt1OpGuyGnWszK+LNryya7UgNLJrBXLfZzeyYLcPlesnZ9hj9G6AVxGF5OTTfSZnhCQ52b5d292rj+zaJ7ht12ZR9LS003Wb2bUb+/HpQX4IN32SkvDq0qXe+9hRTteuXSFJku73oVAIDz30EB6S97UMILZfG4cOHcKOHTvQvXt3Ee0Ri5sbUquRO1UvRgLVHbqokZMYGVXzPXppzm6g4yx4OchFaWsBROumiXCWedJLGdLjYsGufb+RO+vCJ35YqVPvQro5wKFl108/Ddxwg3ttkOH1RWIoesdKn3LlMG77dmRlZSEjI8Pr5jiDDyJ8sYBtwbdu3Tq0adMGlStXNj7Qyvw9Paxux6B2lL0OxZoN07IarJ8XeiHcwQPb9uLxUfpTvnZSCX7UN9QDJ9nLN4L880VsnxYEmPfiE43IlTpZBhicGtxgQVQnzSrEguiL+Fxk1klMRLPUVKxbtw5DhgzxujlEgLH9yvjwww/Rs2dPEW1xH3XnpE5XszsH0OntGgDzjsrHHRnhIGa2HRBI1MUwWjff6wiOIIzs2q8RN9Z0VL+231f4zbatjiDw+CKEZfomJOD999+PXsEXCom3n1BIbHlRgK0rLEkS1q1bF1zBpyY3N/LPDLeWc9ZrV5BTNenl4C48du0hycmn50q55TSScxogZANxKLzcBRsdKReItG0iALh5o5KSHLdtYfjhXeL1Vhou0zclBe+vWmU4x4wgzLAV4du1axf++ecfdOzYUVR7/IXNVQpt1xvLooh3cjfrtVK+KETMe/Pji8esTbm5kcd4GP3zu29D+Bi18fgs+ke2TVjGim2LTFVVwuqP+Dw10hZWFpsR6JN0TE7GkYMHsXv3bjRt2pS/LX6H5vC5gi3Bt2HDBnTs2NF8WVK35+85UY5o8adMn/B51AUA/8MThN9kd8Uw0QuleCUeBdu20cC43FUEff6RHRx7DykL9uNAhNPIxiWn0rssAMm2ybYdw23bdur9zSIKnRKOAfZJkgF0TEzEhg0bSPDxlElEYFvwKfet0IXlQRMZZXD6hSD/nnDYervNrolfjTUInaZbsArGWLNtFdEW6RC11pKjGDWCRZF4sbqw6AiFC5uvk217ANm2NduePx8YOdL4GKP3u18jeDHik3RLTMSGd9/FDV6stkpEBZYFnyRJ+Pjjj/G///1PTEuMHlovUs5YNlwH9KMj6peKulP2Y8cJ6N8Hv7Y3CPjNtlmxGPkzc4L9HAExik76ud3CYf2xXu2nx4vSKBMSLDuJ+fnFW54FEbLt/xBt2zxbgTiBHdsmvyQwdEtKwoxNmyBJEkLRtiAJRfhcwXI3/8MPP+DEiRNo3769yPZoo3zY1ULMTw6zsp1JSd7PKTEyeJon6A+CaNspKdj48p6Ir/3UVCO0nF5aRMMGZstN+hWlwTI4yEGwb71bERX2zSqqWCNpVrdTkHHCtkVFAc1s22u/RI9oW/GTNSIaF8eUudM+KQk5x4/jxx9/xNlnny2ggUSsYVnwbdiwAZ06dUKS2dukVi2rVZRG66HQ6tDM0tHcmAPgdKcarXviEKfRu39288js2v9/7fKrE6zskmIqcuE3lDdC3V/5SQxqOMh+tW3g9GWNBtv2bC8+u6j9HqV9+9W2Aef9ElH79fk1fdRDkkIhXJCSgg0bNkSf4KMInyvYEnxM8/fcRivVUsbPb3G7+HXUjhBLOOwL2/bDoxQVkYtYRe/mee0sp6TAB6ZNtu0XrETdvLRtr9NLtSDfRBjdJAkb3n0XEyZM8LopRACxJPjC4TA2btyIO++8U3R7nEXtKHs1497uZul5ee6OXvh9pMTv7XMDLRFo1b59uApetC2OQeigdaNjwGH02r6t7rvtVnlRgd5N5rFvu4Lu7beBSy6xfr4ZbvsmMUa3MmUw/ZNPEA6HERdN15kifK5gqUvevn07CgoK0LZtW9HtcRetjjY5mX3BFqvf8xADzo5r+FDIOIqeffuclBRzZ5GcyYBhx1FV2mxycnE5AU5XD8AjqEt+PkUfhaNedAXwr30rUy394Jv4PfVT8Dy+tomJyD9+HN9//z1atWoloIFELGHJbfr000/RoUMHJJh5XSLn77lFXl7kg+fm29nrdCYi+vHSvjXwQ2ooEUC0DMeHTjLZN1ECz6CHV/ZtJFDIP/GcxFAIHcuVw6effhpdgo8ifK5gSfB98cUXOP/880W3xRivojPqUSyRDrLVDpQMmRCFk/atAUv0jiAsITvJslPtgQBksW9R6Y6UNhmFGIlCt+2bBJ4vOa+wEF988QXGjx/vdVPEQYLPFSwLviuuuEJ0W+zjxeqbPPktcgfqF0P0SzuMEJk24udcKr+km9qxbw2sRDjIiSWE4EKUhCJ4BABvFksRbd+i/BNRaZZ+T9cEPPFPzktKwpKPPxZXLxEzcLtWR48exZ49e9j238vL87eTLQL1KJjSQdYaIfN7B2YHP+T0G+FE+2LZvjVITfWPiftdOLJfJ8YDGeeBxDQpKZHXKCeH63S37Dsaonee2bfIvfiChiwC5etkZN+xFsGLEv+kfTiM3fv24dixY6hQoYLDjXIJivC5Avcr5auvvkLDhg1RuXJlthPMjFjZgfthuNSuw+T3ToUHnt8Sqw8XyzWSbcquffvBmVc5CampHrXDA1gdcE8fBZbKeZREtDnEapQGrOEck32XxjP75hForD8mluwbOG3j0SL2YtBHqRIXh4blyuHLL79E7969vW4OESC4Bd+2bdtwzjnnmB9YqRJ/a1jSEaI9ouIW0dLhB4kosu9ocYSTk6PGD3AGFsfZT6v22eE/o44S0wZA9m0Ki30nJJwebPODjduJTKamAh99BHTqJLZNTkA+ii5t4uLw3XffRY/gC4XEd1ShkNjyogBuwbd9+3a0bNnSibawYdbh0prRxVBnGUzIvoUREO0cPZhd8MJCfzjMUUJycvDTPgOHkY3LIizoNu7W3Dm3fZQgzAlkpGVhIbZv3+51M4iAYUnwDR061Im2iEGvE4lGR5lEXexhdM+j0cZ1IDEXUMxuHOecumgmVmxcQgghSF43QxxGNy4c9uX2IY5CfopwWsbHY9mWLV43Qxw0h88VuARffn4+du7c6W2EzypBdZTV7SYjDhZuzrvzwWCHaPP0w7RewkWMbniUOspO23gUBTaCT1xcdNp4rC1Q5zEt4+Ox848/kJ+fjyQ/+6+Er+ASfLt27UKZMmVQr149p9rjDcrOSnbQ3X6IaBSMcAq1bXll4wYofSBKUyM0Ue9DJsPrJHuwmqnaxycbJzQRZeNOQr6K59SPi0NSXBx2796N5s2be90c+1CEzxW4Xju7d+9G06ZNESfqQvph1UE9nIiWyNeNOkzCK5TPnJYdOiwC/bRtAxElqNUUy5L0DkJR6WKiYWsJ3+CFjZOf4lviQiE0KVuWBJ9ZmUQEXN3xnj170LhxY/MDrazQ6QdYBKiRk6w+P9qXfCaiDwYR+NOmv02LiZZVPIkAo2eEgpxksnEiAi/29TOycZ4BdfJVAkdjScKePXu8bgYRILgjfE2aNHGqLcGFRsKIaMbEvpU+h9mgGg26EZ6TmlraGTYRgTw2HtQ5c6wROYrcBQAWGyeRF2iaFBRg9+7dXjdDDBThcwVuwXfRRRc51RYiqNCDFVNQZIOIOhRGTeZNRCXKjnvbNiAaUgF5CepojAZN4uPx8bffet0MIkBwCb7ffvsNDRo0cKotRNCJpUinjxY8IZyHIhqxQx3swz7U8boZhBt4kYYpAg8WHooqosBXaRgO47eff/a6GWKgCJ8rMLsxhYWFOHToEOrUYXgR2n2YyLtynyC+9LyEbDymkP1Cs9vm6TuGtXJW26M+ISZhMQ/P7Jy14qQkNkFENh5M6L6hdiiEQydOoKioCPHx8V43hxBIVlYWVqxYgU8++QR//PEHcnNzUaVKFbRp0wa9e/dGx44dLZXL7HX+9ddfkCQJNWrUsFQRF7wPMznPpTETJDT64S1k455gZzPrmLsFdqPYeXli2kFwYcfGY+61kJBg70eTjduHZfA05gzTnBqhEIrCYfz111+oWbOm182xB0X4AAB//vknHnjgAbzxxhuoWbMm2rdvj9atW6Ns2bI4evQoNmzYgOnTp6NevXqYPHkyhg0bxlU+swuzf/9+VK1aFYmJidw/wnFYoy3RkIYXBakIhAUKC9lGrKPBxhkxW/4+gP19dKFWHmb266e9xnyEkZ2TjXsMr40Dnm0X4jrkqzhKUiiEqmXKYP/+/cEXfAQAoE2bNsjMzMTWrVtx1llnaR5z8uRJrFy5Es8++yz27duH2267jbl8ZsF34MAB1K5dm7lgX8LSAXk5jE9pCoRd/G7jDLDsY0aObhSSksLmMGdnG38fgPlNZOMWCcC9NYXl5ofD/heG5K94Tu2EBBw4cMDrZtiHInwAgB9//BGVTLa1K1u2LK644gpcccUV+Oeff7jK54rw1apVy/zA8uW5GuA7zDoxq84ydY6EX3DKxhmgFT4J27AYkZkodBiyc8I2Xts5+Sy+p5YkYf/+/V43wz4k+ADAVOzZPT62InwioE6QiHZs2HhamsB2EIRVzAwxK8ty0eEwkJFh+XQi1hEZpTSy83DYWBCSLxN4ahcUREeEjyjFggULULlyZfTv3x8AcMcdd2DOnDk466yzsGjRItSrV4+7TC7Bp5dTSgSMAI58EP6BRB0ReEyMOCgmHkXbihFOQJ11VFMrFMLOaBB8oZD4jiwUEluey0ydOhWzZs0CAGzZsgUvvPACnnnmGaxevRoTJ07EW2+9xV0mV0pnz549uSsgCEIAQZ+3QhAEQbARDXMVCcepFQph3c6dXjeDcIB9+/ahUaNGAICVK1di8ODBGDt2LC644AJ07drVUpnMkvrgwYO0EhBBEARBEARBeEytUAh/HjzodTPsI8/hE/0XYFJTU0sWZVm7dm1JwC05ORknT560VCZzhO/o0aPcEwQJgiAIgiCMkBBCCJLXzSCIQFExFMKxf//1uhmEA/Ts2RNjxoxBmzZtsHv3bvTr1w8A8MMPP6B+/fqWymQSfJIk4dixY8igmeqECPw4WdznWxUQBEEQPsdPqZh+akuQ8aO/8h8ZcXE4lpMDSZIQCvKcNVqlsxQvvPAC7rvvPuzbtw/Lly8vCbht3boVV1xxhaUymbzcnJwcFBUVoUKFCuYHO/lwkFNuHWXHTy+B0vipUyc7DyzxcRKKwiHEx3kQrWB9wcXF+cveicDiWzund1zwIZ/FlApFRSgMh3HixAmk0l4wUcErr7yCSy65BJUrV8aMGTNKff/ggw9aLpvJs8zKykIoFEJ6errlioQg2knx8wgAdXCxSyzZuWDKJnufFuaJE8yL14MKeXne1h9w/GDnvsYvc3j8bOd//gmIXJeBfBbXkT3yrKysYAs+ivCV8Prrr+PGG2/EOeecg0svvRSXXnopmjVrJqRsprf+sWPHkJ6ejriAXkBd7HZQRteDOj/CLzhp5zYpn0qOa0ySnCy2vJwcseUJhuw8RgmSnavfE5QS6nviQyGkJybi2LFjwd4nmwRfCR999BGOHTuGNWvW4O2338ajjz6KatWq4ZJLLsGll16KTp06WdZizIKP5u9pQJ0hEQsY2Hl6GjmyhA+wO7pttEE1yM4JnyDazo18GPJvAkFGQgKOHTvmdTMIgVSoUAFXX301rr76auTn5+Ojjz7C22+/jauuugonT55Ev379cMkll6Bv374oV64cc7nMKZ1M8/cIgoh6yPklog7VBtXptGIkEY3QRuxRR4X4eGRlZXndDHtQhE+XpKQk9OnTB3369MHMmTPx9ddf4+2338bDDz+Mn376Cffffz9zWcwRPhJ8BEEQBEEQBOEPKgAU4Yshzj33XJx77rl46KGHUFBQwHUupXQSBEEQBEEQRMDI+G/btEBDEb5SSJKEZcuWYcOGDTh8+DDCihTrUCiE5cuXIzExkatMJsF38uRJpKSk8LWWIAiCIAiCIAhHSJEknDx50utmEIK55ZZbMHv2bHTr1g3VqlUTss8ik+ArKCjgVpIEQRAEQRAEQThDYjjMndrnO3wS4XvhhRcwbdo0HDp0CK1atcLzzz+P9u3bi20XI6+99hreeust9OvXT1iZTFeEWfCVLWu3PQRBEARBEARBmJAoScEXfD5gyZIluPXWWzF58mR88803aNWqFXr37o3Dhw970p709HQ0bNhQaJlMgi8/Px9JSUlCKyYIgiAIgiAIwhpJ4TDy8/O9boY95Aif6D8Onn76aVx33XUYNWoUzjrrLLz44otISUnBK6+84tCPNmbKlCl48MEHhabrMqV0FhUVISGB6VCCIAiCIAiCIBwmIRxGYWGh183wLdmqvSfLlCmDMmXKRHyWn5+PrVu34u677y75LC4uDj169MCWLVtcaaeaoUOHYtGiRahatSrq169fKsvym2++4S6TScXFx8cHfwSBIAgxGG1SLSIPn6UMUcewwloWT52Mx0pgm6zNuk+y6ONYYSlP1DF2y0jHceMDyM6Fl0l2zn+M3TLS7VdBeExhXBzKBDwgIyHE/PzzlAkAderUifh88uTJmDJlSsRnR44cQVFREapVqxbxebVq1bBz506h7WIlMzMTW7duxdVXX+3uoi1JSUk4ftzkBUgQBEEQBEEQhCvkx8WhQsCnXIXDzg287Nu3D2lpaSWfq6N7fmXNmjX44IMP0KlTJ2FlMgm+xMREtkmhJ0/Swi0EQRAEYZeA7yMFIDp+A0H4mIJQiFbRNyAtLS1C8GlRuXJlxMfH46+//or4/K+//kL16tWdbJ4uderUMW03L0y9MbPgIwiCIAiCIAjCcQri4gIv+OQIn+g/VpKSktC2bVusX79e0aYw1q9fjw4dOjjwi8156qmncMcdd+D3338XViZThK9s2bLIzc0VVilBEARBEARBENbJDYVQljLrbHPrrbciMzMT5557Ltq3b49nn30WJ06cwKhRozxpz9VXX43c3FycccYZSElJKSXqjx49yl0mk+CrUKECsrKyuAsnCIIgCIIgCEI8WaEQKlSo4HUzbOHkHD5Whg0bhr///hsPPPAADh06hNatW+P9998vtZCLWzz77LPCy2QWfMeOHRNeOUEQBEEQBEEQ/BwDAi/4/MKECRMwYcIEr5sBoHiVTtEwCb6MjAwSfGrMJqOLHq4gCK+ghRcIgiCiD3XfTn5L4DhWVISMjAyvm2ELP0T4/MCJEydQrlw5x45n8uSiMqUzLs7en9Plk5NNiMAJO8zOPv1HEFFChFkr/+GEnVP/TniEoVmTzxI4sgoLKcIXJTRq1AiPP/44Dh48qHuMJEn48MMP0bdvX/zf//0fV/nMKZ3Hjx9HOBxGnFcPtd7GkoWF0dvRiP5dQRzyiDX07Nyv907tNZjZrPr71FSx7SFilpyc0/9v9rhwP05k54QP4LFx1mOEQj6LqxRJEo4XFARe8FGEr5iPP/4Y99xzD6ZMmYJWrVrh3HPPRc2aNZGcnIxjx47hxx9/xJYtW5CQkIC7774b119/PVf5zCmdkiTh+PHj5oal57A6RUJCMO+sF8idsdcCubDQ2/r1cNt2iUgPRoblPujZcEqKvfYQrqC36DNLV+7X7sMQtZ3bsXGA7Dwg+NnO6zRjTwXzDPJZ9ElIwHFJAk6dopROnTKDRtOmTbF8+XLs3bsXS5cuxSeffILNmzfj5MmTqFy5Mtq0aYOXXnoJffv2RXx8PHf5TB5uamoq4uPjcezYscCPJBA+gIQV4RRKD8uuU62E1WaVx3ntpGgQDrP7LqzHsb5Y/egzBRayc0PIzgmh+NRnOSZJSIiL45rHRfifunXrYtKkSZg0aZLQcpmsOPTfsq9RN4+PIIjYJhx2zmE18xAF1xvEEU0iCjAyPAeeLT/buZ/Enp+vEyGGLElChdRUhEIhr5tiC4rwuQNzb1yxYkX8888/TraFIAiCIIgYQ0KwHVaC8IKjkoQK5ct73QwiIDDHqWvUqIE///zTybYQBEEQBEEQBGHCAUlCzRo1vG6GbSjC5w7MEb7atWvjwIEDTraFIAg9fDhPhiAIghCPn1JDCf9yQJJQu1kzr5tBBATmCF+tWrVI8NmduOuXXtzJeUtE8PHpBHWCIFTQs0pYxcx2/OKvELockCTUqlXL62bYRpLER+QkSWx5brFjxw40b97ckbK5BN/69esdaYRvcPrlSR0s4Qfs2rnWVgoyaWn2yiYIlzAyY8Dgy7g42lePsIybqWbGNm4C+Su+Z39iInpGgeAjTtOyZUu0a9cOY8aMwfDhw1Fe4BxNZs+POaXz338BP04iTUoyP8brpF8WR5w6WcIIMzt32sbNPAwShIRLGJmi7cfAqHASg4RLOGrjZpC/4jkHQiHUrl3b62bYhubwnWbjxo2YN28eJk2ahIkTJ2Lw4MEYM2YMLrzwQttlc0X49u/fb7tC4cRaSguLcAWA/Hxn20G4S7TYud5OxEpIFBIGmJmQ5z5mTo7580o2bgnP761LsHSTgbgW5K84yv7CwqhI6STBd5oLL7wQF154IZ5//nm8+eabmD9/Prp06YJGjRph9OjRyMzMRPXq1S2VzRXhO3z4MAoKCpCYmGipMrYWRYlj6zWsHa1MIN4eUQTZuT4s3k5CApCc7HxbCFdhufVRAdl4oBDpPMaMjfOsE8DrrwAx77PkSxIOnzoVFRE+ojTlypXDqFGjMGrUKPz888+YN28eXnjhBdx///3o06cP3n77be4ymb3OatWqIRQK4eDBg6hbt67xwawPb1AleDRiR4DIHXssjdKRjXtPXp7x92qbJufZVdS3J8b9M2vw2jhAdu4yyltENu4iVn2WKPFXDkoS4uPiUK1aNa+bYhuK8BnTqFEj3HPPPahXrx7uvvturFmzxlI5zE9MQkICqlevjn379pkLPiI2sTJKRxBuoec889gty0IGURK9ZXVeA+43RR9adi7SxgNAXh77FDMWOycbj0IC7q/sLyhA9XLlEB8f73VTCAfZtGkTXnnlFSxfvhxxcXEYOnQoRo8ebaksrp69QYMG+O2333DBBRdYqowgCCKQyEKOxTtkTWViHIIMg+2FzjqiSVEIY87ET143wVuiwMYBtp8R1GchqO0mxPFrOIwGTZp43QwhUIQvkj///BPz58/H/Pnz8fPPP6Njx474v//7PwwdOhTlypWzXC6X4GvSpAl2795tubKoRDlKpGVhsdAz075+0U3AR0IJgiCI05zZqVLpEGgs+CpR5KfsLipCkzZtvG4GIZi+ffti3bp1qFy5MkaMGIFrr70WTZs2FVI2t+Dbtm2bkIoDiRXHV9mpRknuOBHFsNi4ci1w3iXooyjlkYgeIpe3V611z2vjQbVv1nbTAFAgMd2Tj3yVQLE7MRHnUITPsMwgkpiYiGXLluHiiy8Wnq7L9WZq3Lgxli5dan7gP/8AlSpZbZN3xMUVW4nVF5p8vhl65VPnSriFHaetXz/g3XeL/1/tRchOQ0qK9fIJwkFyczmDGWTjBAN+CpBlZwsqiHwV37InFMKwxo29bgYhGCurb7LCHeHbtWsXwuEw4kSExlkFkpOoOzQn22OW+kidK+EEbtq4jNba4+QgEy7j6BL4ZOPGBDXSGTA82eZBy1chP8U1wpKE3SdPoglF+AzLJCLh6pGbNm2KU6dO4Y8//kCDBg2capN4gp6Com4/pVsQaoJg47JnonYEyUkmbKJ0es0iLY5GYnJztYUO2TjBiJ598ti4J+j5KQD5KoL5PRxGfjhMgs+kTCISLsGXlJSEZs2aYfv27f4UfEFwekVi9Hupg/UHoqPYfrdxK3P01EPU8m+k/cQIFXl5Ae3avLRxv/cZMYSZUAusfatRZzJRRFAo24uK0KxePSTRs01wwJ1z0bJlS2zfvh2XXnqpE+0xxuzlSJL+NGYdAXW2/sTIxmPNvo02neZdSIMIBGb7jEcdZOMoYtySIRqIOfs2gkWskJ+iyfaiIrTs0MHrZgiDInzuYEnwff311+JbYpbyQndPLElJ5ksU09tJLEY2TvbNh5kjQCOfvoV8OEbIxgNJ4O3bT1sXsETAWf0UP/0um2xPSED7li29bgYRMLgFX+vWrTFnzhzzA//5B6hVy0qbgktSUnHnI7+Ig97zy50ta0cZawIx1lIOg+Rg5uebi+gg/Z6AYNTl+XLeUZAhG3eFnBy2V7pb9m23nnaX1IgeHwUofg+z+ChR5J98Gw7julatvG6GMCRJ/Ji3JIktLxrgFnzt2rXDr7/+iiNHjqBy5cpOtMlbeOZcab1Mk5NPn6/+Pho6VyNECyDRHXTQBZrbq9oaOYu5ucFfiIL3eYyxVQdZL080dWvFU+3+m28XdPsG+G6Oz+3bCUEVazZeakXPaPBRWAeknXr/i/JTUlKY3u9/FxXh16NH0b59ezH1EjEDdw9fsWJFNG7cGF9++SX69evnRJv8i9xhWHW65c6VVtlkg7WDZu3wKW3SGF77VnsPfnOQRW/yzupxeuQ4s942irSdxnBJey/t24vIXJTYN6v/Ha2vX+Vt5N6yQT3VI1ovkkjM/BTB/smXBQVoUqcOKlSowFZuAKA5fO5gqec+77zz8MUXX/hP8ImOgDgdEfJ65SqzfQEJ9/BiT0rR9i17F3ZXIMzPp1Q0whFsrYIoyr6JqMMvgyjCV/m0EgEU5VOQb6LJF/n5OK9/f6+bQQQQy4LvnXfeEd0WY9xwiO1G8ESgHmHTGq4koUZYwW37VtsuOciEyzg6bceqfYsazPB5CibBD69Yc31aGot/QjjKFwkJuOS887xuhlAowucOlt4YnTp1wj333IPCwkIkGL10Dhzw78ItQXE+tdpJnSxhhh/tW7ZbZZ/hx3YSgUQ2L8+iLWTfhAF2I2+u2DfvQLKWfVMaqGMUSBI2nziBJzt18ropQiHB5w6WBF/Lli2RmJiIrVu34rygjDQo51+YWYJZNNHu93bRWpWKRKA5XqRNuoF6blGQfqPVKAmlfQYKUU5qdvZpEwlElxdtUe6gtz9A+NK+WQShm4PUfs90Ejx/b2tBAcokJ6NFixY2GkXEKpYEX1xcHLp06YINGzb4U/D5bfEINWYpmVZSNvVexCI6Wr+nkPq9fSJxw7a9FMZa9krCLuZRBg186Qiz4lf7Ft0GP/ymgMBj23YHTroMr2GvAKuo/ZNAP8TeseHUKXTp1AlxUebvUITPHSxPAujWrRtWr16Nu+66S2R7+NBzfr2+0ykpp3tmLzu2uDj9a8S9fBfhKn61bcD9ARW9FCFyKqOOmMwG0/rRZNu+QKQ9umHbpnX4ITxOfollNoRCuMRviyUSgcGW4LvrrruQn5+PJKOXk915fE6kqzkRwdDrwJQjWyI7WbtRLWV71eVQp+sePKnGorBi/36MmpMQDCy+FnZ5ed6nLsaIbRch3usmOIKv7Rtwzi+xG3mS3zNa5cS4X5IvSfg0NxfPdOvmdVOEQxE+d7As+M4++2yUK1cOX331FS644AJ7rUhJCeZGzrztVXaybrwRrIpCrd+lLCfGO14ugmbTSozaPmYMMGPG6X977SArMXq2aGVDV5ETHfzuAJfyeZUfBNm2o8TeWe3HzT34lOmVIspzKuhmWq7bfolVjPwSP/okgufvfZGfj/LlyuGss86y0SgilrH8NgiFQujatSs2bNhgLvhYnF6/OcZ6URDWiExCgnHCvfr3+rHD0oP1XgXpN1khNTW6hpHsRBuVXoVZFEL0hug8aD2TcluibF6EG4TD/tmDjAcu55rHtr1Ez7ZjaY6zQFht248ayZJ4TEiI7Jf9/v5W2nQM+CQb8vPRtWtXhEIhr5siHIrwuYMtr6tbt25YtmwZ7rvvPlHtEYPolE03xKiWAAz6S9roupn9tpwcsW3RIjXV+TpEEwTb9mt0xAyz6yp/H/TnkgEnXsBmOO04y2Zpux65ILLtQBKrtt37hgZ8hSrfDdHgjwD+9klM/JENWVkYRvP3CBvYFny33norTp06hTJlyugfuGcP0LixnapOI8rhNSsnJcXZt4JZlCMlxV/pCm6PEgdRjNnFrdUxnbZt5ZYJ0bYsPcDuPOvhwnNk1IRYGvl0feP1oKdQkm37lpwcD9dcUfojgHWfhMU+vBCWLHV66JPkhcPYcuoUXozC+XsARfjcwtbbqWnTpqhYsSI+++wzXHTRRaLa5A1+SylVEuT0z2jHj3v7qdvkJ9tWRkeC7hxbxSF78ZsZekFhoYcLECoXeyHbDkKxgcPItl1NLVVH/4DoiAD6lM15eaiUkYEmTZp43RRHIMHnDrbeSqFQCH369MH7778fPMGXmmp/8olXzr56hU27AtCLOR40r8Q5RNi2G6jb6JWT7IdVGQlLiDbz3vhATEF+sW3CMl5vFReELhxA6ZU13RiQjjHfYW1uLnoOGBCV8/cI97D91PTp0wfvvfeeiLY4S2pq5B8LdjsVt17yKSml/2RomCP6sWLbfqSw8PSfH1dCIDxHaSKBcYgBPtv268IwrIMiNHjCTU6Ox7Yt0lfR80UIy3woSejZs6fXzXAMSTod5RP1J0le/yr/Yfsp79mzJ6644grs378ftWvX1j/Q7Xl8aWnmx5itpGkVZSenLl85+mU2j89OFEzZBrkONxZCIZzHS1Hn5gucNqSOeVzX/cr5p07Xo4S3zih4Drzag88Pm6l7Mp6llYbJiqg9fxMS/OeH+Dxa+HdhIbZlZaFHjx5eN4UIOLYFX0ZGBs4//3y8//77GDNmjIg28eOXqAbP9hNezMPTuk48nS+lYbqP1j1zO2qrZ9ey1+Km86n0lOLiKFUuivB6L7OS+mPNrn0uHlnvqdcpmHp4rW/y84EBd50d+aEd8WcV2aaN/BDyL0qxPjcXLRo1QrVq1bxuimPQHD53EPJW6du3r3uCT+4s/HQ3rUQ95HMSEux1uHZFmHw9lWV4/YaKRfxm12lp7NFvpbMqynlkjbQY7atH+Ba/pGMaikwn7Jq1HLLrQOKUXZuJWbUdcw2epKTY90PsCjXyQ3R5r6AAvS+7zOtmEFGAMMH35JNPoqCgAImJiSKKLMZu5E7Eoip6ZSjbZtTLs6SN+mEVTqVwNLrutEKoPfwSjWaxayvInoaX0Tfl86Z0IMhh9gQ/zbez7EN6EfVTQ3btK/xk10JSRL2I+hmh9y7yQ9tcokiS8G5uLlYMGOB1UxyFInzuIORN0bp1ayQnJ2PLli3o3Lmz/oHqeXxpadrHsdwpUStk8szjc8tZF73hqdlcQR6MrgGvNxWtKaJ27JoF0avDWrXr++4DHnlE/3vlc+UHp1TvOfdD26IAvzi/Wghrm99sGtD/cbR4imVyck7f3qi3ay079pv4UyLSB/G5//FlXh7CCQk4//zzvW4KEQUIeWPFxcWVbM9gKPgAfWc4skD/yPPUVO83YA/KoivKjtioI83Odr4tThE0MaeH03atxitHmSU11Gio3i9OvQ/Qu0R+dYgdb5cfxZ8asmtTvLZr3ugcb7tKzd/jRfnOs+qDsNibCPGllRqqJkD+x5rcXPTt3RsJUf68Bi3C9+ijj2LNmjXYtm0bkpKSkJWVVeqYvXv3Yty4cdiwYQNSU1ORmZmJxx57zNN7KazmPn364PHHH8fUqVNFFekdvBEPp1b7VKNsl1fiT0RUTvkCsVqWlU6bZbAhWtCySb+kkyoFlp3Oz43985TXsLBQvz6fjxSbofVy9KuQM8KzNssVi8ymcBIWsRpwmwZK27XIhV1YhJqI+vyUOqrpg7hpJyLqCpD/8fb+/bh70CD+ugJG0ARffn4+Lr/8cnTo0AFz584t9X1RURH69++P6tWrY/PmzTh48CBGjBiBxMRETzWSsDdT//79MWrUKOzatQtNmzbVP3DrVqBtWzGVskRDWCMmRs6wnyKOMur2+i3twmmCKN7ctiO/CDwjghAlYUF5X1nvsfo4C86HiGqDjm+cYZlotGmtf2uRnOyJXft1hU6rKE3I7Ld59tvl90us+R6AK/7HTydPYndBAfr37+94XdFMtkqclylTBmXKlLFV5oMPPggAmD9/vub3a9euxY8//oh169ahWrVqaN26NR5++GHceeedmDJlCpI8mgsubGgmLS0N/fr1w5IlS8QU6MaokbxRdUaGs3VkZDi/EanZ5tssXpFITzDavMqg4MYG7Cx1WPFSArmjtkB0dpA12lw2FgnU5uuBaqwBdiLpGoZbEI5nsutoE3J6OGomRr6H2YAEy4CFme/hNqy+o88j2EuOHUP/Xr2QFsTBbU5Eb7qu7Efq1KmD9PT0kr/HHnvM8d+zZcsWtGjRImIrjd69eyM7Oxs//PCD4/XrIXT4cdiwYZgyZQruv/9+hEIhkUWLwc3OyKgu9V58ZmlAVtKE1PX7df5ftC7c4hZe27RTKWyFhbQSIVGCMmPS2ToMUo1FpA/7LfpHC7uUwi2R6Z5NK3BjH2B12qdb8/eiCEmSsCQ3Fw+OGOF1UwLPvn37IkSz3egeC4cOHSq1b6L870OHDjlevx5Cn7KLL74Ye/fuxffff2984Nat4io16yjkGy1iiwcjlJuKstbldNRPid9G4QhrpKUV/7l5H83qciN6EaRISayEJRzEzdutWYeVinnFk9aPZHGOfb5ROqGN1u0Wsp2CQT2XTW2nfZAov8PMLxLpd8SQKNx+8iT25eXFTDqnkxG+tLS0iD89wXfXXXchFAoZ/u3cudPFqyIeoUOM5cqVw6WXXopXX30V06dPt1+glTlPWuHvjAzzl7fdhVdSU43PT0oy7t3tLsjCGynT6nxZ66WoXGmcmp/nZDqHUZtl++B5JtyMXqiHx/0QLSEs47aOZ67LTfuSo+Vk077HTKgVFooZ9zErw/b2EXI/71YGkF8yj3zuv7x27BguHTQI5cqV87opMcOkSZMwcuRIw2MaNmzIVFb16tXx5ZdfRnz2119/lXznFcLfKNdddx2GDh2KRx991PnQqewMezmZRVSURbl8vJb4E5E6Z1aGXK/ymAAtYRwVsNq0UyvDirJn2YN3y2nVuhbkMPsSLwO0lusWtbIsb51KyJ5t4WTgPZA2rYwUawk/EfZmVkZqaulj7PgcPhdyLJwKhzE/KwvLrrvO66a4hh9W6axSpQqqVKkipO4OHTrg0UcfxeHDh1G1alUAwIcffoi0tDScddZZQuqwgvA3SNeuXZGRkYGVK1di2LBh+gfyrtZpN9IhwkGWIyJ6TrETTrjbI3BqtK47a4dMkUBj/DIZ28nUUC/nLMl1+zUFzo1tJXxCIB1iswJ57dmuHfLYcxTYFatA8yKDOqrsWYnyXWB2YZ16t2u9F/26BoEDrMjKQsUqVdClSxevm0LosHfvXhw9ehR79+5FUVERtm3bBgBo1KgRUlNT0atXL5x11lm45ppr8OSTT+LQoUO47777MH78eFfmEOoh3AMLhUIYO3Ys5syZYyz49NB62EVtvWCGmWBLS7PX25qldRqhHgnT6gDdElhpafr1WBmdi2ZhaMWeReG0PQPA9OnAbbexHeu3BSsCQiIKUIBEr5sRKKyY9WVYYb0SsmdmkelnW3ZTPPK4ApbsWW/+HiteDzYr0RscteJv+NzXmJOdjbF33unPhQ8dwg8RPh4eeOABLFiwoOTfbdq0AQBs2LABXbt2RXx8PFavXo1x48ahQ4cOKFeuHDIzM/HQQw851ygGHHlLZWZm4r777sOePXvQuHFj44P9EuXQw832KdM6zfB6E3Y9kaa+XspjojU91A+pxaz45XkrLDx9vfRewDzPAxH1mDnI4bDHG6+b2XNQiYJooUhYFrgUIRzNXuuuiVOrvgbLIIjdgRKjTdQD6G/szsvDZ1lZWJKZ6XVTXEWSxLtPkiS2PCXz58/X3YNPpl69enj33Xeda4QFHBF8VatWxeWXX47nnnsOM2bM0D9w61agWzcxlbJE+XhSLvUcY7MyjL5PTT3ttVgRaXpzopQdstnbiGVelVNzr4zEhh87a+X+jEEQc3o4JfJEpYIqr61XznIMpVdGE758LIMi/GLI3oOycK5QezaK0JkNpOm9/72I+ll9jvTee37zNRR+xnM//YTLL7tM2FwyglDiWB7KbbfdhgsuuABTpkxB5cqV7RXm1AqIauQOwsnFMOS0TqcidCkp/lp0xWq6Jmtn7SfcslMW3LBlM6yIKD+Iv4CSnBwcx9YOfnnETCFbJhhwwp4v+z/FQLoTIk05GOq1jwHY22xdy9fw4Hk9kp+PeYcPY8u997pet9cELaUzqDhm1a1bt0bHjh0xc+ZM4wM3bBBXqVVhIf85Acv+M8pjRG/M4+TvE/lEsZYVK08xiy2rR2Gt3GueSK7ovf/MotEs9zoWFA4BwBmnwDVENdyNPVt9gBcLtrjZleTlGduzWddoqa1OLc6l9d5xI50zynjhwAF06tABrVq18ropRJTi6BN322234ZprrsHtt9+OsmXL2itM5MIsdl+aLGmdVtJllB2ynvCzk26pFgJGbxU3l9SPNURGAp2ek2fVlv1Ebm7MOMpu4ye97YiT7CainjMvntcoWLCFBbfm7zmGclqJHmbvfaPv5fdRQoKYyJ/ISJudKKDDnCwqwoyDB/GGWYAkSqEInzs4atm9evVCjRo1MG/ePOMDRUb59OCJftgROix1mOXPJyWdjqY4NSqXkBB5TZwUDtHw5PklJYv3njltywRBRO+AQtAHe+BzAeYAEemcWjjtW8i45V/45d1sg3l//omadeqgZ8+eXjeFiGIcfVJCoRDuu+8+TJ06FXkiel2WB1s+xqizcWJDUZGdmnoETt05m83Lsjpvy0oH7UVap58R/fJx66WpVScrL77oXFsIwg9EgfAh/IFdV0iogFX7Fk5utq58j7HUE0PRvUcPHMD9jzwSU1sxKJEjfKL/iEgct+7BgwejUqVKmD17tvGBdqN8GRmn/0Q4xqwdn55z7MRy8iJH5lhEYUqKN4LDjGh+kkXbMSt+u8dETBH1URi/CUa/tccCfpy/J6IclrRRy+j5Jax+hahpHqL8iiiI7s0+cABVatfGoEGDvG4KEeU4PkkrLi4ODz/8MMaOHYvrrrsOKXZTX+T5T8pVotSwbL/As0WDFl5uwi7XL6OVK+/m1gosq39F8+bqdgi6HQcF9SAB2aLjRPO4jGcE2I5Z5+/5TfzLl9xv7dLCNJ3TDPn9bnX+ndXFWqz6FSz4OLp3oqgIjx04gJcXLUJcgJ5l0dAcPndwZVWOAQMGoG7dunjhhRdw++236x+4YUPpffm0HGK37qSWM61eicrIWWYRdWlp2p2r2abTyu/NxJ8eokRhaqp+OVlZfGX5WRjaWWzFSztWo5XibFc0WsVszzKn9sezeu1pvz5NvH65el2/Z3vv+UEA+vh54BVpTtuRWXvM6jf9PXr+BMC2doCyHBkvtl1ISNB+Zyr9Cb/6CRy8sH8/6jdqhIsvvtjrpngKCT53cEXwhUIhPPzww7jyyisxZswYVKhQQf9go4gHD6KjI6JT3eTy8vPtj6pplQuIyQ2xKwqV91PdQfOKQSV+FYby7/Vjb2PVhvUGLljKMxNI8vd+2LNM65750cY8RH2JvN45Q9RjdhlWiCnISeHHIqySksTZsY+FnF2s2LEZVu1cWbeQZ0WkP6EsT4Q/YXeAWc+fsONLqMtyiaMFBXh8/34sXrkyZufuEe7i2rr7vXr1wrnnnouHH34YTz/9tP6BK1YAl11mXJhbG1xnZABHjhg7trxRPqOy1KNqPFE+Lfy+CbueuBfZkYskI8OfQs4I+RqL3N/R6Xl+fhB/MkG73wLx60/3a7si4LVhp8VVIC4aO6zCSNSAhOhBC0c2W59/aeQHTgk/vfJETSGxUk6QfIn/2vrwtm1of/756NWrl7ft8QEU4XMH1wRfKBTCU089hXbt2mHcuHFo3LixvQJZRJ/VVDVl51G5sjhnWW9xF6Poicg3jVaahqi0TqfmDBpFfL0WA25gxYZFRcnVGAm9hQuBK68UXyf12sR/BNYU/NZwH28hEYR5claxu0+k5WuTlmZ+slm6p/Ld7nW6J2Dt3c8iCl1i97//4sU//sBXKwRlFhAEA65aevPmzZGZmYk777zT+EA3HwK5I1Oujmi1DCOsRkWSk+2tZKUnFpQrZJk5AG4v6sHqIHnhSHmxVLQZahsWjd9X7/TTEntE7BHFqY+i8GLDdUdXu/QZpaJ7apzqw3m2WRB1DCs+HhC+c+dOjMzMRPPmzb1uii+gbRncwbUIn8yDDz6Ixo0b4+OPP0bXrl3tFWY3yic7x0eOGJdhdUVNZQdrdD5r+VopFWZpnSwkJUWW4WTqg1/n3onGjbRjpbhzQpSLchDcSsE2ghZbiWlsdTnygJhVG/ZxRM02HjxTbm/H4EXKp1C0FmNR+hA80T091AONTvoQfhx05eDjw4fx0d9/Y8+jj7peNxHbuG7t1apVw/3334+bbroJBQUF+gc6FeXTiuRVrmx+Hm/Kg5MREdF7pqnFpvIaydeJRVCIFB1eCwS/YjUS7bX9xsWd/osFfO0BBg+r0RrZ5IREe7y0X7eFVcCFnN+wms4pm5zwayOyf9d6t6jfUxTdAwAUhMOY8OOPuG/KFFStWtXr5vgGivC5gydPxc0334xwOIz/+7//s18Yy4NdubK5kyxyQ1Et7EThjKJ/aWnFL2ejF7RdIaYWgE7NEbNCtKd1ZmSw2a8IjISeHftVezu8jnMs5WYRQnBUm/l14MKnEexoT+d0QqjymJhpOqceaWliontmiPQbWC6Kj/fde+7nnyFlZOCWW25xvW6CcD2lEwCSkpIwc+ZMXHzxxRg2bBhq166tfSDLip1aOOUYG6Ve2l0N0e5G7Oq0TN7J1LypoXp75LAs3hIraZ1WsGq7dvbSc2IlTxZkG6B0S8Imsum62q2IqsxN2xeZXhrwZ9atVE1W8alnTrbEq9k73e4CLCw+g9If0Ev9ZBGWAfcZ9uXm4sFdu7Bm7VokJro/COJnaJVOd/BE8AFAly5dcNlll2HixIlYunSp/oEsoq9iRTErdjq9IqKRqNNa4XD+/NP/z7tFg7ojF7GKplkZWukb0bjXHissc9e83OpB1MDIkCHF/5VtmzcaqBzOpl6a4EQ2HStdhWyyS1D8jhmWZGEqAdmua0Rb2qecrmnnNbdi5CoAFiJ96n5a9DYOLKh9Brf20/PAr5j4448YNGgQOnfu7HrdBAF4KPgAYNq0aWjatCneffdd9OvXj+0kr9MJZdGm1w4rkTq95exHjiz+r1L4WYF1M3YRC8Co0btOWVniOl0vhCHvQiRe260SUbYrCz01VoUfEHkfvUzXJefdFC/HYuzWrWfmS/IFCD8g2LYb8Pl7LBExUbZrpd1OPTcrRq6KFH1W3+WsG63zRvdYjtF7N4kUoR50XGsOHsT6I0ew85lnXK87CEiS+C5TksSWFw14KviqVauG6dOn4/rrr8cPP/yANL35QytWAKNGGRcmal8+s2MyMuynXsrns+5bphR+djZiByI7VCujaSyRQpZjMjL0O16/bJBqBfULi6UXc3JPSRnRaZt6Yk+JHeEH8DmwotNC9WwzBoWgn4LsTgk9NczCT8/m5IampLhjM8pUTa2L5JHdejF/T4mdNEkRIlQuQ68dZnXwpnNajvZpYddXEInRwLGMnzoqBccLCnDD999j2jPPoFq1al43x5dQSqc7hCTJWx0sSRJ69eqFhg0bYvbs2foHmgk+GZa7bOY4q7/X6mzMPAej7/Pz7W9SvXCh9udmzrXe98qOU8REbpE5+UbHye12srPXe9mI3C9QhN2qjxFttwBwySXmbTBC71qaiTWWpfHNymARhKxznFjKYhWgDMexOs4i5yWxHCfKcTY6hmWVTbM67PirwzI+0P+S1W4Bfdt1y24F2iNrWWS39uqwM3/vsoWX639p109wIrqnR8D9hLGffILfq1fHBxs2IBQKOVd/AMnOzkZ6ejpmzTqOsmXFrgx+8mQ2xo1Lx/Hjx/WDSTGGpxE+AAiFQnjppZfQokULDB06FN27d9c+cN48dtFnFzma4lQa3pgxkf/m6dVlh1yOsCxbVvp7K1FA9W81apOoKJ+IVExlu/2e1ukWTthtr17Wz1U6o6KifoA/rz0hBFGPsoiA9oJDvQEAmdUNhB8LWhHrgC98IgK399VzUuwp7daq2NManLDSXX4wpnhthN4vGwg/XuR3i4hlUN3chkFut8s+wroDB7Bo717s+OADEnsGUITPHTwXfABQv359PP7447juuuuwfft2pKamah/IIvr8shm71vcjRmgfKzvEZp2oVn3K1Dq1+LODn9I5gr54ixvw7JfIg1royV4Kq6OqF3lQCz+zlMzc3NJl8Yo/lrRPrXoIRxG9wqZWN5mSYs1HVTrlwoWfHxEoQL1O53QLUbfT6DXLM71e3X2VEn5Wo3vK75XHaDVclJgL8DYMOQUFuO7zz/HE9OmoV6+eq3UThBa+efOMGzcOderUwW233Wa/MCsPtpXN2FkZMUJf7ClJSTF3kI0YMqT4z27anhonN2IXOQzj1yEdUS8t9UvUyv5GrC/7Xr2Mo3p5eebD4CzCKT9fTBhGubG7nx1qIgI7K2yqMTMlo+5VjZF5LzjUu0T82YZslgk/rc4ZF1dsZyJuW1bW6T8zzLpJM/uWhZ9wrLyHREb3WPDg+Zr01Veod+aZuOGGG1yvO2jQxuvu4IsIHwDExcXh1VdfRatWrdCnTx8MHDhQ+0BRqZ0saZtmC2WwRPnkBVd43ljqiB+vQzxkyOn61q7lO5cF0UspBxk30zozMpzZWkRJp058L2OtqJmVCFl+/ul6RTgDlPrpS5zwuwoL+bpIo2gfTzddEvGrv5H9JCO0bJZl0ReR8/dYEFhWENI5rdisUT2//376/3kvpVakj6e7/WDMUiQnA13mXKV9gN3oX0aGu1ss+HSgZMXvv+PNffvw3XvvIc6nbSRiD98IPgCoV68eXnzxRYwePRrt2rVDrVq1tA+0mtqpJe7spsDpiT5Z6MnIPTuv8JMdYZ58JGUdyiiNUvxZneunhd4m7KywpGzGYlqnm1s5dOp0+v9592xUpnlaTYdUnic/k06kBfl13mUU45TIs4N6TM2q8CgsBOb+3AUAMLqRSvjZSQ0mm/UMM3u1aitKoWcH+dVsxbxkN2Tj2DcAqISfiC2Z/LjJust+w4ETJzBmyxa8OHcu6tat62rdQYXm8LmDrwQfAAwfPhzvvfceMjMzsXbtWnujI5Ur2/cMeCMmaqGnhlX4qUUk6zw/I/TEn1WMhIGys3czEuhXYcjitLHYq90Inhql0FPCK/rkebe8ezkaeS3K38nSFtatGdT2QW8GYTjx6Cm7PD3TtzpHLyUFOHqU/zytdsjCD9AQf1rwhHfcsFmfzt8TuYKnGvVlFRFxVNqhmcizspuM1XEErXo2jn1DP9qnxq4gVGYGifAFfBgBDEsSRnz2GQYMHIhhw4a5WjdBmOH5tgxa/Pvvv2jdujWuv/563HHHHfoHqqN8FSuWPkbUXDOzY/LzzcWeFlpvGJb8JBE5STIff6z/nYjll82+59mE3YedPAD+rRe0bBUQY4ssZbRvb36MjNn901tkycx2rHguZssri1ji3uUtF4K8LYOIY8y+591zmVX4qbvZnBy283jGW0a3/Er/Szdt0WW7Z7FXv9mhqGN+/NG8DDU8u3uoMetmWbuqLvNNsqac3q6JZ+sEny7U8sR33+Glv/7Ctzt2oHz58q7WHUTkbRmeecaZbRkmTqRtGZT4LsIHAOXLl8eiRYvQrVs3nH/++ejcubP2gfPmAZMmGRcmYrN1M+xss6CO+LFORlG+AezkJRUWRkZ5Pv008nveiI1eHUYdvXpOoIyVoXfAX1E+pbBzK5JkZM+tW/OXp3f/9ISejNEWDFbEXkoKf9SPCCxWu2SzaJ9eFyubs57ws9KeWV+3AwCMO9dA+NmBdY++gEax/bRYC6Dfnu3bI//N2zXpRfpY173S6mJ5I4df3TgPANBupobwc2NvXuX8PyVW/QCXfYCNBw/ioe3bsWHTJhJ7nFBKpzv41mNq3749pk+fjqFDh+Kbb75BzZo1tQ986il3RJ/6e7XIU2Il/TI5mX/1AWV9Vs7T+r3qFD+1ANQrxwnnWy8KpuzIrb4MRMEj6OxuGcJzjBItkccr5JXz6pKT+e63WvhZFXt6bZLbxYKVHCotXE4LTUSBK8vci/aReB12LbO2kq6pdQ5rF5maWlr0WRF7yvpk4QdwiD+RC62YLWLk03ROI+Sf5MYm6mrUAk+NlVeismvi7SKV3bmVW6msTxZ+wH/iT8TcPjuo/QB1J6XlA7gl9v5r24F//8XQjz/GU88+i/Y82TME4SK+FXwAcMMNN+Dzzz/H5Zdfjg0bNiDJ644nIYEvbZNV+Cm9CStiUfYslBEX1vwkM5QC8MsvrZcjarN2NXqiEPBPlM8rzKJ5VjZBt+MY5uebRwW1YPF+5GcoJ8daHbyo9+vTszUfrRYqcgsEkbCIKSvdYkqK9alCsglZOd9MWJZE/Tp9z1+4CLQMgMVOBUYKza6RH22V9/Vn5XWWkGBdX1kZczXrWkuifi9fb69iUcdoGYSWD+Ci4eQXFWHou++i72WX4frrDa4ToQtF+NzBl3P4lOTm5qJjx47o0qULnnvuOf0DzaJ8gL35UVp7qfAOX2t5K2ZtsrIZuxot8cc7ZK1Vz7Ztkf+2O5eP9RjAn3P5eOfx6WHHTps1O/3/PB6AmZehJaKsLOrCez7vULfW8Wo7EDVXSdRy+IwiugjxpseIjGSIiJzofa98DHijd6zHKx8RK+NfVs7nSbRQP8I3dVUJQLJTU5yM7uklt/AIMpYuTqtrtLvulVm9vN2qfOtbzNAQNDH+3v/fRx/hk5Mnsfmrr1C2bFlX6w468hy+adOcmcN3++00h0+JryN8AJCSkoLly5fj3HPPRbt27XD11VdrH+hEaqfZhpm8Wy2o84ycGtpWo56cIkLsAaUjSDt2GJfjVJTPL7CkbDqR1qkUeUp4rqVetM8oWsa6fYJeGWYpmSLEHhB5vf0UMoghjEyeN2XT7HitR0crTZP3fEC/DN6Meq06nv+4Rcn/lxJ/Wrgp9hhhEXt+hmUGAw92pj/bWfNKr2u2KvRkvp8wu+T/W8y43t13tQ/F3ms//IDXdu3C1m3bSOzZgCJ87hAIz/qMM87A4sWLMWjQIDRq1Ajnn3++9oEiRN+ECaf/n1XIJSfzib7CQmuTUmSsbsguv2UKC8WlfCpp3jzy2u7cKb4OmVjeu69+/eL/srxseQW07GnwpEUaCT/WctRliBJ7atRvlmi0D5cw6vLkS8z60rUr+ljGsMxEn9UyRIg9Nc9/3KLkuIkX7+GrwAlc3mzdrcVa3n//9P87pV2UXTBPt6on+ni6RmXddsWeGln8JScDjZ8dr32Qk6mcVo4RyJYDB3DDunV4a9UqNGzY0NW6CcIKgRB8ANC7d2889thjGDhwIL788kuxG1oqRZ4Sngge67HyW9xO5E4+185CLU7M91Ojjjzt3Bn9UT4WrGykLIs8JazXiWcjczn1wco9UNZjdR5dYaFzYg8o7cWo7wMJQAD83ZKeOfOOhfGKPt4tG/QidTxJD3IZovbvM+OZ1Y0j/u0LAaiB29E93nROpbizA+96V6mp1l9nyrqs7r/HOyeQR9vLx+655YWSz0rEn5tiz2X2Zmdj4Dvv4PFp09C7d2+vmxN4JEl8RM7fk9W8wfdz+JRIkoQbbrgBX375JT799FOUK1dO+0CzKN8tt5z+f5GbARkdb3eunlFZPILNrB12hq95vBn5WL2daQOc0y9kLl/Nmuzt5vEm9I7Vy3G34qnIHrGoVQSMyhE9bM1TbozPjWLtsni6Tivz86xmu9vZ+1lZP6votNI9GiF3IZOG7tM+gPXZEGSjouyT9Tij+75s2en/Z+2G/DTlWV2WyAVZ9MqyIvRYjqsz/Wb9AwIY3cvJz0enN9/E+f36YdacOQiFQq7VHW3Ic/gef/w4kpPFzrPLy8vGXXfRHD4lgRJ8AFBQUIBevXqhYsWKWLp0KeL0HnSl6FMKPC14PBLeY3mHdHlW9NTCbs6SuiynBZ8ev/8eyJcBAH7Bp7flCE+7rYo+1o6QtXw7no6Zg2p3nh+PR+Om4GM8zm+Cj+c4EaLPqMvgFX12FnQxaoee+BMt9gDjbmbS0H0xMSChFHZ6OCH4AL7pzrx1ONmNapXllNjTo870mwP5fg9LEoasXo2sSpXwwUcfITHRnS1IohVZ8E2d6ozgu+ceEnxKAif4AOCff/7BeeedhyFDhuDxxx/XP3CfzsinHqKFn/xGtjIEbWVFTyUiNpLiHcZ2y6v588/If/vspQBAu91Vq0b+W3S7eTyWtDRra4brYdfb4Y3UJSR4G90zKk95zwIi+NTmKnIlT94y1eWydhUsbdEri0X08XRvcnfJ2+2KEHtGx91+7T+RH7gY3QOs2+f8+aU/czMBQgtZ8PFmr9vpRkV3obxTMwV2ZwAi21xpqiozy4fv9Ts3bcJbhw7h86+/RqVKlVytOxqRBd8jjzgj+O67jwSfkkBOlKpUqRLeffdddOjQAQ0aNNDf+6ROHT7RxzPhRO9YrTex1U2klOfweg5my8rxon5geCfPiEQdEdPzfg4fdr4tMmabw1qFZ+EZs3l36nvIO09Pby6g1YVZZKxMTklK4pubKHITazOU9qhnm26OSoeN/60Fa1doZVN0FpKSxGy2LmPWfZp1l7zdb1pa8Tk83aTTYg8Apr1S2klVH3fnhBNsFXCiZU8zZ5b+zIdTtiJQdqOipprzdKEiuk/5HPnem11zJyKA6nb/c89TpmWVm3I7e0ME8+K332Luzp3Y8uWXJPaIQBJIwQcATZo0wapVq9CnTx/UrVsXffv21T7QiugD+BdqYXkLWxF+8jCilQgdUPwmUW5KLQrlW89L8QfoL4Kijqi5uU6vyFVE7Yo+o9EtO4uzpKVZ886UQs2Ot6IuTy5TjehUThFYUGFhhiiKSDEnGrN61V2cFTFpZfVOJXZ3sFHXy9pNWq3HLlr28sQMnbnxAvC7mNNDZIBA7nLtrGtltesEtM8zWrhYdFRPrw0s5Z2YMo27zngUsTXqnnsi//3EEyX/++677+K2F17ABx98gMaNG4MQC23L4A6BFXwA0KlTJ7z88ssYNmwYNm3ahNbqfeFk6tQp/q8T0b5wuFiU8XhQrMJP6QVobcvAgrIMnpU5eTwQ5cqOgPcCMEg4JfoyMsRFBtWI8H5kW+TdOsPMUzATf6JwM2LoEU5E+dRlmnUzVkVfOGxvfCs11dqiLka/R35s1N0jT1drJ7pHmKO0N5Zuzsp4mVWhJyN3gbx18+xcExfnTlTPbnnCiI+PEHhKvv32WwwfPhxz587FBRdc4HLDCEIcgRZ8ADB8+HD8/vvv6N+/P7Zs2WK8XYPIaJ/6jcq7CTtgPQfJimBUIzrlU1mXn9I/lVjZDsEOosWc2XEZGdbKBdjTI9X3ljUnSIna42Etg3dIu7CQz7tyK7rnIF5F73hITubrdnhEn/Lx5tlsXasMPYGmB6twUz5CPFs7iBZ7botCr6J7rMJIvi9OTPfR6oZECDaWMqxmzLNuV+qV2BMa3dNh79696N+/P+69914MGzbMVlmEPhThc4fACz4AuPPOO/H777+jT58++OSTT4zzq3lFH3Dai2LNlwL4Np8CrOUh2dnLT0Yr6ic6v8ivAtANnBZ9apFntVwZPQ/CzAtiFW1GAsyKeLRal5+IgmihU3P5WMvX65p5RJ9eGSzCj7fLlOtSPr5GEcWgiz0/IkrYGYkusy5IhGAzGqsTta6VVtfsRKa8J2IvXjtV/p9//kHv3r1x6aWX4o477mAriyB8TCBX6dSiqKgIQ4cOxZ9//ol169bp79GnhFf48Xo0Voba7YghO5NX1PDmM1n1eMzq4/FMROx/5xSsIsbsOKWHyCOMrIiohARrXpFeXVYEmFyWlWFqnvqSk9mvkehJLYzHFYBtCXDRW4s6sY8eYC36pi6f53E2qo+nHDspmTx1yV2i6C6Qt0xRiOoCeY8D+LsyOwsYW+nmRIg1ZTlOLWAsw1N+EMXeiRMn0L17d9SqVQtvvvkm4nWOI+whr9L5wAPOrNL50EO0SqeSgE6hLk18fDzeeOMNJCUlYdiwYSgoKDA/SZ7bx0pKCv++X6y9WGFh8R9vHVrtsyP25Nh6WtrpPzfIyCj95wR+XzVA7YmJuia8Hl5GhvUImTo/IzXVXllOiz1lXU7klsQAVi6blVskz88TVZ+VcuRuUe6yeeCpKyOjuB7Wx97PYs9t1N2m06+xlBR73Zy6LKsuQFKS+abwaqJN7DGjI+IKCgowdOhQJCcn44033iCxR0QNUZHSKZOcnIxVq1ahc+fOGDt2LF555RWEQiH9E/7+O7IHsZOGadww/fL1PAar6ZrhMN/iLCyYLTXnlNcjezqs0UA/w5Jaqd7agaVMgF3EsrRBax4gTx3qc+16QFbO5z1Hy4tQ25zfBwocRD0v0Ojx5Z1DaGWendW5ecpz7YqecPj0o8LaHfHWqTxeS/Qp6/W72HMiaifj1NigGVrTma12E4WF9kSp3sLFRpFKJ4We2xu5K7Ezb0+SJFx33XXYv38/Nm3ahOQoSLcPAjSHzx2izovJyMjA+++/j48//hiTJk1CScbq33+X/lPDE5ED7OVNsA4P8wz3aVk4z7AjyxPiduRPC61oYEYGv2ByG/n6Vqyo/We3XNZjtY43iyBa6T2VK3HaOd8PyL8hihwAnp/iZPDTDU2vRI7GWEHrGrAE3+2IPT3UXZ/fuz+76HX7TqD3ahb9+pNfz6mp1p4vM/dA73e4JfaU/YZWH+KZ2NOI2kmShEmTJmHjxo147733kJ6ezlYWYRs9O7H75wS///47Ro8ejQYNGqBs2bI444wzMHnyZOTn50cct337dlx44YVITk5GnTp18OSTTzrTIA6iKsInU7NmTaxbtw6dO3dGSkoKHrn5Zr4CeIaprUb7eIeozeoxs27RUT/g9FsvHPZP1I3V6zlyRHzdlSuLL5MV3uFl+Xgej8nuwiw80UKrHrmI6F7AcWKlTjtbLzgFb6RP3UXaPV+NXsTPCbGnh173d/RocEa8vYrY6cEj7li7YbO1q0QuWKyM9jkp9AD28uW0UyOblK+BG2IPAO677z4sWbIEmzZtQs2aNdnKImKOnTt3IhwOY/bs2WjUqBF27NiB6667DidOnMD06dMBFM9N7NWrF3r06IEXX3wR33//Pa699lpkZGRg7NixnrU9KgUfAJxxxhlYv349unTpgrJly+Lee+/VjurpYWW1TZ70S6vbImgJP6uTWZR12/UG1G9pvwhAPbwUZ07B6m3Y9aiM6mERXGbCz6rYkyd4OZV+6VROUxTiRmon63lGXRtLN2xl+ivAt+WC1bpYidVxMBneboFnG1OeuniSbbTKsDq3z+p8WVacSOGUEypYnolEMKzZAACJ2gtfPfLII3j55ZexceNGnHHGGWxlEcIIUkpnnz590KdPn5J/N2zYELt27cKsWbNKBN8bb7yB/Px8/H979x5dRXXvAfybB0lASoiAhmIAbUvCAgwQfHAFrKUEKBdKQZBAAZGnUrVYbSIo9Sq3NOAFH7XUiM9oiVZYPFoiCb6oFkSUEHQFFStLBYL1lRQwBMy5f8SByXAeM/sxM+ec72ets1rJOTOTk3ns7/z27P3YY48hJSUFvXr1QlVVFVasWMHAp0tOTg62bt2KH//4x2jdujVuueUWZ6EP0FvtA+SDn+zswgbR0UFDHVXRFgBjRaiWQqiQJ/qMnvVzooOkWNctE/asy7Uu2yrOQxng/PSmeuoF859KdPmhQp+TC76KZVg/Z3fKBdl1qeSHcOaFYKdHVfeOZLoPywxSLLp+nSN86niv7bAXwv/93//hvvvuw8svv4ycnBypZZH/1FvatqmpqUhNTVW6jrq6Opxruqu2fft2DBkyBCmmEZSGDx+O4uJifPXVV8jIyFC6frtiOvABQJ8+fVBRUYGhQ4ciNTUV8+fPFwt9gD+Dn4qumjoGerGyXlFFbn+TPeaWgpMh/kQHZpF9oMVo6YouJ1wLxW74iwKtcNL21Ax+ECpMhgs2KkKfaHAyn4JlwleoR2QNwcKfH8JevNHZdbRNGzWnGzeDnsj6oirsBanuPfTQQ7jnnnvw0ksvoU+fPvaXRUoFAurPgcbwHVmW0fh/97vf4a677lK2nv379+PBBx88Xd0DgNraWlx44YUt3nf++eef/hkDn0Z5eXkoLy/HyJEj0djYiAULFjT/QHW1z7rHijzMIhr8RD8baqAXg47wZ739DbACqIrs4C9OWimqRi5wawAg875ujJJgl0zLK4Y4DWTGKdDpVy0a+gC5qUxll2N3sBXD118z7LnFjWcDzZdOmQqhzKBEIp81ApbdbXbaOULHtAuyYW/FihW4++678cILL6B///72l0VR5ZNPPmkxD1+o6l5RURGKi4vDLqumpqZFFfjgwYMYMWIEJkyYgNmzZ6vZYI3iIvABwMCBA/Hiiy8iPz8fx48fb36mr1Mn+WpfpKu10+qgwe3gJ7IslS2VSOOOU2gqh+ez08VTZUCTXZbMHH3m3zHGWt1O7jXpGGRF9quV6T7arp186DOWA9hblujuYz7tsdODWioCnp0AJDsAi91l6fqsNWRF6hThdVUPkA97S5YswcqVK/Hiiy8iLy/P/rJIC53P8LVr187WxOu/+c1vcO2114Z9z0UXXXT6/x86dAhXXXUV/uu//gslJSUt3peZmYkjR460+DfjvzMzM21svR5xE/iA5krfK6+8gp/+9Kc4fvw4lixZggSR0Ac0n52c3uoGvAl+oT7v9CGXcMvSIdgVm62i5gdtdAeUYC0V1ZU4L8JeKMFaNqLfcYw/GxgsjIVr1IoOyOKH0GcsCwi9PFWHovW+DU919nkxsqfKWWP8EPSCsYa/aA97gUAAixYtwmOPPYZXXnmF3TjptE6dOqFTp0623nvw4EFcddVVyMvLw+OPP45EywVw4MCBWLRoEU6ePIlW3+2DlZWVyM7O9qw7JxBngQ9ofqZv27ZtGDp0KI4fP44VK1Y0hz7AefATeVZPNPiJTsRu0FH1A9S1quwKN+54LPJ6qgeg+TtXHTC9CntOWkdOxwWPI067qnkV+gC1wc+6LJ33XcynusREPSNoRiPRDg0yjynLjk2lekBimc+LnM788myfbNhbsGABnn/+ebz66qvIzs62vyzSKppG6Tx48CB+/OMfo1u3brj33nvxb1NuMKp3kydPxv/8z/9g5syZKCwsxDvvvIP7778fK1eu1LNRNsVd4AOA7Oxs/OMf/8BPfvIT1NXVoaSkBMnJyWJdPAGxVondflTWvVZV8FN9+9vgdgA0WFsB5itsNLSUnAa7xET9VT5dMznLhj3zhO7Rzidh0mm3Trfm2lNBR7XPzd7mxqks2CkiGk5tovwykbyKjg2yodFK9H5X3IQ9i5MnT2Lu3Ll4+eWX8Y9//OOsATXIW9EU+CorK7F//37s378fF1xwQYufBb4bKSY9PR0VFRWYP38+8vLy0LFjRyxevNjTKRkAICFgbGEcOnToEEaMGIGuXbvi2WefxTnnnNP8A5HQZxAJYqFaTnb2WBXjpOsKabr7QIUj+rS86haU7gqdju8yXEtLZn1GvyuZZUSa1F3ks+HItpDsPuNrk5NROu0GMuNQcXoqEQl8Tqp81kNYtnOCqtOcdbt0di7wy2lMF/Pp0U+XBR3jSKlYZqjwFen38lvQc/p+x2HPVN07duwYJk6ciE8//RTl5eWcVN1H6uvrkZ6ejgUL6pCaqvagO3GiHitXpqOurs7WM3zxIC4rfIbvf//72LZtG8aOHYuhQ4fib3/7Gzp27Nhc6QPEq32AXDdPkdEDZYKf+WBQGf78Uv1zItomolJZ6bNzS110feaHbIzWidPlhAtskUYJUfnATTjWVlKklpjodxFBYqL+WShEByEOF9x0PAtoLNfYBUWrc6G2zThsVAc/mb+fk9OYH+5xeV2s19ke1Bn0DKHG2hLtQBArYe/zzz/HqFGj0KZNG2zbtg3p6enOlkWuiKYKXzSL68AHAO3bt8cLL7yAqVOn4oorrsCWLVvQvXv35h+KdvEExLp5ykymriL4AeoffAm27MRE/c/cqZo1NxrIhAaRAWCcrC/caAqawo6y0Tfd7G5pc191skc7DWQ6JlYPxhrcnI5iKFMlBJp3Saehz842qgx+bp66ou0elyp+D3mA8+Blvuy5UdUTWY9bYe+jjz7CiBEjkJubi9LSUuWTbRNFm7gPfACQlpaGsrIy/PrXv8bAgQOxefNm9OvXr/mHblT7rFd3mQFWVAc/QE/4C1ZNitWBV9xit/qmqoUXKbDZHTrPTvATrdAlJsbWM38+I/osn0ygsRP6Ii3fbrVPZDvNpzaRU1q83Kdym/F30XUaUBkgZQYgdtKjXGZ9OoMeIBf2du/ejZ/97GeYMGEC7rvvvrNGUSR/YYXPHQx830lKSsIDDzyArKwsXHnllXjmmWcwevToM2+QrfYBLUOYnROQiuBnXa8IleEv3O/NccnlhQp94UKebKUt2DpFxkkPtR2qxiyP4Xn3ooH565fpnhnu807bdeGqfbJtxMTEloedna6TbJeq49agL15V86yCnSbtnPJiLext3LgRU6ZMwZ133onbbrsNCQkJzpZFFKMY+EwSEhLw29/+Fj/4wQ9QUFCAe+65B7/+9a/PnDBkqn1A85lV5Ha4TPAzVzhUTMlgbsjrHqpONgDGU7dOMyOAuTnyp/E9t28vH6bMwU/Xs3fW/cK6zW71h/IZlQMO25mwWlXokznMrdU+FUEvmEjhLx5PVSq5OaqnqpDXtq386dLuKdJ6P82NoCfyGdGwFwgEsHLlSixevBhPPfUUxo0b52w55BlW+NzBwBfE+PHjkZWVhTFjxuD999/HAw88cHryRABywU90Hj7AeXBT2VU0GDfDHxA6wETLkHS6Wb8fkTOeaLXPOiiL7NnW3KI6dUpsGSJz7sUYt6dPcGt+PkP79up6nLdv37z9Mqcyu7+/NfzF6O6nldvTNphPcSoak8bpSfR0KdPL3Y3gJvIZ0bB38uRJ3HjjjdiwYQNefvllXHLJJc6WQxQHGPhCuPTSS7Fz507893//N0aNGoW//vWvZ4/wJNPNU3fwizTcnUF2BASD2+HPLN4mqDJEquDJVuxkBmWR6SZqvX2ebDpN2Q1/MpXBUK2UOLllaLfKZz4diHZeAMRCn3mXUDHPnvl3ER3NUzS0nXfe2f8WD6cvQ6TDKtRpTvepDQh/ehNdf7iul7pmlzGIjkOluwsnIB726urqMGHCBNTW1uKNN95A165dna+cPMUKnzsY+MLo2rUrXnvtNRQUFODyyy/Hhg0b0KNHj5Zvku3mqSP4OR32ziAaIK28DH8Gcysh2LZHU4tKZpAVmeAVrlXjZEAWJ+uO1FdKJPypEmw/ipOrip3DX6aaaCf0JYe5WokOLmznHpaOgV0ifdZ6yEfT6UqGH0YMFXn8OBIn3S5DnVK8CHoiA8C4Gfbef/99jBkzBj/4wQ/w+uuv43vf+57zlZPnGPjcwcAXQbt27bBx40bcfvvtuOyyy7BmzRqMGDHi7DfKVPsANcFPdnAW1V0+AX+Ev2AitSzcbGG50coRvSVtDYwqB2OxcvpgjJEArMHPzZaRzBjoPuanLobhgp6V3WqfyP2rYKcvHWEvmFjqza6i57lqoqe1SNsucioKdrr0OuwB4fdXY1vdDHvl5eUoKCjA3Llz8fvf/x5JSUnOV04URxj4bEhKSsKyZcuQm5uLq6++Gr/73e9w6623nj36k2y1DxAPfioHZ7FW/VS1/oyHZAx+CoBWoiFM5Ltyq8Uj0w/J+D5kqmrhgp/MKAjmRNCmjT9akHYItI6S8C2+hbOGjUjlTbRap6rK5yTkWUUKfaKnM5WDu6g6pfrpvhXgjwqdXSoqeaFOqSrGmmrXzptpREUGcxH5TBK+/e7/OTgYkpIQCASwfPly3H333SgpKcHkyZOdr5x8JRBQf9kOBNQuLxYw8DkwZcoUZGdnY+zYsaiqqsLq1avRunXrs9/oZvAL1nIQfUYvmLZtm1tfKkZGsG6r9YqrKwDG62idwTgNfdaREZKT5btSWoOf6nHNRbuxxliVzisyc/O1a6dm8vdgXTxVhyzRWWPcnlTdz/eg3KZ64BVjmV9/rXZAYfOALgadXSoB8UGGRdZ3Juw5+VASvvnmG8yaNQvbtm3Dq6++iry8POfLIYpTDHwODRgwALt27cL48eMxePBgrF27Ft26dQv+ZtlunkDo4Gf3Ki5b9TNuteueiB1wLwDqJBIuVYxq6XR9QOh1Rhr+LlRXSqeM9ah4Fi9Ya8WtefdiNCi6McJnsENFZGqIUNq1U9tD3Vx5FJlg3e37Tn4Pe7rXpeN5vFDrkT2NRQqMkU7bMqehaAh7Bw4cwPjx45GWloY333wTmZmZzpdDvsRn+NzBsoeAzMxMvPTSS7jkkkvQv39/bNmyJfSbO3U6U/GTYZxZExPFruJt2zq/BRmqX1W7dmdeOrVv3/IVLWSelXOTeZ3nnnvmZZdovzvr3zM5+cxLhJ3WinHchDp+YjS0eSXc1xnuz2BQMaWhsUupOH1E2j3tHD7REPainZNLhsz3E+wSKHr6cnppDnbsyFT1ROfjczPsvfDCC8jLy8Nll12Gl156iWGPSAArfIJSU1OxatUqDBw4EOPHj0dhYSEWLVqExFBXEZlunsYyjTOzzG13u9097V697Fb+VLQ+grWmRPtV+ZHblT7zAzeit6edVvsitcKcLk80GVjnFHB7xE+XefFMnvmzIoe/8ad1Wu0Ldeoyut6pWFY4xmnKODV5fS/HiWi7K+7mfUA79zed9HiX7QIqMoJmqM87IRouRcJeU0ICltx9N5YtW4ZVq1Zh6tSpYisnX2OFzx0MfJKmTZuG3NxcjBs3Dm+88QZKS0uRkZER+gN2g1+4K7b5jKsi/FmDn+itSje6fVrZDYFuP8cnuj6doS/ciAqyz+ZFCmpOW2Z2gp+KMpB1fZHWacXKYFDG16nikLPbxdPOacvJHHsyA8cAzacm8zKicURNP7Ge6lXco4l0uhXpxBLpVKriWT/racdJ7/VoCHoA8GVdHaZOnYr33nsPr7/+OnJzc8U2gIgAsEunErm5udi1axcSEhKQl5eHt99+O/KHgnXztNPXyUq0b4WZuU+JbCvH4Fa3z2DM/aucdlNUSWZmYBU6dmz5ikTF3z7YMmRuw4fq7qkq7AVbjnmdMl1NY0Sk00u4r0vnn8m6bifCdflT9Se3LsPp4SgqFqp7dk7hOg9L2UtXsG0TearCys7lPlwzIlrC3tt79iAvLw9JSUnYtWsXw16MMyp8ql/UUny3ZBTKyMjAhg0b8Ic//AGDBw/GsmXLcMMNN5w9dYOZudon28iXmcfPYL7CqRo1AWh5tfZqIBbr7XYrXbff3ar0nXfe2esVoWJAFmMZ554LNDaKLyfUctu2VbNcJ60f674T411Aw3Ha0FY1CIt5Oaoa+9ZunrrueQSjY3L1aAx7Xt2Ps1J9b1J2WgUz0cCVmCh/P9jNsBcIBPDQn/98+hGZoqKi0I/JUMxgl053MPAplJiYiIULF+KKK67A5MmT8corr2D16tVIT08P/0Ej+H3xhfxGiAS/SLcCVYY/L0fiPHUqdGvMbxNaAWeHPmuoc/JZp2S6eJpbcCkpakOfcYs8JaX5f1Uu24nk5NAtITvfmwddQZ08j2c9TNq2lbuXpCr0tW+vdtRNY5kpKWoeB5YJjKGmUPjsM3uf93O7ONTp1ev7JsblSPV2yM4QY/AqrMl+ViTs1dXVYeacOdi+fTvKy8sxZMgQ8Q0gorMw8Glw5ZVXoqqqClOnTkX//v3x3HPP2ZsvpkOH5v91M/jZaSWIjp4ARG4BRctUDKITWpm5fftdRegD7LeGQt2qVxXOgvWHMpbtdPkqn/+zirTPe93KhTe9VEVDn/lPDLScoF2Wedki0yyYyX6noU4P4e7z2A2D4ai4Ey7SRdWLwyBcN17Z7Ql3SnF6KvYy6Ml+XiTs7dq1C9dMnowePXqgqqoKnVSMbE5RgxU+dzDwadKpUyds3rwZy5Ytw5AhQ/CHP/wBv/rVr8J38TS4Efxkhs0D1Fb9zMxXZL+FP68mcJcJbioGgQnXGnLSH0sm+Nl5+MVu+FMR9mRaRB4+EyizahXz8tkNfdaQZyU7vWik5VtH2gxHxZ9T9LRihEGZ05LM6cHvjSonjw+Lhj67pxM71T4VhX/PqnpJp/+f7c8EAgH88Y9/RFFRERYvXozbbruNXTiJNGHg0ygxMRFFRUUYNGgQCgoKsHXrVjz66KPoaPd2qI7gB6h//ilUC062JWS9WqvuyxVNZEMfoLbaJ/PgjZPgJzrKgWjlL8apqGToEimEBeO02ud0HZGCn5dhT8XnYzHsyY4RZef4kLlnFOx07HXQk/18kv2Md9rnn3+O6667Drt370ZFRQWuuOIK8Q2gqMYKnzt4K8UFgwYNwp49e5CcnIyLL74YL774orMFdOhwJvzJMIafE51tNRRjeTq7yQFqRt6Ube162ULysmUINPfbysxsfqmQkhK+Ba5i/HLreryu7kU5Fb+6+U9g/GlEwp7BzuiHsusIdtqJ57DnJ04mW5el8jJn7LcqgppsVc/tsLd161ZcfPHFaNWqFfbs2cOwR+QCVvhccu655+L555/H6tWr8fOf/xw33HADlixZghQnrRCRil+4VonMs3mRlulGVSUaJ2KX7RYq20XT6edDVaNVDsYSrOKnKuyZWVuDrPwJke3aaYQv1b3Cg1X7ZEJeKOb7HTJjOXl9/yZaWU/7qg9ja5VPx31M8zK9nALU7aDX2NiIO+64A3/6059w3333YebMmfYec6GYxgqfOxICgUDA642IN/v27UNBQQGSkpLwl7/8BT169BBbUKjgJ3PrWUUrLFgrS0V3TNHWmzUERvuteUD+bBbu805HYFDZ4jJCmeo0YLfVZud3kW1pKdj/vnXwnEwwsoVuu4Ev0iGr41Fg41SjOuxFWp6T8BfLpw+77OyDdjpy6Lhvo2rmFzOnwTHU9+N10APEwt7777+PgoICNDU1Yc2aNcjJyZHbCIp69fX1SE9Px6RJdUhJUTsvSmNjPcrK0lFXV4d2XswH7UNxeo/QWzk5OdixYweGDBmCvLw8PPzwwxDK3daunipmDJbtnhmqVWT0X1HxTJZT1q6gfjj4/dC901iG7IzQKlrW1v5YKvtOOVmOuY9hsN8rjrtzmoX6GiJ9fVaqqydt2jQPZOJkBhM77Pwudg8jr8Oen4n02lcV7K2XKFXLFT2VGZdz8yXd6+6fgPOwFwgE8PDDDyMvLw9XXnklduzYwbBHLXDidXewwuexyspKzJgxA7m5uXj00UeRaff5qBMnwv9cdjg9M7u34UWvkHaqf368Xe+HlpvM5OwGlaN4iNwWt/vgjUg5SGWiSElR813FQIUPaD7FqDwsZap94f7MMoP9qvr9Pv9czeHu9ilD5zJU3ncTrcbZvf8osnyVp55gIc3pMexFVe/w4cOYNWsW9uzZg8cffxzDhg2T2wiKKUaFb8KEOrRqpfZG/MmT9fjrX1nhM+MzfB4bNmwY9u7di/nz56N3794oKSnBuHHjzrwhUrALRWQC9lDsjMgpO+qCwS8jcYa7Ra9qEnYV0zwEeybPaXlD5dCNTkbgdDrCgtNpQXQ8fBMurPl1+MsgnP7Jg/3aqru9OZ2nz+6f19jNnAQ/1feXwt3HUzGXnl1uhr1InQVU7jtOHikW6WRid/mqTznhQlqoU5H1uFbRKUEk7K1duxZz585Ffn4+9u7di4yMDPkNISJhDHw+kJGRgb/85S8oKyvDrFmzsHHjRty/bBnS09PlF64y+AHBB3pR2TryY/izMrdkRKo15hZeuNDnJLipmGsPcCf4qRhKL9KAQ6pbXnb28SgPgyK7ssqxe4DIoU/mz2o3+KkOe5G+11CHuTUI+rErp0gPcLepHOw31L7uZtCLxNjfVE336TTs1dXV4aabbsKmTZuwatUqXHPNNWo2hGIWB21xBwOfj0yaNAmDBw/GjBkzcPEll+DRVavw06FD1SxcR/AzWka6JmE3X6nbtPHfROyigrXwdFT6ROgMfjrGTA9W9dM9PYgI43sV+Ts7+Ls6WbyqBqEboU/lnzRU8HM76EViPk04+buGqhgG241EnnWMgnsXWgb5BVru634KeVYqjm3R6RZmzpyJnJwc7N27F126dJHfECJSgoHPZ7p06YIXXngBDz/8MH5xzTWYPHkyli9Zoq4PsvmqIhr+rC0jp13tnDKWbw0MfgiAp06pubrq6t4pSlU3T+vICyqfLbVq0waBtNYAgISGb9QtV8fY/k4E2S9UFHtU7i46Qp9uugaEBdSFacD5aSFYiFP1d/Zz2DvvPH33Hs3MlyEV+7zfgh7gPOzV19fjtttuw5o1a1BcXIx58+ZxugWyjRU+dzDw+VBiYiKuv/56jBw5EjNnzkSfAQOwevVqDBsyRO2KnFb9nA67p+LqG67lF6xi5IcQ6CWjdehltS/c8HqqK83fMYJeqP8WDoBeh7040zrt7DHEvmnQ03A0dkVzg1vFNJ5ehr14EaqzgNPnQO0KdRly8siyVSwEPaB54LlZs2bhhz/8Iaqrq9G9e3c1G0NESjHw+Vj37t1RWVl5eiCXgoIC3HvvvWiXmqp2RZEa4aKNXt2Vv2C8CIF+qvIZ3K722R1D3aAw+FnDXaT3KK3+OeHD1rvXVb5gAS/Ye1SGvnANbfNu7DT8qQx6gLrdJRbudDvpDa4q9DmdzQVwZxpPKy+rerfeeivKysqwfPlyzJkzh1U9EsIKnzv81wKhFhITEzFv3jzs3bsXH374IXr37o2/b90KqA59wNmT9NidTMsOkfn9VPXrMuZ4s8715kcqz1IqA0awOR6dTpgVjLHPCbSCAmmtbYW9UJ+L+HlW9xyL9JW1Tgu0eNnl9P3BON3NnOze8RD23OzOKXvKFr10qJiGNtwUnqqrel6Fvb/97W/o3bs3/vWvf6G6uhpz585l2CPyOVb4okT37t2xdetWrF69Gr/85S+Rn5+P+++/v3nePtGpG6yMq4f5iXeVD+YY7FT+dD7E07598CuvTH8uVVU+wLeVvhNpZ0aNTU3RMH2ng6qfSNCzu6yEhm9wIrE1UvGtsnX4mcoqH3B2pU82qJkZy3JS8VPRyLaGPuNU4degF0103YOzW+nTdakxjoO2bdWGZZX7nNOgd/jwYdx8882orKzE8uXLMXPmTAY9ksYKnzvi8PISvRISEjB79mzU1NQgISEBPXv2xCOPPIKmVq3EKn7GLcJwtwrD3bJUwXxL1bjyejXKovmWvvXlNo8rfSfS0s96tfh5o8aLfJhb4aJVPSdOJDYv/8SppNMviizp1InTr9aJJ5RU5UKJtFyJwrEt554LdGh7AulpzS8VVIc9vzV4rKfUzEz9HS5CXUpkK3l2pKScuXdqvdSKhDaVFT3AWdhrampCSUkJevbsicTERNTU1GDWrFkMe0RRJCEQCOi5IpN2f//733HDDTegW7duKCkpQU5OTvMPglX8VN+K1lH5+46WkRatVLcEo+WWv6UVaA1yIrRU+6waGrQHPUBst05NtlEJ1FC6CUBtY8tuQEg65SDguNAt1lzt0xXwzBIa7f/+dQ32bsT5PezZrVA5vTemc9Beg5uztcju7sG+Z9WXFKdVvZqaGsyZMwcff/wx/vSnP2HUqFFqN4jiVn19PdLT0zFqVB1atVI0Ev13Tp6sx9//no66ujp1o9xHOXbpjGKjRo3Cu+++i8WLF6N///645ZZbsHDhQrQxrmwnTqi/WhjMVzZF4U/bSItu+K6l47TyldpQF/4NDrp3Hkv8XuQ3JarfJYzfWUfwq6s3vs/WwHe7ma5zt+huHKoCaCsI+pijYBdKY6P20Nc6LQDU1yPQTv7mRThOgp4hVPXPHASjrRunFx0eRDVXmZv/v67RXlXu3uZzs539wmmwdxL2jh07hqVLl2LFihWYN28eysvL0VbXBIcU19il0x2s8MWIt956C/Pnz8fhw4exYsUKjBs37kx3i29dangKtphlKjfCIVBjKUBHd0fVAyboug8AqAl+Z4JeeKrCn8aCtePvOinR3vdnt8KX0OTg+Nc1Mofq0FdfH/JHqoOfSNCzzcH3/Z+mc2y9z05Dx2k31ECKhkHCvqOyymenC7Gq4KfrPoaOGwBOel4GAgGsW7cOCxYsQJcuXfDQQw+hf//+6jeK4p5R4Rs5Uk+Fr7ycFT4zBr4Y0tTUhCeffBKFhYXo27cvHnzwQWRnZ595g1vBD7DdglbdTc92AIzzwGfwU/CzG/JCET2n6wx7gL7vOEnHoDK6h2KUaSWHCXmhyIQ/rUEP0PNda9rZ/Br4ZJ4RFQl+OovVuiq9TsLevn37cNNNN6GqqgrFxcWYPn06EqOtBE1Rwwh8w4frCXxbtjDwmfFIjiGJiYmYMWMG3nvvPWRnZ6Nv374oKirC0aNHm9+QlHTmpVuEwV50Db5ha8h9Nx70UUxXaNDZvj/RmGAr/NbVJ0iHPaA5D5hfdkRr2NNG9wY7/cKd/kEtEurrTr8cfU53VY9h7zS7p2PrlB6yAwLZXYbuccsSE/VV9eyGvaNHj6KwsBD9+vVDTk4O3n//fcyYMYNhjyiG8GiOQRkZGXjwwQexY8cOvP766+jRowdWr16Nb80VPreCH3DWFdONwTcM1gDoxrp1DWKiM/R5EfxUBb1QImUF3WEvankZ+kRSu012gl9C4wnfdOGMdyrDnZ31WOkMeYA/gt6pU6ewevVq9OjRA//85z+xY8cOPPDAA2jv9/lqKaYYz/CpflFL7NIZ4wKBAJ5//nkUFRWhdevWWLZsGUaOHBl8OGVNXT7DDWvvxdzWodqR6e3UHQo6py3Q3WbU0d7//POW/+31s/+nTunfBt25SUuXToMbwcQ4+BUHOyeMLp/au28Cer9TjTub7gof0NytU2eos+ObhgS0TmzeD75N1vM76y6Y2Q16gUAAmzdvRmFhIRoaGrB06VJcffXVnGaBXGV06Rw2TE+XzspKduk0Y+CLE42NjVi1ahXuvvtu9O3bF8uXLw/9ILZk8JOZt0x3ABRtW4qEwXgNfdZwF47bwS/c96Z6W6I68AF6djKje7mZV/1eg21Lx47q1+Png9UG1YEvbJXV7YaZzTK/bAD0S9ADgLfffhu33norqqursXjxYsybNw8pXtx5pbhnBL6f/rQOyclqj/1Tp+qxdSsDn1m0PWFCglJSUnDzzTdj+vTpWLp0KQYNGoTx48fjnnvuQffu3Vu+2dzV00b4UzkxtfX6q/I6JFNICNf1UGVl0K7kZL3tSGPZdtqSTgKelbnNrTP82fmugrX/AbHtirpn94KR2clCfZnBONnZVAi3bcF2ZpkQGOVhT5TTZyZPq6/XH/oE+nJbpyixGwD9FPQOHDiAO+64A+vWrcNNN92EdevWsesmURzx59WCtGnfvj2Ki4sxf/583HHHHcjJycG0adOwcOHCs4MfcCb8mYKfyoAXiaoAqLPXWKgwqHtsGN2hD2hevrlNKRPuItER/lR8PyqDYMxxEuwi0Rn8ZLYz1E4fLgi60SXWhbAXqbonHOzCUR36NDysG2yOSnMI9FPQ++ijj/D73/8epaWlmDhxIvbt24euXbvq2zgihzgPnzsY+OJU165d8dRTT2HhwoVYsmQJcnJyMHXqVCxcuBAXXnjh2R8wV/08HHdAJAB69YhQQ4O69nCotqWT0FdbK7cNbg5uKhv+3Ghvh/rbtmmjf90A8C2S9HfrNHYwlcEuElXBT/c2h6oGxtjALFpCXSQyoc+j0ZhaHIsOG5uBRPs3Ue2GPXPQmzBhAvbs2dNymiYin2DgcwcDX5zLycnB008/jTvvvBNLlixBz549wwc/AKmmm74nXBjrIJxIAdDD8SCUslNZUzmBcbjluz2rhZPw53Vb2wh7KtqcyrozR+twpCLBz81gatXQAHz6qdwyMjPtvS/Sd6KoFJ8AeFfKthv6vNy/FVVZE5rC37gJJCY5Cnr/+7//i6effppBj4hO47QMBADIzs5GaWkp9uzZg4aGBvTs2RMzZ85ETU1N2M+lpp55+UFjY8tXPHEriDU06A+XoRw9euZl5Zewp4p1Xw72svcmBdq0ca90aRVp3pBwO4UbVB4QtbWRX19/3Rzowr1iRbg5Vbw6yScnn3m5Icle2KupqcHMmTPRs2dPNDY2orq6GqWlpQx75HvRNi3DmDFj0LVrV6SlpaFz586YOnUqDh061OI91dXVGDx4MNLS0pCVlYVly5bp2yCbGPioBSP4VVdXIxAIoF+/fhg9ejReffVVRBrQ1Rz+vAqA5rbf0aNn2orWV6xys/pmtHO9Cn+HDp15ef039SoLuc7LX9R68HoZ8gBvdn63y+t+8eWXza94CXmArblyA4EAXn31VYwePRr9+vVDIBBAdXU1nnrqKfTo0cOlDSWKL1dddRWee+45vPfee1i7di0+/PBDXH311ad/Xl9fj/z8fHTr1g1vvfUWli9fjrvuugslJSUebjWnZaAIDh8+jAcffBCrVq3Cj370I9x6660YN24ckh1e+HR2/VTd5lN5Tfey6OAFXe1R0a65552ndjuC8TIDtcY33qz4+HH31vXZZ5Hf4+aw27F2cEXiVpdOkbs2OrfNqxFQI4Q8oHnC9HXr1uHee+/F/v37cf311+NXv/oVOnfu7MIGEqlhTMswaJCeaRlee82daRk2btyIsWPH4sSJE2jVqhVWrVqFRYsWoba29vSUJ0VFRVi/fj327dundVvCYeAjW44ePYrHHnsMK1euBAAsWLAA1113HdoKXnBlA6AXQUrk+u91AcIrsm1Tnc9eqgyBXlf2PAt8gJ7QZyfc2aHjAh/NB5QM1aFKVzlexXZ6Oc2FjaBnvQ7fcsstmDFjhvB1mMhLbgS+Tz75pEXgS01NRarCLmhffvklrr/+ehw8eBCvvfYaAGDatGmor6/H+vXrT7/v5Zdfxk9+8hN8+eWXyMjIULZ+J9ilk2xp27YtbrrpJnzwwQcoLi5GaWkpLrjgAixYsAD79+93vDyRrp9eP6oTqnuo190JQ0lL866d6LS7Z319y5dOn30W/OWU12HPc7LP9an4I4Ri3aFkdiov+y0D0duN0+2TpcgFwtxV08uKXoSw98EHH2DBggW44IILUFpaiuLiYnzwwQe48cYbGfYo6ul8hi8rKwvp6emnX0uXLlWyzYWFhTjnnHPQoUMHfPzxx9iwYcPpn9XW1uL8889v8X7jv2tlh0uXwMBHjiQnJ2PixInYuXMnysvLceTIEfTq1Qs/+9nPsHnzZjQJPCkbLvx5HfLs8nMQ9Lq9GKy97GbAs8tJ/oj7sGcW6ctQlbBlOdnpvH5A1eD1wQuEP/n69S6Y9WFuM68DHnAm5IUJek1NTdi8eTNGjhyJ3r1747PPPkN5eTl27tyJiRMnOn6sgigeffLJJ6irqzv9uv3224O+r6ioCAkJCWFf5u6Yt912G3bv3o2KigokJSVh2rRpEce58Bq7dJK0w4cP45FHHsGf//xntGnTBjfccANmzJihpGz9xRcKNtADOtuzor3VVLVdVfxu7dvLL8Nt5m32y/Z72qXT6sABr7dAnrK5MBTwQ9gDWoZjNx6K1UH2Do2q/cJGt82vvvoKjz/+OB566CF88803mDdvHubMmYNMu1N2EEUJo0vn5Zfr6dK5Y4f9Z/j+/e9/44sIDc6LLrro9DN5Zp9++imysrLwz3/+EwMHDvRtl07eIiJpnTt3xuLFi3H77bdj3bp1+OMf/4g777wTBQUFmD17Ni699FIk2J1EyKJDh+D/7tcg6EbhQrYi9vXXSjZDinUb/BKgrEJtl8rvUOZ3/wat5UOfql/G+ov4YUeLRMc2qghFfn0I1jjB+TX46Sq9i44MajQObYy2uXPnTpSUlKCsrAx5eXlYunQpfvGLX6BVq1Zi6yaKEn6YeL1Tp07o1KmT4LqaV3biu8EpBg4ciEWLFuHkyZOnj9/KykpkZ2d7FvYAVvhIk6qqKpSUlODpp5/GhRdeiDlz5mDKlClor7ll72UQ9KKXmqhoaIt7EQL9GjzD6YzDXm9CZH7Y4fywDXZE007oZfCLhn7VrVuH/fHXX3+Np59+Go888ggOHDiAKVOmYO7cucjNzXVpA4m8Y1T4Lr1UT4Vv5071o3S+8cYbePPNNzFo0CBkZGTgww8/xJ133okjR47g3XffRWpqKurq6pCdnY38/HwUFhbinXfewXXXXYeVK1dizpw5yrbFKQY+0urYsWN47rnnUFJSgj179mDixImYM2cOBg4cKFz1E6EzCEZT0DOLlvavmY62cDS1r4OJisBn5cbOxx3cPTqDXzQEO6swQS8QCGD79u0oKSnBc889h9zcXMyZMwcTJ07EOeec4+JGEnnLCHwDBugJfLt2qQ98e/fuxc0334w9e/bg2LFj6Ny5M0aMGIE77rgDXbp0Of2+6upqzJ8/H2+++SY6duyIG2+8EYWFhcq2QwQDH7mmuroajzzyCEpLS9GlSxfMmDEDU6ZM8XTuIJkgGK1Bzyoa28UG0fZxtLarg4nKwGemageMxx3Zj0TDXzQGO7MI1bzDhw/jmWeeweOPP46DBw9i2rRpmD17Nvr06ePSBhL5SzQGvmjGwEeuO378ONauXYsnn3wS27Ztw7BhwzB9+nSMGTMGaT4ZqCBcEIyVoGcWzW1lq1Bt51hqU5tFfeCzsrMzxsMOG+1CBb9oD3ZWYYJeQ0MDNm7ciCeeeAJbt27FkCFDMH36dIwfPx5tYu17IHLICHx5eXVISlIbyr79th5vvcXAZ8bAR576+OOPUVpaiieeeAKff/45Jk2ahOnTp+Oyyy5ztcunXYdjrG0dDXbtkl/GgAHyy/CrmAt8Zkawi6WAZxarYQ+Q/938/N1E6LL5xhtv4IknnsCzzz6LTp06Yfr06Zg6dSq6du3q4kYS+RsDn7sY+MgXjOcannzySTz77LPo2LEjJk2ahEmTJqF3795eb55WsRYiVQQ0v/NTgPRl4PPbTtCxo9dbcDa/BRq/bY9Kqn63MEHvnXfewZo1a1BWVoYvvvgC11xzDaZPn+768+pE0cIIfP366Ql8u3cz8Jkx8JHvNDQ0oLy8HGVlZdi0aRMuuugiFBQU4JprrsEPf/hDrzcvqsiGSb+122OZTIiUCn38I4uRCZF8+NT/jO86TMjbv38/ysrKUFZWhn/9618YM2YMJk2ahBEjRvjm8QQiv2LgcxcDH/na0aNHsWnTJqxZswZbtmxBnz59MG7cOIwdOxY9e/bknVMPbdrk9RaQYTT4x/ANP5V/49xhdIbKMcECgQBqamqwfv16rFu3Dnv37sWIESMwadIkjB49Gm3btlW3MqIYZwS+3Fw9gW/PHgY+MwY+ihpfffUVNmzYgPXr12PLli3IysrC2LFjMXbsWFx++eVITEz0ehNJIQZK+xj4HGIos8/DUZT9oKmpCTt27MD69euxfv16fPLJJxg+fDjGjh2Ln//8555OpEwUzYzA16ePnsC3dy8DnxkDH0WlY8eOobKyEuvXr8emTZvQqlUr5OfnY9iwYRg2bBgyMzO93kTyuVgKlDEX+GItkMV5aIo2tbW1qKysRGVlJSoqKnDy5EmMHj0aY8eOxbBhwzhfHpECDHzuYuCjqHfq1Cm8/vrrqKioQEVFBd5++2306tUL+fn56N69O4e/Jk9UVbm3rr5wcWWG7t1dW9XXaM/H10gro7tmRUUF3n33XfTv3x/5+fnIz8/HFVdcgeTkZK83kSimGIGvVy89ge/ddxn4zBj4KOZ88cUXePHFF7Ft2zZ88MEHaGpq8nqTiJQKBIBTp1r+W3LgpOUfLA3UhATwkVei0Lp164b8/HwMHToUHTp08HpziGIaA5+7GPiIiIiIiMg1RuDr2VNP4KupYeAz4ygXREREREREMYqd0omIiIiIyHVNTVD+uAGf5DkbK3xEREREREQxihU+IiIiIiJyHSt87mDgIyIiIiIi1zHwuYNdOomIiIiIiGIUK3xEREREROS6QEB9RY4Tzp2NFT4iIiIiIqIYxQofERERERG5TsfzdnyG72ys8BEREREREcUoVviIiIiIiMh1rPC5gxU+IiIiIiKiGMUKHxERERERuY4VPncw8BERERERkesY+NzBLp1EREREREQxihU+IiIiIiJyHSt87mCFj4iIiIiIKEaxwkdERERERK5jhc8drPARERERERHFKFb4iIiIiIjIdazwuYMVPiIiIiIiohjFCh8REREREbmOFT53MPAREREREZHrAgH1AS0QULu8WMAunURERERERDGKFT4iIiIiInJdUxOQkKB2mazwnY0VPiIiIiIiohjFCh8REREREbmOFT53sMJHREREREQUo1jhIyIiIiIi17HC5w5W+IiIiIiIiGIUK3xEREREROQ6VvjcwcBHRERERESuY+BzB7t0EhERERERxShW+IiIiIiIyHWs8LmDFT4iIiIiIqIYxQofERERERG5jhU+d7DCR0REREREFKMY+IiIiIiIyHVNTXpeup04cQJ9+/ZFQkICqqqqWvysuroagwcPRlpaGrKysrBs2TL9GxQBAx8REREREZFNv/3tb/H973//rH+vr69Hfn4+unXrhrfeegvLly/HXXfdhZKSEg+28gw+w0dERERERK4LBKLvmbvy8nJUVFRg7dq1KC8vb/GzZ555Bo2NjXjssceQkpKCXr16oaqqCitWrMCcOXM82mIGPiIiIiIi8kS9tmXW17dcdmpqKlJTU6WWfOTIEcyePRvr169HmzZtzvr59u3bMWTIEKSkpJz+t+HDh6O4uBhfffUVMjIypNYvil06iYiIiIjINSkpKcjMzASQBSBd8SsLbdu2RVZWFtLT00+/li5dKrXNgUAA1157LebNm4cBAwYEfU9tbS3OP//8Fv9m/Hdtba3U+mWwwkdERERERK5JS0vDRx99hMbGRi3LDwQCSLDM9xCquldUVITi4uKwy6upqUFFRQX+85//4Pbbb1e2nW5h4CMiIiIiIlelpaUhLS3N683Ab37zG1x77bVh33PRRRfhpZdewvbt288KjgMGDMCUKVPw5JNPIjMzE0eOHGnxc+O/myua3kgIBKLtUUkiIiIiIiL3fPzxxy2eCzx06BCGDx+O559/HpdddhkuuOACrFq1CosWLcKRI0fQqlUrAMDChQuxbt067Nu3z6tNZ+AjIiIiIiJy4sCBA7jwwguxe/du9O3bFwBQV1eH7Oxs5Ofno7CwEO+88w6uu+46rFy5kqN0EhERERERRbP09HRUVFRg/vz5yMvLQ8eOHbF48WJPwx7ACh8REREREVHM4rQMREREREREMYqBj4iIiIiIKEYx8BEREREREcUoBj4iIiIiIqIYxcBHREREREQUoxj4iIiIiIiIYhQDHxERERERUYxi4CMiIiIiIopRDHxEREREREQxioGPiIiIiIgoRjHwERERERERxaj/B0YzFoustYjfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -802,13 +768,13 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[stderr:5] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", + "[stderr:5] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", " np.sum(p * q, axis=-1)\n" ] }, @@ -818,7 +784,7 @@ { "data": { "text/plain": [ - "[stderr:2] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", + "[stderr:2] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", " np.sum(p * q, axis=-1)\n" ] }, @@ -848,53 +814,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": { - "collapsed": true, "jupyter": { "outputs_hidden": true }, "tags": [] }, "outputs": [ - { - "data": { - "text/plain": [ - "[stderr:0] [4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 220032, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/plain": [ @@ -906,7 +833,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAHwCAYAAADuLi1cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCs0lEQVR4nO3deXxMV/8H8M+d7GRHNrJLgoQgttgrtsau1qq1tKVo6aI72qpqS2ltxVNafVoUVbUVsbRIa409QiJCSEhIIolsM/f3hyfzE9lmJndyZzKf9+t1X21uzpz7nUi4n5xzzxFEURRBRERERERERkchdwFERERERESkGwY6IiIiIiIiI8VAR0REREREZKQY6IiIiIiIiIwUAx0REREREZGRYqAjIiIiIiIyUgx0RERERERERoqBjoiIiIiIyEgx0BERERERERkpBjoiIiIiIiIjxUBHREREREQm6a+//kK/fv3g4eEBQRCwbdu2Sl9z6NAhtGzZElZWVmjYsCHWrVun9zorwkBHREREREQmKScnB6GhoVi2bJlG7a9fv44+ffrgmWeeQUxMDF5//XVMnDgRf/75p54rLZ8giqIo29WJiIiIiIgMgCAI+O233zBw4MBy28yaNQs7d+7EhQsX1OdGjBiBjIwM7NmzpxqqLI0jdERERERERBqIjo5G9+7dS5zr1asXoqOjZaoIMJftykREREREZJLy8vJQUFCgl75FUYQgCCXOWVlZwcrKqsp9p6SkwNXVtcQ5V1dXZGVl4dGjR7CxsanyNbTFQEdERERERNUmLy8Pvt62SLmr1Ev/tra2yM7OLnFu9uzZmDNnjl6uJzcGOiIiIiIiqjYFBQVIuavE9VPesLeT9gmwrIcq+IbdwM2bN2Fvb68+L8XoHAC4ubkhNTW1xLnU1FTY29vLMjoHMNAREREREZEM7O0Ukgc6dd/29iUCnVTCw8Oxa9euEuf27duH8PBwya+lKS6KQkRERERE1U4pqvRyaCM7OxsxMTGIiYkB8HhbgpiYGCQlJQEA3n33XYwZM0bd/pVXXkFCQgLefvttxMbGYvny5di0aRNmzJgh2ddFWwx0RERERERkkk6ePIkWLVqgRYsWAICZM2eiRYsW+OijjwAAd+7cUYc7APD19cXOnTuxb98+hIaGYuHChVizZg169eolS/0A96EjIiIiIqJqlJWVBQcHB6Rc8dLLM3RuQUnIzMzUy5RLQ8QROiIiIiIiIiPFRVGIiIiIiKjaqaCCdk+8adanqeEIHRERERERkZHiCB0REREREVU7pShCKfFyHlL3ZwwY6IiIiIiIqNqpIEIFaQOY1P0ZA065JCIiIiIiMlIcoSMiIiIiomqnggglR+iqjCN0RERERERERoojdEREREREVO34DJ00OEJHRERERERkpDhCR0RERERE1Y7bFkiDI3RERERERERGiiN0RERERERU7VT/O6Tu09RwhI5IRoIgYM6cORq19fHxwbhx47S+RmJiIgRBwLp167R+LRmO7OxsuLi44L///a/cpZgUbX5GTd3TX6t169ZBEAQkJiZq3dc777yDtm3bSlccERkk5f+2LZD6MDUMdERVUHzDcvLkSUn6O3bsGObMmYOMjAxJ+tPGpUuXMGfOHJ1uvmqCXbt2VfnG/bPPPsO2bdskqedpS5YsgZ2dHUaMGKE+FxUVhQkTJiAwMBC1atWCn58fJk6ciDt37pTZx7Fjx9CxY0fUqlULbm5umD59OrKzs/VSb7H09HR8+eWX6Ny5M+rVqwdHR0e0a9cOGzduLLN9fn4+Zs2aBQ8PD9jY2KBt27bYt2+fXmvUF31+P8hFip8TTbz++us4e/Ystm/frvdrEREZOwY6Ihk9evQIH3zwgfrjY8eOYe7cuWUGuitXrmD16tV6q+XSpUuYO3euSQe6uXPnVqkPfd3AFxYWYsmSJZg4cSLMzMzU52fNmoVDhw5h0KBB+OabbzBixAhs2rQJLVq0QEpKSok+YmJiEBERgdzcXCxatAgTJ07EqlWrMHToUMnrfVJ0dDTef/99ODs744MPPsC8efNQq1YtjBgxArNnzy7Vfty4cVi0aBFGjRqFJUuWwMzMDJGRkThy5Ihe6yzP0z+j2qipga68n5OqfK2e5ubmhgEDBuCrr76SpD8iMkxKUT+HqeEzdEQysra21ritlZWVHivRjiiKyMvLg42NjdylqOXk5KB27dpyl6EXO3bswL179zBs2LAS5xctWoSOHTtCofj/38317t0bXbp0wdKlS/Hpp5+qz7/33ntwcnLCoUOHYG9vD+DxNN5JkyZh79696Nmzp15qDw4OxtWrV+Ht7a0+N2XKFHTv3h0LFizA22+/rf5zO378ODZs2IAvv/wSb775JgBgzJgxCAkJwdtvv41jx47ppcaKaPMzWlPk5uaiVq1aWr9O6q/VsGHDMHToUCQkJMDPz0/SvomIahKO0BFJbNy4cbC1tUVycjIGDhwIW1tb1KtXD2+++SaUSmWJtk8+czJnzhy89dZbAABfX18IglDi+ZOnn6G7f/8+3nzzTTRt2hS2trawt7fHs88+i7Nnz2pd87p169QjNc8884z62ocOHVJfu2/fvvjzzz/RqlUr2NjY4LvvvgMArF27Ft26dYOLiwusrKzQpEkTrFixoszr7N69G126dIGdnR3s7e3RunVr/PzzzyXa/Pvvv+jduzccHBxQq1YtdOnSBUePHi3RZs6cORAEAZcuXcLzzz8PJycndOzYsdz3V1hYiLlz5yIgIADW1taoU6cOOnbsqJ7KN27cOCxbtgwA1O9dEAT167/66iu0b98ederUgY2NDcLCwrB58+YS1xAEATk5Ofjhhx/Ur3/yzys5ORkTJkyAq6srrKysEBwcjO+//77cmp+0bds2+Pj4wN/fv8T5zp07lwhzxeecnZ1x+fJl9bmsrCzs27cPL7zwgjrMAY/Dkq2tLTZt2lTh9ceOHQtra+sSfQJAr1694OTkhNu3b5f7Wl9f3xJhDnj8tRo4cCDy8/ORkJCgPr9582aYmZnhpZdeUp+ztrbGiy++iOjoaNy8ebPCOrt27YqQkBCcOnUK7du3h42NDXx9fbFy5cpSbe/evYsXX3wRrq6usLa2RmhoKH744YdS7Z5+Lqz4e+/atWsYN24cHB0d4eDggPHjxyM3N7fE68r7fnj48CFef/11+Pj4wMrKCi4uLujRowdOnz5d4fsrvnZsbCyGDRsGe3t71KlTB6+99hry8vJKtf/pp58QFhYGGxsbODs7Y8SIEaW+hk9+zTp37oxatWrhvffeK/P6lf2caPq84e7du9GpUyfUrl0bdnZ26NOnDy5evFiqXffu3QEAv//+e6V9EpFxUunpMDUcoSPSA6VSiV69eqFt27b46quvsH//fixcuBD+/v6YPHlyma8ZPHgw4uLi8Msvv+Drr79G3bp1AQD16tUrs31CQgK2bduGoUOHwtfXF6mpqfjuu+/QpUsXXLp0CR4eHhrX27lzZ0yfPh3ffPMN3nvvPTRu3BgA1P8FHk/5HDlyJF5++WVMmjQJQUFBAIAVK1YgODgY/fv3h7m5Of744w9MmTIFKpUKr776qvr169atw4QJExAcHIx3330Xjo6OOHPmDPbs2YPnn38eAHDgwAE8++yzCAsLw+zZs6FQKNSB8e+//0abNm1K1D106FAEBATgs88+g1jBvjNz5szB/PnzMXHiRLRp0wZZWVk4efIkTp8+jR49euDll1/G7du3sW/fPqxfv77U65csWYL+/ftj1KhRKCgowIYNGzB06FDs2LEDffr0AQCsX79e3X9xICkOYKmpqWjXrh0EQcDUqVNRr1497N69Gy+++CKysrLw+uuvV/jnc+zYMbRs2bLCNsWys7ORnZ2t/v4BgPPnz6OoqAitWrUq0dbS0hLNmzfHmTNnKuxzyZIlOHDgAMaOHYvo6GiYmZnhu+++w969e7F+/XqtvteKFU8JfbLOM2fOIDAwsEToBKD+c4+JiYGnp2eF/T548ACRkZEYNmwYRo4ciU2bNmHy5MmwtLTEhAkTADyeGti1a1dcu3YNU6dOha+vL3799VeMGzcOGRkZeO211yqtf9iwYfD19cX8+fNx+vRprFmzBi4uLliwYAGAir8fXnnlFWzevBlTp05FkyZNkJ6ejiNHjuDy5csa/TkPGzYMPj4+mD9/Pv755x988803ePDgAX788Ud1m3nz5uHDDz/EsGHDMHHiRNy7dw/ffvstOnfujDNnzsDR0VHdNj09Hc8++yxGjBiBF154Aa6urmVet7KfE02sX78eY8eORa9evbBgwQLk5uZixYoV6NixI86cOQMfHx91WwcHB/j7++Po0aOYMWOGTtcjIjIJIhHpbO3atSIA8cSJE+pzY8eOFQGIH3/8cYm2LVq0EMPCwkqcAyDOnj1b/fGXX34pAhCvX79e6lre3t7i2LFj1R/n5eWJSqWyRJvr16+LVlZWJa59/fp1EYC4du3aCt/Lr7/+KgIQDx48WOa1AYh79uwp9bnc3NxS53r16iX6+fmpP87IyBDt7OzEtm3bio8ePSrRVqVSqf8bEBAg9urVS32uuH9fX1+xR48e6nOzZ88WAYgjR46s8D0VCw0NFfv06VNhm1dffVUs76/Ep99jQUGBGBISInbr1q3E+dq1a5f4Myr24osviu7u7mJaWlqJ8yNGjBAdHBzK/BoWKywsFAVBEN94440K6y/2ySefiADEqKgo9bniP9u//vqrVPuhQ4eKbm5ulfb7559/igDETz/9VExISBBtbW3FgQMHalTT09LT00UXFxexU6dOJc4HBweX+pqKoihevHhRBCCuXLmywn67dOkiAhAXLlyoPpefny82b95cdHFxEQsKCkRRFMXFixeLAMSffvpJ3a6goEAMDw8XbW1txaysLPX5p39Gi7/3JkyYUOLagwYNEuvUqVPiXHnfDw4ODuKrr75a4XspS/G1+/fvX+L8lClTRADi2bNnRVEUxcTERNHMzEycN29eiXbnz58Xzc3NS5wv/ppV9rUtVtHPydNfq+K/H4v/Pnv48KHo6OgoTpo0qcTrUlJSRAcHh1LnRVEUe/bsKTZu3Fij2ojIeGRmZooAxNOXXMW4m+6SHqcvuYoAxMzMTLnfZrXhlEsiPXnllVdKfNypU6cS08uqysrKSj3dTqlUIj09Hba2tggKCqp06pYufH190atXr1Lnn3yOLjMzE2lpaejSpQsSEhKQmZkJANi3bx8ePnyId955p9RzNsVTtmJiYnD16lU8//zzSE9PR1paGtLS0pCTk4OIiAj89ddfUKlKTqR4+mtcHkdHR1y8eBFXr17V6j2X9R4fPHiAzMxMdOrUSaOvsyiK2LJlC/r16wdRFNXvKy0tDb169UJmZmaF/dy/fx+iKMLJyanSa/3111+YO3cuhg0bhm7duqnPP3r0CEDZz2FaW1urP1+Rnj174uWXX8bHH3+MwYMHw9raWj3tVhsqlQqjRo1CRkYGvv322xKfe/ToUbk1Pvk+KmJubo6XX35Z/bGlpSVefvll3L17F6dOnQLweGEPNzc3jBw5Ut3OwsJCvern4cOHK71OWT/f6enpyMrKqvS1jo6O+PfffyucqlqRJ0e+AWDatGkAHr8vANi6dStUKhWGDRtW4vvNzc0NAQEBOHjwYInXW1lZYfz48TrVoo19+/YhIyMDI0eOLFGXmZkZ2rZtW6ouAHByckJaWpreayMiMmacckmkB9bW1qWmSjo5OeHBgweSXUOlUmHJkiVYvnw5rl+/XuL5vDp16kh2nWK+vr5lnj969Chmz56N6OjoEs8QAY8DnoODA+Lj4wEAISEh5fZfHLbGjh1bbpvMzMwSwaa8mp728ccfY8CAAQgMDERISAh69+6N0aNHo1mzZhq9fseOHfj0008RExOD/Px89fknnx8qz71795CRkYFVq1Zh1apVZba5e/dupf2IFUwpBYDY2FgMGjQIISEhWLNmTYnPFQfSJ2svps3iNl999RV+//13xMTE4Oeff4aLi4tGr3vStGnTsGfPHvz4448IDQ0tVWd5NRZ/vjIeHh6lFscJDAwE8HhPxnbt2uHGjRsICAgo9fxh8RTjGzduVHodLy+vEh8Xf18+ePCg1JTRp33xxRcYO3YsPD09ERYWhsjISIwZM0bjhT8CAgJKfOzv7w+FQqF+3vbq1asQRbFUu2IWFhYlPq5fvz4sLS01unZVFP+MP/nLhieV9XUTRVGjnzMiMk4q8fEhdZ+mhoGOSA+eXFpeXz777DN8+OGHmDBhAj755BM4OztDoVDg9ddfLzWSJYWybqbj4+MRERGBRo0aYdGiRfD09ISlpSV27dqFr7/+Wqs6itt++eWXaN68eZltbG1tK62pLJ07d0Z8fDx+//137N27F2vWrMHXX3+NlStXYuLEiRW+9u+//0b//v3RuXNnLF++HO7u7rCwsMDatWtLLehS0ft64YUXyg2rFQVLZ2dnCIJQ4S8Dbt68iZ49e8LBwQG7du2CnZ1dic+7u7sDQJn70925c0fjZ+DOnDmjDp/nz58vMcKliblz52L58uX4/PPPMXr06FKfd3d3R3Jycpk1AtDpWT19Ke9nvLLgDTx+Bq5Tp0747bffsHfvXnz55ZdYsGABtm7dimeffVbrWp4OPCqVCoIgYPfu3WXWqevPUVUV/yysX78ebm5upT5vbl76luTBgwclnrMkoppFCQFKSPtLG6n7MwYMdEQGRJvfRG/evBnPPPMM/vOf/5Q4n5GRodMNkC6/Bf/jjz+Qn5+P7du3lxixeHrqVPFiEBcuXEDDhg3L7Ku4jb29vXp1Oyk5Oztj/PjxGD9+PLKzs9G5c2fMmTNHHejKe/9btmyBtbU1/vzzzxLTAdeuXVuqbVl91KtXD3Z2dlAqlTq9L3Nzc/j7++P69etlfj49PR09e/ZEfn4+oqKi1OHtSSEhITA3N8fJkydLbH1QUFCAmJiYUtshlCUnJwfjx49HkyZN0L59e3zxxRcYNGgQWrdurdH7WLZsGebMmYPXX38ds2bNKrNN8+bNcfDgQWRlZZUYrfn333/Vn6/M7du3S21hERcXBwDqBTe8vb1x7tw5qFSqEqN0sbGx6s9LoaKfKXd3d0yZMgVTpkzB3bt30bJlS8ybN0+jQHf16tUSo9PXrl2DSqVSvz9/f3+IoghfX1/16KRUqjJaVvwz7uLiovHPwvXr10uN5BIRUUl8ho7IgBTfhJa1sfjTzMzMSo0G/Prrr2WOcEh97SdrAEqOSmRmZpYKOz179oSdnR3mz59fann14teGhYXB398fX331FbKzs0td6969exrX9bT09PQSH9va2qJhw4YlpveV9/7NzMwgCEKJKa2JiYllbhhdu3btMl//3HPPYcuWLbhw4UKp12jyvsLDw3Hy5MlS53NychAZGYnk5GTs2rWr3Cl2Dg4O6N69O3766Sc8fPhQfX79+vXIzs7WaHPxWbNmISkpCT/88AMWLVoEHx8fjB07tswpkk/buHEjpk+fjlGjRmHRokXlthsyZAiUSmWJqan5+flYu3Yt2rZtW+kKlwBQVFRU4tm+goICfPfdd6hXrx7CwsIAAJGRkUhJScHGjRtLvO7bb7+Fra0tunTpUul1NFHW94NSqVQ/W1rMxcUFHh4eGn0tAai3DihW/CxicRgcPHgwzMzMMHfu3FJ/R4iiWOrnQRu6/D1RrFevXrC3t8dnn32GwsLCUp9/+mchMzMT8fHxaN++vU61EpHhKx6hk/owNRyhIzIgxTec77//PkaMGAELCwv069evzA2z+/bti48//hjjx49H+/btcf78efz3v//VeQPe5s2bw8zMDAsWLEBmZiasrKzU+8uVp2fPnrC0tES/fv3w8ssvIzs7G6tXr4aLi0uJ6X329vb4+uuvMXHiRLRu3Vq9d9zZs2eRm5uLH374AQqFAmvWrMGzzz6L4OBgjB8/HvXr10dycjIOHjwIe3t7/PHHHzq9tyZNmqBr164ICwuDs7MzTp48qV42vljx13769Ono1asXzMzMMGLECPTp0weLFi1C79698fzzz+Pu3btYtmwZGjZsiHPnzpW4TlhYGPbv349FixbBw8MDvr6+aNu2LT7//HMcPHgQbdu2xaRJk9CkSRPcv38fp0+fxv79+3H//v0K6x8wYADWr1+PuLi4EiMuo0aNwvHjxzFhwgRcvny5xD5xtra2GDhwoPrjefPmoX379ujSpQteeukl3Lp1CwsXLkTPnj3Ru3fvCq9/4MABLF++HLNnz1Yvq7927Vp07doVH374Ib744otyX3v8+HGMGTMGderUQUREBP773/+W+Hz79u3V37Nt27bF0KFD8e677+Lu3bto2LAhfvjhByQmJpYaiS6Ph4cHFixYgMTERAQGBmLjxo2IiYnBqlWr1M+OvfTSS/juu+8wbtw4nDp1Cj4+Pti8eTOOHj2KxYsXl5qyqquyvh+CgoLQoEEDDBkyBKGhobC1tcX+/ftx4sQJLFy4UKN+r1+/jv79+6N3796Ijo7GTz/9hOeff149kuXv749PP/0U7777LhITEzFw4EDY2dnh+vXr+O233/DSSy+pN27X5T0BpX9ONGFvb48VK1Zg9OjRaNmyJUaMGIF69eohKSkJO3fuRIcOHbB06VJ1+/3790MURQwYMECnWomITIYcS2sS1RTlbVtQu3btUm2Llxx/Ep5a5lsUHy87X79+fVGhUJRY8rusbQveeOMN0d3dXbSxsRE7dOggRkdHi126dBG7dOmibqfptgWiKIqrV68W/fz8RDMzsxJbGHh7e5e77P/27dvFZs2aidbW1qKPj4+4YMEC8fvvvy9z+4Xt27eL7du3F21sbER7e3uxTZs24i+//FKizZkzZ8TBgweLderUEa2srERvb29x2LBhJZbhL/5a3rt3r9L3JIqi+Omnn4pt2rQRHR0dRRsbG7FRo0bivHnz1MvYi6IoFhUVidOmTRPr1asnCoJQ4s/qP//5jxgQECBaWVmJjRo1EteuXVvmn2dsbKzYuXNn0cbGRgRQ4s8rNTVVfPXVV0VPT0/RwsJCdHNzEyMiIsRVq1ZVWn9+fr5Yt25d8ZNPPilxvng7ibIOb2/vUv38/fffYvv27UVra2uxXr164quvvlpiif6yZGVlid7e3mLLli3FwsLCEp+bMWOGqFAoxOjo6HJfX/wzUt7x9Pflo0ePxDfffFN0c3MTraysxNatW5e5XUZZunTpIgYHB4snT54Uw8PDRWtra9Hb21tcunRpqbapqani+PHjxbp164qWlpZi06ZNy/wZefpntLzvvaeX6BfFsr8f8vPzxbfeeksMDQ0V7ezsxNq1a4uhoaHi8uXLK31/xde+dOmSOGTIENHOzk50cnISp06dWmo7EFEUxS1btogdO3YUa9euLdauXVts1KiR+Oqrr4pXrlwp9TXTVEU/J09/rcr6moiiKB48eFDs1auX6ODgIFpbW4v+/v7iuHHjxJMnT5ZoN3z4cLFjx44a10ZExqN424IjFzzEmBsNJD2OXPAwuW0LBFHU4AluIiKS1SeffIK1a9fi6tWr1bLojjHq2rUr0tLSypzaWhPMmTMHc+fOxb1792r8QiEpKSnw9fXFhg0bOEJHVANlZWXBwcEBRy54wNZO2ifAsh+q0DHkNjIzMytddbim4DN0RERGYMaMGcjOzsaGDRvkLoVI7xYvXoymTZsyzBHVcHyGThp8ho6IyAjY2tpqtF8dUU3w+eefy10CEZHRYKAjIiIiIqJqp4QCSoknDCorb1Lj8Bk6IiIiIiKqNsXP0EWd90JtiZ+hy3moQkTTJD5DR0RERERERIaPUy6JiIiIiKja6WMRE1NcFIUjdEREREREREaKI3RU46SlpSEqKgq7du3C9evX5S6HSHJ5OfkoeFSg/rggv7DMdpZWFv///zaWsK5tpffaiIyVn58fnn32WURERNT4ff6IDIVSVEApSrwoigmuDsJAR0avqKgIR44cwZ49e7Bz505cunQJrq6ucHFxgYODg9zlkQm691dONVzFrJz//38FJf5fiWzk6rUifarXubbcJVANFxMTg7179yI1NRVNmjRBnz590Lt3b3Ts2BHm5rxdIiLDxVUuySjl5ORg79692Lx5M3bs2AEAqF+/Ptzc3FC/fn3UqlVL5grJ0CWsvi93CWQi/CY5y10CaSE3NxfJyclISUlBcnIyAKBv374YMmQIevbsidq1+csFoqoqXuVy5zk/1LYr+5eSusp5qESfZgkmtcolAx0ZjQcPHmDbtm3YtGkTDhw4AAcHB9SvXx/e3t5wcXGBIJjeQ7A1GQMXkfxMPYyKooi7d+/ixo0bSE5ORmZmJrp164Zhw4Zh4MCBcHJykrtEIqPEQCctBjoyaNnZ2di+fTt+/PFHREVFwdXVFR4eHvDx8YGjoyNDnIwYuIjI0EkZSEVRREZGBhITE3H79m3cvXsXERERGD16NPr37w9bW1vJrkVU0xUHuu3n/PUS6Po3i2egI5JTXl4edu3ahfXr12P37t1wcnKCp6cn/P39TeYHUyoMXUREuqsoEGZmZiI+Ph63bt3CgwcPEBkZidGjR+PZZ5+FtbV1NVZJZHyKA91vZwP0EugGhV5loCOqbqIo4tixY/j++++xceNG2NjYwMvLC35+fnB2rtlTfhi6iIgMX0Xh7v79+4iPj8fNmzfx6NEjDB8+HBMmTED79u05k4SoDAx00mKgI1nduHEDP/74I9asWYO0tDT4+fmhYcOGqFevnkH+I8jwRURk2ioKdsXP3MXHxyMhIQH16tXDiy++iLFjx8LLy6saqyQybMWBbsvZQL0EuudC4xjoiPQpNzcXmzdvxurVq/HPP//A29sbvr6+8PLyMpiloRnciIioMhWFu6KiIiQlJSEhIQFJSUlo164dJk2ahCFDhnAlZjJ5DHTSYqCjanPu3DmsWLECP/30E2rXrg1fX180bNhQ1n/YGNyIiKiqKlt8JTc3F9euXcP169eRk5OD0aNH45VXXkGzZs2qqUIiw1Ic6H492wi1JA50uQ+VGBoay0BHJJWcnBxs3LgRS5cuxcWLF+Hv74/AwMBq32aAwY2IiKqDJlMy4+LiEB8fj+DgYEydOhXDhw/n/nZkUhjopMVAR3oRExOD5cuX47///S/s7e3h7++Phg0bwsrKSq/XZXAjIiJDUNmoXX5+Pq5du4b4+HhkZWVh1KhRmDJlCpo3b149BRLJqDjQbYhpopdAN6L5JQY6Il0UFBRg69atWLRoEc6dO6cejdPHAicMbkREZAwqC3aiKOLevXvqUbvQ0FDMnDkTgwcPhoWFRTVVSVS9GOikxUBHVXbnzh2sXLkSy5cvhyiKCAgIQFBQkCSjcQxuRERUE2iyyXl+fj6uXLmCq1evQhAETJkyBZMnT4abm1s1VEhUfYoD3c8xIXoJdM83v8BAR1QZURQRHR2NRYsW4ffff4eXlxcCAwPh6elZpdE4BjgiIqrpNBm1u3nzJuLi4pCUlISBAwdixowZCA8PN8gtfYi0VRzo1p9pqpdAN7rFeZMKdIaxRjwZjaKiImzZsgWfffYZrl69isDAQDz33HNwcHDQuU+GOCIiMiXF/+6VF+wEQYCXlxe8vLyQmZmJ2NhYdO/eHQEBAXjvvffw3HPPGcw2P0QkP47QkUays7OxZs0afPnll8jLy0OjRo0QFBSk0/x+BjgiIqL/p8l0zMLCQly5cgWxsbGwsbHBW2+9hRdffBG2trbVUCGRtIpH6NadCdXLCN24FmdNaoSOgY4qdOfOHSxZsgTLly+Hvb09GjduDB8fHygUCq36YYgjIiKqmCbBTqVSITExEZcvX0ZWVhamTJmC1157De7u7tVQIZE0GOikxUBHZbpy5QrmzZuHDRs2wMvLC02aNIGbm5tWc/cZ4oiIiLSnSbATRREpKSm4dOkSkpKSMGLECLz//vsICgqqhgqJqqY40H1/uoVeAt2ElmdMKtBxAjaVcOXKFcyePRtbt25FQEAABg0aBEdHR41eywBHRERUdZU9Ywc8fs7O3d0d7u7uePDgAU6dOoWmTZviueeew5w5cxjsiEwIAx0BAGJjYzFnzhxs3boVgYGBGDJkCOzs7Cp9HUMcERGRfmgS7ADAyckJHTt2RLNmzXD+/Hk0bdoUgwcPxty5cxnsyKApoYAS2j3GU3mfpjf5kIHOxMXGxmL27Nn47bffNApyDHBERETVS9NgZ29vjw4dOqBZs2Y4d+6cOtjNmTMHjRo1qo5SiUgG0kZiMho3btzA888/j2bNmuHixYsYMmQIOnToUG6YS1h9n2GOiIhIRpr+W2xnZ4cOHTpgyJAhuHDhApo1a4bnn38eSUlJ1VAlkeZUAJSiIOmhkvtNyYCBzsRkZGTgjTfeQFBQEGJiYhjkiIiIjIym/y4/GezOnDmDwMBAvPnmm8jIyNBvgUQaUkGhl8PUcJVLE1FQUIBly5Zhzpw5cHZ2RsuWLVG3bt0y2zLAERERGQdNVsQslpaWhlOnTiEjIwNz5szBlClTYGlpqcfqiMpWvMrlitOtYWMr7RNgj7KLMLnlCZNa5ZKBroYTRRG//vor3nzzTRQUFKBFixbw9PQsc/sBBjkiIiLjpGmwE0URN2/exOnTp2FlZYWvvvoKQ4cO1WpbIqKqKg50S0+11Uugmxr2LwMd1QwxMTF4+eWXERsbi+bNmyMwMLDUhuAMcURERDWDNqN1KpUKcXFxiImJQaNGjbBq1SqEhobqsTqi/8dAJy3Tm2RqAh48eIDJkyejbdu2KCwsxHPPPYdGjRqVCHN8No6IiKhm0ebfdoVCgUaNGuG5555DYWEh2rRpgylTpvD5OqpWKgh6OUwNR+hqEJVKhbVr1+Ktt96Cg4MD2rRpU2JTcAY4IiIi06HNiF1GRgaOHz+OzMxMfPnllxg/fnypWT1EUikeofvmVDu9jNBND/vHpEboGOhqiFOnTuGll17C9evX0apVK/j4+KjnwzPIERERmSZtQp0oikhMTMTJkyfh5+eH7777DmFhYXqsjkxVcaD7+mR7vQS6Ga2OmVSg469ejFx2djamT5+O9u3bAwAGDRoEX19fCILAaZVEREQmTpt7AUEQ4Ovri0GDBkEURbRv3x7Tp09Hdna2nqskoqrgCJ0R27lzJyZOnAgLCwuEh4erp1cyxBEREdHTtBmtAx4/k//PP/+gqKgIq1evRp8+ffRUGZma4hG6r0521MsI3ZutjpjUCJ20X0GqFikpKXj11VexZ88etGrVCkFBQeoROSIiIqKyFN8naBrsnJyc0Lt3b8TGxmLYsGHo3bs3li1bBjc3N32WSSZEJQpQidIuYiJ1f8aAUy6NiEqlwqpVqxAYGIgLFy5g8ODBaNSoEa6vecAwR0RERBrR5p5BEAQ0btwYgwcPxoULFxAYGIhVq1aBE7yIDAenXBqJxMREjBkzBufPn0e7du3g5eXFEEdERERVou00zKSkJPzzzz9o2rQpfvzxR/j4+OinMKrRiqdcfn6iC6wlnnKZl12Ed1ofNqkplxyhM3AqlQrLly9HkyZNcP/+fQwcOBBFf9oyzBEREVGVaXs/4eXlhYEDB+L+/fsIDg7GihUroFKp9FQdEWmCI3QG7Pr16xgzZgwuXryI8PBwFOyuJXdJREREVENpO1p369YtREdHIyQkhKN1pJXiEbrPjj+jlxG699oc5AgdyUulUmHZsmUIDg5GRkYGQh90ZpgjIiIivdJ2tK5BgwYYMGAA7t+/jyZNmmD58uUcrSOSAQOdgUlOTkZERAQ+/PBDNHrUCm4XG8FcsJC7LCIiIjIB2oY6S0tLdOjQAc888ww++OADREREIDk5WU/VUU2jhKCXw9Qw0BmQn3/+GY0bN0ZqaipCH3RGHcFV7pKIiIjIxGizGXmx4tG61NRUNG7cGL/88oueqiOipzHQGYD79+9j6NChePnll9GuXTt06tQJgS+5aj2XnYiIiEgquozWderUCe3atcOkSZMwdOhQPHjwQE/VUU2gEhV6OUwNNxaX2d69ezF69GjY2tpi4MCBqFWr5LNyZYU6rnBJRERE1SFh9X2tf8Hs6+sLV1dXHDt2DI0aNcJPP/2EHj166KlCIjK9CGsg8vPzMX36dAwYMABBQUGIiIgoFebK4zfJWX0QERER6ZMuUzBr1aqFiIgIBAUFoX///pg+fTry8/P1VCEZKyX08Ryd6eEInQwuX76MIUOG4MGDB+jfvz8cHR217oOjdERERFSdtB2tEwQBjRs3hru7OzZv3oyoqChs3rwZjRs31mOVZEz0MUXSFKdcmt47lpEoivjuu+/QsmVLWFlZITIykmGOiIiIjIYu9yCOjo6IjIyElZUVWrZsiVWrVoHbIBNJhyN01SQ9PR3jxo3DX3/9hYiICNSvX1/rPhjkiIiISG7F9yPajNaZmZmhdevWcHd3x1tvvYUdO3Zg3bp1cHbm4yOmTCkqoJR4RE3q/oyB6b1jGRw5cgQhISG4fPkyBg4cqHWY02XuOhEREZE+6XJv0qBBAwwcOBCXLl1CcHAwjhw5oofKiLSzbNky+Pj4wNraGm3btsXx48crbL948WIEBQXBxsYGnp6emDFjBvLy8qqp2tIY6PRIpVJh3rx56N69O/z8/NCtWzdYW1tr/HoGOSIiIjJkutynWFtbo1u3bvDz80P37t3x2WefQaVS6aE6MnQiBKgkPkQtNxbfuHEjZs6cidmzZ+P06dMIDQ1Fr169cPfu3TLb//zzz3jnnXcwe/ZsXL58Gf/5z3+wceNGvPfee1J8SXQiiJzErBd3797FyJEjERMTgy5duqBevXoav5YhjoiIiExBlvgA15zPoEWLFvjll1+0ul8i45WVlQUHBwe8E/0srGwtJO07P7sQn4fvRmZmJuzt7Stt37ZtW7Ru3RpLly4F8HhAxtPTE9OmTcM777xTqv3UqVNx+fJlREVFqc+98cYb+Pfff2UbceYInR4cPnwYISEhuHnzJvr376/xX04ckSMiIiJTYi84odn9TkhKSkJISAj++usvuUuialT8DJ3Uh6YKCgpw6tQpdO/eXX1OoVCge/fuiI6OLvM17du3x6lTp9TTMhMSErBr1y5ERkZW7YtRBVwURULFUyznzZuHVq1aoUmTJhCEyod9GeKIiIjIVJkLFvC62gx5HVLQs2dPfPDBB3jvvfegUHDcgXSXlZVV4mMrKytYWVmVOJeWlgalUglXV9cS511dXREbG1tmv88//zzS0tLQsWNHiKKIoqIivPLKK7JOueRPikQePHiAyMhILF68GH369EFwcHClYY4jckRERESP96yzOeaOPn364Ouvv0afPn2QkZEhd1mkZypR0MsBAJ6ennBwcFAf8+fPl6TmQ4cO4bPPPsPy5ctx+vRpbN26FTt37sQnn3wiSf+64AidBGJiYtC/f39YWFigX79+pdL/0xjiiIiIiErL+k2BfmP64a+//kKzZs3wxx9/IDQ0VO6ySE+UUEAp8fhScX83b94s8QxdWffndevWhZmZGVJTU0ucT01NhZubW5n9f/jhhxg9ejQmTpwIAGjatClycnLw0ksv4f3335dlZJkjdFW0bt06hIeHw83NDREREQxzRERERFWQ/GMOunfvDjc3N7Rr1w4//PCD3CWREbK3ty9xlHWPbmlpibCwsBILnKhUKkRFRSE8PLzMfnNzc0uFNjMzMwCAXGtNcoROR/n5+Zg2bRp+/vlnPPPMM/D09KywPYMcERERkWaur3kAB3jjmd518eqrr+Lo0aP49ttvK/3FORmXJ6dIStmnNmbOnImxY8eiVatWaNOmDRYvXoycnByMHz8eADBmzBjUr19fPWWzX79+WLRoEVq0aIG2bdvi2rVr+PDDD9GvXz91sKtuDHQ6SElJQb9+/ZCcnIz+/fvDzs6u3LYMckRERES6KdxTG/1H9MeOHTsQExOD7du3lzsVjkgXw4cPx7179/DRRx8hJSUFzZs3x549e9QLpSQlJZUYkfvggw8gCAI++OADJCcno169eujXrx/mzZsn11vgPnTaOnnyJPr27QsnJye0b98e5ublZ2KGOSIiIqKq8xpvj6NHjyIzMxN//PEHWrVqJXdJVAXF+9BNPTJIL/vQLe34m8b70NUEfIZOC+vXr0enTp3g6+uLTp06lRvmuHolERERkXSS1mahc+fO8Pb2RqdOnfDTTz/JXRKRweCUSw0olUq89dZb+O677yp8Xo4hjoiIiEg/BEFAaGgonJ2d8fLLL+PMmTP44osvZHtuiapOKQpQSvwMndT9GQOO0FUiKysLvXv3xk8//YS+ffuWGeY4IkdERESkX8X3Wp6enujbty/Wr1+P3r17l9pAmsjUMNBVICkpSb16TZ8+feDo6FiqDYMcERERUfUovu9ydHREnz59cO3aNbRt2xZJSUkyV0a60OfG4qaEga4cx48fR8uWLWFubo7u3bvD0tKyxOc5KkdERERU/YrvvywtLdG9e3eYm5ujZcuWOHHihMyVkbZEUQGVxIcoml68Mb13rIFff/0VXbp0QWBgIMLDw0ttHsggR0RERCSf4nsxhUKB8PBwBAYGonPnzti8ebPMlRFVPy6K8gRRFPH555/j448/RpcuXeDt7V3i8wxyRERERIYhYfV9+E1yhiAIaNq0Kezs7DB69Ghcu3YNs2bNgiCY3tQ7Y6OEACUkXhRF4v6MAQPd/yiVSkybNg3//e9/ERkZibp165b4PMMcERERkWEpDnUA4OPjA1tbW8yfPx83b97EN998wxUwySQw0AHIy8vDyJEjceTIEfTp0wd2dnbqzzHIERERERmuJ0Nd3bp1ERkZiU2bNuHOnTv4+eefYW1tLXOFVB6VCMkXMVGJknZnFEz+GbqMjAxERETgxIkTiIyMZJgjIiIiMjJP3rPZ29sjMjISx48fR/fu3ZGZmSljZUT6Z9KBLjk5GeHh4UhJSUHPnj3Vv8HhCpZERERExuXJezdra2v07NkTt2/fRnh4OG7fvi1jZVQeqVe4LD5Mjem94/9JSEhA27ZtoVAo0K1bN1hYWDw+zyBHREREZJSevI+zsLBAREQEBEFAmzZtcP36dRkrI9Ifkwx0sbGxCA8PR926ddGhQwcoFAqOyhERERHVAE/ezykUCnTo0AF16tRBeHg4rly5ImNl9DQVBL0cpsbkAt25c+fQoUMHNGjQAG3atIEgCAxyRERERDWUIAho27Yt6tevj/bt2+P8+fNyl0T/oxQFvRymxqQC3cmTJ9GpUyf4+/ujVatWDHNERERENdDT93eCIKBVq1bw9/dHx44dcerUKZkqI5KeyQS66OhoPPPMMwgODkaLFi04xZKIiIioBivrPq9FixYIDg5G165dER0dLUNV9CQuiiINk3jHp06dQs+ePREaGoqmTZsyyBERERGZgLLu+Zo2bYrQ0FD07NmTI3VUI9T4QHfu3Dl069YNTZs2RXBwMMMcERERkQkp694vODgYTZs2Rbdu3fhMnYxUEKASJT64KErNEhsbi65duyIoKAi1/6nPMEdEREREAB6P1AUFBaFr166IjY2VuxwindXYQBcfH48uXbrA19cXDie95S6HiIiIiGRS3i/1W7RoAR8fH3Tp0gXx8fHVXBWJetiyQOQIXc1w+/ZtdO7cGe7u7ggLC4PfJGe5SyIiIiIiGZUX6sLCwuDu7o4uXbrg9u3b1VwVUdUJoiiKchchpYyMDISHh6s3khSE8lM6p2ASERERmZayftEviiKOHDkC4PHK6A4ODtVdlknJysqCg4MDnts/Fha1LSXtuzCnAFu6/4DMzEzY29tL2rehqlEjdHl5eYiMjERBQQHat29fYZgDyv6BJiIiIiLTIggCOnTooL6XzMvLk7skk8BtC6RRY96xUqnE0KFDkZSUhK5du0KhqPitcR86IiIiItNT3v2fQqFA165dcePGDQwbNgxKpbKaKyPSTY0IdKIo4pVXXsG///6LiIgImJubV9ieQY6IiIjIdJV3L2hhYYGIiAj8888/mDx5MmrYk0kGR/ItC/53mJoaEejmz5+PX3/9FT169IC1tXWFbRnmiIiIiKi8e0Jra2v06NEDmzZtwueff17NVRFpz+gD3S+//IJPPvkEERERsLW1rbAtwxwRERERVcbW1hYRERH4+OOPsWHDBrnLqbGk3rKg+DA1Fc9NNHBHjhzBhAkT0LVrV9StW7fcdgxyRERERPS08u4R/SY5o27duujatSvGjx+PBg0aoGPHjtVcHZFmjDbQxcXFoU+fPmjdujW8vLzKbccwR0RERETa+P/7R1v4iE3Qu2dvnDl7BgEBAbLWVdPo45k3PkNnJNLT09GjRw/4+/ujcePG5bZjmCMiIiKiqmgg+KFeXn107dwV6enpcpdDVIrRBbqCggIMGDAAlpaWaNWqVbntGOaIiIiISAr+YlMU3RMQ2SsShYWFcpdTY3CVS2kYVaATRRFTpkxBfHw8OnXqVO7G4QxzRERERCQVQRAQrGyN2LNX8dLEl7idgUQY6KRhVIHum2++waZNm9CtWzdYWFiU2YZhjoiIiIikZiaYo1lRODb8vBHffvut3OUQqRlNoNuzZw9mzZqFbt26Vbo9ARERERGR1KyFWggpaoc3Zr6JP//8U+5yjB5H6KRhFIEuPj4ew4YNQ/v27eHq6lpuO47OEREREZE+OQp1EKRsjkEDByMhIUHucogMP9Dl5uaif//+8PX1rXCpWIY5IiIiIqoO7oI36hZ4oHeP3sjNzZW7HKMlQvrNxU3x6UaDDnSiKGLixInIyspC69aty23HMEdERERE1SlA1QxpSQ8wfux4LpJCsjLoQLd8+XLs2LEDXbp0gZmZmdzlEBEREREBABSCAiFFbfH7lu1YsWKF3OUYJT5DJw2DDXTHjx/HG2+8ga5du6J27drltuPoHBERERHJwUqwQYjYFq+/9jqOHz8udzlkogwy0GVlZWHIkCFo3rw53N3dy23HMEdEREREcnIS6sFbGYQB/Qbi4cOHcpdjVDhCJw2DDHSTJ0+GQqFAs2bNym3DMEdEREREhsBbDEJhuhKTXpwkdylGhYFOGgYX6H755Rf8/vvv6NixIwTB9P5AiIiIiMi4CIKAxsrW2LZ1GzZs2CB3OWRiDCrQ3bhxAy+99BI6dOjA5+aIiIiIyGhYCzYIUrbEhPEv4saNG3KXYxQ4QicNgwl0KpUKI0eOhI+PD3x8fMptxzBHRERERIbIRaiPOgVuGDJ4KFQqldzlkIkwmEC3fPlyXLlypcL95oiIiIiIDFlDVTNcPneZWxloQBQFvRymxiACXWJiIt5++22Eh4fDwsKi3HYcnSMiIiIiQ2YumCOoqAXemPEGEhMT5S6HTIDsgU4URYwbNw5+fn6oX79+ue0Y5oiIiIjIGDgLrqhb6IFRI1+AKIpyl2OwVBD0cpga2QPdmjVrcPbsWU61JCIiIqIaIwDNEHMyBmvWrJG7FKrhZA10qampmDlzJtq1awdLS8ty23F0joiIiIiMiblggcCi5nht+utITU2VuxyDxFUupSFroJsxYwY8PDzg5eUlZxlERERERJKrK7jDvtAZ06ZOl7sUg8RFUaQhW6A7fPgwfvvtN7Rq1arCdhydIyIiIiJjFaBshm2//YbDhw/LXQrVULIEuoKCAkyaNAnNmzeHra1tue0Y5oiIiIjImFkLteCjbISxo8ehsLBQ7nIMCqdcSkOWQLd48WJkZWUhJCREjssTEREREVUbTwTg/p0H+Prrr+UuhWqgag90qampmDt3Llq3bg2FovzLc3SOiIiIiGoChaBAQFEoPvpwNu7evSt3OQaDz9BJo9oD3QcffAAPDw94eHhU96WJiIiIiGThLLjAQVkHs95+R+5SqIap1kB3/vx5/PjjjwgLC6uwHUfniIiIiKimaagMwU/r1+PChQtyl2IQRD08P8cROj0SRRHTp09H48aN4eDgUF2XJSIiIiIyCLUEO7irfDD55clyl0I1SLUFur179+LEiRNo3rx5he04OkdERERENZUfmuDE8ZPYu3ev3KXITgQgihIfcr8pGVRLoBNFEW+//TZCQkJgZWVVHZckIiIiIjI4FoIlPIsC8Pr0GRBFU4wfJLVqCXR//PEHEhMTERwcXGE7js4RERERUU3nCX9cj7+OHTt2yF2KrFQQ9HKYGr0HOpVKhVmzZiE4OBjm5ub6vhwRERERkUEzE8zhVRSIma/NhEqlkrsc2XDbAmnoPdBt2bIFd+7cQePGjStsx9E5IiIiIjIV9eGH5Jt3sHXrVrlLISOn1yEzURTx0UcfISQkhKNzRERERET/YyaYwasoELPeegfPPfccBMH0RpZUogBB4hE1lRGM0KlUKly7dg13794tNULbuXNnrfvTa8rau3cvkpOT0b59+wrbcXSOiIiIiEyNB3xw7NZu7Nu3Dz179pS7HKoG//zzD55//nncuHGj1KI4giBAqVRq3adep1x+9tlnCAoK4ugcEREREdFTzAQz1Ff6Yc5Hc+UuRRaSb1nwv8OQvfLKK2jVqhUuXLiA+/fv48GDB+rj/n3dBrn0lrTOnDmDf//9F8OHD6+wHUfniIiIiMhUNRD9cezEbsTExFS6XzMZv6tXr2Lz5s1o2LChZH3qbYRuwYIFCAwMhLW1tb4uQURERERk1CwFK7ipvPHJ3E/kLqXameIql23btsW1a9ck7VMvI3R3797F1q1bMXjw4ArbcXSOiIiIiEydJxri9+2/4969e6hXr57c5ZAeTZs2DW+88QZSUlLQtGlTWFhYlPh8s2bNtO5TL4Fu3bp1qF+/PhwcHPTRPRERERFRjVFbsIOjog7WrVuHt956S+5yqo0+RtQMfYTuueeeAwBMmDBBfU4QBIiiqPOiKJIHOlEUsWzZMgQEBEjdNRERERFRjeRe5IvFCxfjzTffNJktDExx24Lr169L3qfkge7QoUO4f/8+fHx8KmzH6ZZERERERI+5wANX08/i8OHD6Nq1q9zlkJ54e3tL3qfki6IsX74c/v7+MDMzk7prIiIiIqIaSSGYwVXpieXLl8tdSrUxxW0LACA+Ph7Tpk1D9+7d0b17d0yfPh3x8fE69ydpoMvJycGOHTskXYaTiIiIiMgUuIve+P2335GTkyN3KaQnf/75J5o0aYLjx4+jWbNmaNasGf79918EBwdj3759OvUp6ZTLHTt2wN7eHs7OzhW243RLIiIiIqKSbOEAK8EGO3fuxLBhw+QuR+8ej6hJvSiKpN1J7p133sGMGTPw+eeflzo/a9Ys9OjRQ+s+JR2h++mnn+Dp6WkyD3ISEREREUlFEATUK6yP79eslbsU0pPLly/jxRdfLHV+woQJuHTpkk59ShbosrKy8Oeff8Lf31+qLomIiIiITIorGiDqwH5kZWXJXYremeLG4vXq1UNMTEyp8zExMXBxcdGpT8mmXO7cuRN169aFo6Njhe043ZKIiIiIqGy1BXtYq2pj165dGDFihNzlkMQmTZqEl156CQkJCWjfvj0A4OjRo1iwYAFmzpypU5+SBbpt27bB3d1dqu6IiIiIiExSXdENWzf/VuMDnfi/Q+o+DdmHH34IOzs7LFy4EO+++y4AwMPDA3PmzMH06dN16lOSQFdUVITdu3ejW7duUnRHRERERGSy6sANf+7ZA5VKBYVC8l3GDIY+pkga+pRLQRAwY8YMzJgxAw8fPgQA2NnZValPSb5DoqOjATyeE1oRTrckIiIiIqqYA+rgUV4ezp49K3cppEd2dnZVDnOARCN027dvR4MGDWr0bxCIiIiIiKqDQlDASayHnTt3okWLFnKXoz8mMueyZcuWiIqKgpOTE1q0aFHhjgCnT5/Wun9JAt0ff/yBBg0aSNEVEREREZHJq6NyxYafNuCDDz6QuxSqogEDBsDKykr9/1Jv8VblQJeSkoKrV6+ibdu2UtRDRERERGTy6sANR+P2ICMjo9JV5I2WPrYZ0KG/ZcuW4csvv0RKSgpCQ0Px7bffok2bNuW2z8jIwPvvv4+tW7fi/v378Pb2xuLFixEZGVlm+9mzZ6v/f86cOVrXV5kqz5Hcv38/3N3dYW1tXWE7Pj9HRERERKQZa6EW7MztsX//frlLqdE2btyImTNnYvbs2Th9+jRCQ0PRq1cv3L17t8z2BQUF6NGjBxITE7F582ZcuXIFq1evRv369TW6np+fH9LT00udz8jIgJ+fn07vocqBbvfu3ZUuhkJERERERNpxKnTBjh075C5Db0RRP4c2Fi1ahEmTJmH8+PFo0qQJVq5ciVq1auH7778vs/3333+P+/fvY9u2bejQoQN8fHzQpUsXhIaGanS9xMREKJXKUufz8/Nx69Yt7Yr/nypNuRRFEfv27atwSJKIiIiIiLRXB27Yvm07RFGU/Lmrmi4rK6vEx1ZWVurn2IoVFBTg1KlT6v3gAEChUKB79+7qVfyftn37doSHh+PVV1/F77//jnr16uH555/HrFmzYGZmVm4927dvV///n3/+CQcHB/XHSqUSUVFR8PX11eo9FqtSoLty5QoyMjLg6upalW6IiIiIiOgpDqiDrIdZiIuLQ1BQkNzlSE6f+9B5enqWOD979uxSz6+lpaVBqVSWyjKurq6IjY0ts/+EhAQcOHAAo0aNwq5du3Dt2jVMmTIFhYWFJZ6Ve9rAgQMBPN6HbuzYsSU+Z2FhAR8fHyxcuFCTt1hKlQLdwYMH4eHhAXPzirvh83NERPqlsLFR/7/q0SMZKyEiIqmYCWawVznj4MGDNTLQQRR0WsSk0j4B3Lx5E/b29urTT4/O6UqlUsHFxQWrVq2CmZkZwsLCkJycjC+//LLCQKdSqQAAvr6+OHHiBOrWrStJPUAVA92ff/7J5+eIiAzMk+GuFA2m7KhycyWshoiIqsIJ9fDHtj/wyiuvyF2KUbG3ty8R6MpSt25dmJmZITU1tcT51NRUuLm5lfkad3d3WFhYlJhe2bhxY6SkpKCgoACWlpYVXvP69esavgPN6RzoRFHE4cOH0blzZynrISIimSlq1YKYn19pO7GMh7qJiEhaznDB30f+rpHP0emyiIkmfWrK0tISYWFhiIqKUk+JVKlUiIqKwtSpU8t8TYcOHfDzzz9DpVJBoXi8vmRcXBzc3d0rDXPFcnJycPjwYSQlJaGgoKDE56ZPn675G/gfnQPdxYsXkZubyxE6IiITJZiZMdQREemZPZzx6NEjXLp0CcHBwXKXU+PMnDkTY8eORatWrdCmTRssXrwYOTk5GD9+PABgzJgxqF+/PubPnw8AmDx5MpYuXYrXXnsN06ZNw9WrV/HZZ59pHMTOnDmDyMhI5ObmIicnB87OzkhLS0OtWrXg4uJSvYHuwIED8PDwqHA1F4DPzxERERER6UohKOCoqIODBw/WvEAn/u+Quk8tDB8+HPfu3cNHH32ElJQUNG/eHHv27FEvlJKUlKQeiQMeL7by559/YsaMGWjWrBnq16+P1157DbNmzdLoejNmzEC/fv2wcuVKODg44J9//oGFhQVeeOEFvPbaa9oV/z+CKOo20Nm3b1/cu3cPzZs3r7AdAx0Rkf5V+NzckzScrqPJlEuA0y6JiKrDdTEWft3csTdqr9ylSCIrKwsODg7wXv0hFLWsJe1blZuHG5M+QWZmZqXP0MnB0dER//77L4KCguDo6Ijo6Gg0btwY//77L8aOHVvu6poV0WljcZVKhb///hseHh66vJyIiIiIiDTkjHo4Fn1MvVJiTVG8bYHUhyGzsLBQj/i5uLggKSkJAODg4ICbN2/q1KdOUy7PnTuHgoICSZfbJCIiIiKi0uzghIKCApw/fx6hoaFyl0NV0KJFC5w4cQIBAQHo0qULPvroI6SlpWH9+vUICQnRqU+dRuiOHDkCDw+PEvNJy8LplkREREREVVP8HN2RI0fkLkV6osSHgfvss8/g7u4OAJg3bx6cnJwwefJk3Lt3D6tWrdKpT51G6I4ePQpHR0edLkhERERERNqxLXTC0aNH8eqrr8pdimT0MUXSkKdciqIIFxcX9Uici4sL9uzZU+V+dRqhi46OhouLS5UvTkRERERElXOAMw4dOCx3GVQFoiiiYcOGOj8rVx6tR+ju37+PGzduoEuXLpIWQkRkShQabj6K4IYaNXvobw+7nWerUBERERkyezgjJvUoHjx4ACcnJ7nLkYYBbFtQnRQKBQICApCeno6AgADJ+tU60J04cQJ16tSBtbW0S4wSEVHVPOxT+YPyKgvN+rK9mQdF9PkqVkRERFKxFKxga26H48ePo1evXnKXQzr6/PPP8dZbb2HFihU6L4LyNK0DXUxMDOrUqVNpOy6IQkRk3FThTSttY34hEQCgzMjQbzFERITaogPOnj1bgwKd8L9D6j4N15gxY5Cbm4vQ0FBYWlrC5ql9ZO/f1z5DaR3oTp06ZZCb9BERkXzMKlkoi4GPiKjqahfZ4/Tp03KXQVXw9ddfQxCkDZ06jdD5+vpKWgQREREREVXMFg745+i/cpchHRN7hg4Axo0bJ3mfWq1yWVBQgISEBDg7O0teCBERERERlc8WDrh1+yYKCgrkLoV0ZGZmhrt375Y6n56eDjMzM5361CrQXblyBebm5rCzs9PpYkREREREpBsb1IYABeLi4uQuRRpSbypuBJuLi2LZBebn58NS0xWwn6LVlMu4uDjUrVtX8nmfRERERERUMUEQYGtuh7i4OMlWSJSVKDw+pO7TAH3zzTcAHv8ZrlmzBra2turPKZVK/PXXX2jUqJFOfWsV6K5evVri4uXhCpdERERERNKzVtbG1atX5S6DtPT1118DeDxCt3LlyhLTKy0tLeHj44OVK1fq1LdWge7SpUuoXbu2ThciIiIiIqKqsVHWxqVLl+QuQxKi+PiQuk9DdP36dQDAM888g61bt0q6ObxWge7y5ctwcHCQ7OJERERERKS5WrDDmZMxcpdBOjp48KDkfWoV6G7cuIHw8HDJiyAiIiIiosrZoDauXL8idxnSMMFtC5RKJdatW4eoqCjcvXsXKpWqxOcPHDigdZ8aB7qioiKkp6dr9AwdERFVTGjkr1G7G5GOGrWzaPNAo3bmZqrKGwHA5zaatSMiomplBRvk5GVDqVTqvMw9yee1117DunXr0KdPH4SEhEiy2KTGgS41NRWiKKJWrVpVvigRERm2pN6a/V3vJfiWed78/HUpyyEiov+xgg1Uogqpqanw8PCQu5yqMaFVLott2LABmzZtQmRkpGR9ahzobt26BVtbWygUWm1dR0REJqioacmgp4i+UGF7sahQn+UQEdUYCkEBazMb3Lp1y/gDnQmytLREw4YNJe1T43SWnJzMDcWJiEgvBHMLuUsgIjIaVrBBcnKy3GVUmSDq5zBkb7zxBpYsWVLuBuO60GqEzsam8mcquAcdEREREZH+WIrWuHXrltxlVJ0JLopy5MgRHDx4ELt370ZwcDAsLEr+QnPr1q1a96lxoLt58yasrKy0vgAREREREUnHSmmNmzdvyl0G6cDR0RGDBg2StE+NA92NGze4qTgRERERkcysYIMbN27IXUbVmeCiKGvXrpW8T42foUtKSmKgIyIiIiKSmRVscPXyVbnLIB0VFRVh//79+O677/Dw4UMAwO3bt5Gdna1TfxqP0KWkpCA4OFinixARERERkTSsYIOU1Hi5y6g6E3yG7saNG+jduzeSkpKQn5+PHj16wM7ODgsWLEB+fj5WrlypdZ8aj9BlZmbC2tpa6wsQEREREZF0LGCJh9kP5S6DdPDaa6+hVatWePDgQYkFJwcNGoSoqCid+tRohE4URWRlZcHS0lKnixARERERkTTMYYHcvByIoghBMOxnxipkgiN0f//9N44dO1YqV/n4+Oi8FYVGgS47OxsqlYqrXBIRVUAwt4BYVKjRnmrZ/vYa9alolalRu9XN1mvUzkJQYuKFMRq1JSIiw2QBS6hUKuTk5MDW1lbuckgLKpUKSqWy1Plbt27pvOe3RoEuIyMDgiBwhI6IqBLGsEH2mpAfK23zsvCCRn1lXamrUTvnc7XU/6/KydXoNUREVDZzPP63JiMjw7gDnQmO0PXs2ROLFy/GqlWrAACCICA7OxuzZ89GZGSkTn1qFOiK53ga9ZAuEREZBEXtWmWeV2ZqNhpJRGTqBEGAhcISDx48QIMGDeQuR3cmuG3BwoUL0atXLzRp0gR5eXl4/vnncfXqVdStWxe//PKLTn1qHOi4IAoRERERkWGw/F+gI+PSoEEDnD17Fhs3bsTZs2eRnZ2NF198EaNGjSqxSIo2NJ5yyUBHRERERGQYzGGJjIwMucuoEkF8fEjdp6EzNzfHqFGjMGrUKEn602jbggcPHnBBFCIiIiIiA2EBC47QGaH58+fj+++/L3X++++/x4IFC3TqU+NAZ2Fh+A/6ExERERGZAjPR3PgDnainw4B99913aNSoUanzwcHBOm0qDmgY6B49egQzMzOdLkBERERERNJSiGZ49OiR3GWQllJSUuDu7l7qfL169XDnzh2d+tQo0BUWFnKFSyIiIiIiAyGIChQWFspdBmnJ09MTR48eLXX+6NGj8PDw0KlPjRZF0fSbJWH1fZ2KICIiIiIizQmiwEBnhCZNmoTXX38dhYWF6NatGwAgKioKb7/9Nt544w2d+tQo0BUUFECh0Ggwj4iIiIiI9EyAAgUFBXKXUSUC9LDKpbTdSe6tt95Ceno6pkyZov7zs7a2xqxZs/Duu+/q1KdGgU6pVOrUORERERERSU8QBRQVFcldBmlJEAQsWLAAH374IS5fvgwbGxsEBARUaUcBjQIdF0QhIiIiIjIcoiDC3FyjW3nDJQqPD6n7NAK2trZo3bq1JH1p9F1gaWkJlUolyQWJiIiIiKhqRKhgaWkpdxlVo49tBgx824KcnBx8/vnniIqKwt27d0tlrISEBK371CjQaboHnd8kZy6MQkRERESkZ6Igcp9oIzRx4kQcPnwYo0ePhru7uyQ7CWgc6ETRwOMuEREREZGJEAWV8Qc6Exyh2717N3bu3IkOHTpI1qdGS1fa2NhwYRQiIiIiIgOhEpSwsbGRuwzSkpOTE5ydnSXtU6NA5+TkxH0uiIiIiIgMhFIogpOTk9xlVIkg6ucwZJ988gk++ugj5ObmStanRlMunZyckJ+fL9lFiYiIiIhId4UoNPpAZ4oWLlyI+Ph4uLq6wsfHp9S02dOnT2vdp0aBztHREXl5eVp3TkRERERE0itCARwdHeUuo2pM8Bm6gQMHSt6nxiN0DHRERERERIahQFXAETojNHv2bMn71DjQPXr0CKIoSrK0JhERERER6UYURRQqa0CgM8ERumKnTp3C5cuXAQDBwcFo0aKFzn1pPOVSFEUUFBTAyspK54sRERGpcqR7EJyIyBQV4fFihcY+5VIfi5gY+qIod+/exYgRI3Do0CH1n19GRgaeeeYZbNiwAfXq1dO6T40Cna2tLRQKBfLz8xnoiIjKIRb9/2rAgrnh7Q006dxomJupNGqbHVNHo3ZeiY80ascQR0QknUIUQKFQoHbt2nKXQlqaNm0aHj58iIsXL6Jx48YAgEuXLmHs2LGYPn06fvnlF6371CjQCYIAe3t7FBQUaH0BIiJT9GS4K4ttfJZG/aSf1Gw6zSTFaI3aERGR8StCIWpZ1zb+R6FE4fEhdZ8GbM+ePdi/f786zAFAkyZNsGzZMvTs2VOnPjXahw4AHBwcuDAKEREREZHMClEAO1s7ucsgHahUqlJbFQCAhYUFVCrNZtE8TeNA5+bmJukGeEREREREpL18PIKbq6vcZVSdqKfDgHXr1g2vvfYabt++rT6XnJyMGTNmICIiQqc+NQ50Xl5eyMnJ0ekiREREREQkjXw8QkDjALnLIB0sXboUWVlZ8PHxgb+/P/z9/eHr64usrCx8++23OvWp0TN0AODt7Y2LFy/qdBEiIiIiIpJGPh7B29tb7jKqzBRXufT09MTp06exf/9+xMbGAgAaN26M7t2769ynxoHO09MT+fn5Ol+IiIiIiIiqLt8sD56ennKXQToSBAE9evRAjx49JOlP4ymXDRo0wKNHlS9P7TfJuUoFERERERFR+QqEPDRo0EDuMqrOBJ+hmz59Or755ptS55cuXYrXX39dpz41DnT169fHw4cPdboIERERERFJIx+PUL9+fbnLqDrx/6ddSnUYeqDbsmULOnToUOp8+/btsXnzZp361GqELjs7W+flNImIiIiIqGpUogp5RY9qxgidCUpPT4eDg0Op8/b29khLS9OpT40DnaurKwRB4NYFRERUKfPz10scYlFhpQcREVUuH4+gEBRw5bYFRjnlsmHDhtizZ0+p87t374afn59OfWq8KIq5uTnq1KmD7Oxs2Nra6nQxIiIyDl57NPvlnfmFRP0WQkREJeTjEWpb28LMzEzuUkgHM2fOxNSpU3Hv3j1069YNABAVFYWFCxdi8eLFOvWpcaADHm9d8PDhQ7i5uel0MSIiekyMjdeonZdZQ43aPbxSevpGWVQWGjUDkKdpQyIiqkaPkAMfXx+5y5CGPkbUDHyEbsKECcjPz8e8efPwySefAAB8fHywYsUKjBkzRqc+tQp0jRs35l50REREREQyycVDdGrVRu4yqAomT56MyZMn4969e7Cxsany7EeNn6EDgCZNmiAnJ6dKFyQiIiIiIt08MstBkyZN5C5DElKvcKmPjcr1qV69epI8yqZVoAsICEB2dnal7bgXHRERERGR9PLMchAQECB3GWRAtAp0gYGBSEtLgygaUfQlIiIiIqoBRFFEdtFDBAYGyl0KGRCtAl1QUBCKioq4wTgRERERUTV7hByIUNWcQGeC2xbog1aBztLSEn5+frh//76+6iEiIiIiojJkIxMNPDxhaWkpdymkg8LCQkRERODq1auS9qtVoAOA5s2bM9AREREREVWzbGSiXYe2cpchGVNbFMXCwgLnzp2TvF+tA11YWBiysrIkL4SIiIiIiMqXY56Fli1byl0GVcELL7yA//znP5L2qdU+dMDjEbr09PRK2/lNckbCao7kERGZCmVGhtwlEBHVaDlCJkJDQ+UuQ1oGPKKmD0VFRfj++++xf/9+hIWFoXbt2iU+v2jRIq371DrQtW7dGunp6cjLy4O1tbXWFyQiIsOniD6vUTulUqnnSoiICAAKxHxkFz5EmzbcVNyYXbhwQT3KGhcXV+JzgiDo1KfWgc7Z2Rne3t64e/cuvLy8dLooEZGpUxUUQCHhQ+12O89q1lDDfyxM7BemREQGLwv34e7qAScnJ7lLkY4+VqU08H/ADh48KHmfWgc6AAgPD0dcXBwDHRFRFagKCipvdOaSRn0pbGyqWA0RERmyTNxH125d5C6DJHLt2jXEx8ejc+fOsLGxgSiKOo/Qab0oCgB06NABGXxWgoiIiIioWmRbPECHDh3kLkNSprbKJQCkp6cjIiICgYGBiIyMxJ07dwAAL774It544w2d+tQp0HXs2BG3b9+GSqWqsJ3fJGediiIiIiIiosdUogoZqnR07NhR7lKkZYIbi8+YMQMWFhZISkpCrVq11OeHDx+OPXv26NSnTlMumzVrBktLS6SlpcHFxUWnCxMRERERUeUe4gEsLa3QtGlTuUuhKtq7dy/+/PNPNGjQoMT5gIAA3LhxQ6c+dRqhUygU6NSpE27fvq3TRYmIiIiISDP3cQ/tw8OhUOh0626wTHHKZU5OTomRuWL379+HlZWVTn3q/F3Rs2dP3L17V9eXExERERGRBjLN76H/oP5yl0ES6NSpE3788Uf1x4IgQKVS4YsvvsAzzzyjU586B7pu3brh9u3ble5BxOfoiIiIiIh0oxJVeKBK1/lm36AZyDN0y5Ytg4+PD6ytrdG2bVscP35co9dt2LABgiBg4MCBGl/riy++wKpVq/Dss8+ioKAAb7/9NkJCQvDXX39hwYIF2hePKgS64OBg1KpVC/fu3dO1CyIiIiIiqkAm0lHLxgZNmjSRu5QaaePGjZg5cyZmz56N06dPIzQ0FL169ap0JmJiYiLefPNNdOrUSavrhYSEIC4uDh07dsSAAQOQk5ODwYMH48yZM/D399fpPei0KArweHiwS5cuSE5Ohpubm67dEBGRkRIrmaFBRERV9wD30KljJ533KDNoBrCx+KJFizBp0iSMHz8eALBy5Urs3LkT33//Pd55550yX6NUKjFq1CjMnTsXf//9t9bbuTk4OOD999/XrtAKVOnJyl69eiEtLU2qWoiIyACocnMhKpWVHkREpH8PcA/9BvaTu4waqaCgAKdOnUL37t3V5xQKBbp3747o6OhyX/fxxx/DxcUFL774otbXXLt2LX799ddS53/99Vf88MMPWvcHVDHQPfPMM0hOTuZzdEREBkT16FH5R25upQcRERkGpahEluJ+zXx+Dvpd5TIrK6vEkZ+fX+r6aWlpUCqVcHV1LXHe1dUVKSkpZdZ85MgR/Oc//8Hq1at1es/z589H3bp1S513cXHBZ599plOfVQp0QUFBcHR0LPcNExFR9XgytBERUc2QiXTY2dojMDBQ7lL0Q4+Lonh6esLBwUF9zJ8/v8rlPnz4EKNHj8bq1avLDGWaSEpKgq+vb6nz3t7eSEpK0qlPnZ+hAx4/R/fss8/i7NmzqF+/flW6IiIiIiKiJ6QjFX36RdbM5+f07ObNm7C3t1d/XNYeb3Xr1oWZmRlSU1NLnE9NTS1zjZD4+HgkJiaiX7//nwKrUqkAAObm5rhy5UqlC5u4uLjg3Llz8PHxKXH+7NmzqFOnTqXvqyxV3p2wb9++HKEjIiIiIpJYpsU9PPvss3KXoT96HKGzt7cvcZQV6CwtLREWFoaoqCj1OZVKhaioKISHh5dq36hRI5w/fx4xMTHqo3///njmmWcQExMDT0/PSt/yyJEjMX36dBw8eBBKpRJKpRIHDhzAa6+9hhEjRmj0ZXtalUboAKBHjx64d+8esrOzYWtrW247v0nOSFh9v6qXIyIiIiKq8QrEfGQWPSixYAdJb+bMmRg7dixatWqFNm3aYPHixcjJyVGvejlmzBjUr18f8+fPh7W1NUJCQkq83tHREQBKnS/PJ598gsTERERERMDc/HEUU6lUGDNmjM7P0FU50Dk6OqJ58+a4desWGjVqVNXuiIiIiIhM3n3cha+Xb6kFO2qSJxcxkbJPbQwfPhz37t3DRx99hJSUFDRv3hx79uxRf92TkpKgUFR5UqOapaUlNm7ciE8++QRnz56FjY0NmjZtCm9vb537rHKgA4CBAwfixx9/ZKAjIiIiIpJAuiIFo4YOlbsMkzB16lRMnTq1zM8dOnSowteuW7dOp2sGBgZKttiNJIGuT58++Oyzz6BSqSRNsEREREREpkYURTwwS8WAAQPkLkW/DGBjcTncunUL27dvR1JSEgoKCkp8btGiRVr3J0mga968OWxsbJCamgp3d/dy2/E5OiIiIiKiimXiPswszNCuXTu5SyGJRUVFoX///vDz80NsbCxCQkKQmJgIURTRsmVLnfqUZDhNoVCgd+/euHnzphTdERERERGZrDTcQa9evdSLZtRU+txY3FC9++67ePPNN3H+/HlYW1tjy5YtuHnzJrp06YKhOk6xlWx+ZL9+/Urt4UBERERERNpJE+5gyLAhcpehf3rctsBQXb58GWPGjAHweO+6R48ewdbWFh9//DEWLFigU5+SBbo+ffogLS0NGRkZFbbzm+Qs1SWJiIiIiGqUHDELeYoc9OnTR+5SSA9q166tfm7O3d0d8fHx6s+lpaXp1Kdk47j29vbo1asXEhISdJ7/SURERERkylJwExHdusPe3l7uUvTPBBdFadeuHY4cOYLGjRsjMjISb7zxBs6fP4+tW7fq/MykpEtSvvDCC0hKSoIoGvhXkoiIiIjIwIiiiDSL25gwcbzcpZCeLFq0CG3btgUAzJ07FxEREdi4cSN8fHzwn//8R6c+JQ10ffv2RVZWFu7fr3glS067JCIiIiIqKRuZyMcjk5luKejpMFRKpRK3bt2Cl5cXgMfTL1euXIlz585hy5YtOm8uLmmgq127Nvr27Ytr165J2S0RERERUY13R7iBAQMHoHbt2nKXQnpgZmaGnj174sGDB5L2K/ku4FOmTEF8fDyUSqXUXRMRERER1UgqUYlUs5uYMmWK3KVUHxNc5TIkJAQJCQmS9il5oOvatSucnZ2RmJhYYTtOuyQiIiIieuwubqNOHWd06dJF7lJIjz799FO8+eab2LFjB+7cuYOsrKwShy4kD3SCIODVV18tsQQnERERERGV7475dbz+xusQBEN+CkxaprSx+Mcff4ycnBxERkbi7Nmz6N+/Pxo0aAAnJyc4OTnB0dERTk5OOvWtl+3nx40bhw8++ACZmZlwcHDQxyWIiIiIiGqEHPEhMlTpGDdunNylVC8T2rZg7ty5eOWVV3Dw4EHJ+9ZLoHNxccHgwYNx6dIlhIeHl9vOb5IzElZXvCImEREREVFNdhPXMKD/ANSrV0/uUkhPird108eUWsmnXBZ75513EBcXh7y8PH1dgoiIiIjIqBWI+UhR3MBHcz6SuxR5mNCCKPqaTquXEToAaN68Odq2bYtLly6hZcuW5bbjKB0RERERmapbQjzatG6D0NBQuUshPQsMDKw01FW2n3dZ9BboAOC9997D0KFD0axZM5ib6/VSRERERERGRSkqkWyegBUf/y53KbLQxyImhrooCvD4OTp9rC+i15TVs2dP1K9fH1euXEFwcHC57ThKR0RERESm5jYSUb9BffTo0UPuUqgajBgxAi4uLpL3q7dn6IDH80Q//vhjXLhwAUVFRfq8FBERERGR0VCKSiSZX8GCLz83qa0KSjChjcX1+Wes10AHAM899xzc3d1x+fLlCttxo3EiIiIiMhXJSEB9Tw8MHjxY7lKoGhSvcqkPeg90CoUCCxYswMWLFzlKR0REREQmTykWIck8DouWLIJCoffbcYNlShuLq1QqvUy3BKoh0AFAv3794Ovri4sXL1bYjqN0RERERFTT3UQ8/Br6oW/fvnKXIi8TmnKpT9US6ARBwIIFC3DhwgXk5+dXxyWJiIiIiAxOoViAJLM4fL1kkek+O0eSqrYx3p49e6JNmzaIiYmpsB1H6YiIiIiopkrAJbRp2wY9e/aUuxTZmdKUS32qtkAnCAK++eYbXL58GZmZmdV1WSIiIiIig5AjPsQdRSJWfLdc7lKoBqnWpzBDQkIwZswYnDp1qsJ2HKUjIiIiopom3uwCXhg9GiEhIXKXYhj4DJ0kqn1ZnU8//RS3b9/G7du3q/vSRERERESyuC/eRZZZOhZ88bncpVANU+2BztXVFbNnz8aJEyegUqnKbcdROiIiIiKqCVSiClfNz2LuJ3P1tnS9UeIInSRk2fji9ddfh729PS5cuCDH5YmIiIiIqs1NXIWzuxNmzJghdylUA8kS6CwtLbF69WrExMQgOzu73HYcpSMiIiIiY5Yn5iLRLBY//vQDLCws5C7HoHCVS2nItjV9ly5dMGjQIJw8ebLCdgx1RERERGSsrpqdw8BBg9C5c2e5S6EaSrZABwBff/01bt++jaSkJDnLICIiIiKSXJp4B1kW9/Ht0m/kLsUw8Rk6Scga6FxdXbFo0SL8888/KCgoKLcdR+mIiIiIyJgUiYWIM4/Bkm8Ww9XVVe5yDJIgino5TI2sgQ4AJk6ciNDQUJw4cULuUoiIiIiIJHEV59CiVXNMnDhR7lKohpM90AmCgHXr1iEhIQHJycnltuMoHREREREZg3QxFWkWt/HfDf+FIAhyl2O4OOVSErIHOgDw8fHBF198gejoaBQWFpbbjqGOiIiIiAxZkViEOPMzWPj1Qnh7e8tdDpkAgwh0ADBlyhQEBQVx6iURERERGa1rinNo3KwxJk+eLHcpBo/bFkjDYAKdQqHAL7/8gsTERCQmJpbbjqN0RERERGSI7orJSLdMwZbfNkOhMJjbbKrhDOo7zdvbG6tWrcLRo0eRk5NTbjuGOiIiIiIyJHniI1wxO43v1/4HXl5ecpdjHPgMnSQMKtABwMiRIzFgwAAcOXIEogkuO0pERERExkUURVw2O4GBgwdixIgRcpdDJsbgAh0ArFy5EiqVCufOnSu3DUfpiIiIiMgQ3BCuwLKuGVb/Z7XcpRgVPkMnDYMMdHZ2dti8eTNiYmJw586dctsx1BERERGRnB6I93DD7Aq2bd8GOzs7ucsxLpxyKQmDDHQA0KZNGyxcuBCHDh3i83REREREZHDyxEc4L/yDxUsWo02bNnKXQybKYAMd8Hgrg379+uHw4cNQKpVyl0NEREREBABQiSpcNP8Xg4YM5BYFOuKUS2kYdKATBAGrV6+Gvb19hfvTcZSOiIiIiKrTVcU51PV2xtof1kIQBLnLIRNm0IEOAGrVqoXt27fj+vXruHr1arntGOqIiIiIqDrcEW8gzfI29uzdDRsbG7nLMV58hk4SBh/oAMDf3x+//vorjh07htTU1HLbMdQRERERkT5liOm4YhaD37ZthZ+fn9zlEBlHoAOAXr16YcGCBThw4ACys7PlLoeIiIiITEyemIsL5v9g4aKv0KtXL7nLqRH4/FzVGU2gA4Dp06dj2LBhOHDgAAoLC8tsw1E6IiIiIpJakViEc+bRGPH8cEybNk3ucojUjCrQCYKAFStWwN/fH3///TdEsewYzlBHRERERFIRRRGXzU6gcfNArFqziougSEUU9XOYGKMKdABgYWGB33//HQUFBTh58mS57RjqiIiIiEgK8cJ5mNUTsXPPTlhYWMhdTo3BbQukYXSBDgDq1KmDffv2IT4+HpcuXSq3HUMdEREREVXFLTEeaTa3ceivQ6hTp47c5RCVYi53AboKDAzEzp070aNHD9ja2sLLy6vMdn6TnJGw+n41V0dERERExujJAYGkpCQkHrqM/Xv3IyAgQMaqaih9bDNggiN0RhvoAKBjx474/vvvMWHCBERGRqJu3bpltiv+wWSwIyIiIqJiFc3mSktLw6FDh7B27Vp06NChGqsi0o5RTrl80siRI/Hhhx8iKiqq0u0MOAWTiIiIiCqTnZ2N/fv346OPPsKIESPkLqfGElT6OUyN0Qc6AHj33XcxdOhQ7Nu3D3l5eRW2ZagjIiIiovLuCfPy8rBv3z4MHz4c77zzTjVXRaS9GhHoBEHAypUr0a5dO0RFRZW7R10xv0nODHZEREREJqq8+8DCwkJERUWhXbt2WLFiBbcn0DdRT4eJqRGBDgDMzMywadMmeHl54fDhw1CpKh9vZagjIiIiMi3l3f+pVCocOnQI3t7e2LRpE8zMzKq5MiLd1JhABwDW1tbYtWsXLC0tcfTo0XI3Hi/GRVKIiIiISBRFHD16VH0vaW1tLXdJJoH70EnDqFe5LIujoyOioqLQpk0bHD9+HG3atIEgCAxvRERERCaurNE5URRx/PhxZGVl4fjx43BwcJChMhMlio8Pqfs0MTVqhK6Yh4cHDh8+jDt37uDUqVMMc0REREQmrryplqdOncKdO3dw+PBheHh4VHNVRFVXIwMdAPj7++Pw4cNITExEZqsbfF6OiIiIyESVdx945swZJCYm4vDhw/D396/mqohTLqVRYwMdADRq1AiHDh3ClStXcP78eYY6IiIiIgIAnDt3DnFxcTh06BAaNWokdzlEOqvRgQ4AmjZtigMHDuD8+fO4ePEiQx0RERGRCSnr3u/ixYu4cOECDhw4gKZNm8pQFQHgtgUSqXGLopQlLCwMe/fuRc+ePaFSqdB00uMfXD5bR0RERFRzlRXmzp8/j/Pnz2Pfvn1o2bKlDFURSavGj9AVCw8Px6FDh3Dx4kWcOXMGAPehIyIiIqqpyrrPO3PmDC5evIhDhw6hXbt2MlRFT+IzdNIwmUAHPB6pO3LkCOLj43Hy5EmIoshQR0RERFTDPH1/J4oiTp48iYSEBBw5cgRhYWEyVUYkPZMKdMDjZ+qOHTuG5ORkHD9+XB3qGOyIiIiIjF9ZYe7ff/9FcnIyjh49ymfmDEnxPnRSHybG5AIdAAQFBSE6OhppaWk4evQoVCoVAE7BJCIiIqpJVCoVjh49ivT0dERHRyMoKEjukugJnHIpDZMMdADg6+uL48ePQ6VS4cCBAygsLATAUEdERERkrJ68jyssLERUVBREUcTx48fh6+srY2VE+mOygQ4APDw8EB0dDTc3N+zduxd5eXkAwCmYREREREbmyXu3vLw8/Pnnn+p7PQ8PDxkro3Jx2wJJmHSgAwBHR0dERUWhdevW2LVrFx4+fKj+HEMdERERkeF78p4tKysLu3btQtu2bREVFQUHBwcZKyPSP5MPdABgbW2NzZs3Y+jQodi5cyfS0tLUn+NoHREREZHhevI+LS0tDbt27cKwYcOwefNmWFlZyVgZVYbP0EmDge5/zMzMsGzZMrz77rvYtWsXbty4UeLzDHVEREREhuXJ+7PExETs2rUL7777LpYuXQqFgre5ZBrM5S7AkAiCgHfeeQcNGzbE6NGj0aJFC4SEhEAQBAD//5dGwur7cpZJREREZPKK78tEUcSFCxdw5swZ/PTTT3juuedkrow0phIfH1L3aWIY6MowZMgQeHl5ITIyEg8fPkS7du1K/JaHwY6IiIhIPsX3YiqVCv/88w9SUlLw119/oXXr1jJXRlT9OBZdjjZt2uD06dMoKirC/v37UVBQUKoNp2ESERERVa/i+6+CggLs378fRUVFOHXqFMOcMeIql5JgoKuAl5cX/v33XwQEBGDnzp3IyMgo1YaLphARERFVj+J7royMDOzYsQMBAQE4fvw4vLy8ZK6MdCFAD4uiyP2mZMBAVwl7e3vs3r0bo0ePxo4dO3Dz5s0y2zHUEREREelP8b1WUlIS/vjjD4wdOxa7d++GnZ2dzJURyYvP0GnAzMwMCxcuRIsWLTBp0iSEhoaiWbNm6sVSivHZOiIiIiLp+U1yhiiKOHfuHM6ePYs1a9Zg1KhRcpdFVSWKjw+p+zQxDHRaeOGFF9CoUSP07dsXGRkZ6NChA8zNS38JGeyIiIiIpOE3yRlFRUU4evQoMjMzceTIEYSFhcldFpHB4JRLLbVq1QoxMTHqqZgPHz4sty2nYRIRERHpzm+SMx4+fIjdu3fD3t4eZ86cYZirQbixuDQY6HTg5uaGv//+G3379sX27dvLfa4O4KIpRERERLrwm+SMmzdvYvv27ejXrx/+/vtvuLm5yV0W1UDLli2Dj48PrK2t0bZtWxw/frzctqtXr0anTp3g5OQEJycndO/evcL21YGBTkdWVlZYtWoVli1bhoMHD+LMmTMQK5izy2BHREREpBnfiU44ffo0Dh48iOXLl+O7776DlZWV3GWR1Axg24KNGzdi5syZmD17Nk6fPo3Q0FD06tULd+/eLbP9oUOHMHLkSBw8eBDR0dHw9PREz549kZycrN2FJSSIFaUQ0sjZs2fRr18/WFhYoFOnThr9hcPn64iIiIhK8xhdC3///TeUSiW2b9+O0NBQuUsiiWVlZcHBwQEdn5kDc3NrSfsuKsrDkYNzkJmZCXt7+0rbt23bFq1bt8bSpUsBPN6s3tPTE9OmTcM777xT6euVSiWcnJywdOlSjBkzpsr164IjdBIIDQ3F2bNnERAQgD/++ANpaWmVvoajdUREREQl2Q9S4Y8//kBQUBDOnj3LMFfDCaKolwN4HBqfPPLz80tdv6CgAKdOnUL37t3V5xQKBbp3747o6GiN3kNubi4KCwvh7CzfvT0DnUScnJywa9cuzJgxAzt37sTFixcrnIIJcBomEREREQCIoojc8NvYuXMnZs6ciZ07d8LR0VHuskjfVHo6AHh6esLBwUF9zJ8/v9Tl09LSoFQq4erqWuK8q6srUlJSNHoLs2bNgoeHR4lQWN24bYGEFAoFPvjgA3Tq1AnDhg3D3bt30aFDB1haWlb4Om5zQERERKaqSCzErYYXkXUtC3v37kXnzp3lLolqgJs3b5aYcqmPZzA///xzbNiwAYcOHYK1tbRTR7XBETo96NKlCy5cuABPT09s374d9+7d0+h1HLEjIiIiU5Il3sc557/h7e2NCxcuMMyZGH1OubS3ty9xlBXo6tatCzMzM6SmppY4n5qaWumKql999RU+//xz7N27F82aNZPui6IDjtDpSb169bBv3z58/vnn+PjjjxEWFobg4GAIglDpazliR0RERMZCl19Gi6KIS5cu4ezJk5j95mzMmjULCgXHGah6WVpaIiwsDFFRURg4cCCAx4uiREVFYerUqeW+7osvvsC8efPw559/olWrVtVUbfkY6PRIoVDgvffeQ+fOnTF06FCkpqaiQ4cOGg/JMtgRERGRIdMlzOXl5eHo0aPIyclBVFQUOnTooIfKyCjosM2ARn1qYebMmRg7dixatWqFNm3aYPHixcjJycH48eMBAGPGjEH9+vXVz+AtWLAAH330EX7++Wf4+Pion7WztbWFra2tpG9FU/xVSDXo2LEjLl68iCZNmmDbtm1a71PBqZhERERkaHS5N7l16xa2bduGJk2a4OLFiwxzJLvhw4fjq6++wkcffYTmzZsjJiYGe/bsUS+UkpSUhDt37qjbr1ixAgUFBRgyZAjc3d3Vx1dffSXXW+A+dNVJFEWsXr0ar732Gho1aoSwsDCYmZlp3Q9H7IiIiEguugQ5pVKJU6dOITY2Ft988w0mTpyo0WMoVDMV70PXucOHetmH7q+jn2i8D11NwBG6aiQIAl566SWcOXMGhYWF2LVrFzIyMrTuhyN2REREJAdd7j8yMjKwa9cuFBYW4syZM5g0aRLDHJGEGOhk0KhRI5w6dQpDhw7F9u3bcenSpUr3rCsLgx0RERFVF23vOYoXPtm+fTuGDh2KU6dOoVGjRnqqjoyRIOrnMDVcFEUmVlZWWLJkCfr27YsXXngBycnJ6NChA2rVqqXR6zntkoiIiKqDLr88zs3NxbFjx5CdnY3t27ejR48eeqiMjJ4oPj6k7tPEMNDJrEePHoiNjcXLL7+M3377De3bt4evr6/68wxuREREJBddwlxCQgKio6MRGRmJ7777Dk5OTnqojIiKMdAZACcnJ2zatAm//PILXn75Zdy6dQuulwNhLljIXRoRERGZKG3DXEFBAf79918kJydjzZo1GDFihJ4qo5pCUD0+pO7T1PAZOgMycuRIXL58Ga6urjjr9BfSxdTKX0REREQkIV2e0b916xZ+//13uLm54dKlSwxzRNWIgc7A1K9fH1FRUfj0008Ra3MSd5pcRpFYKHdZREREZAJ0GZU7evQoDh06hE8//RRRUVGoX7++nqqjGqf4GTqpDxPDQGeAFAoFpkyZgkuXLsHZ2Rlnnf6C5bO5cpdFRERENVRVRuWcnZ1x8eJFTJkyhdsREMmAgc6A+fj44NChQ5g3bx4OHjyIO00uo8FYW7nLIiIiohqkKqNyn332GQ4fPgwfHx/9FEc1m6inw8Qw0Bk4hUKByZMnq0frtm3bBvNe2dx/joiIiKpM2/uJGzduYNu2bahTpw4uXryIV155haNyRDLjKpdGwsfHB4cPH8bq1avx5ptvIiEhAW1GtUGtWrW4tQERERFpRdsgl5ubi+PHj+POnTtYuHAhJk6cyCBHVSaIIgSJn3mTuj9jwBE6IyIIAl566SXExcWhadOm2Lp1Ky5fvgzfiU4csSMiIiKNaHPPIIoiLl++jC1btqBp06aIi4vDpEmTGOaIDAhH6IyQm5sbNm/ejJ07d2LSpElITExEeHi4+i9ojtgRERHR07T95e+DBw8QHR0NpVKJX3/9FX369NFTZWSy9LEqJUfoyJj06dMHcXFxGDRoELZt24aTJ0+iqKhIp5WqiIiIqObS5r6gsLAQJ0+exO+//47BgwcjLi6OYY70QwSgkvgwvTzHQGfsbG1tsWTJEhw7dgwA8NtvvyEhIQGiKDLYERERmTht7gVEUURCQgJ+++03CIKA6OhoLFmyBLa2XGGbyJBxymUNERYWhhMnTmDdunV48803ce3aNbRp0waOjo6ciklERGSCtPmlbkZGBo4fP47MzEwsXLgQ48aNg0LB3/uTfnFRFGnwJ7UGUSgUmDBhAuLj4/Hss89i27ZtOHHiBAoLCwH8/2/pOGpHRERUc2nzb31hYSFOnDiBbdu2ITIyEgkJCZgwYQLDHJER4U9rDeTk5ITly5fj+PHjsLS0xJYtWxAbGwuVSqVuw2BHRERUs2jzb7tKpUJsbCy2bNkCS0tLHD9+HMuWLYOjo6N+iyR6koj/XxhFskPuN1X9OOWyBgsNDUV0dDQ2b96MN954A7GxsWjZsiU8PT3Vyw0/+Rc/p2QSEREZJ22ek7t58yZOnz4Na2trrFmzBkOGDOE2BERGjIGuhhMEAUOHDsWAAQOwfPlyzJ49G05OTggLC0PdunVLtOWzdkRERMZFm9k2aWlpOHXqFDIyMjB37lxMnjwZlpaWeqyOqBLctkASgiia4Ls2YRkZGfj000+xdOlS+Pr6okWLFrCzsyu3PcMdERGR4dEmyD18+BBnzpzB9evXMW3aNLz//vucWkmyysrKgoODA7qFzoK5mZWkfRcp83Hg7AJkZmbC3t5e0r4NFZ+hMzGOjo746quvEBcXhxYtWmDz5s04evQoHj58WGZ7PmtHRERkOLT5dzkrKwtHjhzB5s2b0aJFC8TFxeHLL79kmCPDIfUedMWHiWGgM1FeXl74+eefce7cOYSEhGDz5s04cuQIsrKyymzPFTKJiIjkpU2QO3r0KLZs2YJmzZrh/Pnz+Pnnn+Hl5aXnCom0U7xtgdSHqeEzdCauUaNG2LBhA65cuYI5c+Zgy5YtCAwMRNOmTcsdpuZCKkRERNVHmyB37tw5XL16Fc899xy2bNmCoKAgPVdHRHJjoCMAQFBQEH755ZcSwS4gIADBwcFwcnIq93UMd0RERPqhaZB78OABLl68iKtXr2LIkCH47bffEBgYqOfqiCTARVEkwUBHJRQHu7i4OHz66afYsGEDvLy80LhxY7i7u1e4rPHT//Aw4BEREWlPkyAniiLu3LmDy5cvIykpCSNGjGCQIzJRXOWSKnTnzh0sWbIEy5cvh729PRo1agRfX18oFNo9fslwR0REVDFNgpxKpcL169cRGxuLrKwsvPrqq5g+fTrc3d2roUIiaRSvchnR5E29rHIZdekrk1rlkoGONJKdnY3//Oc/+PLLL/Ho0SM0atQIQUFBsLCw0Kk/BjwiIqLHNAlyhYWFuHLlCmJjY2FjY4O3334bEyZMgK2tbTVUSCQtBjppMdCRVoqKirB161bMmzcPV69eRUBAABo3bgwHBwed+2S4IyIiU6RJkMvMzMTly5fV/+a+//77GDx4MMzN+dQMGS91oGv8hn4C3eWFDHRElRFFEf/88w8WLVqEbdu2wcvLC4GBgfD09KzwObvKMNwREVFNpunzcTdv3kRcXBySkpIwePBgvP7662jXrl2V/o0lMhQMdNJioKMqu3PnDr777jssW7YMoigiICAAQUFBsLKq+g8oAx4REdUEmgS5/Px8XLlyBVevXoUgCHj11VfxyiuvwM3NrRoqJKo+6kAXpKdAd4WBjkgnhYWF2Lp1KxYtWoSzZ8/C398fgYGBqFevnuS/UWTQIyIiY1BZkBNFEffu3UNcXBzi4+PRvHlzzJw5E4MGDdL5OXUiQ1cc6LoHztRLoNsft8ikAh0nYJNkLCwsMHz4cAwfPhwxMTFYsWIFfvrpJ9jb28Pf3x8NGzaUZNQOKP8fSAY9IiIyBJUFufz8fFy9ehUJCQl4+PAhRo0ahZ9//hmhoaHVVCER1RQcoSO9ysnJwaZNm7B06VJcuHAB/v7+CAgIgKura7U+B8CgR0RE1aGiICeKIlJTU3H16lXEx8cjJCQEU6dOxbBhw1C7du1qrJJIXuoRuoAZ+hmhu/q1SY3QMdBRtTl37hxWrlyJ9evXo1atWvD19UVAQABq1aolW00MekREVFWVjcbl5ubi6tWruH79OnJzczFmzBi88soraNq0aTVVSGRYGOikxUBH1S43NxdbtmzB6tWrER0dDS8vL/j6+sLb29tglmFm0CMiospUFOSKiopw48YNXL9+HUlJSQgPD8ekSZPw3HPPyfqLTCJDoA50/q/rJ9DFL2agI6ouSUlJ+PHHH7F69WqkpaXBz88P/v7+cHFxMcilmRn0iIhMW2VTKu/evYtr167h+vXrqFevHiZOnIgxY8bAy8urGqskMmwMdNJioCODIIoioqOj8f3332Pjxo2wtraGp6cn/P394exc+VLPxowhkYjI8FUU5O7fv4/4+HgkJSUhPz8fw4cPx4QJExAeHm6Qv5wkkps60Pm9pp9Al7CEgY5ITnl5edi9ezfWr1+PXbt2wdHRUR3uHBwc5C7PqDAsEhHprqIQl5mZifj4eNy8eRMZGRno06cPRo8ejd69e8Pa2roaqyQyPgx00mKgI4OWnZ2NP/74Az/++COioqJQr1491K9fHz4+PnB0dORvPmXEsEhEhk6Tzbw1JYoiMjIykJiYiOTkZNy7dw8REREYM2YM+vXrB1tbW8muRVTT/X+gmw5zhcSBTpWP/QnfMNARGaIHDx7g999/x6ZNmxAVFQUHBwd4eHjA29u72rdBIP1jYCSSn5SByBgVbzNw48YN3L59G5mZmYiIiMCwYcMwYMAAODk5yV0ikVFSBzrfafoJdNe/ZaAjMnQ5OTnYt28fNm/ejD/++AMA4OHhATc3NzRo0IAriFGlGBipuph6KDI2ubm5uHXrFlJTU5GcnAwA6NevH4YMGYIePXpwvzgiCTDQSYuBjoxeUVERjh49ij179mDnzp24ePEiXFxc4Orqitq1axvMVghkWu79lSN3CTVKvc68iSb9yszMRGpqKu7evYvg4GD06dMHvXv3RocOHfjvCJHE1IHOe6p+At2NpQx0RMYsPT0dUVFROHDgAGJjY6FSqeQuiUhSeTn5KHhUUOJcQX5hiY8trSxKfmxjCeva0v6jSVST+Pn5ITIyEhEREahTp47c5RDVaAx00uKvnKjGqVOnDoYNG4Zhw4bJXQoRERERlUdUPT6k7tPEKOQugIiIiIiIiHTDEToiIiIiIqp+ovj4kLpPE8MROiIiIiIiIiPFEToiIiIiIqp+KhGAxCNqKtMboWOgIyIiIiKi6scpl5LglEsiIiIiIiIjxRE6IiIiIiKqfiL0MEInbXfGgCN0RERERERERoojdEREREREVP34DJ0kOEJHRERERERkpDhCR0RERERE1U+lAqDSQ5+mhSN0RERERERERoojdEREREREVP34DJ0kGOiIiIiIiKj6MdBJglMuiYiIiIiIjBRH6IiIiIiIqPqpREi+E7iKI3RERERERERkJDhCR0RERERE1U4UVRBFabcZkLo/Y8AROiIiIiIiIiPFEToiIiIiIqp+oij9M29c5ZKIiIiIiIiMBUfoiIiIiIio+ol6WOXSBEfoGOiIiIiIiKj6qVSAIPEiJlwUhYiIiIiIiIwFR+iIiIiIiKj6ccqlJDhCR0REREREZKQ4QkdERERERNVOVKkgSvwMHTcWJyIiIiIiIqPBEToiIiIiIqp+fIZOEhyhIyIiIiIiMlIcoSMiIiIiouqnEgGBI3RVxUBHRERERETVTxQBSL2xuOkFOk65JCIiIiIiMlIcoSMiIiIiomonqkSIEk+5FDlCR0RERERERMaCI3RERERERFT9RBWkf4aOG4sTERERERGZjGXLlsHHxwfW1tZo27Ytjh8/XmH7X3/9FY0aNYK1tTWaNm2KXbt2VVOlZWOgIyIiIiKiaieqRL0c2ti4cSNmzpyJ2bNn4/Tp0wgNDUWvXr1w9+7dMtsfO3YMI0eOxIsvvogzZ85g4MCBGDhwIC5cuCDFl0QngmiKTw4SEREREZEssrKy4ODggK7CIJgLFpL2XSQW4pD4GzIzM2Fvb19p+7Zt26J169ZYunQpAEClUsHT0xPTpk3DO++8U6r98OHDkZOTgx07dqjPtWvXDs2bN8fKlSuleyNa4AgdERERERFVP1Gln0NDBQUFOHXqFLp3764+p1Ao0L17d0RHR5f5mujo6BLtAaBXr17ltq8OXBSFiIiIiIiqXREKAYnnChahEMDjUcAnWVlZwcrKqsS5tLQ0KJVKuLq6ljjv6uqK2NjYMvtPSUkps31KSkpVS9cZAx0REREREVUbS0tLuLm54UiKfhYTsbW1haenZ4lzs2fPxpw5c/RyPbkx0BERERERUbWxtrbG9evXUVBQoJf+RVGEIAglzj09OgcAdevWhZmZGVJTU0ucT01NhZubW5l9u7m5adW+OjDQERERERFRtbK2toa1tbWsNVhaWiIsLAxRUVEYOHAggMeLokRFRWHq1KllviY8PBxRUVF4/fXX1ef27duH8PDwaqi4bAx0RERERERkkmbOnImxY8eiVatWaNOmDRYvXoycnByMHz8eADBmzBjUr18f8+fPBwC89tpr6NKlCxYuXIg+ffpgw4YNOHnyJFatWiXbe2CgIyIiIiIikzR8+HDcu3cPH330EVJSUtC8eXPs2bNHvfBJUlISFIr/3xigffv2+Pnnn/HBBx/gvffeQ0BAALZt24aQkBC53gL3oSMiIiIiIjJW3IeOiIiIiIjISDHQERERERERGSkGOiIiIiIiIiPFQEdERERERGSkGOiIiIiIiIiMFAMdERERERGRkWKgIyIiIiIiMlIMdEREREREREaKgY6IiIiIiMhIMdAREREREREZKQY6IiIiIiIiI8VAR0REREREZKT+D260lH+RayGUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAHwCAYAAADuLi1cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCs0lEQVR4nO3deXxMV/8H8M+d7GRHNrJLgoQgttgrtsau1qq1tKVo6aI72qpqS2ltxVNafVoUVbUVsbRIa409QiJCSEhIIolsM/f3hyfzE9lmJndyZzKf9+t1X21uzpz7nUi4n5xzzxFEURRBRERERERERkchdwFERERERESkGwY6IiIiIiIiI8VAR0REREREZKQY6IiIiIiIiIwUAx0REREREZGRYqAjIiIiIiIyUgx0RERERERERoqBjoiIiIiIyEgx0BERERERERkpBjoiIiIiIiIjxUBHREREREQm6a+//kK/fv3g4eEBQRCwbdu2Sl9z6NAhtGzZElZWVmjYsCHWrVun9zorwkBHREREREQmKScnB6GhoVi2bJlG7a9fv44+ffrgmWeeQUxMDF5//XVMnDgRf/75p54rLZ8giqIo29WJiIiIiIgMgCAI+O233zBw4MBy28yaNQs7d+7EhQsX1OdGjBiBjIwM7NmzpxqqLI0jdERERERERBqIjo5G9+7dS5zr1asXoqOjZaoIMJftykREREREZJLy8vJQUFCgl75FUYQgCCXOWVlZwcrKqsp9p6SkwNXVtcQ5V1dXZGVl4dGjR7CxsanyNbTFQEdERERERNUmLy8Pvt62SLmr1Ev/tra2yM7OLnFu9uzZmDNnjl6uJzcGOiIiIiIiqjYFBQVIuavE9VPesLeT9gmwrIcq+IbdwM2bN2Fvb68+L8XoHAC4ubkhNTW1xLnU1FTY29vLMjoHMNAREREREZEM7O0Ukgc6dd/29iUCnVTCw8Oxa9euEuf27duH8PBwya+lKS6KQkRERERE1U4pqvRyaCM7OxsxMTGIiYkB8HhbgpiYGCQlJQEA3n33XYwZM0bd/pVXXkFCQgLefvttxMbGYvny5di0aRNmzJgh2ddFWwx0RERERERkkk6ePIkWLVqgRYsWAICZM2eiRYsW+OijjwAAd+7cUYc7APD19cXOnTuxb98+hIaGYuHChVizZg169eolS/0A96EjIiIiIqJqlJWVBQcHB6Rc8dLLM3RuQUnIzMzUy5RLQ8QROiIiIiIiIiPFRVGIiIiIiKjaqaCCdk+8adanqeEIHRERERERkZHiCB0REREREVU7pShCKfFyHlL3ZwwY6IiIiIiIqNqpIEIFaQOY1P0ZA065JCIiIiIiMlIcoSMiIiIiomqnggglR+iqjCN0RERERERERoojdEREREREVO34DJ00OEJHRERERERkpDhCR0RERERE1Y7bFkiDI3RERERERERGiiN0RERERERU7VT/O6Tu09RwhI5IRoIgYM6cORq19fHxwbhx47S+RmJiIgRBwLp167R+LRmO7OxsuLi44L///a/cpZgUbX5GTd3TX6t169ZBEAQkJiZq3dc777yDtm3bSlccERkk5f+2LZD6MDUMdERVUHzDcvLkSUn6O3bsGObMmYOMjAxJ+tPGpUuXMGfOHJ1uvmqCXbt2VfnG/bPPPsO2bdskqedpS5YsgZ2dHUaMGKE+FxUVhQkTJiAwMBC1atWCn58fJk6ciDt37pTZx7Fjx9CxY0fUqlULbm5umD59OrKzs/VSb7H09HR8+eWX6Ny5M+rVqwdHR0e0a9cOGzduLLN9fn4+Zs2aBQ8PD9jY2KBt27bYt2+fXmvUF31+P8hFip8TTbz++us4e/Ystm/frvdrEREZOwY6Ihk9evQIH3zwgfrjY8eOYe7cuWUGuitXrmD16tV6q+XSpUuYO3euSQe6uXPnVqkPfd3AFxYWYsmSJZg4cSLMzMzU52fNmoVDhw5h0KBB+OabbzBixAhs2rQJLVq0QEpKSok+YmJiEBERgdzcXCxatAgTJ07EqlWrMHToUMnrfVJ0dDTef/99ODs744MPPsC8efNQq1YtjBgxArNnzy7Vfty4cVi0aBFGjRqFJUuWwMzMDJGRkThy5Ihe6yzP0z+j2qipga68n5OqfK2e5ubmhgEDBuCrr76SpD8iMkxKUT+HqeEzdEQysra21ritlZWVHivRjiiKyMvLg42NjdylqOXk5KB27dpyl6EXO3bswL179zBs2LAS5xctWoSOHTtCofj/38317t0bXbp0wdKlS/Hpp5+qz7/33ntwcnLCoUOHYG9vD+DxNN5JkyZh79696Nmzp15qDw4OxtWrV+Ht7a0+N2XKFHTv3h0LFizA22+/rf5zO378ODZs2IAvv/wSb775JgBgzJgxCAkJwdtvv41jx47ppcaKaPMzWlPk5uaiVq1aWr9O6q/VsGHDMHToUCQkJMDPz0/SvomIahKO0BFJbNy4cbC1tUVycjIGDhwIW1tb1KtXD2+++SaUSmWJtk8+czJnzhy89dZbAABfX18IglDi+ZOnn6G7f/8+3nzzTTRt2hS2trawt7fHs88+i7Nnz2pd87p169QjNc8884z62ocOHVJfu2/fvvjzzz/RqlUr2NjY4LvvvgMArF27Ft26dYOLiwusrKzQpEkTrFixoszr7N69G126dIGdnR3s7e3RunVr/PzzzyXa/Pvvv+jduzccHBxQq1YtdOnSBUePHi3RZs6cORAEAZcuXcLzzz8PJycndOzYsdz3V1hYiLlz5yIgIADW1taoU6cOOnbsqJ7KN27cOCxbtgwA1O9dEAT167/66iu0b98ederUgY2NDcLCwrB58+YS1xAEATk5Ofjhhx/Ur3/yzys5ORkTJkyAq6srrKysEBwcjO+//77cmp+0bds2+Pj4wN/fv8T5zp07lwhzxeecnZ1x+fJl9bmsrCzs27cPL7zwgjrMAY/Dkq2tLTZt2lTh9ceOHQtra+sSfQJAr1694OTkhNu3b5f7Wl9f3xJhDnj8tRo4cCDy8/ORkJCgPr9582aYmZnhpZdeUp+ztrbGiy++iOjoaNy8ebPCOrt27YqQkBCcOnUK7du3h42NDXx9fbFy5cpSbe/evYsXX3wRrq6usLa2RmhoKH744YdS7Z5+Lqz4e+/atWsYN24cHB0d4eDggPHjxyM3N7fE68r7fnj48CFef/11+Pj4wMrKCi4uLujRowdOnz5d4fsrvnZsbCyGDRsGe3t71KlTB6+99hry8vJKtf/pp58QFhYGGxsbODs7Y8SIEaW+hk9+zTp37oxatWrhvffeK/P6lf2caPq84e7du9GpUyfUrl0bdnZ26NOnDy5evFiqXffu3QEAv//+e6V9EpFxUunpMDUcoSPSA6VSiV69eqFt27b46quvsH//fixcuBD+/v6YPHlyma8ZPHgw4uLi8Msvv+Drr79G3bp1AQD16tUrs31CQgK2bduGoUOHwtfXF6mpqfjuu+/QpUsXXLp0CR4eHhrX27lzZ0yfPh3ffPMN3nvvPTRu3BgA1P8FHk/5HDlyJF5++WVMmjQJQUFBAIAVK1YgODgY/fv3h7m5Of744w9MmTIFKpUKr776qvr169atw4QJExAcHIx3330Xjo6OOHPmDPbs2YPnn38eAHDgwAE8++yzCAsLw+zZs6FQKNSB8e+//0abNm1K1D106FAEBATgs88+g1jBvjNz5szB/PnzMXHiRLRp0wZZWVk4efIkTp8+jR49euDll1/G7du3sW/fPqxfv77U65csWYL+/ftj1KhRKCgowIYNGzB06FDs2LEDffr0AQCsX79e3X9xICkOYKmpqWjXrh0EQcDUqVNRr1497N69Gy+++CKysrLw+uuvV/jnc+zYMbRs2bLCNsWys7ORnZ2t/v4BgPPnz6OoqAitWrUq0dbS0hLNmzfHmTNnKuxzyZIlOHDgAMaOHYvo6GiYmZnhu+++w969e7F+/XqtvteKFU8JfbLOM2fOIDAwsEToBKD+c4+JiYGnp2eF/T548ACRkZEYNmwYRo4ciU2bNmHy5MmwtLTEhAkTADyeGti1a1dcu3YNU6dOha+vL3799VeMGzcOGRkZeO211yqtf9iwYfD19cX8+fNx+vRprFmzBi4uLliwYAGAir8fXnnlFWzevBlTp05FkyZNkJ6ejiNHjuDy5csa/TkPGzYMPj4+mD9/Pv755x988803ePDgAX788Ud1m3nz5uHDDz/EsGHDMHHiRNy7dw/ffvstOnfujDNnzsDR0VHdNj09Hc8++yxGjBiBF154Aa6urmVet7KfE02sX78eY8eORa9evbBgwQLk5uZixYoV6NixI86cOQMfHx91WwcHB/j7++Po0aOYMWOGTtcjIjIJIhHpbO3atSIA8cSJE+pzY8eOFQGIH3/8cYm2LVq0EMPCwkqcAyDOnj1b/fGXX34pAhCvX79e6lre3t7i2LFj1R/n5eWJSqWyRJvr16+LVlZWJa59/fp1EYC4du3aCt/Lr7/+KgIQDx48WOa1AYh79uwp9bnc3NxS53r16iX6+fmpP87IyBDt7OzEtm3bio8ePSrRVqVSqf8bEBAg9urVS32uuH9fX1+xR48e6nOzZ88WAYgjR46s8D0VCw0NFfv06VNhm1dffVUs76/Ep99jQUGBGBISInbr1q3E+dq1a5f4Myr24osviu7u7mJaWlqJ8yNGjBAdHBzK/BoWKywsFAVBEN94440K6y/2ySefiADEqKgo9bniP9u//vqrVPuhQ4eKbm5ulfb7559/igDETz/9VExISBBtbW3FgQMHalTT09LT00UXFxexU6dOJc4HBweX+pqKoihevHhRBCCuXLmywn67dOkiAhAXLlyoPpefny82b95cdHFxEQsKCkRRFMXFixeLAMSffvpJ3a6goEAMDw8XbW1txaysLPX5p39Gi7/3JkyYUOLagwYNEuvUqVPiXHnfDw4ODuKrr75a4XspS/G1+/fvX+L8lClTRADi2bNnRVEUxcTERNHMzEycN29eiXbnz58Xzc3NS5wv/ppV9rUtVtHPydNfq+K/H4v/Pnv48KHo6OgoTpo0qcTrUlJSRAcHh1LnRVEUe/bsKTZu3Fij2ojIeGRmZooAxNOXXMW4m+6SHqcvuYoAxMzMTLnfZrXhlEsiPXnllVdKfNypU6cS08uqysrKSj3dTqlUIj09Hba2tggKCqp06pYufH190atXr1Lnn3yOLjMzE2lpaejSpQsSEhKQmZkJANi3bx8ePnyId955p9RzNsVTtmJiYnD16lU8//zzSE9PR1paGtLS0pCTk4OIiAj89ddfUKlKTqR4+mtcHkdHR1y8eBFXr17V6j2X9R4fPHiAzMxMdOrUSaOvsyiK2LJlC/r16wdRFNXvKy0tDb169UJmZmaF/dy/fx+iKMLJyanSa/3111+YO3cuhg0bhm7duqnPP3r0CEDZz2FaW1urP1+Rnj174uWXX8bHH3+MwYMHw9raWj3tVhsqlQqjRo1CRkYGvv322xKfe/ToUbk1Pvk+KmJubo6XX35Z/bGlpSVefvll3L17F6dOnQLweGEPNzc3jBw5Ut3OwsJCvern4cOHK71OWT/f6enpyMrKqvS1jo6O+PfffyucqlqRJ0e+AWDatGkAHr8vANi6dStUKhWGDRtW4vvNzc0NAQEBOHjwYInXW1lZYfz48TrVoo19+/YhIyMDI0eOLFGXmZkZ2rZtW6ouAHByckJaWpreayMiMmacckmkB9bW1qWmSjo5OeHBgweSXUOlUmHJkiVYvnw5rl+/XuL5vDp16kh2nWK+vr5lnj969Chmz56N6OjoEs8QAY8DnoODA+Lj4wEAISEh5fZfHLbGjh1bbpvMzMwSwaa8mp728ccfY8CAAQgMDERISAh69+6N0aNHo1mzZhq9fseOHfj0008RExOD/Px89fknnx8qz71795CRkYFVq1Zh1apVZba5e/dupf2IFUwpBYDY2FgMGjQIISEhWLNmTYnPFQfSJ2svps3iNl999RV+//13xMTE4Oeff4aLi4tGr3vStGnTsGfPHvz4448IDQ0tVWd5NRZ/vjIeHh6lFscJDAwE8HhPxnbt2uHGjRsICAgo9fxh8RTjGzduVHodLy+vEh8Xf18+ePCg1JTRp33xxRcYO3YsPD09ERYWhsjISIwZM0bjhT8CAgJKfOzv7w+FQqF+3vbq1asQRbFUu2IWFhYlPq5fvz4sLS01unZVFP+MP/nLhieV9XUTRVGjnzMiMk4q8fEhdZ+mhoGOSA+eXFpeXz777DN8+OGHmDBhAj755BM4OztDoVDg9ddfLzWSJYWybqbj4+MRERGBRo0aYdGiRfD09ISlpSV27dqFr7/+Wqs6itt++eWXaN68eZltbG1tK62pLJ07d0Z8fDx+//137N27F2vWrMHXX3+NlStXYuLEiRW+9u+//0b//v3RuXNnLF++HO7u7rCwsMDatWtLLehS0ft64YUXyg2rFQVLZ2dnCIJQ4S8Dbt68iZ49e8LBwQG7du2CnZ1dic+7u7sDQJn70925c0fjZ+DOnDmjDp/nz58vMcKliblz52L58uX4/PPPMXr06FKfd3d3R3Jycpk1AtDpWT19Ke9nvLLgDTx+Bq5Tp0747bffsHfvXnz55ZdYsGABtm7dimeffVbrWp4OPCqVCoIgYPfu3WXWqevPUVUV/yysX78ebm5upT5vbl76luTBgwclnrMkoppFCQFKSPtLG6n7MwYMdEQGRJvfRG/evBnPPPMM/vOf/5Q4n5GRodMNkC6/Bf/jjz+Qn5+P7du3lxixeHrqVPFiEBcuXEDDhg3L7Ku4jb29vXp1Oyk5Oztj/PjxGD9+PLKzs9G5c2fMmTNHHejKe/9btmyBtbU1/vzzzxLTAdeuXVuqbVl91KtXD3Z2dlAqlTq9L3Nzc/j7++P69etlfj49PR09e/ZEfn4+oqKi1OHtSSEhITA3N8fJkydLbH1QUFCAmJiYUtshlCUnJwfjx49HkyZN0L59e3zxxRcYNGgQWrdurdH7WLZsGebMmYPXX38ds2bNKrNN8+bNcfDgQWRlZZUYrfn333/Vn6/M7du3S21hERcXBwDqBTe8vb1x7tw5qFSqEqN0sbGx6s9LoaKfKXd3d0yZMgVTpkzB3bt30bJlS8ybN0+jQHf16tUSo9PXrl2DSqVSvz9/f3+IoghfX1/16KRUqjJaVvwz7uLiovHPwvXr10uN5BIRUUl8ho7IgBTfhJa1sfjTzMzMSo0G/Prrr2WOcEh97SdrAEqOSmRmZpYKOz179oSdnR3mz59fann14teGhYXB398fX331FbKzs0td6969exrX9bT09PQSH9va2qJhw4YlpveV9/7NzMwgCEKJKa2JiYllbhhdu3btMl//3HPPYcuWLbhw4UKp12jyvsLDw3Hy5MlS53NychAZGYnk5GTs2rWr3Cl2Dg4O6N69O3766Sc8fPhQfX79+vXIzs7WaHPxWbNmISkpCT/88AMWLVoEHx8fjB07tswpkk/buHEjpk+fjlGjRmHRokXlthsyZAiUSmWJqan5+flYu3Yt2rZtW+kKlwBQVFRU4tm+goICfPfdd6hXrx7CwsIAAJGRkUhJScHGjRtLvO7bb7+Fra0tunTpUul1NFHW94NSqVQ/W1rMxcUFHh4eGn0tAai3DihW/CxicRgcPHgwzMzMMHfu3FJ/R4iiWOrnQRu6/D1RrFevXrC3t8dnn32GwsLCUp9/+mchMzMT8fHxaN++vU61EpHhKx6hk/owNRyhIzIgxTec77//PkaMGAELCwv069evzA2z+/bti48//hjjx49H+/btcf78efz3v//VeQPe5s2bw8zMDAsWLEBmZiasrKzU+8uVp2fPnrC0tES/fv3w8ssvIzs7G6tXr4aLi0uJ6X329vb4+uuvMXHiRLRu3Vq9d9zZs2eRm5uLH374AQqFAmvWrMGzzz6L4OBgjB8/HvXr10dycjIOHjwIe3t7/PHHHzq9tyZNmqBr164ICwuDs7MzTp48qV42vljx13769Ono1asXzMzMMGLECPTp0weLFi1C79698fzzz+Pu3btYtmwZGjZsiHPnzpW4TlhYGPbv349FixbBw8MDvr6+aNu2LT7//HMcPHgQbdu2xaRJk9CkSRPcv38fp0+fxv79+3H//v0K6x8wYADWr1+PuLi4EiMuo0aNwvHjxzFhwgRcvny5xD5xtra2GDhwoPrjefPmoX379ujSpQteeukl3Lp1CwsXLkTPnj3Ru3fvCq9/4MABLF++HLNnz1Yvq7927Vp07doVH374Ib744otyX3v8+HGMGTMGderUQUREBP773/+W+Hz79u3V37Nt27bF0KFD8e677+Lu3bto2LAhfvjhByQmJpYaiS6Ph4cHFixYgMTERAQGBmLjxo2IiYnBqlWr1M+OvfTSS/juu+8wbtw4nDp1Cj4+Pti8eTOOHj2KxYsXl5qyqquyvh+CgoLQoEEDDBkyBKGhobC1tcX+/ftx4sQJLFy4UKN+r1+/jv79+6N3796Ijo7GTz/9hOeff149kuXv749PP/0U7777LhITEzFw4EDY2dnh+vXr+O233/DSSy+pN27X5T0BpX9ONGFvb48VK1Zg9OjRaNmyJUaMGIF69eohKSkJO3fuRIcOHbB06VJ1+/3790MURQwYMECnWomITIYcS2sS1RTlbVtQu3btUm2Llxx/Ep5a5lsUHy87X79+fVGhUJRY8rusbQveeOMN0d3dXbSxsRE7dOggRkdHi126dBG7dOmibqfptgWiKIqrV68W/fz8RDMzsxJbGHh7e5e77P/27dvFZs2aidbW1qKPj4+4YMEC8fvvvy9z+4Xt27eL7du3F21sbER7e3uxTZs24i+//FKizZkzZ8TBgweLderUEa2srERvb29x2LBhJZbhL/5a3rt3r9L3JIqi+Omnn4pt2rQRHR0dRRsbG7FRo0bivHnz1MvYi6IoFhUVidOmTRPr1asnCoJQ4s/qP//5jxgQECBaWVmJjRo1EteuXVvmn2dsbKzYuXNn0cbGRgRQ4s8rNTVVfPXVV0VPT0/RwsJCdHNzEyMiIsRVq1ZVWn9+fr5Yt25d8ZNPPilxvng7ibIOb2/vUv38/fffYvv27UVra2uxXr164quvvlpiif6yZGVlid7e3mLLli3FwsLCEp+bMWOGqFAoxOjo6HJfX/wzUt7x9Pflo0ePxDfffFN0c3MTraysxNatW5e5XUZZunTpIgYHB4snT54Uw8PDRWtra9Hb21tcunRpqbapqani+PHjxbp164qWlpZi06ZNy/wZefpntLzvvaeX6BfFsr8f8vPzxbfeeksMDQ0V7ezsxNq1a4uhoaHi8uXLK31/xde+dOmSOGTIENHOzk50cnISp06dWmo7EFEUxS1btogdO3YUa9euLdauXVts1KiR+Oqrr4pXrlwp9TXTVEU/J09/rcr6moiiKB48eFDs1auX6ODgIFpbW4v+/v7iuHHjxJMnT5ZoN3z4cLFjx44a10ZExqN424IjFzzEmBsNJD2OXPAwuW0LBFHU4AluIiKS1SeffIK1a9fi6tWr1bLojjHq2rUr0tLSypzaWhPMmTMHc+fOxb1792r8QiEpKSnw9fXFhg0bOEJHVANlZWXBwcEBRy54wNZO2ifAsh+q0DHkNjIzMytddbim4DN0RERGYMaMGcjOzsaGDRvkLoVI7xYvXoymTZsyzBHVcHyGThp8ho6IyAjY2tpqtF8dUU3w+eefy10CEZHRYKAjIiIiIqJqp4QCSoknDCorb1Lj8Bk6IiIiIiKqNsXP0EWd90JtiZ+hy3moQkTTJD5DR0RERERERIaPUy6JiIiIiKja6WMRE1NcFIUjdEREREREREaKI3RU46SlpSEqKgq7du3C9evX5S6HSHJ5OfkoeFSg/rggv7DMdpZWFv///zaWsK5tpffaiIyVn58fnn32WURERNT4ff6IDIVSVEApSrwoigmuDsJAR0avqKgIR44cwZ49e7Bz505cunQJrq6ucHFxgYODg9zlkQm691dONVzFrJz//38FJf5fiWzk6rUifarXubbcJVANFxMTg7179yI1NRVNmjRBnz590Lt3b3Ts2BHm5rxdIiLDxVUuySjl5ORg79692Lx5M3bs2AEAqF+/Ptzc3FC/fn3UqlVL5grJ0CWsvi93CWQi/CY5y10CaSE3NxfJyclISUlBcnIyAKBv374YMmQIevbsidq1+csFoqoqXuVy5zk/1LYr+5eSusp5qESfZgkmtcolAx0ZjQcPHmDbtm3YtGkTDhw4AAcHB9SvXx/e3t5wcXGBIJjeQ7A1GQMXkfxMPYyKooi7d+/ixo0bSE5ORmZmJrp164Zhw4Zh4MCBcHJykrtEIqPEQCctBjoyaNnZ2di+fTt+/PFHREVFwdXVFR4eHvDx8YGjoyNDnIwYuIjI0EkZSEVRREZGBhITE3H79m3cvXsXERERGD16NPr37w9bW1vJrkVU0xUHuu3n/PUS6Po3i2egI5JTXl4edu3ahfXr12P37t1wcnKCp6cn/P39TeYHUyoMXUREuqsoEGZmZiI+Ph63bt3CgwcPEBkZidGjR+PZZ5+FtbV1NVZJZHyKA91vZwP0EugGhV5loCOqbqIo4tixY/j++++xceNG2NjYwMvLC35+fnB2rtlTfhi6iIgMX0Xh7v79+4iPj8fNmzfx6NEjDB8+HBMmTED79u05k4SoDAx00mKgI1nduHEDP/74I9asWYO0tDT4+fmhYcOGqFevnkH+I8jwRURk2ioKdsXP3MXHxyMhIQH16tXDiy++iLFjx8LLy6saqyQybMWBbsvZQL0EuudC4xjoiPQpNzcXmzdvxurVq/HPP//A29sbvr6+8PLyMpiloRnciIioMhWFu6KiIiQlJSEhIQFJSUlo164dJk2ahCFDhnAlZjJ5DHTSYqCjanPu3DmsWLECP/30E2rXrg1fX180bNhQ1n/YGNyIiKiqKlt8JTc3F9euXcP169eRk5OD0aNH45VXXkGzZs2qqUIiw1Ic6H492wi1JA50uQ+VGBoay0BHJJWcnBxs3LgRS5cuxcWLF+Hv74/AwMBq32aAwY2IiKqDJlMy4+LiEB8fj+DgYEydOhXDhw/n/nZkUhjopMVAR3oRExOD5cuX47///S/s7e3h7++Phg0bwsrKSq/XZXAjIiJDUNmoXX5+Pq5du4b4+HhkZWVh1KhRmDJlCpo3b149BRLJqDjQbYhpopdAN6L5JQY6Il0UFBRg69atWLRoEc6dO6cejdPHAicMbkREZAwqC3aiKOLevXvqUbvQ0FDMnDkTgwcPhoWFRTVVSVS9GOikxUBHVXbnzh2sXLkSy5cvhyiKCAgIQFBQkCSjcQxuRERUE2iyyXl+fj6uXLmCq1evQhAETJkyBZMnT4abm1s1VEhUfYoD3c8xIXoJdM83v8BAR1QZURQRHR2NRYsW4ffff4eXlxcCAwPh6elZpdE4BjgiIqrpNBm1u3nzJuLi4pCUlISBAwdixowZCA8PN8gtfYi0VRzo1p9pqpdAN7rFeZMKdIaxRjwZjaKiImzZsgWfffYZrl69isDAQDz33HNwcHDQuU+GOCIiMiXF/+6VF+wEQYCXlxe8vLyQmZmJ2NhYdO/eHQEBAXjvvffw3HPPGcw2P0QkP47QkUays7OxZs0afPnll8jLy0OjRo0QFBSk0/x+BjgiIqL/p8l0zMLCQly5cgWxsbGwsbHBW2+9hRdffBG2trbVUCGRtIpH6NadCdXLCN24FmdNaoSOgY4qdOfOHSxZsgTLly+Hvb09GjduDB8fHygUCq36YYgjIiKqmCbBTqVSITExEZcvX0ZWVhamTJmC1157De7u7tVQIZE0GOikxUBHZbpy5QrmzZuHDRs2wMvLC02aNIGbm5tWc/cZ4oiIiLSnSbATRREpKSm4dOkSkpKSMGLECLz//vsICgqqhgqJqqY40H1/uoVeAt2ElmdMKtBxAjaVcOXKFcyePRtbt25FQEAABg0aBEdHR41eywBHRERUdZU9Ywc8fs7O3d0d7u7uePDgAU6dOoWmTZviueeew5w5cxjsiEwIAx0BAGJjYzFnzhxs3boVgYGBGDJkCOzs7Cp9HUMcERGRfmgS7ADAyckJHTt2RLNmzXD+/Hk0bdoUgwcPxty5cxnsyKApoYAS2j3GU3mfpjf5kIHOxMXGxmL27Nn47bffNApyDHBERETVS9NgZ29vjw4dOqBZs2Y4d+6cOtjNmTMHjRo1qo5SiUgG0kZiMho3btzA888/j2bNmuHixYsYMmQIOnToUG6YS1h9n2GOiIhIRpr+W2xnZ4cOHTpgyJAhuHDhApo1a4bnn38eSUlJ1VAlkeZUAJSiIOmhkvtNyYCBzsRkZGTgjTfeQFBQEGJiYhjkiIiIjIym/y4/GezOnDmDwMBAvPnmm8jIyNBvgUQaUkGhl8PUcJVLE1FQUIBly5Zhzpw5cHZ2RsuWLVG3bt0y2zLAERERGQdNVsQslpaWhlOnTiEjIwNz5szBlClTYGlpqcfqiMpWvMrlitOtYWMr7RNgj7KLMLnlCZNa5ZKBroYTRRG//vor3nzzTRQUFKBFixbw9PQsc/sBBjkiIiLjpGmwE0URN2/exOnTp2FlZYWvvvoKQ4cO1WpbIqKqKg50S0+11Uugmxr2LwMd1QwxMTF4+eWXERsbi+bNmyMwMLDUhuAMcURERDWDNqN1KpUKcXFxiImJQaNGjbBq1SqEhobqsTqi/8dAJy3Tm2RqAh48eIDJkyejbdu2KCwsxHPPPYdGjRqVCHN8No6IiKhm0ebfdoVCgUaNGuG5555DYWEh2rRpgylTpvD5OqpWKgh6OUwNR+hqEJVKhbVr1+Ktt96Cg4MD2rRpU2JTcAY4IiIi06HNiF1GRgaOHz+OzMxMfPnllxg/fnypWT1EUikeofvmVDu9jNBND/vHpEboGOhqiFOnTuGll17C9evX0apVK/j4+KjnwzPIERERmSZtQp0oikhMTMTJkyfh5+eH7777DmFhYXqsjkxVcaD7+mR7vQS6Ga2OmVSg469ejFx2djamT5+O9u3bAwAGDRoEX19fCILAaZVEREQmTpt7AUEQ4Ovri0GDBkEURbRv3x7Tp09Hdna2nqskoqrgCJ0R27lzJyZOnAgLCwuEh4erp1cyxBEREdHTtBmtAx4/k//PP/+gqKgIq1evRp8+ffRUGZma4hG6r0521MsI3ZutjpjUCJ20X0GqFikpKXj11VexZ88etGrVCkFBQeoROSIiIqKyFN8naBrsnJyc0Lt3b8TGxmLYsGHo3bs3li1bBjc3N32WSSZEJQpQidIuYiJ1f8aAUy6NiEqlwqpVqxAYGIgLFy5g8ODBaNSoEa6vecAwR0RERBrR5p5BEAQ0btwYgwcPxoULFxAYGIhVq1aBE7yIDAenXBqJxMREjBkzBufPn0e7du3g5eXFEEdERERVou00zKSkJPzzzz9o2rQpfvzxR/j4+OinMKrRiqdcfn6iC6wlnnKZl12Ed1ofNqkplxyhM3AqlQrLly9HkyZNcP/+fQwcOBBFf9oyzBEREVGVaXs/4eXlhYEDB+L+/fsIDg7GihUroFKp9FQdEWmCI3QG7Pr16xgzZgwuXryI8PBwFOyuJXdJREREVENpO1p369YtREdHIyQkhKN1pJXiEbrPjj+jlxG699oc5AgdyUulUmHZsmUIDg5GRkYGQh90ZpgjIiIivdJ2tK5BgwYYMGAA7t+/jyZNmmD58uUcrSOSAQOdgUlOTkZERAQ+/PBDNHrUCm4XG8FcsJC7LCIiIjIB2oY6S0tLdOjQAc888ww++OADREREIDk5WU/VUU2jhKCXw9Qw0BmQn3/+GY0bN0ZqaipCH3RGHcFV7pKIiIjIxGizGXmx4tG61NRUNG7cGL/88oueqiOipzHQGYD79+9j6NChePnll9GuXTt06tQJgS+5aj2XnYiIiEgquozWderUCe3atcOkSZMwdOhQPHjwQE/VUU2gEhV6OUwNNxaX2d69ezF69GjY2tpi4MCBqFWr5LNyZYU6rnBJRERE1SFh9X2tf8Hs6+sLV1dXHDt2DI0aNcJPP/2EHj166KlCIjK9CGsg8vPzMX36dAwYMABBQUGIiIgoFebK4zfJWX0QERER6ZMuUzBr1aqFiIgIBAUFoX///pg+fTry8/P1VCEZKyX08Ryd6eEInQwuX76MIUOG4MGDB+jfvz8cHR217oOjdERERFSdtB2tEwQBjRs3hru7OzZv3oyoqChs3rwZjRs31mOVZEz0MUXSFKdcmt47lpEoivjuu+/QsmVLWFlZITIykmGOiIiIjIYu9yCOjo6IjIyElZUVWrZsiVWrVoHbIBNJhyN01SQ9PR3jxo3DX3/9hYiICNSvX1/rPhjkiIiISG7F9yPajNaZmZmhdevWcHd3x1tvvYUdO3Zg3bp1cHbm4yOmTCkqoJR4RE3q/oyB6b1jGRw5cgQhISG4fPkyBg4cqHWY02XuOhEREZE+6XJv0qBBAwwcOBCXLl1CcHAwjhw5oofKiLSzbNky+Pj4wNraGm3btsXx48crbL948WIEBQXBxsYGnp6emDFjBvLy8qqp2tIY6PRIpVJh3rx56N69O/z8/NCtWzdYW1tr/HoGOSIiIjJkutynWFtbo1u3bvDz80P37t3x2WefQaVS6aE6MnQiBKgkPkQtNxbfuHEjZs6cidmzZ+P06dMIDQ1Fr169cPfu3TLb//zzz3jnnXcwe/ZsXL58Gf/5z3+wceNGvPfee1J8SXQiiJzErBd3797FyJEjERMTgy5duqBevXoav5YhjoiIiExBlvgA15zPoEWLFvjll1+0ul8i45WVlQUHBwe8E/0srGwtJO07P7sQn4fvRmZmJuzt7Stt37ZtW7Ru3RpLly4F8HhAxtPTE9OmTcM777xTqv3UqVNx+fJlREVFqc+98cYb+Pfff2UbceYInR4cPnwYISEhuHnzJvr376/xX04ckSMiIiJTYi84odn9TkhKSkJISAj++usvuUuialT8DJ3Uh6YKCgpw6tQpdO/eXX1OoVCge/fuiI6OLvM17du3x6lTp9TTMhMSErBr1y5ERkZW7YtRBVwURULFUyznzZuHVq1aoUmTJhCEyod9GeKIiIjIVJkLFvC62gx5HVLQs2dPfPDBB3jvvfegUHDcgXSXlZVV4mMrKytYWVmVOJeWlgalUglXV9cS511dXREbG1tmv88//zzS0tLQsWNHiKKIoqIivPLKK7JOueRPikQePHiAyMhILF68GH369EFwcHClYY4jckRERESP96yzOeaOPn364Ouvv0afPn2QkZEhd1mkZypR0MsBAJ6ennBwcFAf8+fPl6TmQ4cO4bPPPsPy5ctx+vRpbN26FTt37sQnn3wiSf+64AidBGJiYtC/f39YWFigX79+pdL/0xjiiIiIiErL+k2BfmP64a+//kKzZs3wxx9/IDQ0VO6ySE+UUEAp8fhScX83b94s8QxdWffndevWhZmZGVJTU0ucT01NhZubW5n9f/jhhxg9ejQmTpwIAGjatClycnLw0ksv4f3335dlZJkjdFW0bt06hIeHw83NDREREQxzRERERFWQ/GMOunfvDjc3N7Rr1w4//PCD3CWREbK3ty9xlHWPbmlpibCwsBILnKhUKkRFRSE8PLzMfnNzc0uFNjMzMwCAXGtNcoROR/n5+Zg2bRp+/vlnPPPMM/D09KywPYMcERERkWaur3kAB3jjmd518eqrr+Lo0aP49ttvK/3FORmXJ6dIStmnNmbOnImxY8eiVatWaNOmDRYvXoycnByMHz8eADBmzBjUr19fPWWzX79+WLRoEVq0aIG2bdvi2rVr+PDDD9GvXz91sKtuDHQ6SElJQb9+/ZCcnIz+/fvDzs6u3LYMckRERES6KdxTG/1H9MeOHTsQExOD7du3lzsVjkgXw4cPx7179/DRRx8hJSUFzZs3x549e9QLpSQlJZUYkfvggw8gCAI++OADJCcno169eujXrx/mzZsn11vgPnTaOnnyJPr27QsnJye0b98e5ublZ2KGOSIiIqKq8xpvj6NHjyIzMxN//PEHWrVqJXdJVAXF+9BNPTJIL/vQLe34m8b70NUEfIZOC+vXr0enTp3g6+uLTp06lRvmuHolERERkXSS1mahc+fO8Pb2RqdOnfDTTz/JXRKRweCUSw0olUq89dZb+O677yp8Xo4hjoiIiEg/BEFAaGgonJ2d8fLLL+PMmTP44osvZHtuiapOKQpQSvwMndT9GQOO0FUiKysLvXv3xk8//YS+ffuWGeY4IkdERESkX8X3Wp6enujbty/Wr1+P3r17l9pAmsjUMNBVICkpSb16TZ8+feDo6FiqDYMcERERUfUovu9ydHREnz59cO3aNbRt2xZJSUkyV0a60OfG4qaEga4cx48fR8uWLWFubo7u3bvD0tKyxOc5KkdERERU/YrvvywtLdG9e3eYm5ujZcuWOHHihMyVkbZEUQGVxIcoml68Mb13rIFff/0VXbp0QWBgIMLDw0ttHsggR0RERCSf4nsxhUKB8PBwBAYGonPnzti8ebPMlRFVPy6K8gRRFPH555/j448/RpcuXeDt7V3i8wxyRERERIYhYfV9+E1yhiAIaNq0Kezs7DB69Ghcu3YNs2bNgiCY3tQ7Y6OEACUkXhRF4v6MAQPd/yiVSkybNg3//e9/ERkZibp165b4PMMcERERkWEpDnUA4OPjA1tbW8yfPx83b97EN998wxUwySQw0AHIy8vDyJEjceTIEfTp0wd2dnbqzzHIERERERmuJ0Nd3bp1ERkZiU2bNuHOnTv4+eefYW1tLXOFVB6VCMkXMVGJknZnFEz+GbqMjAxERETgxIkTiIyMZJgjIiIiMjJP3rPZ29sjMjISx48fR/fu3ZGZmSljZUT6Z9KBLjk5GeHh4UhJSUHPnj3Vv8HhCpZERERExuXJezdra2v07NkTt2/fRnh4OG7fvi1jZVQeqVe4LD5Mjem94/9JSEhA27ZtoVAo0K1bN1hYWDw+zyBHREREZJSevI+zsLBAREQEBEFAmzZtcP36dRkrI9Ifkwx0sbGxCA8PR926ddGhQwcoFAqOyhERERHVAE/ezykUCnTo0AF16tRBeHg4rly5ImNl9DQVBL0cpsbkAt25c+fQoUMHNGjQAG3atIEgCAxyRERERDWUIAho27Yt6tevj/bt2+P8+fNyl0T/oxQFvRymxqQC3cmTJ9GpUyf4+/ujVatWDHNERERENdDT93eCIKBVq1bw9/dHx44dcerUKZkqI5KeyQS66OhoPPPMMwgODkaLFi04xZKIiIioBivrPq9FixYIDg5G165dER0dLUNV9CQuiiINk3jHp06dQs+ePREaGoqmTZsyyBERERGZgLLu+Zo2bYrQ0FD07NmTI3VUI9T4QHfu3Dl069YNTZs2RXBwMMMcERERkQkp694vODgYTZs2Rbdu3fhMnYxUEKASJT64KErNEhsbi65duyIoKAi1/6nPMEdEREREAB6P1AUFBaFr166IjY2VuxwindXYQBcfH48uXbrA19cXDie95S6HiIiIiGRS3i/1W7RoAR8fH3Tp0gXx8fHVXBWJetiyQOQIXc1w+/ZtdO7cGe7u7ggLC4PfJGe5SyIiIiIiGZUX6sLCwuDu7o4uXbrg9u3b1VwVUdUJoiiKchchpYyMDISHh6s3khSE8lM6p2ASERERmZayftEviiKOHDkC4PHK6A4ODtVdlknJysqCg4MDnts/Fha1LSXtuzCnAFu6/4DMzEzY29tL2rehqlEjdHl5eYiMjERBQQHat29fYZgDyv6BJiIiIiLTIggCOnTooL6XzMvLk7skk8BtC6RRY96xUqnE0KFDkZSUhK5du0KhqPitcR86IiIiItNT3v2fQqFA165dcePGDQwbNgxKpbKaKyPSTY0IdKIo4pVXXsG///6LiIgImJubV9ieQY6IiIjIdJV3L2hhYYGIiAj8888/mDx5MmrYk0kGR/ItC/53mJoaEejmz5+PX3/9FT169IC1tXWFbRnmiIiIiKi8e0Jra2v06NEDmzZtwueff17NVRFpz+gD3S+//IJPPvkEERERsLW1rbAtwxwRERERVcbW1hYRERH4+OOPsWHDBrnLqbGk3rKg+DA1Fc9NNHBHjhzBhAkT0LVrV9StW7fcdgxyRERERPS08u4R/SY5o27duujatSvGjx+PBg0aoGPHjtVcHZFmjDbQxcXFoU+fPmjdujW8vLzKbccwR0RERETa+P/7R1v4iE3Qu2dvnDl7BgEBAbLWVdPo45k3PkNnJNLT09GjRw/4+/ujcePG5bZjmCMiIiKiqmgg+KFeXn107dwV6enpcpdDVIrRBbqCggIMGDAAlpaWaNWqVbntGOaIiIiISAr+YlMU3RMQ2SsShYWFcpdTY3CVS2kYVaATRRFTpkxBfHw8OnXqVO7G4QxzRERERCQVQRAQrGyN2LNX8dLEl7idgUQY6KRhVIHum2++waZNm9CtWzdYWFiU2YZhjoiIiIikZiaYo1lRODb8vBHffvut3OUQqRlNoNuzZw9mzZqFbt26Vbo9ARERERGR1KyFWggpaoc3Zr6JP//8U+5yjB5H6KRhFIEuPj4ew4YNQ/v27eHq6lpuO47OEREREZE+OQp1EKRsjkEDByMhIUHucogMP9Dl5uaif//+8PX1rXCpWIY5IiIiIqoO7oI36hZ4oHeP3sjNzZW7HKMlQvrNxU3x6UaDDnSiKGLixInIyspC69aty23HMEdERERE1SlA1QxpSQ8wfux4LpJCsjLoQLd8+XLs2LEDXbp0gZmZmdzlEBEREREBABSCAiFFbfH7lu1YsWKF3OUYJT5DJw2DDXTHjx/HG2+8ga5du6J27drltuPoHBERERHJwUqwQYjYFq+/9jqOHz8udzlkogwy0GVlZWHIkCFo3rw53N3dy23HMEdEREREcnIS6sFbGYQB/Qbi4cOHcpdjVDhCJw2DDHSTJ0+GQqFAs2bNym3DMEdEREREhsBbDEJhuhKTXpwkdylGhYFOGgYX6H755Rf8/vvv6NixIwTB9P5AiIiIiMi4CIKAxsrW2LZ1GzZs2CB3OWRiDCrQ3bhxAy+99BI6dOjA5+aIiIiIyGhYCzYIUrbEhPEv4saNG3KXYxQ4QicNgwl0KpUKI0eOhI+PD3x8fMptxzBHRERERIbIRaiPOgVuGDJ4KFQqldzlkIkwmEC3fPlyXLlypcL95oiIiIiIDFlDVTNcPneZWxloQBQFvRymxiACXWJiIt5++22Eh4fDwsKi3HYcnSMiIiIiQ2YumCOoqAXemPEGEhMT5S6HTIDsgU4URYwbNw5+fn6oX79+ue0Y5oiIiIjIGDgLrqhb6IFRI1+AKIpyl2OwVBD0cpga2QPdmjVrcPbsWU61JCIiIqIaIwDNEHMyBmvWrJG7FKrhZA10qampmDlzJtq1awdLS8ty23F0joiIiIiMiblggcCi5nht+utITU2VuxyDxFUupSFroJsxYwY8PDzg5eUlZxlERERERJKrK7jDvtAZ06ZOl7sUg8RFUaQhW6A7fPgwfvvtN7Rq1arCdhydIyIiIiJjFaBshm2//YbDhw/LXQrVULIEuoKCAkyaNAnNmzeHra1tue0Y5oiIiIjImFkLteCjbISxo8ehsLBQ7nIMCqdcSkOWQLd48WJkZWUhJCREjssTEREREVUbTwTg/p0H+Prrr+UuhWqgag90qampmDt3Llq3bg2FovzLc3SOiIiIiGoChaBAQFEoPvpwNu7evSt3OQaDz9BJo9oD3QcffAAPDw94eHhU96WJiIiIiGThLLjAQVkHs95+R+5SqIap1kB3/vx5/PjjjwgLC6uwHUfniIiIiKimaagMwU/r1+PChQtyl2IQRD08P8cROj0SRRHTp09H48aN4eDgUF2XJSIiIiIyCLUEO7irfDD55clyl0I1SLUFur179+LEiRNo3rx5he04OkdERERENZUfmuDE8ZPYu3ev3KXITgQgihIfcr8pGVRLoBNFEW+//TZCQkJgZWVVHZckIiIiIjI4FoIlPIsC8Pr0GRBFU4wfJLVqCXR//PEHEhMTERwcXGE7js4RERERUU3nCX9cj7+OHTt2yF2KrFQQ9HKYGr0HOpVKhVmzZiE4OBjm5ub6vhwRERERkUEzE8zhVRSIma/NhEqlkrsc2XDbAmnoPdBt2bIFd+7cQePGjStsx9E5IiIiIjIV9eGH5Jt3sHXrVrlLISOn1yEzURTx0UcfISQkhKNzRERERET/YyaYwasoELPeegfPPfccBMH0RpZUogBB4hE1lRGM0KlUKly7dg13794tNULbuXNnrfvTa8rau3cvkpOT0b59+wrbcXSOiIiIiEyNB3xw7NZu7Nu3Dz179pS7HKoG//zzD55//nncuHGj1KI4giBAqVRq3adep1x+9tlnCAoK4ugcEREREdFTzAQz1Ff6Yc5Hc+UuRRaSb1nwv8OQvfLKK2jVqhUuXLiA+/fv48GDB+rj/n3dBrn0lrTOnDmDf//9F8OHD6+wHUfniIiIiMhUNRD9cezEbsTExFS6XzMZv6tXr2Lz5s1o2LChZH3qbYRuwYIFCAwMhLW1tb4uQURERERk1CwFK7ipvPHJ3E/kLqXameIql23btsW1a9ck7VMvI3R3797F1q1bMXjw4ArbcXSOiIiIiEydJxri9+2/4969e6hXr57c5ZAeTZs2DW+88QZSUlLQtGlTWFhYlPh8s2bNtO5TL4Fu3bp1qF+/PhwcHPTRPRERERFRjVFbsIOjog7WrVuHt956S+5yqo0+RtQMfYTuueeeAwBMmDBBfU4QBIiiqPOiKJIHOlEUsWzZMgQEBEjdNRERERFRjeRe5IvFCxfjzTffNJktDExx24Lr169L3qfkge7QoUO4f/8+fHx8KmzH6ZZERERERI+5wANX08/i8OHD6Nq1q9zlkJ54e3tL3qfki6IsX74c/v7+MDMzk7prIiIiIqIaSSGYwVXpieXLl8tdSrUxxW0LACA+Ph7Tpk1D9+7d0b17d0yfPh3x8fE69ydpoMvJycGOHTskXYaTiIiIiMgUuIve+P2335GTkyN3KaQnf/75J5o0aYLjx4+jWbNmaNasGf79918EBwdj3759OvUp6ZTLHTt2wN7eHs7OzhW243RLIiIiIqKSbOEAK8EGO3fuxLBhw+QuR+8ej6hJvSiKpN1J7p133sGMGTPw+eeflzo/a9Ys9OjRQ+s+JR2h++mnn+Dp6WkyD3ISEREREUlFEATUK6yP79eslbsU0pPLly/jxRdfLHV+woQJuHTpkk59ShbosrKy8Oeff8Lf31+qLomIiIiITIorGiDqwH5kZWXJXYremeLG4vXq1UNMTEyp8zExMXBxcdGpT8mmXO7cuRN169aFo6Njhe043ZKIiIiIqGy1BXtYq2pj165dGDFihNzlkMQmTZqEl156CQkJCWjfvj0A4OjRo1iwYAFmzpypU5+SBbpt27bB3d1dqu6IiIiIiExSXdENWzf/VuMDnfi/Q+o+DdmHH34IOzs7LFy4EO+++y4AwMPDA3PmzMH06dN16lOSQFdUVITdu3ejW7duUnRHRERERGSy6sANf+7ZA5VKBYVC8l3GDIY+pkga+pRLQRAwY8YMzJgxAw8fPgQA2NnZValPSb5DoqOjATyeE1oRTrckIiIiIqqYA+rgUV4ezp49K3cppEd2dnZVDnOARCN027dvR4MGDWr0bxCIiIiIiKqDQlDASayHnTt3okWLFnKXoz8mMueyZcuWiIqKgpOTE1q0aFHhjgCnT5/Wun9JAt0ff/yBBg0aSNEVEREREZHJq6NyxYafNuCDDz6QuxSqogEDBsDKykr9/1Jv8VblQJeSkoKrV6+ibdu2UtRDRERERGTy6sANR+P2ICMjo9JV5I2WPrYZ0KG/ZcuW4csvv0RKSgpCQ0Px7bffok2bNuW2z8jIwPvvv4+tW7fi/v378Pb2xuLFixEZGVlm+9mzZ6v/f86cOVrXV5kqz5Hcv38/3N3dYW1tXWE7Pj9HRERERKQZa6EW7MztsX//frlLqdE2btyImTNnYvbs2Th9+jRCQ0PRq1cv3L17t8z2BQUF6NGjBxITE7F582ZcuXIFq1evRv369TW6np+fH9LT00udz8jIgJ+fn07vocqBbvfu3ZUuhkJERERERNpxKnTBjh075C5Db0RRP4c2Fi1ahEmTJmH8+PFo0qQJVq5ciVq1auH7778vs/3333+P+/fvY9u2bejQoQN8fHzQpUsXhIaGanS9xMREKJXKUufz8/Nx69Yt7Yr/nypNuRRFEfv27atwSJKIiIiIiLRXB27Yvm07RFGU/Lmrmi4rK6vEx1ZWVurn2IoVFBTg1KlT6v3gAEChUKB79+7qVfyftn37doSHh+PVV1/F77//jnr16uH555/HrFmzYGZmVm4927dvV///n3/+CQcHB/XHSqUSUVFR8PX11eo9FqtSoLty5QoyMjLg6upalW6IiIiIiOgpDqiDrIdZiIuLQ1BQkNzlSE6f+9B5enqWOD979uxSz6+lpaVBqVSWyjKurq6IjY0ts/+EhAQcOHAAo0aNwq5du3Dt2jVMmTIFhYWFJZ6Ve9rAgQMBPN6HbuzYsSU+Z2FhAR8fHyxcuFCTt1hKlQLdwYMH4eHhAXPzirvh83NERPqlsLFR/7/q0SMZKyEiIqmYCWawVznj4MGDNTLQQRR0WsSk0j4B3Lx5E/b29urTT4/O6UqlUsHFxQWrVq2CmZkZwsLCkJycjC+//LLCQKdSqQAAvr6+OHHiBOrWrStJPUAVA92ff/7J5+eIiAzMk+GuFA2m7KhycyWshoiIqsIJ9fDHtj/wyiuvyF2KUbG3ty8R6MpSt25dmJmZITU1tcT51NRUuLm5lfkad3d3WFhYlJhe2bhxY6SkpKCgoACWlpYVXvP69esavgPN6RzoRFHE4cOH0blzZynrISIimSlq1YKYn19pO7GMh7qJiEhaznDB30f+rpHP0emyiIkmfWrK0tISYWFhiIqKUk+JVKlUiIqKwtSpU8t8TYcOHfDzzz9DpVJBoXi8vmRcXBzc3d0rDXPFcnJycPjwYSQlJaGgoKDE56ZPn675G/gfnQPdxYsXkZubyxE6IiITJZiZMdQREemZPZzx6NEjXLp0CcHBwXKXU+PMnDkTY8eORatWrdCmTRssXrwYOTk5GD9+PABgzJgxqF+/PubPnw8AmDx5MpYuXYrXXnsN06ZNw9WrV/HZZ59pHMTOnDmDyMhI5ObmIicnB87OzkhLS0OtWrXg4uJSvYHuwIED8PDwqHA1F4DPzxERERER6UohKOCoqIODBw/WvEAn/u+Quk8tDB8+HPfu3cNHH32ElJQUNG/eHHv27FEvlJKUlKQeiQMeL7by559/YsaMGWjWrBnq16+P1157DbNmzdLoejNmzEC/fv2wcuVKODg44J9//oGFhQVeeOEFvPbaa9oV/z+CKOo20Nm3b1/cu3cPzZs3r7AdAx0Rkf5V+NzckzScrqPJlEuA0y6JiKrDdTEWft3csTdqr9ylSCIrKwsODg7wXv0hFLWsJe1blZuHG5M+QWZmZqXP0MnB0dER//77L4KCguDo6Ijo6Gg0btwY//77L8aOHVvu6poV0WljcZVKhb///hseHh66vJyIiIiIiDTkjHo4Fn1MvVJiTVG8bYHUhyGzsLBQj/i5uLggKSkJAODg4ICbN2/q1KdOUy7PnTuHgoICSZfbJCIiIiKi0uzghIKCApw/fx6hoaFyl0NV0KJFC5w4cQIBAQHo0qULPvroI6SlpWH9+vUICQnRqU+dRuiOHDkCDw+PEvNJy8LplkREREREVVP8HN2RI0fkLkV6osSHgfvss8/g7u4OAJg3bx6cnJwwefJk3Lt3D6tWrdKpT51G6I4ePQpHR0edLkhERERERNqxLXTC0aNH8eqrr8pdimT0MUXSkKdciqIIFxcX9Uici4sL9uzZU+V+dRqhi46OhouLS5UvTkRERERElXOAMw4dOCx3GVQFoiiiYcOGOj8rVx6tR+ju37+PGzduoEuXLpIWQkRkShQabj6K4IYaNXvobw+7nWerUBERERkyezgjJvUoHjx4ACcnJ7nLkYYBbFtQnRQKBQICApCeno6AgADJ+tU60J04cQJ16tSBtbW0S4wSEVHVPOxT+YPyKgvN+rK9mQdF9PkqVkRERFKxFKxga26H48ePo1evXnKXQzr6/PPP8dZbb2HFihU6L4LyNK0DXUxMDOrUqVNpOy6IQkRk3FThTSttY34hEQCgzMjQbzFERITaogPOnj1bgwKd8L9D6j4N15gxY5Cbm4vQ0FBYWlrC5ql9ZO/f1z5DaR3oTp06ZZCb9BERkXzMKlkoi4GPiKjqahfZ4/Tp03KXQVXw9ddfQxCkDZ06jdD5+vpKWgQREREREVXMFg745+i/cpchHRN7hg4Axo0bJ3mfWq1yWVBQgISEBDg7O0teCBERERERlc8WDrh1+yYKCgrkLoV0ZGZmhrt375Y6n56eDjMzM5361CrQXblyBebm5rCzs9PpYkREREREpBsb1IYABeLi4uQuRRpSbypuBJuLi2LZBebn58NS0xWwn6LVlMu4uDjUrVtX8nmfRERERERUMUEQYGtuh7i4OMlWSJSVKDw+pO7TAH3zzTcAHv8ZrlmzBra2turPKZVK/PXXX2jUqJFOfWsV6K5evVri4uXhCpdERERERNKzVtbG1atX5S6DtPT1118DeDxCt3LlyhLTKy0tLeHj44OVK1fq1LdWge7SpUuoXbu2ThciIiIiIqKqsVHWxqVLl+QuQxKi+PiQuk9DdP36dQDAM888g61bt0q6ObxWge7y5ctwcHCQ7OJERERERKS5WrDDmZMxcpdBOjp48KDkfWoV6G7cuIHw8HDJiyAiIiIiosrZoDauXL8idxnSMMFtC5RKJdatW4eoqCjcvXsXKpWqxOcPHDigdZ8aB7qioiKkp6dr9AwdERFVTGjkr1G7G5GOGrWzaPNAo3bmZqrKGwHA5zaatSMiomplBRvk5GVDqVTqvMw9yee1117DunXr0KdPH4SEhEiy2KTGgS41NRWiKKJWrVpVvigRERm2pN6a/V3vJfiWed78/HUpyyEiov+xgg1Uogqpqanw8PCQu5yqMaFVLott2LABmzZtQmRkpGR9ahzobt26BVtbWygUWm1dR0REJqioacmgp4i+UGF7sahQn+UQEdUYCkEBazMb3Lp1y/gDnQmytLREw4YNJe1T43SWnJzMDcWJiEgvBHMLuUsgIjIaVrBBcnKy3GVUmSDq5zBkb7zxBpYsWVLuBuO60GqEzsam8mcquAcdEREREZH+WIrWuHXrltxlVJ0JLopy5MgRHDx4ELt370ZwcDAsLEr+QnPr1q1a96lxoLt58yasrKy0vgAREREREUnHSmmNmzdvyl0G6cDR0RGDBg2StE+NA92NGze4qTgRERERkcysYIMbN27IXUbVmeCiKGvXrpW8T42foUtKSmKgIyIiIiKSmRVscPXyVbnLIB0VFRVh//79+O677/Dw4UMAwO3bt5Gdna1TfxqP0KWkpCA4OFinixARERERkTSsYIOU1Hi5y6g6E3yG7saNG+jduzeSkpKQn5+PHj16wM7ODgsWLEB+fj5WrlypdZ8aj9BlZmbC2tpa6wsQEREREZF0LGCJh9kP5S6DdPDaa6+hVatWePDgQYkFJwcNGoSoqCid+tRohE4URWRlZcHS0lKnixARERERkTTMYYHcvByIoghBMOxnxipkgiN0f//9N44dO1YqV/n4+Oi8FYVGgS47OxsqlYqrXBIRVUAwt4BYVKjRnmrZ/vYa9alolalRu9XN1mvUzkJQYuKFMRq1JSIiw2QBS6hUKuTk5MDW1lbuckgLKpUKSqWy1Plbt27pvOe3RoEuIyMDgiBwhI6IqBLGsEH2mpAfK23zsvCCRn1lXamrUTvnc7XU/6/KydXoNUREVDZzPP63JiMjw7gDnQmO0PXs2ROLFy/GqlWrAACCICA7OxuzZ89GZGSkTn1qFOiK53ga9ZAuEREZBEXtWmWeV2ZqNhpJRGTqBEGAhcISDx48QIMGDeQuR3cmuG3BwoUL0atXLzRp0gR5eXl4/vnncfXqVdStWxe//PKLTn1qHOi4IAoRERERkWGw/F+gI+PSoEEDnD17Fhs3bsTZs2eRnZ2NF198EaNGjSqxSIo2NJ5yyUBHRERERGQYzGGJjIwMucuoEkF8fEjdp6EzNzfHqFGjMGrUKEn602jbggcPHnBBFCIiIiIiA2EBC47QGaH58+fj+++/L3X++++/x4IFC3TqU+NAZ2Fh+A/6ExERERGZAjPR3PgDnainw4B99913aNSoUanzwcHBOm0qDmgY6B49egQzMzOdLkBERERERNJSiGZ49OiR3GWQllJSUuDu7l7qfL169XDnzh2d+tQo0BUWFnKFSyIiIiIiAyGIChQWFspdBmnJ09MTR48eLXX+6NGj8PDw0KlPjRZF0fSbJWH1fZ2KICIiIiIizQmiwEBnhCZNmoTXX38dhYWF6NatGwAgKioKb7/9Nt544w2d+tQo0BUUFECh0Ggwj4iIiIiI9EyAAgUFBXKXUSUC9LDKpbTdSe6tt95Ceno6pkyZov7zs7a2xqxZs/Duu+/q1KdGgU6pVOrUORERERERSU8QBRQVFcldBmlJEAQsWLAAH374IS5fvgwbGxsEBARUaUcBjQIdF0QhIiIiIjIcoiDC3FyjW3nDJQqPD6n7NAK2trZo3bq1JH1p9F1gaWkJlUolyQWJiIiIiKhqRKhgaWkpdxlVo49tBgx824KcnBx8/vnniIqKwt27d0tlrISEBK371CjQaboHnd8kZy6MQkRERESkZ6Igcp9oIzRx4kQcPnwYo0ePhru7uyQ7CWgc6ETRwOMuEREREZGJEAWV8Qc6Exyh2717N3bu3IkOHTpI1qdGS1fa2NhwYRQiIiIiIgOhEpSwsbGRuwzSkpOTE5ydnSXtU6NA5+TkxH0uiIiIiIgMhFIogpOTk9xlVIkg6ucwZJ988gk++ugj5ObmStanRlMunZyckJ+fL9lFiYiIiIhId4UoNPpAZ4oWLlyI+Ph4uLq6wsfHp9S02dOnT2vdp0aBztHREXl5eVp3TkRERERE0itCARwdHeUuo2pM8Bm6gQMHSt6nxiN0DHRERERERIahQFXAETojNHv2bMn71DjQPXr0CKIoSrK0JhERERER6UYURRQqa0CgM8ERumKnTp3C5cuXAQDBwcFo0aKFzn1pPOVSFEUUFBTAyspK54sRERGpcqR7EJyIyBQV4fFihcY+5VIfi5gY+qIod+/exYgRI3Do0CH1n19GRgaeeeYZbNiwAfXq1dO6T40Cna2tLRQKBfLz8xnoiIjKIRb9/2rAgrnh7Q006dxomJupNGqbHVNHo3ZeiY80ascQR0QknUIUQKFQoHbt2nKXQlqaNm0aHj58iIsXL6Jx48YAgEuXLmHs2LGYPn06fvnlF6371CjQCYIAe3t7FBQUaH0BIiJT9GS4K4ttfJZG/aSf1Gw6zSTFaI3aERGR8StCIWpZ1zb+R6FE4fEhdZ8GbM+ePdi/f786zAFAkyZNsGzZMvTs2VOnPjXahw4AHBwcuDAKEREREZHMClEAO1s7ucsgHahUqlJbFQCAhYUFVCrNZtE8TeNA5+bmJukGeEREREREpL18PIKbq6vcZVSdqKfDgHXr1g2vvfYabt++rT6XnJyMGTNmICIiQqc+NQ50Xl5eyMnJ0ekiREREREQkjXw8QkDjALnLIB0sXboUWVlZ8PHxgb+/P/z9/eHr64usrCx8++23OvWp0TN0AODt7Y2LFy/qdBEiIiIiIpJGPh7B29tb7jKqzBRXufT09MTp06exf/9+xMbGAgAaN26M7t2769ynxoHO09MT+fn5Ol+IiIiIiIiqLt8sD56ennKXQToSBAE9evRAjx49JOlP4ymXDRo0wKNHlS9P7TfJuUoFERERERFR+QqEPDRo0EDuMqrOBJ+hmz59Or755ptS55cuXYrXX39dpz41DnT169fHw4cPdboIERERERFJIx+PUL9+fbnLqDrx/6ddSnUYeqDbsmULOnToUOp8+/btsXnzZp361GqELjs7W+flNImIiIiIqGpUogp5RY9qxgidCUpPT4eDg0Op8/b29khLS9OpT40DnaurKwRB4NYFRERUKfPz10scYlFhpQcREVUuH4+gEBRw5bYFRjnlsmHDhtizZ0+p87t374afn59OfWq8KIq5uTnq1KmD7Oxs2Nra6nQxIiIyDl57NPvlnfmFRP0WQkREJeTjEWpb28LMzEzuUkgHM2fOxNSpU3Hv3j1069YNABAVFYWFCxdi8eLFOvWpcaADHm9d8PDhQ7i5uel0MSIiekyMjdeonZdZQ43aPbxSevpGWVQWGjUDkKdpQyIiqkaPkAMfXx+5y5CGPkbUDHyEbsKECcjPz8e8efPwySefAAB8fHywYsUKjBkzRqc+tQp0jRs35l50REREREQyycVDdGrVRu4yqAomT56MyZMn4969e7Cxsany7EeNn6EDgCZNmiAnJ6dKFyQiIiIiIt08MstBkyZN5C5DElKvcKmPjcr1qV69epI8yqZVoAsICEB2dnal7bgXHRERERGR9PLMchAQECB3GWRAtAp0gYGBSEtLgygaUfQlIiIiIqoBRFFEdtFDBAYGyl0KGRCtAl1QUBCKioq4wTgRERERUTV7hByIUNWcQGeC2xbog1aBztLSEn5+frh//76+6iEiIiIiojJkIxMNPDxhaWkpdymkg8LCQkRERODq1auS9qtVoAOA5s2bM9AREREREVWzbGSiXYe2cpchGVNbFMXCwgLnzp2TvF+tA11YWBiysrIkL4SIiIiIiMqXY56Fli1byl0GVcELL7yA//znP5L2qdU+dMDjEbr09PRK2/lNckbCao7kERGZCmVGhtwlEBHVaDlCJkJDQ+UuQ1oGPKKmD0VFRfj++++xf/9+hIWFoXbt2iU+v2jRIq371DrQtW7dGunp6cjLy4O1tbXWFyQiIsOniD6vUTulUqnnSoiICAAKxHxkFz5EmzbcVNyYXbhwQT3KGhcXV+JzgiDo1KfWgc7Z2Rne3t64e/cuvLy8dLooEZGpUxUUQCHhQ+12O89q1lDDfyxM7BemREQGLwv34e7qAScnJ7lLkY4+VqU08H/ADh48KHmfWgc6AAgPD0dcXBwDHRFRFagKCipvdOaSRn0pbGyqWA0RERmyTNxH125d5C6DJHLt2jXEx8ejc+fOsLGxgSiKOo/Qab0oCgB06NABGXxWgoiIiIioWmRbPECHDh3kLkNSprbKJQCkp6cjIiICgYGBiIyMxJ07dwAAL774It544w2d+tQp0HXs2BG3b9+GSqWqsJ3fJGediiIiIiIiosdUogoZqnR07NhR7lKkZYIbi8+YMQMWFhZISkpCrVq11OeHDx+OPXv26NSnTlMumzVrBktLS6SlpcHFxUWnCxMRERERUeUe4gEsLa3QtGlTuUuhKtq7dy/+/PNPNGjQoMT5gIAA3LhxQ6c+dRqhUygU6NSpE27fvq3TRYmIiIiISDP3cQ/tw8OhUOh0626wTHHKZU5OTomRuWL379+HlZWVTn3q/F3Rs2dP3L17V9eXExERERGRBjLN76H/oP5yl0ES6NSpE3788Uf1x4IgQKVS4YsvvsAzzzyjU586B7pu3brh9u3ble5BxOfoiIiIiIh0oxJVeKBK1/lm36AZyDN0y5Ytg4+PD6ytrdG2bVscP35co9dt2LABgiBg4MCBGl/riy++wKpVq/Dss8+ioKAAb7/9NkJCQvDXX39hwYIF2hePKgS64OBg1KpVC/fu3dO1CyIiIiIiqkAm0lHLxgZNmjSRu5QaaePGjZg5cyZmz56N06dPIzQ0FL169ap0JmJiYiLefPNNdOrUSavrhYSEIC4uDh07dsSAAQOQk5ODwYMH48yZM/D399fpPei0KArweHiwS5cuSE5Ohpubm67dEBGRkRIrmaFBRERV9wD30KljJ533KDNoBrCx+KJFizBp0iSMHz8eALBy5Urs3LkT33//Pd55550yX6NUKjFq1CjMnTsXf//9t9bbuTk4OOD999/XrtAKVOnJyl69eiEtLU2qWoiIyACocnMhKpWVHkREpH8PcA/9BvaTu4waqaCgAKdOnUL37t3V5xQKBbp3747o6OhyX/fxxx/DxcUFL774otbXXLt2LX799ddS53/99Vf88MMPWvcHVDHQPfPMM0hOTuZzdEREBkT16FH5R25upQcRERkGpahEluJ+zXx+Dvpd5TIrK6vEkZ+fX+r6aWlpUCqVcHV1LXHe1dUVKSkpZdZ85MgR/Oc//8Hq1at1es/z589H3bp1S513cXHBZ599plOfVQp0QUFBcHR0LPcNExFR9XgytBERUc2QiXTY2dojMDBQ7lL0Q4+Lonh6esLBwUF9zJ8/v8rlPnz4EKNHj8bq1avLDGWaSEpKgq+vb6nz3t7eSEpK0qlPnZ+hAx4/R/fss8/i7NmzqF+/flW6IiIiIiKiJ6QjFX36RdbM5+f07ObNm7C3t1d/XNYeb3Xr1oWZmRlSU1NLnE9NTS1zjZD4+HgkJiaiX7//nwKrUqkAAObm5rhy5UqlC5u4uLjg3Llz8PHxKXH+7NmzqFOnTqXvqyxV3p2wb9++HKEjIiIiIpJYpsU9PPvss3KXoT96HKGzt7cvcZQV6CwtLREWFoaoqCj1OZVKhaioKISHh5dq36hRI5w/fx4xMTHqo3///njmmWcQExMDT0/PSt/yyJEjMX36dBw8eBBKpRJKpRIHDhzAa6+9hhEjRmj0ZXtalUboAKBHjx64d+8esrOzYWtrW247v0nOSFh9v6qXIyIiIiKq8QrEfGQWPSixYAdJb+bMmRg7dixatWqFNm3aYPHixcjJyVGvejlmzBjUr18f8+fPh7W1NUJCQkq83tHREQBKnS/PJ598gsTERERERMDc/HEUU6lUGDNmjM7P0FU50Dk6OqJ58+a4desWGjVqVNXuiIiIiIhM3n3cha+Xb6kFO2qSJxcxkbJPbQwfPhz37t3DRx99hJSUFDRv3hx79uxRf92TkpKgUFR5UqOapaUlNm7ciE8++QRnz56FjY0NmjZtCm9vb537rHKgA4CBAwfixx9/ZKAjIiIiIpJAuiIFo4YOlbsMkzB16lRMnTq1zM8dOnSowteuW7dOp2sGBgZKttiNJIGuT58++Oyzz6BSqSRNsEREREREpkYURTwwS8WAAQPkLkW/DGBjcTncunUL27dvR1JSEgoKCkp8btGiRVr3J0mga968OWxsbJCamgp3d/dy2/E5OiIiIiKiimXiPswszNCuXTu5SyGJRUVFoX///vDz80NsbCxCQkKQmJgIURTRsmVLnfqUZDhNoVCgd+/euHnzphTdERERERGZrDTcQa9evdSLZtRU+txY3FC9++67ePPNN3H+/HlYW1tjy5YtuHnzJrp06YKhOk6xlWx+ZL9+/Urt4UBERERERNpJE+5gyLAhcpehf3rctsBQXb58GWPGjAHweO+6R48ewdbWFh9//DEWLFigU5+SBbo+ffogLS0NGRkZFbbzm+Qs1SWJiIiIiGqUHDELeYoc9OnTR+5SSA9q166tfm7O3d0d8fHx6s+lpaXp1Kdk47j29vbo1asXEhISdJ7/SURERERkylJwExHdusPe3l7uUvTPBBdFadeuHY4cOYLGjRsjMjISb7zxBs6fP4+tW7fq/MykpEtSvvDCC0hKSoIoGvhXkoiIiIjIwIiiiDSL25gwcbzcpZCeLFq0CG3btgUAzJ07FxEREdi4cSN8fHzwn//8R6c+JQ10ffv2RVZWFu7fr3glS067JCIiIiIqKRuZyMcjk5luKejpMFRKpRK3bt2Cl5cXgMfTL1euXIlz585hy5YtOm8uLmmgq127Nvr27Ytr165J2S0RERERUY13R7iBAQMHoHbt2nKXQnpgZmaGnj174sGDB5L2K/ku4FOmTEF8fDyUSqXUXRMRERER1UgqUYlUs5uYMmWK3KVUHxNc5TIkJAQJCQmS9il5oOvatSucnZ2RmJhYYTtOuyQiIiIieuwubqNOHWd06dJF7lJIjz799FO8+eab2LFjB+7cuYOsrKwShy4kD3SCIODVV18tsQQnERERERGV7475dbz+xusQBEN+CkxaprSx+Mcff4ycnBxERkbi7Nmz6N+/Pxo0aAAnJyc4OTnB0dERTk5OOvWtl+3nx40bhw8++ACZmZlwcHDQxyWIiIiIiGqEHPEhMlTpGDdunNylVC8T2rZg7ty5eOWVV3Dw4EHJ+9ZLoHNxccHgwYNx6dIlhIeHl9vOb5IzElZXvCImEREREVFNdhPXMKD/ANSrV0/uUkhPird108eUWsmnXBZ75513EBcXh7y8PH1dgoiIiIjIqBWI+UhR3MBHcz6SuxR5mNCCKPqaTquXEToAaN68Odq2bYtLly6hZcuW5bbjKB0RERERmapbQjzatG6D0NBQuUshPQsMDKw01FW2n3dZ9BboAOC9997D0KFD0axZM5ib6/VSRERERERGRSkqkWyegBUf/y53KbLQxyImhrooCvD4OTp9rC+i15TVs2dP1K9fH1euXEFwcHC57ThKR0RERESm5jYSUb9BffTo0UPuUqgajBgxAi4uLpL3q7dn6IDH80Q//vhjXLhwAUVFRfq8FBERERGR0VCKSiSZX8GCLz83qa0KSjChjcX1+Wes10AHAM899xzc3d1x+fLlCttxo3EiIiIiMhXJSEB9Tw8MHjxY7lKoGhSvcqkPeg90CoUCCxYswMWLFzlKR0REREQmTykWIck8DouWLIJCoffbcYNlShuLq1QqvUy3BKoh0AFAv3794Ovri4sXL1bYjqN0RERERFTT3UQ8/Br6oW/fvnKXIi8TmnKpT9US6ARBwIIFC3DhwgXk5+dXxyWJiIiIiAxOoViAJLM4fL1kkek+O0eSqrYx3p49e6JNmzaIiYmpsB1H6YiIiIiopkrAJbRp2wY9e/aUuxTZmdKUS32qtkAnCAK++eYbXL58GZmZmdV1WSIiIiIig5AjPsQdRSJWfLdc7lKoBqnWpzBDQkIwZswYnDp1qsJ2HKUjIiIiopom3uwCXhg9GiEhIXKXYhj4DJ0kqn1ZnU8//RS3b9/G7du3q/vSRERERESyuC/eRZZZOhZ88bncpVANU+2BztXVFbNnz8aJEyegUqnKbcdROiIiIiKqCVSiClfNz2LuJ3P1tnS9UeIInSRk2fji9ddfh729PS5cuCDH5YmIiIiIqs1NXIWzuxNmzJghdylUA8kS6CwtLbF69WrExMQgOzu73HYcpSMiIiIiY5Yn5iLRLBY//vQDLCws5C7HoHCVS2nItjV9ly5dMGjQIJw8ebLCdgx1RERERGSsrpqdw8BBg9C5c2e5S6EaSrZABwBff/01bt++jaSkJDnLICIiIiKSXJp4B1kW9/Ht0m/kLsUw8Rk6Scga6FxdXbFo0SL8888/KCgoKLcdR+mIiIiIyJgUiYWIM4/Bkm8Ww9XVVe5yDJIgino5TI2sgQ4AJk6ciNDQUJw4cULuUoiIiIiIJHEV59CiVXNMnDhR7lKohpM90AmCgHXr1iEhIQHJycnltuMoHREREREZg3QxFWkWt/HfDf+FIAhyl2O4OOVSErIHOgDw8fHBF198gejoaBQWFpbbjqGOiIiIiAxZkViEOPMzWPj1Qnh7e8tdDpkAgwh0ADBlyhQEBQVx6iURERERGa1rinNo3KwxJk+eLHcpBo/bFkjDYAKdQqHAL7/8gsTERCQmJpbbjqN0RERERGSI7orJSLdMwZbfNkOhMJjbbKrhDOo7zdvbG6tWrcLRo0eRk5NTbjuGOiIiIiIyJHniI1wxO43v1/4HXl5ecpdjHPgMnSQMKtABwMiRIzFgwAAcOXIEogkuO0pERERExkUURVw2O4GBgwdixIgRcpdDJsbgAh0ArFy5EiqVCufOnSu3DUfpiIiIiMgQ3BCuwLKuGVb/Z7XcpRgVPkMnDYMMdHZ2dti8eTNiYmJw586dctsx1BERERGRnB6I93DD7Aq2bd8GOzs7ucsxLpxyKQmDDHQA0KZNGyxcuBCHDh3i83REREREZHDyxEc4L/yDxUsWo02bNnKXQybKYAMd8Hgrg379+uHw4cNQKpVyl0NEREREBABQiSpcNP8Xg4YM5BYFOuKUS2kYdKATBAGrV6+Gvb19hfvTcZSOiIiIiKrTVcU51PV2xtof1kIQBLnLIRNm0IEOAGrVqoXt27fj+vXruHr1arntGOqIiIiIqDrcEW8gzfI29uzdDRsbG7nLMV58hk4SBh/oAMDf3x+//vorjh07htTU1HLbMdQRERERkT5liOm4YhaD37ZthZ+fn9zlEBlHoAOAXr16YcGCBThw4ACys7PlLoeIiIiITEyemIsL5v9g4aKv0KtXL7nLqRH4/FzVGU2gA4Dp06dj2LBhOHDgAAoLC8tsw1E6IiIiIpJakViEc+bRGPH8cEybNk3ucojUjCrQCYKAFStWwN/fH3///TdEsewYzlBHRERERFIRRRGXzU6gcfNArFqziougSEUU9XOYGKMKdABgYWGB33//HQUFBTh58mS57RjqiIiIiEgK8cJ5mNUTsXPPTlhYWMhdTo3BbQukYXSBDgDq1KmDffv2IT4+HpcuXSq3HUMdEREREVXFLTEeaTa3ceivQ6hTp47c5RCVYi53AboKDAzEzp070aNHD9ja2sLLy6vMdn6TnJGw+n41V0dERERExujJAYGkpCQkHrqM/Xv3IyAgQMaqaih9bDNggiN0RhvoAKBjx474/vvvMWHCBERGRqJu3bpltiv+wWSwIyIiIqJiFc3mSktLw6FDh7B27Vp06NChGqsi0o5RTrl80siRI/Hhhx8iKiqq0u0MOAWTiIiIiCqTnZ2N/fv346OPPsKIESPkLqfGElT6OUyN0Qc6AHj33XcxdOhQ7Nu3D3l5eRW2ZagjIiIiovLuCfPy8rBv3z4MHz4c77zzTjVXRaS9GhHoBEHAypUr0a5dO0RFRZW7R10xv0nODHZEREREJqq8+8DCwkJERUWhXbt2WLFiBbcn0DdRT4eJqRGBDgDMzMywadMmeHl54fDhw1CpKh9vZagjIiIiMi3l3f+pVCocOnQI3t7e2LRpE8zMzKq5MiLd1JhABwDW1tbYtWsXLC0tcfTo0XI3Hi/GRVKIiIiISBRFHD16VH0vaW1tLXdJJoH70EnDqFe5LIujoyOioqLQpk0bHD9+HG3atIEgCAxvRERERCaurNE5URRx/PhxZGVl4fjx43BwcJChMhMlio8Pqfs0MTVqhK6Yh4cHDh8+jDt37uDUqVMMc0REREQmrryplqdOncKdO3dw+PBheHh4VHNVRFVXIwMdAPj7++Pw4cNITExEZqsbfF6OiIiIyESVdx945swZJCYm4vDhw/D396/mqohTLqVRYwMdADRq1AiHDh3ClStXcP78eYY6IiIiIgIAnDt3DnFxcTh06BAaNWokdzlEOqvRgQ4AmjZtigMHDuD8+fO4ePEiQx0RERGRCSnr3u/ixYu4cOECDhw4gKZNm8pQFQHgtgUSqXGLopQlLCwMe/fuRc+ePaFSqdB00uMfXD5bR0RERFRzlRXmzp8/j/Pnz2Pfvn1o2bKlDFURSavGj9AVCw8Px6FDh3Dx4kWcOXMGAPehIyIiIqqpyrrPO3PmDC5evIhDhw6hXbt2MlRFT+IzdNIwmUAHPB6pO3LkCOLj43Hy5EmIoshQR0RERFTDPH1/J4oiTp48iYSEBBw5cgRhYWEyVUYkPZMKdMDjZ+qOHTuG5ORkHD9+XB3qGOyIiIiIjF9ZYe7ff/9FcnIyjh49ymfmDEnxPnRSHybG5AIdAAQFBSE6OhppaWk4evQoVCoVAE7BJCIiIqpJVCoVjh49ivT0dERHRyMoKEjukugJnHIpDZMMdADg6+uL48ePQ6VS4cCBAygsLATAUEdERERkrJ68jyssLERUVBREUcTx48fh6+srY2VE+mOygQ4APDw8EB0dDTc3N+zduxd5eXkAwCmYREREREbmyXu3vLw8/Pnnn+p7PQ8PDxkro3Jx2wJJmHSgAwBHR0dERUWhdevW2LVrFx4+fKj+HEMdERERkeF78p4tKysLu3btQtu2bREVFQUHBwcZKyPSP5MPdABgbW2NzZs3Y+jQodi5cyfS0tLUn+NoHREREZHhevI+LS0tDbt27cKwYcOwefNmWFlZyVgZVYbP0EmDge5/zMzMsGzZMrz77rvYtWsXbty4UeLzDHVEREREhuXJ+7PExETs2rUL7777LpYuXQqFgre5ZBrM5S7AkAiCgHfeeQcNGzbE6NGj0aJFC4SEhEAQBAD//5dGwur7cpZJREREZPKK78tEUcSFCxdw5swZ/PTTT3juuedkrow0phIfH1L3aWIY6MowZMgQeHl5ITIyEg8fPkS7du1K/JaHwY6IiIhIPsX3YiqVCv/88w9SUlLw119/oXXr1jJXRlT9OBZdjjZt2uD06dMoKirC/v37UVBQUKoNp2ESERERVa/i+6+CggLs378fRUVFOHXqFMOcMeIql5JgoKuAl5cX/v33XwQEBGDnzp3IyMgo1YaLphARERFVj+J7royMDOzYsQMBAQE4fvw4vLy8ZK6MdCFAD4uiyP2mZMBAVwl7e3vs3r0bo0ePxo4dO3Dz5s0y2zHUEREREelP8b1WUlIS/vjjD4wdOxa7d++GnZ2dzJURyYvP0GnAzMwMCxcuRIsWLTBp0iSEhoaiWbNm6sVSivHZOiIiIiLp+U1yhiiKOHfuHM6ePYs1a9Zg1KhRcpdFVSWKjw+p+zQxDHRaeOGFF9CoUSP07dsXGRkZ6NChA8zNS38JGeyIiIiIpOE3yRlFRUU4evQoMjMzceTIEYSFhcldFpHB4JRLLbVq1QoxMTHqqZgPHz4sty2nYRIRERHpzm+SMx4+fIjdu3fD3t4eZ86cYZirQbixuDQY6HTg5uaGv//+G3379sX27dvLfa4O4KIpRERERLrwm+SMmzdvYvv27ejXrx/+/vtvuLm5yV0W1UDLli2Dj48PrK2t0bZtWxw/frzctqtXr0anTp3g5OQEJycndO/evcL21YGBTkdWVlZYtWoVli1bhoMHD+LMmTMQK5izy2BHREREpBnfiU44ffo0Dh48iOXLl+O7776DlZWV3GWR1Axg24KNGzdi5syZmD17Nk6fPo3Q0FD06tULd+/eLbP9oUOHMHLkSBw8eBDR0dHw9PREz549kZycrN2FJSSIFaUQ0sjZs2fRr18/WFhYoFOnThr9hcPn64iIiIhK8xhdC3///TeUSiW2b9+O0NBQuUsiiWVlZcHBwQEdn5kDc3NrSfsuKsrDkYNzkJmZCXt7+0rbt23bFq1bt8bSpUsBPN6s3tPTE9OmTcM777xT6euVSiWcnJywdOlSjBkzpsr164IjdBIIDQ3F2bNnERAQgD/++ANpaWmVvoajdUREREQl2Q9S4Y8//kBQUBDOnj3LMFfDCaKolwN4HBqfPPLz80tdv6CgAKdOnUL37t3V5xQKBbp3747o6GiN3kNubi4KCwvh7CzfvT0DnUScnJywa9cuzJgxAzt37sTFixcrnIIJcBomEREREQCIoojc8NvYuXMnZs6ciZ07d8LR0VHuskjfVHo6AHh6esLBwUF9zJ8/v9Tl09LSoFQq4erqWuK8q6srUlJSNHoLs2bNgoeHR4lQWN24bYGEFAoFPvjgA3Tq1AnDhg3D3bt30aFDB1haWlb4Om5zQERERKaqSCzErYYXkXUtC3v37kXnzp3lLolqgJs3b5aYcqmPZzA///xzbNiwAYcOHYK1tbRTR7XBETo96NKlCy5cuABPT09s374d9+7d0+h1HLEjIiIiU5Il3sc557/h7e2NCxcuMMyZGH1OubS3ty9xlBXo6tatCzMzM6SmppY4n5qaWumKql999RU+//xz7N27F82aNZPui6IDjtDpSb169bBv3z58/vnn+PjjjxEWFobg4GAIglDpazliR0RERMZCl19Gi6KIS5cu4ezJk5j95mzMmjULCgXHGah6WVpaIiwsDFFRURg4cCCAx4uiREVFYerUqeW+7osvvsC8efPw559/olWrVtVUbfkY6PRIoVDgvffeQ+fOnTF06FCkpqaiQ4cOGg/JMtgRERGRIdMlzOXl5eHo0aPIyclBVFQUOnTooIfKyCjosM2ARn1qYebMmRg7dixatWqFNm3aYPHixcjJycH48eMBAGPGjEH9+vXVz+AtWLAAH330EX7++Wf4+Pion7WztbWFra2tpG9FU/xVSDXo2LEjLl68iCZNmmDbtm1a71PBqZhERERkaHS5N7l16xa2bduGJk2a4OLFiwxzJLvhw4fjq6++wkcffYTmzZsjJiYGe/bsUS+UkpSUhDt37qjbr1ixAgUFBRgyZAjc3d3Vx1dffSXXW+A+dNVJFEWsXr0ar732Gho1aoSwsDCYmZlp3Q9H7IiIiEguugQ5pVKJU6dOITY2Ft988w0mTpyo0WMoVDMV70PXucOHetmH7q+jn2i8D11NwBG6aiQIAl566SWcOXMGhYWF2LVrFzIyMrTuhyN2REREJAdd7j8yMjKwa9cuFBYW4syZM5g0aRLDHJGEGOhk0KhRI5w6dQpDhw7F9u3bcenSpUr3rCsLgx0RERFVF23vOYoXPtm+fTuGDh2KU6dOoVGjRnqqjoyRIOrnMDVcFEUmVlZWWLJkCfr27YsXXngBycnJ6NChA2rVqqXR6zntkoiIiKqDLr88zs3NxbFjx5CdnY3t27ejR48eeqiMjJ4oPj6k7tPEMNDJrEePHoiNjcXLL7+M3377De3bt4evr6/68wxuREREJBddwlxCQgKio6MRGRmJ7777Dk5OTnqojIiKMdAZACcnJ2zatAm//PILXn75Zdy6dQuulwNhLljIXRoRERGZKG3DXEFBAf79918kJydjzZo1GDFihJ4qo5pCUD0+pO7T1PAZOgMycuRIXL58Ga6urjjr9BfSxdTKX0REREQkIV2e0b916xZ+//13uLm54dKlSwxzRNWIgc7A1K9fH1FRUfj0008Ra3MSd5pcRpFYKHdZREREZAJ0GZU7evQoDh06hE8//RRRUVGoX7++nqqjGqf4GTqpDxPDQGeAFAoFpkyZgkuXLsHZ2Rlnnf6C5bO5cpdFRERENVRVRuWcnZ1x8eJFTJkyhdsREMmAgc6A+fj44NChQ5g3bx4OHjyIO00uo8FYW7nLIiIiohqkKqNyn332GQ4fPgwfHx/9FEc1m6inw8Qw0Bk4hUKByZMnq0frtm3bBvNe2dx/joiIiKpM2/uJGzduYNu2bahTpw4uXryIV155haNyRDLjKpdGwsfHB4cPH8bq1avx5ptvIiEhAW1GtUGtWrW4tQERERFpRdsgl5ubi+PHj+POnTtYuHAhJk6cyCBHVSaIIgSJn3mTuj9jwBE6IyIIAl566SXExcWhadOm2Lp1Ky5fvgzfiU4csSMiIiKNaHPPIIoiLl++jC1btqBp06aIi4vDpEmTGOaIDAhH6IyQm5sbNm/ejJ07d2LSpElITExEeHi4+i9ojtgRERHR07T95e+DBw8QHR0NpVKJX3/9FX369NFTZWSy9LEqJUfoyJj06dMHcXFxGDRoELZt24aTJ0+iqKhIp5WqiIiIqObS5r6gsLAQJ0+exO+//47BgwcjLi6OYY70QwSgkvgwvTzHQGfsbG1tsWTJEhw7dgwA8NtvvyEhIQGiKDLYERERmTht7gVEUURCQgJ+++03CIKA6OhoLFmyBLa2XGGbyJBxymUNERYWhhMnTmDdunV48803ce3aNbRp0waOjo6ciklERGSCtPmlbkZGBo4fP47MzEwsXLgQ48aNg0LB3/uTfnFRFGnwJ7UGUSgUmDBhAuLj4/Hss89i27ZtOHHiBAoLCwH8/2/pOGpHRERUc2nzb31hYSFOnDiBbdu2ITIyEgkJCZgwYQLDHJER4U9rDeTk5ITly5fj+PHjsLS0xJYtWxAbGwuVSqVuw2BHRERUs2jzb7tKpUJsbCy2bNkCS0tLHD9+HMuWLYOjo6N+iyR6koj/XxhFskPuN1X9OOWyBgsNDUV0dDQ2b96MN954A7GxsWjZsiU8PT3Vyw0/+Rc/p2QSEREZJ22ek7t58yZOnz4Na2trrFmzBkOGDOE2BERGjIGuhhMEAUOHDsWAAQOwfPlyzJ49G05OTggLC0PdunVLtOWzdkRERMZFm9k2aWlpOHXqFDIyMjB37lxMnjwZlpaWeqyOqBLctkASgiia4Ls2YRkZGfj000+xdOlS+Pr6okWLFrCzsyu3PcMdERGR4dEmyD18+BBnzpzB9evXMW3aNLz//vucWkmyysrKgoODA7qFzoK5mZWkfRcp83Hg7AJkZmbC3t5e0r4NFZ+hMzGOjo746quvEBcXhxYtWmDz5s04evQoHj58WGZ7PmtHRERkOLT5dzkrKwtHjhzB5s2b0aJFC8TFxeHLL79kmCPDIfUedMWHiWGgM1FeXl74+eefce7cOYSEhGDz5s04cuQIsrKyymzPFTKJiIjkpU2QO3r0KLZs2YJmzZrh/Pnz+Pnnn+Hl5aXnCom0U7xtgdSHqeEzdCauUaNG2LBhA65cuYI5c+Zgy5YtCAwMRNOmTcsdpuZCKkRERNVHmyB37tw5XL16Fc899xy2bNmCoKAgPVdHRHJjoCMAQFBQEH755ZcSwS4gIADBwcFwcnIq93UMd0RERPqhaZB78OABLl68iKtXr2LIkCH47bffEBgYqOfqiCTARVEkwUBHJRQHu7i4OHz66afYsGEDvLy80LhxY7i7u1e4rPHT//Aw4BEREWlPkyAniiLu3LmDy5cvIykpCSNGjGCQIzJRXOWSKnTnzh0sWbIEy5cvh729PRo1agRfX18oFNo9fslwR0REVDFNgpxKpcL169cRGxuLrKwsvPrqq5g+fTrc3d2roUIiaRSvchnR5E29rHIZdekrk1rlkoGONJKdnY3//Oc/+PLLL/Ho0SM0atQIQUFBsLCw0Kk/BjwiIqLHNAlyhYWFuHLlCmJjY2FjY4O3334bEyZMgK2tbTVUSCQtBjppMdCRVoqKirB161bMmzcPV69eRUBAABo3bgwHBwed+2S4IyIiU6RJkMvMzMTly5fV/+a+//77GDx4MMzN+dQMGS91oGv8hn4C3eWFDHRElRFFEf/88w8WLVqEbdu2wcvLC4GBgfD09KzwObvKMNwREVFNpunzcTdv3kRcXBySkpIwePBgvP7662jXrl2V/o0lMhQMdNJioKMqu3PnDr777jssW7YMoigiICAAQUFBsLKq+g8oAx4REdUEmgS5/Px8XLlyBVevXoUgCHj11VfxyiuvwM3NrRoqJKo+6kAXpKdAd4WBjkgnhYWF2Lp1KxYtWoSzZ8/C398fgYGBqFevnuS/UWTQIyIiY1BZkBNFEffu3UNcXBzi4+PRvHlzzJw5E4MGDdL5OXUiQ1cc6LoHztRLoNsft8ikAh0nYJNkLCwsMHz4cAwfPhwxMTFYsWIFfvrpJ9jb28Pf3x8NGzaUZNQOKP8fSAY9IiIyBJUFufz8fFy9ehUJCQl4+PAhRo0ahZ9//hmhoaHVVCER1RQcoSO9ysnJwaZNm7B06VJcuHAB/v7+CAgIgKura7U+B8CgR0RE1aGiICeKIlJTU3H16lXEx8cjJCQEU6dOxbBhw1C7du1qrJJIXuoRuoAZ+hmhu/q1SY3QMdBRtTl37hxWrlyJ9evXo1atWvD19UVAQABq1aolW00MekREVFWVjcbl5ubi6tWruH79OnJzczFmzBi88soraNq0aTVVSGRYGOikxUBH1S43NxdbtmzB6tWrER0dDS8vL/j6+sLb29tglmFm0CMiospUFOSKiopw48YNXL9+HUlJSQgPD8ekSZPw3HPPyfqLTCJDoA50/q/rJ9DFL2agI6ouSUlJ+PHHH7F69WqkpaXBz88P/v7+cHFxMcilmRn0iIhMW2VTKu/evYtr167h+vXrqFevHiZOnIgxY8bAy8urGqskMmwMdNJioCODIIoioqOj8f3332Pjxo2wtraGp6cn/P394exc+VLPxowhkYjI8FUU5O7fv4/4+HgkJSUhPz8fw4cPx4QJExAeHm6Qv5wkkps60Pm9pp9Al7CEgY5ITnl5edi9ezfWr1+PXbt2wdHRUR3uHBwc5C7PqDAsEhHprqIQl5mZifj4eNy8eRMZGRno06cPRo8ejd69e8Pa2roaqyQyPgx00mKgI4OWnZ2NP/74Az/++COioqJQr1491K9fHz4+PnB0dORvPmXEsEhEhk6Tzbw1JYoiMjIykJiYiOTkZNy7dw8REREYM2YM+vXrB1tbW8muRVTT/X+gmw5zhcSBTpWP/QnfMNARGaIHDx7g999/x6ZNmxAVFQUHBwd4eHjA29u72rdBIP1jYCSSn5SByBgVbzNw48YN3L59G5mZmYiIiMCwYcMwYMAAODk5yV0ikVFSBzrfafoJdNe/ZaAjMnQ5OTnYt28fNm/ejD/++AMA4OHhATc3NzRo0IAriFGlGBipuph6KDI2ubm5uHXrFlJTU5GcnAwA6NevH4YMGYIePXpwvzgiCTDQSYuBjoxeUVERjh49ij179mDnzp24ePEiXFxc4Orqitq1axvMVghkWu79lSN3CTVKvc68iSb9yszMRGpqKu7evYvg4GD06dMHvXv3RocOHfjvCJHE1IHOe6p+At2NpQx0RMYsPT0dUVFROHDgAGJjY6FSqeQuiUhSeTn5KHhUUOJcQX5hiY8trSxKfmxjCeva0v6jSVST+Pn5ITIyEhEREahTp47c5RDVaAx00uKvnKjGqVOnDoYNG4Zhw4bJXQoRERERlUdUPT6k7tPEKOQugIiIiIiIiHTDEToiIiIiIqp+ovj4kLpPE8MROiIiIiIiIiPFEToiIiIiIqp+KhGAxCNqKtMboWOgIyIiIiKi6scpl5LglEsiIiIiIiIjxRE6IiIiIiKqfiL0MEInbXfGgCN0RERERERERoojdEREREREVP34DJ0kOEJHRERERERkpDhCR0RERERE1U+lAqDSQ5+mhSN0RERERERERoojdEREREREVP34DJ0kGOiIiIiIiKj6MdBJglMuiYiIiIiIjBRH6IiIiIiIqPqpREi+E7iKI3RERERERERkJDhCR0RERERE1U4UVRBFabcZkLo/Y8AROiIiIiIiIiPFEToiIiIiIqp+oij9M29c5ZKIiIiIiIiMBUfoiIiIiIio+ol6WOXSBEfoGOiIiIiIiKj6qVSAIPEiJlwUhYiIiIiIiIwFR+iIiIiIiKj6ccqlJDhCR0REREREZKQ4QkdERERERNVOVKkgSvwMHTcWJyIiIiIiIqPBEToiIiIiIqp+fIZOEhyhIyIiIiIiMlIcoSMiIiIiouqnEgGBI3RVxUBHRERERETVTxQBSL2xuOkFOk65JCIiIiIiMlIcoSMiIiIiomonqkSIEk+5FDlCR0RERERERMaCI3RERERERFT9RBWkf4aOG4sTERERERGZjGXLlsHHxwfW1tZo27Ytjh8/XmH7X3/9FY0aNYK1tTWaNm2KXbt2VVOlZWOgIyIiIiKiaieqRL0c2ti4cSNmzpyJ2bNn4/Tp0wgNDUWvXr1w9+7dMtsfO3YMI0eOxIsvvogzZ85g4MCBGDhwIC5cuCDFl0QngmiKTw4SEREREZEssrKy4ODggK7CIJgLFpL2XSQW4pD4GzIzM2Fvb19p+7Zt26J169ZYunQpAEClUsHT0xPTpk3DO++8U6r98OHDkZOTgx07dqjPtWvXDs2bN8fKlSuleyNa4AgdERERERFVP1Gln0NDBQUFOHXqFLp3764+p1Ao0L17d0RHR5f5mujo6BLtAaBXr17ltq8OXBSFiIiIiIiqXREKAYnnChahEMDjUcAnWVlZwcrKqsS5tLQ0KJVKuLq6ljjv6uqK2NjYMvtPSUkps31KSkpVS9cZAx0REREREVUbS0tLuLm54UiKfhYTsbW1haenZ4lzs2fPxpw5c/RyPbkx0BERERERUbWxtrbG9evXUVBQoJf+RVGEIAglzj09OgcAdevWhZmZGVJTU0ucT01NhZubW5l9u7m5adW+OjDQERERERFRtbK2toa1tbWsNVhaWiIsLAxRUVEYOHAggMeLokRFRWHq1KllviY8PBxRUVF4/fXX1ef27duH8PDwaqi4bAx0RERERERkkmbOnImxY8eiVatWaNOmDRYvXoycnByMHz8eADBmzBjUr18f8+fPBwC89tpr6NKlCxYuXIg+ffpgw4YNOHnyJFatWiXbe2CgIyIiIiIikzR8+HDcu3cPH330EVJSUtC8eXPs2bNHvfBJUlISFIr/3xigffv2+Pnnn/HBBx/gvffeQ0BAALZt24aQkBC53gL3oSMiIiIiIjJW3IeOiIiIiIjISDHQERERERERGSkGOiIiIiIiIiPFQEdERERERGSkGOiIiIiIiIiMFAMdERERERGRkWKgIyIiIiIiMlIMdEREREREREaKgY6IiIiIiMhIMdAREREREREZKQY6IiIiIiIiI8VAR0REREREZKT+D260lH+RayGUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -927,7 +854,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAHvCAYAAAAIF8G2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRU0lEQVR4nOzdd1hTZ/sH8G/C3ojIUpYoooiouFCcgIh7j/paRx2t2lZtbWtrq22tVts6+tbR1larVq0T96TuDYqKC0UQZLnYyMz5/eFLfkZWEhIS4Pu5rnNd5JznPOdOSODceZZIEAQBREREREREVGuJNR0AERERERERaRYTQyIiIiIiolqOiSEREREREVEtx8SQiIiIiIiolmNiSEREREREVMsxMSQiIiIiIqrlmBgSERERERHVckwMiYiIiIiIajkmhkRERERERLUcE0MiIiIiIqJajokhERERERHVSqdPn0a/fv3g4OAAkUiEkJAQmeO7du1Cz549UbduXYhEIkRERMhV7/bt2+Hh4QFDQ0N4eXnh4MGDMscFQcBXX30Fe3t7GBkZISAgAPfv31fRs1IOE0MiIiIiIqqVsrOz4e3tjZUrV5Z53M/PD4sXL5a7zvPnz2PUqFF45513cO3aNQwcOBADBw5EZGSktMySJUvw888/Y82aNbh06RJMTEwQFBSE3NzcSj8nZYkEQRA0dnUiIiIiIiItIBKJsHv3bgwcOLDEsdjYWLi6uuLatWto2bJlufWMGDEC2dnZ2L9/v3Rfhw4d0LJlS6xZswaCIMDBwQEfffQRPv74YwBAeno6bG1tsX79eowcOVKVT0tuuhq5KhERERER1Vq5ubnIz89XS92CIEAkEsnsMzAwgIGBgVqu96YLFy5g1qxZMvuCgoKk3VRjYmKQnJyMgIAA6XELCwu0b98eFy5cYGJIREREREQ1X25uLlydTZH8pEgt9ZuamiIrK0tm37x58zB//ny1XO9NycnJsLW1ldlna2uL5ORk6fHifWWV0QQmhkREREREVGXy8/OR/KQIMeHOMDdT7ZQnGZkSuPo8Qnx8PMzNzaX7q6q1sDpjYkhERERERFXO3Eys8sRQWre5uUxiWJXs7OyQkpIisy8lJQV2dnbS48X77O3tZcpUNH5RnTgrKRERERERVbkiQaKWTdN8fX0RGhoqs+/YsWPw9fUFALi6usLOzk6mTEZGBi5duiQtowlsMSQiIiIiolopKysLDx48kD6OiYlBREQErKys4OTkhBcvXiAuLg6JiYkAgHv37gF41epX3PL39ttvo379+li0aBEA4MMPP0TXrl3x008/oU+fPti6dSvCwsLw22+/AXg1++mMGTOwYMECNG7cGK6urvjyyy/h4OBQ6oyoVYWJIRERERERVTkJBEig2pXzFK0vLCwM3bt3lz4unk107NixWL9+Pfbu3Yvx48dLjxfPGPr6ZDZxcXEQi/+/I2bHjh2xefNmzJ07F59//jkaN26MkJAQNG/eXFrmk08+QXZ2NiZPnoy0tDT4+fnh8OHDMDQ0VPg5qwrXMSQiIiIioiqTkZEBCwsLJN9zUsvkM3ZN4pCenq6xMYbVFVsMiYiIiIioykkggapHBKq+xtqDk88QERERERHVcmwxJCIiIiKiKlckCChS8ag2VddXmzAxJCIiIiKiKqcNk8/Q/2NXUiIiIiIiolqOLYZERERERFTlJBBQxBZDrcEWQyIiIiIiolqOLYZERERERFTlOMZQu7DFkIiIiIiIqJZjiyEREREREVU5LlehXdhiSEREREREVMuxxZCIiIiIiKqc5H+bqusk5TAxJCIiIiKiKlekhuUqVF1fbcKupESkMevXr4dIJEJYWFiFZbt164Zu3bopVH9sbCxEIhF+/PFHJSPUXhKJBM2bN8d3332n6VBqFRcXF4wbN07TYVQLb75WJ0+ehEgkwsmTJxWua82aNXByckJeXp7qAiQiIhlMDIkUVJzMFG+GhoZwd3fH9OnTkZKSounwtNKqVauwfv16TYdRo2zZsgXx8fGYPn26dN+VK1cwffp0eHp6wsTEBE5OThg+fDiioqJKrePOnTvo1asXTE1NYWVlhTFjxuDp06dqjTsnJwcrV65Ez549YW9vDzMzM7Rq1QqrV69GUVFRifISiQRLliyBq6srDA0N0aJFC2zZskWtMapLTfwcnD9/HvPnz0daWpparzNu3Djk5+fj119/Vet1iKhqFQnq2Ug57EpKpKRvvvkGrq6uyM3NxdmzZ7F69WocPHgQkZGRMDY21nR4WmXVqlWwtrauVEvL0aNHVRdQDfDDDz9g5MiRsLCwkO5bvHgxzp07h2HDhqFFixZITk7GL7/8gtatW+PixYto3ry5tOzjx4/RpUsXWFhYYOHChcjKysKPP/6Imzdv4vLly9DX11dL3A8fPsT7778Pf39/zJo1C+bm5jhy5AimTp2Kixcv4q+//pIp/8UXX+D777/HpEmT0LZtW+zZswdvvfUWRCIRRo4cqZYYy3Pv3j2Ixcp9p6qKz4G2OX/+PL7++muMGzcOlpaWMscq81q9ydDQEGPHjsXSpUvx/vvvQyQSqaReIiL6f0wMiZQUHByMNm3aAAAmTpyIunXrYunSpdizZw9GjRpV6jnZ2dkwMTGpyjArRRAE5ObmwsjISNOhqC1RqY6uXbuG69ev46effpLZP2vWLGzevFnmtRoxYgS8vLzw/fffY9OmTdL9CxcuRHZ2NsLDw+Hk5AQAaNeuHQIDA7F+/XpMnjxZLbHb2dnh5s2b8PT0lO6bMmUKJkyYgHXr1uHLL79Eo0aNAAAJCQn46aefMG3aNPzyyy8AXn3WunbtitmzZ2PYsGHQ0dFRS5xlMTAwqNLraQNl/26p+rUaPnw4lixZghMnTqBHjx4qrZuINIOTz2gXdiUlUpHiG5WYmBgAr7o+mZqaIjo6Gr1794aZmRlGjx4N4FX3uOXLl8PT0xOGhoawtbXFlClTkJqaKlNnWFgYgoKCYG1tDSMjI7i6umLChAkyZbZu3QofHx+YmZnB3NwcXl5eWLFihfT4/PnzS/12vbhLbGxsrHSfi4sL+vbtiyNHjqBNmzYwMjKSdt1KS0vDjBkz4OjoCAMDAzRq1AiLFy+GRFL+n2AXFxfcunULp06dkna/fXOsYF5eHmbNmoV69erBxMQEgwYNKtGlsbQxhrm5uZg/fz7c3d1haGgIe3t7DB48GNHR0WXGIwgCJk+eDH19fezatUvmtTh37lyFcQDAoUOH0LlzZ5iYmMDMzAx9+vTBrVu3ZMokJydj/PjxaNCgAQwMDGBvb48BAwbIvN7y/H5LExISAn19fXTp0kVmf8eOHUsk0I0bN4anpyfu3Lkjs3/nzp3o27evNCkEgICAALi7u2Pbtm3lXn/evHkQi8UIDQ2V2V/8ul6/fr3Mc62trWWSwmKDBg0CAJk49+zZg4KCAkydOlW6TyQS4b333sPjx49x4cKFcuMs/gw+fPgQQUFBMDExgYODA7755hsIb6xzlZ2djY8++kj6/m7SpAl+/PHHEuXeHDcn73unvM9BQUEBvv76azRu3BiGhoaoW7cu/Pz8cOzYsXKfX/G1T58+jSlTpqBu3bowNzfH22+/XeJvCSDf+7a8v1tvmj9/PmbPng0AcHV1lT6v4ve4vOMxL126hF69esHCwgLGxsbo2rUrzp07V6Kcj48PrKyssGfPngrrJCIixbHFkEhFipORunXrSvcVFhYiKCgIfn5++PHHH6VdTKdMmYL169dj/Pjx+OCDDxATE4NffvkF165dw7lz56Cnp4cnT56gZ8+eqFevHj777DNYWloiNjZWmswAwLFjxzBq1Cj4+/tj8eLFAF7dWJ87dw4ffvihUs/j3r17GDVqFKZMmYJJkyahSZMmyMnJQdeuXZGQkIApU6bAyckJ58+fx5w5c5CUlITly5eXWd/y5cvx/vvvw9TUFF988QUAwNbWVqbM+++/jzp16mDevHmIjY3F8uXLMX36dPzzzz9l1ltUVIS+ffsiNDQUI0eOxIcffojMzEwcO3YMkZGRcHNzK/WcCRMm4J9//sHu3bvRp08fhePYuHEjxo4di6CgICxevBg5OTlYvXo1/Pz8cO3aNbi4uAAAhgwZglu3buH999+Hi4sLnjx5gmPHjiEuLk76uKLfb1nOnz+P5s2bQ09Pr8KygiAgJSVFJhlLSEjAkydPpC3er2vXrh0OHjxYbp1z587Fvn378M477+DmzZswMzPDkSNH8Pvvv+Pbb7+Ft7d3hXG9KTk5GcCrxLHYtWvXYGJigqZNm5aIsfi4n59fufUWFRWhV69e6NChA5YsWYLDhw9j3rx5KCwsxDfffAPg1WvUv39/nDhxAu+88w5atmyJI0eOYPbs2UhISMCyZcsqjL+i9055n4P58+dj0aJFmDhxItq1a4eMjAyEhYXh6tWrCAwMrPDa06dPh6WlJebPn4979+5h9erVePTokXSyF0D+9y1Q9t+tNw0ePBhRUVHYsmULli1bJv3d1atXr8KYi/37778IDg6Gj4+P9AuHdevWoUePHjhz5oz0d12sdevWpSaNRFQ9SSBCEVTbNVyi4vpqFYGIFLJu3ToBgHD8+HHh6dOnQnx8vLB161ahbt26gpGRkfD48WNBEARh7NixAgDhs88+kzn/zJkzAgDh77//ltl/+PBhmf27d+8WAAhXrlwpM5YPP/xQMDc3FwoLC8ssM2/ePKG0j3rx84iJiZHuc3Z2FgAIhw8flin77bffCiYmJkJUVJTM/s8++0zQ0dER4uLiyry+IAiCp6en0LVr1zJjCAgIECQSiXT/zJkzBR0dHSEtLU26r2vXrjJ1/PnnnwIAYenSpSXqLa4rJiZGACD88MMPQkFBgTBixAjByMhIOHLkiFJxZGZmCpaWlsKkSZNkzk9OThYsLCyk+1NTU6XXLYs8v9+yNGjQQBgyZIhcZTdu3CgAEP744w/pvitXrggAhA0bNpQoP3v2bAGAkJubW269N2/eFPT19YWJEycKqampQv369YU2bdoIBQUFij0ZQRDy8vKEZs2aCa6urjLn9+nTR2jYsGGJ8tnZ2aV+tt5U/Bl8//33pfskEonQp08fQV9fX3j69KkgCIIQEhIiABAWLFggc/7QoUMFkUgkPHjwQLrP2dlZGDt2rPSxIu/hsj4H3t7eQp8+fcp9LqUpvraPj4+Qn58v3b9kyRIBgLBnzx5BEOR/3wpC2X+3yvLDDz+U+DtS7M3X6sSJEwIA4cSJE4IgvPpdNG7cWAgKCpJ57XJycgRXV1chMDCwRJ2TJ08WjIyM5IqNiLRXenq6AEC4ettWiIq3V+l29batAEBIT0/X9NOsdtiVlEhJAQEBqFevHhwdHTFy5EiYmppi9+7dqF+/vky59957T+bx9u3bYWFhgcDAQDx79ky6+fj4wNTUFCdOnAAA6UQO+/fvR0FBQakxWFpaIjs7u8IuZ4pwdXVFUFBQiZg7d+6MOnXqyMQcEBCAoqIinD59ulLXnDx5skx3186dO6OoqAiPHj0q85ydO3fC2toa77//foljb3adzc/Px7Bhw7B//34cPHgQPXv2VCqOY8eOIS0tDaNGjZJ5HXR0dNC+fXvp787IyAj6+vo4efJkqV36APl+v2V5/vw56tSpU2G5u3fvYtq0afD19cXYsWOl+1++fAmg9DFghoaGMmXK0rx5c3z99ddYu3YtgoKC8OzZM/z111/Q1VW8I8r06dNx+/Zt/PLLLzLnv3z5slIxvl5/MZFIhOnTpyM/Px/Hjx8HABw8eBA6Ojr44IMPZM776KOPIAgCDh06VOE1lHkPF7O0tMStW7dw//59uZ5Padd+vfX4vffeg66urrTlV9737eve/LulDhEREbh//z7eeustPH/+XBpXdnY2/P39cfr06RJd1evUqYOXL18iJydH7fERkfpJBPVspBx2JSVS0sqVK+Hu7g5dXV3Y2tqiSZMmJWbg09XVRYMGDWT23b9/H+np6bCxsSm13idPngAAunbtiiFDhuDrr7/GsmXL0K1bNwwcOBBvvfWW9GZ56tSp2LZtG4KDg1G/fn307NkTw4cPR69evZR+Xq6uriX23b9/Hzdu3Cizi1hxzMp6fZwbAGnSU1ZSBbzqutukSRO5EpFFixYhKysLhw4dKnctxIriKL5xL2viC3NzcwCvEq7Fixfjo48+gq2tLTp06IC+ffvi7bffhp2dHQD5fr/lEYTy//MlJyejT58+sLCwwI4dO2QmaSmeTKi0NeFyc3NlypRn9uzZ2Lp1Ky5fvoyFCxeiWbNmFZ7zph9++EHaBbV3794yx4yMjCodo1gsRsOGDWX2ubu7A4B0LNyjR4/g4OAAMzMzmXLFXVjlSe6UeQ8X++abbzBgwAC4u7ujefPm6NWrF8aMGYMWLVpUeC7wahzp60xNTWFvby99fvK+b4uV9ndLHYrjev1Lizelp6fLfAlS/L7nrKRENUORGrqSqrq+2oSJIZGS2rVrV+oYrdcZGBiUSBYlEglsbGzw999/l3pOcfIlEomwY8cOXLx4Efv27cORI0cwYcIE/PTTT7h48SJMTU1hY2ODiIgIHDlyBIcOHcKhQ4ewbt06vP3229Jp/8u6gSptzTig9JttiUSCwMBAfPLJJ6WeU3yjrayyZpasKPmRV1BQEA4fPowlS5agW7du0hYnReMobr3YuHGjNMF73etJ6owZM9CvXz+EhITgyJEj+PLLL7Fo0SL8+++/aNWqlVy/37LUrVu33IQjPT0dwcHBSEtLw5kzZ+Dg4CBz3N7eHgCQlJRU4tykpCRYWVnJlZw+fPhQenN/8+bNCsu/af369fj000/x7rvvYu7cuSWO29vb48SJExAEQeZ9XBz3m89LkyrzHu7SpQuio6OxZ88eHD16FGvXrsWyZcuwZs0aTJw4sdKxKfK+BUr/u6UOxXH98MMPaNmyZall3vwcpKamwtjYWCtmSiYiqmmYGBJVMTc3Nxw/fhydOnWS6+amQ4cO6NChA7777jts3rwZo0ePxtatW6U3jPr6+ujXrx/69esHiUSCqVOn4tdff5VO+1/8bXtaWprMOmPytIK8HnNWVhYCAgIUe7L/o45v993c3HDp0iUUFBRUOAlLhw4d8O6776Jv374YNmwYdu/erVSXx+IJbWxsbOR6Ldzc3PDRRx/ho48+wv3799GyZUv89NNPMstGVPT7LY2Hh4d09ts35ebmol+/foiKisLx48dLbcWrX78+6tWrh7CwsBLHLl++XOZN+uskEgnGjRsHc3NzzJgxAwsXLsTQoUMxePDgCs8FXs04OnHiRAwePBgrV64stUzLli2xdu1a3LlzR+Z5XLp0SXpcnjgfPnwo8+VFVFQUAEgnXHF2dsbx48eRmZkp02p49+5d6XFVKO9zYGVlhfHjx2P8+PHIyspCly5dMH/+fLkSw/v376N79+7Sx1lZWUhKSpK2wCr6vlVEZT7bxXGZm5vLHVdMTEyJyYiIqPpii6F24RhDoio2fPhwFBUV4dtvvy1xrLCwEGlpaQBefTP+ZmtD8Y1wcfe658+fyxwXi8XS7mfFZYpvvl4fB5idnV1iIfGKYr5w4QKOHDlS4lhaWhoKCwvLPd/ExET6vFRlyJAhePbsmXR9u9eV1koTEBCArVu34vDhwxgzZkyFy2yUJigoCObm5li4cGGp4wKLlyfIycmRdncs5ubmBjMzM+nvRZ7fb1l8fX0RGRlZolxRURFGjBiBCxcuYPv27fD19S2zjiFDhmD//v2Ij4+X7gsNDUVUVBSGDRtW7vUBYOnSpTh//jx+++03fPvtt+jYsSPee+89PHv2rMJzT58+jZEjR6JLly74+++/y2ydGjBgAPT09LBq1SrpPkEQsGbNGtSvXx8dO3as8FoAZN4jgiDgl19+gZ6eHvz9/QEAvXv3RlFRUYn30rJlyyASiRAcHCzXdSpS1ufgzc+xqakpGjVqVOH7oNhvv/0m835cvXo1CgsLpXHL+75VRvH6hsp8vn18fODm5oYff/wRWVlZcsV19epVuX/vRESkGLYYElWxrl27YsqUKVi0aBEiIiLQs2dP6Onp4f79+9i+fTtWrFiBoUOH4q+//sKqVaswaNAguLm5ITMzE7///jvMzc2lLQETJ07Eixcv0KNHDzRo0ACPHj3Cf//7X7Rs2VL6rXrPnj3h5OSEd955B7Nnz4aOjg7+/PNP1KtXD3FxcXLFPHv2bOzduxd9+/bFuHHj4OPjg+zsbNy8eRM7duxAbGyszDIDb/Lx8cHq1auxYMECNGrUCDY2NpVeoPrtt9/Ghg0bMGvWLFy+fBmdO3dGdnY2jh8/jqlTp2LAgAElzhk4cKC0q625ubl0jUZ5mZubY/Xq1RgzZgxat26NkSNHSl/HAwcOoFOnTvjll18QFRUFf39/DB8+HM2aNYOuri52796NlJQUjBw5EgDk+v2WZcCAAfj2229x6tQpmYl0PvroI+zduxf9+vXDixcvZFomAeA///mP9OfPP/8c27dvR/fu3fHhhx8iKysLP/zwA7y8vDB+/Phyr3/nzh18+eWXGDduHPr16wfgVbfQli1bSse9luXRo0fo378/RCIRhg4diu3bt8scb9GihfTLjQYNGmDGjBn44YcfUFBQgLZt2yIkJARnzpzB33//Ldfi9oaGhjh8+DDGjh2L9u3b49ChQzhw4AA+//xzabftfv36oXv37vjiiy8QGxsLb29vHD16FHv27MGMGTNKXfpEGWV9Dpo1a4Zu3bpJ1+kLCwvDjh07ZCbNKU9+fr70/Xbv3j2sWrUKfn5+6N+/PwD537fKPicA+OKLLzBy5Ejo6emhX79+0oSxPGKxGGvXrkVwcDA8PT0xfvx41K9fHwkJCThx4gTMzc2xb98+afnw8HC8ePGi1M82EVVPEkEEiaDi5SpUXF+topnJUImqr+Ip4itaZmDs2LGCiYlJmcd/++03wcfHRzAyMhLMzMwELy8v4ZNPPhESExMFQRCEq1evCqNGjRKcnJwEAwMDwcbGRujbt68QFhYmrWPHjh1Cz549BRsbG0FfX19wcnISpkyZIiQlJclcKzw8XGjfvr20zNKlS8tcrqKsafMzMzOFOXPmCI0aNRL09fUFa2troWPHjsKPP/4oM1V+aZKTk4U+ffoIZmZmAgDplP1lvZZvTmsvCCWXqxCEV9Paf/HFF4Krq6ugp6cn2NnZCUOHDhWio6MFQZBdruJ1q1atEgAIH3/8scJxFO8PCgoSLCwsBENDQ8HNzU0YN26c9Hfz7NkzYdq0aYKHh4dgYmIiWFhYCO3btxe2bdsmrUOe3295WrRoIbzzzjsy+7p27SoAKHN7U2RkpNCzZ0/B2NhYsLS0FEaPHi0kJyeXe93CwkKhbdu2QoMGDWSWYhAEQVixYoUAQPjnn3/KPL/4NS1rmzdvnkz5oqIiYeHChYKzs7Ogr68veHp6Cps2barg1Xml+DMYHR0tfZ62trbCvHnzhKKiIpmymZmZwsyZMwUHBwdBT09PaNy4sfDDDz/ILKMgCGUvVyHPe6esz8GCBQuEdu3aCZaWloKRkZHg4eEhfPfddxV+roqvferUKWHy5MlCnTp1BFNTU2H06NHC8+fPS5Sv6H37+mumiG+//VaoX7++IBaLZf6mVLRcRbFr164JgwcPFurWrSsYGBgIzs7OwvDhw4XQ0FCZcp9++qng5ORU4ndCRNVP8XIVZyMdhIhHDVS6nY104HIVShIJgopmdyAioiqzceNGTJs2DXFxcTJjR+n/jRs3Djt27Ci1m2JNsH79eowfPx5XrlypcCKs6i4vLw8uLi747LPP8OGHH2o6HCKqpIyMDFhYWOBUZH2Ymql2ZFtWpgRdmycgPT29xKzLVD6OMSQiqoZGjx4NJyenMiduIapJ1q1bBz09Pbz77ruaDoWIqMbiGEMiompILBYjMjJS02EQVYl3332XSSFRDVQEMYpU3E5V+mJcJA8mhkREREREVOUENUw+I3DyGaVxjCEREREREVWZ4jGGoTedYKLiMYbZmRL4e8VxjKES2GJIRERERERVjgvcaxdOPkNERERERFTLscWQapxnz54hNDQUBw8eRExMjKbDIVK5nMIC5BX9//D6139+ncFrC8Ab6OjAWFdP7bERVVcNGzZEcHAw/P39YW1trelwiGqFIkGMIkHFk89wkJzSmBhStVdYWIizZ8/i8OHDOHDgAG7fvg1bW1vY2NjAwsJC0+FRLXS7vp2mQ6hxmiUkazoEquEiIiJw9OhRpKSkoFmzZujTpw969eoFPz8/6OrydomIaj5OPkPVUnZ2No4ePYodO3Zg//79AID69evDzs4O9evXh7GxsYYjJG13zNNd0yFQLRF4K0rTIZACcnJykJCQgOTkZCQkJAAA+vbti6FDh6Jnz54wMTHRcIRE1V/x5DMHbjSEiZlOxScoIDuzCH1aPOTkM0pgYkjVRmpqKkJCQrBt2zb8+++/sLCwQP369eHs7AwbGxuIRBxsXJMwcSPSvNqe1AqCgCdPnuDRo0dISEhAeno6evTogeHDh2PgwIGoU6eOpkMkqpaYGGonJoak1bKysrB3715s2LABoaGhsLW1hYODA1xcXGBpaclkUIOYuBGRtlNlYisIAtLS0hAbG4vExEQ8efIE/v7+GDNmDPr37w9TU1OVXYuopitODPfecFNLYti/RTQTQyUwMSStk5ubi4MHD2Ljxo04dOgQ6tSpA0dHR7i5ufEDriAmb0REyisvsUxPT0d0dDQeP36M1NRU9O7dG2PGjEFwcDAMDQ2rMEqi6qc4Mdx9vbFaEsNB3veZGCqBiSFpBUEQcP78efz555/4559/YGRkBCcnJzRs2BBWVlaaDk+tmLwREWm/8pLEFy9eIDo6GvHx8Xj58iVGjBiBCRMmoGPHjuzZQlQKJobaiYkhadSjR4+wYcMGrF27Fs+ePUPDhg3RqFEj1KtXTyv/mTKJIyKq3cpLEIvHJEZHR+Phw4eoV68e3nnnHYwdOxZOTk5VGCWRditODHded1dLYjjEO4qJoRKYGFKVy8nJwY4dO/D777/j4sWLcHZ2hqurK5ycnLRmSnAmgEREVJHyksTCwkLExcXh4cOHiIuLQ4cOHTBp0iQMHTqUM2dTrcfEUDsxMaQqc+PGDaxevRqbNm2CiYkJXF1d0ahRI43+g2QCSERElVXRJDc5OTl48OABYmJikJ2djTFjxuDdd99FixYtqihCIu1SnBhuv+4BYxUnhjmZRRjmfZeJoRKYGJJaZWdn459//sEvv/yCW7duwc3NDe7u7lW+vAQTQCIiqgrydDWNiopCdHQ0PD09MX36dIwYMYLrI1KtwsRQOzExJLWIiIjAqlWr8Pfff8Pc3Bxubm5o1KgRDAwM1HpdJoBERKQNKmpFzMvLw4MHDxAdHY2MjAyMHj0aU6dORcuWLasmQCINKk4Mt0Y0U0tiOLLlbSaGSmBiSCqTn5+PXbt2YenSpbhx44a0dVAdE8kwASQiouqgogRREAQ8ffpU2oro7e2NWbNmYfDgwdDT06uiKImqFhND7STWdABU/SUlJWHevHmoX78+pk+fDh0dHYwcORJ+fn6V7jJ6zNO91I2IiKg6qOj/lkgkgo2NDfz8/DBy5EiIxWJMmzYNDg4OmDdvHpKTk6swWqKqJYFYLZsiTp8+jX79+sHBwQEikQghISEyxwVBwFdffQV7e3sYGRkhICAA9+/fL7dOFxcXiESiEtu0adOkZbp161bi+LvvvqtQ7KqmHVNAUrUjCAIuXLiApUuXYs+ePXByckKbNm3g6OhY6USQiIiopnn9/1tZrYgGBgZo0aIFvLy8EB8fj02bNmHhwoUYOHAgZs6cCV9fX61cyolIWUWCCEWCat/TitaXnZ0Nb29vTJgwAYMHDy5xfMmSJfj555/x119/wdXVFV9++SWCgoJw+/ZtGBoallrnlStXUFRUJH0cGRmJwMBADBs2TKbcpEmT8M0330gfa3rGYiaGpJDCwkLs3LkTCxcuxP379+Hu7o4hQ4bAwsJC6TqZDBIRUW1S/H+vrARRJBLByckJTk5OSE9Px927dxEQEIDGjRvj888/x5AhQ7RmeScibZWRkSHz2MDAoNS5LoKDgxEcHFxqHYIgYPny5Zg7dy4GDBgAANiwYQNsbW0REhKCkSNHlnpevXr1ZB5///33cHNzQ9euXWX2Gxsbw87OTu7npG7sSkpyycrKwvLly+Hs7IypU6fC1NQUI0eORPv27RVOCtktlIiIqOJupgBgYWGB9u3bY+TIkTA1NcXUqVPh4uKCFStWICsrq4oiJVKPIojVsgGAo6MjLCwspNuiRYsUji8mJgbJyckICAiQ7iv+TF64cEGuOvLz87Fp0yZMmDChRIv/33//DWtrazRv3hxz5sxBTk6OwjGqEr9uonIlJSVhxYoVWLVqFczNzdGsWTO4uLhALFbsOwUmgERERKWrqAURAPT09NC8eXM0a9YMsbGx+OGHH/Dll19i6tSp+PDDD2Fvb19V4RJVC/Hx8TKTzygzM37xGF9bW1uZ/ba2tnKP/w0JCUFaWhrGjRsns/+tt96Cs7MzHBwccOPGDXz66ae4d+8edu3apXCcqsLEkEp17949fPfdd9i6dSucnJzQrVs32NnZKTS2gckgERGR/ORJEMViMRo2bAhXV1ckJydjx44dWLp0KUaOHIkvvvgCTZo0qapwiSpNIoghEVTbgVHyvwUXzM3NtWJW0j/++APBwcFwcHCQ2T958mTpz15eXrC3t4e/vz+io6Ph5uZW1WECYGJIb7h37x7mzZuHXbt2oXHjxhg0aBAsLS3lOpeJIBERUeXJkyCKRCLY29vD3t4eqampCA8Ph5eXF4YMGYL58+czQSRSgeLxfykpKTKt8ikpKXKtOfro0SMcP35crlbA9u3bAwAePHigscSQYwwJAHD37l2MHDkSXl5eiIyMxNChQ+Hn51dhUsixgkREROoh7//XOnXqwM/PD0OGDMHNmzfh5eWFkSNH4t69e1UQJZHy1DnGUBVcXV1hZ2eH0NBQ6b6MjAxcunQJvr6+FZ6/bt062NjYoE+fPhWWjYiIAACNdgtni2Etd/fuXcybNw+7d++Gu7s7hg4dCjMzszLLMwEkIiKqWvK0IAKvus516tQJLVq0wI0bN+Dl5YXBgwdj/vz58PDwqIpQiaqdrKwsPHjwQPo4JiYGERERsLKygpOTE2bMmIEFCxagcePG0uUqHBwcMHDgQOk5/v7+GDRoEKZPny7dJ5FIsG7dOowdO7bELMLR0dHYvHkzevfujbp16+LGjRuYOXMmunTpghYtWqj9OZeFiWEt9ejRI8yZMwc7duxgQkhERFQNyJsgmpmZySSILVq0wNChQ/H999/DycmpKkIlkosEiq87KE+diggLC0P37t2lj2fNmgUAGDt2LNavX49PPvkE2dnZmDx5MtLS0uDn54fDhw/LrGEYHR2NZ8+eydR7/PhxxMXFYcKECSWuqa+vj+PHj2P58uXIzs6Go6MjhgwZgrlz5yoYvWqJBOF/IzSpVkhLS8O3336LlStXomHDhmjZsiUTQiIiomqmouTwdZmZmbh27RpiYmIwffp0zJ07V+75A4jUISMjAxYWFlh9tS2MTFXbTvUyqxDvtb6C9PR0rZh8pjphYlhL5OfnY+XKlZg/fz6srKzQunVrWFtbl1qWySAREVH1oEiC+OzZM4SHhyMtLQ3z58/H1KlToa+vr8boiErHxFA7MTGs4QRBwPbt2/Hxxx8jPz8frVq1gqOjY6nLTjAhJCIiqp7kTRAFQUB8fDyuXr0KAwMD/Pjjjxg2bJhCy1ERVVZxYvhLeHu1JIbTfS4xMVQCE8MaLCIiAlOmTMHdu3fRsmVLuLu7l1iYnskgERFRzaBI66FEIkFUVBQiIiLg4eGB3377Dd7e3mqMjuj/MTHUTlyuogZKTU3Fe++9h/bt26OgoABDhgyBh4eHTFLIJSaIiIhqFkX+t4vFYnh4eGDIkCEoKChAu3btMHXqVKSlpak3SKLXSCBSy0bKYYthDVI8Le7s2bNhYWGBdu3ayQwuZyJIRERUeyjSgpiWlobLly8jPT0dP/zwA8aPH1+ilxGRqhS3GP4c3kEtLYYf+Fxki6ESmBjWEOHh4Zg8eTJiYmLQpk0buLi4SMcLMCEkIiKqnRRJDgVBQGxsLMLCwtCwYUP8+uuv8PHxUWN0VFsVJ4bLwjqqJTGc2eY8E0Ml8Kugai4rKwsffPABOnbsCAAYNGgQXF1dIRKJ2F2UiIiollPkXkAkEsHV1RWDBg2CIAjo2LEjPvjgA2RlZak5SiLSBmwxrMYOHDiAiRMnQk9PD76+vtJuo0wGiYiI6E2KtB4Cr+YsuHjxIgoLC/H777+jT58+aoqMapviFsMfw/zU0mL4cZuzbDFUAlsMq6Hk5GQMGTIEw4cPh7u7O3r16gVLS0u2EBIREVGZFL1PqFOnDnr16oVGjRph+PDhGDJkCJKTk9UYIdU2EkGklo2Uw8SwGpFIJPjtt9/g7u6OyMhIDB48GB4eHjjevAkTQiIiIpKLIvcMIpEITZs2xeDBgxEZGQl3d3f89ttvYIczopqHXUmridjYWLz99tu4efMmOnToACcnJyaDREREVCmKdi+Ni4vDxYsX4eXlhQ0bNsDFxUU9gVGNVtyV9PsrXWGo4q6kuVmF+KztKXYlVQJbDLWcRCLBqlWr0KxZM7x48QIDBw7EveAAJoVERERUaYreTzg5OWHgwIF48eIFPD09sXr1akgkEjVFR0RViS2GWiwmJgZvv/02bt26BV9fX9wJ6qHpkIiIiKiGUrT18PHjx7hw4QKaN2/O1kNSSHGL4cLL3dXSYvh5uxNsMVQCWwy1kEQiwcqVK+Hp6Ym0tDSYf/YRk0IiIiJSK0VbDxs0aIABAwbgxYsXaNasGVatWsXWQ6JqjImhlklISIC/vz++/PJLWIwfg+xJ4yA2NNR0WERERFQLKJoc6uvro1OnTujevTvmzp0Lf39/JCQkqCk6qmmKIFLLRsphYqhFNm/ejKZNmyIlJQXmn30EoyYcR0hERERVS5nlr4pbD1NSUtC0aVNs2bJFTdERkbowMdQCL168wLBhwzBlyhR06NABnTt3RlB0nMJ9/YmIiIhURZnWw86dO6NDhw6YNGkShg0bhtTUVDVFRzWBRBCrZSPlqHa0Jyns6NGjGDNmDExNTTFw4EAYGxvLHC8tOeSMpERERFQVjnm6K/xFtaurK2xtbXH+/Hl4eHhg06ZNCAwMVFOERKQqTKk1JC8vDx988AEGDBiAJk2awN/fv0RSWJbAW1HSjYiIiEidlOlaamxsDH9/fzRp0gT9+/fHBx98gLy8PDVFSNVVEdQxzpCUxRZDDbhz5w6GDh2K1NRU9O/fH5aWlgrXwVZDIiIiqkqKth6KRCI0bdoU9vb22LFjB0JDQ7Fjxw40bdpUjVFSdaKOrp/sSqo8vnJVSBAE/Prrr2jdujUMDAzQu3dvJoVERERUbShzD2JpaYnevXvDwMAArVu3xm+//QYuo02kfdhiWEWeP3+OcePG4fTp0/D390f9+vUVroMJIREREWla8f2IIq2HOjo6aNu2Lezt7TF79mzs378f69evh5WVlbrCpGqgSBCjSMUtfKqurzbhK1cFzp49i+bNm+POnTsYOHCgwkmhMn37iYiIiNRJmXuTBg0aYODAgbh9+zY8PT1x9uxZNURGRMpgYqhGEokE3333HQICAtCwYUP06NEDhgosVs+EkIiIiLSZMvcphoaG6NGjBxo2bIiAgAAsXLgQEolEDdGRthMggkTFm8AF7pXGrqRq8uTJE4waNQoRERHo3bs36tWrJ/e5TAaJiIioulD6vqV5E9Tt2A4//fQT/v33X2zZskWh+yUiUi22GKrBqVOn0Lx5c8THx6N///5y/5FjCyERERHVJgaODWD2yUzExcWhefPmOH36tKZDoipUPMZQ1Rsph6+cCkkkEnz77bcICgqCu7s7unXrBn19/QrPY0JIREREtZXYyAgF0yajcePG6NmzJxYsWMCupUQawK6kKpKamopRo0bhypUr6NOnD6ytrSs8h8kgERER0as1DxOHD0IfW1ssW7YM586dw5YtW5Ra1ouqD4kggkRQ7ZhAVddXmzAxVIGIiAj0798fenp66NevHwwMDMotz4SQiIiIqKRrXTuin5kZTp8+jRYtWmDfvn3w9vbWdFikJkUQo0jFHRhVXV9twleuktavXw9fX1/Y2dnB39+fSSERERFRJZxu7YWAgADY2dmhQ4cO+OuvvzQdElGtwBZDJeXl5eH999/H5s2b0b17dzg6OpZbngkhERERkXyON28CNG+C7oetMW3aNJw7dw7//e9/K/wCnqoXdiXVLkwMlZCcnIx+/fohISEB/fv3h5mZWZllmRASERERKeduL3/0t7TE/v37ERERgb1798LOzk7TYRHVSOxKqqCwsDC0bNkSWVlZCA4OZlJIREREpEYXO/ggODgYGRkZaNWqFcLCwjQdEqmIBGK1bKQcvnIK2LhxIzp37gxXV1d07twZurqlN7hy+QkiIiIi1Tnh3QxdunSBs7MzOnfujE2bNmk6JKIah11J5VBUVITZs2fj119/LXc8IZNBIiIiIvUQiUTw9vaGlZUVpkyZgmvXrmHJkiXQ0dHRdGikpCJBhCIVjwlUdX21CVsMK5CRkYFevXph06ZN6Nu3b6lJIVsIiYiIiNSr+F7L0dERffv2xcaNG9GrVy9kZGRoODKimoGJYTni4uLQvn17PHjwAH369Cl1kVUmhERERERVo/i+y9LSEn369MGDBw/Qvn17xMXFaTgyUkbxrKSq3kg5TAzLcPnyZbRu3Rq6uroICAiAvr6+zHG2EhIRERFVveL7L319fQQEBEBXVxetW7fGlStXNBwZKUoQxJCoeBMEpjfK4itXiu3bt6Nr165wd3eHr68vxGLZl4kJIREREZHmFN+LicVi+Pr6wt3dHV26dMGOHTs0HBlR9cXJZ14jCAK+//57fPPNN+jatSucnZ1ljjMhJCIiItIOxzzdEXgrCiKRCF5eXjAzM8OYMWPw4MEDfPrppxCJ2KVQ2xVBhCKoePIZFddXmzAx/J+ioiK8//77+Pvvv9G7d29YW1vLHGdSSERERKRdipNDAHBxcYGpqSkWLVqE+Ph4/Pzzz5yxlEgBTAwB5ObmYtSoUTh79iz69Okjs2g9E0IiIiIi7fV6cmhtbY3evXtj27ZtSEpKwubNm2FoaKjhCKksEgEqnyxGIqi0ulql1o8xTEtLg7+/P65cuYLevXszKSQiIiKqZl6/ZzM3N0fv3r1x+fJlBAQEID09XYOREVUftToxTEhIgK+vL5KTk9GzZ0/pN0qccZSIiIioenn93s3Q0BA9e/ZEYmIifH19kZiYqMHIqCyqnpG0eCPl1NpX7uHDh2jfvj3EYjF69OgBPT09AGwlJCIiIqquXr+P09PTg7+/P0QiEdq1a4eYmBgNRkak/WplYnj37l34+vrC2toanTp1glgsZishERERUQ3w+v2cWCxGp06dULduXfj6+uLevXsajIzeJIFILRspp9Ylhjdu3ECnTp3QoEEDtGvXDiKRiAkhERERUQ0lEonQvn171K9fHx07dsTNmzc1HRL9T5EgUsumiNOnT6Nfv35wcHCASCRCSEiIzHFBEPDVV1/B3t4eRkZGCAgIwP3798utc/78+RCJRDKbh4eHTJnc3FxMmzYNdevWhampKYYMGYKUlBSFYle1WpUYhoWFoXPnznBzc0ObNm2YFBIRERHVQG/e34lEIrRp0wZubm7w8/NDeHi4hiIjbZOdnQ1vb2+sXLmy1ONLlizBzz//jDVr1uDSpUswMTFBUFAQcnNzy63X09MTSUlJ0u3s2bMyx2fOnIl9+/Zh+/btOHXqFBITEzF48GCVPS9l1JrlKi5cuICePXvCy8sLXl5eTAiJiIiIarDXl7Eo1qpVK+jq6qJbt244evQofH19NRQdAVDLZDGK1hccHIzg4OBSjwmCgOXLl2Pu3LkYMGAAAGDDhg2wtbVFSEgIRo4cWWa9urq6sLOzK/VYeno6/vjjD2zevBk9evQAAKxbtw5NmzbFxYsX0aFDB4Weg6rUihbD8PBw9OzZE97e3kwKiYiIiGqJ0u75vLy84O3tjZ49e7LlsAbLyMiQ2fLy8hSuIyYmBsnJyQgICJDus7CwQPv27XHhwoVyz71//z4cHBzQsGFDjB49GnFxcdJj4eHhKCgokKnXw8MDTk5OFdarTjU+Mbxx4wZ69OgBLy8veHp6MikkIiIiqkVKu/fz9PSEl5cXevTowTGHGiSBCBJBxdv/Jp9xdHSEhYWFdFu0aJHC8SUnJwMAbG1tZfbb2tpKj5Wmffv2WL9+PQ4fPozVq1cjJiYGnTt3RmZmprRefX19WFpaKlSvutXorqR3795Ft27d0KRJEySPHALNvcxEREREpE28vLxQWFiIbt264dy5cyUmB6HqLT4+Hubm5tLHBgYGVXbt17umtmjRAu3bt4ezszO2bduGd955p8riUFSNbTGMjo5G165d4erqimf/GaHpcIiIiIhIQ8rqMdaqVSu4uLiga9euiI6OruKoSFDDUhXC/1oMzc3NZTZlEsPiMYJvzhaakpJS5vjB0lhaWsLd3R0PHjyQ1pufn4+0tLRK1atqNTIxTExMRJcuXWBvbw8fH58SA4+JiIiIqHYpKzn08fGBvb09unbtisTExCqOirSZq6sr7OzsEBoaKt2XkZGBS5cuKTRxUVZWFqKjo2Fvbw/g1XtOT09Ppt579+4hLi5OoxMi1biupGlpafD394elpaV0nUIApSaHHG9IREREVHuUNlOpSCRCu3btcPbsWQQEBODChQuwsLDQUIS1S/G4QFXXqYisrCxpSx7wasKZiIgIWFlZwcnJCTNmzMCCBQvQuHFjuLq64ssvv4SDgwMGDhwoPcff3x+DBg3C9OnTAQAff/wx+vXrB2dnZyQmJmLevHnQ0dHBqFGjALyawOadd97BrFmzYGVlBXNzc7z//vvw9fXV2IykQA1LDHNzc9G7d2/k5+ejR48e0qSwLIG3opgcEhEREdVyIpEInTp1QmhoKHr37o3Q0FAYGhpqOqwaTxuWqwgLC0P37t2lj2fNmgUAGDt2LNavX49PPvkE2dnZmDx5MtLS0uDn54fDhw/LvD+io6Px7Nkz6ePHjx9j1KhReP78OerVqwc/Pz9cvHgR9erVk5ZZtmwZxGIxhgwZgry8PAQFBWHVqlXKPm2VEAmCIGg0AhUpKirCwIEDce3aNQQFBUFXt/yclwkhERERUe1U1jCjgoICHD16FK1bt8bu3buho6NTxZHVDhkZGbCwsMCgY+OhZ6Kv0roLsvOxO3Ad0tPTZSafoYrViDGGgiDg3XffxaVLl+Dv78+kkIiIiIjKVNa9oJ6eHvz9/XHx4kW89957qCHtJ1pL5UtVqKFram1SIxLDRYsWYfv27QgMDKyw2Z9JIRERERGVdU9oaGiIwMBAbNu2Dd9//30VR0WkOdU+MdyyZQu+/fZb+Pv7w9TUtNyyTAqJiIiIqCKmpqbw9/fHN998g61bt2o6nBpL1UtVFG+knGo9+czZs2cxYcIEdOvWDdbW1mWWY0JIRERERG8q6x4x8FYUrK2t0a1bN4wfPx4NGjSAn59fFUdHVLWqbWIYFRWFPn36oG3btnByciqzHJNCIiIiIlKE9P7R0x0m5iYI6t0bEeHhaNy4sWYDq2G0YbkK+n/Vsivp8+fPERgYCDc3NzRt2rTMckwKiYiIiKgyzDv5Qq+tD7r26IHnz59rOhwital2iWF+fj4GDBgAfX19tGnTpsxyTAqJiIiISBXq9OuNzDqW6NW3LwoKCjQdTo3BWUm1S7VKDAVBwNSpUxEdHY3OnTuXuYA9k0IiIiIiUhWRWIy6Y0bhVtwjTJoyhctYqAgTQ+1SrRLDn3/+Gdu2bUOPHj2gp6dXahkmhURERESkamIDA1hPmoAtO3bgv//9r6bDIVK5apMYHj58GJ9++il69OhR4bIURERERESqpmtVB3XfGYuPZs/GkSNHNB1OtccWQ+1SLRLD6OhoDB8+HB07doStrW2Z5dhaSERERETqZOjqAsvhQzBoyBA8fPhQ0+EQqYzWJ4Y5OTno378/XF1dy50imEkhEREREVUFs7Y+0G/dEj1790ZOTo6mw6m2BKh+kXuO/lSeVieGgiBg4sSJyMjIQNu2bcssx6SQiIiIiKpSnYH9kJSXi3HvvMPJaKhG0OrEcNWqVdi/fz+6du0KHR0dTYdDRERERAQAEOnqou6Et7H7wAGsXr1a0+FUSxxjqF20NjG8fPkyPvroI3Tr1g0mJiZllmNrIRERERFpgq6FBazH/QcfzpyJy5cvazocokrRysQwIyMDQ4cORcuWLWFvb19mOSaFRERERKRJRo3cYNYzAP0HD0ZmZqamw6lW2GKoXbQyMXzvvfcgFovRokWLMsswKSQiIiIibWDh3w1ZRoaYOGWKpkOpVpgYahetSwy3bNmCPXv2wM/PDyIRf7FEREREpN1EYjGsxryF3Xv2YOvWrZoOh0gpWpUYPnr0CJMnT0anTp04rpCIiIiIqg1dSwvUGTkM4ydOxKNHjzQdTrXAFkPtojWJoUQiwahRo+Di4gIXF5cyyzEpJCIiIiJtZOLtBf0WzTFkxAhIJBJNh0OkEK1JDFetWoV79+6Vu14hEREREZE2qzOoPyLvR3EJCzkIgkgtGylHKxLD2NhYfPLJJ/D19YWenl6Z5dhaSERERETaTGxggDojh2PWxx8jNjZW0+EQyU3jiaEgCBg3bhwaNmyI+vXrl1mOSSERERERVQdGTRrDoJU33nr7bQiCoOlwtJYEIrVspByNJ4Zr167F9evX2YWUiIiIiGoMqwF9cfXmDaxdu1bToRDJRaOJYUpKCmbNmoUOHTpAX1+/zHJsLSQiIiKi6kRsZATL4UPx4cyZSElJ0XQ4WomzkmoXjSaGM2fOhIODA5ycnDQZBhERERGRyhl7NoWumyumf/ihpkPRSpx8RrtoLDE8deoUdu/ejTZt2pRbjq2FRERERFRdWQ4eiJCQEJw6dUrToRCVSyOJYX5+PiZNmoSWLVvC1NS0zHJMComIiIioOtOtYwnzoAC8PWECCgoKNB2OVmFXUu2ikcRw+fLlyMjIQPPmzTVxeSIiIiKiKmPerQue5mRj2bJlmg6FqExVnhimpKTg66+/Rtu2bSEWl315thYSERERUU0g0tGBxdBB+Gr+fDx58kTT4WgNjjHULlWeGM6dOxcODg5wcHCo6ksTEREREWmEUeNG0HNriE/nzNF0KESlqtLE8ObNm9iwYQN8fHzKLcfWQiIiIiKqaSwH9MXGjRsRGRmp6VC0gqCG8YW1qcUwLi4OZ86cwZEjR3D16lXk5eVVqj5dFcVVIUEQ8MEHH6Bp06awsLCoqssSEREREWkFPZt6MOnYAe9Om4aznKWUlBAbG4vVq1dj69atePz4MQRBkB7T19dH586dMXnyZAwZMqTcYXulqbIWw6NHj+LKlSto2bJlueXYWkhERERENZVlr0BcDgvD0aNHNR2KxgkABEHFm6aflBp98MEH8Pb2RkxMDBYsWIDbt28jPT0d+fn5SE5OxsGDB+Hn54evvvoKLVq0wJUrVxSqv0paDAVBwCeffILmzZvDwMCgKi5JRERERKR1dIyNYRrQHR9+9BFu37gBkaj2dH2kyjExMcHDhw9Rt27dEsdsbGzQo0cP9OjRA/PmzcPhw4cRHx+Ptm3byl1/lbQY7tu3D7GxsfD09Cy3HFsLiYiIiKimM/friIePYrF//35Nh6JREojUstVUixYtKjUpLE2vXr0wePBghepXe2IokUjw6aefwtPTE7q6VTakkYiIiIhIK4kNDGAa0AMzZn8MiUSi6XA0hstVaBe1Z2o7d+5EUlISOnbsWG45thYSERERUW1h1skXCf+ewq5duzB06FBNh0PV0I4dO7Bt2zbExcUhPz9f5tjVq1cVrk+tLYaCIOCrr75C8+bN2VpIRERERPQ/Yj09mAb2wCeffy4zs2RtouqlKoq32uDnn3/G+PHjYWtri2vXrqFdu3aoW7cuHj58iODgYKXqVGtiePToUSQkJKBJkybllmNrIRERERHVNqbt2+FxUiKOHTum6VComlm1ahV+++03/Pe//4W+vj4++eQTHDt2DB988AHS09OVqlOtieHChQvRpEkTthYSEREREb1BrK8HE7+OmPftt5oORSNUvlTF/7baIC4uTjpUz8jICJmZmQCAMWPGYMuWLUrVqbbE8Nq1a7h06RKaNWtWbjm2FhIRERFRbWXe2Q9XLl1CRESEpkOhasTOzg4vXrwAADg5OeHixYsAgJiYGKW7JqstMVy8eDHc3d1haGiorksQEREREVVrOqYmMG7fBt98952mQ6lynJVUeT169MDevXsBAOPHj8fMmTMRGBiIESNGYNCgQUrVKRLUMNr1yZMnaNCgAQYPHgwLC4syy7G1kIiIiIhqu4InT5G0+CckJSaiXr16mg5H7TIyMmBhYYFmWz+BjrGBSusuysnD7ZFLkJ6eDnNzc5XWrU0kEgkkEol0yN7WrVtx/vx5NG7cGFOmTIG+vr7Cdapl8N/69etRv379cpNCIiIiIiIC9GzqwdDFGevXr8fs2bM1HU6VUUcLX21oMbx48SL27duH/Px8+Pv7o1evXhg5ciRGjhxZqXpV3pVUEASsXLkSbm5uqq6aiIiIiKhGMu7UAcv++3OtWrqCy1UobseOHejUqRNWrFiBtWvXok+fPvjxxx9VUrfKE8OTJ0/ixYsXcHFxKbccu5ESEREREb1i0sILz16k4tSpU5oOhbTYokWLMGnSJKSnpyM1NRULFizAwoULVVK3yhPDVatWwc3NDTo6OqqumoiIiIioRhLp6sK4nQ9WrVql6VCqjDYsV3H69Gn069cPDg4OEIlECAkJeSNGAV999RXs7e1hZGSEgIAA3L9/v9w6Fy1ahLZt28LMzAw2NjYYOHAg7t27J1OmW7duEIlEMtu7775bYbz37t3Dxx9/LM21PvroI2RmZuLJkyeKPfFSqDQxzM7Oxv79+9GoUSNVVktEREREVOOZtG2DkL17kZ2drelQao3s7Gx4e3tj5cqVpR5fsmQJfv75Z6xZswaXLl2CiYkJgoKCkJubW2adp06dwrRp03Dx4kUcO3YMBQUF6NmzZ4nf66RJk5CUlCTdlixZUmG8OTk5MpPq6Ovrw9DQEFlZWXI+47KpdPKZ/fv3w9zcHFZWVuWWYzdSIiIiIiJZ+g720LWwwIEDBzB8+HBNh6N2r1r4VD35jGLlg4ODERwcXEZdApYvX465c+diwIABAIANGzbA1tYWISEhZU72cvjwYZnH69evh42NDcLDw9GlSxfpfmNjY9jZ2SkWMIC1a9fC1NRU+riwsBDr16+HtbW1dN8HH3ygcL0qTQw3bdoER0dHiEQ1e9AnEREREZGqiUQiGLT2xh9/ra8ViaE6ZWRkyDw2MDCAgYFiS2PExMQgOTkZAQEB0n0WFhZo3749Lly4IPcsoOnp6QBQovHs77//xqZNm2BnZ4d+/frhyy+/hLGxcbl1OTk54ffff5fZZ2dnh40bN0ofi0QizSaGGRkZOHLkiNILKhIRERER1XYmrVsh9IdlyMjIqNHr8AHqXa7C0dFRZv+8efMwf/58hepKTk4GANja2srst7W1lR6riEQiwYwZM9CpUyc0b95cuv+tt96Cs7MzHBwccOPGDXz66ae4d+8edu3aVW59sbGxCj0HRagsMTxw4ACsra1haWlZbjl2IyUiIiIiKp2+rQ10rOvi4MGDlV6XrjaLj4+XSawVbS1UlWnTpiEyMhJnz56V2T958mTpz15eXrC3t4e/vz+io6M1tuyfyiafCQkJgb29vaqqIyIiIiKqlYyaNcXON2bHrIkENW0AYG5uLrMpkxgWj/9LSUmR2Z+SkiLX2MDp06dj//79OHHiBBo0aFBu2fbt2wMAHjx4UGaZrVu3VnjNYvHx8Th37pzc5QEVJYaFhYU4dOhQiSZbIiIiIiJSjFEzDxw+cgQSiUTToahVcVdSVW+q4urqCjs7O4SGhkr3ZWRk4NKlS/D19S3neQmYPn06du/ejX///Reurq4VXisiIgIAym1oW716NZo2bYolS5bgzp07JY6np6fj4MGDeOutt9C6dWs8f/68wuu+TiVdSS9cuAAAqFevXrnl2I2UiIiIiKh8hq4ueJabi+vXr6NVq1aaDqdGy8rKkmmli4mJQUREBKysrODk5IQZM2ZgwYIFaNy4MVxdXfHll1/CwcEBAwcOlJ7j7++PQYMGYfr06QBedR/dvHkz9uzZAzMzM+l4RAsLCxgZGSE6OhqbN29G7969UbduXdy4cQMzZ85Ely5d0KJFizJjPXXqFPbu3Yv//ve/mDNnDkxMTGBrawtDQ0OkpqYiOTkZ1tbWGDduHCIjI0uMjayIShLDvXv3okGDBhCLVbosIhERERFRrSPS0YFh40Y4cOBAzU4MX+/7qco6FRAWFobu3btLH8+aNQsAMHbsWKxfvx6ffPIJsrOzMXnyZKSlpcHPzw+HDx+GoaGh9Jzo6Gg8e/ZM+nj16tUAXi1i/7p169Zh3Lhx0NfXx/Hjx7F8+XJkZ2fD0dERQ4YMwdy5cyuMt3///ujfvz+ePXuGs2fP4tGjR3j58iWsra3RqlUrtGrVSumcTCQIiq72UZKHhwcaNGhQ4UBJthgSEREREVUs4/xF2Ny9j9v/62JYk2RkZMDCwgIN//ocOsaGFZ+ggKKcXDwcuxDp6ek1flZXVat0E19ycjLu37+P+vXrqyIeIiIiIqJaz7ipB+7evIm0tDRNh6I+6hhfqOLlL2qTSieGx48fh729vUxzamnYWkhEREREJB/dOpYwtKmH48ePazoUqiUqnRgeOnSowklniIiIiIhIMfpNPbB//35Nh6E2gqCejZRTqcRQEAQcO3aM3UiJiIiIiFTMqJkH9hzYDxVMCUJUoUolhvfu3UNaWprCU6ESEREREVH5DFxdkJGWjqioKE2Hohbavo5hdVJUVISIiAikpqYqXUelEsMTJ07AwcEBurrlr3rB8YVERERERIoR6+lB39UZJ06c0HQo6lE8WYyqt1pgxowZ+OOPPwC8Sgq7du2K1q1bw9HRESdPnlSqzkolhkeOHOH4QiIiIiIiNTFs3Ah7DhzQdBikZXbs2AFvb28AwL59+xATE4O7d+9i5syZ+OKLL5SqU+nEUBAEnDp1Cg4ODspWQURERERE5TBq1Ahnz5ypkeMMOfmM8p49ewY7OzsAwMGDBzFs2DC4u7tjwoQJuHnzplJ1Kp0Y3rp1Czk5OWwxJCIiIiJSEwNnR7x8+RK3b9/WdCikRWxtbXH79m0UFRXh8OHDCAwMBADk5ORAR0dHqTqVTgz//fdfODg4VHhhji8kIiIiIlKOSFcXhi41dJyhoKatFhg/fjyGDx+O5s2bQyQSISAgAABw6dIleHh4KFWn0onh0aNHYWNjo+zpREREREQkB333RgjhOEN6zfz587F27VpMnjwZ586dg4GBAQBAR0cHn332mVJ1lj+daBkkEgnOnDmDHj16KHVRIiIiIiKSj2HjRriwdj0kEgnE4krNHalV1LG8RG1armLo0KEyj9PS0jB27Fil61PqnXXjxg3k5+fD2tpa6QsTEREREVHFDBwbID8/X+lJRajmWbx4Mf755x/p4+HDh6Nu3bpo0KABbty4oVSdSiWGZ8+ehYODQ4XfWHB8IRERERFR5Yh0dGDo7ISzZ89qOhTV4/hCpaxZswaOjo4AgGPHjuHYsWM4dOgQevXqhY8//lipOpVKDM+dOwdLS0ulLkhERERERIrRdXXGuXPnNB2GShV3JVX1VhskJydLE8P9+/dj+PDh6NmzJz755BNcuXJFqTqVSgwvXLjAiWeIiIiIiKqIgbMTTtTEFkNSSp06dRAfHw8AOHz4sHRWUkEQUFRUpFSdCieGL168wKNHj5gYEhERERFVEQNnJyTHxyM1NVXToagOl6tQ2uDBg/HWW28hMDAQz58/R3BwMADg2rVraNSokVJ1KpwYXrlyBXXr1oWhoaFSFyQiIiIiIsXomJrCsG5dXL58WdOhkBZYtmwZpk+fjmbNmuHYsWMwNTUFACQlJWHq1KlK1anwchURERGoW7duheU48QwRERERkero1bfH9evXERQUpOlQVET0v03VddZ8enp6pU4yM3PmTKXrVLjFMDw8HObm5kpfkIiIiIiIFKdT3wFXr17VdBikJTZu3Ag/Pz84ODjg0aNHAIDly5djz549StWncGIYEREBKysrpS5GRERERETK0XdwwIWwME2HoTocY6i01atXY9asWQgODkZaWpp0whlLS0ssX75cqToVSgzz8/Px8OFDJoZERERERFVM38Eej2NjkZ+fr+lQSMP++9//4vfff8cXX3wBHR0d6f42bdrg5s2bStWpUGJ479496OrqwszMTKmLERERERGRcnSt6kCkq4OoqChNh6IabDFUWkxMDFq1alViv4GBAbKzs5WqU6HEMCoqCtbW1hCJasegTiIiIiIibSESi2FoXa8GJYYi9Wy1gKurKyIiIkrsP3z4MJo2bapUnQrNSnr//n3pVKjl4YykRERERESqJ65XF/fv39d0GKRhs2bNwrRp05CbmwtBEHD58mVs2bIFixYtwtq1a5WqU6HE8Pbt2zAxMVHqQkREREREVDk6Nja4ffu2psNQCUF4tam6ztpg4sSJMDIywty5c5GTk4O33noLDg4OWLFiBUaOHKlUnQolhnfu3IGFhYVSFyIiIiIiosrRtamHcCUnF6GaZfTo0Rg9ejRycnKQlZUFGxubStWn0BjDR48eceIZIiIiIiIN0atrhdj/rVlX7XHyGZUwNjaudFIIKJAYFhYW4vnz53KNMSQiIiIiItXTsbRAzmvr1lHtlJKSgjFjxsDBwQG6urrQ0dGR2ZQhd1fSlJQUCIIAY2NjpS5ERERERESVo2tuDkEiQUpKChwcHDQdTuWoYxbRWjIr6bhx4xAXF4cvv/wS9vb2Klk1Qu7E8PHjxzA1NYVYrFDvUyIiIiIiUhGRri70zUzx+PHj6p8YktLOnj2LM2fOoGXLliqrU+7EMCEhgeMLiYiIiIg0TNfCAgkJCZoOo9JEwqtN1XXWBo6OjhBUPAWr3M1/jx8/hpGRUYXluIYhEREREZH6iC3M8fjxY02HUXmcfEZpy5cvx2effYbY2FiV1Sl3i2F8fDwMDAxUdmEiIiIiIlKcyNIS8fHxmg6DNGjEiBHIycmBm5sbjI2NoaenJ3P8xYsXCtcpd2L46NEjLm5PRERERKRhupYWeFQTlqzg5DNKW7ZsmUomnHmd3IlhXFwcE0MiIiIiIg3TsbDAvahoTYdBGjRu3Lgyj718+VKpOuUeY5icnMylKoiIiIiINEzXwgLJKcmaDqPyOMZQaR988EGp+7Ozs9G7d2+l6pQ7MUxPT4ehoaFSFyEiIiIiItUQmxgjKyNT02GQBh04cADz5s2T2ZednY1evXqhsLBQqTrl6koqCAIyMjKgr6+v1EWIiIiIiEg1xEaGeJmVBUEQVD7OrEqpo4WvlrQYHj16FJ07d0adOnUwY8YMZGZmIigoCLq6ujh06JBSdcqVGGZlZUEikXBWUiIiIiIiDRMbGUNSVITs7GyYmppqOhzSADc3Nxw+fBjdu3eHWCzGli1bYGBggAMHDig9L4xciWFaWhpEIhFbDImIiIiINExs9Gp4V1paWvVODNliWCktWrTA/v37ERgYiPbt22P//v1yrTtfFrkSw9TUVBgZGVXvpmoiIiIiohpAJBZD18gQqampaNCggabDUR6Xq1BIq1atSs3HDAwMkJiYiE6dOkn3Xb16VeH65U4MOfEMEREREZF20DE0QmpqqqbDoCo0cOBAtdYvd1dSJoZERERERNpBx9gIaWlpmg6jUkTCq03VddZUb85CqmpyLVeRmprKiWeIiIiIiLSE2IgthrXZlStXcOnSpRL7L126hLCwMKXqlDsx1NPTU+oCRERERESkWqL/jTGs1rjAvdKmTZuG+Pj4EvsTEhIwbdo0peqUKzF8+fIldHR0lLoAERERERGplkhPHy9fvtR0GKQht2/fRuvWrUvsb9WqFW7fvq1UnXIlhgUFBZyRlIiIiIhISwg6OigoKNB0GNXe6dOn0a9fPzg4OEAkEiEkJETmuCAI+Oqrr2Bvbw8jIyMEBATg/v37Fda7cuVKuLi4wNDQEO3bt8fly5dljufm5mLatGmoW7cuTE1NMWTIEKSkpMgdt4GBQanlk5KSoKsr1zQyJcidGMrjmKe7UkEQEREREZH8RDpiJoYqkJ2dDW9vb6xcubLU40uWLMHPP/+MNWvW4NKlSzAxMUFQUBByc3PLrPOff/7BrFmzMG/ePFy9ehXe3t4ICgrCkydPpGVmzpyJffv2Yfv27Th16hQSExMxePBguePu2bMn5syZg/T0dOm+tLQ0fP755wgMDJS7ntfJlU7m5+dDLJYrhyQiIiIiInXT1UV+fr6mo6gUEdQwK6mC5YODgxEcHFzqMUEQsHz5csydOxcDBgwAAGzYsAG2trYICQnByJEjSz1v6dKlmDRpEsaPHw8AWLNmDQ4cOIA///wTn332GdLT0/HHH39g8+bN6NGjBwBg3bp1aNq0KS5evIgOHTpUGPePP/6ILl26wNnZGa1atQIAREREwNbWFhs3blTwVXhFrmyvqKhIqcqJiIiIiEgNdHRQWFio6Si0VkZGhsyWl5encB0xMTFITk5GQECAdJ+FhQXat2+PCxculHpOfn4+wsPDZc4Ri8UICAiQnhMeHo6CggKZMh4eHnByciqz3jfVr18fN27cwJIlS9CsWTP4+PhgxYoVuHnzJhwdHRV+roCcLYaceIaIiIiISIsUFSk9lkxrCKJXm6rrBEokR/PmzcP8+fMVqio5ORkAYGtrK7Pf1tZWeuxNz549Q1FRUann3L17V1qvvr4+LC0t5a63NCYmJpg8ebLc5Ssi17tJX18fEolEZRclIiIiIqJKKCyEvr6+pqOoHHUsL/G/+uLj42Fubi7dXRPWZN+7dy+Cg4Ohp6eHvXv3llu2f//+CtcvV2Io7xqGgbeiOAENEREREZGaCUUSrjNeDnNzc5nEUBl2dnYAgJSUFNjb20v3p6SkoGXLlqWeY21tDR0dnRIzhqakpEjrs7OzQ35+PtLS0mRaDV8vU5qBAwciOTkZNjY2GDhwYJnlRCKRUkMB5RpjqKenB0GoJatFEhERERFpOVFRUfVPDLV8gXtXV1fY2dkhNDRUui8jIwOXLl2Cr69vqefo6+vDx8dH5hyJRILQ0FDpOT4+PtDT05Mpc+/ePcTFxZVZb3E9NjY20p/L2pSdH0auFkMjIyNOQENEREREpCWEgnwYGRlpOoxqLysrCw8ePJA+jomJQUREBKysrODk5IQZM2ZgwYIFaNy4MVxdXfHll1/CwcFBpsXO398fgwYNwvTp0wEAs2bNwtixY9GmTRu0a9cOy5cvR3Z2tnSWUgsLC7zzzjuYNWsWrKysYG5ujvfffx++vr5yzUiqLnIlhnXq1OE6KUREREREWkJ4mYs6depoOoxKEQlqWK5CwfrCwsLQvXt36eNZs2YBAMaOHYv169fjk08+QXZ2NiZPnoy0tDT4+fnh8OHDMDQ0lJ4THR2NZ8+eSR+PGDECT58+xVdffYXk5GS0bNkShw8flpmQZtmyZRCLxRgyZAjy8vIQFBSEVatWKRR7aGgoQkND8eTJkxLzwfz5558K1QUokBgqM8UrERERERGpnuTly2qfGGqDbt26lTtkTiQS4ZtvvsE333xTZpnY2NgS+6ZPny5tQSyNoaEhVq5ciZUrVyoUb7Gvv/4a33zzDdq0aQN7e3uIRJWf3VWuxNDS0hK5ubmVvhgREREREVVeUc7LEssdVDtqnJW0pluzZg3Wr1+PMWPGqKxOuSafqVOnDhNDIiIiIiItUZTLFsPaLD8/Hx07dlRpnXInhi9fvuTMpEREREREGiZIJCisAWMMtX1WUm02ceJEbN68WaV1yt2VVBAE5Ofn14jFIYmIiIiIqivJy1c9+ap7V1JtmHymOimeGAd4tVzFb7/9huPHj6NFixYlli5ZunSpwvXLlRiamppCLBYjLy+PiSERERERkQZJXuZArKMDExMTTYdCVejatWsyj1u2bAkAiIyMVEn9ciWGIpEI5ubmyM/PV8lFiYiIiIhIOZKXuTAyNVXJTJQaJYhebaqus4Y6ceKEWuuXa4wh8GohRk5AQ0RERESkWZLsHJiam2k6DNKgCRMmIDMzs8T+7OxsTJgwQak65U4M7ezskJOTo9RFiIiIiIhINQrT02Fna6fpMCqPk88o7a+//sLLly9L7H/58iU2bNigVJ1ydSUFACcnp1IXbyQiIiIioqpTlJ6OJg0bajoM0oCMjAwIggBBEJCZmQlDQ0PpsaKiIhw8eBA2NjZK1S13Yujs7Ixbt24pdREiIiIiIlKNwrR0ODfz0nQYlcZZSRVnaWkJkUgEkUgEd3f3EsdFIhG+/vprpeqWOzF0dHREXl6eUhchIiIiIiLVENLS4OjoqOkwSANOnDgBQRDQo0cP7Ny5E1ZWVtJj+vr6cHZ2hoODg1J1y50YNmjQoNR+rG8KvBWFY54ls1ciIiIiIqo8SXoGGjRooOkwKk8dYwJreIth165dAQAxMTFwcnJS6cy0cieG9evXL3XmGyIiIiIiqjqF6emoX7++psOoPDV0Ja3piWExZ2dnldcp96ykDRo0QFZWFiQSicqDICIiIiKiigmFhcjPzKoZLYakVeRODG1tbSESibhkBRERERGRhhRmZEAkFsPW1lbToVQel6vQKnInhrq6uqhbty6ysrLUGQ8REREREZWhKC0dxpaW0NHR0XQoVMPInRgCr/qycpwhEREREZFmFDx/ARc1jC/TCLYYVkphYSGOHz+OX3/9VZqjJSYmKt2QJ/fkMwDQtGlTrmVIRERERKQhhU+ewser+q9hSJXz6NEj9OrVC3FxccjLy0NgYCDMzMywePFi5OXlYc2aNQrXqVCLYbNmzZCdna3wRYiIiIiIqPKKnjxBs2bNNB2GShQvcK/qrTb48MMP0aZNG6SmpsLIyEi6f9CgQQgNDVWqToVaDBs3bixX0yTXMiQiIiIiUj3J0+do3LixpsMgDTtz5gzOnz8PfX19mf0uLi5ISEhQqk6FWgzd3d3x7NkzCEItScWJiIiIiLSEIJEg99lTuLuzAaa2k0gkKCoqKrH/8ePHMDMzU6pOhRLDJk2aoLCwkBPQEBERERFVscIXqRAKi2pOYsjJZ5TWs2dPLF++XPpYJBIhKysL8+bNQ+/evZWqU6GupPr6+mjYsCFevHgBc3NzpS5IRERERESKy09MQgMXlxLdB6n2+fHHH9GrVy80a9YMubm5eOutt3D//n1YW1tjy5YtStWpUGIIAC1btkRMTAxcXFyUuiARERERESkuPzER3du00XQYKqOOyWJqy+Qzjo6OuH79Ov755x9cv34dWVlZeOeddzB69GiZyWgUoXBi6OPjg+vXryt1MSIiIiIiUk5RQiJad/PXdBikYQUFBfDw8MD+/fsxevRojB49WiX1KjTGEHjVYvj8+fMKywXeilIqICIiIiIiKqkgIQne3t6aDkO1OL5QYXp6esjNzVV5vQonhm3btsXz58/VEgwREREREZVUlJWF3OfP0a5dO02HQlpg2rRpWLx4MQoLC1VWp8JdSa2srODs7IwnT57AyclJZYEQEREREVHp8h7Fwc7REXXq1NF0KKqjjla+WtJqeOXKFYSGhuLo0aPw8vKCiYmJzPFdu3YpXKfCiSEA+Pr6IioqiokhEREREVEVyHsUh2A/P02HQVrC0tISQ4YMUWmdSiWGnTp1wuXLl1UaCBERERERla4w5hE69Ruo6TBUirOSKm/dunUqr1PhMYYA4Ofnh8TEREgkknLLcQIaIiIiIqLKEYqKkPsoDn41rcWQC9xrFaVaDFu0aAF9fX08e/YMNjY2qo6JiIiIiIj+Jy/+MfT19eHl5aXpUEhLuLq6QiQSlXn84cOHCtepVGIoFovRuXNnJCYmMjEkIiIiIlKj3PsP4NupE8RipTr7aS12JVXejBkzZB4XFBTg2rVrOHz4MGbPnq1UnUolhgDQs2dPLFu2TNnTiYiIiIhIDvlRDzDw/Q80HQZpkQ8//LDU/StXrkRYWJhSdSr9tUOPHj2QmJiIoqKicstxnCERERERkXKEwkLkxsSie/fumg5F9TjGUOWCg4Oxc+dOpc5VOjH09PSEsbExnj59qmwVRERERERUjrxHcTAyNkazZs00HQpVAzt27ICVlZVS5yrdlVQkEqFr165ISEiAnZ2dstUQEREREVEZXt5/AL/OncudaKTa4gL3SmvVqpXMe0IQBCQnJ+Pp06dYtWqVUnUqnRgCQFBQEJYsWVKZKoiIiIiIqAy596Mx4KOPNR0GaZmBAwfKPBaLxahXrx66desGDw8PpeqsVGLYvXt3fPjhhygqKoKOjk6Z5QJvReGYp3tlLkVEREREVKtICgqQH/uoZo4vBGclrYx58+apvM5KzXnbpEkTWFpaIjk5WVXxEBERERERgLyYWJhZWMDdvYY2sHDyGaVdvXoVN2/elD7es2cPBg4ciM8//xz5+flK1VmpxFAkEiE4OBiPHz+uTDVERERERPSGl3ej0LdXr5o5vpAqZcqUKYiKerX6w8OHDzFixAgYGxtj+/bt+OSTT5Sqs9KrZPbt25cthkREREREKlZwLwrBwcGaDkN92GKotKioKLRs2RIAsH37dnTt2hWbN2/G+vXrq365imKBgYF4+vQpsrKyyi/H9QyJiIiIiORSlJWFlwmJCAgI0HQopIUEQYBEIgEAHD9+HL179wYAODo64tmzZ0rVWenE0NLSEi1btmR3UiIiIiIiFXkZdR/OjRrB1tZW06GoTfHkM6reaoM2bdpgwYIF2LhxI06dOoU+ffoAAGJiYpR+z1Q6MQReTZeamJioiqqIiIiIiGq9vFt3MXTAAE2HQVpq+fLluHr1KqZPn44vvvgCjRo1AvBqgfuOHTsqVWellqso1qdPHyxcuBASiQRisUpyTSIiIiKiWkmQSJB79y4GLFuu6VDUiwvcK61FixYys5IW++GHH8pdRrA8KsniWrZsCSMjI6SkpJRbjuMMiYiIiIjKl/coDroiMTp06KDpUEhLxcfHywzlu3z5MmbMmIENGzZAT09PqTpVkhiKxWL06tUL8fHxqqiOiIiIiKjWyrl1B0FBPaGrq5LOfVpLG8YYZmZmYsaMGXB2doaRkRE6duyIK1eulFl+3LhxEIlEJTZPT09pmfnz55c47uHhoezLVKq33noLJ06cAAAkJycjMDAQly9fxhdffIFvvvlGqTpV1u+zX79+FbYYEhERERFR+V5G3sKwwUM0HYb6acFyFRMnTsSxY8ewceNG3Lx5Ez179kRAQAASEhJKLb9ixQokJSVJt/j4eFhZWWHYsGEy5Tw9PWXKnT17VrHAKhAZGYl27doBALZt24bmzZvj/Pnz+Pvvv7F+/Xql6lRZYtinTx88e/YMaWlp5ZZjd1IiIiIiotLlJ6eg6Nlz6SyTpJyMjAyZLS8vr0SZly9fYufOnViyZAm6dOmCRo0aYf78+WjUqBFWr15dar0WFhaws7OTbmFhYUhNTcX48eNlyunq6sqUs7a2VunzKygogIGBAYBXy1X0798fAODh4YGkpCSl6lRZYmhubo6goCA8fPhQVVUSEREREdUq2Vcj4B8YAHNzc02Hon5qbDF0dHSEhYWFdFu0aFGJyxcWFqKoqAiGhoYy+42MjORu4fvjjz8QEBAAZ2dnmf3379+Hg4MDGjZsiNGjRyMuLk6u+uTl6emJNWvW4MyZMzh27Bh69eoFAEhMTETdunWVqlOlU4j+5z//QVxcHAShlkwHRERERESkIoIgIO/adbwzdpymQ6n24uPjkZ6eLt3mzJlTooyZmRl8fX3x7bffIjExEUVFRdi0aRMuXLggV6tbYmIiDh06hIkTJ8rsb9++PdavX4/Dhw9j9erViImJQefOnZGZmamy57d48WL8+uuv6NatG0aNGgVvb28AwN69e6VdTBUlElSYxWVnZ8Pa2hp9+vSpMFM95umuqssSEREREVV7eQmJePrzSqQ+ew4TExNNh6M2GRkZsLCwQLOpC6FjYFjxCQooysvF7VWfIz09Xa5W1+joaEyYMAGnT5+Gjo4OWrduDXd3d4SHh+POnTvlnrto0SL89NNPSExMhL6+fpnl0tLS4OzsjKVLl+Kdd95R+DmVpaioCBkZGahTp450X2xsLIyNjWFjY6NwfSptMTQxMUHfvn3x4MEDVVZLRERERFTjZV8Jw8B+/Wt0Uqht3NzccOrUKWRlZSE+Ph6XL19GQUEBGjZsWO55giDgzz//xJgxY8pNCgHA0tIS7u7uKs+RBEFAeHg4fv31V2lrpL6+PoyNjZWqT+Wr0U+dOhXR0dEoKipSddVERERERDWSUFiInMvhmDp1qqZDqTpaMCtpMRMTE9jb2yM1NRVHjhzBgAEDyi1/6tQpPHjwQK4WwKysLERHR8Pe3l654Erx6NEjeHl5YcCAAZg2bRqePn0K4FUX048//lipOlWeGHbr1g1WVlaIjY0ttxxnJyUiIiIieiX7xk1YW9VB165dNR1KrXLkyBEcPnwYMTExOHbsGLp37w4PDw/pLKNz5szB22+/XeK8P/74A+3bt0fz5s1LHPv4449x6tQpxMbG4vz58xg0aBB0dHQwatQolcX94Ycfok2bNkhNTYWRkZF0/6BBgxAaGqpUnSpPDEUiEaZNm4bo6GhVV01EREREVCPlnLuIme9/AJFIpOlQqow2LHCfnp6OadOmwcPDA2+//Tb8/Pxw5MgR6OnpAQCSkpJKzCianp6OnTt3ltla+PjxY4waNQpNmjTB8OHDUbduXVy8eBH16tVT6nUqzZkzZzB37twS3VhdXFzKXIOxIrqqCOxN48aNw9y5c5Geng4LCwt1XIKIiIiIqEYoePIUubGPMG7cOE2HUrUq0fWz3DoVMHz4cAwfPrzM46UtFm9hYYGcnJwyz9m6datiQShBIpGUOnTv8ePHMDMzU6pOlbcYAoCNjQ0GDx6M27dvl1uO3UmJiIiIqLZLP3Ua/QcOVGmLEtVsPXv2xPLly6WPRSIRsrKyMG/ePPTu3VupOtWSGALAZ599hqioKOTm5qrrEkRERERE1VpRVjZyLoVh3ty5mg5FM7Rg4pnq6Mcff8S5c+fQrFkz5Obm4q233pJ2I128eLFSdap0HcM3de3aFTk5OWjdunW55bimIRERERHVRqmHjsAj6yUunDmj6VCqTPE6hp5TFkJHX8XrGObn4tav8q9jWJ0VFhbin3/+wfXr15GVlYXWrVtj9OjRMpPRKEItYwyLff755xg2bBhatGgBXV21XoqIiIiIqFqR5Bcg++x5fL1zl6ZD0QhlJouRp86arqCgAB4eHti/fz9Gjx6N0aNHq6RetXUlBV71fa1fvz7u3btXbjmONSQiIiKi2ibr0mU0sHdAYGCgpkOhakRPT08tw/XUmhiKRCJ88803iIyMRGFhoTovRURERERUbUjyC5B5LBRLFi6sVUtUyNCiBe6rm2nTpmHx4sUqzbHUOsYQeDWVqqenJ+rUqQMvL69yy3KsIRERERHVBuknT8Py9l3cv30HYrFa22q0TvEYw+aT1DPGMPL3mj/GsHghe1NTU3h5ecHExETm+K5dindPVvvAP7FYjMWLF2PMmDFo2rQpxxoSERERUa0myctD1vF/sf7vzbUuKXwdxxgqz9LSEkOGDFFpnWpvMQQAQRDQqlUrGBoawtvbu9yybDUkIiIiopos7fi/sIuNx63r12tlN9LiFkOvd9TTYnjzj5rfYqgOVfIVhUgkwuLFixEZGYm8vLyquCQRERERkdYpys5BVuhJLP/xx1qZFFLlSCQSLF68GJ06dULbtm3x2Wef4eXLlyqpu8rarnv27Il27dohIiKi3HKcoZSIiIiIaqq0I8fQrm1b9OzZU9OhaFxxV1JVbzXZd999h88//xympqaoX78+VqxYgWnTpqmk7ipLDEUiEX7++WfcuXMH6enpVXVZIiIiIiKtUPDkKbLPX8SaX37RdChUTW3YsAGrVq3CkSNHEBISgn379uHvv/+GRCKpdN1VOtq1efPmePvttxEeHl5uObYaEhEREVFNk7ZnP8aMGYPmzZtrOhTtwOUqFBYXF4fevXtLHwcEBEAkEiExMbHSdVf5FKELFixAw4YNkZiYCAcHh6q+PBERERFRlXt5/wEKHsZgcei/mg6FqrHCwkIYGspO2KOnp4eCgoJK113liaGtrS3mzZuHpUuXol+/fmVO0Rt4K4ozlBIRERFRtScUFSF9x258M28ebGxsNB2O9lBHC18NbzEUBAHjxo2DgYGBdF9ubi7effddmbUMtXIdw9LMmDEDa9euRWRkJFq0aKGJEIiIiIiIqkTGydOoZ2yCmTNnajoUqubGjh1bYt9//vMfldStkcRQX18fv//+O3r16oWGDRvC1NS01HJsNSQiIiKi6qwwNQ0ZR45j99Gj0NPT03Q4WoUL3Ctu3bp1aqu7SiefeV3Xrl0xaNAghIWFlVuOE9EQERERUXWVtisEAwcORJcuXTQdClG5NJYYAsCyZcuQmJiIuLg4TYZBRERERKRyObduozA6Br+sWKHpULQTZyXVKhpNDG1tbbF06VJcvHgR+fn5ZZZjqyERERERVSeSly+Rtm0nVixbBltbW02Ho5VEgqCWjZSj0cQQACZOnAhvb29cuXJF06EQEREREanEiz374ePVAhMnTtR0KERy0XhiKBKJsH79ejx8+BAJCQlllmOrIRERERFVBy/vRSHv2nVs3rgRIpFI0+FoL3Yl1SoaTwwBwMXFBUuWLMGFCxfKXZyRySERERERaTNJXh5St27H0h9/hLOzs6bDIZKbViSGADB16lQ0adKEXUqJiIiIqNpK3b0XzRu747333tN0KFqveLkKVW+kHK1JDMViMbZs2YLY2FjExsaWWY6thkRERESkjbKv30T+jUjs2rYNYrHW3GYTyUWr3rHOzs747bffcO7cOWRnZ5dZjskhEREREWmTwrR0pG7djnVr18LJyUnT4VQPHGOoVbQqMQSAUaNGYcCAATh79iwETjdLRERERFpOkEjwYuNmDBowACNHjtR0OERK0brEEADWrFkDiUSCGzdulFmGrYZEREREpA3SQ0/CLDcXa3/9VdOhVCscY6hdtDIxNDMzw44dOxAREYGkpKQyyzE5JCIiIiJNevkgGplHj2PPzl0wMzPTdDjVC7uSahWtTAwBoF27dvjpp59w8uRJjjckIiIiIq1TmJaOp+s2YsWyZWjXrp2mwyGqFK1NDIFXS1j069cPp06dQlFRkabDISIiIiICAAiFhXi+bgOG9OvHpSmUxK6k2kWrE0ORSITff/8d5ubm5a5vyFZDIiIiIqpKqSH74GBohPV//AGRSKTpcIgqTasTQwAwNjbG3r17ERMTg/v375dZjskhEREREVWFzCvhyL8agSMHDsDIyEjT4VRfHGOoVbQ+MQQANzc3bN++HefPn0dKSkqZ5ZgcEhEREZE65cbEIm3bTuzeuRMNGzbUdDhEKlMtEkMACAoKwuLFi/Hvv/8iKytL0+EQERERUS1T+CIVz9aux08//ICgoCBNh1MjcHyh9qg2iSEAfPDBBxg+fDj+/fdfFBQUlFqGrYZEREREpGqSvDw8+/1PvDVsGN5//31Nh0OkctUqMRSJRFi9ejXc3Nxw5swZCELpXwswOSQiIiIiVREkEjzfuBnNnV3w+6+/crIZVREE9WyklGqVGAKAnp4e9uzZg/z8fISFhZVZjskhEREREalC2r6DMEtNx6F9+6Cnp6fpcGoMLlehXapdYggAdevWxbFjxxAdHY3bt2+XWY7JIRERERFVRsbZ8ygIu4pT//6LunXrajocIrXR1XQAynJ3d8eBAwcQGBgIU1NTODk5lVou8FYUjnm6V3F0RERERFQdvd6wEBcXh5MnT+L48eNo3LixBqOqodSxvARbDJVWbRNDAPDz88Off/6JCRMmoHfv3rC2ti61XPEHnAkiERERERUrr3fZs2fPcPLkSaxbtw6dOnWqwqiINKNadiV93ahRo/Dll18iNDS0wmUs2LWUiIiIiCqSlZWF48eP46uvvsLIkSM1HU6NJZKoZyPlVPvEEADmzJmDYcOG4dixY8jNzS23LJNDIiIiIirrnjA3NxfHjh3DiBEj8Nlnn1VxVESaUyMSQ5FIhDVr1qBDhw4IDQ0tc43DYoG3opggEhEREdVSZd0HFhQUIDQ0FB06dMDq1au5LIW6CWraSCk1IjEEAB0dHWzbtg1OTk44deoUJJKK25GZHBIRERHVLmXd/0kkEpw8eRLOzs7Ytm0bdHR0qjgyIs2qMYkhABgaGuLgwYPQ19fHuXPnIFSwwCUnoyEiIiIiQRBw7tw56b2koaGhpkOqFbiOoXapUYkhAFhaWiI0NBQZGRm4fPmyNDk85uleYiMiIiKi2qO01kJBEHD58mVkZGTg+PHjsLCw0EBktZQgqGdTQGZmJmbMmAFnZ2cYGRmhY8eOuHLlSpnlT548CZFIVGJLTk6WKbdy5Uq4uLjA0NAQ7du3x+XLl5V6iapSjUsMAcDBwQGnTp1CUlISwsPDmQQSERER1XJldSENDw9HUlISTp06BQcHhyqOijRt4sSJOHbsGDZu3IibN2+iZ8+eCAgIQEJCQrnn3bt3D0lJSdLNxsZGeuyff/7BrFmzMG/ePFy9ehXe3t4ICgrCkydP1P10KqVGJoYA4ObmhlOnTiE2NhbWm/7heEIiIiKiWqqs+8Br164hNjYWp06dgpubWxVHRZruSvry5Uvs3LkTS5YsQZcuXdCoUSPMnz8fjRo1wurVq8s918bGBnZ2dtJNLP7/tGrp0qWYNGkSxo8fj2bNmmHNmjUwNjbGn3/+qexLVSVqbGIIAB4eHjh58iTu3buHmzdvMjkkIiIiIgDAjRs3EBUVhZMnT8LDw0PT4ZCKZWRkyGx5eXklyhQWFqKoqKjEmFIjIyOcPXu23PpbtmwJe3t7BAYG4ty5c9L9+fn5CA8PR0BAgHSfWCxGQEAALly4UMlnpV41OjEEAC8vL/z777+4efMmbt26xeSQiIiIqBYp7d7v1q1biIyMxL///gsvLy8NREUA1LpchaOjIywsLKTbokWLSlzezMwMvr6++Pbbb5GYmIiioiJs2rQJFy5cQFJSUqkh29vbY82aNdi5cyd27twJR0dHdOvWDVevXgUAPHv2DEVFRbC1tZU5z9bWtsQ4RG2jq+kAqoKPjw+OHj2Knj17QiKRIPB/+zn2kIiIiKjmKi0pvHnzJm7evIljx46hdevWGoiKqkJ8fDzMzc2ljw0MDEott3HjRkyYMAH169eHjo4OWrdujVGjRiE8PLzU8k2aNEGTJk2kjzt27Ijo6GgsW7YMGzduVO2TqGI1vsWwmK+vL06ePIlbt27h2rVrALiOIREREVFNVdp93rVr13Dr1i2cPHkSHTp00EBU9Dp1jjE0NzeX2cpKDIvnJcnKykJ8fDwuX76MgoICNGzYUO7n0a5dOzx48AAAYG1tDR0dHaSkpMiUSUlJgZ2dnXIvVBWpNYkh8Krl8OzZs4iOjkZYWBgEQWBySERERFTDvHl/JwgCwsLC8PDhQ5w9exY+Pj4aioy0lYmJCezt7ZGamoojR45gwIABcp8bEREBe3t7AIC+vj58fHwQGhoqPS6RSBAaGgpfX1+Vx61KtaIr6eu8vLxw/vx5dO3aFUVFRWjXrp30jwe7lhIRERFVb6UlhZcuXUJKSgrOnTsn0w2QNEyJdQflqlMBR44cgSAIaNKkCR48eIDZs2fDw8MD48ePBwDMmTMHCQkJ2LBhAwBg+fLlcHV1haenJ3Jzc7F27Vr8+++/OHr0qLTOWbNmYezYsWjTpg3atWuH5cuXIzs7W1qntqp1iSHwqm/whQsX0LlzZ5w7dw4dO3aEWCxG4K0oJodERERENYREIsH58+eRnp6OCxcuwNXVVdMh0WsUXV5C3joVkZ6ejjlz5uDx48ewsrLCkCFD8N1330FPTw8AkJSUhLi4OGn5/Px8fPTRR0hISICxsTFatGiB48ePo3v37tIyI0aMwNOnT/HVV18hOTkZLVu2xOHDh0tMSKNtRIKg6jS9+khMTIS/vz/y8/PRtWtX6RuAySERERFR9fN6a2FBQQFOnjwJQ0NDHD9+nIvXa5GMjAxYWFjAN/gb6OoZVnyCAgoLcnHh0FdIT0+XmXyGKlarxhi+ycHBARcuXICdnR2OHj2K3NxcAK/+qHDsIREREVH18fq9W25uLo4cOSK912NSqKXUuFwFKa5WJ4YAYGlpidDQULRt2xYHDx5EZmam9BiTQyIiIiLt9/o9W0ZGBg4ePIj27dsjNDQUFhYWGoyMqPqo9YkhABgaGmLHjh0YNmwYDhw4gGfPnkmPsfWQiIiISHu9fp/27NkzHDx4EMOHD8eOHTvKXKKAtIM6l6sgxTEx/B8dHR2sXLkSc+bMwcGDB/Ho0SOZ40wOiYiIiLTL6/dnsbGxOHjwIObMmYNffvkFYjFvc4kUUStnJS2LSCTCZ599hkaNGmHMmDFo1aoVmjdvDpFIBABc1oKIiIhISxTflwmCgMjISFy7dg2bNm3CkCFDNBwZyU0ivNpUXScphYlhKYYOHQonJyf07t0bmZmZ6NChg8y3TkwQiYiIiDSn+F5MIpHg4sWLSE5OxunTp9G2bVsNR0ZUfbGNvQzt2rXD1atXUVhYiOPHjyM/P79EGXYvJSIiIqpaxfdf+fn5OH78OAoLCxEeHs6ksDrirKRahYlhOZycnHDp0iU0btwYBw4cQFpaWokynJyGiIiIqGoU33OlpaVh//79aNy4MS5fvgwnJycNR0bKEEENk89o+klVY0wMK2Bubo5Dhw5hzJgx2L9/P+Lj40stx+SQiIiISH2K77Xi4uKwb98+jB07FocOHYKZmZmGIyOqGTjGUA46Ojr46aef0KpVK0yaNAne3t5o0aKFdFKaYhx7SERERKR6gbeiIAgCbty4gevXr2Pt2rUYPXq0psOiyhKEV5uq6ySlMDFUwH/+8x94eHigb9++SEtLQ6dOnaCrW/IlZIJIREREpBqBt6JQWFiIc+fOIT09HWfPnoWPj4+mwyKqcdiVVEFt2rRBRESEtItpZmZmmWXZvZSIiIhIeYG3opCZmYlDhw7B3Nwc165dY1JYg3CBe+3CxFAJdnZ2OHPmDPr27Yu9e/eWOe4Q4OQ0RERERMoIvBWF+Ph47N27F/369cOZM2dgZ2en6bCIaix2JVWSgYEBfvvtN3Tq1AnvvvsuvLy80LJlyxLjDouxeykRERGRfAIi7+HqtWuIjIzEr7/+irffflvTIZE6qGN5CbYYKo0thpU0duxY6cKqoaGhyMvLK7c8WxCJiIiIytY5/AaOHz+OJ0+e4OLFi0wKiaoIE0MV8Pb2xvXr19G4cWPs27cPz549q/AcJodEREREslqdOo99+/ahSZMmuH79Ory9vTUdEqmRSBDUspFymBiqSJ06dXDw4EHMnDkTBw4cwK1btyBU8MZk6yERERERIAgC7P/ZhQMHDmDWrFk4cOAALC0tNR0WqZtETRsphWMMVUgsFmPu3Lno3Lkzhg8fjidPnqBTp07Q19cv9zyOPyQiIqLaSvLyJfTW/oUHGRk4evQounTpoumQiGolthiqQdeuXREZGQlHR0fs3bsXT58+les8tiASERFRbZIXF4/MJcvg7OyMyMhIJoW1DLuSahe2GKpJvXr1cOzYMXz//ff45ptv4OPjA09PzzJnLX0dWxCJiIioulDmS21BEHD79m2EhYVh3rx5+PTTTyEWs72CSJOYGKqRWCzG559/ji5dumDYsGFISUlBp06dYGhoKNf5TBCJiIhImymTFObm5uLcuXPIzs5GaGgoOnXqpIbIqFrgchVahV/NVAE/Pz/cunULzZo1Q0hICBISEhQ6n11MiYiISNsoc2/y+PFjhISEoFmzZrh16xaTQiItwhbDKmJlZYU9e/bg999/x4cffggPDw/4+PhAR0dH7jrYgkhERESapkxCWFRUhPDwcNy9exc///wzJk6cKNfwGqrhBOHVpuo6SSlsMaxCIpEIkydPxrVr11BQUICDBw8iLS1N4XrYgkhERESaoMz9R1paGg4ePIiCggJcu3YNkyZNYlJIpIWYGGqAh4cHwsPDMWzYMOzduxe3b9+ucM3D0jBBJCIioqqi6D1H8QQze/fuxbBhwxAeHg4PDw81RUfVkUhQz0bKYVdSDTEwMMCKFSvQt29f/Oc//0FCQgI6deoEY2Njuc5nd1IiIiKqCsp8CZ2Tk4Pz588jKysLe/fuRWBgoBoio2qPXUm1ChNDDQsMDMTdu3cxZcoU7N69Gx07doSrq6v0OBNAIiIi0hRlksKHDx/iwoUL6N27N3799VfUqVNHDZERkaoxMdQCderUwbZt27BlyxZMmTIFjx8/Rs7YtyA2MtJ0aERERFRLKZoU5ufn49KlS0hISMDatWsxcuRINUVGNYVI8mpTdZ2kHI4x1CKjRo3CnTt3YGtri4zFS/HyHscPEhERUdVSZg6Dx48fY8+ePbCzs8Pt27eZFBJVQ0wMtUz9+vURGhqKBQsWIH3dRhj/tg6S3FxNh0VERES1gDKthOfOncPJkyexYMEChIaGon79+mqKjmqc4jGGqt5IKUwMtZBYLMbUqVNx+/ZtWFlZIeP7n9D0yL+aDouIiIhqqMq0ElpZWeHWrVuYOnUql6EgqsaYGGoxFxcXnDx5Et999x1OnDgB49/Woeu1SE2HRURERDVIZVoJFy5ciFOnTsHFxUU9wVHNJqhpI6UwMdRyYrEY7733nrT1MCQkBE0OHef6hURERFRpit5PPHr0CCEhIahbty5u3bqFd999l62ERDUEZyWtJlxcXHDq1Cn8/vvv+Pjjj/Hw4UN0ysmBsbExl7QgIiIihSiaEObk5ODy5ctISkrCTz/9hIkTJzIhpEoTCQJEKh4TqOr6ahO2GFYjIpEIkydPRlRUFLy8vLBr1y7cuXMHAZH32IJIREREclHknkEQBNy5cwc7d+6El5cXoqKiMGnSJCaFRDUQWwyrITs7O+zYsQMHDhzApEmTEBsbC19fX+kferYgEhER0ZsU/RI5NTUVFy5cQFFREbZv344+ffqoKTKqtdQxiyhbDJXGFsNqrE+fPoiKisKgQYMQEhKCsLAwFBYWKjWzGBEREdVcitwXFBQUICwsDHv27MHgwYMRFRXFpJDUQwAgUfHGvFBpTAyrOVNTU6xYsQLnz58HAOzevRsPHz6EIAhMEImIiGo5Re4FBEHAw4cPsXv3bohEIly4cAErVqyAqampmqMkIm3ArqQ1hI+PD65cuYL169fj448/xoMHD9CuXTtYWlqyiykREVEtpMiXw2lpabh8+TLS09Px008/Ydy4cRCL2X5A6sXJZ7QLP/E1iFgsxoQJExAdHY3g4GCEhITgypUrKCgoAPD/3xqyFZGIiKjmUuR/fUFBAa5cuYKQkBD07t0bDx8+xIQJE5gUEtVC/NTXQHXq1MGqVatw+fJl6OvrY+fOnbh79y4kEom0DBNEIiKimkWR/+0SiQR3797Fzp07oa+vj8uXL2PlypWwtLRUb5BErxPw/xPQqGzT9JOqvtiVtAbz9vbGhQsXsGPHDnz00Ue4e/cuWrduDUdHR+k006//A2FXUyIioupJkXGE8fHxuHr1KgwNDbF27VoMHTqUy08QERPDmk4kEmHYsGEYMGAAVq1ahXnz5qFOnTrw8fGBtbW1TFmORSQiIqpeFOn98+zZM4SHhyMtLQ1ff/013nvvPejr66sxOqIKcLkKrSISBL56tUlaWhoWLFiAX375Ba6urmjVqhXMzMzKLM8kkYiISPsokhBmZmbi2rVriImJwfvvv48vvviCXUZJozIyMmBhYYEe3p9CV8dApXUXFuXh3+uLkZ6eDnNzc5XWXdNxjGEtY2lpiR9//BFRUVFo1aoVduzYgXPnziEzM7PU8hyLSEREpD0U+b+ckZGBs2fPYseOHWjVqhWioqLwww8/MCkk7aHqNQyLN1IKE8NaysnJCZs3b8aNGzfQvHlz7NixA2fPnkVGRkap5TmjKRERkWYpkhCeO3cOO3fuRIsWLXDz5k1s3rwZTk5Oao6QSDHFy1WoeiPlcIxhLefh4YGtW7fi3r17mD9/Pnbu3Al3d3d4eXmV2fzOCWuIiIiqjiIJ4Y0bN3D//n0MGTIEO3fuRJMmTdQcHRHVFGwxJABAkyZNsGXLFty8eRNeXl7YuXMnzp49i9TU1HLPY0siERGResj7/zU1NRVnz57Fzp074e3tjcjISGzZsoVJIWk/lS9VofhkNpmZmZgxYwacnZ1hZGSEjh074sqVK2WW37VrFwIDA1GvXj2Ym5vD19cXR44ckSkzf/58iEQimc3Dw0Opl6gqscWQZBQniFFRUViwYAG2bt0KJycnNG3aFPb29uVOZ/3mPy+2JhIRESlOnmRQEAQkJSXhzp07iIuLw8iRI7F79264u/N/L5EiJk6ciMjISGzcuBEODg7YtGkTAgICcPv2bdSvX79E+dOnTyMwMBALFy6EpaUl1q1bh379+uHSpUto1aqVtJynpyeOHz8ufayrq/1pF2clpXIlJSVhxYoVWLVqFczNzeHh4QFXV1eIxYo1NjNJJCIiKp88CaFEIkFMTAzu3r2LjIwMTJs2DR988AHs7e2rIEIi1SieldS/2cdqmZU09PaPcs1K+vLlS5iZmWHPnj3o06ePdL+Pjw+Cg4OxYMECua7p6emJESNG4KuvvgLwqsUwJCQEERERSj8PTdD+1JU0yt7eHt9//z3mzp2LP/74Az/88AOuXbsGDw8PNGnSBHp6enLVw9ZEIiKi0smTEBYUFODevXu4e/cujIyM8Mknn2DChAkwNTWtggiJqp83J1Q0MDCAgYFsElpYWIiioiIYGhrK7DcyMsLZs2fluo5EIkFmZiasrKxk9t+/fx8ODg4wNDSEr68vFi1apPUTQLHFkBRSWFiIXbt24bvvvsP9+/fRuHFjNG3aFBYWFkrXySSRiIhqI3kSwvT0dNy5c0f6P/eLL77A4MGDq0W3NKKySFsMm36knhbDOz+V2D9v3jzMnz+/xP6OHTtCX18fmzdvhq2tLbZs2YKxY8eiUaNGuHfvXoXXW7JkCb7//nvcvXsXNjY2AIBDhw4hKysLTZo0QVJSEr7++mskJCQgMjKy3PXDNY2JISlFEARcvHgRS5cuRUhICJycnODu7g5HR8dyxyFWhEkiERHVZPKOH4yPj0dUVBTi4uIwePBgzJgxAx06dKjU/1gibVEViWF8fLxMV9LSWgwBIDo6GhMmTMDp06eho6OD1q1bw93dHeHh4bhz506519q8eTMmTZqEPXv2ICAgoMxyaWlpcHZ2xtKlS/HOO+8o/+TUjF83kVJEIhF8fX2xfft2JCUl4ddff8XKlStx5coVNG7cGE2aNCn1w1cRdjklIqKaSJ6EMC8vD/fu3cP9+/chEokwbdo0vPvuu7Czs6uCCIk0QAJA1d91/G+Be3Nz8wrHGAKAm5sbTp06hezsbGRkZMDe3h4jRoxAw4YNyz1v69atmDhxIrZv315uUggAlpaWcHd3x4MHD+R+GprAxJAqzd7eHvPnz8cXX3yBXbt2YenSpdi6dSvc3Nzg7u6OevXqKf0NZ1n/SJkwEhFRdVBRQigIAp4+fYqoqChER0ejZcuWWLVqFQYNGiT3OH6i6kodC9IrW5+JiQlMTEyQmpqKI0eOYMmSJWWW3bJlCyZMmICtW7fKTFpTlqysLERHR2PMmDFKxVZV2JWU1CIiIgKrV6/Gpk2bYG5uDjc3NzRq1EipVkRFMGEkIiJtUFFCmJeXh/v37+Phw4fIzMzE6NGjMXXqVHh7e1dRhESaU9yVNMB9llq6kh6PWirXrKQAcOTIEQiCgCZNmuDBgweYPXs2DA0NcebMGejp6WHOnDlISEjAhg0bALzqPjp27FisWLECgwcPltZjZGQknXPj448/Rr9+/eDs7IzExETMmzcPERERuH37NurVq6fS5/t/7d1PTFzlHsbxhyIyQP9JQ2daihSmpOm1RtNGm1EXNaDUkoYFDdSFtCGYmNj2UhOjbKyJsr7tvZhoakwDC1OiC9JQITgN1ZpJbGqM1hsSilMoowy1wqBMpYVz7oI4Xi7cto5nzhx6vp/kLHjzzjvvWZFnfu8fKxEMkVJTU1Pq6OhQa2urLl26JL/fr7KyMnm9Xlv3SRAYAQB2uF0gNE1T0WhUAwMDGhwc1NatW3Xw4EHV1tYqLy/PxlkC6ZUIhmVHUhMMB/5x18Gwo6NDzc3NGhkZUX5+vmpqatTS0pIIeQcOHNCVK1fU19cnSdq5c6fOnTu3YJz9+/fr5MmTkqR9+/bps88+0/Xr11VQUKCnnnpKLS0t8vv9lr1nKhAMYZtvvvlG7777rtrb25Wbm6uSkhKVlZUpNzc3bXMiMAIA/qo7VQfj8bgGBgYUDocVj8dVX1+vl156SQ8//LBNMwScxUnBEH8gGMJ28XhcH3/8sU6cOKFQKKQHH3xQJSUlKi4udszx2wRGAMCd3C4QzszMaGhoSOFwWMPDwwoEAnrxxRdVU1OT1h9EASdIBEN/U2qC4eAxgmESCIZIq+HhYbW1tenEiRP66aefVFpaKr/fr7Vr1zrySG4CIwC4252Wio6Njeny5csKh8MqKChQY2Oj6uvrHX+xNWAngqEzEQzhCKZpKhQK6YMPPtCpU6fk8XhUVFQkv9+v/Pz8dE8vpQibAOB8twuEP//8swYHBzU8PKzp6WnV1dWpoaFBgUDAkT9yAumWCIalf09NMPz+OMEwCQRDOM5vv/2mTz75RO3t7Tpz5oxWr16dCIm/bwTG3SF0AkDybhcGY7GYBgcHdfXqVU1MTKiqqkovvPCCdu3aJY/HY+MsgaWHYOhMBEM42q+//qrTp0+rra1NwWBQBQUFKiws1MaNG7V69Wp+iU0jQicAp7ubS+XvlmmampiY0JUrVxSJRHTt2jWVl5ervr5ee/bs0fLlyy37LuBe90cwPKz7llkcDI1pffr9PwmGSSAYYskYHx9XZ2enOjo6FAwGtWrVKq1fv17FxcW2X3+B1CN4AulnZbBain6/XmJoaEg//PCDYrGYysvLVVtbq+rqaj3wwAPpniKwJCWCYcmh1ATD8L8IhkkgGGJJmpqaUm9vrz766COdPn1akrR+/Xr5fD5t2LCBE99wRwRP2MXt4WqpicfjGhkZUTQaVSQSkSTt2bNHe/fu1TPPPMN9g4AFCIbORDDEkjczM6MvvvhC3d3d6urq0nfffae1a9fK6/UqLy/PMVdgwF3+XehL9xTuKX+LjKZ7CrjHxWIxRaNRjY2N6aGHHlJVVZV27dqlJ598kv8jgMUSwbD4YGqC4VArwTAJBEPcc65fv65gMKizZ8+qv79fhmGke0qApeIztzQ9Ozuv7X//zs7MXPB37n1ZKZ8bsFSVlpZq9+7dKi8v15o1a9I9HeCeRjB0Jn4Cwz1nzZo1qq2tVW1tbbqnAgAAgP/HNOYeq8dEUpalewIAAAAAgPSiYggAAADAfqY591g9JpJCxRAAAAAAXI6KIQAAAAD7GaYkiyt8BhXDZBEMAQAAANiPpaSOwlJSAAAAAHA5KoYAAAAA7GcqBRVDa4dzEyqGAAAAAOByVAwBAAAA2I89ho5CxRAAAAAAXI6KIQAAAAD7GYYkIwVjIhlUDAEAAADA5agYAgAAALAfewwdhWAIAAAAwH4EQ0dhKSkAAAAAuBwVQwAAAAD2M0xZfiO9QcUwWVQMAQAAAMDlqBgCAAAAsJ1pGjJNa6+XsHo8N6FiCAAAAAAuR8UQAAAAgP1M0/o9gZxKmjQqhgAAAADgclQMAQAAANjPTMGppFQMk0YwBAAAAGA/w5AyLD4shsNnksZSUgAAAABwOSqGAAAAAOzHUlJHoWIIAAAAAC5HxRAAAACA7UzDkGnxHkMuuE8eFUMAAAAAcDkqhgAAAADsxx5DR6FiCAAAAAAuR8UQAAAAgP0MU8qgYugUBEMAAAAA9jNNSVZfcE8wTBZLSQEAAADA5agYAgAAALCdaZgyLV5KalIxTBoVQwAAAABwOSqGAAAAAOxnGrJ+jyEX3CeLiiEAAAAAuBzBEAAAAIDtTMNMyfNn/PLLL2pqalJxcbFycnL0xBNP6MKFC7f9TF9fn7Zt26bs7Gxt2rRJJ0+eXNDnnXfe0caNG+XxeLRjxw59+eWXf2pe6UAwBAAAAOBKjY2N6u3tVXt7u7799ls9++yzqqioUCQSWbR/OBxWVVWVnn76aX399ddqampSY2Ojenp6En1OnTqlV155RUePHtVXX32lRx55RJWVlRobG7PrtZKSYXJ0DwAAAACbTE5OatWqVdqpat2XkWXp2DPmLfWpU7FYTCtXrrxt3xs3bmjFihXq7OxUVVVVon379u167rnn9Pbbby/4zGuvvaauri5dunQp0bZv3z5NTEyou7tbkrRjxw499thjam1tlSQZhqGioiIdOnRIr7/+uhWvmRJUDAEAAADYbka3NGNa/OiWpLnw+d/P9PT0wu+fmdHs7Kw8Hs+89pycHJ0/f37ROYdCIVVUVMxrq6ysVCgUkiTdvHlTFy9enNdn2bJlqqioSPRxKk4lBQAAAGCb+++/Xz6fT+dHz6Rk/OXLl6uoqGhe29GjR/Xmm2/Oa1uxYoUCgYDeeustbdmyRV6vVx9++KFCoZA2bdq06Nijo6Pyer3z2rxeryYnJ3Xjxg2Nj49rdnZ20T79/f1//eVSiGAIAAAAwDYej0fhcFg3b95MyfimaSojI2NeW3Z29qJ929vb1dDQoMLCQmVmZmrbtm16/vnndfHixZTMzckIhgAAAABs5fF4FizhTAe/369z585pampKk5OTWrdunerq6lRaWrpof5/Pp2g0Oq8tGo1q5cqVysnJUWZmpjIzMxft4/P5UvYeVmCPIQAAAABXy8vL07p16zQ+Pq6enh5VV1cv2i8QCCgYDM5r6+3tVSAQkDS3THb79u3z+hiGoWAwmOjjVJxKCgAAAMCVenp6ZJqmNm/erMuXL+vVV1+Vx+PR559/rqysLDU3NysSiaitrU3S3HUVW7du1csvv6yGhgadPXtWhw8fVldXlyorKyXNXVexf/9+vffee3r88cd17NgxdXR0qL+/f8HeQydhKSkAAAAAV4rFYmpubtbIyIjy8/NVU1OjlpYWZWXNXaPx448/anh4ONG/pKREXV1dOnLkiI4fP64NGzbo/fffT4RCSaqrq9O1a9f0xhtvaHR0VI8++qi6u7sdHQolKoYAAAAA4HrsMQQAAAAAlyMYAgAAAIDLEQwBAAAAwOUIhgAAAADgcgRDAAAAAHA5giEAAAAAuBzBEAAAAABcjmAIAAAAAC5HMAQAAAAAlyMYAgAAAIDLEQwBAAAAwOX+A7lDlldT5pbfAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAHvCAYAAAAIF8G2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRU0lEQVR4nOzdd1hTZ/sH8G/C3ojIUpYoooiouFCcgIh7j/paRx2t2lZtbWtrq22tVts6+tbR1larVq0T96TuDYqKC0UQZLnYyMz5/eFLfkZWEhIS4Pu5rnNd5JznPOdOSODceZZIEAQBREREREREVGuJNR0AERERERERaRYTQyIiIiIiolqOiSEREREREVEtx8SQiIiIiIiolmNiSEREREREVMsxMSQiIiIiIqrlmBgSERERERHVckwMiYiIiIiIajkmhkRERERERLUcE0MiIiIiIqJajokhERERERHVSqdPn0a/fv3g4OAAkUiEkJAQmeO7du1Cz549UbduXYhEIkRERMhV7/bt2+Hh4QFDQ0N4eXnh4MGDMscFQcBXX30Fe3t7GBkZISAgAPfv31fRs1IOE0MiIiIiIqqVsrOz4e3tjZUrV5Z53M/PD4sXL5a7zvPnz2PUqFF45513cO3aNQwcOBADBw5EZGSktMySJUvw888/Y82aNbh06RJMTEwQFBSE3NzcSj8nZYkEQRA0dnUiIiIiIiItIBKJsHv3bgwcOLDEsdjYWLi6uuLatWto2bJlufWMGDEC2dnZ2L9/v3Rfhw4d0LJlS6xZswaCIMDBwQEfffQRPv74YwBAeno6bG1tsX79eowcOVKVT0tuuhq5KhERERER1Vq5ubnIz89XS92CIEAkEsnsMzAwgIGBgVqu96YLFy5g1qxZMvuCgoKk3VRjYmKQnJyMgIAA6XELCwu0b98eFy5cYGJIREREREQ1X25uLlydTZH8pEgt9ZuamiIrK0tm37x58zB//ny1XO9NycnJsLW1ldlna2uL5ORk6fHifWWV0QQmhkREREREVGXy8/OR/KQIMeHOMDdT7ZQnGZkSuPo8Qnx8PMzNzaX7q6q1sDpjYkhERERERFXO3Eys8sRQWre5uUxiWJXs7OyQkpIisy8lJQV2dnbS48X77O3tZcpUNH5RnTgrKRERERERVbkiQaKWTdN8fX0RGhoqs+/YsWPw9fUFALi6usLOzk6mTEZGBi5duiQtowlsMSQiIiIiolopKysLDx48kD6OiYlBREQErKys4OTkhBcvXiAuLg6JiYkAgHv37gF41epX3PL39ttvo379+li0aBEA4MMPP0TXrl3x008/oU+fPti6dSvCwsLw22+/AXg1++mMGTOwYMECNG7cGK6urvjyyy/h4OBQ6oyoVYWJIRERERERVTkJBEig2pXzFK0vLCwM3bt3lz4unk107NixWL9+Pfbu3Yvx48dLjxfPGPr6ZDZxcXEQi/+/I2bHjh2xefNmzJ07F59//jkaN26MkJAQNG/eXFrmk08+QXZ2NiZPnoy0tDT4+fnh8OHDMDQ0VPg5qwrXMSQiIiIioiqTkZEBCwsLJN9zUsvkM3ZN4pCenq6xMYbVFVsMiYiIiIioykkggapHBKq+xtqDk88QERERERHVcmwxJCIiIiKiKlckCChS8ag2VddXmzAxJCIiIiKiKqcNk8/Q/2NXUiIiIiIiolqOLYZERERERFTlJBBQxBZDrcEWQyIiIiIiolqOLYZERERERFTlOMZQu7DFkIiIiIiIqJZjiyEREREREVU5LlehXdhiSEREREREVMuxxZCIiIiIiKqc5H+bqusk5TAxJCIiIiKiKlekhuUqVF1fbcKupESkMevXr4dIJEJYWFiFZbt164Zu3bopVH9sbCxEIhF+/PFHJSPUXhKJBM2bN8d3332n6VBqFRcXF4wbN07TYVQLb75WJ0+ehEgkwsmTJxWua82aNXByckJeXp7qAiQiIhlMDIkUVJzMFG+GhoZwd3fH9OnTkZKSounwtNKqVauwfv16TYdRo2zZsgXx8fGYPn26dN+VK1cwffp0eHp6wsTEBE5OThg+fDiioqJKrePOnTvo1asXTE1NYWVlhTFjxuDp06dqjTsnJwcrV65Ez549YW9vDzMzM7Rq1QqrV69GUVFRifISiQRLliyBq6srDA0N0aJFC2zZskWtMapLTfwcnD9/HvPnz0daWpparzNu3Djk5+fj119/Vet1iKhqFQnq2Ug57EpKpKRvvvkGrq6uyM3NxdmzZ7F69WocPHgQkZGRMDY21nR4WmXVqlWwtrauVEvL0aNHVRdQDfDDDz9g5MiRsLCwkO5bvHgxzp07h2HDhqFFixZITk7GL7/8gtatW+PixYto3ry5tOzjx4/RpUsXWFhYYOHChcjKysKPP/6Imzdv4vLly9DX11dL3A8fPsT7778Pf39/zJo1C+bm5jhy5AimTp2Kixcv4q+//pIp/8UXX+D777/HpEmT0LZtW+zZswdvvfUWRCIRRo4cqZYYy3Pv3j2Ixcp9p6qKz4G2OX/+PL7++muMGzcOlpaWMscq81q9ydDQEGPHjsXSpUvx/vvvQyQSqaReIiL6f0wMiZQUHByMNm3aAAAmTpyIunXrYunSpdizZw9GjRpV6jnZ2dkwMTGpyjArRRAE5ObmwsjISNOhqC1RqY6uXbuG69ev46effpLZP2vWLGzevFnmtRoxYgS8vLzw/fffY9OmTdL9CxcuRHZ2NsLDw+Hk5AQAaNeuHQIDA7F+/XpMnjxZLbHb2dnh5s2b8PT0lO6bMmUKJkyYgHXr1uHLL79Eo0aNAAAJCQn46aefMG3aNPzyyy8AXn3WunbtitmzZ2PYsGHQ0dFRS5xlMTAwqNLraQNl/26p+rUaPnw4lixZghMnTqBHjx4qrZuINIOTz2gXdiUlUpHiG5WYmBgAr7o+mZqaIjo6Gr1794aZmRlGjx4N4FX3uOXLl8PT0xOGhoawtbXFlClTkJqaKlNnWFgYgoKCYG1tDSMjI7i6umLChAkyZbZu3QofHx+YmZnB3NwcXl5eWLFihfT4/PnzS/12vbhLbGxsrHSfi4sL+vbtiyNHjqBNmzYwMjKSdt1KS0vDjBkz4OjoCAMDAzRq1AiLFy+GRFL+n2AXFxfcunULp06dkna/fXOsYF5eHmbNmoV69erBxMQEgwYNKtGlsbQxhrm5uZg/fz7c3d1haGgIe3t7DB48GNHR0WXGIwgCJk+eDH19fezatUvmtTh37lyFcQDAoUOH0LlzZ5iYmMDMzAx9+vTBrVu3ZMokJydj/PjxaNCgAQwMDGBvb48BAwbIvN7y/H5LExISAn19fXTp0kVmf8eOHUsk0I0bN4anpyfu3Lkjs3/nzp3o27evNCkEgICAALi7u2Pbtm3lXn/evHkQi8UIDQ2V2V/8ul6/fr3Mc62trWWSwmKDBg0CAJk49+zZg4KCAkydOlW6TyQS4b333sPjx49x4cKFcuMs/gw+fPgQQUFBMDExgYODA7755hsIb6xzlZ2djY8++kj6/m7SpAl+/PHHEuXeHDcn73unvM9BQUEBvv76azRu3BiGhoaoW7cu/Pz8cOzYsXKfX/G1T58+jSlTpqBu3bowNzfH22+/XeJvCSDf+7a8v1tvmj9/PmbPng0AcHV1lT6v4ve4vOMxL126hF69esHCwgLGxsbo2rUrzp07V6Kcj48PrKyssGfPngrrJCIixbHFkEhFipORunXrSvcVFhYiKCgIfn5++PHHH6VdTKdMmYL169dj/Pjx+OCDDxATE4NffvkF165dw7lz56Cnp4cnT56gZ8+eqFevHj777DNYWloiNjZWmswAwLFjxzBq1Cj4+/tj8eLFAF7dWJ87dw4ffvihUs/j3r17GDVqFKZMmYJJkyahSZMmyMnJQdeuXZGQkIApU6bAyckJ58+fx5w5c5CUlITly5eXWd/y5cvx/vvvw9TUFF988QUAwNbWVqbM+++/jzp16mDevHmIjY3F8uXLMX36dPzzzz9l1ltUVIS+ffsiNDQUI0eOxIcffojMzEwcO3YMkZGRcHNzK/WcCRMm4J9//sHu3bvRp08fhePYuHEjxo4di6CgICxevBg5OTlYvXo1/Pz8cO3aNbi4uAAAhgwZglu3buH999+Hi4sLnjx5gmPHjiEuLk76uKLfb1nOnz+P5s2bQ09Pr8KygiAgJSVFJhlLSEjAkydPpC3er2vXrh0OHjxYbp1z587Fvn378M477+DmzZswMzPDkSNH8Pvvv+Pbb7+Ft7d3hXG9KTk5GcCrxLHYtWvXYGJigqZNm5aIsfi4n59fufUWFRWhV69e6NChA5YsWYLDhw9j3rx5KCwsxDfffAPg1WvUv39/nDhxAu+88w5atmyJI0eOYPbs2UhISMCyZcsqjL+i9055n4P58+dj0aJFmDhxItq1a4eMjAyEhYXh6tWrCAwMrPDa06dPh6WlJebPn4979+5h9erVePTokXSyF0D+9y1Q9t+tNw0ePBhRUVHYsmULli1bJv3d1atXr8KYi/37778IDg6Gj4+P9AuHdevWoUePHjhz5oz0d12sdevWpSaNRFQ9SSBCEVTbNVyi4vpqFYGIFLJu3ToBgHD8+HHh6dOnQnx8vLB161ahbt26gpGRkfD48WNBEARh7NixAgDhs88+kzn/zJkzAgDh77//ltl/+PBhmf27d+8WAAhXrlwpM5YPP/xQMDc3FwoLC8ssM2/ePKG0j3rx84iJiZHuc3Z2FgAIhw8flin77bffCiYmJkJUVJTM/s8++0zQ0dER4uLiyry+IAiCp6en0LVr1zJjCAgIECQSiXT/zJkzBR0dHSEtLU26r2vXrjJ1/PnnnwIAYenSpSXqLa4rJiZGACD88MMPQkFBgTBixAjByMhIOHLkiFJxZGZmCpaWlsKkSZNkzk9OThYsLCyk+1NTU6XXLYs8v9+yNGjQQBgyZIhcZTdu3CgAEP744w/pvitXrggAhA0bNpQoP3v2bAGAkJubW269N2/eFPT19YWJEycKqampQv369YU2bdoIBQUFij0ZQRDy8vKEZs2aCa6urjLn9+nTR2jYsGGJ8tnZ2aV+tt5U/Bl8//33pfskEonQp08fQV9fX3j69KkgCIIQEhIiABAWLFggc/7QoUMFkUgkPHjwQLrP2dlZGDt2rPSxIu/hsj4H3t7eQp8+fcp9LqUpvraPj4+Qn58v3b9kyRIBgLBnzx5BEOR/3wpC2X+3yvLDDz+U+DtS7M3X6sSJEwIA4cSJE4IgvPpdNG7cWAgKCpJ57XJycgRXV1chMDCwRJ2TJ08WjIyM5IqNiLRXenq6AEC4ettWiIq3V+l29batAEBIT0/X9NOsdtiVlEhJAQEBqFevHhwdHTFy5EiYmppi9+7dqF+/vky59957T+bx9u3bYWFhgcDAQDx79ky6+fj4wNTUFCdOnAAA6UQO+/fvR0FBQakxWFpaIjs7u8IuZ4pwdXVFUFBQiZg7d+6MOnXqyMQcEBCAoqIinD59ulLXnDx5skx3186dO6OoqAiPHj0q85ydO3fC2toa77//foljb3adzc/Px7Bhw7B//34cPHgQPXv2VCqOY8eOIS0tDaNGjZJ5HXR0dNC+fXvp787IyAj6+vo4efJkqV36APl+v2V5/vw56tSpU2G5u3fvYtq0afD19cXYsWOl+1++fAmg9DFghoaGMmXK0rx5c3z99ddYu3YtgoKC8OzZM/z111/Q1VW8I8r06dNx+/Zt/PLLLzLnv3z5slIxvl5/MZFIhOnTpyM/Px/Hjx8HABw8eBA6Ojr44IMPZM776KOPIAgCDh06VOE1lHkPF7O0tMStW7dw//59uZ5Padd+vfX4vffeg66urrTlV9737eve/LulDhEREbh//z7eeustPH/+XBpXdnY2/P39cfr06RJd1evUqYOXL18iJydH7fERkfpJBPVspBx2JSVS0sqVK+Hu7g5dXV3Y2tqiSZMmJWbg09XVRYMGDWT23b9/H+np6bCxsSm13idPngAAunbtiiFDhuDrr7/GsmXL0K1bNwwcOBBvvfWW9GZ56tSp2LZtG4KDg1G/fn307NkTw4cPR69evZR+Xq6uriX23b9/Hzdu3Cizi1hxzMp6fZwbAGnSU1ZSBbzqutukSRO5EpFFixYhKysLhw4dKnctxIriKL5xL2viC3NzcwCvEq7Fixfjo48+gq2tLTp06IC+ffvi7bffhp2dHQD5fr/lEYTy//MlJyejT58+sLCwwI4dO2QmaSmeTKi0NeFyc3NlypRn9uzZ2Lp1Ky5fvoyFCxeiWbNmFZ7zph9++EHaBbV3794yx4yMjCodo1gsRsOGDWX2ubu7A4B0LNyjR4/g4OAAMzMzmXLFXVjlSe6UeQ8X++abbzBgwAC4u7ujefPm6NWrF8aMGYMWLVpUeC7wahzp60xNTWFvby99fvK+b4uV9ndLHYrjev1Lizelp6fLfAlS/L7nrKRENUORGrqSqrq+2oSJIZGS2rVrV+oYrdcZGBiUSBYlEglsbGzw999/l3pOcfIlEomwY8cOXLx4Efv27cORI0cwYcIE/PTTT7h48SJMTU1hY2ODiIgIHDlyBIcOHcKhQ4ewbt06vP3229Jp/8u6gSptzTig9JttiUSCwMBAfPLJJ6WeU3yjrayyZpasKPmRV1BQEA4fPowlS5agW7du0hYnReMobr3YuHGjNMF73etJ6owZM9CvXz+EhITgyJEj+PLLL7Fo0SL8+++/aNWqlVy/37LUrVu33IQjPT0dwcHBSEtLw5kzZ+Dg4CBz3N7eHgCQlJRU4tykpCRYWVnJlZw+fPhQenN/8+bNCsu/af369fj000/x7rvvYu7cuSWO29vb48SJExAEQeZ9XBz3m89LkyrzHu7SpQuio6OxZ88eHD16FGvXrsWyZcuwZs0aTJw4sdKxKfK+BUr/u6UOxXH98MMPaNmyZall3vwcpKamwtjYWCtmSiYiqmmYGBJVMTc3Nxw/fhydOnWS6+amQ4cO6NChA7777jts3rwZo0ePxtatW6U3jPr6+ujXrx/69esHiUSCqVOn4tdff5VO+1/8bXtaWprMOmPytIK8HnNWVhYCAgIUe7L/o45v993c3HDp0iUUFBRUOAlLhw4d8O6776Jv374YNmwYdu/erVSXx+IJbWxsbOR6Ldzc3PDRRx/ho48+wv3799GyZUv89NNPMstGVPT7LY2Hh4d09ts35ebmol+/foiKisLx48dLbcWrX78+6tWrh7CwsBLHLl++XOZN+uskEgnGjRsHc3NzzJgxAwsXLsTQoUMxePDgCs8FXs04OnHiRAwePBgrV64stUzLli2xdu1a3LlzR+Z5XLp0SXpcnjgfPnwo8+VFVFQUAEgnXHF2dsbx48eRmZkp02p49+5d6XFVKO9zYGVlhfHjx2P8+PHIyspCly5dMH/+fLkSw/v376N79+7Sx1lZWUhKSpK2wCr6vlVEZT7bxXGZm5vLHVdMTEyJyYiIqPpii6F24RhDoio2fPhwFBUV4dtvvy1xrLCwEGlpaQBefTP+ZmtD8Y1wcfe658+fyxwXi8XS7mfFZYpvvl4fB5idnV1iIfGKYr5w4QKOHDlS4lhaWhoKCwvLPd/ExET6vFRlyJAhePbsmXR9u9eV1koTEBCArVu34vDhwxgzZkyFy2yUJigoCObm5li4cGGp4wKLlyfIycmRdncs5ubmBjMzM+nvRZ7fb1l8fX0RGRlZolxRURFGjBiBCxcuYPv27fD19S2zjiFDhmD//v2Ij4+X7gsNDUVUVBSGDRtW7vUBYOnSpTh//jx+++03fPvtt+jYsSPee+89PHv2rMJzT58+jZEjR6JLly74+++/y2ydGjBgAPT09LBq1SrpPkEQsGbNGtSvXx8dO3as8FoAZN4jgiDgl19+gZ6eHvz9/QEAvXv3RlFRUYn30rJlyyASiRAcHCzXdSpS1ufgzc+xqakpGjVqVOH7oNhvv/0m835cvXo1CgsLpXHL+75VRvH6hsp8vn18fODm5oYff/wRWVlZcsV19epVuX/vRESkGLYYElWxrl27YsqUKVi0aBEiIiLQs2dP6Onp4f79+9i+fTtWrFiBoUOH4q+//sKqVaswaNAguLm5ITMzE7///jvMzc2lLQETJ07Eixcv0KNHDzRo0ACPHj3Cf//7X7Rs2VL6rXrPnj3h5OSEd955B7Nnz4aOjg7+/PNP1KtXD3FxcXLFPHv2bOzduxd9+/bFuHHj4OPjg+zsbNy8eRM7duxAbGyszDIDb/Lx8cHq1auxYMECNGrUCDY2NpVeoPrtt9/Ghg0bMGvWLFy+fBmdO3dGdnY2jh8/jqlTp2LAgAElzhk4cKC0q625ubl0jUZ5mZubY/Xq1RgzZgxat26NkSNHSl/HAwcOoFOnTvjll18QFRUFf39/DB8+HM2aNYOuri52796NlJQUjBw5EgDk+v2WZcCAAfj2229x6tQpmYl0PvroI+zduxf9+vXDixcvZFomAeA///mP9OfPP/8c27dvR/fu3fHhhx8iKysLP/zwA7y8vDB+/Phyr3/nzh18+eWXGDduHPr16wfgVbfQli1bSse9luXRo0fo378/RCIRhg4diu3bt8scb9GihfTLjQYNGmDGjBn44YcfUFBQgLZt2yIkJARnzpzB33//Ldfi9oaGhjh8+DDGjh2L9u3b49ChQzhw4AA+//xzabftfv36oXv37vjiiy8QGxsLb29vHD16FHv27MGMGTNKXfpEGWV9Dpo1a4Zu3bpJ1+kLCwvDjh07ZCbNKU9+fr70/Xbv3j2sWrUKfn5+6N+/PwD537fKPicA+OKLLzBy5Ejo6emhX79+0oSxPGKxGGvXrkVwcDA8PT0xfvx41K9fHwkJCThx4gTMzc2xb98+afnw8HC8ePGi1M82EVVPEkEEiaDi5SpUXF+topnJUImqr+Ip4itaZmDs2LGCiYlJmcd/++03wcfHRzAyMhLMzMwELy8v4ZNPPhESExMFQRCEq1evCqNGjRKcnJwEAwMDwcbGRujbt68QFhYmrWPHjh1Cz549BRsbG0FfX19wcnISpkyZIiQlJclcKzw8XGjfvr20zNKlS8tcrqKsafMzMzOFOXPmCI0aNRL09fUFa2troWPHjsKPP/4oM1V+aZKTk4U+ffoIZmZmAgDplP1lvZZvTmsvCCWXqxCEV9Paf/HFF4Krq6ugp6cn2NnZCUOHDhWio6MFQZBdruJ1q1atEgAIH3/8scJxFO8PCgoSLCwsBENDQ8HNzU0YN26c9Hfz7NkzYdq0aYKHh4dgYmIiWFhYCO3btxe2bdsmrUOe3295WrRoIbzzzjsy+7p27SoAKHN7U2RkpNCzZ0/B2NhYsLS0FEaPHi0kJyeXe93CwkKhbdu2QoMGDWSWYhAEQVixYoUAQPjnn3/KPL/4NS1rmzdvnkz5oqIiYeHChYKzs7Ogr68veHp6Cps2barg1Xml+DMYHR0tfZ62trbCvHnzhKKiIpmymZmZwsyZMwUHBwdBT09PaNy4sfDDDz/ILKMgCGUvVyHPe6esz8GCBQuEdu3aCZaWloKRkZHg4eEhfPfddxV+roqvferUKWHy5MlCnTp1BFNTU2H06NHC8+fPS5Sv6H37+mumiG+//VaoX7++IBaLZf6mVLRcRbFr164JgwcPFurWrSsYGBgIzs7OwvDhw4XQ0FCZcp9++qng5ORU4ndCRNVP8XIVZyMdhIhHDVS6nY104HIVShIJgopmdyAioiqzceNGTJs2DXFxcTJjR+n/jRs3Djt27Ci1m2JNsH79eowfPx5XrlypcCKs6i4vLw8uLi747LPP8OGHH2o6HCKqpIyMDFhYWOBUZH2Ymql2ZFtWpgRdmycgPT29xKzLVD6OMSQiqoZGjx4NJyenMiduIapJ1q1bBz09Pbz77ruaDoWIqMbiGEMiompILBYjMjJS02EQVYl3332XSSFRDVQEMYpU3E5V+mJcJA8mhkREREREVOUENUw+I3DyGaVxjCEREREREVWZ4jGGoTedYKLiMYbZmRL4e8VxjKES2GJIRERERERVjgvcaxdOPkNERERERFTLscWQapxnz54hNDQUBw8eRExMjKbDIVK5nMIC5BX9//D6139+ncFrC8Ab6OjAWFdP7bERVVcNGzZEcHAw/P39YW1trelwiGqFIkGMIkHFk89wkJzSmBhStVdYWIizZ8/i8OHDOHDgAG7fvg1bW1vY2NjAwsJC0+FRLXS7vp2mQ6hxmiUkazoEquEiIiJw9OhRpKSkoFmzZujTpw969eoFPz8/6OrydomIaj5OPkPVUnZ2No4ePYodO3Zg//79AID69evDzs4O9evXh7GxsYYjJG13zNNd0yFQLRF4K0rTIZACcnJykJCQgOTkZCQkJAAA+vbti6FDh6Jnz54wMTHRcIRE1V/x5DMHbjSEiZlOxScoIDuzCH1aPOTkM0pgYkjVRmpqKkJCQrBt2zb8+++/sLCwQP369eHs7AwbGxuIRBxsXJMwcSPSvNqe1AqCgCdPnuDRo0dISEhAeno6evTogeHDh2PgwIGoU6eOpkMkqpaYGGonJoak1bKysrB3715s2LABoaGhsLW1hYODA1xcXGBpaclkUIOYuBGRtlNlYisIAtLS0hAbG4vExEQ8efIE/v7+GDNmDPr37w9TU1OVXYuopitODPfecFNLYti/RTQTQyUwMSStk5ubi4MHD2Ljxo04dOgQ6tSpA0dHR7i5ufEDriAmb0REyisvsUxPT0d0dDQeP36M1NRU9O7dG2PGjEFwcDAMDQ2rMEqi6qc4Mdx9vbFaEsNB3veZGCqBiSFpBUEQcP78efz555/4559/YGRkBCcnJzRs2BBWVlaaDk+tmLwREWm/8pLEFy9eIDo6GvHx8Xj58iVGjBiBCRMmoGPHjuzZQlQKJobaiYkhadSjR4+wYcMGrF27Fs+ePUPDhg3RqFEj1KtXTyv/mTKJIyKq3cpLEIvHJEZHR+Phw4eoV68e3nnnHYwdOxZOTk5VGCWRditODHded1dLYjjEO4qJoRKYGFKVy8nJwY4dO/D777/j4sWLcHZ2hqurK5ycnLRmSnAmgEREVJHyksTCwkLExcXh4cOHiIuLQ4cOHTBp0iQMHTqUM2dTrcfEUDsxMaQqc+PGDaxevRqbNm2CiYkJXF1d0ahRI43+g2QCSERElVXRJDc5OTl48OABYmJikJ2djTFjxuDdd99FixYtqihCIu1SnBhuv+4BYxUnhjmZRRjmfZeJoRKYGJJaZWdn459//sEvv/yCW7duwc3NDe7u7lW+vAQTQCIiqgrydDWNiopCdHQ0PD09MX36dIwYMYLrI1KtwsRQOzExJLWIiIjAqlWr8Pfff8Pc3Bxubm5o1KgRDAwM1HpdJoBERKQNKmpFzMvLw4MHDxAdHY2MjAyMHj0aU6dORcuWLasmQCINKk4Mt0Y0U0tiOLLlbSaGSmBiSCqTn5+PXbt2YenSpbhx44a0dVAdE8kwASQiouqgogRREAQ8ffpU2oro7e2NWbNmYfDgwdDT06uiKImqFhND7STWdABU/SUlJWHevHmoX78+pk+fDh0dHYwcORJ+fn6V7jJ6zNO91I2IiKg6qOj/lkgkgo2NDfz8/DBy5EiIxWJMmzYNDg4OmDdvHpKTk6swWqKqJYFYLZsiTp8+jX79+sHBwQEikQghISEyxwVBwFdffQV7e3sYGRkhICAA9+/fL7dOFxcXiESiEtu0adOkZbp161bi+LvvvqtQ7KqmHVNAUrUjCAIuXLiApUuXYs+ePXByckKbNm3g6OhY6USQiIiopnn9/1tZrYgGBgZo0aIFvLy8EB8fj02bNmHhwoUYOHAgZs6cCV9fX61cyolIWUWCCEWCat/TitaXnZ0Nb29vTJgwAYMHDy5xfMmSJfj555/x119/wdXVFV9++SWCgoJw+/ZtGBoallrnlStXUFRUJH0cGRmJwMBADBs2TKbcpEmT8M0330gfa3rGYiaGpJDCwkLs3LkTCxcuxP379+Hu7o4hQ4bAwsJC6TqZDBIRUW1S/H+vrARRJBLByckJTk5OSE9Px927dxEQEIDGjRvj888/x5AhQ7RmeScibZWRkSHz2MDAoNS5LoKDgxEcHFxqHYIgYPny5Zg7dy4GDBgAANiwYQNsbW0REhKCkSNHlnpevXr1ZB5///33cHNzQ9euXWX2Gxsbw87OTu7npG7sSkpyycrKwvLly+Hs7IypU6fC1NQUI0eORPv27RVOCtktlIiIqOJupgBgYWGB9u3bY+TIkTA1NcXUqVPh4uKCFStWICsrq4oiJVKPIojVsgGAo6MjLCwspNuiRYsUji8mJgbJyckICAiQ7iv+TF64cEGuOvLz87Fp0yZMmDChRIv/33//DWtrazRv3hxz5sxBTk6OwjGqEr9uonIlJSVhxYoVWLVqFczNzdGsWTO4uLhALFbsOwUmgERERKWrqAURAPT09NC8eXM0a9YMsbGx+OGHH/Dll19i6tSp+PDDD2Fvb19V4RJVC/Hx8TKTzygzM37xGF9bW1uZ/ba2tnKP/w0JCUFaWhrGjRsns/+tt96Cs7MzHBwccOPGDXz66ae4d+8edu3apXCcqsLEkEp17949fPfdd9i6dSucnJzQrVs32NnZKTS2gckgERGR/ORJEMViMRo2bAhXV1ckJydjx44dWLp0KUaOHIkvvvgCTZo0qapwiSpNIoghEVTbgVHyvwUXzM3NtWJW0j/++APBwcFwcHCQ2T958mTpz15eXrC3t4e/vz+io6Ph5uZW1WECYGJIb7h37x7mzZuHXbt2oXHjxhg0aBAsLS3lOpeJIBERUeXJkyCKRCLY29vD3t4eqampCA8Ph5eXF4YMGYL58+czQSRSgeLxfykpKTKt8ikpKXKtOfro0SMcP35crlbA9u3bAwAePHigscSQYwwJAHD37l2MHDkSXl5eiIyMxNChQ+Hn51dhUsixgkREROoh7//XOnXqwM/PD0OGDMHNmzfh5eWFkSNH4t69e1UQJZHy1DnGUBVcXV1hZ2eH0NBQ6b6MjAxcunQJvr6+FZ6/bt062NjYoE+fPhWWjYiIAACNdgtni2Etd/fuXcybNw+7d++Gu7s7hg4dCjMzszLLMwEkIiKqWvK0IAKvus516tQJLVq0wI0bN+Dl5YXBgwdj/vz58PDwqIpQiaqdrKwsPHjwQPo4JiYGERERsLKygpOTE2bMmIEFCxagcePG0uUqHBwcMHDgQOk5/v7+GDRoEKZPny7dJ5FIsG7dOowdO7bELMLR0dHYvHkzevfujbp16+LGjRuYOXMmunTpghYtWqj9OZeFiWEt9ejRI8yZMwc7duxgQkhERFQNyJsgmpmZySSILVq0wNChQ/H999/DycmpKkIlkosEiq87KE+diggLC0P37t2lj2fNmgUAGDt2LNavX49PPvkE2dnZmDx5MtLS0uDn54fDhw/LrGEYHR2NZ8+eydR7/PhxxMXFYcKECSWuqa+vj+PHj2P58uXIzs6Go6MjhgwZgrlz5yoYvWqJBOF/IzSpVkhLS8O3336LlStXomHDhmjZsiUTQiIiomqmouTwdZmZmbh27RpiYmIwffp0zJ07V+75A4jUISMjAxYWFlh9tS2MTFXbTvUyqxDvtb6C9PR0rZh8pjphYlhL5OfnY+XKlZg/fz6srKzQunVrWFtbl1qWySAREVH1oEiC+OzZM4SHhyMtLQ3z58/H1KlToa+vr8boiErHxFA7MTGs4QRBwPbt2/Hxxx8jPz8frVq1gqOjY6nLTjAhJCIiqp7kTRAFQUB8fDyuXr0KAwMD/Pjjjxg2bJhCy1ERVVZxYvhLeHu1JIbTfS4xMVQCE8MaLCIiAlOmTMHdu3fRsmVLuLu7l1iYnskgERFRzaBI66FEIkFUVBQiIiLg4eGB3377Dd7e3mqMjuj/MTHUTlyuogZKTU3Fe++9h/bt26OgoABDhgyBh4eHTFLIJSaIiIhqFkX+t4vFYnh4eGDIkCEoKChAu3btMHXqVKSlpak3SKLXSCBSy0bKYYthDVI8Le7s2bNhYWGBdu3ayQwuZyJIRERUeyjSgpiWlobLly8jPT0dP/zwA8aPH1+ilxGRqhS3GP4c3kEtLYYf+Fxki6ESmBjWEOHh4Zg8eTJiYmLQpk0buLi4SMcLMCEkIiKqnRRJDgVBQGxsLMLCwtCwYUP8+uuv8PHxUWN0VFsVJ4bLwjqqJTGc2eY8E0Ml8Kugai4rKwsffPABOnbsCAAYNGgQXF1dIRKJ2F2UiIiollPkXkAkEsHV1RWDBg2CIAjo2LEjPvjgA2RlZak5SiLSBmwxrMYOHDiAiRMnQk9PD76+vtJuo0wGiYiI6E2KtB4Cr+YsuHjxIgoLC/H777+jT58+aoqMapviFsMfw/zU0mL4cZuzbDFUAlsMq6Hk5GQMGTIEw4cPh7u7O3r16gVLS0u2EBIREVGZFL1PqFOnDnr16oVGjRph+PDhGDJkCJKTk9UYIdU2EkGklo2Uw8SwGpFIJPjtt9/g7u6OyMhIDB48GB4eHjjevAkTQiIiIpKLIvcMIpEITZs2xeDBgxEZGQl3d3f89ttvYIczopqHXUmridjYWLz99tu4efMmOnToACcnJyaDREREVCmKdi+Ni4vDxYsX4eXlhQ0bNsDFxUU9gVGNVtyV9PsrXWGo4q6kuVmF+KztKXYlVQJbDLWcRCLBqlWr0KxZM7x48QIDBw7EveAAJoVERERUaYreTzg5OWHgwIF48eIFPD09sXr1akgkEjVFR0RViS2GWiwmJgZvv/02bt26BV9fX9wJ6qHpkIiIiKiGUrT18PHjx7hw4QKaN2/O1kNSSHGL4cLL3dXSYvh5uxNsMVQCWwy1kEQiwcqVK+Hp6Ym0tDSYf/YRk0IiIiJSK0VbDxs0aIABAwbgxYsXaNasGVatWsXWQ6JqjImhlklISIC/vz++/PJLWIwfg+xJ4yA2NNR0WERERFQLKJoc6uvro1OnTujevTvmzp0Lf39/JCQkqCk6qmmKIFLLRsphYqhFNm/ejKZNmyIlJQXmn30EoyYcR0hERERVS5nlr4pbD1NSUtC0aVNs2bJFTdERkbowMdQCL168wLBhwzBlyhR06NABnTt3RlB0nMJ9/YmIiIhURZnWw86dO6NDhw6YNGkShg0bhtTUVDVFRzWBRBCrZSPlqHa0Jyns6NGjGDNmDExNTTFw4EAYGxvLHC8tOeSMpERERFQVjnm6K/xFtaurK2xtbXH+/Hl4eHhg06ZNCAwMVFOERKQqTKk1JC8vDx988AEGDBiAJk2awN/fv0RSWJbAW1HSjYiIiEidlOlaamxsDH9/fzRp0gT9+/fHBx98gLy8PDVFSNVVEdQxzpCUxRZDDbhz5w6GDh2K1NRU9O/fH5aWlgrXwVZDIiIiqkqKth6KRCI0bdoU9vb22LFjB0JDQ7Fjxw40bdpUjVFSdaKOrp/sSqo8vnJVSBAE/Prrr2jdujUMDAzQu3dvJoVERERUbShzD2JpaYnevXvDwMAArVu3xm+//QYuo02kfdhiWEWeP3+OcePG4fTp0/D390f9+vUVroMJIREREWla8f2IIq2HOjo6aNu2Lezt7TF79mzs378f69evh5WVlbrCpGqgSBCjSMUtfKqurzbhK1cFzp49i+bNm+POnTsYOHCgwkmhMn37iYiIiNRJmXuTBg0aYODAgbh9+zY8PT1x9uxZNURGRMpgYqhGEokE3333HQICAtCwYUP06NEDhgosVs+EkIiIiLSZMvcphoaG6NGjBxo2bIiAgAAsXLgQEolEDdGRthMggkTFm8AF7pXGrqRq8uTJE4waNQoRERHo3bs36tWrJ/e5TAaJiIioulD6vqV5E9Tt2A4//fQT/v33X2zZskWh+yUiUi22GKrBqVOn0Lx5c8THx6N///5y/5FjCyERERHVJgaODWD2yUzExcWhefPmOH36tKZDoipUPMZQ1Rsph6+cCkkkEnz77bcICgqCu7s7unXrBn19/QrPY0JIREREtZXYyAgF0yajcePG6NmzJxYsWMCupUQawK6kKpKamopRo0bhypUr6NOnD6ytrSs8h8kgERER0as1DxOHD0IfW1ssW7YM586dw5YtW5Ra1ouqD4kggkRQ7ZhAVddXmzAxVIGIiAj0798fenp66NevHwwMDMotz4SQiIiIqKRrXTuin5kZTp8+jRYtWmDfvn3w9vbWdFikJkUQo0jFHRhVXV9twleuktavXw9fX1/Y2dnB39+fSSERERFRJZxu7YWAgADY2dmhQ4cO+OuvvzQdElGtwBZDJeXl5eH999/H5s2b0b17dzg6OpZbngkhERERkXyON28CNG+C7oetMW3aNJw7dw7//e9/K/wCnqoXdiXVLkwMlZCcnIx+/fohISEB/fv3h5mZWZllmRASERERKeduL3/0t7TE/v37ERERgb1798LOzk7TYRHVSOxKqqCwsDC0bNkSWVlZCA4OZlJIREREpEYXO/ggODgYGRkZaNWqFcLCwjQdEqmIBGK1bKQcvnIK2LhxIzp37gxXV1d07twZurqlN7hy+QkiIiIi1Tnh3QxdunSBs7MzOnfujE2bNmk6JKIah11J5VBUVITZs2fj119/LXc8IZNBIiIiIvUQiUTw9vaGlZUVpkyZgmvXrmHJkiXQ0dHRdGikpCJBhCIVjwlUdX21CVsMK5CRkYFevXph06ZN6Nu3b6lJIVsIiYiIiNSr+F7L0dERffv2xcaNG9GrVy9kZGRoODKimoGJYTni4uLQvn17PHjwAH369Cl1kVUmhERERERVo/i+y9LSEn369MGDBw/Qvn17xMXFaTgyUkbxrKSq3kg5TAzLcPnyZbRu3Rq6uroICAiAvr6+zHG2EhIRERFVveL7L319fQQEBEBXVxetW7fGlStXNBwZKUoQxJCoeBMEpjfK4itXiu3bt6Nr165wd3eHr68vxGLZl4kJIREREZHmFN+LicVi+Pr6wt3dHV26dMGOHTs0HBlR9cXJZ14jCAK+//57fPPNN+jatSucnZ1ljjMhJCIiItIOxzzdEXgrCiKRCF5eXjAzM8OYMWPw4MEDfPrppxCJ2KVQ2xVBhCKoePIZFddXmzAx/J+ioiK8//77+Pvvv9G7d29YW1vLHGdSSERERKRdipNDAHBxcYGpqSkWLVqE+Ph4/Pzzz5yxlEgBTAwB5ObmYtSoUTh79iz69Okjs2g9E0IiIiIi7fV6cmhtbY3evXtj27ZtSEpKwubNm2FoaKjhCKksEgEqnyxGIqi0ulql1o8xTEtLg7+/P65cuYLevXszKSQiIiKqZl6/ZzM3N0fv3r1x+fJlBAQEID09XYOREVUftToxTEhIgK+vL5KTk9GzZ0/pN0qccZSIiIioenn93s3Q0BA9e/ZEYmIifH19kZiYqMHIqCyqnpG0eCPl1NpX7uHDh2jfvj3EYjF69OgBPT09AGwlJCIiIqquXr+P09PTg7+/P0QiEdq1a4eYmBgNRkak/WplYnj37l34+vrC2toanTp1glgsZishERERUQ3w+v2cWCxGp06dULduXfj6+uLevXsajIzeJIFILRspp9Ylhjdu3ECnTp3QoEEDtGvXDiKRiAkhERERUQ0lEonQvn171K9fHx07dsTNmzc1HRL9T5EgUsumiNOnT6Nfv35wcHCASCRCSEiIzHFBEPDVV1/B3t4eRkZGCAgIwP3798utc/78+RCJRDKbh4eHTJnc3FxMmzYNdevWhampKYYMGYKUlBSFYle1WpUYhoWFoXPnznBzc0ObNm2YFBIRERHVQG/e34lEIrRp0wZubm7w8/NDeHi4hiIjbZOdnQ1vb2+sXLmy1ONLlizBzz//jDVr1uDSpUswMTFBUFAQcnNzy63X09MTSUlJ0u3s2bMyx2fOnIl9+/Zh+/btOHXqFBITEzF48GCVPS9l1JrlKi5cuICePXvCy8sLXl5eTAiJiIiIarDXl7Eo1qpVK+jq6qJbt244evQofH19NRQdAVDLZDGK1hccHIzg4OBSjwmCgOXLl2Pu3LkYMGAAAGDDhg2wtbVFSEgIRo4cWWa9urq6sLOzK/VYeno6/vjjD2zevBk9evQAAKxbtw5NmzbFxYsX0aFDB4Weg6rUihbD8PBw9OzZE97e3kwKiYiIiGqJ0u75vLy84O3tjZ49e7LlsAbLyMiQ2fLy8hSuIyYmBsnJyQgICJDus7CwQPv27XHhwoVyz71//z4cHBzQsGFDjB49GnFxcdJj4eHhKCgokKnXw8MDTk5OFdarTjU+Mbxx4wZ69OgBLy8veHp6MikkIiIiqkVKu/fz9PSEl5cXevTowTGHGiSBCBJBxdv/Jp9xdHSEhYWFdFu0aJHC8SUnJwMAbG1tZfbb2tpKj5Wmffv2WL9+PQ4fPozVq1cjJiYGnTt3RmZmprRefX19WFpaKlSvutXorqR3795Ft27d0KRJEySPHALNvcxEREREpE28vLxQWFiIbt264dy5cyUmB6HqLT4+Hubm5tLHBgYGVXbt17umtmjRAu3bt4ezszO2bduGd955p8riUFSNbTGMjo5G165d4erqimf/GaHpcIiIiIhIQ8rqMdaqVSu4uLiga9euiI6OruKoSFDDUhXC/1oMzc3NZTZlEsPiMYJvzhaakpJS5vjB0lhaWsLd3R0PHjyQ1pufn4+0tLRK1atqNTIxTExMRJcuXWBvbw8fH58SA4+JiIiIqHYpKzn08fGBvb09unbtisTExCqOirSZq6sr7OzsEBoaKt2XkZGBS5cuKTRxUVZWFqKjo2Fvbw/g1XtOT09Ppt579+4hLi5OoxMi1biupGlpafD394elpaV0nUIApSaHHG9IREREVHuUNlOpSCRCu3btcPbsWQQEBODChQuwsLDQUIS1S/G4QFXXqYisrCxpSx7wasKZiIgIWFlZwcnJCTNmzMCCBQvQuHFjuLq64ssvv4SDgwMGDhwoPcff3x+DBg3C9OnTAQAff/wx+vXrB2dnZyQmJmLevHnQ0dHBqFGjALyawOadd97BrFmzYGVlBXNzc7z//vvw9fXV2IykQA1LDHNzc9G7d2/k5+ejR48e0qSwLIG3opgcEhEREdVyIpEInTp1QmhoKHr37o3Q0FAYGhpqOqwaTxuWqwgLC0P37t2lj2fNmgUAGDt2LNavX49PPvkE2dnZmDx5MtLS0uDn54fDhw/LvD+io6Px7Nkz6ePHjx9j1KhReP78OerVqwc/Pz9cvHgR9erVk5ZZtmwZxGIxhgwZgry8PAQFBWHVqlXKPm2VEAmCIGg0AhUpKirCwIEDce3aNQQFBUFXt/yclwkhERERUe1U1jCjgoICHD16FK1bt8bu3buho6NTxZHVDhkZGbCwsMCgY+OhZ6Kv0roLsvOxO3Ad0tPTZSafoYrViDGGgiDg3XffxaVLl+Dv78+kkIiIiIjKVNa9oJ6eHvz9/XHx4kW89957qCHtJ1pL5UtVqKFram1SIxLDRYsWYfv27QgMDKyw2Z9JIRERERGVdU9oaGiIwMBAbNu2Dd9//30VR0WkOdU+MdyyZQu+/fZb+Pv7w9TUtNyyTAqJiIiIqCKmpqbw9/fHN998g61bt2o6nBpL1UtVFG+knGo9+czZs2cxYcIEdOvWDdbW1mWWY0JIRERERG8q6x4x8FYUrK2t0a1bN4wfPx4NGjSAn59fFUdHVLWqbWIYFRWFPn36oG3btnByciqzHJNCIiIiIlKE9P7R0x0m5iYI6t0bEeHhaNy4sWYDq2G0YbkK+n/Vsivp8+fPERgYCDc3NzRt2rTMckwKiYiIiKgyzDv5Qq+tD7r26IHnz59rOhwital2iWF+fj4GDBgAfX19tGnTpsxyTAqJiIiISBXq9OuNzDqW6NW3LwoKCjQdTo3BWUm1S7VKDAVBwNSpUxEdHY3OnTuXuYA9k0IiIiIiUhWRWIy6Y0bhVtwjTJoyhctYqAgTQ+1SrRLDn3/+Gdu2bUOPHj2gp6dXahkmhURERESkamIDA1hPmoAtO3bgv//9r6bDIVK5apMYHj58GJ9++il69OhR4bIURERERESqpmtVB3XfGYuPZs/GkSNHNB1OtccWQ+1SLRLD6OhoDB8+HB07doStrW2Z5dhaSERERETqZOjqAsvhQzBoyBA8fPhQ0+EQqYzWJ4Y5OTno378/XF1dy50imEkhEREREVUFs7Y+0G/dEj1790ZOTo6mw6m2BKh+kXuO/lSeVieGgiBg4sSJyMjIQNu2bcssx6SQiIiIiKpSnYH9kJSXi3HvvMPJaKhG0OrEcNWqVdi/fz+6du0KHR0dTYdDRERERAQAEOnqou6Et7H7wAGsXr1a0+FUSxxjqF20NjG8fPkyPvroI3Tr1g0mJiZllmNrIRERERFpgq6FBazH/QcfzpyJy5cvazocokrRysQwIyMDQ4cORcuWLWFvb19mOSaFRERERKRJRo3cYNYzAP0HD0ZmZqamw6lW2GKoXbQyMXzvvfcgFovRokWLMsswKSQiIiIibWDh3w1ZRoaYOGWKpkOpVpgYahetSwy3bNmCPXv2wM/PDyIRf7FEREREpN1EYjGsxryF3Xv2YOvWrZoOh0gpWpUYPnr0CJMnT0anTp04rpCIiIiIqg1dSwvUGTkM4ydOxKNHjzQdTrXAFkPtojWJoUQiwahRo+Di4gIXF5cyyzEpJCIiIiJtZOLtBf0WzTFkxAhIJBJNh0OkEK1JDFetWoV79+6Vu14hEREREZE2qzOoPyLvR3EJCzkIgkgtGylHKxLD2NhYfPLJJ/D19YWenl6Z5dhaSERERETaTGxggDojh2PWxx8jNjZW0+EQyU3jiaEgCBg3bhwaNmyI+vXrl1mOSSERERERVQdGTRrDoJU33nr7bQiCoOlwtJYEIrVspByNJ4Zr167F9evX2YWUiIiIiGoMqwF9cfXmDaxdu1bToRDJRaOJYUpKCmbNmoUOHTpAX1+/zHJsLSQiIiKi6kRsZATL4UPx4cyZSElJ0XQ4WomzkmoXjSaGM2fOhIODA5ycnDQZBhERERGRyhl7NoWumyumf/ihpkPRSpx8RrtoLDE8deoUdu/ejTZt2pRbjq2FRERERFRdWQ4eiJCQEJw6dUrToRCVSyOJYX5+PiZNmoSWLVvC1NS0zHJMComIiIioOtOtYwnzoAC8PWECCgoKNB2OVmFXUu2ikcRw+fLlyMjIQPPmzTVxeSIiIiKiKmPerQue5mRj2bJlmg6FqExVnhimpKTg66+/Rtu2bSEWl315thYSERERUU0g0tGBxdBB+Gr+fDx58kTT4WgNjjHULlWeGM6dOxcODg5wcHCo6ksTEREREWmEUeNG0HNriE/nzNF0KESlqtLE8ObNm9iwYQN8fHzKLcfWQiIiIiKqaSwH9MXGjRsRGRmp6VC0gqCG8YW1qcUwLi4OZ86cwZEjR3D16lXk5eVVqj5dFcVVIUEQ8MEHH6Bp06awsLCoqssSEREREWkFPZt6MOnYAe9Om4aznKWUlBAbG4vVq1dj69atePz4MQRBkB7T19dH586dMXnyZAwZMqTcYXulqbIWw6NHj+LKlSto2bJlueXYWkhERERENZVlr0BcDgvD0aNHNR2KxgkABEHFm6aflBp98MEH8Pb2RkxMDBYsWIDbt28jPT0d+fn5SE5OxsGDB+Hn54evvvoKLVq0wJUrVxSqv0paDAVBwCeffILmzZvDwMCgKi5JRERERKR1dIyNYRrQHR9+9BFu37gBkaj2dH2kyjExMcHDhw9Rt27dEsdsbGzQo0cP9OjRA/PmzcPhw4cRHx+Ptm3byl1/lbQY7tu3D7GxsfD09Cy3HFsLiYiIiKimM/friIePYrF//35Nh6JREojUstVUixYtKjUpLE2vXr0wePBghepXe2IokUjw6aefwtPTE7q6VTakkYiIiIhIK4kNDGAa0AMzZn8MiUSi6XA0hstVaBe1Z2o7d+5EUlISOnbsWG45thYSERERUW1h1skXCf+ewq5duzB06FBNh0PV0I4dO7Bt2zbExcUhPz9f5tjVq1cVrk+tLYaCIOCrr75C8+bN2VpIRERERPQ/Yj09mAb2wCeffy4zs2RtouqlKoq32uDnn3/G+PHjYWtri2vXrqFdu3aoW7cuHj58iODgYKXqVGtiePToUSQkJKBJkybllmNrIRERERHVNqbt2+FxUiKOHTum6VComlm1ahV+++03/Pe//4W+vj4++eQTHDt2DB988AHS09OVqlOtieHChQvRpEkTthYSEREREb1BrK8HE7+OmPftt5oORSNUvlTF/7baIC4uTjpUz8jICJmZmQCAMWPGYMuWLUrVqbbE8Nq1a7h06RKaNWtWbjm2FhIRERFRbWXe2Q9XLl1CRESEpkOhasTOzg4vXrwAADg5OeHixYsAgJiYGKW7JqstMVy8eDHc3d1haGiorksQEREREVVrOqYmMG7fBt98952mQ6lynJVUeT169MDevXsBAOPHj8fMmTMRGBiIESNGYNCgQUrVKRLUMNr1yZMnaNCgAQYPHgwLC4syy7G1kIiIiIhqu4InT5G0+CckJSaiXr16mg5H7TIyMmBhYYFmWz+BjrGBSusuysnD7ZFLkJ6eDnNzc5XWrU0kEgkkEol0yN7WrVtx/vx5NG7cGFOmTIG+vr7Cdapl8N/69etRv379cpNCIiIiIiIC9GzqwdDFGevXr8fs2bM1HU6VUUcLX21oMbx48SL27duH/Px8+Pv7o1evXhg5ciRGjhxZqXpV3pVUEASsXLkSbm5uqq6aiIiIiKhGMu7UAcv++3OtWrqCy1UobseOHejUqRNWrFiBtWvXok+fPvjxxx9VUrfKE8OTJ0/ixYsXcHFxKbccu5ESEREREb1i0sILz16k4tSpU5oOhbTYokWLMGnSJKSnpyM1NRULFizAwoULVVK3yhPDVatWwc3NDTo6OqqumoiIiIioRhLp6sK4nQ9WrVql6VCqjDYsV3H69Gn069cPDg4OEIlECAkJeSNGAV999RXs7e1hZGSEgIAA3L9/v9w6Fy1ahLZt28LMzAw2NjYYOHAg7t27J1OmW7duEIlEMtu7775bYbz37t3Dxx9/LM21PvroI2RmZuLJkyeKPfFSqDQxzM7Oxv79+9GoUSNVVktEREREVOOZtG2DkL17kZ2drelQao3s7Gx4e3tj5cqVpR5fsmQJfv75Z6xZswaXLl2CiYkJgoKCkJubW2adp06dwrRp03Dx4kUcO3YMBQUF6NmzZ4nf66RJk5CUlCTdlixZUmG8OTk5MpPq6Ovrw9DQEFlZWXI+47KpdPKZ/fv3w9zcHFZWVuWWYzdSIiIiIiJZ+g720LWwwIEDBzB8+HBNh6N2r1r4VD35jGLlg4ODERwcXEZdApYvX465c+diwIABAIANGzbA1tYWISEhZU72cvjwYZnH69evh42NDcLDw9GlSxfpfmNjY9jZ2SkWMIC1a9fC1NRU+riwsBDr16+HtbW1dN8HH3ygcL0qTQw3bdoER0dHiEQ1e9AnEREREZGqiUQiGLT2xh9/ra8ViaE6ZWRkyDw2MDCAgYFiS2PExMQgOTkZAQEB0n0WFhZo3749Lly4IPcsoOnp6QBQovHs77//xqZNm2BnZ4d+/frhyy+/hLGxcbl1OTk54ffff5fZZ2dnh40bN0ofi0QizSaGGRkZOHLkiNILKhIRERER1XYmrVsh9IdlyMjIqNHr8AHqXa7C0dFRZv+8efMwf/58hepKTk4GANja2srst7W1lR6riEQiwYwZM9CpUyc0b95cuv+tt96Cs7MzHBwccOPGDXz66ae4d+8edu3aVW59sbGxCj0HRagsMTxw4ACsra1haWlZbjl2IyUiIiIiKp2+rQ10rOvi4MGDlV6XrjaLj4+XSawVbS1UlWnTpiEyMhJnz56V2T958mTpz15eXrC3t4e/vz+io6M1tuyfyiafCQkJgb29vaqqIyIiIiKqlYyaNcXON2bHrIkENW0AYG5uLrMpkxgWj/9LSUmR2Z+SkiLX2MDp06dj//79OHHiBBo0aFBu2fbt2wMAHjx4UGaZrVu3VnjNYvHx8Th37pzc5QEVJYaFhYU4dOhQiSZbIiIiIiJSjFEzDxw+cgQSiUTToahVcVdSVW+q4urqCjs7O4SGhkr3ZWRk4NKlS/D19S3neQmYPn06du/ejX///Reurq4VXisiIgIAym1oW716NZo2bYolS5bgzp07JY6np6fj4MGDeOutt9C6dWs8f/68wuu+TiVdSS9cuAAAqFevXrnl2I2UiIiIiKh8hq4ueJabi+vXr6NVq1aaDqdGy8rKkmmli4mJQUREBKysrODk5IQZM2ZgwYIFaNy4MVxdXfHll1/CwcEBAwcOlJ7j7++PQYMGYfr06QBedR/dvHkz9uzZAzMzM+l4RAsLCxgZGSE6OhqbN29G7969UbduXdy4cQMzZ85Ely5d0KJFizJjPXXqFPbu3Yv//ve/mDNnDkxMTGBrawtDQ0OkpqYiOTkZ1tbWGDduHCIjI0uMjayIShLDvXv3okGDBhCLVbosIhERERFRrSPS0YFh40Y4cOBAzU4MX+/7qco6FRAWFobu3btLH8+aNQsAMHbsWKxfvx6ffPIJsrOzMXnyZKSlpcHPzw+HDx+GoaGh9Jzo6Gg8e/ZM+nj16tUAXi1i/7p169Zh3Lhx0NfXx/Hjx7F8+XJkZ2fD0dERQ4YMwdy5cyuMt3///ujfvz+ePXuGs2fP4tGjR3j58iWsra3RqlUrtGrVSumcTCQIiq72UZKHhwcaNGhQ4UBJthgSEREREVUs4/xF2Ny9j9v/62JYk2RkZMDCwgIN//ocOsaGFZ+ggKKcXDwcuxDp6ek1flZXVat0E19ycjLu37+P+vXrqyIeIiIiIqJaz7ipB+7evIm0tDRNh6I+6hhfqOLlL2qTSieGx48fh729vUxzamnYWkhEREREJB/dOpYwtKmH48ePazoUqiUqnRgeOnSowklniIiIiIhIMfpNPbB//35Nh6E2gqCejZRTqcRQEAQcO3aM3UiJiIiIiFTMqJkH9hzYDxVMCUJUoUolhvfu3UNaWprCU6ESEREREVH5DFxdkJGWjqioKE2Hohbavo5hdVJUVISIiAikpqYqXUelEsMTJ07AwcEBurrlr3rB8YVERERERIoR6+lB39UZJ06c0HQo6lE8WYyqt1pgxowZ+OOPPwC8Sgq7du2K1q1bw9HRESdPnlSqzkolhkeOHOH4QiIiIiIiNTFs3Ah7DhzQdBikZXbs2AFvb28AwL59+xATE4O7d+9i5syZ+OKLL5SqU+nEUBAEnDp1Cg4ODspWQURERERE5TBq1Ahnz5ypkeMMOfmM8p49ewY7OzsAwMGDBzFs2DC4u7tjwoQJuHnzplJ1Kp0Y3rp1Czk5OWwxJCIiIiJSEwNnR7x8+RK3b9/WdCikRWxtbXH79m0UFRXh8OHDCAwMBADk5ORAR0dHqTqVTgz//fdfODg4VHhhji8kIiIiIlKOSFcXhi41dJyhoKatFhg/fjyGDx+O5s2bQyQSISAgAABw6dIleHh4KFWn0onh0aNHYWNjo+zpREREREQkB333RgjhOEN6zfz587F27VpMnjwZ586dg4GBAQBAR0cHn332mVJ1lj+daBkkEgnOnDmDHj16KHVRIiIiIiKSj2HjRriwdj0kEgnE4krNHalV1LG8RG1armLo0KEyj9PS0jB27Fil61PqnXXjxg3k5+fD2tpa6QsTEREREVHFDBwbID8/X+lJRajmWbx4Mf755x/p4+HDh6Nu3bpo0KABbty4oVSdSiWGZ8+ehYODQ4XfWHB8IRERERFR5Yh0dGDo7ISzZ89qOhTV4/hCpaxZswaOjo4AgGPHjuHYsWM4dOgQevXqhY8//lipOpVKDM+dOwdLS0ulLkhERERERIrRdXXGuXPnNB2GShV3JVX1VhskJydLE8P9+/dj+PDh6NmzJz755BNcuXJFqTqVSgwvXLjAiWeIiIiIiKqIgbMTTtTEFkNSSp06dRAfHw8AOHz4sHRWUkEQUFRUpFSdCieGL168wKNHj5gYEhERERFVEQNnJyTHxyM1NVXToagOl6tQ2uDBg/HWW28hMDAQz58/R3BwMADg2rVraNSokVJ1KpwYXrlyBXXr1oWhoaFSFyQiIiIiIsXomJrCsG5dXL58WdOhkBZYtmwZpk+fjmbNmuHYsWMwNTUFACQlJWHq1KlK1anwchURERGoW7duheU48QwRERERkero1bfH9evXERQUpOlQVET0v03VddZ8enp6pU4yM3PmTKXrVLjFMDw8HObm5kpfkIiIiIiIFKdT3wFXr17VdBikJTZu3Ag/Pz84ODjg0aNHAIDly5djz549StWncGIYEREBKysrpS5GRERERETK0XdwwIWwME2HoTocY6i01atXY9asWQgODkZaWpp0whlLS0ssX75cqToVSgzz8/Px8OFDJoZERERERFVM38Eej2NjkZ+fr+lQSMP++9//4vfff8cXX3wBHR0d6f42bdrg5s2bStWpUGJ479496OrqwszMTKmLERERERGRcnSt6kCkq4OoqChNh6IabDFUWkxMDFq1alViv4GBAbKzs5WqU6HEMCoqCtbW1hCJasegTiIiIiIibSESi2FoXa8GJYYi9Wy1gKurKyIiIkrsP3z4MJo2bapUnQrNSnr//n3pVKjl4YykRERERESqJ65XF/fv39d0GKRhs2bNwrRp05CbmwtBEHD58mVs2bIFixYtwtq1a5WqU6HE8Pbt2zAxMVHqQkREREREVDk6Nja4ffu2psNQCUF4tam6ztpg4sSJMDIywty5c5GTk4O33noLDg4OWLFiBUaOHKlUnQolhnfu3IGFhYVSFyIiIiIiosrRtamHcCUnF6GaZfTo0Rg9ejRycnKQlZUFGxubStWn0BjDR48eceIZIiIiIiIN0atrhdj/rVlX7XHyGZUwNjaudFIIKJAYFhYW4vnz53KNMSQiIiIiItXTsbRAzmvr1lHtlJKSgjFjxsDBwQG6urrQ0dGR2ZQhd1fSlJQUCIIAY2NjpS5ERERERESVo2tuDkEiQUpKChwcHDQdTuWoYxbRWjIr6bhx4xAXF4cvv/wS9vb2Klk1Qu7E8PHjxzA1NYVYrFDvUyIiIiIiUhGRri70zUzx+PHj6p8YktLOnj2LM2fOoGXLliqrU+7EMCEhgeMLiYiIiIg0TNfCAgkJCZoOo9JEwqtN1XXWBo6OjhBUPAWr3M1/jx8/hpGRUYXluIYhEREREZH6iC3M8fjxY02HUXmcfEZpy5cvx2effYbY2FiV1Sl3i2F8fDwMDAxUdmEiIiIiIlKcyNIS8fHxmg6DNGjEiBHIycmBm5sbjI2NoaenJ3P8xYsXCtcpd2L46NEjLm5PRERERKRhupYWeFQTlqzg5DNKW7ZsmUomnHmd3IlhXFwcE0MiIiIiIg3TsbDAvahoTYdBGjRu3Lgyj718+VKpOuUeY5icnMylKoiIiIiINEzXwgLJKcmaDqPyOMZQaR988EGp+7Ozs9G7d2+l6pQ7MUxPT4ehoaFSFyEiIiIiItUQmxgjKyNT02GQBh04cADz5s2T2ZednY1evXqhsLBQqTrl6koqCAIyMjKgr6+v1EWIiIiIiEg1xEaGeJmVBUEQVD7OrEqpo4WvlrQYHj16FJ07d0adOnUwY8YMZGZmIigoCLq6ujh06JBSdcqVGGZlZUEikXBWUiIiIiIiDRMbGUNSVITs7GyYmppqOhzSADc3Nxw+fBjdu3eHWCzGli1bYGBggAMHDig9L4xciWFaWhpEIhFbDImIiIiINExs9Gp4V1paWvVODNliWCktWrTA/v37ERgYiPbt22P//v1yrTtfFrkSw9TUVBgZGVXvpmoiIiIiohpAJBZD18gQqampaNCggabDUR6Xq1BIq1atSs3HDAwMkJiYiE6dOkn3Xb16VeH65U4MOfEMEREREZF20DE0QmpqqqbDoCo0cOBAtdYvd1dSJoZERERERNpBx9gIaWlpmg6jUkTCq03VddZUb85CqmpyLVeRmprKiWeIiIiIiLSE2IgthrXZlStXcOnSpRL7L126hLCwMKXqlDsx1NPTU+oCRERERESkWqL/jTGs1rjAvdKmTZuG+Pj4EvsTEhIwbdo0peqUKzF8+fIldHR0lLoAERERERGplkhPHy9fvtR0GKQht2/fRuvWrUvsb9WqFW7fvq1UnXIlhgUFBZyRlIiIiIhISwg6OigoKNB0GNXe6dOn0a9fPzg4OEAkEiEkJETmuCAI+Oqrr2Bvbw8jIyMEBATg/v37Fda7cuVKuLi4wNDQEO3bt8fly5dljufm5mLatGmoW7cuTE1NMWTIEKSkpMgdt4GBQanlk5KSoKsr1zQyJcidGMrjmKe7UkEQEREREZH8RDpiJoYqkJ2dDW9vb6xcubLU40uWLMHPP/+MNWvW4NKlSzAxMUFQUBByc3PLrPOff/7BrFmzMG/ePFy9ehXe3t4ICgrCkydPpGVmzpyJffv2Yfv27Th16hQSExMxePBguePu2bMn5syZg/T0dOm+tLQ0fP755wgMDJS7ntfJlU7m5+dDLJYrhyQiIiIiInXT1UV+fr6mo6gUEdQwK6mC5YODgxEcHFzqMUEQsHz5csydOxcDBgwAAGzYsAG2trYICQnByJEjSz1v6dKlmDRpEsaPHw8AWLNmDQ4cOIA///wTn332GdLT0/HHH39g8+bN6NGjBwBg3bp1aNq0KS5evIgOHTpUGPePP/6ILl26wNnZGa1atQIAREREwNbWFhs3blTwVXhFrmyvqKhIqcqJiIiIiEgNdHRQWFio6Si0VkZGhsyWl5encB0xMTFITk5GQECAdJ+FhQXat2+PCxculHpOfn4+wsPDZc4Ri8UICAiQnhMeHo6CggKZMh4eHnByciqz3jfVr18fN27cwJIlS9CsWTP4+PhgxYoVuHnzJhwdHRV+roCcLYaceIaIiIiISIsUFSk9lkxrCKJXm6rrBEokR/PmzcP8+fMVqio5ORkAYGtrK7Pf1tZWeuxNz549Q1FRUann3L17V1qvvr4+LC0t5a63NCYmJpg8ebLc5Ssi17tJX18fEolEZRclIiIiIqJKKCyEvr6+pqOoHHUsL/G/+uLj42Fubi7dXRPWZN+7dy+Cg4Ohp6eHvXv3llu2f//+CtcvV2Io7xqGgbeiOAENEREREZGaCUUSrjNeDnNzc5nEUBl2dnYAgJSUFNjb20v3p6SkoGXLlqWeY21tDR0dnRIzhqakpEjrs7OzQ35+PtLS0mRaDV8vU5qBAwciOTkZNjY2GDhwYJnlRCKRUkMB5RpjqKenB0GoJatFEhERERFpOVFRUfVPDLV8gXtXV1fY2dkhNDRUui8jIwOXLl2Cr69vqefo6+vDx8dH5hyJRILQ0FDpOT4+PtDT05Mpc+/ePcTFxZVZb3E9NjY20p/L2pSdH0auFkMjIyNOQENEREREpCWEgnwYGRlpOoxqLysrCw8ePJA+jomJQUREBKysrODk5IQZM2ZgwYIFaNy4MVxdXfHll1/CwcFBpsXO398fgwYNwvTp0wEAs2bNwtixY9GmTRu0a9cOy5cvR3Z2tnSWUgsLC7zzzjuYNWsWrKysYG5ujvfffx++vr5yzUiqLnIlhnXq1OE6KUREREREWkJ4mYs6depoOoxKEQlqWK5CwfrCwsLQvXt36eNZs2YBAMaOHYv169fjk08+QXZ2NiZPnoy0tDT4+fnh8OHDMDQ0lJ4THR2NZ8+eSR+PGDECT58+xVdffYXk5GS0bNkShw8flpmQZtmyZRCLxRgyZAjy8vIQFBSEVatWKRR7aGgoQkND8eTJkxLzwfz5558K1QUokBgqM8UrERERERGpnuTly2qfGGqDbt26lTtkTiQS4ZtvvsE333xTZpnY2NgS+6ZPny5tQSyNoaEhVq5ciZUrVyoUb7Gvv/4a33zzDdq0aQN7e3uIRJWf3VWuxNDS0hK5ubmVvhgREREREVVeUc7LEssdVDtqnJW0pluzZg3Wr1+PMWPGqKxOuSafqVOnDhNDIiIiIiItUZTLFsPaLD8/Hx07dlRpnXInhi9fvuTMpEREREREGiZIJCisAWMMtX1WUm02ceJEbN68WaV1yt2VVBAE5Ofn14jFIYmIiIiIqivJy1c9+ap7V1JtmHymOimeGAd4tVzFb7/9huPHj6NFixYlli5ZunSpwvXLlRiamppCLBYjLy+PiSERERERkQZJXuZArKMDExMTTYdCVejatWsyj1u2bAkAiIyMVEn9ciWGIpEI5ubmyM/PV8lFiYiIiIhIOZKXuTAyNVXJTJQaJYhebaqus4Y6ceKEWuuXa4wh8GohRk5AQ0RERESkWZLsHJiam2k6DNKgCRMmIDMzs8T+7OxsTJgwQak65U4M7ezskJOTo9RFiIiIiIhINQrT02Fna6fpMCqPk88o7a+//sLLly9L7H/58iU2bNigVJ1ydSUFACcnp1IXbyQiIiIioqpTlJ6OJg0bajoM0oCMjAwIggBBEJCZmQlDQ0PpsaKiIhw8eBA2NjZK1S13Yujs7Ixbt24pdREiIiIiIlKNwrR0ODfz0nQYlcZZSRVnaWkJkUgEkUgEd3f3EsdFIhG+/vprpeqWOzF0dHREXl6eUhchIiIiIiLVENLS4OjoqOkwSANOnDgBQRDQo0cP7Ny5E1ZWVtJj+vr6cHZ2hoODg1J1y50YNmjQoNR+rG8KvBWFY54ls1ciIiIiIqo8SXoGGjRooOkwKk8dYwJreIth165dAQAxMTFwcnJS6cy0cieG9evXL3XmGyIiIiIiqjqF6emoX7++psOoPDV0Ja3piWExZ2dnldcp96ykDRo0QFZWFiQSicqDICIiIiKiigmFhcjPzKoZLYakVeRODG1tbSESibhkBRERERGRhhRmZEAkFsPW1lbToVQel6vQKnInhrq6uqhbty6ysrLUGQ8REREREZWhKC0dxpaW0NHR0XQoVMPInRgCr/qycpwhEREREZFmFDx/ARc1jC/TCLYYVkphYSGOHz+OX3/9VZqjJSYmKt2QJ/fkMwDQtGlTrmVIRERERKQhhU+ewser+q9hSJXz6NEj9OrVC3FxccjLy0NgYCDMzMywePFi5OXlYc2aNQrXqVCLYbNmzZCdna3wRYiIiIiIqPKKnjxBs2bNNB2GShQvcK/qrTb48MMP0aZNG6SmpsLIyEi6f9CgQQgNDVWqToVaDBs3bixX0yTXMiQiIiIiUj3J0+do3LixpsMgDTtz5gzOnz8PfX19mf0uLi5ISEhQqk6FWgzd3d3x7NkzCEItScWJiIiIiLSEIJEg99lTuLuzAaa2k0gkKCoqKrH/8ePHMDMzU6pOhRLDJk2aoLCwkBPQEBERERFVscIXqRAKi2pOYsjJZ5TWs2dPLF++XPpYJBIhKysL8+bNQ+/evZWqU6GupPr6+mjYsCFevHgBc3NzpS5IRERERESKy09MQgMXlxLdB6n2+fHHH9GrVy80a9YMubm5eOutt3D//n1YW1tjy5YtStWpUGIIAC1btkRMTAxcXFyUuiARERERESkuPzER3du00XQYKqOOyWJqy+Qzjo6OuH79Ov755x9cv34dWVlZeOeddzB69GiZyWgUoXBi6OPjg+vXryt1MSIiIiIiUk5RQiJad/PXdBikYQUFBfDw8MD+/fsxevRojB49WiX1KjTGEHjVYvj8+fMKywXeilIqICIiIiIiKqkgIQne3t6aDkO1OL5QYXp6esjNzVV5vQonhm3btsXz58/VEgwREREREZVUlJWF3OfP0a5dO02HQlpg2rRpWLx4MQoLC1VWp8JdSa2srODs7IwnT57AyclJZYEQEREREVHp8h7Fwc7REXXq1NF0KKqjjla+WtJqeOXKFYSGhuLo0aPw8vKCiYmJzPFdu3YpXKfCiSEA+Pr6IioqiokhEREREVEVyHsUh2A/P02HQVrC0tISQ4YMUWmdSiWGnTp1wuXLl1UaCBERERERla4w5hE69Ruo6TBUirOSKm/dunUqr1PhMYYA4Ofnh8TEREgkknLLcQIaIiIiIqLKEYqKkPsoDn41rcWQC9xrFaVaDFu0aAF9fX08e/YMNjY2qo6JiIiIiIj+Jy/+MfT19eHl5aXpUEhLuLq6QiQSlXn84cOHCtepVGIoFovRuXNnJCYmMjEkIiIiIlKj3PsP4NupE8RipTr7aS12JVXejBkzZB4XFBTg2rVrOHz4MGbPnq1UnUolhgDQs2dPLFu2TNnTiYiIiIhIDvlRDzDw/Q80HQZpkQ8//LDU/StXrkRYWJhSdSr9tUOPHj2QmJiIoqKicstxnCERERERkXKEwkLkxsSie/fumg5F9TjGUOWCg4Oxc+dOpc5VOjH09PSEsbExnj59qmwVRERERERUjrxHcTAyNkazZs00HQpVAzt27ICVlZVS5yrdlVQkEqFr165ISEiAnZ2dstUQEREREVEZXt5/AL/OncudaKTa4gL3SmvVqpXMe0IQBCQnJ+Pp06dYtWqVUnUqnRgCQFBQEJYsWVKZKoiIiIiIqAy596Mx4KOPNR0GaZmBAwfKPBaLxahXrx66desGDw8PpeqsVGLYvXt3fPjhhygqKoKOjk6Z5QJvReGYp3tlLkVEREREVKtICgqQH/uoZo4vBGclrYx58+apvM5KzXnbpEkTWFpaIjk5WVXxEBERERERgLyYWJhZWMDdvYY2sHDyGaVdvXoVN2/elD7es2cPBg4ciM8//xz5+flK1VmpxFAkEiE4OBiPHz+uTDVERERERPSGl3ej0LdXr5o5vpAqZcqUKYiKerX6w8OHDzFixAgYGxtj+/bt+OSTT5Sqs9KrZPbt25cthkREREREKlZwLwrBwcGaDkN92GKotKioKLRs2RIAsH37dnTt2hWbN2/G+vXrq365imKBgYF4+vQpsrKyyi/H9QyJiIiIiORSlJWFlwmJCAgI0HQopIUEQYBEIgEAHD9+HL179wYAODo64tmzZ0rVWenE0NLSEi1btmR3UiIiIiIiFXkZdR/OjRrB1tZW06GoTfHkM6reaoM2bdpgwYIF2LhxI06dOoU+ffoAAGJiYpR+z1Q6MQReTZeamJioiqqIiIiIiGq9vFt3MXTAAE2HQVpq+fLluHr1KqZPn44vvvgCjRo1AvBqgfuOHTsqVWellqso1qdPHyxcuBASiQRisUpyTSIiIiKiWkmQSJB79y4GLFuu6VDUiwvcK61FixYys5IW++GHH8pdRrA8KsniWrZsCSMjI6SkpJRbjuMMiYiIiIjKl/coDroiMTp06KDpUEhLxcfHywzlu3z5MmbMmIENGzZAT09PqTpVkhiKxWL06tUL8fHxqqiOiIiIiKjWyrl1B0FBPaGrq5LOfVpLG8YYZmZmYsaMGXB2doaRkRE6duyIK1eulFl+3LhxEIlEJTZPT09pmfnz55c47uHhoezLVKq33noLJ06cAAAkJycjMDAQly9fxhdffIFvvvlGqTpV1u+zX79+FbYYEhERERFR+V5G3sKwwUM0HYb6acFyFRMnTsSxY8ewceNG3Lx5Ez179kRAQAASEhJKLb9ixQokJSVJt/j4eFhZWWHYsGEy5Tw9PWXKnT17VrHAKhAZGYl27doBALZt24bmzZvj/Pnz+Pvvv7F+/Xql6lRZYtinTx88e/YMaWlp5ZZjd1IiIiIiotLlJ6eg6Nlz6SyTpJyMjAyZLS8vr0SZly9fYufOnViyZAm6dOmCRo0aYf78+WjUqBFWr15dar0WFhaws7OTbmFhYUhNTcX48eNlyunq6sqUs7a2VunzKygogIGBAYBXy1X0798fAODh4YGkpCSl6lRZYmhubo6goCA8fPhQVVUSEREREdUq2Vcj4B8YAHNzc02Hon5qbDF0dHSEhYWFdFu0aFGJyxcWFqKoqAiGhoYy+42MjORu4fvjjz8QEBAAZ2dnmf3379+Hg4MDGjZsiNGjRyMuLk6u+uTl6emJNWvW4MyZMzh27Bh69eoFAEhMTETdunWVqlOlU4j+5z//QVxcHAShlkwHRERERESkIoIgIO/adbwzdpymQ6n24uPjkZ6eLt3mzJlTooyZmRl8fX3x7bffIjExEUVFRdi0aRMuXLggV6tbYmIiDh06hIkTJ8rsb9++PdavX4/Dhw9j9erViImJQefOnZGZmamy57d48WL8+uuv6NatG0aNGgVvb28AwN69e6VdTBUlElSYxWVnZ8Pa2hp9+vSpMFM95umuqssSEREREVV7eQmJePrzSqQ+ew4TExNNh6M2GRkZsLCwQLOpC6FjYFjxCQooysvF7VWfIz09Xa5W1+joaEyYMAGnT5+Gjo4OWrduDXd3d4SHh+POnTvlnrto0SL89NNPSExMhL6+fpnl0tLS4OzsjKVLl+Kdd95R+DmVpaioCBkZGahTp450X2xsLIyNjWFjY6NwfSptMTQxMUHfvn3x4MEDVVZLRERERFTjZV8Jw8B+/Wt0Uqht3NzccOrUKWRlZSE+Ph6XL19GQUEBGjZsWO55giDgzz//xJgxY8pNCgHA0tIS7u7uKs+RBEFAeHg4fv31V2lrpL6+PoyNjZWqT+Wr0U+dOhXR0dEoKipSddVERERERDWSUFiInMvhmDp1qqZDqTpaMCtpMRMTE9jb2yM1NRVHjhzBgAEDyi1/6tQpPHjwQK4WwKysLERHR8Pe3l654Erx6NEjeHl5YcCAAZg2bRqePn0K4FUX048//lipOlWeGHbr1g1WVlaIjY0ttxxnJyUiIiIieiX7xk1YW9VB165dNR1KrXLkyBEcPnwYMTExOHbsGLp37w4PDw/pLKNz5szB22+/XeK8P/74A+3bt0fz5s1LHPv4449x6tQpxMbG4vz58xg0aBB0dHQwatQolcX94Ycfok2bNkhNTYWRkZF0/6BBgxAaGqpUnSpPDEUiEaZNm4bo6GhVV01EREREVCPlnLuIme9/AJFIpOlQqow2LHCfnp6OadOmwcPDA2+//Tb8/Pxw5MgR6OnpAQCSkpJKzCianp6OnTt3ltla+PjxY4waNQpNmjTB8OHDUbduXVy8eBH16tVT6nUqzZkzZzB37twS3VhdXFzKXIOxIrqqCOxN48aNw9y5c5Geng4LCwt1XIKIiIiIqEYoePIUubGPMG7cOE2HUrUq0fWz3DoVMHz4cAwfPrzM46UtFm9hYYGcnJwyz9m6datiQShBIpGUOnTv8ePHMDMzU6pOlbcYAoCNjQ0GDx6M27dvl1uO3UmJiIiIqLZLP3Ua/QcOVGmLEtVsPXv2xPLly6WPRSIRsrKyMG/ePPTu3VupOtWSGALAZ599hqioKOTm5qrrEkRERERE1VpRVjZyLoVh3ty5mg5FM7Rg4pnq6Mcff8S5c+fQrFkz5Obm4q233pJ2I128eLFSdap0HcM3de3aFTk5OWjdunW55bimIRERERHVRqmHjsAj6yUunDmj6VCqTPE6hp5TFkJHX8XrGObn4tav8q9jWJ0VFhbin3/+wfXr15GVlYXWrVtj9OjRMpPRKEItYwyLff755xg2bBhatGgBXV21XoqIiIiIqFqR5Bcg++x5fL1zl6ZD0QhlJouRp86arqCgAB4eHti/fz9Gjx6N0aNHq6RetXUlBV71fa1fvz7u3btXbjmONSQiIiKi2ibr0mU0sHdAYGCgpkOhakRPT08tw/XUmhiKRCJ88803iIyMRGFhoTovRURERERUbUjyC5B5LBRLFi6sVUtUyNCiBe6rm2nTpmHx4sUqzbHUOsYQeDWVqqenJ+rUqQMvL69yy3KsIRERERHVBuknT8Py9l3cv30HYrFa22q0TvEYw+aT1DPGMPL3mj/GsHghe1NTU3h5ecHExETm+K5dindPVvvAP7FYjMWLF2PMmDFo2rQpxxoSERERUa0myctD1vF/sf7vzbUuKXwdxxgqz9LSEkOGDFFpnWpvMQQAQRDQqlUrGBoawtvbu9yybDUkIiIiopos7fi/sIuNx63r12tlN9LiFkOvd9TTYnjzj5rfYqgOVfIVhUgkwuLFixEZGYm8vLyquCQRERERkdYpys5BVuhJLP/xx1qZFFLlSCQSLF68GJ06dULbtm3x2Wef4eXLlyqpu8rarnv27Il27dohIiKi3HKcoZSIiIiIaqq0I8fQrm1b9OzZU9OhaFxxV1JVbzXZd999h88//xympqaoX78+VqxYgWnTpqmk7ipLDEUiEX7++WfcuXMH6enpVXVZIiIiIiKtUPDkKbLPX8SaX37RdChUTW3YsAGrVq3CkSNHEBISgn379uHvv/+GRCKpdN1VOtq1efPmePvttxEeHl5uObYaEhEREVFNk7ZnP8aMGYPmzZtrOhTtwOUqFBYXF4fevXtLHwcEBEAkEiExMbHSdVf5FKELFixAw4YNkZiYCAcHh6q+PBERERFRlXt5/wEKHsZgcei/mg6FqrHCwkIYGspO2KOnp4eCgoJK113liaGtrS3mzZuHpUuXol+/fmVO0Rt4K4ozlBIRERFRtScUFSF9x258M28ebGxsNB2O9lBHC18NbzEUBAHjxo2DgYGBdF9ubi7effddmbUMtXIdw9LMmDEDa9euRWRkJFq0aKGJEIiIiIiIqkTGydOoZ2yCmTNnajoUqubGjh1bYt9//vMfldStkcRQX18fv//+O3r16oWGDRvC1NS01HJsNSQiIiKi6qwwNQ0ZR45j99Gj0NPT03Q4WoUL3Ctu3bp1aqu7SiefeV3Xrl0xaNAghIWFlVuOE9EQERERUXWVtisEAwcORJcuXTQdClG5NJYYAsCyZcuQmJiIuLg4TYZBRERERKRyObduozA6Br+sWKHpULQTZyXVKhpNDG1tbbF06VJcvHgR+fn5ZZZjqyERERERVSeSly+Rtm0nVixbBltbW02Ho5VEgqCWjZSj0cQQACZOnAhvb29cuXJF06EQEREREanEiz374ePVAhMnTtR0KERy0XhiKBKJsH79ejx8+BAJCQlllmOrIRERERFVBy/vRSHv2nVs3rgRIpFI0+FoL3Yl1SoaTwwBwMXFBUuWLMGFCxfKXZyRySERERERaTNJXh5St27H0h9/hLOzs6bDIZKbViSGADB16lQ0adKEXUqJiIiIqNpK3b0XzRu747333tN0KFqveLkKVW+kHK1JDMViMbZs2YLY2FjExsaWWY6thkRERESkjbKv30T+jUjs2rYNYrHW3GYTyUWr3rHOzs747bffcO7cOWRnZ5dZjskhEREREWmTwrR0pG7djnVr18LJyUnT4VQPHGOoVbQqMQSAUaNGYcCAATh79iwETjdLRERERFpOkEjwYuNmDBowACNHjtR0OERK0brEEADWrFkDiUSCGzdulFmGrYZEREREpA3SQ0/CLDcXa3/9VdOhVCscY6hdtDIxNDMzw44dOxAREYGkpKQyyzE5JCIiIiJNevkgGplHj2PPzl0wMzPTdDjVC7uSahWtTAwBoF27dvjpp59w8uRJjjckIiIiIq1TmJaOp+s2YsWyZWjXrp2mwyGqFK1NDIFXS1j069cPp06dQlFRkabDISIiIiICAAiFhXi+bgOG9OvHpSmUxK6k2kWrE0ORSITff/8d5ubm5a5vyFZDIiIiIqpKqSH74GBohPV//AGRSKTpcIgqTasTQwAwNjbG3r17ERMTg/v375dZjskhEREREVWFzCvhyL8agSMHDsDIyEjT4VRfHGOoVbQ+MQQANzc3bN++HefPn0dKSkqZ5ZgcEhEREZE65cbEIm3bTuzeuRMNGzbUdDhEKlMtEkMACAoKwuLFi/Hvv/8iKytL0+EQERERUS1T+CIVz9aux08//ICgoCBNh1MjcHyh9qg2iSEAfPDBBxg+fDj+/fdfFBQUlFqGrYZEREREpGqSvDw8+/1PvDVsGN5//31Nh0OkctUqMRSJRFi9ejXc3Nxw5swZCELpXwswOSQiIiIiVREkEjzfuBnNnV3w+6+/crIZVREE9WyklGqVGAKAnp4e9uzZg/z8fISFhZVZjskhEREREalC2r6DMEtNx6F9+6Cnp6fpcGoMLlehXapdYggAdevWxbFjxxAdHY3bt2+XWY7JIRERERFVRsbZ8ygIu4pT//6LunXrajocIrXR1XQAynJ3d8eBAwcQGBgIU1NTODk5lVou8FYUjnm6V3F0RERERFQdvd6wEBcXh5MnT+L48eNo3LixBqOqodSxvARbDJVWbRNDAPDz88Off/6JCRMmoHfv3rC2ti61XPEHnAkiERERERUrr3fZs2fPcPLkSaxbtw6dOnWqwqiINKNadiV93ahRo/Dll18iNDS0wmUs2LWUiIiIiCqSlZWF48eP46uvvsLIkSM1HU6NJZKoZyPlVPvEEADmzJmDYcOG4dixY8jNzS23LJNDIiIiIirrnjA3NxfHjh3DiBEj8Nlnn1VxVESaUyMSQ5FIhDVr1qBDhw4IDQ0tc43DYoG3opggEhEREdVSZd0HFhQUIDQ0FB06dMDq1au5LIW6CWraSCk1IjEEAB0dHWzbtg1OTk44deoUJJKK25GZHBIRERHVLmXd/0kkEpw8eRLOzs7Ytm0bdHR0qjgyIs2qMYkhABgaGuLgwYPQ19fHuXPnIFSwwCUnoyEiIiIiQRBw7tw56b2koaGhpkOqFbiOoXapUYkhAFhaWiI0NBQZGRm4fPmyNDk85uleYiMiIiKi2qO01kJBEHD58mVkZGTg+PHjsLCw0EBktZQgqGdTQGZmJmbMmAFnZ2cYGRmhY8eOuHLlSpnlT548CZFIVGJLTk6WKbdy5Uq4uLjA0NAQ7du3x+XLl5V6iapSjUsMAcDBwQGnTp1CUlISwsPDmQQSERER1XJldSENDw9HUlISTp06BQcHhyqOijRt4sSJOHbsGDZu3IibN2+iZ8+eCAgIQEJCQrnn3bt3D0lJSdLNxsZGeuyff/7BrFmzMG/ePFy9ehXe3t4ICgrCkydP1P10KqVGJoYA4ObmhlOnTiE2NhbWm/7heEIiIiKiWqqs+8Br164hNjYWp06dgpubWxVHRZruSvry5Uvs3LkTS5YsQZcuXdCoUSPMnz8fjRo1wurVq8s918bGBnZ2dtJNLP7/tGrp0qWYNGkSxo8fj2bNmmHNmjUwNjbGn3/+qexLVSVqbGIIAB4eHjh58iTu3buHmzdvMjkkIiIiIgDAjRs3EBUVhZMnT8LDw0PT4ZCKZWRkyGx5eXklyhQWFqKoqKjEmFIjIyOcPXu23PpbtmwJe3t7BAYG4ty5c9L9+fn5CA8PR0BAgHSfWCxGQEAALly4UMlnpV41OjEEAC8vL/z777+4efMmbt26xeSQiIiIqBYp7d7v1q1biIyMxL///gsvLy8NREUA1LpchaOjIywsLKTbokWLSlzezMwMvr6++Pbbb5GYmIiioiJs2rQJFy5cQFJSUqkh29vbY82aNdi5cyd27twJR0dHdOvWDVevXgUAPHv2DEVFRbC1tZU5z9bWtsQ4RG2jq+kAqoKPjw+OHj2Knj17QiKRIPB/+zn2kIiIiKjmKi0pvHnzJm7evIljx46hdevWGoiKqkJ8fDzMzc2ljw0MDEott3HjRkyYMAH169eHjo4OWrdujVGjRiE8PLzU8k2aNEGTJk2kjzt27Ijo6GgsW7YMGzduVO2TqGI1vsWwmK+vL06ePIlbt27h2rVrALiOIREREVFNVdp93rVr13Dr1i2cPHkSHTp00EBU9Dp1jjE0NzeX2cpKDIvnJcnKykJ8fDwuX76MgoICNGzYUO7n0a5dOzx48AAAYG1tDR0dHaSkpMiUSUlJgZ2dnXIvVBWpNYkh8Krl8OzZs4iOjkZYWBgEQWBySERERFTDvHl/JwgCwsLC8PDhQ5w9exY+Pj4aioy0lYmJCezt7ZGamoojR45gwIABcp8bEREBe3t7AIC+vj58fHwQGhoqPS6RSBAaGgpfX1+Vx61KtaIr6eu8vLxw/vx5dO3aFUVFRWjXrp30jwe7lhIRERFVb6UlhZcuXUJKSgrOnTsn0w2QNEyJdQflqlMBR44cgSAIaNKkCR48eIDZs2fDw8MD48ePBwDMmTMHCQkJ2LBhAwBg+fLlcHV1haenJ3Jzc7F27Vr8+++/OHr0qLTOWbNmYezYsWjTpg3atWuH5cuXIzs7W1qntqp1iSHwqm/whQsX0LlzZ5w7dw4dO3aEWCxG4K0oJodERERENYREIsH58+eRnp6OCxcuwNXVVdMh0WsUXV5C3joVkZ6ejjlz5uDx48ewsrLCkCFD8N1330FPTw8AkJSUhLi4OGn5/Px8fPTRR0hISICxsTFatGiB48ePo3v37tIyI0aMwNOnT/HVV18hOTkZLVu2xOHDh0tMSKNtRIKg6jS9+khMTIS/vz/y8/PRtWtX6RuAySERERFR9fN6a2FBQQFOnjwJQ0NDHD9+nIvXa5GMjAxYWFjAN/gb6OoZVnyCAgoLcnHh0FdIT0+XmXyGKlarxhi+ycHBARcuXICdnR2OHj2K3NxcAK/+qHDsIREREVH18fq9W25uLo4cOSK912NSqKXUuFwFKa5WJ4YAYGlpidDQULRt2xYHDx5EZmam9BiTQyIiIiLt9/o9W0ZGBg4ePIj27dsjNDQUFhYWGoyMqPqo9YkhABgaGmLHjh0YNmwYDhw4gGfPnkmPsfWQiIiISHu9fp/27NkzHDx4EMOHD8eOHTvKXKKAtIM6l6sgxTEx/B8dHR2sXLkSc+bMwcGDB/Ho0SOZ40wOiYiIiLTL6/dnsbGxOHjwIObMmYNffvkFYjFvc4kUUStnJS2LSCTCZ599hkaNGmHMmDFo1aoVmjdvDpFIBABc1oKIiIhISxTflwmCgMjISFy7dg2bNm3CkCFDNBwZyU0ivNpUXScphYlhKYYOHQonJyf07t0bmZmZ6NChg8y3TkwQiYiIiDSn+F5MIpHg4sWLSE5OxunTp9G2bVsNR0ZUfbGNvQzt2rXD1atXUVhYiOPHjyM/P79EGXYvJSIiIqpaxfdf+fn5OH78OAoLCxEeHs6ksDrirKRahYlhOZycnHDp0iU0btwYBw4cQFpaWokynJyGiIiIqGoU33OlpaVh//79aNy4MS5fvgwnJycNR0bKEEENk89o+klVY0wMK2Bubo5Dhw5hzJgx2L9/P+Lj40stx+SQiIiISH2K77Xi4uKwb98+jB07FocOHYKZmZmGIyOqGTjGUA46Ojr46aef0KpVK0yaNAne3t5o0aKFdFKaYhx7SERERKR6gbeiIAgCbty4gevXr2Pt2rUYPXq0psOiyhKEV5uq6ySlMDFUwH/+8x94eHigb9++SEtLQ6dOnaCrW/IlZIJIREREpBqBt6JQWFiIc+fOIT09HWfPnoWPj4+mwyKqcdiVVEFt2rRBRESEtItpZmZmmWXZvZSIiIhIeYG3opCZmYlDhw7B3Nwc165dY1JYg3CBe+3CxFAJdnZ2OHPmDPr27Yu9e/eWOe4Q4OQ0RERERMoIvBWF+Ph47N27F/369cOZM2dgZ2en6bCIaix2JVWSgYEBfvvtN3Tq1AnvvvsuvLy80LJlyxLjDouxeykRERGRfAIi7+HqtWuIjIzEr7/+irffflvTIZE6qGN5CbYYKo0thpU0duxY6cKqoaGhyMvLK7c8WxCJiIiIytY5/AaOHz+OJ0+e4OLFi0wKiaoIE0MV8Pb2xvXr19G4cWPs27cPz549q/AcJodEREREslqdOo99+/ahSZMmuH79Ory9vTUdEqmRSBDUspFymBiqSJ06dXDw4EHMnDkTBw4cwK1btyBU8MZk6yERERERIAgC7P/ZhQMHDmDWrFk4cOAALC0tNR0WqZtETRsphWMMVUgsFmPu3Lno3Lkzhg8fjidPnqBTp07Q19cv9zyOPyQiIqLaSvLyJfTW/oUHGRk4evQounTpoumQiGolthiqQdeuXREZGQlHR0fs3bsXT58+les8tiASERFRbZIXF4/MJcvg7OyMyMhIJoW1DLuSahe2GKpJvXr1cOzYMXz//ff45ptv4OPjA09PzzJnLX0dWxCJiIioulDmS21BEHD79m2EhYVh3rx5+PTTTyEWs72CSJOYGKqRWCzG559/ji5dumDYsGFISUlBp06dYGhoKNf5TBCJiIhImymTFObm5uLcuXPIzs5GaGgoOnXqpIbIqFrgchVahV/NVAE/Pz/cunULzZo1Q0hICBISEhQ6n11MiYiISNsoc2/y+PFjhISEoFmzZrh16xaTQiItwhbDKmJlZYU9e/bg999/x4cffggPDw/4+PhAR0dH7jrYgkhERESapkxCWFRUhPDwcNy9exc///wzJk6cKNfwGqrhBOHVpuo6SSlsMaxCIpEIkydPxrVr11BQUICDBw8iLS1N4XrYgkhERESaoMz9R1paGg4ePIiCggJcu3YNkyZNYlJIpIWYGGqAh4cHwsPDMWzYMOzduxe3b9+ucM3D0jBBJCIioqqi6D1H8QQze/fuxbBhwxAeHg4PDw81RUfVkUhQz0bKYVdSDTEwMMCKFSvQt29f/Oc//0FCQgI6deoEY2Njuc5nd1IiIiKqCsp8CZ2Tk4Pz588jKysLe/fuRWBgoBoio2qPXUm1ChNDDQsMDMTdu3cxZcoU7N69Gx07doSrq6v0OBNAIiIi0hRlksKHDx/iwoUL6N27N3799VfUqVNHDZERkaoxMdQCderUwbZt27BlyxZMmTIFjx8/Rs7YtyA2MtJ0aERERFRLKZoU5ufn49KlS0hISMDatWsxcuRINUVGNYVI8mpTdZ2kHI4x1CKjRo3CnTt3YGtri4zFS/HyHscPEhERUdVSZg6Dx48fY8+ePbCzs8Pt27eZFBJVQ0wMtUz9+vURGhqKBQsWIH3dRhj/tg6S3FxNh0VERES1gDKthOfOncPJkyexYMEChIaGon79+mqKjmqc4jGGqt5IKUwMtZBYLMbUqVNx+/ZtWFlZIeP7n9D0yL+aDouIiIhqqMq0ElpZWeHWrVuYOnUql6EgqsaYGGoxFxcXnDx5Et999x1OnDgB49/Woeu1SE2HRURERDVIZVoJFy5ciFOnTsHFxUU9wVHNJqhpI6UwMdRyYrEY7733nrT1MCQkBE0OHef6hURERFRpit5PPHr0CCEhIahbty5u3bqFd999l62ERDUEZyWtJlxcXHDq1Cn8/vvv+Pjjj/Hw4UN0ysmBsbExl7QgIiIihSiaEObk5ODy5ctISkrCTz/9hIkTJzIhpEoTCQJEKh4TqOr6ahO2GFYjIpEIkydPRlRUFLy8vLBr1y7cuXMHAZH32IJIREREclHknkEQBNy5cwc7d+6El5cXoqKiMGnSJCaFRDUQWwyrITs7O+zYsQMHDhzApEmTEBsbC19fX+kferYgEhER0ZsU/RI5NTUVFy5cQFFREbZv344+ffqoKTKqtdQxiyhbDJXGFsNqrE+fPoiKisKgQYMQEhKCsLAwFBYWKjWzGBEREdVcitwXFBQUICwsDHv27MHgwYMRFRXFpJDUQwAgUfHGvFBpTAyrOVNTU6xYsQLnz58HAOzevRsPHz6EIAhMEImIiGo5Re4FBEHAw4cPsXv3bohEIly4cAErVqyAqampmqMkIm3ArqQ1hI+PD65cuYL169fj448/xoMHD9CuXTtYWlqyiykREVEtpMiXw2lpabh8+TLS09Px008/Ydy4cRCL2X5A6sXJZ7QLP/E1iFgsxoQJExAdHY3g4GCEhITgypUrKCgoAPD/3xqyFZGIiKjmUuR/fUFBAa5cuYKQkBD07t0bDx8+xIQJE5gUEtVC/NTXQHXq1MGqVatw+fJl6OvrY+fOnbh79y4kEom0DBNEIiKimkWR/+0SiQR3797Fzp07oa+vj8uXL2PlypWwtLRUb5BErxPw/xPQqGzT9JOqvtiVtAbz9vbGhQsXsGPHDnz00Ue4e/cuWrduDUdHR+k006//A2FXUyIioupJkXGE8fHxuHr1KgwNDbF27VoMHTqUy08QERPDmk4kEmHYsGEYMGAAVq1ahXnz5qFOnTrw8fGBtbW1TFmORSQiIqpeFOn98+zZM4SHhyMtLQ1ff/013nvvPejr66sxOqIKcLkKrSISBL56tUlaWhoWLFiAX375Ba6urmjVqhXMzMzKLM8kkYiISPsokhBmZmbi2rVriImJwfvvv48vvviCXUZJozIyMmBhYYEe3p9CV8dApXUXFuXh3+uLkZ6eDnNzc5XWXdNxjGEtY2lpiR9//BFRUVFo1aoVduzYgXPnziEzM7PU8hyLSEREpD0U+b+ckZGBs2fPYseOHWjVqhWioqLwww8/MCkk7aHqNQyLN1IKE8NaysnJCZs3b8aNGzfQvHlz7NixA2fPnkVGRkap5TmjKRERkWYpkhCeO3cOO3fuRIsWLXDz5k1s3rwZTk5Oao6QSDHFy1WoeiPlcIxhLefh4YGtW7fi3r17mD9/Pnbu3Al3d3d4eXmV2fzOCWuIiIiqjiIJ4Y0bN3D//n0MGTIEO3fuRJMmTdQcHRHVFGwxJABAkyZNsGXLFty8eRNeXl7YuXMnzp49i9TU1HLPY0siERGResj7/zU1NRVnz57Fzp074e3tjcjISGzZsoVJIWk/lS9VofhkNpmZmZgxYwacnZ1hZGSEjh074sqVK2WW37VrFwIDA1GvXj2Ym5vD19cXR44ckSkzf/58iEQimc3Dw0Opl6gqscWQZBQniFFRUViwYAG2bt0KJycnNG3aFPb29uVOZ/3mPy+2JhIRESlOnmRQEAQkJSXhzp07iIuLw8iRI7F79264u/N/L5EiJk6ciMjISGzcuBEODg7YtGkTAgICcPv2bdSvX79E+dOnTyMwMBALFy6EpaUl1q1bh379+uHSpUto1aqVtJynpyeOHz8ufayrq/1pF2clpXIlJSVhxYoVWLVqFczNzeHh4QFXV1eIxYo1NjNJJCIiKp88CaFEIkFMTAzu3r2LjIwMTJs2DR988AHs7e2rIEIi1SieldS/2cdqmZU09PaPcs1K+vLlS5iZmWHPnj3o06ePdL+Pjw+Cg4OxYMECua7p6emJESNG4KuvvgLwqsUwJCQEERERSj8PTdD+1JU0yt7eHt9//z3mzp2LP/74Az/88AOuXbsGDw8PNGnSBHp6enLVw9ZEIiKi0smTEBYUFODevXu4e/cujIyM8Mknn2DChAkwNTWtggiJqp83J1Q0MDCAgYFsElpYWIiioiIYGhrK7DcyMsLZs2fluo5EIkFmZiasrKxk9t+/fx8ODg4wNDSEr68vFi1apPUTQLHFkBRSWFiIXbt24bvvvsP9+/fRuHFjNG3aFBYWFkrXySSRiIhqI3kSwvT0dNy5c0f6P/eLL77A4MGDq0W3NKKySFsMm36knhbDOz+V2D9v3jzMnz+/xP6OHTtCX18fmzdvhq2tLbZs2YKxY8eiUaNGuHfvXoXXW7JkCb7//nvcvXsXNjY2AIBDhw4hKysLTZo0QVJSEr7++mskJCQgMjKy3PXDNY2JISlFEARcvHgRS5cuRUhICJycnODu7g5HR8dyxyFWhEkiERHVZPKOH4yPj0dUVBTi4uIwePBgzJgxAx06dKjU/1gibVEViWF8fLxMV9LSWgwBIDo6GhMmTMDp06eho6OD1q1bw93dHeHh4bhz506519q8eTMmTZqEPXv2ICAgoMxyaWlpcHZ2xtKlS/HOO+8o/+TUjF83kVJEIhF8fX2xfft2JCUl4ddff8XKlStx5coVNG7cGE2aNCn1w1cRdjklIqKaSJ6EMC8vD/fu3cP9+/chEokwbdo0vPvuu7Czs6uCCIk0QAJA1d91/G+Be3Nz8wrHGAKAm5sbTp06hezsbGRkZMDe3h4jRoxAw4YNyz1v69atmDhxIrZv315uUggAlpaWcHd3x4MHD+R+GprAxJAqzd7eHvPnz8cXX3yBXbt2YenSpdi6dSvc3Nzg7u6OevXqKf0NZ1n/SJkwEhFRdVBRQigIAp4+fYqoqChER0ejZcuWWLVqFQYNGiT3OH6i6kodC9IrW5+JiQlMTEyQmpqKI0eOYMmSJWWW3bJlCyZMmICtW7fKTFpTlqysLERHR2PMmDFKxVZV2JWU1CIiIgKrV6/Gpk2bYG5uDjc3NzRq1EipVkRFMGEkIiJtUFFCmJeXh/v37+Phw4fIzMzE6NGjMXXqVHh7e1dRhESaU9yVNMB9llq6kh6PWirXrKQAcOTIEQiCgCZNmuDBgweYPXs2DA0NcebMGejp6WHOnDlISEjAhg0bALzqPjp27FisWLECgwcPltZjZGQknXPj448/Rr9+/eDs7IzExETMmzcPERERuH37NurVq6fS5/t/7d1PTFzlHsbxhyIyQP9JQ2daihSmpOm1RtNGm1EXNaDUkoYFDdSFtCGYmNj2UhOjbKyJsr7tvZhoakwDC1OiC9JQITgN1ZpJbGqM1hsSilMoowy1wqBMpYVz7oI4Xi7cto5nzhx6vp/kLHjzzjvvWZFnfu8fKxEMkVJTU1Pq6OhQa2urLl26JL/fr7KyMnm9Xlv3SRAYAQB2uF0gNE1T0WhUAwMDGhwc1NatW3Xw4EHV1tYqLy/PxlkC6ZUIhmVHUhMMB/5x18Gwo6NDzc3NGhkZUX5+vmpqatTS0pIIeQcOHNCVK1fU19cnSdq5c6fOnTu3YJz9+/fr5MmTkqR9+/bps88+0/Xr11VQUKCnnnpKLS0t8vv9lr1nKhAMYZtvvvlG7777rtrb25Wbm6uSkhKVlZUpNzc3bXMiMAIA/qo7VQfj8bgGBgYUDocVj8dVX1+vl156SQ8//LBNMwScxUnBEH8gGMJ28XhcH3/8sU6cOKFQKKQHH3xQJSUlKi4udszx2wRGAMCd3C4QzszMaGhoSOFwWMPDwwoEAnrxxRdVU1OT1h9EASdIBEN/U2qC4eAxgmESCIZIq+HhYbW1tenEiRP66aefVFpaKr/fr7Vr1zrySG4CIwC4252Wio6Njeny5csKh8MqKChQY2Oj6uvrHX+xNWAngqEzEQzhCKZpKhQK6YMPPtCpU6fk8XhUVFQkv9+v/Pz8dE8vpQibAOB8twuEP//8swYHBzU8PKzp6WnV1dWpoaFBgUDAkT9yAumWCIalf09NMPz+OMEwCQRDOM5vv/2mTz75RO3t7Tpz5oxWr16dCIm/bwTG3SF0AkDybhcGY7GYBgcHdfXqVU1MTKiqqkovvPCCdu3aJY/HY+MsgaWHYOhMBEM42q+//qrTp0+rra1NwWBQBQUFKiws1MaNG7V69Wp+iU0jQicAp7ubS+XvlmmampiY0JUrVxSJRHTt2jWVl5ervr5ee/bs0fLlyy37LuBe90cwPKz7llkcDI1pffr9PwmGSSAYYskYHx9XZ2enOjo6FAwGtWrVKq1fv17FxcW2X3+B1CN4AulnZbBain6/XmJoaEg//PCDYrGYysvLVVtbq+rqaj3wwAPpniKwJCWCYcmh1ATD8L8IhkkgGGJJmpqaUm9vrz766COdPn1akrR+/Xr5fD5t2LCBE99wRwRP2MXt4WqpicfjGhkZUTQaVSQSkSTt2bNHe/fu1TPPPMN9g4AFCIbORDDEkjczM6MvvvhC3d3d6urq0nfffae1a9fK6/UqLy/PMVdgwF3+XehL9xTuKX+LjKZ7CrjHxWIxRaNRjY2N6aGHHlJVVZV27dqlJ598kv8jgMUSwbD4YGqC4VArwTAJBEPcc65fv65gMKizZ8+qv79fhmGke0qApeIztzQ9Ozuv7X//zs7MXPB37n1ZKZ8bsFSVlpZq9+7dKi8v15o1a9I9HeCeRjB0Jn4Cwz1nzZo1qq2tVW1tbbqnAgAAgP/HNOYeq8dEUpalewIAAAAAgPSiYggAAADAfqY591g9JpJCxRAAAAAAXI6KIQAAAAD7GaYkiyt8BhXDZBEMAQAAANiPpaSOwlJSAAAAAHA5KoYAAAAA7GcqBRVDa4dzEyqGAAAAAOByVAwBAAAA2I89ho5CxRAAAAAAXI6KIQAAAAD7GYYkIwVjIhlUDAEAAADA5agYAgAAALAfewwdhWAIAAAAwH4EQ0dhKSkAAAAAuBwVQwAAAAD2M0xZfiO9QcUwWVQMAQAAAMDlqBgCAAAAsJ1pGjJNa6+XsHo8N6FiCAAAAAAuR8UQAAAAgP1M0/o9gZxKmjQqhgAAAADgclQMAQAAANjPTMGppFQMk0YwBAAAAGA/w5AyLD4shsNnksZSUgAAAABwOSqGAAAAAOzHUlJHoWIIAAAAAC5HxRAAAACA7UzDkGnxHkMuuE8eFUMAAAAAcDkqhgAAAADsxx5DR6FiCAAAAAAuR8UQAAAAgP0MU8qgYugUBEMAAAAA9jNNSVZfcE8wTBZLSQEAAADA5agYAgAAALCdaZgyLV5KalIxTBoVQwAAAABwOSqGAAAAAOxnGrJ+jyEX3CeLiiEAAAAAuBzBEAAAAIDtTMNMyfNn/PLLL2pqalJxcbFycnL0xBNP6MKFC7f9TF9fn7Zt26bs7Gxt2rRJJ0+eXNDnnXfe0caNG+XxeLRjxw59+eWXf2pe6UAwBAAAAOBKjY2N6u3tVXt7u7799ls9++yzqqioUCQSWbR/OBxWVVWVnn76aX399ddqampSY2Ojenp6En1OnTqlV155RUePHtVXX32lRx55RJWVlRobG7PrtZKSYXJ0DwAAAACbTE5OatWqVdqpat2XkWXp2DPmLfWpU7FYTCtXrrxt3xs3bmjFihXq7OxUVVVVon379u167rnn9Pbbby/4zGuvvaauri5dunQp0bZv3z5NTEyou7tbkrRjxw499thjam1tlSQZhqGioiIdOnRIr7/+uhWvmRJUDAEAAADYbka3NGNa/OiWpLnw+d/P9PT0wu+fmdHs7Kw8Hs+89pycHJ0/f37ROYdCIVVUVMxrq6ysVCgUkiTdvHlTFy9enNdn2bJlqqioSPRxKk4lBQAAAGCb+++/Xz6fT+dHz6Rk/OXLl6uoqGhe29GjR/Xmm2/Oa1uxYoUCgYDeeustbdmyRV6vVx9++KFCoZA2bdq06Nijo6Pyer3z2rxeryYnJ3Xjxg2Nj49rdnZ20T79/f1//eVSiGAIAAAAwDYej0fhcFg3b95MyfimaSojI2NeW3Z29qJ929vb1dDQoMLCQmVmZmrbtm16/vnndfHixZTMzckIhgAAAABs5fF4FizhTAe/369z585pampKk5OTWrdunerq6lRaWrpof5/Pp2g0Oq8tGo1q5cqVysnJUWZmpjIzMxft4/P5UvYeVmCPIQAAAABXy8vL07p16zQ+Pq6enh5VV1cv2i8QCCgYDM5r6+3tVSAQkDS3THb79u3z+hiGoWAwmOjjVJxKCgAAAMCVenp6ZJqmNm/erMuXL+vVV1+Vx+PR559/rqysLDU3NysSiaitrU3S3HUVW7du1csvv6yGhgadPXtWhw8fVldXlyorKyXNXVexf/9+vffee3r88cd17NgxdXR0qL+/f8HeQydhKSkAAAAAV4rFYmpubtbIyIjy8/NVU1OjlpYWZWXNXaPx448/anh4ONG/pKREXV1dOnLkiI4fP64NGzbo/fffT4RCSaqrq9O1a9f0xhtvaHR0VI8++qi6u7sdHQolKoYAAAAA4HrsMQQAAAAAlyMYAgAAAIDLEQwBAAAAwOUIhgAAAADgcgRDAAAAAHA5giEAAAAAuBzBEAAAAABcjmAIAAAAAC5HMAQAAAAAlyMYAgAAAIDLEQwBAAAAwOX+A7lDlldT5pbfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -948,7 +875,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAH5CAYAAAAr/WftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADh30lEQVR4nOydd3gVxfrHvycJSSAhCb2XUEIJVQQJXap0pCnXK2DF3q6oWFGvWLiWa0FRrmJHQRAFFRUBpQkiTZEiAgGkiJDEEEIgZ39/8Nu42WyZ3Z3dnT3n/TxPHiXZnZ2z+z2zb5l5JyRJkgSCIAiCIAiCIAgiUMT43QGCIAiCIAiCIAjCOuTMEQRBEARBEARBBBBy5giCIAiCIAiCIAIIOXMEQRAEQRAEQRABhJw5giAIgiAIgiCIAELOHEEQBEEQBEEQRAAhZ44gCIIgCIIgCCKAkDNHEARBEARBEAQRQMiZIwiCIAiCIAiCCCDkzBEEQRAEQRAEQQQQcuYIgiAIgiAIgvCEb7/9FkOHDkXt2rURCoXw8ccfW25jyZIl6Ny5MypWrIhq1aph1KhR2Lt3L/e+BgFy5giCIAiCIAiC8ISTJ0+ibdu2eOmll2ydv2fPHgwfPhy9e/fGpk2bsGTJEhw7dgwjR47k3NNgEJIkSfK7EwRBEARBEARBRBehUAgLFizAiBEjSn53+vRp3HfffXj//feRk5ODVq1a4cknn0SvXr0AAPPmzcO4ceNw+vRpxMScy0t9+umnGD58OE6fPo1y5cr58En8gzJzBEEQBEEQBEEIwU033YQ1a9Zgzpw52LJlC8aMGYOLLroIu3btAgB06NABMTExeOONN1BcXIzc3Fy8/fbb6Nu3b9Q5cgBl5giCIAiCIAiC8AF1Zi47OxuNGjVCdnY2ateuXXJc37590alTJ0ybNg0AsGLFCowdOxZ//vkniouLkZWVhc8++wxpaWk+fAp/ocwcQRAEQRAEQRC+s3XrVhQXFyMjIwPJycklPytWrMDu3bsBAIcPH8Y111yDCRMmYP369VixYgXi4+MxevRoRGOOKs7vDhAEQRAEQRAEQeTn5yM2NhYbNmxAbGxsqb8lJycDAF566SWkpqbiqaeeKvnbO++8g3r16uH7779H586dPe2z35AzRxAEQRAEQRCE77Rv3x7FxcU4evQounfvrnlMQUFBSeETGdnxC4fDrvdRNGiaJUEQBEEQBEEQnpCfn49NmzZh06ZNAM5tNbBp0yZkZ2cjIyMDl112GcaPH4/58+djz549WLduHR5//HEsXrwYADB48GCsX78ejzzyCHbt2oUff/wRV1xxBRo0aID27dv7+Mn8gQqgEARBEARBEAThCcuXL8eFF15Y5vcTJkzA7NmzcebMGfz73//GW2+9hYMHD6Jq1aro3LkzHn74YbRu3RoAMGfOHDz11FPYuXMnKlSogKysLDz55JNo3ry51x/Hd8iZIwiCIAiCIAgi6nj55Zfx8ssvY+/evQCAzMxMPPjggxg4cKC/HbMAOXMEQRAEQRAEQUQdn376KWJjY9G0aVNIkoQ333wT06dPx8aNG5GZmel395ggZ44gCIIgCIIgCAJA5cqVMX36dFx11VV+d4UJqmZJEARBEARBEISnFBYWoqioyJW2JUlCKBQq9buEhAQkJCTonlNcXIy5c+fi5MmTyMrKcqVfbkDOHEEQBEEQBEEQnlFYWIj08uVx2KX2k5OTkZ+fX+p3Dz30EKZOnVrm2K1btyIrKwuFhYVITk7GggUL0LJlS5d6xh+aZkkQBEEQBEEQhGfk5eUhNTUV+0MhpPBuG0A9ScL+/fuRkvJ363qZuaKiImRnZyM3Nxfz5s3DrFmzsGLFisA4dOTMEQRBEARBEAThGbIzlxsKIUU1HdJx25KEVElCbm5uKWeOlb59+6Jx48aYOXMm1365BU2zJAiCIAiCIAjCe2JiAM7OHCQJKC62fXo4HMbp06c5dshdyJkjCIIgCIIgCCLqmDJlCgYOHIj69evjr7/+wnvvvYfly5djyZIlfneNGXLmCIIgCIIgCILwHp8zc0ePHsX48eNx6NAhpKamok2bNliyZAn69evHt08uQmvmCIIgCIIgCILwjJI1c+XKubNm7swZ22vmggZl5giCIAiCIAiC8B63MnNRRIzfHSAIgiAIgiAIgiCsQ5k5giAIgiAIgiC8hzJzjiFnjiAIgiAIgiAI7yFnzjE0zZIgCIIgCIIgCCKAUGaOIAiCIAiCIAjvocycYygzRxAEQRAEQRAEEUAoM0cQBEEQBEEQhPdQZs4xlJkjCIIgCIIgCIIIIJSZIwiCIAiCIAjCeygz5xjKzBEEQRAEQRAEQQQQyswRBEEQBEEQBOE9odC57BxPwmG+7QkOOXMEQRAEQRAEQXhPTAx/Zy7KoLtHEIRr7Nq1C/3790dqaipCoRA+/vhjv7ukSa9evdCrVy/frv/hhx+icuXKyM/P960P0cbs2bMRCoWwd+9ev7siPFr3yu535syZM6hXrx5mzJjBr4MEQRBRDDlzBOEhW7duxejRo9GgQQMkJiaiTp066NevH1544YVSx02bNk1Yx8cKEyZMwNatW/HYY4/h7bffxvnnn+9bX7Zt24apU6cKZ7wXFxfjoYcews0334zk5GQAQEFBAV566SX0798ftWrVQsWKFdG+fXu8/PLLKC4uLtNGOBzGU089hfT0dCQmJqJNmzZ4//33Xe/7+vXrcdNNNyEzMxNJSUmoX78+xo4di507d2oe/8svv+Ciiy5CcnIyKleujMsvvxx//PGH6/3kjahacooX4065cuVwxx134LHHHkNhYaGr1yIIIgDImTneP1FESJKirOQLQfjE6tWrceGFF6J+/fqYMGECatasif3792Pt2rXYvXs3fv3115Jjk5OTMXr0aMyePdu/Djvk1KlTqFChAu677z78+9//9rs7mDdvHsaMGYNly5aVySgUFRUBAOLj4z3v18cff4yRI0di//79qFOnDgDgp59+Qps2bdCnTx/0798fKSkpWLJkCRYsWIDx48fjzTffLNXGlClT8MQTT+Caa65Bx44dsXDhQixevBjvv/8+Lr30Utf6Pnr0aKxatQpjxoxBmzZtcPjwYbz44ovIz8/H2rVr0apVq5JjDxw4gPbt2yM1NRW33HIL8vPz8Z///Af169fHunXrPL/3xcXFOHPmDBISEhCyWEnNSEtBRm/c0bpX8udevny55evk5OSgRo0aePnll3HllVc67DVBEEEkLy8PqampyK1eHSmcna+8cBipR48iNzcXKSkpXNsWEVozRxAe8dhjjyE1NRXr169HWlpaqb8dPXrUdrsnT55EUlKSw97xR864qD+riPjhxMm88cYb6Nq1a4kjBwA1a9bE1q1bkZmZWfK7SZMm4corr8Qbb7yBBx54AE2aNAEAHDx4EE8//TRuvPFGvPjiiwCAq6++Gj179sTkyZMxZswYxMbGutL3O+64A++9916p+3fJJZegdevWeOKJJ/DOO++U/H7atGk4efIkNmzYgPr16wMAOnXqhH79+mH27Nm49tprXemjHrGxsa7dF1E5e/YswuGwZb3zvldpaWno378/Zs+eTc4cQUQ7UZhJ4w3dPYLwiN27dyMzM1PTualevXrJ/4dCIZw8eRJvvvkmQqEQQqEQJk6cCACYOnUqQqEQtm3bhn/84x+oVKkSunXrVnLuO++8gw4dOqB8+fKoXLkyLr30Uuzfv7/Utb777juMGTMG9evXR0JCAurVq4fbb78dp06dKnXcxIkTkZycjOzsbAwZMgTJycmoU6cOXnrpJQDnpoz27t0bSUlJaNCgAd57772Sc6dOnYoGDRoAACZPnoxQKISGDRuWtCv/vxL5sykJhUK46aab8PHHH6NVq1ZISEhAZmYmvvjiizLnHzx4EFdddRVq166NhIQEpKen4/rrr0dRURFmz56NMWPGAAAuvPDCkvsqZxW01v8cPXoUV111FWrUqIHExES0bdu2TEZs7969CIVC+M9//oNXX30VjRs3RkJCAjp27Ij169eX6aOawsJCfPHFF+jbt2+p31etWrWUIydz8cUXAzg3XVFm4cKFOHPmDG644YZS9+3666/HgQMHsGbNGt3rHz16FNWqVUOvXr2gnKTx66+/IikpCZdccolh/7t06VLGMWjatCkyMzNL9REAPvroIwwZMqTEkQOAvn37IiMjAx9++KHhdZT3+dlnn0WDBg1Qvnx59OzZEz/99FOZ47/55ht0794dSUlJSEtLw/Dhw8v0R2sdWMOGDTFkyBCsXLkSnTp1QmJiIho1aoS33nqr1HlGWvrhhx8wYMAAVK1aFeXLl0d6ejqTwyJf+8svv0S7du2QmJiIli1bYv78+WWOzcnJwW233YZ69eohISEBTZo0wZNPPomwooKb8p4999xzJdrctm2b5vWNxh3W9YWnT5/GQw89hCZNmpSMLXfddRdOnz5d5th+/fph5cqVOH78uOm9IQiCIPShzBxBeESDBg2wZs0a/PTTT6Wmn6l5++23cfXVV6NTp04l2YrGjRuXOmbMmDFo2rQppk2bVmKEP/bYY3jggQcwduxYXH311fjjjz/wwgsvoEePHti4cWOJEzl37lwUFBTg+uuvR5UqVbBu3Tq88MILOHDgAObOnVvqOsXFxRg4cCB69OiBp556Cu+++y5uuukmJCUl4b777sNll12GkSNH4pVXXsH48eORlZWF9PR0jBw5Emlpabj99tsxbtw4DBo0qGQ9mFVWrlyJ+fPn44YbbkDFihXx/PPPY9SoUcjOzkaVKlUAAL///js6deqEnJwcXHvttWjevDkOHjyIefPmoaCgAD169MAtt9yC559/Hvfeey9atGgBACX/VXPq1Cn06tULv/76K2666Sakp6dj7ty5mDhxInJycnDrrbeWOv69997DX3/9hUmTJiEUCuGpp57CyJEj8dtvv6FcuXK6n23Dhg0oKirCeeedx3QvDh8+DOCcsyezceNGJCUllfksnTp1Kvm70uFXUr16dbz88ssYM2YMXnjhBdxyyy0Ih8OYOHEiKlasaKtIhSRJOHLkSCln9ODBgzh69KjmmslOnTrhs88+Y2r7rbfewl9//YUbb7wRhYWF+O9//4vevXtj69atqFGjBgDg66+/xsCBA9GoUSNMnToVp06dwgsvvICuXbvixx9/1AwkKPn1118xevRoXHXVVZgwYQJef/11TJw4ER06dEBmZqahlo4ePYr+/fujWrVquOeee5CWloa9e/dqOmRa7Nq1C5dccgmuu+46TJgwAW+88QbGjBmDL774Av369QNwbj1lz549cfDgQUyaNAn169fH6tWrMWXKFBw6dAjPPfdcqTbfeOMNFBYW4tprr0VCQgIqV66seW2WcceIcDiMYcOGYeXKlbj22mvRokULbN26Fc8++yx27txZZi1ehw4dIEkSVq9ejSFDhjBfhyCICIMyc86RCILwhC+//FKKjY2VYmNjpaysLOmuu+6SlixZIhUVFZU5NikpSZowYUKZ3z/00EMSAGncuHGlfr93714pNjZWeuyxx0r9fuvWrVJcXFyp3xcUFJRp9/HHH5dCoZC0b9++kt9NmDBBAiBNmzat5HcnTpyQypcvL4VCIWnOnDklv9++fbsEQHrooYdKfrdnzx4JgDR9+vRS15owYYLUoEED3c+mBIAUHx8v/frrryW/27x5swRAeuGFF0p+N378eCkmJkZav359mXbD4bAkSZI0d+5cCYC0bNmyMsf07NlT6tmzZ8m/n3vuOQmA9M4775T8rqioSMrKypKSk5OlvLy8Up+xSpUq0vHjx0uOXbhwoQRA+vTTT8tcS8msWbMkANLWrVsNj5MkSTp9+rTUsmVLKT09XTpz5kzJ7wcPHiw1atSozPEnT56UAEj33HOPadvjxo2TKlSoIO3cuVOaPn26BED6+OOPTc/T4u2335YASP/73/9Kfrd+/XoJgPTWW2+VOX7y5MkSAKmwsFC3Tfk+ly9fXjpw4EDJ77///nsJgHT77beX/K5du3ZS9erVpT///LPkd5s3b5ZiYmKk8ePHl/zujTfekABIe/bsKfldgwYNJADSt99+W/K7o0ePSgkJCdK//vWvkt/paWnBggUSAE0dmiFf+6OPPir5XW5urlSrVi2pffv2Jb979NFHpaSkJGnnzp2lzr/nnnuk2NhYKTs7W5Kkv+9ZSkqKdPToUaY+6I07WvdK/Z15++23pZiYGOm7774rde4rr7wiAZBWrVpV6ve///67BEB68sknmfpGEERkkZubKwGQcmvXlqS6dbn+5Naufa7t3Fy/P6YnkCtMEB7Rr18/rFmzBsOGDcPmzZvx1FNPYcCAAahTpw4++eQTS21dd911pf49f/58hMNhjB07FseOHSv5qVmzJpo2bYply5aVHFu+fPmS/z958iSOHTuGLl26QJIkbNy4scy1rr766pL/T0tLQ7NmzZCUlISxY8eW/L5Zs2ZIS0vDb7/9ZulzsNC3b99SGYI2bdogJSWl5FrhcBgff/wxhg4dqpn5sVrcAgA+++wz1KxZE+PGjSv5Xbly5UoKd6xYsaLU8ZdccgkqVapU8u/u3bsDgOn9+PPPPwGg1Ll63HTTTdi2bRtefPFFxMX9Pani1KlTSEhIKHN8YmJiyd/NePHFF5GamorRo0fjgQcewOWXX47hw4ebnqdm+/btuPHGG5GVlYUJEyaU6iMAx/0cMWJEqbWFnTp1wgUXXFCS2Tt06BA2bdqEiRMnlspAtWnTBv369WPKALZs2bLk+QFAtWrV0KxZMyZty9nvRYsW4cyZM6bHq6ldu3bJVFoASElJwfjx47Fx48aSrOzcuXPRvXt3VKpUqdR3vW/fviguLsa3335bqs1Ro0ahWrVqlvtilblz56JFixZo3rx5qX717t0bAEqNQcDfmj927JjrfSMIQmComqVjouvTEoTPdOzYEfPnz8eJEyewbt06TJkyBX/99RdGjx6tu5ZFi/T09FL/3rVrFyRJQtOmTVGtWrVSP7/88kupAivZ2dklxm5ycjKqVauGnj17AgByc3NLtZuYmFjGEExNTUXdunXLOEmpqak4ceIE82dgRbnGSqZSpUol1/rjjz+Ql5dnOHXVKvv27UPTpk0Ro3ohyFPq9u3bZ9hH2VBlvR+SSVHh6dOn47XXXsOjjz6KQYMGlfpb+fLlNdckyWXflc67HpUrV8bzzz+PLVu2IDU1Fc8//zxTv5UcPnwYgwcPRmpqKubNm1eqYIbcB6f9bNq0aZnfZWRklKzlkp9Ls2bNyhzXokULHDt2DCdPnjS8hpnejOjZsydGjRqFhx9+GFWrVsXw4cPxxhtvaH5uLZo0aVLme5WRkQEAJZ9x165d+OKLL8p8z+V1l+piSuqxwi127dqFn3/+uUy/5P6r+yVr3k6whSCICIKcOcfQmjmC8IH4+Hh07NgRHTt2REZGBq644grMnTsXDz30ENP5asM3HA4jFArh888/16w6J69XKy4uRr9+/XD8+HHcfffdaN68OZKSknDw4EFMnDixVAEFALoV7PR+b+aUAPrGm9b+aU6v5RV2+yiv+Ttx4gTq1q2reczs2bNx991347rrrsP9999f5u+1atXCsmXLIElSqXt76NAhAOeyPSwsWbKkpC8HDhywVIU0NzcXAwcORE5ODr777rsy16xVq1apPik5dOgQKleurJm18wOn2p43bx7Wrl2LTz/9FEuWLMGVV16Jp59+GmvXrrW9blRJOBxGv379cNddd2n+XXaeZFicZB6Ew2G0bt0azzzzjObf69WrV+rfsnOsXP9JEARBWIecOYLwGXlqoNLQtRqtbty4MSRJQnp6ehljTsnWrVuxc+dOvPnmmxg/fnzJ77/66iuLvbZPpUqVkJOTU+b36mwXK9WqVUNKSopmVUMlVu5pgwYNsGXLFoTD4VLZue3bt5f8nQfNmzcHAOzZswetW7cu8/eFCxfi6quvxsiRI0uqiKpp164dZs2ahV9++QUtW7Ys+f33339f8nczvvjiC8yaNQt33XUX3n33XUyYMAHff/99qemcehQWFmLo0KHYuXMnvv7661J9kKlTpw6qVauGH374oczf1q1bx9RH4Fz2R83OnTtLiprIz2XHjh1ljtu+fTuqVq3KZRsPMy117twZnTt3xmOPPYb33nsPl112GebMmVNqyrIWv/76axmnXN6AXf6MjRs3Rn5+fpkKqDxwkiVr3LgxNm/ejD59+jC1s2fPHgD6RYgIgogSojCTxhu6ewThEXL2RI28jkc5NSwpKUnT4dFj5MiRiI2NxcMPP1zmGpIklazNkrMOymMkScJ///tf5ms5pXHjxsjNzcWWLVtKfnfo0CEsWLDAVnsxMTEYMWIEPv30U01nQf6sshHPcl8HDRqEw4cP44MPPij53dmzZ/HCCy8gOTm5ZFqqUzp06ID4+HjNfn/77be49NJL0aNHD7z77rtlpnzKDB8+HOXKlStVeVKSJLzyyiuoU6cOunTpYtiHnJyckiqG06ZNw6xZs/Djjz9i2rRppv0vLi7GJZdcgjVr1mDu3LnIysrSPXbUqFFYtGhRqa0yli5dip07d5aU+jfj448/xsGDB0v+vW7dOnz//fcYOHAggHMZwHbt2uHNN98s9Zx/+uknfPnll2WmqNpFT0snTpwo8/2THVWWqZa///57qe9BXl4e3nrrLbRr1w41a9YEAIwdOxZr1qwpyaQqycnJwdmzZ618lFJYHXeUjB07FgcPHsRrr71W5m+nTp0qM711w4YNCIVChpohCIIgzKHMHEF4xM0334yCggJcfPHFaN68OYqKirB69Wp88MEHaNiwIa644oqSYzt06ICvv/4azzzzDGrXro309HRccMEFum03btwY//73vzFlyhTs3bsXI0aMQMWKFbFnzx4sWLAA1157Le688040b94cjRs3xp133omDBw8iJSUFH330kStr3fS49NJLcffdd+Piiy/GLbfcgoKCArz88svIyMjAjz/+aKvNadOm4csvv0TPnj1LyqIfOnQIc+fOxcqVK5GWloZ27dohNjYWTz75JHJzc5GQkIDevXuX2uNP5tprr8XMmTMxceJEbNiwAQ0bNsS8efOwatUqPPfcc6hYsaLT2wDg3JrE/v374+uvv8YjjzxS8vt9+/Zh2LBhCIVCGD16dJktI9q0aYM2bdoAAOrWrYvbbrsN06dPx5kzZ9CxY0d8/PHH+O677/Duu++abvZ866234s8//8TXX3+N2NhYXHTRRbj66qvx73//G8OHD0fbtm11z/3Xv/6FTz75BEOHDsXx48dLbRIOAP/85z9L/v/ee+/F3LlzceGFF+LWW29Ffn4+pk+fjtatW5fSvhFNmjRBt27dcP311+P06dN47rnnUKVKlVJTDqdPn46BAwciKysLV111VcnWBKmpqZg6dSrTdczQ09J7772HGTNm4OKLL0bjxo3x119/4bXXXkNKSgqTI5mRkYGrrroK69evR40aNfD666/jyJEjeOONN0qOmTx5Mj755BMMGTKkZMuEkydPYuvWrZg3bx727t1re+qi1XFHyeWXX44PP/wQ1113HZYtW4auXbuiuLgY27dvx4cffoglS5aUKlD01VdfoWvXriVTjQmCiFIoM+ccj6tnEkTU8vnnn0tXXnml1Lx5cyk5OVmKj4+XmjRpIt18883SkSNHSh27fft2qUePHlL58uUlACXlwuXy/X/88YfmNT766COpW7duUlJSkpSUlCQ1b95cuvHGG6UdO3aUHLNt2zapb9++UnJyslS1alXpmmuuKSn3/8Ybb5QcN2HCBCkpKanMNXr27CllZmaW+X2DBg2kwYMHl/xbb2sCSTq3TUOrVq2k+Ph4qVmzZtI777yjuzXBjTfeqHktdQn1ffv2SePHj5eqVasmJSQkSI0aNZJuvPFG6fTp0yXHvPbaa1KjRo2k2NjYUqXl1WXWJUmSjhw5Il1xxRVS1apVpfj4eKl169al7o/ZZ4RqqwY95s+fL4VCoZKS8pIkScuWLZMA6P6o2y0uLpamTZsmNWjQQIqPj5cyMzNLbaugh7yFwtNPP13q93l5eVKDBg2ktm3bam6dIdOzZ0/Dfqr56aefpP79+0sVKlSQ0tLSpMsuu0w6fPiwaT+V9/npp5+W6tWrJyUkJEjdu3eXNm/eXOb4r7/+WuratatUvnx5KSUlRRo6dKi0bdu2UsfobU2g1LDyc6r1oaWlH3/8URo3bpxUv359KSEhQapevbo0ZMgQ6YcffjD9jPK1lyxZIrVp00ZKSEiQmjdvLs2dO7fMsX/99Zc0ZcoUqUmTJlJ8fLxUtWpVqUuXLtJ//vOfkudlpE099MYdlq0JJOnc9h1PPvmklJmZKSUkJEiVKlWSOnToID388MOlSoTn5ORI8fHx0qxZs5j7RhBEZFGyNUGjRpLUpAnXn9xGjaJqa4KQJAlURYAgCCLKKC4uRsuWLTF27Fg8+uijfndHSPbu3Yv09HRMnz4dd955p9/dcYWGDRuiVatWWLRokd9dcZ3nnnsOTz31FHbv3u1ZgRaCIMQiLy8PqampyG3cGCkmM0gst11cjNTdu5Gbm4uUlBSubYsI5TUJgiB8JDY2Fo888gheeukl5Ofn+90dgnCVM2fO4JlnnsH9999PjhxBEAQHaM0cQRCEz1xyySW45JJL/O4GQbhOuXLlkJ2d7Xc3CIIQBTfWzEXZpENy5giCIAiCIAiC8B5y5hxDzhxBEAQhNA0bNhRqk3g32Lt3r99dIAiCIAIIOXMEQRAEQRAEQXgPZeYcQwVQCIIgCIIgCIIgAghl5oiI49ixY1i6dCk+++wz7Nmzx+/uEAR3iopCKCoKlfz77NmQ5nFxcX9HJ+PjJcTHR1e0kiCs0KhRIwwcOBB9+vSxvfE6QRAWocycY8iZIwLP2bNnsXLlSnzxxRdYvHgxtm3bhho1aqB69epITU31u3tEVDLB1dYTEs79RBdv+t0BIsLZtGkTvvzySxw5cgQtW7bE4MGDcdFFF6Fbt26IiyNziSAIMaFNw4lAcvLkSXz55ZeYN29eySa7derUQc2aNVGnTh1UqFDB5x4S4jPT7w4QUcMkvztAWKCgoAAHDx7E4cOHcfDgQQDAkCFDMHr0aPTv3x9JSUk+95Aggk/JpuGtW7uzafjWrVGzaTg5c0RgOHHiBD7++GN8+OGH+Oabb5Camoo6deqgQYMGqF69OkIh7almRFAhZ4sg/Ce6HVFJknD06FHs27cPBw8eRG5uLnr37o2xY8dixIgRqFSpkt9dJIhAQs4cP8iZI4QmPz8fn3zyCd566y0sXboUNWrUQO3atdGwYUOkpaWRA+cr5GwRBCE6/JxRSZKQk5ODvXv34vfff8fRo0fRp08fXH755Rg2bBiSk5O5XYsgIp0SZ65tW3ecuc2byZkjCL8oLCzEZ599hrfffhuff/45KlWqhHr16qFx48ZR8aXkydmz/jhctLyEIAhROHvW/rlxcfrOYG5uLnbv3o0DBw7gxIkTGDRoEC6//HIMHDgQiYmJ9i9KEFFAiTPXvr07ztzGjeTMEYSXSJKE1atX4/XXX8cHH3yA8uXLo379+mjUqBEqV67sd/dcxS+HK0iQc0hEKlYcjWj6HjhxwNzCyLE7fvw4du/ejf379+PUqVO45JJLcOWVV6JLly40g4QgNCBnjh/kzBG+sm/fPrz11luYNWsWjh07hkaNGqFJkyaoVq2akC/AoqJzjhfvKrqE+4TDQHw8n7ZENDRFQkSng56ZPryfV6TfayOnTl5jt3v3bvz222+oVq0arrrqKkyYMAH169f3sJcEITYlzlyHDu44cxs2kDNHEG5RUFCAefPm4bXXXsPatWvRoEEDpKeno379+sKUf5adNiPIoQsW4XDpf9PzIwi+KL9j0fL9MnLszp49i+zsbPz222/Izs5G586dcc0112D06NFUcZmIesiZ4wc5c4RnbNmyBS+//DLeeecdJCUlIT09HU2aNPH1pcbitJkRLUZLkFA7bmbQMxQHs2dHz0o8rHzfIvX5GTl1wLkg5q+//oo9e/bg5MmTuPzyy3HdddehTZs2HvWQIMSixJk7/3ykcA7k5509i9QffiBnjiB4cPLkSXzwwQd48cUX8fPPP6Nx48bIyMjwfCsBHk6bGZFqpIiOVcfNDHqO3uP0GdIz8x6e37tIe34s0zB37tyJ3bt3IzMzEzfddBMuueQS2r+OiCrImeMHOXOEK2zatAkzZszAu+++i5SUFDRu3BhNmjRBQkKCq9f1wmkzI9IME9Hg7bwZQc/SHdx+hvTc3IO+f+yYZetOnz6NX3/9Fbt370ZeXh4uu+wy3HDDDWjXrp03HSQIHylx5jp1cseZW7eOnDmCsEpRURHmz5+PZ555Blu2bCnJwrlRzEQEp80MNwwRLw0pPbw0sET4vEqCblz6id/Pkp6dM/x+fkqCNgbFxxs7dZIk4Y8//ijJ1rVt2xZ33HEHRo4ciXLlyjnvAEEICDlz/CBnjnDMoUOH8Morr2DGjBmQJAlNmzZFs2bNuGThCgtnBtoIC4fJiNRC656IZCyywOu5+v253dKn35/LDDe/l35+dt6fS/TnqET0ccXMqQPOZet27NiBXbt2IRQK4YYbbsD111+PmjVretBDgvCOEmeuc2d3nLm1a8mZIwgjJEnCmjVr8Mwzz2DhwoWoX78+MjIyUK9ePUdZuMJC44ybiI4RFWywjtY9C9p9IkediHSCqvEgVNVkydbt378fO3fuRHZ2NkaMGIHbb78dWVlZQm7bQxBWKXHmunRxx5lbvZqcOYLQ4uzZs/joo48wbdo07Nq1CxkZGWjevDlSU1Ntt2nmwOnh9UvaboRXVGPCD4JY9Y6cdTb07pPI9yeIffYSI+2LdI9YxxWR+izDkq3Lzc3F9u3bsXPnTjRt2hT33nsvRo0aJcxWPgRhB3Lm+EHOHMFEfn4+Zs2ahenTp6OwsBDNmzdHs2bNbM3nt+u8GSHylDcRDQiv4XFf3b6PTvoYzc/Yzn3z434FpZ8iIXIAKwhjihVYnLozZ85gx44d2L59O8qXL4/JkyfjqquuQnJysgc9JAi+lDhz3bq548ytXEnOHEEA59bD/fe//8WMGTOQkpKCFi1aoGHDhoix+BZ0w4HTw6xrXq+hEMlg8BKRKxaS084HkcvTi9y3oCDath9ujimiPGMWpy4cDmPv3r345ZdfkJeXhxtuuAG33noratWq5UEPCYIP5Mzxg5w5QpMdO3bgsccew5w5c1C/fn20bNkSNWvWtDRX30sHTmREMRK8wq+CAyIUP4imZ+3VvWW5pyL1JZIQYRsCP8YTEZ4zi1MnSRIOHz6Mbdu2ITs7G5deeinuu+8+NGvWzIMeEoQzSpy5Hj3ccea+/TZqnDmacE2UYseOHXjooYcwf/58NG3aFBdffDHS0tKYziXnLbrxu2qc39eX+yCCIeg2Xt5rEZ6rjNyXaHjGXiPicwb8e9by9jtGTl0oFEKtWrVQq1YtnDhxAhs2bEDr1q0xatQoTJ06lZw6gogSKDNHAAC2b9+OqVOnYv78+cjIyECbNm1QsWJF0/PIgTNHpKlFIk9liyQi1din512aSH3OAD1rLfzcOzQx0TxTB5zLdmzduhU7d+7EyJEj8fDDD5NTRwhJSWauVy93MnPLl0dNZo6cuShn+/bteOihh7BgwQImJ46ct+hGNmbI0DOHh+Hn9D7zND7pmesj2n0WQXuRjvIee3mvWJ26v/76C1u2bClx6qZOnYrmzZu73DuCYIecOX6QMxel7Nu3D1OmTMG8efPIiSMIgiCIAGHHqRs9ejSeeOIJ1K9f3+XeEYQ5Jc5c797uOHPffBM1zlwETxIhtMjJycG//vUvNGvWDJs2bcLo0aPRtWtXXUeusHAmOXIEQRAEIRCs7+WKFSuia9euGD16NDZu3IiMjAzceeedyMnJcbeDBMFKTIw7P1EEZeaihKKiIrz00kuYOnUqKleujPPOOw9Vq1bVPJacN4IgCIIIBqxZOgA4duwYNmzYgJycHEydOhU33HAD4uPjXewdQWhTkpnr29edzNzXX0dNZo6cuQhHkiTMnTsXd955J4qKitC+fXvUq1dPc4sBcuIIgiAIIpiwOnWSJGH//v348ccfkZCQgP/85z8YM2aMpa2HCMIpJc5cv35IKVeOb9tnziD1q6/ImSOCz6ZNmzBp0iRs374d7dq1Q0ZGRpnNvsmBIwiCIIjIwEqWLhwOY+fOndi0aROaN2+OV199FW3btnWxdwTxN+TM8SO6JpVGCSdOnMD111+PCy64AGfOnMGoUaPQvHnzUo4crYUjCIIgiMjCyrs9JiYGzZs3x6hRo3DmzBl06tQJN9xwA62nI7yF1sw5hjJzEUQ4HMYbb7yByZMnIzU1FZ06dSq14Tc5bwRBEAQRPVjJ1OXk5GDdunXIzc3F9OnTccUVV5SZzUMQvCjJzA0Y4E5mbsmSqMnMkTMXIWzYsAHXXnst9uzZg/PPPx8NGzYsmf9OThxBEARBRCdWHDpJkrB371788MMPaNSoEWbOnIkOHTq42DsiWilx5gYOdMeZ+/zzqHHmKOQScPLz83HLLbegS5cuAICLL74Y6enpCIVCNJWSIAiCIKIcK7ZAKBRCeno6Lr74YkiShC5duuCWW25Bfn6+y70kCMIulJkLMIsXL8bVV1+NcuXKISsrq2RKJTlwBEEQBEGosZKlA86twV+7di3Onj2L1157DYMHD3apZ0S0UZKZGzzYnczc4sWUmSPE5fDhwxg1ahTGjh2LjIwMXHTRRUhLS6NMHEEQBEEQuli1EypVqoSLLroITZo0wdixYzFq1CgcPnzYxR4SUYfPBVAef/xxdOzYERUrVkT16tUxYsQI7Nixw8UPzB9y5gJEOBzGq6++ioyMDPz0008YOXIkmjdvjtOnXyUnjiAIgiAIJqzYDKFQCC1atMDIkSPx008/ISMjA6+++ipoYhcRCaxYsQI33ngj1q5di6+++gpnzpxB//79cfLkSb+7xgxNswwIe/fuxfjx47F161Z07twZ9evXJweOIAiCIAhHWJ16mZ2djbVr16J169Z466230LBhQ3c6RkQ0JdMshw93Z5rlwoW2pln+8ccfqF69OlasWIEePXpw7ZdbUGZOcMLhMGbMmIGWLVvi+PHjGDFiBKpX/5wcOYIgCIIgHGPVnqhfvz5GjBiB48ePIzMzEy+//DLC4bBLvSMI++Tl5ZX6OX36tOk5ubm5AIDKlSu73T1uUGZOYPbs2YPx48fj559/RlZWFqpWXex3lwiCIAiCiFCsZukOHDiANWvWoFWrVpSlIyxRkpm7+GJ3MnMLFpT5/UMPPYSpU6fqnhcOhzFs2DDk5ORg5cqVXPvkJpSZE5BwOIyXXnoJmZmZyMnJwUUX7SNHjiAIgiAIV7Gapatbty6GDx+O48ePo2XLlpgxYwZl6Qhh2L9/P3Jzc0t+pkyZYnj8jTfeiJ9++glz5szxqId8oMycYBw8eBD//Oc/sXnzZnTo8CFq1+7rd5fKoFUkiPfY7cU1/MJCkaWI+cwy8md3+3PFxETevSMIwj8idUzRex/Fx1vL0AF/Z+natm2Ld955B3Xq1HHYOyKSKcnMjRrlTmbuo48srZm76aabsHDhQnz77bdIT0/n2h+3ocycQLz33nto0aIFjhw5ggED9grnyBlVe7XioJi1z6MtN/GoWq6ja4mIsl9u9VPZrqj3wQ5BfeZO8OJzRfq9ixa9uP25lGOKyPdPq592dVBUNBNFRfaydEeOHEGLFi3w/vvvO/g0BOENkiThpptuwoIFC/DNN98EzpEDKDMnBMePH8ekSZPwxRdfICsrq5SQ/C50YvWlZTVyKWKWStQXNQ/8iCyb3U+nfXK7fV6IrCtR7pGM3r3i1U+32+cFacacaBxfvNaFnSzdnj17sHr1agwcOBCvvvoqKlWq5ELPiCBTkpkbM8adzNzcuUyZuRtuuAHvvfceFi5ciGbNmpX8PjU1FeXLl+faL7cgZ85nvvzyS1x++eVITk5Gly5dUKFCBdNztBw83tPXnLwsjPrgVrtWENlA8gs3DBI3AwFuBxnsEona8tpYZbmHdvvE+ny8/MyRqBlAzO9cEIONoujDjkNXUFCA1atXIz8/H++88w769evnQs+IoCKKMxcKhTR//8Ybb2DixIlc++UWcX53IFo5ffo0Jk+ejNdeew0dO3ZE8+bNdQWlRlltSj0NwolTx+uloV5b4Fa7rOcQ5ijvk9uRbLPz3AgG8FzvEm2aMvq8PA1YK/fVql7tTG/2Yh1wJOOVbqzAqhs7z0qEMdRNZFvDilNXoUIF9OnTB9u3b8ewYcNwzTXXYPr06UhISHCrm0QQCYX4i57RngbOTbMMOuTM+cAvv/yC0aNH48SJExg2bBjS0tIst2E2l93Ki8WNF0dcXHRMP4lE1PeQ9TnydNqV1/UzGMDz+pGIXa2YtWPnXK1ru9Wu1TaI0mjdF6+/m3rvSB7PzI52gqKVoqKZlhy6UCiEFi1aoFatWpg3bx6WLl2KefPmoUWLFi72kggUbixEDcoXihPR9Wl9RpIkzJw5E+eddx4SEhIwaNAgVxw5NVqLnd1YyO314vBIX9QvCmb3161xOC7O+/GdNOUMO/eOp7PuxrOz+llIO/bw87snX4/3mGP2OYKqFas2CACkpaVh0KBBSEhIwHnnnYdXX301IjIiBCEClJnziD///BMTJ07Et99+iz59+tgq2WtnAFUT9/9P3IspZzS1LfKQn0NMDHD2rPvOlhvT3eLizvVd63oEX8wyd27cf57T3dTt8s7+EcYY6cfN+84jK6vVntxmJGjGzrTL2NhYdOzYEbVq1cLkyZOxaNEizJ49G5UrV3arm0QQoMycY6Lr0/rEypUr0apVK/zyyy8YMWKEZUfOTolgNVqZOadtsbThZI1TUKOW0QLPKLZXmT+lM0q68h43v9dabbp1DRqb/MHN+6/VlhtZXjdmHPiJHdukbt26GDFiBLZt24bMzEysXLnShZ4RRPQQQUOKeITDYTz22GPo27cvGjVqhN69eyMxMZH5fKdOHO/pcW4bL2QgiY+ewezUaWc91sk1eAUzCOfwNshZprLxuAaNUeLB45mwBiZ5XiOSdGTHTklMTETv3r3RqFEj9O3bF9OmTUNYlP0uCG/RitLw+IkiaJqlSxw9ehTjxo3Dpk2bMGjQIFSrVo35XB5ZOKvH642hvIygIE9PEmWKjN/vObPPbWV6mxPHjFf1Qta2CPexoh2jc1mO49U+6Uc81M/K7S1XeIxFdnXJG6fvtbNn7dktzZsDVatuwNNP98c333yD999/35K9RBAEOXOusGLFCowZMwZpaWkYNmwY4uPjmc7z2onTOtdNZ0VU581qdtIvjK7tpiFg5zPrGSgUHBCjn34ajryCAk4CAmZts7YvgiHut578dkKMYNESr2yb07HOKy35rRctqlbtgEGDfsP333dEq1atMHfuXPTo0cPvbhFe4UYmTUShu0h0fVqXCYfDePTRRzFgwABkZGSgV69eTI5cODwT4fDMkuIkVuHxPZDbsNsHr9u1Slzc32sVIjETr/W5eNxzHrpS3ndeyG05fY5uBi5EnvnhV//sGLha/eIVFNCb+mbXEHcLkfUUlJlOWv3iPSbxaJfXfdN754lKfHwqunXbgaZNm6J///7497//TdMuCYIRysxx4sSJExg3bhzWr1+PwYMHo2rVqqbnhMNlM3FKA1yuuKcHL4NG63dB3VvJb6dRFORnoL4fZppSn8+rH7ynpMmGCY827bbDuzKsKBhNK2TVj5V2vTrfqF0eWuKRWRHZ2LaLG3ri7czz/A4rx1weWrDSRtDff6FQCM2arUSNGqPw7LPPYtWqVXj//fdtbeFEBAjKzDkm4F99Mdi0aROGDRuGcuXKYejQoUhISDA8XsuJ00LPsXPLiVP/XfQNT4P+4nILo2fB4ty5GSQA+G4szdtJNEJPb172wW9ECQ4A/MvG+xEc0NJUtGgJ0P9OOQkasKLUEi9d6WWQ3XTqzN6DbjisbpOW9hGGDj23lVObNm3w6aefom3btn53i3ALcuYcE12f1gVmz56NrKws1KxZE3369OHmyKmJiwPi48/92MXqVAsWh49ne0bIU0aUP0RZrN5j+V7Gx/MbT1l0Y7U9o3Pc6DPprTR695jlPrnhyMn/dqJZo2mWTmG9X1bOjSb8/P65MdWWh66Ubdi5L0HTVWzsbPTt2xc1a9ZE586d8eabb/rdJYIQlig3Uexz+vRp3HzzzXjvvfdw4YUXol69eobH23XiAG1DE/AmKq6OMnv1QnDj5R2kyKQdnD4bK1N8nV6fJVpstT0nzzcuLvL14RXq7y6v6Yssx/CsdMranlEbThxN0mNplLpyOuWXFVYdWA1o2n22TqdwBi1LV1z8Klq3BqpWHYQbb7wRq1atwgsvvGAaNCcCBmXmHEPOnA0OHz6MoUOH4uDBgxg2bBgqVqyoeyxPJ06NmVPnVkTcDaI98+EUpw67GisBA1GCBU6ntzkxoCPZ+Hb6TJTnWzXA7WZHeFUudLqeUsau4R2pmuKB3Sm/gLOsG48KvVadKqOMdzRoq1atzzBs2D+waNEibNq0CZ988glq1qzpd7cIQhiiy3XlwA8//IB27dohPz8fAwcOdMWRsxqkUE63cDr1SKsfbjhzNIWNH7wdOSVeTAmLifm76hqPtvQgvXmLXpCA9RnwdCJ5T8fUwo2pppEcXObtTHj1TlG+F3lNnTSblsvSht1rB4Xy5d/DwIEDkZeXh/bt2+OHH37wu0sEL9RfKl4/UQSZNRZ4++23ce2116Jdu3Zo3bo1QqGQ5nFOnDi7xMScW/fkdOqJXh94RPL8rP5n9Zry2kQv+hoTAxQV2T/Xq/OU2To3sr68osXx8X/fT6tGXdAi1m7j5vvQaFovr+vyHHO0tGF1zVI0ZFFEQS9z58bYxUtfclt2nFEn+pKvaxcr/T171omz/T/06HEttmzZgu7du+O1117DP//5T7uNEUTEQM4cA8XFxZg8eTJmzpxpuD7OLydOidX1dDz6oIeoGRDWIjJeGlBmfdJy9vyI9stBA8CdMvW8DFcn2vPSeI6P9+ZaXqwvUmJVY7zKuev1gddaIbkdr9fCOdGkV+Ow1xqzinL2Cu++8nLs/FwTZ6Qxs/eTl9snhEIhtG3bFpUrV8akSZOwceNGPPXUU4iNjXXWMOEfoRB/I1Qn2RKpCGpui0NeXh5GjRqFzZs3Y8iQIZr7ncTEzPz//577t1eFSYyIi+O/Tx2LQSGKAydKP3ih9zL10mnnEThgub4dw1X9vP3IZmhd00n1WZ4EKVjgZI2dWR+cOnU8nE7eDh1PQ9sJLFq3OwOBN24We7KrMa0xzE47Ts61O155O97OBDAJ9erVw5AhQ/D2229jy5Yt+Oijj5CSkuJVJwhCKCLM5OVLdnY2BgwYgMLCQgwePBjxGiOd7MgpMVuY7aYTp+6HW/uIqa/jF0F32pw+C9YiAG4HDoyubef6PAIHTgwMK+cGXYOAsRHnZ8ZFlICBCAVz7OpMpGmaIurMaiEV1rHMSrbO6Nm6lW0zuy7va/HlnEOXlpaGwYMHY/ny5bjggguwZMkS1K9f36tOELxwY41blK2Zi65Pa4F169bhvPPOQ1xcHPr27VvGkYuJmanpyGmh3MvLSeTLyTonngu25Xa9LCahte+Qm9f2aq0cb7Tuj5fBA63oMu8Mj5Vn70bgItqK91j5zG5pjfXaVq7Pcjzva6rPZbk2D515YdfwWFPt9veL5T64VchG61yrY5md66vPc3Ps8tZ+Pmd/xcfHo2/fvoiLi8N5552H9evXe9kJggdGRUyc/EQR0fVpGZk7dy569uyJjIwMZGVlIUYlClYnrvQ5f/+/FwO48nxeU72UTqnbRLrB7NU4Ex9v7x460R0PJ1LZD+Vn8FIL6utGog7tomV0+x00cHJtrSnEVoubOLl2NAYJWPHz3vC+plJrTjKtVnEaTLaCt3a0vMQlBllZWcjIyECPHj0wb948rzpAEEJArwwFkiThiSeewCOPPIKePXuiQYMGpf7u1IlTYzRvn1cGTXktO9NYvMy8iYLbWTmvXnR6a9wAvlMitc7nUSQF4KML1uk/ImmQJ17pze46JKdBA54FU+LivJs6qdabF+OOKNMtnWJ1aiQPeI1pyrYA99bE6Y1nTteNsuKd3s5NuQyFQmjdujUqVqyIyy+/HL/++ivuvvtu3arjhEDQNEvHRKj5Yp3i4mLcfPPNePfddzFo0CBUrVq11N95O3JqeBgmLNN2WF9Ebhq2dtuOFEPEC1jXuQGlNcE7u8IriODUMNA6P1KdNz8wChwA7qzllM+X23BiZCv763QtHKB/vt+ac9vADof9saFY9MarX3aDFlrnA87XxKnPtTLrJ9IcOgBo2LAhkpOT8fjjj2P//v14/vnnqdIlEfGQOQOgsLAQ48aNw8qVKzF48OBSG4G77cSpz7FjmFh1GvXatjqtSOQotF0iIStn9RrKKXK8qwfK7bO2bbY+iddeh6xEUjbDT7QMYDdmHyjbZ8VobRSPLJ1IxnW0oHXP3QiUWnXsWNab2nXq7GSVvcjS+eHQVa1aFYMGDcKHH36IQ4cO4b333kNiYqIXnSDsQJk5x0S9M5eTk4PBgwdj3759GDRoUKkvvFVHzokTp4bFMHEyPUlu161Isd8RaLu4saZALsft9tjCoxCDVYOYRyDBzSCCun0ylvljJ3ggn+dn8IBFd3YNUbszLSIrWyIWTjNqrO07DZZadbDUWWUr5yrPc9uhA/6+Bus2Flbfx0VFfzt0KSkpGDRoEJYuXYq+ffti8eLFSE1NtdYgQQSEgJrcfDh48CD69u2LoqIi9O/fH+XKlQPgfTbOCC0D2KlTIC/o5v1CE9GBE6FPrC8kNzbhtnuemWHiJJAQFwcUFjorAGC31Lcdo8Ur45dnIMGrAIJdtIpA8A4gGGnYTnETO+suRdWb8hq8defXVEsrWNGd3WCFsm07Y52TKbt2nDpeWTpe71w7ujx3zkwUFZ1z6BITE9G/f38sX74cWVlZ+Prrr1G7dm0+HST4QZk5xwhg6vrDb7/9hh49eiA1NRW9e/eGXLEyMbGsI2e00albTpwSXgv9eTs23lat0kdv0A9a9FmvCqTZRrtualDLIObxzBMTnTuvQVgD51efvAggAO7MRgD4rnniWYnQrmHth0Pnh/asGOB+7l+oxM1iKjwCp16vi2M9R/msi4rEGn/j4/926MqVK4c+ffpg9erV6NSpE7777jukp6f73EOC4ItAXz/v2L59O3r27IlatWqhU6dOCIVCmk6cjNYLys7g7DR7Yndakt4gy6M4hZcOkxdllf1GSyNan9tJ5sXOOfK6Ol5FJuR/O2kvPt6djXTt9kVJUAIJRiX+zYIIdrAaRADOaYRHAMHumjolSsPareye8hyrRnVQdAdoTw+U4a09O8XIAH7VeHlpz6t1cVrnGL1/5b+JpD+lQxcTE4OuXbvi+++/R1ZWFlasWIFmzZr53EOiBMrMOSbqnLktW7bgwgsvRMOGDdGhQwdTR04PN6dpGJ3Hcz2IfJzThdtu4PR6Ir1UWLGiE/WL1Y01blrn8SwyIf/eSVteTYGUr8MaUAjiuiS1NvQ+q9dTOHmUhFdqxqlh7WSmhFVdqI83018QdaeF0ed0I8jA0g8eGTsnjqJ65obbTp18PStr10TWXygUwgUXXIANGzagS5cuWL58OVq3bu13twiAnDkORNWn/eGHH9C9e3c0btwY559/vm1HTo08lUIrym03c2J2npFxzMvx0vtcSnhFzNU/0QavdZC8n5WeFlmfE8txVgIPRpUHrcC6XlX5Ew2ZYRbkzYetfld5aZzXOVbbUx/Pe52q3jXl+23FoI5klNrz8l1h9Zos456TMdSJfWF2LeX1rI57IukvPr60fRcKhXD++eejcePG6NatGzZs2OBTzwiCL1FjNq9Zswb9+/dH69at0bp1ay5OnBZOKrXZWUvHoyolr3asXE/U6F0koDY43agYqLyW0wITRu3YaYsVdRQ5GoMIPGBZc+TG7AS9a+n1y+g4uzMd7GYi9M7zYn1fpKF1z3hk0Vgqpupdy2qQwEk7dtfFAdanC1tpXxT9KadbyrRv3x5xcXHo1asXvvzyS2RlZfnUOwIAZeY4EBWfdsOGDejfvz/atm3rqiMHlNYka+TNiY4TE50PxnFxfNoxaj+as25muD3m2MmgWM0eKNeG2H3Gsg6V7bC2ZXcdIOnyHDw1qL6vbmaw9J4drwweizaczsAgDfI3/L38bquv4WT8s9uOHQ3KWV+33j+iFEgDymboAKB169Zo27Yt+vfvTxk6IvBE/Otjy5Yt6N27N1q3bo3MzEzXHDmWKB6vLQbUgzxLZJmlHbuIluEQJSLIgpsvO3XbLBkNJ5o0ijBbwW6lS5ZosFqbIkWQIxXWTJoSuxV/neKkHStaUl7HLf2Rtv+GJXusxG5wSP6v0/WddttgWRenN2Uz0nWolaHLzMxEOBxG7969sXLlSlpD5xehEH9jKBTi257gRLQzt337dvTq1QvNmjVDx46rXbuO1Qptdgc2I0ODdfDn0YbVdkUkPt7epqRmWFmc76Ujp0bL8fIzuMArQCHSlgWiGDF+4nVAwaxtt9uws31BNBjSfmI2VRfgtx2B0qGz2y6PNtROnVvTNa30x2rbbmwsrvV+bt26Nc6ePYtevXph1apVaN68OXuDBCEIATPB2dm9ezd69uyJ9PR0ZGWtc+UaTqJ3ALvhz2PtB2+D1m41RTexWqrejYIWXu3vZYTdKZJWq8SJGlywqnURDF43tMj6PP2aCqXlOPEMKCjb9aoNwN56JBE0KONngMsveAcC7LZr1IadfsnT1q1mxN3QotWKwCxYbSs5eSby8yeV+X379u1RXFyMnj17YvXq1WjcuDGnHhJM0Jo5x0SkM/f777+jR48eqFWrFjp06IDCwkncp1fymAYkD0R6Lzs7DpjSAHZ6vhoRqvmJ0AenxMSYl3130rYVlBox06PeeWbHOCkQYMWh411G3Cl298HjeX0W3LpXogQVAGeFUuwEFexsp+CWQ6feVsRrrFThFMHxkx0ggG9/zLTIokOj89Uo77tVDfPQotFz93Nc1HPoOnToUOLQrVu3DrVr1/ahdwRhj5AkSZLfneBJTk4OsrKyIG8SGTKYNys7eMrBGwAKC/Xbd3Mth/zicPrSdTpnX3muFefJ6jWNBnT1M2Ed/EWJbhvBqiH5OCM92mlXxkxnWoaMXW06rZZqJ8DAU49GiGq0sKKnGyeGLC8tmvXBqp7UmrByPouetLTglQ6N+sCjXbcx04xdPXqhRT/GRbtBV7f0mJh47l3FajP4rUcth06SJKxcuRLAuQroqampXncrqsjLy0Nqaipy778fKWqjz2nbhYVI/fe/kZubi5SUFK5ti0hEZeYKCwsxaNAgFBUVoXfv3oaO3LnjJyEtrWzGTqkppSFtNdJsFSdOHK81R/K5XmaoOX+HhcaqIweYBxvcCjCoM3VO9Gl1uo8apZ5ZjQWnQQ01yufgtyHCCyPtqO9zTAx7YIEXRtliv8ZYLU0ZadKtrIisR1YtijSVU4twmF2PyuO80qTy+rwydk6Knaj16Na4qKcbrfd2YmKw9RgKhdC1a1csXboUgwYNwtKlS5EYTQaKX9A0S8dEjDNXXFyMMWPGIDs7GwMGDECMyYPUcuK0UH+PeU1BUyJ3Vdll1sGW15ojdTtuDbJ2pkmKNuDbhdfYYkeTMnaMWSeOGM8gg9tTbJXGBa/3t4gGix1k7WrdFy+CC2pD2i2njPX8s2et6ZGHAa2nyUjRmF1YNMmK1UAX4GwvT14FU+LirGnA6vWUa+nMxkYr6+781K7edMuYmJiS/efGjh2LBQsWIDY21oceEgQ7EeG6SpKE6667Dt9//z369OmDOJMRmdWR0yI+Xv8lrlz3wYqe4cMyf57HdEy9dng5HvL9MrpvvBDZoLFyP63ee9b7a0cvyr5YOd9In3basZsttmKcxcefM1RYHLkoC/oZIt8z1nunxG5wwe7YpzzPyRiamOj+9glW7qudjH8ko7xvbr53rO4pq0Sv2IndcdbuXnNm11O+X6x8v4OgyeRkbVuwXLly6NOnD9auXYvrr78eEbYaSTxk8fL+iSIi4tM+/vjjmDt3Lvr162eaEnfiyClRDnB2nTjW8vHq31kd7J22YeVaXjpvkYjT8Ufv3vPSJ4t2rBRHMfo7ryCD3rWiXaduGVusYwCP4IKVQjpGwQW77fA2nqNdk27h1XvJKECqPo6lHTtt2HXqlPC6V0F26BITE9GvXz98+OGHeOKJJzzuFUFYI/DTLN9//308+uijGDRoEJKTkw2P5eXIKVEOgizT3ewMsmfP8l1PxwrLFAgRtygQDb9eaHKgAeC//53WNB07kWk7BSnsTs0hA9kftNYaOXXklJhNGbPiqNlpw44e7awBNYO1H9E+LRMoe8/tTN1lDcY6KbrjpA2rz1kOxvJ+hwdZl8nJyejTpw8eeeQRpKen49JLL/W7S5EJrZlzTKCduZUrV+LKK69Er169ULVqVd3j3HbiZIwW6zvJKDidTy/Da5AOilHs5bplvTUafkYmlc+eZdsBO31ITHSmK7sFAFhf/PLn9tNIIf5Gfh5xceIGGJRtsJ5vdX8uOetBhrMYKANfgDtbEgDO19ZZDeyy6tLJNgas/XCqSzff53pbVx07NglVq1ZFr169cMUVV6Bu3bro1q2bex0hCJsE1pnbuXMnBg8ejI4dO6J+/fq6x3nlyClRGs48p4WxDrK8p1CK5ryJ1h+A7UWjZyC47cgp0avI5kewQb1+iZdDJ6I+1PgdaBAhyMBaHdDuVEYnBqndIIWZ0ao1/Vm0IIPf2hQBM23a/V44LSZld6zVcupYpkDz1KaZYyniuF216sz//y8AzMTAgUPx44/r0LRpU1/7FXFQZs4xgXTm/vzzT/Tr1w+NGzdGixYtdI+rXv1vR45HpM1qREweuFmvzbrWyMmmo3Y2HPUjgitfP5Kix1ql3gH+G+VaKfoRE2Pv+nprMZ0EG+wYtlb2NnLDcNZCNKPESaCBN0EKMjgxnFmNZvk6Xk1PJ21qY7aOUYnd/qiDVzJ2xkwn2oyPZ3+vuqFNq1tqiMJ5501CTs4u9O7dH5s2/YAqVar43SWCKCFwzlxRURGGDx+O+Ph4nH/++brHKR05wPmAbGdqg/raetd0staIZxbOjxd90DdctotSI1r3gIfBwNoHlimYrO0bGRlOgxVqlFMoWeFlnFgxiIKAV4EGK32xE2jQCzIA5s+dZ5AhJsb62ijeeyJGij61vt9+6lPpgPII1DpZ82nVqVN+t6w4dFauoXW9SOHCC5/C/Pm7MHjwCHz33TcoV66c312KDCgz55hAfVpJknDDDTdg9+7d6N69u+6m4GpHTgvWss9WKp2Z6VFdHcpK2076pT5Pq09Gg66V74RRn9TloqPVkWNBWSafddqTk4CDfE1e1QfVUWi756rR0qvbY7a6El6kGShGaH12u5/fbqDBymbIZn83ctjsnqtEeY+s2id23wXRqE/5/cBTn3bgWbVVS2NOzlWi1Ue39Mm6JUQQbe1QKAZDh76HPXtOYNKkG2jLAl7Q1gSOCVRm7vnnn8eHH36IoUOH6kZEWBw5rWesNJgLC50bxkY4ieqr+yVqtMzIAYl2R40FtabU91O91oSnXtWZOrtGptP1IcrzWAwDHlOHgjoFyGtkZ0XGbO0Tj0CDjFY2xG6FQCezIvT6p4aXNmVYNRrNRU6UGSgZt9fnsa4BNUM5zdfuFGErlVKdZum8XGMpAvHxSRgz5jO8+WYHtGvXGrfccovfXSKI4DhzX3zxBe6++25cdNFFplsQOKVChb//32xQdrqfC4+pbSy4vYWAco2bUX9ZXhqRboDwCBgpNy1mNRysXlf+HjhdU2d3ClmFCtbOs2O8Rpshwko4bE0vZsEGVliu6XewQWnQsgbGnDh0pFFtWDSqPEZPo24Ebq1MXdeCx7pPK9VSrVZjld8NRsezaD6oAYfU1PoYOfITTJ7cB82aNcOAAQP87lKwCYX4Z9J0Zu5FKoFw5nbv3o2xY8eiS5cuqFGjhu5xdrNyRvBamG+08N/JWjozQ1nP2LBqYLMs6g/ioBwJsESEneiVx5o6u8V3eK8lkrPivCu+RiNGxrRsOLu5tsnuPopaU9msaszO1gJWDNcKFWg8dRulc+eGTtVTH52sr7Pi1KnHT9bzAP4VJyPZoatbNwsDBszEqFFjsWXLRjRq1MjvLhFRjPAmTUFBAYYNG4b09HTDcrC8HDmzNW+AtRc46zoL5UDvdOqPG9MoeRi/lJVzrkGzY7QcO56BB2W7LOdoHaP3/eEReNAyDKJhDZHo8A44aK39NWpb7zz17810prW1AMt5MkaGKxnK/mOkU6eJA5bvgJMCU+prqM+zG3jgNYU4Emnd+nL8/vtaDBw4DBs3rkMF5bQugh0qgOIYoZ05SZJw9dVXIy8vzzCN7YUjJ6OMthlNJbLq/DgtxW/HYDUb4JWRS7MXgV8DughTkETcK0kdFWbpI6tmlcEHu0V4rKzpUJ/D0j8nRLNx4gValYV5FWJwM+BgVuTCTvaDAg3OsDrV0soxTpYmmGlNS6d2130q27NyjhmyX+J0ZoSbQQcR3v99+z6Ld9/tjiuvvAbvv/+ObmE+gnAToZ25GTNmYNGiRRg2bBhiY2P97k6ZwVYeSJSGsh3jVvkSiYlx9tKwOiCyrM/gMc3NTlZOL8glmrGtXL+mRUGBd33RQ0urSqzq1klxE/l8p1rl2R+rBNHwEDHoAJT+nvMqpKI0lkULOHitVTuQVsviRiBXWajFyUbiVsYjM6fO6rPn5axpHaNlA4j2/k9Kiselly7AK6+0x8svv4wbbrjB7y4FD8rMOUZYZ27dunX417/+hf79+yMpKUn3uIYNS2fltAxnHlk5s5L7gL29iPSuZXdPJKsRLifbI8g4GVyVg3WkTsOUP6P6ebulVSOcVG3Vur7V6TvK69mJxiqvZ8fgdEs/QQg8qNexacE78GC3kIqWsWxHq04cJzuVTY0MZTeMZDtEmlbdzM6Z9U/GifMpX9NOsRP5HKsFTNTXM9ueye3Ag6zJ/Hx9fcqIOLUzJaU2xoz5ELffPhDnn38+OnXq5HeXiChDSGcuLy8Po0ePRrt27VCrVi3d49SOHFB2IGAZZHk48DEx7Os2WKdzqgdQXkUblJFms0GRV1bObIAWbXD2Aq17wiMizaKTmBjr1SqNgg+AsVZ4BR8Af7MGLFXcgoxSk8rn7XV22Y2gA8A2nqmvZddQNjOSeWD0/bEaKBMRIwfLD63qbWdhZUmCEq3PxqpVrX7Y0SpLsR0zh85K5s3IFkhODq5W09N7okePB3HxxWOwfftPqFixot9dCg6UmXOMkM7c9ddfj5iYGLRp00b3GC1HTguzCBqrY2WE3lx7pwuo5QHUqiHDWgSChyOn1YZbBoyogzzPMYNnxFcPVr0anaOFlhHC6liaPVsnezPaxeladlH1agete+GVg2dlqxgZu4EHI71aCTwoK216AdVd+Bu9e1FQ4I19x7rfnJXZQHbGVMBYr8p+8sh2GbVhxSYIcmGfbt3uwu7dn+Paa6/H+++/43d3ggM5c44Rzpl7//33sXDhQowYMcKVhaTqQcVu9TMW7FS/VJ9vd7+amBj3jQl5MPV7fUUQsDuuWNWrE7S0ZqffFSrY0ytgvv2FEU6yyKRh67iVWVajzM6YjYeselU7daxjJc/S7U6mr7mhV1ENZF5TJFn0anVasFlfnO43J2N3vzke46qyD6zX92I8FVGvMTExGDXqPcyY0Qpz5szBpZde6neXiChBKGdu3759uPbaa9G1a1dL6+Tsol4vZifSzBJdi4tjN3L0Blqj/ejUJCY6rz5pdD6vKlesfWE9JhpQGiRuZUbka9gxzGX9WtGrXhtuQs6bO3iRWQb4bMEB/L25sp3gg1npdp7GJunVHezo1c5sGbVe7WjVaXDXzC5wqleedoGIjhorKSl1MGzY67j66onIyspCgwYN/O6S+FBmzjHCOHPhcBjjxo1Dw4YN0bBhQ93jeDpyauTBSDaSrU6vNLqGWTVBFgPWyOhw82VPU3j08XO80HLseGZjzTSrREu/VgwPlgCEE3gHIAg2EhOdB8zMkKc0WnUclZq149BVqBAczQbZOGaFR1ZNHvNkzdrVq1FfZN05CfJadeqUn8uJQ6c+X8s24FUwJcjTLVu2vBi7di3G2LH/wJo13yEmyhwLwnuEUdiMGTOwY8cOdOzY0e+uoEKFcwtx3XCQ1G0qo20sqI9NTCzbptOsXHz8uXsg/2jhZVYu6PAax40cNflZmWnWTtVWLY3JsOjX6O9GbTvFTMOE97j5TKxoSS/4wDIWk2a9x6/3hPJ5KJ8Jr/efrCUjPRlp0kyzbmmVNGrORRc9h507s/Hyyy/73RXxkTNzvH+iCCEyc3v37sVdd92F3r17o1y5crrHuZmV00MvO8FjKwO7Lyjeg7O6PdEcLKP+ePVCEWGvOFbUlQB5tyu3aScIIUeSeQcgAHMtUFZOLOwUNmHBSP+sMyC0+uSWUSwSomY6REFdQdPN8RVgH2PNxlcldrNzyjadVr9khUd2zup3rKDA/vdSaSckJCRj+PDZuPPOYRg8eLDhjDOCcIrvzpwkSZg4cSIaNWqEOnXq6B7Hy5FjQctR42kgKx09K0ZMfLz5AMlqFDsxTNzOyqkHUhGMC63BXUsnojl9vB27uLhzWWu7xrebgQgRdMKKF0a8aFo0wosAhNW1mMqpl6Tbc4iuWx5TLQG2dXHhsLFuzfrCss2BVW3ImTqegStR12u6ZSc40bj63Nat+2D79n9g/PgrsGLFN64U9YsIaM2cY3x35mbNmoXNmzdjxIgRhsfxKvzAY01RcrJxP6xcw2zuO89iECxrPLwwLKzs1RUkQwcoO5h7uVeX2dglr1+y2w+lrq2u2XBz+wavYY0C+61dPaNE9CCEG46dPGZbDUIkJ/OdUmcHL7IcQdAtUFa7ka5bq+Oscj2e2b6fRn830z1LxoyXboO89xwADBnyH/znPy0wa9YsXHPNNX53h4hQfHXmjhw5gjvuuAPdunVDvIHX0rJl6ayc3T2PrOzPwoK6YAoLen1QL8DXuh12snK85/lbaUO0KUR+42SvLh5BCLkNnhUxWYMRTrVnZgh79bJn2WA3iBhlnv00mJWFG3j0g9U4Zg2isUxZ86I6KwuRqF03dWunaqWMcrwy0q7ZNeS/exX09fOd7fTaok4RLl8+FaNHz8Ltt4/DsGHDUKNGDb+7JB6UmXOMr87c7bffjtq1a6N+/fqO25IjrzL5+Y6b1MSsCiaPfemcYndQdDIQKu9/JGbc1PAaJypUKNuWW9rVuz7AR7uyoeGGjv1Y70bBiHMYbcLsVz/cCkJEgnYj1ShmRZ7e6IVuWad18tKulm71NGslM2anKqXT7JwVmyHommzRYhDS0y/ErbfegTlz3vW7O+IRCvF3vqJsSqtvztyKFSuwYMECjBw50vA4dVZOCy0NqJ07lmkPTrVUoYJxFM6JsWw2KJtVteKZlVPfWyU8B9wgD96AfT15FZhQYqZdFvwORjhBvudB15yXqAMRfgUhnMA7a0badRcea+LkZ+RXEE2tXaf71tlFmfHzAiO7gRciO30jRryA6dObY8WKFejZs6ff3SEE4PTp00hISODSli/OXFFREa655hq0a9cOyQbfcBZHjhUekTGzAVc5jc2LqDXP6C/LOiBeg6Sog62oJCebr73jmSnUu4ZbWN2ewyleGBXRiNZ9ddtAdqsipt0+2MGqAepEvyIbu16jdgy1gmhOplrK6LXBql0nfdDLjPHaw5C1kiSPzFvQtZuWVg99+07FlVdei+3bfzKs3B51RMk0y88//xxz5szBd999h/379yMcDiMpKQnt27dH//79ccUVV6B27dq22vbl0z733HPIy8tDq1atHLfF8rzUx2jtG8P7uavb55mVs7rnjdUBW29vHeIcPLXCS7+8cVO/6us4OZ8F+bMkJ5Mj5zXJyd6NJX6MV15cT6ldI/0KaLv4Bg+jX77fZrricS0v37dWxnU7476bn8XO+1IkevS4DSdPhvDss8/63RVCxbfffouhQ4eidu3aCIVC+Pjjj7m1vWDBAmRkZODKK69EXFwc7r77bsyfPx9LlizBrFmz0LNnT3z99ddo1KgRrrvuOvzxxx+WrxGSJEni1mMGjhw5gkaNGqF3796GHihrVo7Hl5tlwbTTQc9J1PjsWeOB0akzx1Jljec6uKCvqWN9WfB68bAeI7J+lai1zCMYodSL3neFl+5Iv3yOUeqVpR2rGlZ/H+wGJLzWr9Y1tI5hacfuMVaO8xrSrzVk/emNizz066UNEXT9/vrrcrz55hDs3fsbqlev7nd3fCUvLw+pqanIff11pHD2/vMKCpB65ZXIzc1FSkqK6fGff/45Vq1ahQ4dOmDkyJFYsGCBaZV9VrKysnD//fdj4MCBiDEYLA4ePIgXXngBNWrUwO23327pGp5Ps7z//vtRu3Zt26lEJbyjNHpTMZ1Os4iL+7sNK9PXWKZC2Mla+LmPm6gDLG/8iA7yLBCh17aTdt3OJBoRLboLEuqZEW5pFnC+nY1ZQI3lfCNoBgQ7vPaSY21L7xj1M+O5P6K6fSf6TUlxtk2B2VRNwNvxNejTLZs06YVGjS7ElCn343//e9Xv7hD/z8CBAzFw4EBX2l6zZg3TcXXq1METTzxh6xqeOnNbt27FW2+9hYsvvtjwOJ5r5czQG8itGK9WnD2W9XQ818KZReVY8HrgVF5PpGlx+fneT7G0245bjp0dp84tQ5XWckYWbgcj7Bb4Mduf0+5+WiLt7RaJ8HT6WFCPc7zHXScBYZ790ILXmjeejpqyLSM7Ij/feztjyJBn8MwzrXH77bdwWW4UeFxcM5eXl1fq1wkJCdyKjvCguLgYW7duRYMGDVCpUiXb7XjmzEmShFtuuQUtWrRAamqq4/a8mjutzM7yGpz1DGI3Bl6vNgm32k4QI9EsAz5vI5SHhu0aAmZtmrXHa5G9ur2gIUpAwstqk04RJRjhlTHsJXYMZtKwddQaZt1TzuzvVsZeGaebiJtl97xGqWGn3yk/tJ2e3hTdu1+Hm266FcuXL/W+A1FEvXr1Sv37oYcewtSpU/3pDIDbbrsNrVu3xlVXXYXi4mL07NkTq1evRoUKFbBo0SL06tXLVrueOXNffvkl1q9fj9GjRxsed/75ZbNy6kHLrwWuWoOok7VIZoOQ1bnsVtdyuI2f0zn9Qq/sNeDf5stKDfKuVqmVaeZpsLIEJPxEBOOcFVajxc9NwrWQ7zGvjcOVbeq157UT5+fUsWjXsJOplqx4pWE/gw+8NKzXTqTZE4MHP4QHH2yEL7/8Ev379/e7O/7iYmZu//79pdbM+Z2VmzdvHv75z38CAD799FPs2bMH27dvx9tvv4377rsPq1atstWuJ86cJEm466670KpVK1s3Uv0lZilY4mbmzo/y7Xq4/SJmGTBZFj9HE2ZTd5XH+aUhK5kPs4CFG8V5RDIwI82IMIN3QILndDfeGTv1WM47ECHDIyDhZJoaafhv3BpzeWwgbmcbAq8cOLvTiZWwOnwijf9ukZRUCf37T8Gdd96NzZv7IRRlm1x7RUpKClMBFK84duwYatasCQD47LPPMGbMmJJKl//9739tt+uJM/fpp59i7969trJyRrg5Rx0wH1RlfXi9SbicrXC6N5edF7rdKmtEaeSXvtb99NrBM9OxV2jdCy+zciwGRLRrPagBCSttOcVvQ9Tv64uEloOldX+80rHaWbOqYTf2nJPxayql3erDQS+EAgC9et2Ir79+CosWLcLQoUP97o5/RMk+cwBQo0YNbNu2DbVq1cIXX3yBl19+GQBQUFCA2NhY2+267syFw2HcfffdyMzMRJzTspAwfj7qaJzTzB0rXmXqrLykeQzKFSpQcQk/iHQda13TaygowQ8RAhJOCpzwur4o1yUd28NMx24XVHFjKqaV6/KAxcFKTiaNyiQkJOGii+7H5Mn3YPDgwYZl6yMaAZy5/Px8/PrrryX/3rNnDzZt2oTKlSujfv363Lp1xRVXYOzYsahVqxZCoRD69u0LAPj+++/RvHlz2+267sx99NFHOHToELp06WJ4nNWsHAtOMnd2N8uUr8PBby3VJm9oKk5wcDsDrXc9N6/DuzgK6/UIb7CaweNlKLtZEdPoemY65jFFTXk9p0RCVoMnrNsPeKFj9TYYPHWs1KEdLfGo3MqTSNBxjx7X4auvnsT8+fNNZ68R7vHDDz/gwgsvLPn3HXfcAQCYMGECZs+eze06U6dORatWrbB//36MGTOmZOlZbGws7rnnHtvturppuCRJaNmyJapUqYLMzEzDY1mcOV7r4Fj2g3G6ybKT6JrZ9MmgbfJp5big4/WGtoC5np1qGbC/abhSi3amUdrZcFnrWtGwGThveGqUZe2SWVt2dSxfx2mAzUjLLDq1U1nYLR1bOS7ouD0m2ynQ5qeWI82+iAQdL18+Az/++CK2b/85qtbOlWwaPmeOO5uGX3op86bhbjN+/HgMHz4cAwYMQLILJVRdzel++eWXOHjwIJo1a2Z4nBtZOSOSk0v/qOGZVbOiT6vHW8XoM7tJJAy2ohIX576W5XLYdrQpn+emrpXXcPtaBD+8ema8rmHUDo/vGenYHdx+/3j5zJxcI1Lti0iYmdilyxX4/ffD+Oqrr/zuCuESTZo0wbRp01CtWjUMHDgQL7/8Mg4ePMitfVczcz179kRBQQHOO+88w+N4ZeVYjjN76ebn88nKaaGVqbOarbASAdYbVO1mO+weF03OnNvZDDVGWmTRslkbVrSshHX6md2/K7XNay9F0nJpvM4yK7WmtZ+YUy0r/25n42XScnDxc1y2o2Urf2fRstVMMuvfycbgx6efTkVu7gp8990yv7viGSWZuQ8/dCczN3asMJk5mQMHDuCTTz7BwoULsWLFCmRmZmL48OEYNmwY2rVrZ7td15y5jRs3IisrC5dccgkSDXLurFk5NwwGs2P0Nih1MhCblcB2MsgmJ/OZ7gP4P51HhE1q7WxQy0unQdAyYL7HHK/ABKCtCTIa3MNPZ06JrF2ezpyMlY2XeTpzbhvBpOXSiKJlgF3PPLQcLXaGXS2LYGcA5zSRn38M995bD99/v8aRUR8kotGZU/LXX3/h888/x8KFC/H555+jYsWKGDp0KK6//nrTpWlqXCuA8uSTTyIjI8PQkWPFyzS6coCUv+h2jHo9eE9zEGUw0kM5yBp9n0Q0LJT31kyDeXliT/dQfhbeei4ocGdbAVajIQj4/T3l+cy9Rr53ZoEJO3ix8bKM3xrghQifI1L07JZtoTcmO0H53HkV9OGFuhBKEG2N5OSq6N79Cjz22BOYO3eO313yFgGqWfpBxYoVMXbsWIwdOxbFxcVYvnw5PvnkE6xZs8ayM+dKZu7o0aOoW7cuRo4cidTUVN3jevfWzsrl5ZX+tx+ZDD2cFpswgyWTYfQydaugBMtxWgNopCzGd6LBaNWzHS2qte2Vnu3oNGgGgwxLYILlONb2WI+xk6lQG8M8iv3o4VTPomUz1Mfp6VlkLQN89ezn2OyllgE2PYtqawBl9RoJtsahQzsxZUor/P77QVSrVs3v7rhOSWZu3jx3MnOjRwudmeOJK5m52bNno06dOoaOnBHq+y4Pnmqj2A/cLNtutlG4KINQSoo4ffECpwGeaNUzK06mnLmNXYMhyMifWUv3fmpWa8NktzLOThAhc6WHHT0Hvfw7bz2zbD9gZ3NvtW7M1jw72UDcDB72Bkv2jkVbrPZG0HUKALVqZaBJkwswe/ZsTJ482e/ueEcoxD+TJmhV0D///BMPPvggli1bhqNHjyKsEu3x48dttct9KJAkCS+99BKaNm3KpT3l89VyrnlOb7MyMHqxn5HVQAVv49erYEbQB2ArsOiZF6LpWY0oRm+0BSecoKVZUYITycnm+4C5fX0RID2z46eezZwxWc+At3sm+okXNofoTl+fPjfihRfuxZ133hk92xRE0TTLyy+/HL/++iuuuuoq1KhRg9sz5u7MLV++HMePH0fDhg0Nj9ObYmmVlJSyz0xrEOYRwdLThjwI2t2LS6str1EOorwGOpEHTFHRiiJ7bSS7ma1T6tsPfUTBbAvfcDs4wYqXgQkrenZjnZGenkU3WHnCa8N5NaLoGfBuTLaCUz3L9zcnx3xcjiY9n3/+xXjzzRuwYsUK9OrVy+/uEJz57rvvsHLlSrRt25Zru9yduRkzZqBx48aIjY3l3TQz6oHBqwHY7oBbocK5QdFoM08eA5ly4A3q+ohoQG2YaOnZrek1Wtd1akD4HaAgTfuH38EJtxw7PzVNerYHD6cvkvSckmLsjPFwoJQOn57NkZbGT9OR4PSVK5eA7t0nYsaMGdHjzEVRZq558+Y4deoU93a5moQnT57EokWLMHjwYC7t8XoWaWl//7/dEu1WYHHqeBsDZqWEAcq4uYmX44Y6G213rRBrn+0YEHKAwkso6xYM/Ay2xcXZN4K9duBIz+KidAz1Mng81rQZOaCyHq1q2isd87Y7eCK609et2wQ88kgWTp48iaSkJL+7Q3BkxowZuOeee/Dggw+iVatWKFeuXKm/2y3WwtWZW7RoEVJSUlC5cmXD43hNsQSsG9Fai4x5XEdr0Pay7LUSUdZuRAKCBndKYVfTdjALVHhp8CYni/lCFrFPIqPOdrhdyMRqcEJ5vNuZDJYsheiGKMGuaV5FTFg07cbYrJ5q6abtEU26r1+/DSpXroPFixdj7NixfnfHfaIoM5eWloa8vDz07t271O8lSUIoFEJxcbGtdrk6c++88w7q1asXqEWbbu35osRsEDXLYJgNYEHejytaBmcv8VLTsuFAQQqCF6IEJ6JB09FkILPixho8PzXtto7NNMyiMdJhaUKhEDp3vgxvvvlOdDhzUcRll12GcuXK4b333hOzAEpeXh6WLFmCiy++mEt7fmwULmKZaz2sGgE89ybidT0n2MlE+11tzw/c1rSeoeA0QAH4b+gSYqDerNhLHfMmqJomY5svomjarIiJ3nO3un+il7Bq1a6mnUx/tmKDZGVdivvuexx5eXmRv09aFGXmfvrpJ2zcuBHNmjXj2i43Z27x4sWoWrUq0pQL1DTweoql3eepHKz83INLxsnmnSLh575ddsZDnntt+T22BCFYIbKR4DZ239fRFqQIgo6VkKatY1XTblW09AojTZt9Njf3m1MS1ECEEr/3DbXyfUhJaY5atTLw2Wef4dJLL3WvU4SnnH/++di/f7+4ztzHH3+MWrVqmR7n1+J3J5gZD24NpCIuIDbqixvbG4iI0d5EMn7r2kyTyj2M/DSInRgIXmssOVn/ufqpfasGs2ibgTtBVMcuEgxfwD9d8wi8aWmap9PH0pad63k5JdMMlnXJbmy5oYdRNk2pGZbtDoJAx46DsXDhp5HvzEVRZu7mm2/GrbfeismTJ6N169ZlCqC0adPGVrtc3JCzZ8/i888/L7OgjwWzL5xIL2iAv/GgHgRFNgJE7pufaI0ZRro20o0f44/XBrGXhUt4XEe5xUEkGAhaBCFAYYbfAQpRC/JoEQ2BN6M9+JT4rWsrm4d7NT4r4THFlte6OVYbhOd2B37SocNATJ8+GuFwGDGCOidciCJn7pJLLgEAXHnllSW/C4VCYhRAWbNmDQCgWrVqhseNGGF9iqXWlzc/n99zcpJVk/tWWOisD0YDFI8ByWobXjltog+2bo0FeveXV2VVJyj75lTXeu2Khsh9Ewm7AQo/8CpAIbJ2IjXwwJto13VcHJCYyKctXnj1vRJ9LWjz5l1QWFiIzZs3o3379n53h+DAnj17XGmXizP3ySefoG7dup5FDpKTyzphWtE1Ht1h2ZLAzgArn+PnGgrlS4xnP0QeHEWGVdc8YPluODUcRDN0RetPJOE0QOEmah07nRYvmo5E608kERRd2w28RbIdEgnExZVDmzZ9sHjx4sh25qIgM/fggw9i+PDh6NChgyvtc3HmPv30U9StW5dHU7bRiq75NdVG79puvHRZBz+K0gYTv3StNniNdK11nNOXstPz5ftGxoG/KLfJUOLX1DZlwMTq94jHFjBO1xeRrsXAa12brb1LTGTXtRt2CKuuyQ6xzvnnD8b8+a/h/vvv97srhAMOHDiAgQMHIj4+HkOHDsWwYcPQp08fxMfHc2nfsTN3+PBh7Nq1CxdccAGP/nDFz2IrfkZL/a7YRLiL1gvRK23rZetE0jshPm4FKawUnGDJPEeDrkWfasaKCBUt9cZmL/sl0hht1RbhWUwlUnR93nkX4eWXr0dOTo5ptfjAEgWZuddffx3hcBirVq3Cp59+ittuuw2HDh1Cv379MHz4cAwZMgSVK1e23b5jZ+7rr79GrVq1kGgy6drOejk9WKbJsBSl8HvLAR57cQFkzBL+aNtv4yASXtTE30Rr8E1GWWjHDC8rCEYaPJ0+lm0BUlL8K7rCS9esjlEQbRHRnb5q1eqhdu0m+PrrrzF69Gi/u0M4ICYmBt27d0f37t3x1FNP4ZdffsGnn36KmTNn4tprr0WnTp0wbNgwjBs3DnXq1LHUtmNn7vPPPzctfCIqZiWABXPsS1D222wQEnmQItxDpPLWTgiicUDwQevZ+x2A44WRrkU1LkXtVxDRClx4sVecHnaDA1ZsEcI+558/BIsWLYpcZy4U4m9wh0J823OBFi1aoEWLFrjrrrtw9OhRfPrpp/jkk08AAHfeeaelthwNH5Ik4auvvkKnTp2cNCMMagPYzHDwavDVi67xGjz9KH5CA7+3iLoflxoR91YkxCEoOtaCtE3ooc7eiaxtEbLY0UaHDoPw/POXlZSvJyKP6tWr46qrrsJVV11l63xH7siOHTuQk5ODGjVqOGlGWJTRMy+n/NAi93P7xLhNTo7zNkTM3pr1SV010899lsgwIOwievaZtE3YxY62WaZ82oHVHhExc8urT14tVdOzSVq06IKcnOPYuXMnmjVr5k1nvCQK1szJXHzxxZoOeSgUQmJiIpo2bYp//OMfyMjIsNSuo6/+smXLULt2bcSZjCBer5djwepz5u3YKQfGSJxKFoTP5HSA5u0E+TXNxk1t612LAhXuwiNQETTUFQa9DlKQtknbbuG1tt16f7M4V26tBw22TZKIzMwuWLZsGTlzVtoUkNTUVHz88cdIS0sr2abgxx9/RE5ODvr37485c+bgiSeewNKlS9G1a1fmdh2Zj0uWLGFaL8fyJeI5OLn9DOXPExNjPxpsdk9ENQjM+i1aZM5NtBa2axFt2tZrM1IIwucRLVDBAu9qhF7MrAiCFqwQhM9D2nZP20bPX9SiO9Fik3To0Buff/4lrrvuOr+7QjigZs2a+Mc//oEXX3yxZG/ucDiMW2+9FRUrVsScOXNw3XXX4e6778bKlSuZ2w1JkiTZ6ZAkSahcuTJ69OiBmjVrGh47frx5Zs5ooFNG4uxWsrR6jNl1tM43Mn7V0ybMBhiWQZNlkGI5RnktvRclrYXThvUFrXecH9pmuZa6DSuOXYUKxn/3S9ssGBkGpO2ysBqSrFlns2vy0raTQIVTfZO2/Yd3EI7H2O2HtnnbJW5p24ldEina3rJlJR54YAT+/POPiFk3l5eXh9TUVOSuXIkUzvPS8/LzkdqtG3Jzc5EiUJSqWrVqWLVqVZlplDt37kSXLl1w7NgxbN26Fd27d0eOhWkItjNzP//8MwoKCjypZKn8IvtV4pcF9eJ8v9dMGA1iVspgE+4RVG0b/V1kTWkZBSL3V3SMstMiT4ezWkglCPp2GoiLJlgyZV5rm1f2zspYLRK07YwxLVp0QkFBAbZt24bMzEy/u0PY5OzZs9i+fXsZZ2779u0oLi4GACQmJlp22G07c9988w1q166N2NhYw+NYsnKssOwdJx9nZAh7MZXW7QEzUvd8If5G7/k5nf7odG1ecrIYwQo9yCgQgyAHKkTVNkCBOBFQO85KfYuqbS/gtR8dz2IqIhZmsUO5cvHIzLwAy5YtizxnLorWzF1++eW46qqrcO+996Jjx44AgPXr12PatGkYP348AGDFihWWn7Fts+7LL79E9erV7Z7uGvLz0xosRBpkeaP1eb0ewCJhwHQDnmNKTIwY2hbB2KVgRXBxK1DhFBF0DZC2RcFOtsxPbfNem8cDEWyTSOH88/vj88+X4KabbvK7K4RNnn32WdSoUQNPPfUUjhw5AgCoUaMGbr/9dtx9990AgP79++Oiiy6y1K6tNXPhcBiVKlVC7969TR061swcr7VAVo4xMoDtrJljxem89JQUfnPFec45j8YBmpcmebZlpm83tQ24sx7UrkFA+raP17rVO06pYzfWg1rFjXVFan37oVvSt/3jnBwjkr7JNhGbn39ei7vvHogTJ/4sKZ4RZErWzK1d686auc6dhVszpyTv/7/8PPpnKzO3ZcsWFBUVoWrVqo47APgXSdLLcLhtDFhBUA0SEC8CqkaEDJ4dWAyCSHk5RwtOMgZqHZtNoxcdGtMJJUo9sASa/URZ0VIEHUfKFEpWmjXrgDNnzmDr1q1o27at390hbPD+++9j3LhxAMo6cZMnT8b06dNttWvLmVu5ciVq165tGhnguV7OK9SLnr2c9iMHJqJpcCK8xU99ayGCQUAEj6AEKmiKGSFjJaDhl76NnKMg2yeR4vTFxZVDixYdsXLlyshy5qJozdz111+PtLQ0DBw4sNTvb7/9dsyZM8dbZ27VqlVI82J3UAW8novVdtSZX57Gr92scjSV4yXcxU19612PtEm4gXKPRMCfQAWLvnkZlpFioBJ/Y+Twea1vUdaPEqVp3bo7Vq1ahRtvvNHvrvAjipy5d999F+PGjcOiRYvQrVs3AMDNN9+M+fPnY9myZbbbteXMrVmzBi1atLB9UbfwqkqlchqmlWiZPBiLsvFmEAwBnjEDkUul+xWsUONE33rtWSUIuiTER0t7vA1gMngJwJ/CI7z1zcs+iaZghR/2ScuWF2DGjHf4XZjwlMGDB2PGjBkYNmwYvvrqK/zvf//DwoULsWzZsjLbFVjBsjN3/Phx7Nu3Dz179jQ9Ni3NXKCCOs/MqKdDKI1frakSojhyvAmHgcqV2Y7zC9aB14omRXYQeWCkb73jRdF4NBkCMpGuR6c4DVZ4pe8gGLJmiK5vESs/OkV28GSNG+nbzynufuibxT4B/PvesX5fLrigE+6+ew9OnDiBSpUqudonz4iizBwA/OMf/0BOTg66du2KatWqYcWKFWjSpImjNi07c+vXr0eVKlWQmJjIdLyZQJX3WwRDxOnzj6Q1QPKzC7pR4SYsA7CsKaf6FmFskvUtGwmRpHczRDcGAGt6ZEGEMdlNlPrVMnxJ32URXd8Au8ajSd9A5I3b0WijVK5cDbVr18e6deswYMAAv7tDMHDHHXdo/r5atWo477zzMGPGjJLfPfPMM7auYdmZ27RpE6pUqWJ63C23WC9+wjJQ+73I3emGy2Z4NSixDubRNEi6TRD0zUokGQOkcX28DFb4TaRoWgnp2xirzqEIGudZGdYOXmXVIvH7yItmzdph8+bNkePMhUL8o9WhEN/2HLBx40bN3zdp0gR5eXklfw856LNl12TDhg2+7tlgdOmgl6zmCQ2EwcTsufldfTJIeFyjKeqJpGBFEKAx3nuiQePK7QfcRFT9BmGKc4sWHfDjjz/63Q2CESeFTVixlZlLT093oy9c0Bsg8vLEmKbGE73PKvpARNgjJsb4BRh0I8IKohoChDEUrGCHNB5MKOBcGrJT+JOR0QYzZrzvdzf4EWVr5tzAkjNXVFSE3377DR06dHCrP7Yxe27q/bWUiDy4qgdCGgCDhdcbzGtdz0t9847okiEQXURjsMJtjQch0xAthMORqXHaT9FbMjLa4LffdqOoqAjx8fF+d4cw4brrrsP999+PunXrmh77wQcf4OzZs7jsssssXcOSM7djxw7ExcWhYsWKli4iOsqBSDaGvR5U5T7QAEjwRv2i9UvjRij7SN8BQgv1PlsyVnV89qz7a5/VUFCOYIGXxt0kJSV6th4Qldq1GyIurhx27tyJVq1a+d0d50R4Zq5atWrIzMxE165dMXToUJx//vmoXbs2EhMTceLECWzbtg0rV67EnDlzULt2bbz66quWr2HplbZz505UrVrV0SI9JQLd6zLoRc8KCuy3KWctaPqMuIisSR4oP5+WDt02GngZAgQhI1qwgsZ3gjd+aJx0LC4xMTGoV68ROXNmbQrCo48+iptuugmzZs3CjBkzsG3btlJ/r1ixIvr27YtXX30VF110ka1rWHLmdu3ahWSGXVLtVLIUAZZnb2WjTvWxZMQSoqM1VdPOOiYyBAi/MVo/7Wb7NM4TXmGkcSvZ56DbKtGY5WvQIAO7du3yuxsEIzVq1MB9992H++67DydOnEB2djZOnTqFqlWronHjxo6TZJacuW3btiEpKcnRBSMRBv+WiWgbjIhgoNa32rlT/t1Mw6Rxwm/sBCysaDzSDctI/3yRAIvGedkthD80atSyTIYnsER4Zk5NpUqVuG/4bsmZ++WXX5Camsq1A0FCYG0EAjIAIgMyAohIgzRNRDo8NR7pDn0QPl+DBhlYsOBLv7tBCIIlZ27fvn3Iyspyqy9EwImmfb1E2DzWDShgQRAEITZONg4nIsNWadmyEZ5/fr/f3eBDlGXm3IDZmTt79iz+/PNPpjVzlSs76pNlQ5nlmUXZc7WMk8FN9AiWG3itccJf0tLOPbNIMAJYIY1GJ6RxQvTMFNkrQK1adXHs2FEUFxcjNjbW7+4QPsPszB05cgSSJKFChQpu9geA9S+qSGV7RSGaXshBxOrzIaODD3a/F+Fw9H2nKGARTMjQZSctzVmglzTunGgbV3lRvXotFBcX48iRI6hdu7bf3XEGZeYcw+zMHThwAMnJyYgR8AaxDgaR4PSZfdZoexlHC6xGRyRonBUyAsSGAhZ8IJ2Li51nEy1jNMu9IXvFPvHx8ahcuQoOHDgQfGeOcAyzM3fw4MHAbxZuVi49JsbfgZbKuRNOEV3jLJAREJ3wClgEYT0RaTx6iZTgMw97RfTpnKJTo0ZtHDx40O9uOCeKMnNHjhzBnXfeiaVLl+Lo0aOQJKnU34uLi221aykzV758edPjpk4N5h5zMkYDlBNDmGWzZBrUCC9wS+NOr00QLLBoyM7eiDwhnRNO8TswZ3Z9slf8p2bNujhw4IDf3XBOFDlzEydORHZ2Nh544AHUqlXL8f5yMszO3P79+5GQkMDlokHG7kuaBj4iKJhp3MiAIAOAEAEzHTpx9mJizMu8k84JPXhmjp0E5misDj516zbA/v0RUtEySli5ciW+++47tGvXjmu7zM7cvn37InrDcEGdeIIQDiMjgAwAIgg4zZyRzokgQBniyKZWrbrYu3eL391wTijE3wjnlPHiTb169cpMreQB893Lzs6OaGeOIESGgg0EQRAEQcjUrFkH2dkRMM0yinjuuedwzz33YO/evVzbZc7MHT58GJmZmVwvThAEQRAEQRBeEElFV2rWrIPDhw/53Q3nRNGauUsuuQQFBQVo3LgxKlSogHLlypX6+/Hjx221y+zM5ebmIjEx0dZFIgG3dREpgwtBEARBEAThLmlplZGbm+t3NwgLPPfcc660y+TMSZKEvLw8xMfHu9IJIrpwuhmxG9gMhhAEQRCEcLi9RUckZbiMENFekUlJSUNeXh4kSeJWFdEXoigzN2HCBFfaZXLm8vPzEQ6HmapZurnBKW0qax/aeNYYkQZs0nlwqVz5XGBAJD1pQcELggei6pz0HXzIZjGnYcNKKC4+i5MnTyLZrMQuIQzFxcX4+OOP8csvvwAAMjMzMWzYMMTGxtpuk8mZy8nJQSgU8j0zp/XlduJ8i2w02x3IoiFSFulEk855I4IBIKqBq8TvPkaTJt1ABJ2LjN/6lokmnZPN4j2pqakAztnogXbmoigz9+uvv2LQoEE4ePAgmjVrBgB4/PHHUa9ePSxevBiNGze21S6TM3fixAmUL18+2GlcDZy+EI32Kgry94qILNzUuVPIAIhO9J673fev6EazHZ2TxoNPkHSutlny8mhrA9GJjY1FxYoVceLECdStW9fv7tgnipy5W265BY0bN8batWtR+f+jTn/++Sf++c9/4pZbbsHixYtttcvszEVz8RM9yGEjogG1zpXOHX0HCBFwO2BBOidEgLfOjXRNjlwwSElJwYkTJ/zuBsHIihUrSjlyAFClShU88cQT6Nq1q+12madZkjNHEARAhi0ReZCmiWiAdB55pKamIUf0qQlmRFFmLiEhAX/99VeZ3+fn5ztaysb0aU+cOMFU/IQgCIIgCIIgCPdJTU2jzFyAGDJkCK699lp8//33kCQJkiRh7dq1uO666zBs2DDb7TI7c+qN7QiCIAiCIAiC8Ie0tErBd+bkzBzvHwF5/vnn0bhxY2RlZSExMRGJiYno2rUrmjRpgv/+97+222WaZnnq1ClHJTMJgiAIgiAIguBHhQpJOHXqlN/dIBhJS0vDwoULsWvXLmzfvh0A0KJFCzRp0sRRu0yu65kzZyKukiVBEARBEARBBJX4+HI4c+aM391whiCZuZdeegkNGzZEYmIiLrjgAqxbt86FD3uOpk2bYujQoRg6dKhjRw5gzMyxCuW552Y66gxBEARBEOdsEdqegCAII+Lj44PvzAnABx98gDvuuAOvvPIKLrjgAjz33HMYMGAAduzYgerVqztq+4477sCjjz6KpKQk3HHHHYbHPvPMM7auweTMFRUVIUbQ+acEQRAEQRAEEW3ExyegqKjI7244Q4Bqls888wyuueYaXHHFFQCAV155BYsXL8brr7+Oe+65x1FXNm7cWOJwb9y40VFbejA5c8XFxUyNlYcf83bJySwNhXIjE3F0fhpU2ZYgCCLoJOC0310492qjFLRtKsTH4OzZs353Q1jy8vJK/TshIaFMdf6ioiJs2LABU6ZMKfldTEwM+vbtizVr1jjuw7JlyzT/nydMzhwVPyEIQkYIA4CCFhGKOEELMSCdRyak8xLIkXNEUVERKiYl+d0NR0gIQQLfuhxye/Xq1Sv1+4ceeghTp04t9btjx46huLgYNWrUKPX7GjVqlBQp4cWVV16J//73v6hYsWKp3588eRI333wzXn/9dVvtMo0o8fHxCNMXjiAIgiAIgiCE4HRRkaPNpkUgHHbnBwD279+P3Nzckh9l9s0P3nzzTc3qo6dOncJbb71lu10mZ451j7lJt91muyMEQRAEQfw/FEAlCMKEoqIi2gfagJSUlFI/6imWAFC1alXExsbiyJEjpX5/5MgR1KxZk0s/8vLykJubC0mS8NdffyEvL6/k58SJE/jss88cFVphmmZZrlw5SJJk+yIEQRAEQRAEQfDjTAQ4c8pMGs82WYmPj0eHDh2wdOlSjBgx4v/PD2Pp0qW46aabuPQnLS0NoVAIoVAIGRkZZf4eCoXw8MMP226fyZkrX748cxEUgiAIgiAIgiDc5WRBAcqXL+93NwLPHXfcgQkTJuD8889Hp06d8Nxzz+HkyZMl1S2dsmzZMkiShN69e+Ojjz5C5cqVS/4WHx+PBg0aoHbt2rbbZ3LmKlWqRPtYEARBEARBEIQgnMjJQaVKlfzuhiP8zswBwCWXXII//vgDDz74IA4fPox27drhiy++KFMUxS49e/YEAOzZswf169dHKMS34AuzM3f6tAgV7AiCIAiCIAiCyMnNDbwzJwo33XQTt2mVenzzzTdITk7GmDFjSv1+7ty5KCgowIQJE2y1y1QAJS0tDYWFhbYuELHk5xv/EESkQNomCIKIPGhsDzw5ublIS0vzuxuOcLOapWg8/vjjqFq1apnfV69eHdOmTbPdLnNmLuKcuZyc0v822y3e6u706oHRTFlafw/4F5QQADd0rtR2crLlLhGEkBgZs6RzIlIw0rnybyzWsPoYslk8Jy8vjzJzASI7Oxvp6ellft+gQQNkZ2fbbpfZmTt16hQkSeI+z5MZtVEqU7my/t+Cjp3PZTQA00ArPnrP3GowwSucBi1IkwQvlN8d0YJzpHOCB1Y0znoMT8hm8ZTi4mL89ddfgXfmRFgz5xXVq1fHli1b0LBhw1K/37x5M6pUqWK7XSZnLi0tDZIkoaioSHOPhlJ47VgdPy6uoSsabj0bq98aRRUfoTh+nP1Y0hwf7GpST3P08g8GQQtaOIWM3Ogk2nTOG7JZ9Dl+HLknTgBAxEyz5N2miIwbNw633HILKlasiB49egAAVqxYgVtvvRWXXnqp7XaZnLnk5GTExMTg9OnT5s4cQZhhxWkiCCuI8vIHhDUAmCGDU1xI58aQzgmeCGqznMjNRVxsLJKSkvzuCsHIo48+ir1796JPnz6IizvngoXDYYwfP979NXOhUAgpKSkoKiqyfSGCIIioQlADgCC4QjoXE7edVFFTH1FETl4eUlJS/Fv+xIloyszFx8fjgw8+wKOPPorNmzejfPnyaN26NRo0aOCoXSZnDgBSU1MjrwiKFcJhdwfHmBhx1UcQBEEQBEEIw/GcHKSmpvrdDcIGGRkZyMjI4NYeszNXs2ZNFBQUcLswQRAEQRAEQXhGBAXNDx4+jFo1a/rdDcdEU2auuLgYs2fPxtKlS3H06FGEVR395ptvbLXL7MzVr18fe/futXURgiAc4nZmmCAIgiCIwHDw8GHUrV/f724QFrj11lsxe/ZsDB48GK1ateI2RZbZmWvQoAF+/vlnLhcVEhZjOS/P2TVoryIiCJjpPCXFm34QBEEQ7mA2zpO9IjwHDh1yvNZKBCSJfyZNkvi2x4s5c+bgww8/xKBBg7i2y+zM1atXD6dPn+Z6ceEwG9ycZkZo8CREwEiHLBo3Op80TAQFu8G5cJgCGoR9vJxh4SQATfaK8Ow7cAADO3b0uxuEBeLj49GkSRPu7TI7c3Xr1sWpU6dMj5s0dSpmTp3qpE/uwDKo+T2NjaWPZEQQRrgdkHB6fTIACK9wGrSw2zaN0YRXuKlxJ9eWoe+Cqxw4fBh169b1uxuOiaY1c//617/w3//+Fy+++CLXKqTMzlydOnXw119/cbswN3Jy2AYtvx01XrDsLxQO06aykUak6JwMAMIpfgcszMjLM7ckSOOEEUEIPrNgZq/I3xOyV2zx+5EjqFOnjt/dcEw0OXMrV67EsmXL8PnnnyMzMxPlypUr9ff58+fbatdSZi4/Px/hcBgxbg4ibm2GGm1YvY80mHoL6VwfClhELyzPPghGrBmk8eglWjRuxZq28z6M8u9GUVER/jx+PCIyc9FEWloaLr74Yu7tMjtzNWrUQCgUQkFBAZLNpkqxbiIaCQNWpKA1mFoNbUTT4Eoa9x8KWIiNHQONvi+lISNXfKw+I9I4H9T3PcrslUNHjyI2NhY1atTwuyuOiabM3BtvvOFKu8zOXFxcHKpUqYL8/HxzZ85rWCpRUml361jdyJx1SoXIkEYiFz19WtFlwA0AS1DAIpg4DcxFgsZzctg+B6sjFm0aD8K72ikBt1cO7NiB6lWqIDY21u+uEALA7MwB57Yn+Ouvv1AzAjYpJAhCAwp6GMM6PU5k6PkSRkSKxiN5Kjt9h6Oe3w4cQL0I2WMumjJz6enphoVPfvvtN1vtWnLmWrRoEdl7zZmhZejm5xufI1oW00+sZvoIMVBrnDRNEAQRXLTsFivjeqS/xwPw+Xbu24fmLVv63Q3CIrfddlupf585cwYbN27EF198gcmTJ9tu15Iz17JlS6xbt872xQJPXh4QZ+mWlR40z54991+9Smbk7BB+w6JxpaatOnakcUJEjIJyVjUe6fqO9M8XqZgFnq3YKoTvbPvtN3Tq29fvbnAhmjJzt956q+bvX3rpJfzwww+227XkmTRt2hT5ZgMCgEnPP4+Zt9xiu1O+IWfenGy0yYJe+zRwEl7BS+Pq8YCMAEJ0rAblSONE0Cgo4NOO3ntCtNkZolruLrJz3z5c1rSp390gODFw4EBMmTLFdoEUS85cRkYGjh07BkmS+Gx2J8L6HPVg5WZ/4uL+NgT0+qI1KJHR4B0iaJI3Xmpc75oA6ZjwHjcDc6RxQgS0dGh1BhGPa5L2PSMcDuO3/fuRkZHhd1e4EE2ZOT3mzZuHypUr2z7f0je+WbNmOHv2LP766y+kBOmLKw88QTXS1QOnrNIgPQPCXYKgcbmP6lGWdEw4RTlGmn0H3DR0KSBHOEVPv1Y07gd6dgqgrf+gWdsCsff333Hm7Fly5kzaFJH27duXSoZJkoTDhw/jjz/+wIwZM2y3a+mtFh8fj0aNGuH48ePiOXPhsPmc8EjDKOos2jSIaIV3ps/tKcBOMcs+a0HBCoKVvDwxDVkz/NS4qFZNNGKm3aDqW41ac1rvLbJRbLNl5040btQI8fHxfneFsMiIESNK/TsmJgbVqlVDr1690Lx5c9vtWg5RtmvXDnv27EHDhg1tX9Q2ZoYs7TX3N2b3igxlMTF6btGiXRkKVkQfogcreEMajy6iTd9GsNwLslM02bJzJ9q2b+93N7gR6Zm5O+64A48++iiSkpJw4YUXIisrC+XKleN6DcvOXIcOHbB582aunQBgvidMtBmybqM3HUhJJGweKxJGGid9W4OCFcGFAhZskMaDSdD1bXVmhZuw7BXI204RyQvQYcMvv6DrRRf53Q2CkRdeeAF33313iTN36NAhVK9enes1bGXm/vzzT9PjJj3/PGaOH2/eYBAGNyVnz+qvucjLO/eClQdzOy9bkUq3ywMpa3+izflj3ZQ2aBrXQ2mkiG5IUrDCHyhg4R2kcW/Iy/v7Poqgb6fXcTqOi2KfyOTksPUpgr4Lm3bswA133+13N7ghSfxlJUl823NCw4YN8fzzz6N///6QJAlr1qxBpUqVNI/t0aOHrWtYduY6duyIP//8E4WFhUhMTLR1UaGxMhVTKwKn/J3676IbwE4Ih4Hjx/m2yXvwZXW+WPHaOPV6mrBRhFkOXAQZClYYE23BCiBYAQsWWA1dIPr0DbBpPCaG/7vDL9RjeiTYKKz65m2fyPD63jBq7I+cHGT//js6derE57qE60yfPh3XXXcdHn/8cYRCIVx88cWax4VCIRQXF9u6hmVnrnLlymjQoAGOHj2K+vXr27poKYK0jk0usGK3v+pqfpG0JsKNjGKkvECDglV9i24I8NakG8YATwM66MEKPzALWCjxUt9+ZD8ixNhlJlL1rZw5ZHWNnjrb65aNIlp2zwke2ynrfvkF6Q0a6GZ2gkikr5kbMWIERowYgfz8fKSkpGDHjh3+T7MEgKysLOzcuZOPM8cT3o6h29Uxtdr30sETaUpntMNLu1ba4a1vXsGKaNIlBSy8JT+fgnFeEw0aF8UxdKJvvfaUsGie19gdLe8Ai3y/bRs6d+nidzcIGyQnJ2PZsmVIT09HHOctcmy11rVrV6xbt45rR0zxwtiVX9Zub7hpRH5+6QXIWtFgFmM3mgxigg2v9W3HECAInrgZkLOrbzJ2CT2s2jheb8fEYp8QrvLd1q0YfeWVfneDK5GemVPSs2dPAMDRo0dx9OhRhFUdbdOmja12bVl13bp1w+TJkxEOhxFjMPhMeusttiIofhCUEsFa/aQBlDBDRH3LhgcZA4Qb+B2MI30TRvAqXOKmvq1awEHZP05Uy94iZ86exfpffsFz3br53RWuRJMz9+OPP2L8+PH45ZdfIKmqtHi6Zg445znGx8fj2LFjfOZ9erFuTjnomF3LqGIl4P86P60qZmQ0eI/fOpBRv1BF6BMrdtclUeY5WPDSZH7+3xoRMWChRvR1pYS4iKhvlm0LvAxAR9k7YMOOHYiPj0fr1q397gphkyuuuAIZGRn43//+hxo1aiAUCnFp15YzFxMTg+7du+P333/nvoiPCyIOgkrMDNG4OOt7veh9Zh5RMjKcxcELbfvppKrXJQFkABN/6yImRvzx3QhRA3E0vvuHlUCzn0tAnKD+zoqYvQsAyzZuRNeuXQ1nxAWRaMrM/fbbb/joo4/QpEkTru3aHhn69++PZ599lmdfrKP3Uvdb6Mp57H4OWuGw/j1yw4Agp08bO86RqNoGzunbS127GaggxCLIjppdgjJVLRrhOd56oW2z/sq2STTZJRHElz/8gFFXXOF3NwgH9OnTB5s3bxbHmevduzcmT56M4uJixMbG6h7neN2cuhIWj8iUG5kHvYXIbjl2Th0n5WCqzgJG435DfqHUt1dRV7NpxFp4vdCeBTIIggsFK4whbQcbrecngrZl3LJLnAZz5fumNTPJrl0SIQHmojNnsPbnn/HihRf63RXuRFNmbtasWZgwYQJ++ukntGrVCuXKlSv192HDhtlq17b1mJmZiQoVKuCPP/5AzZo17TZzjry8c1/UoJUwtmrgKo+vUIFvX7Sw6/CZPQcyKNgJcqbBSN8iV6qkQIU4yGOJ6NPD1HoWZXaFGqvazsmh8VoLHo4V70CcW86emZ3itV1iFyO7JAo0/v22bUiqUAEtW7b0uyuEA9asWYNVq1bh888/L/M3zwugyBft2bMnDh48aO7MsRi0ojlyetkL5WdxMoAHeWG80fOMprVOeXliRVud4kTbVgwCO2tCeRHlBgF3ghqssBKIUx579qy4OtHTdl6euH0WGVZtixiosDOT4uzZ0p85SJqJAptk2caN6NG9O7eCGSIRTZm5m2++Gf/85z/xwAMPoEaNGtzadTQKDRgwAE899RSvvvCD9zRKLwwWLefOL4OXF6wDrBZeZFCMDHtRnbQgaDsSDQLgb80G6TPZxY9AhVcVjZ0a33I7QdIBaftvSNvW2gQiwx4BxLZJTBIa36xfj0tvuMHdPhCu8+eff+L222/n6sgBDp25Cy+8ELfeeqv5urmPP8bMESOcXOpv7Kz30cLMKM7Pd3cANstOKKueiTTNxyv8ztT6UdGRl7bN8FLbQc5A68FqGOtBgQrvcDMQF20BOIC07ScFBf5ty6GuwmrXJmFJl/jxHWLpl482SWFREdZs346ZEbheDoiuzNzIkSOxbNkyNG7cmGu7jizHZs2aIS0tDYcPH0adOnV49ckfRCzwICPy+qRoR5S95pSo+ySStpVbD0Srjv0OVEQybgcqjIj2ABxA2nYbIyfOy+meWmtKRbSeReyTDVb/8gsqpaYiIyPD7664QjQ5cxkZGZgyZQpWrlyJ1q1blymAcsstt9hq19G3PxQKYeDAgdi8eXPwnLm8POeDn1eZFDW813DwXMPEWnSFtjFwDx7a9gIKUhBOESlQoYS0TThFrSHRgoYycj9lGyISZl8IxpKNG9F3wICIXC8XbcyaNQvJyclYsWIFVqxYUepvoVDIH2cOAIYMGYIlS5Y4bcZ97ExLEDHrooXWZ5MHVHKaIp+gFqFQE5RCE4R/iOq8mWFF26KO16L2KxIoKPD3+jynNkbi1Hqf+XzjRtz96KN+d8M1JIn/8CJJfNvjxZ49e1xp17Ez169fP/zxxx/Iz89HskH00fN1czk55o6YW5k1I4NDeY/MMmJOHDHlgBpNi9ujAT+dNy9LthsFKYjoQK0BtzPOXu0x59TgDfraPD/hGaC1q0evdQ04G7t57WkbDos3hgsepPgjNxc/79uHvn37+t0VQmAcjyBpaWlo164dDhw4gObNm/Pok3VEyUywRI3lY/yYdkPGcfAQYfNZPV37oWXRDQPCPjzGcSffDVnP0aZrwY1ZZkSdReN3Nlnr+n7soyjrzMgO4RmkiBBdL928Gc2bNOFe/VAkomnNHAAcOHAAn3zyCbKzs1FUVFTqb88884ytNrmEg0aMGIG33nrLG2dOHoREGrjtDNbKeeZOBlOn692UBSlkaH2H94im65wc9mixG4YBq64pQBFMRAhSAMZjtxu6Zh2rSdfBxC1dm7WhHqut7qPo1A5x6oSRHaLLpz/8gEHDhvndDYITS5cuxbBhw9CoUSNs374drVq1wt69eyFJEs477zzb7XJx5gYPHoxp06YhHA4jhucL2WlEi8eaN702lH1zOkVChMXyyimdrNNEWdoiSuN3lFaGRdd24BWkcILWFGOAjAO/8LPCpJrCQnvnybpOTOTXF6uQrsVCJF3zeK/4ka0zQu8zidA3jyguLsbnGzbgkwheLwdEV2ZuypQpuPPOO/Hwww+jYsWK+Oijj1C9enVcdtlluOiii2y3y8WZa9euHcqXL48jR46gVq1auseVWTenN62GZYDkVZzEyro5rwxx9aDqVJU8nSujqVBWI8eiO312NeZE1yzwLszjlq7JOIguRAlUaCH3jWfgTRTd6N13moZsH+XayUjXtVZWTUSdy/C0QUS2PwCs27ULUiiEzp07+90VghO//PIL3n//fQBAXFwcTp06heTkZDzyyCMYPnw4rr/+elvtcnHmYmJicNFFF+GXX34xdOYAsK2LEKmKpN+bh+fnB2fvIr3IsZogGxhBc9T08Dqq7JdxwBIwUH7H1ARZq7xxW/u8cdsIF9ngldF7ZqTrv9GbGumVE2fVEfPauVTeHzc3C+fhWGlN11QTIO0vWr8eA/r3R1wQthpyQDRl5pKSkkrWydWqVQu7d+9GZmYmAODYsWO22+WmkKFDh2L58uW8mvMXq4OlV/vNiWA88MimsTp9RtgZkO0UWBDVUDVDS5OiRJh5BSi8yOyqNROpTp8oa9ic4pfG5euGw+I6dkpYxuCgaxooq2uemmZpi8f1RJ3OKevcy8qqPB0+J+15ZH98snYt7n3ySevXChjR5Mx17twZK1euRIsWLTBo0CD861//wtatWzF//nxHGVhuHsjgwYMxYcIE5OTkIC0tTfe4Sd98g5m9e/O5KEsWgzXTYWQEiJQplFH318+1HH4gSgVTK3itI1GcNyNECFDwIEAGgnBjmVOUGhLhs0WipgGxdS3Cc+eJFU37lbURYR2pX3hgf/xy8CB2Hj6MwYMHu34twjueeeYZ5P//d+fhhx9Gfn4+PvjgAzRt2tR2JUuAozOXkpKCAQMG4LfffnNUkaUELwxfnkVM9NDaDLRCBf7XMSuiwpLF4JnpEH09XKTitab1tGxnD8VIMYLtEsQAhR8EIUghEylBN177jBHauKlpo/HaLKvG8txFKOCmhFWrgtsnc9auxYB+/ZASCRlyE6IpM9eoUaOS/09KSsIrr7zCpV2u3tI///lPZGdnQxJ16/X8/NI/blJQoO3Iaf3NzOi249R6+VmdEGkRVa/xW9N6GndKUPRLeIMXWpD1radpHtPJRNO0qBaPn3j1TvJK0+p/uzVmy6g/l1fr5SIISZLw3tq1+OeECX53hXCBnJwczJo1C1OmTMHx48cBAD/++CMOHjxou02uofshQ4Zg4sSJOH78OKpUqaJ7nKdTLfPygLQ097c5kNcoWRkolcfGx9vvGwvyXjIyURDt4YJoU2zlKLeXU2vMNC3/3Y2Ms4xo0V8jKCvtHC+dHS1929G01WeupemcHPOxmbQVTLQ07cY4zmKDyMc4tTvMAhw87Y4o0v2W7Gz8fuJE1EyxjKbM3JYtW9C3b1+kpqZi7969uOaaa1C5cmXMnz8f2dnZeOutt2y1y3UkSUpKwpAhQ7Br1y5DZ44ZO4a01pQOlg2QnRYxKShwfr6MHaPY6ubhTjalJWO1LG45fW5OUTLqs6xHK5p2qmErKPezAyg4EXTy8sQKUKiPc1vPwN+alr/zpGlxMRvreenZ7DpFRX9fx07GzUt9A2XfZ35pXHD75c2VKzF46FAkJSX53RWCM3fccQcmTpyIp556ChUrViz5/aBBg/CPf/zDdrvc35433HADhg0bhvPPPx+xsbG8my+NPDD4mTnhNWVB6YxpGcU8HCgzh0+rrC8ZFN7Cqmm3Kqjy0nNBwbk++mUkAKRdUfFzDZVdfct6BqLP8I0U3LQTgqhppS2g5dTxcHjMAsx5eWWvE+XZu9NnzmD2d99h/qef+t0Vz4imzNz69esxc+bMMr+vU6cODh8+bLtd7tZgr169ULlyZezduxeNGzfWPc7yVEungyUP41fOZBitqeBtYHsdOVNDGTz3EKUwgJtrKLzM1qlRByfIGPYe0QJuPMZnu2Oy0zV3VoJt0TTueq2tvLzI0rNe22bFetzakkDrvSjytHrOLPjhB6RVqoSePXv63RXCBRISEpCnofGdO3eiWrVqttvl7syFQiHceOONePnllw2dOV3s7HfEa4qbmTOWn+9fGWBlZBjQHtysTrW0i1Y0TcaOwRzJTp+f+3eJpmc/HTuANlB2G1GCE4D7RR7U1whisI0oS37+3/fPbT3bncLuFfK0XxEcKZ5jt+C2xktLl+L6m29GKBTyuyueEU2ZuWHDhuGRRx7Bhx9+COCcz5SdnY27774bo0aNst2uK5bcxIkTcf/99yM3NxepqanGB4tkAGjh5UJ8K86Y32Xc9Rwwo72JgmpksBTZAcQqlKKHKFX0lMEJPf36HZwIql7dxs2NmI0wM35FCbb5bfzy1rOoVhEvlHqOiTG3SVj0zkOHhYXuX4MFu7YGy9jtVFtG+3sGcPzeeegQvv/1V8yfONHvrniKJPEfZkQtqv/0009j9OjRqF69Ok6dOoWePXvi8OHDyMrKwmOPPWa7XVdGg+rVq2PkyJHYtm0bsrKydI+b9M03mHn++XwuypKdszINUs/oNWvD6O9uFTlR9tVsagSLgexWpsyK4+63QQSI4/g4xa3PwWsKsN+BCUBb81p6jYTghBkUnHCGSBkNJZEYaGPB72mRVuC5T6jR+GxmA+j93Q9t27VFWO0Nv7+nimf+3KJFGDlihKPpdoTYpKam4quvvsKqVauwefNm5Ofn47zzzkPfvn0dtetaaOeee+5B586d0b59eyQ63SjVq/Lw8pfKi8ISbk3RKSw0n47pJXYdQxGNNDNE2sbASy3rYSezJoJjx0pQjAWZIH6ntHAzOMFzLI5ELQNifJZI0TLgzmdRjtFurLvPyfn7/0XQg5PgsyBaOpafjzfWrMHadev87ornRMs0yzNnzqB8+fLYtGkTunbtiq5du3Jr2zVnrl27drjggguwbds2nHfeebrHTfrhB2+zc2q82GiZ9ZgKFfhPLXPToIjktW5+YyfTbEfLVrLVelq2ayyYaV25R5HfUzGdIIixEGjcnEKpZfgC/B07HtMwRRhvI1XPXm4WbqZlu383sjd4BytktGwML6ZYRhgvLluGzhdcgLZt2/rdFcIlypUrh/r166O4uJh7265Our733nsxZswYtGnTBnG8Kkk65exZ87noLG2YTbUsKrLeLssm4k6MV/VL2ChjSo6ae/DM4LltWFnRspsFIZwEJUjL7uGmAWxV21YNYLNAm1uVhPW0zCsoQVp3D7vr5UQIGsvHmW0UbncKJvD35wyH+XxvokTLp4qK8PyKFZjz0Ud+d8UXoiUzBwD33Xcf7r33Xrz99tuoXLkyt3Zddeb69++POnXqYMeOHcjMzNQ9jmt2Tg/lYOfmHl52NlvWur5ywHQjmhYOl30BuFWRjYxpfqifmahals81MxzsYCUoQQQHUQxevfOMtMwjwMbLACZK4/XUdy8yl06qW3pVhdUr+yICbIs3Vq9Gzdq10a9fP7+7QrjMiy++iF9//RW1a9dGgwYNymwM/+OPP9pq11VnLhQK4ZFHHsE111yDZs2aeZOdM9sLjrUdM9RGMs/SwersmzpCbJads5u9U38GFiOZHLXS8F4350dJap7X9GKfRK+MBoIvVgMTTq/FK8DmlZZJx8HBSrDYiQ6d6lirPeBvrfHIDuvZA1b2sDNqJ8I4VVSERz7/HC/OmhVV2xEoiabM3PDhw115ziFJcreAZzgcRmZmJipVqoTWrVsbHsuUndMbKK0MpqzHsEzbMTJ8nRoPRjidKgGwqV19jJaBYaedSMaJ/qJBx0oNOZnSI2OmrQoV+GmUdGz9GPk4I43x0rES9fVIx9aOiRR46xjQ17IbOlZfj+wKa8cIznNLl+K1LVuwdds2xIhSQM0j8vLykJqaivfey0WFCnwr6hYU5OEf/0hFbm4uUiK5Wu//4/pGJTExMXjyySdx+eWXo0WLFvyyc04zb04zKLwjZHauL6M1ELpVGELrvlMGzz7RqGMvsnXq67EYDwRfrAYm3LiuF9chHUc28nP22tD2c1aGXV3ZdcDs2hUB5+Tp0/j3F1/gjXffjTpHTkk0ZeYaNWqE9evXo0qVKqV+n5OTg/POOw+//fabrXY9seKGDh2K9PR0/Pzzz4aVejTXzml9yb0SvdZ6I2V/nOw5p2zPjjOm/LvdqTm8HKzCQv12yNg4h586VqPui5N1dXJ7dp6zcqNlvfMpKBEM/DA81dcXYcNwr8c7mmJsjNUx1m0ds9gDRsfYtScAa9ljv6f7aq3pV/clAsbhF5cvR/2GDTFkyBC/u+IrQXPmHnvsMSxevBibNm1CfHw8cpRbdZiwd+9ezWqWp0+fxoEDB2z3yZO3XygUwpNPPolRo0ahefPmSEhI0D+Y12DKO6vBe5B3ax8YloqYVnBqvCr7Ew1RZb+iuCzY1bCes8fSHmtQwm/jATA3Hgh769zcXgvHqx2e469bRavM0Cu+QToujRvrNe22wWsKpbo9Xs+cZzErpxa2nj0RQH0fP3kSjy9Zgg8XLIjatXJBpaioCGPGjEFWVhb+97//MZ3zySeflPz/kiVLkJqaWvLv4uJiLF26FOnp6bb75PqaORlJktCnTx8cP34cF1xwgeGxM1u2NG+QlxFhdExBAZCSYm4wWJkDz2p8sC5ItvJ3N+elsw7SVtsSYUNSmfx862sr/D6GtSIlLw1racyJhitUMD/fLw0H0IBgwkpAwstjZA3q6Y/X3lzRpGEgMnUc7RpWwtuW0NML2RJs/H/A5baFC/FTTAy+Xr7c3/74iLxmbvZsd9bMTZzo7pq52bNn47bbbmPKzMnTaEOhENRuV7ly5dCwYUM8/fTTtrO0ns1LCYVCeP7559GhQwc0b968lFdqCzfXEykHxrw8ftN3rESR3SjtrpX94DVtzK3pZ5G6QS0rdjTs1lQhlnbdiAr7NYXNDLP1jjKiGBGAtYCESLgxjVLv+UW6htXjtN59IA3zpajIeM9Op4VR9OC9t5wIsyjs2BoC2RI7//gDr6xdix9slqEn2MnLyyv174SEBOPZgS4R/n/NpqenY/369ahatSrX9j1dZNCqVSuMHz8ey5cvR+/evXWPm7RtG1t2jgcsBVXMYF0bZ4eiImeGgN40NyvbEHi9TkjkdUk8tx7g1RYPDRthx5B2Y7qZnhFBAYnIxM+ghPI4Mw1bWdMpgiFshyBq2G+Hj2c1VaN2rZzDW3Nyu7y2GuA5/opqQwD416JFGH/55WjVqpXfXRECN9fM1atXr9TvH3roIUydOpXvxSywZ88eV9r1fLT797//jd9//x2///6788acDg4FBWwDo90CDHL7qsiAbbT6y+MFIS82Zr0fTvD7BesVXrxIlM/MjefGo123+8badrToLui4pWcn7eblOQ/28e5TNMPzu8x7iqWI47E6q6ZVAIv1fLO+eaFngZ00Fpb/+iuW79mDfz/+uN9diQr279+P3Nzckp8pU6ZoHnfPPfcgFAoZ/mzfvt12P9asWYNFixaV+t1bb72F9PR0VK9eHddeey1Onz5tu33Py3/VqFEDDz30EJ555hkMHTpUtxyra9k5rYGGZdqGlcqVbg9mvKO76oyE1hoSlqwFz8yGyNk5P+FdxETr724ZIjJuRIdFWwNE+mWDdW2T3aAV65pRK225oS+z74fXWiLtssFLv2Zr4dyYYsxLx2ZbDfDcH9FJnwTgTHExrluwAA889BCqV6/ud3eEwc3MXEpKCtOauX/961+YOHGi4TGNGjWy3Z9HHnkEvXr1KlkTt3XrVlx11VWYOHEiWrRogenTp6N27dq2s4a+1HK+7bbbMGvWLPz0009o06aNs8ZYpqqxrHvjNeVNzxB2Uv7dqCIgS/VKp+Xd5Wso2xBpDYXXeDnVUp7e5EXZdSMnjqd+rRrFVvXLUtCC8AevslBuXsdNp07ZvtVrCGrA+oJbmXgtXblxLS++JzzW0rFeR27Hqd0Q8I3En/v2W0hJSbj99tv97gqholq1aqhWrZpr7W/atAmPPvpoyb/nzJmDCy64AK+99hqAc9NBnUwB9cWZi4+Px2uvvYaLLroIjRo1QrLOF9x2ds6t+f1GBq1bETRWzp41r1xphNVMgtY9Tk72PoMXadjVrhMH0y/tKo1iN/aSU1+Hl0FBsJOf742uiorOXcfLKYu8ilSZLQUAvDWGowWW8bKw0Pl1WPVvt8KlEWbjqtMZEyx6UvZB/X6T9RxwJ42F/Tk5mPr11/j8yy9Rrlw5v7sjFEHbZy47OxvHjx9HdnY2iouLsWnTJgBAkyZNdP2ZEydOoEaNGiX/XrFiBQYOHFjy744dO2L//v22++ST5wH07NkTF198MX744Qf06tVL9zgmh47FAGbJLLhdOdCoD1pVrpRGgpVNxNX9qlCBz+bLZm1oPQcn0eugO30sevJzvQyva6u1a9W49bran55BQTjHj0IZcoEeO3p2ql35+gBp1wvcXPuqpV23AxGydo2qXOrhVLvqd7mXOpZR33On1xbYXrj5448xYsQI9OjRw++uEA558MEH8eabb5b8u3379gCAZcuW6fozNWrUwJ49e1CvXj0UFRXhxx9/xMMPP1zy97/++suRk++bMwcAzz77LJo0aYLs7GzUr1+f7SS/F4vLDhnP6ZR6A7n8e6eRX5apmIA7zpPefWKdRy8qVh1/v3WrhJd23dCtH9X+eAchooUgByJIu/oEeVwG2MZlXtp1uvWRVYycvqKi0rp1UrgNMP8OWM3KWbm2GpZqmQKzeNs2LNuzBzu//trvrgiJJPEfdtzcQXv27NmYPXu2pXMGDRqEe+65B08++SQ+/vhjVKhQAd27dy/5+5YtW9C4cWPbffLVmatRowaeeeYZ3HXXXahZsybidQaPSdu2YWbDhs4vyCM7V1joLDqo7ANrNE5pYFjJzmmhnDZiZ4DkkeEDyhatUBJkQ1r9MuIVSXayZg34+7nz6g+Ldp0GI6xEinkHIoyCENFGEAIRrNgZc40wW8scDntviGrdo2jULeBMLzyycmbTf1kLo/DWLQtObQWesIzHggYhck+dwjUffYT/PPtsqWl2xN8EbZqlHR599FGMHDkSPXv2RHJyMt58881SPs/rr7+O/v37224/JKm3IvcYSZJw4YUX4tixY+jatavucVycORmzAVRt8GrNm3dSvcrutAqW65s5WnoKVw7WZt8CXuubWL9tRsd5YaTovUhYHSNeDhSLcaG8Fm/dAs5HSKe6NTIqvNKt3rXUWhTtbSKj9QzcLOxgVbdqWAJoburW6NpWxls97fo93pJutSHdlkXWsBtZOat9sXKcj3bCNQsXYneFCli6YgVCoZD7/QgQeXl5SE1Nxcsv56J8efOKk1Y4dSoP11+fitzcXKZqll6Rm5uL5ORkxMbGlvr98ePHkZycrJvUMsPXzBwAhEIhzJ49Gy1btkTDhg1Rp04dzeMm7d3L16EzQs7O8Vj8rIV6aoyVh6d2AtUGglnmTC+Dof6sRn3ilZ3jkU3xM2vAs6olT9zQrdymnYFGK3BhN9IrUrRYjVqLfhsXgHfV93jDS8NOdKtuw6netNoRwXHyW7daZfLt6tZvR06pW7uOnJb27eiXl2612uSR+eOJ2ffIJzvh69278d7PP2Pb9u3kyBkQDZk5mdTUVM3fV65c2VG7vjtzANCwYUM89dRTeOihhzB8+HDdRYDcHDqWqpRmC8vNDHmta+gZKKxTI7SMYreMWz/Wf+gR9EIoXuBWRUq1Zq1O49HLQKsNDTtBCKva5xWE4IFIUxf9pqjo3PPj7cCpr+E0EMHbqQPIKHa7XS9wU7cyVvSrHnPVurWblZNhqZztZVZOUNsg//RpXLFwIZ76z3/QoEEDv7tDRDjChGhvuOEGNGvWDOvXr/enAwUFpV8oPKuyFRayDfhFReYL81muY3UaqRnyvVHeI15OQxCyBE7h9bLRqj6m1q3TvsjXMNOskVaVx5jB+t1gacfO/SD8RX5WvDTgVLMsx/LSLECaZUWk90RBwTlt8NCB3AarfWD2d6Nj3JppRBrW5LYvvkD9jAxcf/31fndFeOTMHO+faEKIzBwAxMTE4P3330erVq1Qu3ZtNNTJwHHPzjnZKJklOycPrlZeRursh9X1dYWFfyvZjcivcnE/IN50Ny/xcqolyxoMp4VSioqsRVW1IsZ21oPy1qxImWXib9ww+HhoVvk3VmTjmFdgS0uz+fl8xtdosGzcmmJpR7NGfZE1VlRkvc9Ox1t5nNXTv9P1m8rCZk51G+Cs3IJt2zB3+3Zs3bYNMSIFIoiIRRhnDgAaNGiAV199Fddccw2qVauGpKQkzeNsO3R2CkKYoWfMqwdYedCx6tTJg6cVg0E5wCn7oRzAzaYuWpmSpnVfrQzktNG4Nm5FUrVQ6sSqg6oMPtgt7KOlWV6BCKUx5kd1wWjHLQeOx/l2A2Yy4bC+Xp2MV8p7VlhImvUSM73add6dalbZjt2xVtaklmZ5vF+VbajfX1Y0HOB3/cG8PFz5ySeY+b//sW+5FeVE05o5txDKmQOAcePGYdGiRVi5ciX69+/vbNFoQYFzZ43X3lsyrE6d2pGy49Sp0XPs7GLkYCkHcvmYaM6QsG4gbnYM70ygnl6tXke5jsJu4MGobyx6ZQ1AODEyCGPcCJgpz+elV7P2zNDSrVW9WskmeqFZUa0fNwufqO8rj7GVRa8ydnQrj7VWbQE9zbLaAk7Xwcn3OhzmYwsIqNdwOIx/fPQRBg8bhksvvdTv7hBRhHDOHAC88soryMzMxJYtW9C2bVvNYzSzc3YiwCyDKet0SyuGgZFTZzRomhnMrAOcsq96bbEYx1YyZk737hI1O2fnhex3FU6WF7PbgQcrz1LWK+8CL0BZg46XsSGqXnniRfaYdVy1OvtBrVtWbbE8Uzf1CpQNlkVzoIwVr2Y6WA0QsNoger9zOs7y0qqVaZFGeyEGeHrlUytXYl9RERa9+qrfXQkUlJlzjpDOXMWKFTFv3jz06NED1atXR61atTSPm7R3L2ZWr27cGMtA6TTboX5J2MlMyNdnjX4pj5OvZ0e96spUVrc6YMHMqFWvwZOJBANF+dLyau68UfDBzjofve+HmS6MjA03tMoT2ni5NE73WrSD3TVpLGuZjX7vNFCmxI3y8EpYjOP8/OBq166+3NqSg3U7AV6aZXn36o33VvVqpFWnFTBZjlGut1MSEO2u2LMHj3z7LZZ/9x0qVqzod3cCBTlzzhHSmQOATp064emnn8aUKVMwbNgw/fVzR49649CpB0yjKJ/d6WZFRfaiY7KRa3XqpNYAbWc6j1sZCJbsld9T5KxEe3kFFqwGH7T6aHWajjLowFIxVX0twHnQQY2dbTmcaFW99k5JQAwOU3gHH6y2wUOrgPZ3xEqgTH09p5q1o1WnY6ryWZoVBAqi5SN/Jl7TMJ2OqUqcatZqAFV5Pd5a9Xs7FzM7wE8b4P/v1cG//sKYDz/Ef559Fp06dfKvP0TUIqwzB5zbrmD16tVYsWIFBgwYUGbHdM9RZwZYjgfMB3XltAw7jqB8Du81cUDpgd3JNAy3ipx4WSQkaLAYHIC15+rkfvMMOqjhpVNW1FqNtMCDl7D0y26AzK6TIl/PjkNrplfeVTCtYtc45lmIxawtEbVq5/1v9RlbDZSpzwWsja88tMprWqTd76rPWikqLsbIBQvQf+hQ2obAJpSZc05IkiTJ704YUVBQgI4dOyIuLg6dO3fWPc40Owc4i85pzYO3+qLXGhDN5tebDewsLxetwd1qtE3rm2G1eluA58Jzw+0oslJPVvRpJeDAeo4SLb3xLhIB8NEpz2OCDA+t8tYpwK47lnXBRii150aRCLV+SKfWcXM81Xs38xxX9a7j9thqd1zVajfK3/s3LlmCb/PzsW7jRpQvX97v7gSKvLw8pKamYvr0XJQvn8K17VOn8jB5cipyc3ORksK3bREROjMHABUqVMAnn3yC9u3bo0qVKmjatKnmca5Mt+RVmVJGHaljWSjNs4qlPBDzMJCV7cqwbFYe7VsQuDHVkkeFPz2dGWmUVZt6ejPLJLuhUzf2XSTMMdKRncqpRprTupaVLImW7sy2y+ChVas6jXAj2Rd4bR8go6c7s+uw6NVIc3p6dapTtUajXF9vb92Kd7Zvx8YtW8iRcwBl5pwTiN0MGzdujLlz52L16tU4cuSI7nGTjh41b8zsCRcWnpuGYqXaoBXVnD17rm2rLw15iodyMLY6MBcV/f3jBmfPnrt/8g/hDvL9ZXmWVkc05ZRdVp0YTT9i1aj6erwcOa3rkEb5YOSAWdEoYF+nMixjG0vBHrNj9BxFK7BWwySNuo98j+28k1lR6sPquKr3eyvjqll7erBUwZTf+XbbYD1GQNYcOIBJS5bgw48+QqNGjfzuDhHlCJ+ZkxkwYACefPJJPPDAAxg6dCiSk5P5Na43GFnJirFm6eTB1UnGzcmCZDfX16nRKqZC2Tl71VOdFIawkkFWGhtWtanUtF2NygaCFU1aDaYooT3ntOGhT8BaRsxOhs6uE6jukxW9yt8PO+vpnFTElCGNnsPq9ElejrFVnRYVOVu7KWvV7pgqB6ZZx1Q746lWgZ8IduSyc3Mx9KOP8MT06RgwYIDf3Qk8ksRfCmIvIONPYJw5ALjllluwdetWLF68GAMHDkS5cuXKHMM03dLqoG7VIAHKDvZ60TgnBU9knC6kN3LsnBjKarTuO01704ZVo7yMZadT05Q4KfBgNdjA+w1AGmXDrSyGnet7HRBTn++mkayFWqN61w+oocwFkfQJ2B9LAftFUbSy1wAfvfDQZ0DJLyrCoLlzcfHYsbj55pv97g5BAAhAARQ1Z86cwYUXXogjR47gwgsvRCgU0jyulEPHc2C3Mqha3UicpX0zI8TofKsGjNU58TxLGEf6fHylU8VDn1Z1afXaTtYbOTlXiZ3F91batwLp0xp29anEqB92s8hOz1XjtqHMSrTo0693u7IPMix9EWEcBdwN2rIQUH2GJQkjPvoIJypXxjfffquZUCDYkQugTJuWi8REvkVKCgvzcO+9VABFWMqVK4eFCxfivPPOww8//ICOHTtqHjfp6FHMTEvj3wErmTQ5QmV16pBe+6wbiGqdb2cAVkbYvI6uyS9GluqEQUH9sue54bLVDF1REd+iE0b6YvnOsOhTpMX3RlOngqhPN7UJOMsgsxaKYmlfS2dOzlWjzn44XQtoF73xM4jaBPhUkzbDbvbMikPpdBzlFawtKrI3hrqpzwBo865ly7C1oAA/rF5NjhxHqACKcwLnzAFAlSpV8NVXX6Fjx45ISkpCy5YtNY+blJPjjkMHWKtSZbXqpdw+YH++PI8qmErUn8vPgVfdF71vrZdrS9RTS3gbGixYrfJnZ40SYD9Q4GeggWdWzgzlfQ6qNu2s6+RJYaH16xvpn6X4CWD/fDWys89zzy+rmFXM1DvOT20C/uqOBSfbauhhZQzlMX6Gw9bGUDfGT6NKmXrH+Lhe9JUff8TrP/+M7zdsQJUqVXzrB0FoEUhnDgAyMjKwePFi9OvXD8nJyahfv77mca47dMC5wdVKxTYrLwCnG8wqK1/x3KRWpHLvegVT/KwEx2sLAqtovex5loWXr6F3LSvn2y2UYlYuW+96IiG6Nt3A7WCD1jWcBsHsakfWKOs46ZdGRRs3RYXndE5Zo3afudPzrW6L4YUjx3qMm9pUOYqTjh0r+f/s7GwsX74cX3/9te72WIR9KDPnnMA6cwDQrVs3vP7667jyyisxaNAgVK1aVfO4STk5AOCOUydX/7Ni1LI6dXrbENgtlmKlDSvfBHWFTr+duyDhlkNnRZN2M3ROsBtkYCmXLeOmDqPhTeFFsIFlaw07Dp2TghNyG3Yw0gWvvb+c9oPQp6AAqFDh3P+zBmi91qdbY6eMPAXTT116rN9J+flAfr7m344dO4bly5fjjTfeQNeuXT3tF0GwIvh8BnPGjRuHBx54AEuXLkW+zpdRRnbquKC1LxbPfVzM5s5bWT/npA1WlG0p93zyu6qYn3j94lLfcyvPlzU0pm7Tjo7stmH1PhUVubt/FGEP+ZmwPherxRmUmWM7yG1Y1bYVY1n+iSKDWXhkPbrx3tLSk51xU2vsNMNO2kP5HeV1LwKoy/z8fHz99dd48MEHcemll/rdnYhFlijvn2gi8M4cAEyZMgVjxozBV199hUKTNLwjh451Y1qnRrSV+fNOjQGtlwzvb0E0O3duv8DM7iuvAIOZ1ijAQOjB496bfT/0tGNFT0ZtmLVjp5CEnEGPcoPZN3iNCWZBWbMxzwwnY69dXapx8x7ZOY4jk3SSAIWFhfjqq69wySWX4J577vG4VwRhjUBPs5QJhUJ45ZVXcOTIESxduhT9+/c3rDRkadql0jnkWf1PjTyI2RnMtKZc2DGKlee4uaZGqxKg04XNIm80zjoVh+U4O3q0q8WYGHvRY6dFJLSmA7sRYJCJjz93X1k1KLBhwgxPTWphZvjZmWam1RcrAQSnlQD12uFVEVCkIlORCKsz4vUUXb3rOWnHrSqV6iqULGOmwOOlniN35swZLF26FJ07d8bLL7+suwUWwQdaM+eciMjMAUBsbCw+/PBD1K9fHytWrECY4UlqZukKC0v/KLGqOCuZBuW0Gx7Tg+ziVsTYDPV9j9ZF+Gp98bonVjVRVGT/elrTiZxo2k4/rFxP1ni0a88J8n2zMmbY0UQ4bH+cs5t10zvHjgViVZdW9Ciw0ew56nHT7fdYYSG/mQVO2rEzfjmZvWH2fhJYk3qOXDgcxvLly9GgQQN8+OGHiI2N9bhnBGGdiMjMySQmJuKzzz5DVlYWVq1ahW7duhlGVGYmJtoz3KxWpTSKDJtNj3O6oS2PCpa8qwWyDtx6zyaIEWuWDIdVg8OODs30oO6DXR3K5/KKcusVjzA6hxWWqmk+lsT2HbV2jcZMO8V0WPWh1KaT4hFOKgEq25FhHY+cGs1qlJoU2Gi2hJ0ssF/BF62x0okunaA+n2W8dOO9rX4WLN8NgTQpSRJWrVpVYksmRvO47yGUmXNORDlzAJCWloalS5eiU6dOWLduHTp16oRQKHTOceONE8PFavTayYa4Ts5XI8KWBEb3juf2C7yR9cI7SmxFh3p6cGNanLoQhdPABOCf/iIpsCDjRoDBDkbaMgp22f2uO9nuxUiTfhvOZn0IOl6uddXTlxuFUdTYrVathVyZ0up5apys6dZC7pNPFrdWVk6SJKxbtw55eXlYt24dUlNTfehZdELOnHMEtnztU7t2baxYsQJdunTBhg0bsKFbN/cuZic7cvas/b29nG6Ka9SGVZTz50Vxolhftm4YPazXdmM9ot3AghXjhNUp09OiF4EFr4wUrT4oCZJR7WdwQQ+WPll16NTacHq+Gl5bDzjRpJEeg2LdiFagyOoY6XR8Y2nDzjRyO9sNuKUZlmyqS2Oo3vTKDRs24NChQ1i9ejVq167tyrUJwi0EscD507hxY6xYsQJdu3ZFp9hYtG/f3p3snAyLAaMcSK06geo2eG6Ma6cNvTZlRHHu9BDNYOABqxGtzJjZMbqdFjlxGpjQQllURwTtWZn65Zbjx6Jxtwod2Qku2C3+5MTw5VUcRYl83+3cWz+NZ8DfIBcQfD3K5/IoAsWjKIpMOGw9I+2WFq1s4cGZSTptbty4EXv37sWqVavQuHFj7tcljKHMnHMEsHrco3nz5li+fDm6deuGuLg4TGrd2n2HDij90jAbfJ06dU7g0YZRKXslIhjYosAjc2G1bb1nzSuoYEdLPIMKSh2yZqFFGe39DCy4qUUW1M+bZ3DBipbcMJ6V+mIZ/0TQYyQGuVjQes68vhtOij85GV9ljLY+0tKlmzoUQeMqtmzZgp07d+K7775D8+bN/e4OQdgi4i3s1q1b45tvvkGvXr0QExODSZmZ7jp0gL1tBuwY1bwcJi8cLx5GWyThlUPHagTY7Q/PIid2MdvnSYYCCt5iNbBgdI4ZPAxfZXCBp/Gs7hMZ0GLAI5ipR2Ehn/HGSTssz10dUItgHWpl5X7++Wf89NNPWLFiBVq3bu1DrwgAkCT+8pAkvu2JTlRYNx06dMCXX36J/v37IxwOY9L/f2m5O3VaLwerhgmrU+e02AlLO1bbYkUrp87rOiLvN6fGDYdO+ezsaM9uMIFnJTe3nC71NGdy7txH1pQVw9nu98JJYRNe7VgxoOVrRLABLRRuOm9a1+A1Jlptx84z51Ep1ggBHbmtW7di69at+Oqrr3Deeef50CuC4EfUWDNZWVlYvnw5evfujbNnz6J9+/aYVFjo3KFzaxql0XmsxU54DMpGbfEcoJ1W9QoqPBw6oymUbgQTeBQ4MWrLSjDBjgblcyhrdw7RggqA9fWf6t/xqFRpRc88qv1FswYBdzVot32ra+G1/sajyA6LFu1q0Oo0TCdt+4CWI7dx40bs2LEDy5cvR4cOHXzoFaGE1sw5J6reHh06dMDKlSvRq1cvFBcXo0OHDvYcOjsL3Hk4dXYLnQB81pQYteUGWgVjglQlkBWrxnRREfvxTnSnPsfK4n2AT0W2IAYTou0tArgzddLoPJaAFuvzcxocc8OINrqe3fYjGS+ybm5e00lhFF7607uejFU9CqA/tSMnSRI2bNiAffv2YeXKlTS1kogYosqZA86toVu9ejV69uyJ4uJidOrUCZP+f1qNplNntCDcjqFs17h2UiENcCdb58dUtUgoBW8FXgUJnGTpnFS9BPgUluA1Nc3KeUqdA5GrMatYCSbI8HLo7ASgeFWq9NOQDoet6U8AQ9o17L4LeWjQbqEnnpV7le05mZlg9Rytd5GeJgXQn5Yj9/333+PIkSNYtWoVmjVr5lPPCDWUmXNO1DlzANCsWTOsWbMG3bt3x6pVq9ClS5dzxVHkLJ1VA9quoWxnGpFdZ1CvPbtoTVUD/JsqFNSNxGVE0pwML63wqHypRL5XFEjgh5429D6zl1UwnepFy5h2WiTF7md3YnyzGtORYsWIUlnTbjBL3Qav8Q+wPwbydv7Uzyg+/tzvBHvnhsNhrF69Grm5uVizZg3S09P97hKhgJw554j1jfOQ9PR0rFu3Dn369ME333yDnj17oly5cuccOif7A/HM0plNXbJ6Pb12eQ68Iq5DYnl5upV9sZPFYMUth06vTDfg7LPwKFBhZwsCrXPtXE+PoAcS/q+9ew+uqrr3AP5NwCQCJgSMBGwCSQiJ8ggYZcCI1XKZizzayqs6CrZIDFT7UqdibQfs2FEHcMYW0Ajt5SIdLEMwBBJaJV6tQiAkRjCBkBgCCeGVAEmAFJJwzv2jnvRwOI/9WGs/zvl+ZjLtyNlrr7P3Omuv33pto6ao6e1M0FP2XI1pEd9Vy2sHXMdpOZc/vsqeHcodYM70SCW8daLqrcdF7HDpa2quzLXFarjKY6D7KqN8ur0c3X1UrqurC59++imioqJQWlrKF4JTULJJjS/HkCFDUFJSgunTp+Ojjz7C5MmTERUVhZxvKzHTgjq1O7+pOZ+Ru1daZdRODav0BislcpMTpUGv3g4ErVN+9byCwKxuOqUbJNmpE8FFRmeCjLV3rnT1TjX3VYZkbU6hp8wqfYaonb6phN4lAWaQGVSK2OEyUFnwVQaNmI6uhcTnrHsgd/XqVezevRtJSUkoLCxETEyMtPOSdhyZ088GrWu5+vfvj+LiYjz++OMoKirClClTcNtttwEAchwObQEdoK3hoechqGcXQm+fkbFrlplr7QKR+UoD2VPS9GxyomUKkZrzBdrpDRBfFkR1Thj5NJDRuDFyKqQaetbBiZgqrKVBrWaNm4gGtRFlz9/0Tb2sWO48qQ3g1JQ9UTtcqi0HZqyns9A5ctz+f3t7O3bv3o1JkyZh8+bNiIyMlHZeIrPZoMaVLyoqClu3bsXcuXNRWFiIlpaWnn/LcTh6RupUU9rd4N5rrOY4NefUsuGEZ75Eck9f5nmswkoPSVHXPFA5VbNDm9IRLLW6u//dWA328mUWPfdFaxnUUqeq/Xf3c2lpULv+QrBBbVnudYGM+kBNmVZS32m9R52d6us8GUMjBp/DPZBraWlBUVER5s2bh61btzKQszhX0RD9F0oYzH2rV69eWLNmDV5++WUUFRXhxIkTN/y75oAO8F6ylFT8IoI61+iLHiIDrkCNfzODOyOmpcnmbyqYr+uqt+YT0XngOsbfej0tPNfYhULHgVXpDXLcBSrnavKk9hxKuepeNXkKtRaITDKeJ77qOq31nWfaojtylbYzZJN8DvdA7vjx4ygqKsLLL7+M1atXI9wOo8REOllsrpu5wsLCsHTpUgwfPhzz58/HuHHjMGrUKISFhQGAvrV0gPaKWus0OuDGSlxEpWbkS25FboAQSlzTgWROI/J2LKBt2qYn9+lqshoBgdZzslGtnK9yo2T0QU9ZcT9eT2Pdc3qkzEDTxcx1nbLPY1Y9bWQnjahzidj5Uc2MDEBcOVfKoEDO6XSisrISFRUV2LRpE2bPni31vCQO18zpx2DOizlz5iAxMRHTpk3DpUuXMGHChBt6d1QFdb4qfSM2V/HW86f13IHSN2INnK9rKfLcMtfOAXLXMYkIfrWWEc9pwnq/o8Oh/xUEau5jsHYcGL1uzsgOBEDsRi+uEUMj1ll61p1B0rA2lNEj7KI7Rt07wGRsiuKL58i4zGe3QYGcw+HAvn37cObMGfzzn//EfffdJ/W8RFYTJC0W8caPH48vv/wS3d3d2L17Nzq9LBL3OfXSqCmU/ig5t9rzK50iaTS7rb8T9YAL9J1FT530lwdvx+sp397OoXYNiFae0+PsUKbM4H5t9KxL1HKv3O+JiN+Te3mVuZbPG/d1XCxrN/P2W9RzjdR28ng7n6xlF1qPF3Fu0dNRDQrkOjs7sXv3bnR3d6O8vJyBnA1xzZx+DOb8SExMxP79+5GamorCwkK0trbe9JmeDVK0VoYygjotC58D5UHEA9BIng1Nzz9/jBjJUHM93fOtZQ2OqKDKndI8iOwwcD8vOw2MpeS7y+48CHRurVPYA3XK6UlDybH+zi17vZdoIqZYm/0bk3Fupc9ZMzuA3fPgyofSZ6bnuSRzBXKtra3YuXMnUlNTUVpaisTEROnnJvEYzOnHYC6A6Oho7Nq1C/Pnz8fOnTvR2Njo9XM5IqaV6a2oRfRYiv4FWLXh6y3A0/Lg0sN1rdXkRUZgFug492NldliozaOZI5KeeTCrDInkq9PA7N+u2s4LpZ/TO/qs5nx6j/XVOSXjXLJ5/k6sUM5kjf5reabKGAnUwrN8KXlGGRjINTQ0YMeOHXjqqaewa9eunldKEYUirplToFevXli1ahXGjRuH7OxsZGRkYMyYMT0bo7i4ArpcERWvnjVLIgJL97REVdDd3TemZbV3zbkzuwHrj8OhfT2c1rIh4kXA/sq2njLmfq8cDuuUKyWNbSPy6rrvahv/Rpcx92P1dkr5y4PWsubKk4gNJER1ygS6pxERxgVyasuY2UTU8b7KmohrrndzFCM7/gy67zm9e8PpdOLQoUM4ePAg1q9fjyeeeMKQc5M8Tqf4asrpFJue1Vmk1WMPTz75JNLT0zFjxgy0trYiKysLvb1UtoYGdYFGJkSNGIpc8O3imXdZDVvZm5qYwajGtrceYlGdBa50RN0bVzqejW61xxvJyp0GWmktI65rIbKucU9L1P01cmMevcfZKbgygshOT/c0RW9i41mXAfJeNK73OIPk9O6N7u5u7NmzB21tbfjiiy+QmZlpdraILIHTLFW699578dVXX/VMv7x06ZLPz+qeegn4Xxcnez2H63j3dGRW+Faa2mUHstZPBLoHosqB7PVARpUlizeCNDPie3m7R6IbxSLrLW9TjkVPzRN5nNXJXp9s1DNF1Cifv7Ia6DvoXaphYTm9e+PSpUvYtWsXoqOjUVFRwUAuiHDNnH4M5jSIj4/H559/jhkzZqCgoMDnOjrg3wGdsKAO0P5Q0lK6fX3eqF8Lg7vARE31Mrph6n6s3vKk5DiZm3fQzfR0FgQ6Xk0eRNVVejtAXGloPTcpo+aZobfu9FaP6UlLKZFr6mzQ6s3p3RuNjY0oKCjAzJkz8fnnnyM+Pt7sbBFZCqdZahQZGYn33nsPWVlZWLx4MUaPHo2xY8fetI7ORdfUS8+KW8S6pUDpKM2n6PT88fZwtsr6KDPpndYG6H9ZuNLjA5UD0en5YtV1dlajZ1qt+7FaO6AA9ef31wklKi1/rLC2LlQY2cmn5F6oKWN67637FFoj31NnoGd69ULFl1+isrISubm5WLBggdlZIglk9CnYoHgLxRaMTk899RTGjh2LmTNnori4GJMmTUJkZKTPzysO6pT28MrYkEJED7JRLypWGuAF47o5d0oaEYHKlKzNTdz/XVR6WtL0R8vaFNF5CCai178pSUdpYxsQl54/ejd8Ytm6kchOTZdAZUvLPZCRZqA01NRfNilXT3V34/P/+z9cv34d+/btQ0ZGhtlZIrIsTrMUICMjAwcPHkRqaip27NiBlpaWgMd4nXqpdaqbyClEIteWmDWFw3OqTahM0fT2gFdzDWQ0MvSm66sciSynnkK1/PiipOPJ1/WSeZ9c/13rFPJAaeql5/dokwa3NEp+gzKvkd4y4KselD3dFwiK6eSzW1uxY8cOpKWl4eDBgwzkgpznjHhRf6GEwZwgsbGxKCoqwq9+9SsUFhaiqqoKzgB7o96wnk5vg1FE6XX1JIv+FchKV2segvFX7/oeegMQkQ0Oz5EJvdzTFZWeUgzu/sOMTgLPdGQFXKLSVJKO7ADYLqzSeSL6eeD5zBGRNy15cP+zeNlyOp3Iqq5GYWEhnn/+eRQWFqJ///5mZ4skYzCnH6dZChQeHo7f/va3mDRpEubNm4dz584hKysLERERfo/LCQ8HIiKQK2IbaVcJVjMFJdBoisgpk57nMmo6ZiCBfvlWyKeRtZPDoX8dnd50/KWtpZyL5K/BaYWyopfoIEdUOejuFn99XU9+Ga9fUcNXmQrG8hTovxtF5L33TNf9f0XUpaL4S9PEstbW2Yl79+1De3s7PvroIzz44IOm5YXIboLgKWE93/3ud1FZWYmEhAQUFBSgublZ0XE5ERHICRD4Kaa0a0LpZ7Q+VAIdZ5euFFldR1buZlJ7Xl+flzWK4p622vRlXk+r3UdvzMijnjrEPV8i8+eZrsy6TiurlyXAHmUe8J0vUfWTvzpQS1pGM+n5VNbSguSiIgwdOhSVlZUM5EJMsDSZzMSROUni4uLw8ccf44033sDvf/97ZGZmYuTIkT53u3TnCuikjtRpKenux8jqwTPiHKSOwyFmYxNfZVHNsUo/Y9TGKVqYfX4z+StLnp9T8u+yRjzUpG/m/QzlsqSE2vpJVt3k/jkr10065GjYUdPpdOLw4cMoKyvDsmXL8NJLLyGcz30i1RjMSRQeHo7f/OY3ePDBBzF37lycPXsWWVlZiIqKUnS8lKBOFCUNZ73ntPGDLeh4NkT03BsjGsrsFLAfrR1MeqeUK/m8rDqOxNNbN8kO4L2VKZuXIy0ziq5evYo9e/bgypUrKC4uRlZWloSckR3IGEmz+U9KNbZyDPDAAw+gqqoKd999N/Lz89HU1KTqeGHTL2WNQRs1rh3KY+hW4HCI3aAg0H0UdY/dz8NyYz7P6W16f89Kjhd1DtFT80g/I58LIs9hk01JAtHSNjl58iTy8/Nx9913o6qqioEckU4cmTPIgAEDsH37dqxbtw6/+MUvkJ6ejszMTPTq1UtxGppG6pQ0lmVucCKTt3NxFEYsX/dT65Qkf+eQ3VMt4z1VpJ6rQSxj0wlR78z0x70csQwZzzOgll2OZJQhX50CNipPWoK469evo7y8HNXV1fjjH/+IRYsWKVp6QsGNI3P62afmCAJhYWF45plnUFFRga6uLhQVFaG1tVV1OgFH6tT2Uoru1TRzJWqor4IVQem1kzHCK2trcm/5ZFmRz981NrKRLCptzzRZduQy6zcq43U6Sr6DTcqTlkCutbUVRUVF6OrqQkVFBbKzsxnIEQnCYM4E6enpKC8vx9y5c1FQUIDDhw8HfCedNzcFdSIeAnofJv5GcmSkq/RYNtp903ttRFxPbw19kZ0LavPBcqKN2usnI+CS0SGg9Luw7Oij5RrK6ISUka7e/FiE2kDOtclJQUEB5s6di/LycqSnp0vKHdmRtyaaiL9QwmmWJomMjMTbb7+NGTNm4Mknn0RTUxOysrLQp08fRcfnXr0qOYf4z69B6dQPrQ9fM6aWBMqrjaa7KCazdlNbVrwdG+jfZO40p/T4YCwXeogK5AF919bXyKuMdLUcy3JzMyu0tgLlQVa9JiItg8uUltG4jo4O7N27F5cvX0ZBQQGmTJkiIWdkd06n+OpAw/iIrTGYM9mUKVNQXV2NnJwcfPjhh7j//vuRlJTU8++GBG2BKGmUBFujx9/3sUoefTGzkaSm8aM2n2rLiexpfJ6sXi70MKJMORxydqbU0iCXMWLoS7CWGyPrITVlR+somdVeU+HrXBLKk5ZA7tixYygpKcG0adOQm5uL2NhY4fkion9jMGcBsbGx2LJlCzZv3oycnBycPHkSJRkZiBH1AnGRvDWMZPVAWrWRo/f7ymx0WIW/BrQRozlmXDu7N9itUN4CNZpFdBoFuhdGXwcDG+XCWaHMBCJyuqSV6htftOTFT1lTG8h1dnZi//79aGpqwvr16/HYY4+pzw+FFBnTIq30kzSCDZ4WoePxxx/HkSNHMGjQICT94x/YfeqU2VnyzYiJycE6+TmUJnx7rkGRUWN7pmvFa2fUxP9gWGDga8qkyEa57HOIYPXyYqVr5UlWHj3rGatfB6W83Fstr0Q6efIktm/fjvj4eBw+fJiBHAWd48eP4+mnn0ZSUhJuvfVWpKSkYNmyZegU8T5oHTgyZzF33nkniouL8e677+L7L76I5ORk7B09GtFWHKUjUsqIBk8wNKq8Cdbv5Q/Li3bB+r0CMep7h8D1zYmKUvX5zs5OHDhwAPX19VixYgWWLFnCnSpJMTuNzFVXV8PhcCA3NxfDhw9HZWUlsrOzceXKFaxcuVLOSRUIc2rZRpEMcfz4cSxYsACVlZWYOHEiCm+/3ewsERERURBSG8QB/x6NKykpwahRo7Bx40YMGzZMfMYoKLW3tyMmJgaPPtqGW26JFpp2V1c7PvwwBm1tbYiOFpu2pxUrVuCdd97BsWPHpJ7HH47MWdiwYcPw6aefIjc3Fy+88AJGJSfjvvvuw/+EQM8gERERGUPPaNyqVauQk5PD0TjSRObIXHt7+w3/PTIyEpGRkULP1dbWhgEDBghNUy2umbO48PBwLFmyBIcPH8aAAQOQn5+PR86d09SDRkRERORObXvixIkTyM/Px8CBA1FVVYXFixczkCNLSkhIQExMTM/f66+/LjT9b775Bn/605+Qk5MjNF21ODJnE8OGDcNnn32GdevW4cUXX8SxY8cwf/x49OnTxxqvLyAiIiLbUBvEdXR0oLS0FKdPn8aqVauwaNEiBnGkm8yRucbGxhumWfoalVu6dCnefPNNv2keOXLkhhfeNzU1YerUqZg7dy6ys7P1Z1oHrpmzoTNnzuC5557Drl27kJmZifT0dISFhTGoIyIiooDUBHJOpxPV1dUoKyvDtGnTsHr1asTHx0vMHYUC15q5mTPlrJnbsUP5mrnm5macP3/e72eSk5MR8e1mhKdOncJDDz2ECRMmYMOGDQg3+VUyDOZsrLCwENnZ2ejduzcmTpyI/v37A7DIi8aJiIjIUtSOxl28eBElJSW4fv061q1bh+nTp0vKGYUaVzA3fbqcYK6wUM4GKE1NTXj44YeRmZmJTZs2oVevXkLT14Jr5mxs+vTpqKmpwaOPPor8/HyUlZWhu7sbOVFRXFNHREREPdS0C7q6ulBWVobt27dj1qxZqKmpYSBHUuh93aWRr8FsamrCQw89hMTERKxcuRLNzc04c+YMzpw5I+eECnFkLkiUl5fjmWeeQX19PTIzM5GUlNQzl50jdURERKFJ7ZTK+vp6lJWVISUlBe+99x7uueceibmjUOUamXvkETkjc7t2iR+Z27BhA37yk594/TczwykGc0HE4XBgw4YNePHFFxETE4Px48f3TL0EGNQRERGFEjWBXGtrK0pLS9HW1oaVK1fixz/+selrgSh4uYK5//5vOcHcP/5hzHvmrIC/0iASHh6OhQsXoq6uDo888gjy8/Nx4MABdHV1AUDP9EtOwSQiIgpeap71XV1dOHDgAPLz8zFt2jQcO3YMCxcuZCBHZBP8pQah2NhYrF27FqWlpYiIiEBeXh6qq6vhcJtEzKCOiIgouKh5tjscDlRXVyMvLw8REREoLS3FmjVrbpjRQySbndbMWRXfMxfEMjIyUFJSgq1bt+KFF15AdXU17rnnHiQkJPSsp3Ov9DkNk4iIyJ6UBnFOpxONjY348ssvERUVhfXr12POnDl8ZxyRTXHNXIjo7OzE2rVrsWzZMsTGxiIzMxO33367188yqCMiIrIHNbNsWlpaUF5ejtbWVrz66qtYsmRJz7uziIzkWjP3X//Vht69xa5r6+5ux+7dobNmjsFciGltbcVrr72G1atXIykpCePGjcNtt93m8/MM7IiIiKxHTRB36dIlVFRUoL6+Hj/72c/wyiuvcDolmYrBnDgM5kJUQ0MDli5diq1bt2LEiBEYM2YMgzoiIiKLUxPEtbe349ChQ6itrcWcOXPwxhtvIDExUWLuiJRxBXPf+56cYO6TTxjMUYiorq7G8uXLsW3bNqSmpmLMmDEBCz4DOxVE7QYmYjWv3ryE2opircLDea2IQo2e+lVFfaE0kGtvb8fXX3+NmpoazJ49G8uXL0daWprWHBIJ5wrmHnpITjD36aehE8xxA5QQl56ejg8++ABHjx7F8uXLkZeXhxEjRmD06NE+fwDcNMUEVtgi2pUHBiq+ua6RiPsl6jpbKS/BzErXWWR9wXvvm6jrHCgdh0NVEOcaiZs9ezby8vIYxBEFOQZzBABIS0vD5s2bbwjqUlNTMXLkSMTGxvo8joFdCGJQ553ogNsKAbwL77lvIu+Tle45eWfwPcpRuDnJxYsXUVVV1TOd8sMPP8SIESMk545IPxmvEgi1RxWDObqBK6irqanBa6+9hg8++ACJiYm46667MHjwYL9bF3v2HJoS3Cl90IbaL10G92ttxvU0+/zuQqURzimk/xEq99wKzO5MMOFeKwninE4nTp8+jSNHjqChoQGPPfYYgziiEMQ1c+TX6dOn8fbbb2Pt2rWIjo5Geno6kpKSEK7y4SY1sBP9oBXZYAi1Bp+sxpbW62hE4y/U7jFgbKNayfW1Wn6CiVHXVst1lZk3k+6zkiDO4XCgvr4e1dXVaG9vx7PPPouf//znGDx4sAE5JBLDtWbugQfkrJn74ovQWTPHYI4UuXz5Mv785z9jxYoV+Ne//oX09HSkpaXhlltu0ZSe7uDOjAetloZDqDX8XPQ2smReNwbrYshoSFtpwyBPoXqvRV9LWdfRCptE6aAkiOvq6sLRo0dRXV2NW2+9Fb/+9a+xcOFC9OvXz4AcEonFYE4cBnOkSnd3N7Zt24Y//OEPqK2tRWpqKu666y7ExMRoTlNxYGflxpSvhoSV82wUJY0sK1wntY1BK+TZCrQ2oo2+fnbJp9XY8bopzbMF7q2SIK6trQ1Hjhzpeea+8sormDVrFnr35koZsi9XMHf//XKCub17GcwR+eV0OrFv3z689dZbyM/PR2JiIkaMGIGEhAS/6+oCuSmws8DDlgRxb2DZ5b4ySFfGX+PZqtfKjnk2i91/Bxare5Suh2tsbERNTQ0aGhowa9Ys/PKXv8SECRN0PWOJrILBnDgM5ki306dPIzc3F2vWrIHT6URqairS0tIQGRmpO+3czk4BOTSBXaYJamGlLdiNZKUNV4iMEgzl3iLv2FQSxF27dg1Hjx5FbW0twsLC8Oyzz2Lx4sWIj48Xkgciq3AFcxMmyAnm9u1jMEekWldXF7Zt24a33noLBw8eREpKCkaMGIG4uDjhPYmWDfIs0OtrS1ZtJBpxP83+7lZewySbjO9uhe8tu9xa4Tt6Y7X699vrFCiIczqdaG5uRk1NDerq6jB27Fg8//zzePTRRzWvSyeyOlcwN368nGCutJTBHJEuX331Fd555x1s2rQJ0dHRSElJwfDhw4WM1vljapBntYaE3Zn9ugMSxwqNf95b8cy8rza4nzkB1rRdu3YNtbW1OHbsGC5duoQnnngCP/3pT5GRkWFQDonMw2BOHAZzJNWVK1ewZcsWrF69GpWVlUhJSUFqaioGDRpk6Lx/qUGeDRoVQYO7FAYHvjIiuAThKwL08BfEOZ1OnD17FrW1tairq8OoUaPw3HPPYd68eejbt6+BuSQylyuYu/deOcFcWRmDOSLhDh06hHfffRfvv/8++vTpg6SkJKSmpqJPnz6m5UlXkGfDRkbQseNOe3QjUYEA76k1hOhvMtAoXEdHB2pra1FfX4+Ojg4sWLAAixcvxujRow3KIZG1MJgTh8EcGa6jowN5eXlYt24dSkpKkJiYiKSkJAwdOtQyWy37DfJs3ugIenbfeS/U2eVVFuRfiPwO/QVx3d3dOHHiBOrr69HQ0ICJEyciOzsbs2fPNrUTk8gKXMFcZmYbevUSG3Bdv96O8nIGc0SGaGhowMaNG7Fu3Tq0tLQgOTkZKSkpuOOOOyy5/XKu2Rkgbbq7zc4BaeEKCIIsAAgJejvmLPybDTSN8ty5c/jmm29QX1+PuLg4LFq0CAsWLEBiYqKBuSSyNgZz4jCYI0twOp0oKSnBX/7yF/ztb39DVFQUEhISkJKSggEDBpidPakYINqQhRualmCREfYevF+BWe2eiSTo/vsL4i5cuIC6ujo0NDTg2rVr+NGPfoSFCxdi4sSJluyYJDKbK5gbN05OMFdRwWCOyDRXr17Frl278P7776OoqAj9+/fvCexiYmLMzp6tMFC0EbMCjmBuxMtkxv3ivTLOt/fXXwDX1taGuro6NDY2orW1FdOnT8f8+fMxdepUREVFGZVTIltiMCcOgzmytMuXL2PHjh3YuHEjiouLERcXhzvvvBPDhg1D//792eNpIgaKRGR1OQLTcjqdaG1txfHjx9HU1ITm5mZMnjwZCxYswMyZM9GvXz+BZyMKbq5gLiNDTjB38CCDOSLLuXjxIrZv344tW7aguLgYMTExGDJkCIYOHWr4qw5IPgaLROYTGQzZketVAidOnMCpU6fQ1taGyZMnY968efjBD36A2NhYs7NIZEuuYG70aDnB3NdfM5gjsrQrV67g448/xtatW7Fjxw4AwJAhQxAfH4/vfOc73CmMAmKwSEYJ9YDIbjo6OnDy5EmcPXsWTU1NAICZM2dizpw5mDJlCt8HRyQAgzlxGMyR7XV3d2PPnj34+9//jsLCQlRVVeGOO+7AoEGD0LdvX8u87oBCy1NmZyDI/K/ZGaCg19bWhrNnz+LcuXMYOXIkpk+fjqlTpyIrK4vPESLBXMHcyJFygrmqKgZzRLZ1/vx5FBcX45NPPkF1dTUcol5KTGQRYZ2dCPN4F2KYx4YcTo/GpzMiAs6ICOl5I7Kr5ORkTJs2DZMnT8bAgQPNzg5RUGMwJw6DOSIiIiIiMowrmLvrLjnB3JEjoRPM8U2sRERERERENsRJ4EREREREZDiHAxC9GXmora7hyBwREREREZENcWSOiIiIiIgMx5E5/RjMERERERGR4RjM6cdplkRERERERDbEkTkiIiIiIjKc0yl+JC3UXrrGkTkiIiIiIiIb4sgcEREREREZTsb6Nq6ZIyIiIiIiIsvjyBwRERERERmOI3P6cWSOiIiIiIjIhjgyR0REREREhuPInH4M5oiIiIiIyHAM5vTjNEsiIiIiIiIb4sgcEREREREZjiNz+nFkjoiIiIiIyIY4MkdERERERIbjyJx+HJkjIiIiIiKyIY7MERERERGR4Tgypx9H5oiIiIiIiGyII3NERERERGQ4jszpx2COiIiIiIgM53SKD76cTrHpWR2nWRIREREREdkQR+aIiIiIiMhwDgcQFiY2TY7MERERERERkeVxZI6IiIiIiAzHkTn9ODJHRERERERkQxyZIyIiIiIiw3FkTj+OzBEREREREdkQR+aIiIiIiMhwHJnTj8EcEREREREZjsGcfpxmSUREREREZEMcmSMiIiIiIsNxZE4/jswRERERERHZEEfmiIiIiIjIcByZ048jc0RERERERDbEYI6IiIiIiAzncMj5k+X73/8+EhMTERUVhcGDB2P+/Pk4deqUvBMqwGCOiIiIiIgogIcffhhbtmzB0aNHkZeXh7q6OsyZM8fUPIU5naE2s5SIiIiIiMzS3t6OmJgYAG0AokWnDiAGbW1tiI4WnfaNCgoK8MMf/hDXrl3DLbfcIvVcvnADFCIiIiIiMkG7tDTb229MOzIyEpGRkcLOcuHCBfz1r3/F/fffb1ogB3CaJRERERERGSgiIgLx8fEAEgDECP5LQL9+/ZCQkICYmJiev9dff11I3l966SX07dsXAwcORENDA7Zv3y4kXa04zZKIiIiIiAx19epVdHZ2Sknb6XQizOOdB75G5pYuXYo333zTb3pHjhxBeno6AKClpQUXLlzAiRMn8OqrryImJgY7d+686XxGYTBHREREREQhqbm5GefPn/f7meTkZERERNz030+ePImEhATs3bsXEydOlJVFv7hmjoiIiIiIQlJcXBzi4uI0Hev49j0I165dE5klVTgyR0RERERE5Mf+/ftx4MABPPDAA4iNjUVdXR1+97vf4ezZs6iqqhK6uYoa3ACFiIiIiIjIjz59+mDbtm2YPHky0tLS8PTTT2PMmDH47LPPTAvkAI7MERERERER2RJH5oiIiIiIiGyIwRwREREREZENMZgjIiIiIiKyIQZzRERERERENsRgjoiIiIiIyIYYzBEREREREdkQgzkiIiIiIiIbYjBHRERERERkQwzmiIiIiIiIbIjBHBERERERkQ0xmCMiIiIiIrKh/wdI0yLF+9AlxwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAH5CAYAAAAr/WftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADh30lEQVR4nOydd3gVxfrHvycJSSAhCb2XUEIJVQQJXap0pCnXK2DF3q6oWFGvWLiWa0FRrmJHQRAFFRUBpQkiTZEiAgGkiJDEEEIgZ39/8Nu42WyZ3Z3dnT3n/TxPHiXZnZ2z+z2zb5l5JyRJkgSCIAiCIAiCIAgiUMT43QGCIAiCIAiCIAjCOuTMEQRBEARBEARBBBBy5giCIAiCIAiCIAIIOXMEQRAEQRAEQRABhJw5giAIgiAIgiCIAELOHEEQBEEQBEEQRAAhZ44gCIIgCIIgCCKAkDNHEARBEARBEAQRQMiZIwiCIAiCIAiCCCDkzBEEQRAEQRAEQQQQcuYIgiAIgiAIgvCEb7/9FkOHDkXt2rURCoXw8ccfW25jyZIl6Ny5MypWrIhq1aph1KhR2Lt3L/e+BgFy5giCIAiCIAiC8ISTJ0+ibdu2eOmll2ydv2fPHgwfPhy9e/fGpk2bsGTJEhw7dgwjR47k3NNgEJIkSfK7EwRBEARBEARBRBehUAgLFizAiBEjSn53+vRp3HfffXj//feRk5ODVq1a4cknn0SvXr0AAPPmzcO4ceNw+vRpxMScy0t9+umnGD58OE6fPo1y5cr58En8gzJzBEEQBEEQBEEIwU033YQ1a9Zgzpw52LJlC8aMGYOLLroIu3btAgB06NABMTExeOONN1BcXIzc3Fy8/fbb6Nu3b9Q5cgBl5giCIAiCIAiC8AF1Zi47OxuNGjVCdnY2ateuXXJc37590alTJ0ybNg0AsGLFCowdOxZ//vkniouLkZWVhc8++wxpaWk+fAp/ocwcQRAEQRAEQRC+s3XrVhQXFyMjIwPJycklPytWrMDu3bsBAIcPH8Y111yDCRMmYP369VixYgXi4+MxevRoRGOOKs7vDhAEQRAEQRAEQeTn5yM2NhYbNmxAbGxsqb8lJycDAF566SWkpqbiqaeeKvnbO++8g3r16uH7779H586dPe2z35AzRxAEQRAEQRCE77Rv3x7FxcU4evQounfvrnlMQUFBSeETGdnxC4fDrvdRNGiaJUEQBEEQBEEQnpCfn49NmzZh06ZNAM5tNbBp0yZkZ2cjIyMDl112GcaPH4/58+djz549WLduHR5//HEsXrwYADB48GCsX78ejzzyCHbt2oUff/wRV1xxBRo0aID27dv7+Mn8gQqgEARBEARBEAThCcuXL8eFF15Y5vcTJkzA7NmzcebMGfz73//GW2+9hYMHD6Jq1aro3LkzHn74YbRu3RoAMGfOHDz11FPYuXMnKlSogKysLDz55JNo3ry51x/Hd8iZIwiCIAiCIAgi6nj55Zfx8ssvY+/evQCAzMxMPPjggxg4cKC/HbMAOXMEQRAEQRAEQUQdn376KWJjY9G0aVNIkoQ333wT06dPx8aNG5GZmel395ggZ44gCIIgCIIgCAJA5cqVMX36dFx11VV+d4UJqmZJEARBEARBEISnFBYWoqioyJW2JUlCKBQq9buEhAQkJCTonlNcXIy5c+fi5MmTyMrKcqVfbkDOHEEQBEEQBEEQnlFYWIj08uVx2KX2k5OTkZ+fX+p3Dz30EKZOnVrm2K1btyIrKwuFhYVITk7GggUL0LJlS5d6xh+aZkkQBEEQBEEQhGfk5eUhNTUV+0MhpPBuG0A9ScL+/fuRkvJ363qZuaKiImRnZyM3Nxfz5s3DrFmzsGLFisA4dOTMEQRBEARBEAThGbIzlxsKIUU1HdJx25KEVElCbm5uKWeOlb59+6Jx48aYOXMm1365BU2zJAiCIAiCIAjCe2JiAM7OHCQJKC62fXo4HMbp06c5dshdyJkjCIIgCIIgCCLqmDJlCgYOHIj69evjr7/+wnvvvYfly5djyZIlfneNGXLmCIIgCIIgCILwHp8zc0ePHsX48eNx6NAhpKamok2bNliyZAn69evHt08uQmvmCIIgCIIgCILwjJI1c+XKubNm7swZ22vmggZl5giCIAiCIAiC8B63MnNRRIzfHSAIgiAIgiAIgiCsQ5k5giAIgiAIgiC8hzJzjiFnjiAIgiAIgiAI7yFnzjE0zZIgCIIgCIIgCCKAUGaOIAiCIAiCIAjvocycYygzRxAEQRAEQRAEEUAoM0cQBEEQBEEQhPdQZs4xlJkjCIIgCIIgCIIIIJSZIwiCIAiCIAjCeygz5xjKzBEEQRAEQRAEQQQQyswRBEEQBEEQBOE9odC57BxPwmG+7QkOOXMEQRAEQRAEQXhPTAx/Zy7KoLtHEIRr7Nq1C/3790dqaipCoRA+/vhjv7ukSa9evdCrVy/frv/hhx+icuXKyM/P960P0cbs2bMRCoWwd+9ev7siPFr3yu535syZM6hXrx5mzJjBr4MEQRBRDDlzBOEhW7duxejRo9GgQQMkJiaiTp066NevH1544YVSx02bNk1Yx8cKEyZMwNatW/HYY4/h7bffxvnnn+9bX7Zt24apU6cKZ7wXFxfjoYcews0334zk5GQAQEFBAV566SX0798ftWrVQsWKFdG+fXu8/PLLKC4uLtNGOBzGU089hfT0dCQmJqJNmzZ4//33Xe/7+vXrcdNNNyEzMxNJSUmoX78+xo4di507d2oe/8svv+Ciiy5CcnIyKleujMsvvxx//PGH6/3kjahacooX4065cuVwxx134LHHHkNhYaGr1yIIIgDImTneP1FESJKirOQLQfjE6tWrceGFF6J+/fqYMGECatasif3792Pt2rXYvXs3fv3115Jjk5OTMXr0aMyePdu/Djvk1KlTqFChAu677z78+9//9rs7mDdvHsaMGYNly5aVySgUFRUBAOLj4z3v18cff4yRI0di//79qFOnDgDgp59+Qps2bdCnTx/0798fKSkpWLJkCRYsWIDx48fjzTffLNXGlClT8MQTT+Caa65Bx44dsXDhQixevBjvv/8+Lr30Utf6Pnr0aKxatQpjxoxBmzZtcPjwYbz44ovIz8/H2rVr0apVq5JjDxw4gPbt2yM1NRW33HIL8vPz8Z///Af169fHunXrPL/3xcXFOHPmDBISEhCyWEnNSEtBRm/c0bpX8udevny55evk5OSgRo0aePnll3HllVc67DVBEEEkLy8PqampyK1eHSmcna+8cBipR48iNzcXKSkpXNsWEVozRxAe8dhjjyE1NRXr169HWlpaqb8dPXrUdrsnT55EUlKSw97xR864qD+riPjhxMm88cYb6Nq1a4kjBwA1a9bE1q1bkZmZWfK7SZMm4corr8Qbb7yBBx54AE2aNAEAHDx4EE8//TRuvPFGvPjiiwCAq6++Gj179sTkyZMxZswYxMbGutL3O+64A++9916p+3fJJZegdevWeOKJJ/DOO++U/H7atGk4efIkNmzYgPr16wMAOnXqhH79+mH27Nm49tprXemjHrGxsa7dF1E5e/YswuGwZb3zvldpaWno378/Zs+eTc4cQUQ7UZhJ4w3dPYLwiN27dyMzM1PTualevXrJ/4dCIZw8eRJvvvkmQqEQQqEQJk6cCACYOnUqQqEQtm3bhn/84x+oVKkSunXrVnLuO++8gw4dOqB8+fKoXLkyLr30Uuzfv7/Utb777juMGTMG9evXR0JCAurVq4fbb78dp06dKnXcxIkTkZycjOzsbAwZMgTJycmoU6cOXnrpJQDnpoz27t0bSUlJaNCgAd57772Sc6dOnYoGDRoAACZPnoxQKISGDRuWtCv/vxL5sykJhUK46aab8PHHH6NVq1ZISEhAZmYmvvjiizLnHzx4EFdddRVq166NhIQEpKen4/rrr0dRURFmz56NMWPGAAAuvPDCkvsqZxW01v8cPXoUV111FWrUqIHExES0bdu2TEZs7969CIVC+M9//oNXX30VjRs3RkJCAjp27Ij169eX6aOawsJCfPHFF+jbt2+p31etWrWUIydz8cUXAzg3XVFm4cKFOHPmDG644YZS9+3666/HgQMHsGbNGt3rHz16FNWqVUOvXr2gnKTx66+/IikpCZdccolh/7t06VLGMWjatCkyMzNL9REAPvroIwwZMqTEkQOAvn37IiMjAx9++KHhdZT3+dlnn0WDBg1Qvnx59OzZEz/99FOZ47/55ht0794dSUlJSEtLw/Dhw8v0R2sdWMOGDTFkyBCsXLkSnTp1QmJiIho1aoS33nqr1HlGWvrhhx8wYMAAVK1aFeXLl0d6ejqTwyJf+8svv0S7du2QmJiIli1bYv78+WWOzcnJwW233YZ69eohISEBTZo0wZNPPomwooKb8p4999xzJdrctm2b5vWNxh3W9YWnT5/GQw89hCZNmpSMLXfddRdOnz5d5th+/fph5cqVOH78uOm9IQiCIPShzBxBeESDBg2wZs0a/PTTT6Wmn6l5++23cfXVV6NTp04l2YrGjRuXOmbMmDFo2rQppk2bVmKEP/bYY3jggQcwduxYXH311fjjjz/wwgsvoEePHti4cWOJEzl37lwUFBTg+uuvR5UqVbBu3Tq88MILOHDgAObOnVvqOsXFxRg4cCB69OiBp556Cu+++y5uuukmJCUl4b777sNll12GkSNH4pVXXsH48eORlZWF9PR0jBw5Emlpabj99tsxbtw4DBo0qGQ9mFVWrlyJ+fPn44YbbkDFihXx/PPPY9SoUcjOzkaVKlUAAL///js6deqEnJwcXHvttWjevDkOHjyIefPmoaCgAD169MAtt9yC559/Hvfeey9atGgBACX/VXPq1Cn06tULv/76K2666Sakp6dj7ty5mDhxInJycnDrrbeWOv69997DX3/9hUmTJiEUCuGpp57CyJEj8dtvv6FcuXK6n23Dhg0oKirCeeedx3QvDh8+DOCcsyezceNGJCUllfksnTp1Kvm70uFXUr16dbz88ssYM2YMXnjhBdxyyy0Ih8OYOHEiKlasaKtIhSRJOHLkSCln9ODBgzh69KjmmslOnTrhs88+Y2r7rbfewl9//YUbb7wRhYWF+O9//4vevXtj69atqFGjBgDg66+/xsCBA9GoUSNMnToVp06dwgsvvICuXbvixx9/1AwkKPn1118xevRoXHXVVZgwYQJef/11TJw4ER06dEBmZqahlo4ePYr+/fujWrVquOeee5CWloa9e/dqOmRa7Nq1C5dccgmuu+46TJgwAW+88QbGjBmDL774Av369QNwbj1lz549cfDgQUyaNAn169fH6tWrMWXKFBw6dAjPPfdcqTbfeOMNFBYW4tprr0VCQgIqV66seW2WcceIcDiMYcOGYeXKlbj22mvRokULbN26Fc8++yx27txZZi1ehw4dIEkSVq9ejSFDhjBfhyCICIMyc86RCILwhC+//FKKjY2VYmNjpaysLOmuu+6SlixZIhUVFZU5NikpSZowYUKZ3z/00EMSAGncuHGlfr93714pNjZWeuyxx0r9fuvWrVJcXFyp3xcUFJRp9/HHH5dCoZC0b9++kt9NmDBBAiBNmzat5HcnTpyQypcvL4VCIWnOnDklv9++fbsEQHrooYdKfrdnzx4JgDR9+vRS15owYYLUoEED3c+mBIAUHx8v/frrryW/27x5swRAeuGFF0p+N378eCkmJkZav359mXbD4bAkSZI0d+5cCYC0bNmyMsf07NlT6tmzZ8m/n3vuOQmA9M4775T8rqioSMrKypKSk5OlvLy8Up+xSpUq0vHjx0uOXbhwoQRA+vTTT8tcS8msWbMkANLWrVsNj5MkSTp9+rTUsmVLKT09XTpz5kzJ7wcPHiw1atSozPEnT56UAEj33HOPadvjxo2TKlSoIO3cuVOaPn26BED6+OOPTc/T4u2335YASP/73/9Kfrd+/XoJgPTWW2+VOX7y5MkSAKmwsFC3Tfk+ly9fXjpw4EDJ77///nsJgHT77beX/K5du3ZS9erVpT///LPkd5s3b5ZiYmKk8ePHl/zujTfekABIe/bsKfldgwYNJADSt99+W/K7o0ePSgkJCdK//vWvkt/paWnBggUSAE0dmiFf+6OPPir5XW5urlSrVi2pffv2Jb979NFHpaSkJGnnzp2lzr/nnnuk2NhYKTs7W5Kkv+9ZSkqKdPToUaY+6I07WvdK/Z15++23pZiYGOm7774rde4rr7wiAZBWrVpV6ve///67BEB68sknmfpGEERkkZubKwGQcmvXlqS6dbn+5Naufa7t3Fy/P6YnkCtMEB7Rr18/rFmzBsOGDcPmzZvx1FNPYcCAAahTpw4++eQTS21dd911pf49f/58hMNhjB07FseOHSv5qVmzJpo2bYply5aVHFu+fPmS/z958iSOHTuGLl26QJIkbNy4scy1rr766pL/T0tLQ7NmzZCUlISxY8eW/L5Zs2ZIS0vDb7/9ZulzsNC3b99SGYI2bdogJSWl5FrhcBgff/wxhg4dqpn5sVrcAgA+++wz1KxZE+PGjSv5Xbly5UoKd6xYsaLU8ZdccgkqVapU8u/u3bsDgOn9+PPPPwGg1Ll63HTTTdi2bRtefPFFxMX9Pani1KlTSEhIKHN8YmJiyd/NePHFF5GamorRo0fjgQcewOWXX47hw4ebnqdm+/btuPHGG5GVlYUJEyaU6iMAx/0cMWJEqbWFnTp1wgUXXFCS2Tt06BA2bdqEiRMnlspAtWnTBv369WPKALZs2bLk+QFAtWrV0KxZMyZty9nvRYsW4cyZM6bHq6ldu3bJVFoASElJwfjx47Fx48aSrOzcuXPRvXt3VKpUqdR3vW/fviguLsa3335bqs1Ro0ahWrVqlvtilblz56JFixZo3rx5qX717t0bAEqNQcDfmj927JjrfSMIQmComqVjouvTEoTPdOzYEfPnz8eJEyewbt06TJkyBX/99RdGjx6tu5ZFi/T09FL/3rVrFyRJQtOmTVGtWrVSP7/88kupAivZ2dklxm5ycjKqVauGnj17AgByc3NLtZuYmFjGEExNTUXdunXLOEmpqak4ceIE82dgRbnGSqZSpUol1/rjjz+Ql5dnOHXVKvv27UPTpk0Ro3ohyFPq9u3bZ9hH2VBlvR+SSVHh6dOn47XXXsOjjz6KQYMGlfpb+fLlNdckyWXflc67HpUrV8bzzz+PLVu2IDU1Fc8//zxTv5UcPnwYgwcPRmpqKubNm1eqYIbcB6f9bNq0aZnfZWRklKzlkp9Ls2bNyhzXokULHDt2DCdPnjS8hpnejOjZsydGjRqFhx9+GFWrVsXw4cPxxhtvaH5uLZo0aVLme5WRkQEAJZ9x165d+OKLL8p8z+V1l+piSuqxwi127dqFn3/+uUy/5P6r+yVr3k6whSCICIKcOcfQmjmC8IH4+Hh07NgRHTt2REZGBq644grMnTsXDz30ENP5asM3HA4jFArh888/16w6J69XKy4uRr9+/XD8+HHcfffdaN68OZKSknDw4EFMnDixVAEFALoV7PR+b+aUAPrGm9b+aU6v5RV2+yiv+Ttx4gTq1q2reczs2bNx991347rrrsP9999f5u+1atXCsmXLIElSqXt76NAhAOeyPSwsWbKkpC8HDhywVIU0NzcXAwcORE5ODr777rsy16xVq1apPik5dOgQKleurJm18wOn2p43bx7Wrl2LTz/9FEuWLMGVV16Jp59+GmvXrrW9blRJOBxGv379cNddd2n+XXaeZFicZB6Ew2G0bt0azzzzjObf69WrV+rfsnOsXP9JEARBWIecOYLwGXlqoNLQtRqtbty4MSRJQnp6ehljTsnWrVuxc+dOvPnmmxg/fnzJ77/66iuLvbZPpUqVkJOTU+b36mwXK9WqVUNKSopmVUMlVu5pgwYNsGXLFoTD4VLZue3bt5f8nQfNmzcHAOzZswetW7cu8/eFCxfi6quvxsiRI0uqiKpp164dZs2ahV9++QUtW7Ys+f33339f8nczvvjiC8yaNQt33XUX3n33XUyYMAHff/99qemcehQWFmLo0KHYuXMnvv7661J9kKlTpw6qVauGH374oczf1q1bx9RH4Fz2R83OnTtLiprIz2XHjh1ljtu+fTuqVq3KZRsPMy117twZnTt3xmOPPYb33nsPl112GebMmVNqyrIWv/76axmnXN6AXf6MjRs3Rn5+fpkKqDxwkiVr3LgxNm/ejD59+jC1s2fPHgD6RYgIgogSojCTxhu6ewThEXL2RI28jkc5NSwpKUnT4dFj5MiRiI2NxcMPP1zmGpIklazNkrMOymMkScJ///tf5ms5pXHjxsjNzcWWLVtKfnfo0CEsWLDAVnsxMTEYMWIEPv30U01nQf6sshHPcl8HDRqEw4cP44MPPij53dmzZ/HCCy8gOTm5ZFqqUzp06ID4+HjNfn/77be49NJL0aNHD7z77rtlpnzKDB8+HOXKlStVeVKSJLzyyiuoU6cOunTpYtiHnJyckiqG06ZNw6xZs/Djjz9i2rRppv0vLi7GJZdcgjVr1mDu3LnIysrSPXbUqFFYtGhRqa0yli5dip07d5aU+jfj448/xsGDB0v+vW7dOnz//fcYOHAggHMZwHbt2uHNN98s9Zx/+uknfPnll2WmqNpFT0snTpwo8/2THVWWqZa///57qe9BXl4e3nrrLbRr1w41a9YEAIwdOxZr1qwpyaQqycnJwdmzZ618lFJYHXeUjB07FgcPHsRrr71W5m+nTp0qM711w4YNCIVChpohCIIgzKHMHEF4xM0334yCggJcfPHFaN68OYqKirB69Wp88MEHaNiwIa644oqSYzt06ICvv/4azzzzDGrXro309HRccMEFum03btwY//73vzFlyhTs3bsXI0aMQMWKFbFnzx4sWLAA1157Le688040b94cjRs3xp133omDBw8iJSUFH330kStr3fS49NJLcffdd+Piiy/GLbfcgoKCArz88svIyMjAjz/+aKvNadOm4csvv0TPnj1LyqIfOnQIc+fOxcqVK5GWloZ27dohNjYWTz75JHJzc5GQkIDevXuX2uNP5tprr8XMmTMxceJEbNiwAQ0bNsS8efOwatUqPPfcc6hYsaLT2wDg3JrE/v374+uvv8YjjzxS8vt9+/Zh2LBhCIVCGD16dJktI9q0aYM2bdoAAOrWrYvbbrsN06dPx5kzZ9CxY0d8/PHH+O677/Duu++abvZ866234s8//8TXX3+N2NhYXHTRRbj66qvx73//G8OHD0fbtm11z/3Xv/6FTz75BEOHDsXx48dLbRIOAP/85z9L/v/ee+/F3LlzceGFF+LWW29Ffn4+pk+fjtatW5fSvhFNmjRBt27dcP311+P06dN47rnnUKVKlVJTDqdPn46BAwciKysLV111VcnWBKmpqZg6dSrTdczQ09J7772HGTNm4OKLL0bjxo3x119/4bXXXkNKSgqTI5mRkYGrrroK69evR40aNfD666/jyJEjeOONN0qOmTx5Mj755BMMGTKkZMuEkydPYuvWrZg3bx727t1re+qi1XFHyeWXX44PP/wQ1113HZYtW4auXbuiuLgY27dvx4cffoglS5aUKlD01VdfoWvXriVTjQmCiFIoM+ccj6tnEkTU8vnnn0tXXnml1Lx5cyk5OVmKj4+XmjRpIt18883SkSNHSh27fft2qUePHlL58uUlACXlwuXy/X/88YfmNT766COpW7duUlJSkpSUlCQ1b95cuvHGG6UdO3aUHLNt2zapb9++UnJyslS1alXpmmuuKSn3/8Ybb5QcN2HCBCkpKanMNXr27CllZmaW+X2DBg2kwYMHl/xbb2sCSTq3TUOrVq2k+Ph4qVmzZtI777yjuzXBjTfeqHktdQn1ffv2SePHj5eqVasmJSQkSI0aNZJuvPFG6fTp0yXHvPbaa1KjRo2k2NjYUqXl1WXWJUmSjhw5Il1xxRVS1apVpfj4eKl169al7o/ZZ4RqqwY95s+fL4VCoZKS8pIkScuWLZMA6P6o2y0uLpamTZsmNWjQQIqPj5cyMzNLbaugh7yFwtNPP13q93l5eVKDBg2ktm3bam6dIdOzZ0/Dfqr56aefpP79+0sVKlSQ0tLSpMsuu0w6fPiwaT+V9/npp5+W6tWrJyUkJEjdu3eXNm/eXOb4r7/+WuratatUvnx5KSUlRRo6dKi0bdu2UsfobU2g1LDyc6r1oaWlH3/8URo3bpxUv359KSEhQapevbo0ZMgQ6YcffjD9jPK1lyxZIrVp00ZKSEiQmjdvLs2dO7fMsX/99Zc0ZcoUqUmTJlJ8fLxUtWpVqUuXLtJ//vOfkudlpE099MYdlq0JJOnc9h1PPvmklJmZKSUkJEiVKlWSOnToID388MOlSoTn5ORI8fHx0qxZs5j7RhBEZFGyNUGjRpLUpAnXn9xGjaJqa4KQJAlURYAgCCLKKC4uRsuWLTF27Fg8+uijfndHSPbu3Yv09HRMnz4dd955p9/dcYWGDRuiVatWWLRokd9dcZ3nnnsOTz31FHbv3u1ZgRaCIMQiLy8PqampyG3cGCkmM0gst11cjNTdu5Gbm4uUlBSubYsI5TUJgiB8JDY2Fo888gheeukl5Ofn+90dgnCVM2fO4JlnnsH9999PjhxBEAQHaM0cQRCEz1xyySW45JJL/O4GQbhOuXLlkJ2d7Xc3CIIQBTfWzEXZpENy5giCIAiCIAiC8B5y5hxDzhxBEAQhNA0bNhRqk3g32Lt3r99dIAiCIAIIOXMEQRAEQRAEQXgPZeYcQwVQCIIgCIIgCIIgAghl5oiI49ixY1i6dCk+++wz7Nmzx+/uEAR3iopCKCoKlfz77NmQ5nFxcX9HJ+PjJcTHR1e0kiCs0KhRIwwcOBB9+vSxvfE6QRAWocycY8iZIwLP2bNnsXLlSnzxxRdYvHgxtm3bhho1aqB69epITU31u3tEVDLB1dYTEs79RBdv+t0BIsLZtGkTvvzySxw5cgQtW7bE4MGDcdFFF6Fbt26IiyNziSAIMaFNw4lAcvLkSXz55ZeYN29eySa7derUQc2aNVGnTh1UqFDB5x4S4jPT7w4QUcMkvztAWKCgoAAHDx7E4cOHcfDgQQDAkCFDMHr0aPTv3x9JSUk+95Aggk/JpuGtW7uzafjWrVGzaTg5c0RgOHHiBD7++GN8+OGH+Oabb5Camoo6deqgQYMGqF69OkIh7almRFAhZ4sg/Ce6HVFJknD06FHs27cPBw8eRG5uLnr37o2xY8dixIgRqFSpkt9dJIhAQs4cP8iZI4QmPz8fn3zyCd566y0sXboUNWrUQO3atdGwYUOkpaWRA+cr5GwRBCE6/JxRSZKQk5ODvXv34vfff8fRo0fRp08fXH755Rg2bBiSk5O5XYsgIp0SZ65tW3ecuc2byZkjCL8oLCzEZ599hrfffhuff/45KlWqhHr16qFx48ZR8aXkydmz/jhctLyEIAhROHvW/rlxcfrOYG5uLnbv3o0DBw7gxIkTGDRoEC6//HIMHDgQiYmJ9i9KEFFAiTPXvr07ztzGjeTMEYSXSJKE1atX4/XXX8cHH3yA8uXLo379+mjUqBEqV67sd/dcxS+HK0iQc0hEKlYcjWj6HjhxwNzCyLE7fvw4du/ejf379+PUqVO45JJLcOWVV6JLly40g4QgNCBnjh/kzBG+sm/fPrz11luYNWsWjh07hkaNGqFJkyaoVq2akC/AoqJzjhfvKrqE+4TDQHw8n7ZENDRFQkSng56ZPryfV6TfayOnTl5jt3v3bvz222+oVq0arrrqKkyYMAH169f3sJcEITYlzlyHDu44cxs2kDNHEG5RUFCAefPm4bXXXsPatWvRoEEDpKeno379+sKUf5adNiPIoQsW4XDpf9PzIwi+KL9j0fL9MnLszp49i+zsbPz222/Izs5G586dcc0112D06NFUcZmIesiZ4wc5c4RnbNmyBS+//DLeeecdJCUlIT09HU2aNPH1pcbitJkRLUZLkFA7bmbQMxQHs2dHz0o8rHzfIvX5GTl1wLkg5q+//oo9e/bg5MmTuPzyy3HdddehTZs2HvWQIMSixJk7/3ykcA7k5509i9QffiBnjiB4cPLkSXzwwQd48cUX8fPPP6Nx48bIyMjwfCsBHk6bGZFqpIiOVcfNDHqO3uP0GdIz8x6e37tIe34s0zB37tyJ3bt3IzMzEzfddBMuueQS2r+OiCrImeMHOXOEK2zatAkzZszAu+++i5SUFDRu3BhNmjRBQkKCq9f1wmkzI9IME9Hg7bwZQc/SHdx+hvTc3IO+f+yYZetOnz6NX3/9Fbt370ZeXh4uu+wy3HDDDWjXrp03HSQIHylx5jp1cseZW7eOnDmCsEpRURHmz5+PZ555Blu2bCnJwrlRzEQEp80MNwwRLw0pPbw0sET4vEqCblz6id/Pkp6dM/x+fkqCNgbFxxs7dZIk4Y8//ijJ1rVt2xZ33HEHRo4ciXLlyjnvAEEICDlz/CBnjnDMoUOH8Morr2DGjBmQJAlNmzZFs2bNuGThCgtnBtoIC4fJiNRC656IZCyywOu5+v253dKn35/LDDe/l35+dt6fS/TnqET0ccXMqQPOZet27NiBXbt2IRQK4YYbbsD111+PmjVretBDgvCOEmeuc2d3nLm1a8mZIwgjJEnCmjVr8Mwzz2DhwoWoX78+MjIyUK9ePUdZuMJC44ybiI4RFWywjtY9C9p9IkediHSCqvEgVNVkydbt378fO3fuRHZ2NkaMGIHbb78dWVlZQm7bQxBWKXHmunRxx5lbvZqcOYLQ4uzZs/joo48wbdo07Nq1CxkZGWjevDlSU1Ntt2nmwOnh9UvaboRXVGPCD4JY9Y6cdTb07pPI9yeIffYSI+2LdI9YxxWR+izDkq3Lzc3F9u3bsXPnTjRt2hT33nsvRo0aJcxWPgRhB3Lm+EHOHMFEfn4+Zs2ahenTp6OwsBDNmzdHs2bNbM3nt+u8GSHylDcRDQiv4XFf3b6PTvoYzc/Yzn3z434FpZ8iIXIAKwhjihVYnLozZ85gx44d2L59O8qXL4/JkyfjqquuQnJysgc9JAi+lDhz3bq548ytXEnOHEEA59bD/fe//8WMGTOQkpKCFi1aoGHDhoix+BZ0w4HTw6xrXq+hEMlg8BKRKxaS084HkcvTi9y3oCDath9ujimiPGMWpy4cDmPv3r345ZdfkJeXhxtuuAG33noratWq5UEPCYIP5Mzxg5w5QpMdO3bgsccew5w5c1C/fn20bNkSNWvWtDRX30sHTmREMRK8wq+CAyIUP4imZ+3VvWW5pyL1JZIQYRsCP8YTEZ4zi1MnSRIOHz6Mbdu2ITs7G5deeinuu+8+NGvWzIMeEoQzSpy5Hj3ccea+/TZqnDmacE2UYseOHXjooYcwf/58NG3aFBdffDHS0tKYziXnLbrxu2qc39eX+yCCIeg2Xt5rEZ6rjNyXaHjGXiPicwb8e9by9jtGTl0oFEKtWrVQq1YtnDhxAhs2bEDr1q0xatQoTJ06lZw6gogSKDNHAAC2b9+OqVOnYv78+cjIyECbNm1QsWJF0/PIgTNHpKlFIk9liyQi1din512aSH3OAD1rLfzcOzQx0TxTB5zLdmzduhU7d+7EyJEj8fDDD5NTRwhJSWauVy93MnPLl0dNZo6cuShn+/bteOihh7BgwQImJ46ct+hGNmbI0DOHh+Hn9D7zND7pmesj2n0WQXuRjvIee3mvWJ26v/76C1u2bClx6qZOnYrmzZu73DuCYIecOX6QMxel7Nu3D1OmTMG8efPIiSMIgiCIAGHHqRs9ejSeeOIJ1K9f3+XeEYQ5Jc5c797uOHPffBM1zlwETxIhtMjJycG//vUvNGvWDJs2bcLo0aPRtWtXXUeusHAmOXIEQRAEIRCs7+WKFSuia9euGD16NDZu3IiMjAzceeedyMnJcbeDBMFKTIw7P1EEZeaihKKiIrz00kuYOnUqKleujPPOOw9Vq1bVPJacN4IgCIIIBqxZOgA4duwYNmzYgJycHEydOhU33HAD4uPjXewdQWhTkpnr29edzNzXX0dNZo6cuQhHkiTMnTsXd955J4qKitC+fXvUq1dPc4sBcuIIgiAIIpiwOnWSJGH//v348ccfkZCQgP/85z8YM2aMpa2HCMIpJc5cv35IKVeOb9tnziD1q6/ImSOCz6ZNmzBp0iRs374d7dq1Q0ZGRpnNvsmBIwiCIIjIwEqWLhwOY+fOndi0aROaN2+OV199FW3btnWxdwTxN+TM8SO6JpVGCSdOnMD111+PCy64AGfOnMGoUaPQvHnzUo4crYUjCIIgiMjCyrs9JiYGzZs3x6hRo3DmzBl06tQJN9xwA62nI7yF1sw5hjJzEUQ4HMYbb7yByZMnIzU1FZ06dSq14Tc5bwRBEAQRPVjJ1OXk5GDdunXIzc3F9OnTccUVV5SZzUMQvCjJzA0Y4E5mbsmSqMnMkTMXIWzYsAHXXnst9uzZg/PPPx8NGzYsmf9OThxBEARBRCdWHDpJkrB371788MMPaNSoEWbOnIkOHTq42DsiWilx5gYOdMeZ+/zzqHHmKOQScPLz83HLLbegS5cuAICLL74Y6enpCIVCNJWSIAiCIKIcK7ZAKBRCeno6Lr74YkiShC5duuCWW25Bfn6+y70kCMIulJkLMIsXL8bVV1+NcuXKISsrq2RKJTlwBEEQBEGosZKlA86twV+7di3Onj2L1157DYMHD3apZ0S0UZKZGzzYnczc4sWUmSPE5fDhwxg1ahTGjh2LjIwMXHTRRUhLS6NMHEEQBEEQuli1EypVqoSLLroITZo0wdixYzFq1CgcPnzYxR4SUYfPBVAef/xxdOzYERUrVkT16tUxYsQI7Nixw8UPzB9y5gJEOBzGq6++ioyMDPz0008YOXIkmjdvjtOnXyUnjiAIgiAIJqzYDKFQCC1atMDIkSPx008/ISMjA6+++ipoYhcRCaxYsQI33ngj1q5di6+++gpnzpxB//79cfLkSb+7xgxNswwIe/fuxfjx47F161Z07twZ9evXJweOIAiCIAhHWJ16mZ2djbVr16J169Z466230LBhQ3c6RkQ0JdMshw93Z5rlwoW2pln+8ccfqF69OlasWIEePXpw7ZdbUGZOcMLhMGbMmIGWLVvi+PHjGDFiBKpX/5wcOYIgCIIgHGPVnqhfvz5GjBiB48ePIzMzEy+//DLC4bBLvSMI++Tl5ZX6OX36tOk5ubm5AIDKlSu73T1uUGZOYPbs2YPx48fj559/RlZWFqpWXex3lwiCIAiCiFCsZukOHDiANWvWoFWrVpSlIyxRkpm7+GJ3MnMLFpT5/UMPPYSpU6fqnhcOhzFs2DDk5ORg5cqVXPvkJpSZE5BwOIyXXnoJmZmZyMnJwUUX7SNHjiAIgiAIV7Gapatbty6GDx+O48ePo2XLlpgxYwZl6Qhh2L9/P3Jzc0t+pkyZYnj8jTfeiJ9++glz5szxqId8oMycYBw8eBD//Oc/sXnzZnTo8CFq1+7rd5fKoFUkiPfY7cU1/MJCkaWI+cwy8md3+3PFxETevSMIwj8idUzRex/Fx1vL0AF/Z+natm2Ld955B3Xq1HHYOyKSKcnMjRrlTmbuo48srZm76aabsHDhQnz77bdIT0/n2h+3ocycQLz33nto0aIFjhw5ggED9grnyBlVe7XioJi1z6MtN/GoWq6ja4mIsl9u9VPZrqj3wQ5BfeZO8OJzRfq9ixa9uP25lGOKyPdPq592dVBUNBNFRfaydEeOHEGLFi3w/vvvO/g0BOENkiThpptuwoIFC/DNN98EzpEDKDMnBMePH8ekSZPwxRdfICsrq5SQ/C50YvWlZTVyKWKWStQXNQ/8iCyb3U+nfXK7fV6IrCtR7pGM3r3i1U+32+cFacacaBxfvNaFnSzdnj17sHr1agwcOBCvvvoqKlWq5ELPiCBTkpkbM8adzNzcuUyZuRtuuAHvvfceFi5ciGbNmpX8PjU1FeXLl+faL7cgZ85nvvzyS1x++eVITk5Gly5dUKFCBdNztBw83tPXnLwsjPrgVrtWENlA8gs3DBI3AwFuBxnsEona8tpYZbmHdvvE+ny8/MyRqBlAzO9cEIONoujDjkNXUFCA1atXIz8/H++88w769evnQs+IoCKKMxcKhTR//8Ybb2DixIlc++UWcX53IFo5ffo0Jk+ejNdeew0dO3ZE8+bNdQWlRlltSj0NwolTx+uloV5b4Fa7rOcQ5ijvk9uRbLPz3AgG8FzvEm2aMvq8PA1YK/fVql7tTG/2Yh1wJOOVbqzAqhs7z0qEMdRNZFvDilNXoUIF9OnTB9u3b8ewYcNwzTXXYPr06UhISHCrm0QQCYX4i57RngbOTbMMOuTM+cAvv/yC0aNH48SJExg2bBjS0tIst2E2l93Ki8WNF0dcXHRMP4lE1PeQ9TnydNqV1/UzGMDz+pGIXa2YtWPnXK1ru9Wu1TaI0mjdF6+/m3rvSB7PzI52gqKVoqKZlhy6UCiEFi1aoFatWpg3bx6WLl2KefPmoUWLFi72kggUbixEDcoXihPR9Wl9RpIkzJw5E+eddx4SEhIwaNAgVxw5NVqLnd1YyO314vBIX9QvCmb3161xOC7O+/GdNOUMO/eOp7PuxrOz+llIO/bw87snX4/3mGP2OYKqFas2CACkpaVh0KBBSEhIwHnnnYdXX301IjIiBCEClJnziD///BMTJ07Et99+iz59+tgq2WtnAFUT9/9P3IspZzS1LfKQn0NMDHD2rPvOlhvT3eLizvVd63oEX8wyd27cf57T3dTt8s7+EcYY6cfN+84jK6vVntxmJGjGzrTL2NhYdOzYEbVq1cLkyZOxaNEizJ49G5UrV3arm0QQoMycY6Lr0/rEypUr0apVK/zyyy8YMWKEZUfOTolgNVqZOadtsbThZI1TUKOW0QLPKLZXmT+lM0q68h43v9dabbp1DRqb/MHN+6/VlhtZXjdmHPiJHdukbt26GDFiBLZt24bMzEysXLnShZ4RRPQQQUOKeITDYTz22GPo27cvGjVqhN69eyMxMZH5fKdOHO/pcW4bL2QgiY+ewezUaWc91sk1eAUzCOfwNshZprLxuAaNUeLB45mwBiZ5XiOSdGTHTklMTETv3r3RqFEj9O3bF9OmTUNYlP0uCG/RitLw+IkiaJqlSxw9ehTjxo3Dpk2bMGjQIFSrVo35XB5ZOKvH642hvIygIE9PEmWKjN/vObPPbWV6mxPHjFf1Qta2CPexoh2jc1mO49U+6Uc81M/K7S1XeIxFdnXJG6fvtbNn7dktzZsDVatuwNNP98c333yD999/35K9RBAEOXOusGLFCowZMwZpaWkYNmwY4uPjmc7z2onTOtdNZ0VU581qdtIvjK7tpiFg5zPrGSgUHBCjn34ajryCAk4CAmZts7YvgiHut578dkKMYNESr2yb07HOKy35rRctqlbtgEGDfsP333dEq1atMHfuXPTo0cPvbhFe4UYmTUShu0h0fVqXCYfDePTRRzFgwABkZGSgV69eTI5cODwT4fDMkuIkVuHxPZDbsNsHr9u1Slzc32sVIjETr/W5eNxzHrpS3ndeyG05fY5uBi5EnvnhV//sGLha/eIVFNCb+mbXEHcLkfUUlJlOWv3iPSbxaJfXfdN754lKfHwqunXbgaZNm6J///7497//TdMuCYIRysxx4sSJExg3bhzWr1+PwYMHo2rVqqbnhMNlM3FKA1yuuKcHL4NG63dB3VvJb6dRFORnoL4fZppSn8+rH7ynpMmGCY827bbDuzKsKBhNK2TVj5V2vTrfqF0eWuKRWRHZ2LaLG3ri7czz/A4rx1weWrDSRtDff6FQCM2arUSNGqPw7LPPYtWqVXj//fdtbeFEBAjKzDkm4F99Mdi0aROGDRuGcuXKYejQoUhISDA8XsuJ00LPsXPLiVP/XfQNT4P+4nILo2fB4ty5GSQA+G4szdtJNEJPb172wW9ECQ4A/MvG+xEc0NJUtGgJ0P9OOQkasKLUEi9d6WWQ3XTqzN6DbjisbpOW9hGGDj23lVObNm3w6aefom3btn53i3ALcuYcE12f1gVmz56NrKws1KxZE3369OHmyKmJiwPi48/92MXqVAsWh49ne0bIU0aUP0RZrN5j+V7Gx/MbT1l0Y7U9o3Pc6DPprTR695jlPrnhyMn/dqJZo2mWTmG9X1bOjSb8/P65MdWWh66Ubdi5L0HTVWzsbPTt2xc1a9ZE586d8eabb/rdJYIQlig3Uexz+vRp3HzzzXjvvfdw4YUXol69eobH23XiAG1DE/AmKq6OMnv1QnDj5R2kyKQdnD4bK1N8nV6fJVpstT0nzzcuLvL14RXq7y6v6Yssx/CsdMranlEbThxN0mNplLpyOuWXFVYdWA1o2n22TqdwBi1LV1z8Klq3BqpWHYQbb7wRq1atwgsvvGAaNCcCBmXmHEPOnA0OHz6MoUOH4uDBgxg2bBgqVqyoeyxPJ06NmVPnVkTcDaI98+EUpw67GisBA1GCBU6ntzkxoCPZ+Hb6TJTnWzXA7WZHeFUudLqeUsau4R2pmuKB3Sm/gLOsG48KvVadKqOMdzRoq1atzzBs2D+waNEibNq0CZ988glq1qzpd7cIQhiiy3XlwA8//IB27dohPz8fAwcOdMWRsxqkUE63cDr1SKsfbjhzNIWNH7wdOSVeTAmLifm76hqPtvQgvXmLXpCA9RnwdCJ5T8fUwo2pppEcXObtTHj1TlG+F3lNnTSblsvSht1rB4Xy5d/DwIEDkZeXh/bt2+OHH37wu0sEL9RfKl4/UQSZNRZ4++23ce2116Jdu3Zo3bo1QqGQ5nFOnDi7xMScW/fkdOqJXh94RPL8rP5n9Zry2kQv+hoTAxQV2T/Xq/OU2To3sr68osXx8X/fT6tGXdAi1m7j5vvQaFovr+vyHHO0tGF1zVI0ZFFEQS9z58bYxUtfclt2nFEn+pKvaxcr/T171omz/T/06HEttmzZgu7du+O1117DP//5T7uNEUTEQM4cA8XFxZg8eTJmzpxpuD7OLydOidX1dDz6oIeoGRDWIjJeGlBmfdJy9vyI9stBA8CdMvW8DFcn2vPSeI6P9+ZaXqwvUmJVY7zKuev1gddaIbkdr9fCOdGkV+Ow1xqzinL2Cu++8nLs/FwTZ6Qxs/eTl9snhEIhtG3bFpUrV8akSZOwceNGPPXUU4iNjXXWMOEfoRB/I1Qn2RKpCGpui0NeXh5GjRqFzZs3Y8iQIZr7ncTEzPz//577t1eFSYyIi+O/Tx2LQSGKAydKP3ih9zL10mnnEThgub4dw1X9vP3IZmhd00n1WZ4EKVjgZI2dWR+cOnU8nE7eDh1PQ9sJLFq3OwOBN24We7KrMa0xzE47Ts61O155O97OBDAJ9erVw5AhQ/D2229jy5Yt+Oijj5CSkuJVJwhCKCLM5OVLdnY2BgwYgMLCQgwePBjxGiOd7MgpMVuY7aYTp+6HW/uIqa/jF0F32pw+C9YiAG4HDoyubef6PAIHTgwMK+cGXYOAsRHnZ8ZFlICBCAVz7OpMpGmaIurMaiEV1rHMSrbO6Nm6lW0zuy7va/HlnEOXlpaGwYMHY/ny5bjggguwZMkS1K9f36tOELxwY41blK2Zi65Pa4F169bhvPPOQ1xcHPr27VvGkYuJmanpyGmh3MvLSeTLyTonngu25Xa9LCahte+Qm9f2aq0cb7Tuj5fBA63oMu8Mj5Vn70bgItqK91j5zG5pjfXaVq7Pcjzva6rPZbk2D515YdfwWFPt9veL5T64VchG61yrY5md66vPc3Ps8tZ+Pmd/xcfHo2/fvoiLi8N5552H9evXe9kJggdGRUyc/EQR0fVpGZk7dy569uyJjIwMZGVlIUYlClYnrvQ5f/+/FwO48nxeU72UTqnbRLrB7NU4Ex9v7x460R0PJ1LZD+Vn8FIL6utGog7tomV0+x00cHJtrSnEVoubOLl2NAYJWPHz3vC+plJrTjKtVnEaTLaCt3a0vMQlBllZWcjIyECPHj0wb948rzpAEEJArwwFkiThiSeewCOPPIKePXuiQYMGpf7u1IlTYzRvn1cGTXktO9NYvMy8iYLbWTmvXnR6a9wAvlMitc7nUSQF4KML1uk/ImmQJ17pze46JKdBA54FU+LivJs6qdabF+OOKNMtnWJ1aiQPeI1pyrYA99bE6Y1nTteNsuKd3s5NuQyFQmjdujUqVqyIyy+/HL/++ivuvvtu3arjhEDQNEvHRKj5Yp3i4mLcfPPNePfddzFo0CBUrVq11N95O3JqeBgmLNN2WF9Ebhq2dtuOFEPEC1jXuQGlNcE7u8IriODUMNA6P1KdNz8wChwA7qzllM+X23BiZCv763QtHKB/vt+ac9vADof9saFY9MarX3aDFlrnA87XxKnPtTLrJ9IcOgBo2LAhkpOT8fjjj2P//v14/vnnqdIlEfGQOQOgsLAQ48aNw8qVKzF48OBSG4G77cSpz7FjmFh1GvXatjqtSOQotF0iIStn9RrKKXK8qwfK7bO2bbY+iddeh6xEUjbDT7QMYDdmHyjbZ8VobRSPLJ1IxnW0oHXP3QiUWnXsWNab2nXq7GSVvcjS+eHQVa1aFYMGDcKHH36IQ4cO4b333kNiYqIXnSDsQJk5x0S9M5eTk4PBgwdj3759GDRoUKkvvFVHzokTp4bFMHEyPUlu161Isd8RaLu4saZALsft9tjCoxCDVYOYRyDBzSCCun0ylvljJ3ggn+dn8IBFd3YNUbszLSIrWyIWTjNqrO07DZZadbDUWWUr5yrPc9uhA/6+Bus2Flbfx0VFfzt0KSkpGDRoEJYuXYq+ffti8eLFSE1NtdYgQQSEgJrcfDh48CD69u2LoqIi9O/fH+XKlQPgfTbOCC0D2KlTIC/o5v1CE9GBE6FPrC8kNzbhtnuemWHiJJAQFwcUFjorAGC31Lcdo8Ur45dnIMGrAIJdtIpA8A4gGGnYTnETO+suRdWb8hq8defXVEsrWNGd3WCFsm07Y52TKbt2nDpeWTpe71w7ujx3zkwUFZ1z6BITE9G/f38sX74cWVlZ+Prrr1G7dm0+HST4QZk5xwhg6vrDb7/9hh49eiA1NRW9e/eGXLEyMbGsI2e00albTpwSXgv9eTs23lat0kdv0A9a9FmvCqTZRrtualDLIObxzBMTnTuvQVgD51efvAggAO7MRgD4rnniWYnQrmHth0Pnh/asGOB+7l+oxM1iKjwCp16vi2M9R/msi4rEGn/j4/926MqVK4c+ffpg9erV6NSpE7777jukp6f73EOC4ItAXz/v2L59O3r27IlatWqhU6dOCIVCmk6cjNYLys7g7DR7Yndakt4gy6M4hZcOkxdllf1GSyNan9tJ5sXOOfK6Ol5FJuR/O2kvPt6djXTt9kVJUAIJRiX+zYIIdrAaRADOaYRHAMHumjolSsPareye8hyrRnVQdAdoTw+U4a09O8XIAH7VeHlpz6t1cVrnGL1/5b+JpD+lQxcTE4OuXbvi+++/R1ZWFlasWIFmzZr53EOiBMrMOSbqnLktW7bgwgsvRMOGDdGhQwdTR04PN6dpGJ3Hcz2IfJzThdtu4PR6Ir1UWLGiE/WL1Y01blrn8SwyIf/eSVteTYGUr8MaUAjiuiS1NvQ+q9dTOHmUhFdqxqlh7WSmhFVdqI83018QdaeF0ed0I8jA0g8eGTsnjqJ65obbTp18PStr10TWXygUwgUXXIANGzagS5cuWL58OVq3bu13twiAnDkORNWn/eGHH9C9e3c0btwY559/vm1HTo08lUIrym03c2J2npFxzMvx0vtcSnhFzNU/0QavdZC8n5WeFlmfE8txVgIPRpUHrcC6XlX5Ew2ZYRbkzYetfld5aZzXOVbbUx/Pe52q3jXl+23FoI5klNrz8l1h9Zos456TMdSJfWF2LeX1rI57IukvPr60fRcKhXD++eejcePG6NatGzZs2OBTzwiCL1FjNq9Zswb9+/dH69at0bp1ay5OnBZOKrXZWUvHoyolr3asXE/U6F0koDY43agYqLyW0wITRu3YaYsVdRQ5GoMIPGBZc+TG7AS9a+n1y+g4uzMd7GYi9M7zYn1fpKF1z3hk0Vgqpupdy2qQwEk7dtfFAdanC1tpXxT9KadbyrRv3x5xcXHo1asXvvzyS2RlZfnUOwIAZeY4EBWfdsOGDejfvz/atm3rqiMHlNYka+TNiY4TE50PxnFxfNoxaj+as25muD3m2MmgWM0eKNeG2H3Gsg6V7bC2ZXcdIOnyHDw1qL6vbmaw9J4drwweizaczsAgDfI3/L38bquv4WT8s9uOHQ3KWV+33j+iFEgDymboAKB169Zo27Yt+vfvTxk6IvBE/Otjy5Yt6N27N1q3bo3MzEzXHDmWKB6vLQbUgzxLZJmlHbuIluEQJSLIgpsvO3XbLBkNJ5o0ijBbwW6lS5ZosFqbIkWQIxXWTJoSuxV/neKkHStaUl7HLf2Rtv+GJXusxG5wSP6v0/WddttgWRenN2Uz0nWolaHLzMxEOBxG7969sXLlSlpD5xehEH9jKBTi257gRLQzt337dvTq1QvNmjVDx46rXbuO1Qptdgc2I0ODdfDn0YbVdkUkPt7epqRmWFmc76Ujp0bL8fIzuMArQCHSlgWiGDF+4nVAwaxtt9uws31BNBjSfmI2VRfgtx2B0qGz2y6PNtROnVvTNa30x2rbbmwsrvV+bt26Nc6ePYtevXph1apVaN68OXuDBCEIATPB2dm9ezd69uyJ9PR0ZGWtc+UaTqJ3ALvhz2PtB2+D1m41RTexWqrejYIWXu3vZYTdKZJWq8SJGlywqnURDF43tMj6PP2aCqXlOPEMKCjb9aoNwN56JBE0KONngMsveAcC7LZr1IadfsnT1q1mxN3QotWKwCxYbSs5eSby8yeV+X379u1RXFyMnj17YvXq1WjcuDGnHhJM0Jo5x0SkM/f777+jR48eqFWrFjp06IDCwkncp1fymAYkD0R6Lzs7DpjSAHZ6vhoRqvmJ0AenxMSYl3130rYVlBox06PeeWbHOCkQYMWh411G3Cl298HjeX0W3LpXogQVAGeFUuwEFexsp+CWQ6feVsRrrFThFMHxkx0ggG9/zLTIokOj89Uo77tVDfPQotFz93Nc1HPoOnToUOLQrVu3DrVr1/ahdwRhj5AkSZLfneBJTk4OsrKyIG8SGTKYNys7eMrBGwAKC/Xbd3Mth/zicPrSdTpnX3muFefJ6jWNBnT1M2Ed/EWJbhvBqiH5OCM92mlXxkxnWoaMXW06rZZqJ8DAU49GiGq0sKKnGyeGLC8tmvXBqp7UmrByPouetLTglQ6N+sCjXbcx04xdPXqhRT/GRbtBV7f0mJh47l3FajP4rUcth06SJKxcuRLAuQroqampXncrqsjLy0Nqaipy778fKWqjz2nbhYVI/fe/kZubi5SUFK5ti0hEZeYKCwsxaNAgFBUVoXfv3oaO3LnjJyEtrWzGTqkppSFtNdJsFSdOHK81R/K5XmaoOX+HhcaqIweYBxvcCjCoM3VO9Gl1uo8apZ5ZjQWnQQ01yufgtyHCCyPtqO9zTAx7YIEXRtliv8ZYLU0ZadKtrIisR1YtijSVU4twmF2PyuO80qTy+rwydk6Knaj16Na4qKcbrfd2YmKw9RgKhdC1a1csXboUgwYNwtKlS5EYTQaKX9A0S8dEjDNXXFyMMWPGIDs7GwMGDECMyYPUcuK0UH+PeU1BUyJ3Vdll1sGW15ojdTtuDbJ2pkmKNuDbhdfYYkeTMnaMWSeOGM8gg9tTbJXGBa/3t4gGix1k7WrdFy+CC2pD2i2njPX8s2et6ZGHAa2nyUjRmF1YNMmK1UAX4GwvT14FU+LirGnA6vWUa+nMxkYr6+781K7edMuYmJiS/efGjh2LBQsWIDY21oceEgQ7EeG6SpKE6667Dt9//z369OmDOJMRmdWR0yI+Xv8lrlz3wYqe4cMyf57HdEy9dng5HvL9MrpvvBDZoLFyP63ee9b7a0cvyr5YOd9In3basZsttmKcxcefM1RYHLkoC/oZIt8z1nunxG5wwe7YpzzPyRiamOj+9glW7qudjH8ko7xvbr53rO4pq0Sv2IndcdbuXnNm11O+X6x8v4OgyeRkbVuwXLly6NOnD9auXYvrr78eEbYaSTxk8fL+iSIi4tM+/vjjmDt3Lvr162eaEnfiyClRDnB2nTjW8vHq31kd7J22YeVaXjpvkYjT8Ufv3vPSJ4t2rBRHMfo7ryCD3rWiXaduGVusYwCP4IKVQjpGwQW77fA2nqNdk27h1XvJKECqPo6lHTtt2HXqlPC6V0F26BITE9GvXz98+OGHeOKJJzzuFUFYI/DTLN9//308+uijGDRoEJKTkw2P5eXIKVEOgizT3ewMsmfP8l1PxwrLFAgRtygQDb9eaHKgAeC//53WNB07kWk7BSnsTs0hA9kftNYaOXXklJhNGbPiqNlpw44e7awBNYO1H9E+LRMoe8/tTN1lDcY6KbrjpA2rz1kOxvJ+hwdZl8nJyejTpw8eeeQRpKen49JLL/W7S5EJrZlzTKCduZUrV+LKK69Er169ULVqVd3j3HbiZIwW6zvJKDidTy/Da5AOilHs5bplvTUafkYmlc+eZdsBO31ITHSmK7sFAFhf/PLn9tNIIf5Gfh5xceIGGJRtsJ5vdX8uOetBhrMYKANfgDtbEgDO19ZZDeyy6tLJNgas/XCqSzff53pbVx07NglVq1ZFr169cMUVV6Bu3bro1q2bex0hCJsE1pnbuXMnBg8ejI4dO6J+/fq6x3nlyClRGs48p4WxDrK8p1CK5ryJ1h+A7UWjZyC47cgp0avI5kewQb1+iZdDJ6I+1PgdaBAhyMBaHdDuVEYnBqndIIWZ0ao1/Vm0IIPf2hQBM23a/V44LSZld6zVcupYpkDz1KaZYyniuF216sz//y8AzMTAgUPx44/r0LRpU1/7FXFQZs4xgXTm/vzzT/Tr1w+NGzdGixYtdI+rXv1vR45HpM1qREweuFmvzbrWyMmmo3Y2HPUjgitfP5Kix1ql3gH+G+VaKfoRE2Pv+nprMZ0EG+wYtlb2NnLDcNZCNKPESaCBN0EKMjgxnFmNZvk6Xk1PJ21qY7aOUYnd/qiDVzJ2xkwn2oyPZ3+vuqFNq1tqiMJ5501CTs4u9O7dH5s2/YAqVar43SWCKCFwzlxRURGGDx+O+Ph4nH/++brHKR05wPmAbGdqg/raetd0staIZxbOjxd90DdctotSI1r3gIfBwNoHlimYrO0bGRlOgxVqlFMoWeFlnFgxiIKAV4EGK32xE2jQCzIA5s+dZ5AhJsb62ijeeyJGij61vt9+6lPpgPII1DpZ82nVqVN+t6w4dFauoXW9SOHCC5/C/Pm7MHjwCHz33TcoV66c312KDCgz55hAfVpJknDDDTdg9+7d6N69u+6m4GpHTgvWss9WKp2Z6VFdHcpK2076pT5Pq09Gg66V74RRn9TloqPVkWNBWSafddqTk4CDfE1e1QfVUWi756rR0qvbY7a6El6kGShGaH12u5/fbqDBymbIZn83ctjsnqtEeY+s2id23wXRqE/5/cBTn3bgWbVVS2NOzlWi1Ue39Mm6JUQQbe1QKAZDh76HPXtOYNKkG2jLAl7Q1gSOCVRm7vnnn8eHH36IoUOH6kZEWBw5rWesNJgLC50bxkY4ieqr+yVqtMzIAYl2R40FtabU91O91oSnXtWZOrtGptP1IcrzWAwDHlOHgjoFyGtkZ0XGbO0Tj0CDjFY2xG6FQCezIvT6p4aXNmVYNRrNRU6UGSgZt9fnsa4BNUM5zdfuFGErlVKdZum8XGMpAvHxSRgz5jO8+WYHtGvXGrfccovfXSKI4DhzX3zxBe6++25cdNFFplsQOKVChb//32xQdrqfC4+pbSy4vYWAco2bUX9ZXhqRboDwCBgpNy1mNRysXlf+HjhdU2d3ClmFCtbOs2O8Rpshwko4bE0vZsEGVliu6XewQWnQsgbGnDh0pFFtWDSqPEZPo24Ebq1MXdeCx7pPK9VSrVZjld8NRsezaD6oAYfU1PoYOfITTJ7cB82aNcOAAQP87lKwCYX4Z9J0Zu5FKoFw5nbv3o2xY8eiS5cuqFGjhu5xdrNyRvBamG+08N/JWjozQ1nP2LBqYLMs6g/ioBwJsESEneiVx5o6u8V3eK8lkrPivCu+RiNGxrRsOLu5tsnuPopaU9msaszO1gJWDNcKFWg8dRulc+eGTtVTH52sr7Pi1KnHT9bzAP4VJyPZoatbNwsDBszEqFFjsWXLRjRq1MjvLhFRjPAmTUFBAYYNG4b09HTDcrC8HDmzNW+AtRc46zoL5UDvdOqPG9MoeRi/lJVzrkGzY7QcO56BB2W7LOdoHaP3/eEReNAyDKJhDZHo8A44aK39NWpb7zz17810prW1AMt5MkaGKxnK/mOkU6eJA5bvgJMCU+prqM+zG3jgNYU4Emnd+nL8/vtaDBw4DBs3rkMF5bQugh0qgOIYoZ05SZJw9dVXIy8vzzCN7YUjJ6OMthlNJbLq/DgtxW/HYDUb4JWRS7MXgV8DughTkETcK0kdFWbpI6tmlcEHu0V4rKzpUJ/D0j8nRLNx4gValYV5FWJwM+BgVuTCTvaDAg3OsDrV0soxTpYmmGlNS6d2130q27NyjhmyX+J0ZoSbQQcR3v99+z6Ld9/tjiuvvAbvv/+ObmE+gnAToZ25GTNmYNGiRRg2bBhiY2P97k6ZwVYeSJSGsh3jVvkSiYlx9tKwOiCyrM/gMc3NTlZOL8glmrGtXL+mRUGBd33RQ0urSqzq1klxE/l8p1rl2R+rBNHwEDHoAJT+nvMqpKI0lkULOHitVTuQVsviRiBXWajFyUbiVsYjM6fO6rPn5axpHaNlA4j2/k9Kiselly7AK6+0x8svv4wbbrjB7y4FD8rMOUZYZ27dunX417/+hf79+yMpKUn3uIYNS2fltAxnHlk5s5L7gL29iPSuZXdPJKsRLifbI8g4GVyVg3WkTsOUP6P6ebulVSOcVG3Vur7V6TvK69mJxiqvZ8fgdEs/QQg8qNexacE78GC3kIqWsWxHq04cJzuVTY0MZTeMZDtEmlbdzM6Z9U/GifMpX9NOsRP5HKsFTNTXM9ueye3Ag6zJ/Hx9fcqIOLUzJaU2xoz5ELffPhDnn38+OnXq5HeXiChDSGcuLy8Po0ePRrt27VCrVi3d49SOHFB2IGAZZHk48DEx7Os2WKdzqgdQXkUblJFms0GRV1bObIAWbXD2Aq17wiMizaKTmBjr1SqNgg+AsVZ4BR8Af7MGLFXcgoxSk8rn7XV22Y2gA8A2nqmvZddQNjOSeWD0/bEaKBMRIwfLD63qbWdhZUmCEq3PxqpVrX7Y0SpLsR0zh85K5s3IFkhODq5W09N7okePB3HxxWOwfftPqFixot9dCg6UmXOMkM7c9ddfj5iYGLRp00b3GC1HTguzCBqrY2WE3lx7pwuo5QHUqiHDWgSChyOn1YZbBoyogzzPMYNnxFcPVr0anaOFlhHC6liaPVsnezPaxeladlH1agete+GVg2dlqxgZu4EHI71aCTwoK216AdVd+Bu9e1FQ4I19x7rfnJXZQHbGVMBYr8p+8sh2GbVhxSYIcmGfbt3uwu7dn+Paa6/H+++/43d3ggM5c44Rzpl7//33sXDhQowYMcKVhaTqQcVu9TMW7FS/VJ9vd7+amBj3jQl5MPV7fUUQsDuuWNWrE7S0ZqffFSrY0ytgvv2FEU6yyKRh67iVWVajzM6YjYeselU7daxjJc/S7U6mr7mhV1ENZF5TJFn0anVasFlfnO43J2N3vzke46qyD6zX92I8FVGvMTExGDXqPcyY0Qpz5szBpZde6neXiChBKGdu3759uPbaa9G1a1dL6+Tsol4vZifSzBJdi4tjN3L0Blqj/ejUJCY6rz5pdD6vKlesfWE9JhpQGiRuZUbka9gxzGX9WtGrXhtuQs6bO3iRWQb4bMEB/L25sp3gg1npdp7GJunVHezo1c5sGbVe7WjVaXDXzC5wqleedoGIjhorKSl1MGzY67j66onIyspCgwYN/O6S+FBmzjHCOHPhcBjjxo1Dw4YN0bBhQ93jeDpyauTBSDaSrU6vNLqGWTVBFgPWyOhw82VPU3j08XO80HLseGZjzTSrREu/VgwPlgCEE3gHIAg2EhOdB8zMkKc0WnUclZq149BVqBAczQbZOGaFR1ZNHvNkzdrVq1FfZN05CfJadeqUn8uJQ6c+X8s24FUwJcjTLVu2vBi7di3G2LH/wJo13yEmyhwLwnuEUdiMGTOwY8cOdOzY0e+uoEKFcwtx3XCQ1G0qo20sqI9NTCzbptOsXHz8uXsg/2jhZVYu6PAax40cNflZmWnWTtVWLY3JsOjX6O9GbTvFTMOE97j5TKxoSS/4wDIWk2a9x6/3hPJ5KJ8Jr/efrCUjPRlp0kyzbmmVNGrORRc9h507s/Hyyy/73RXxkTNzvH+iCCEyc3v37sVdd92F3r17o1y5crrHuZmV00MvO8FjKwO7Lyjeg7O6PdEcLKP+ePVCEWGvOFbUlQB5tyu3aScIIUeSeQcgAHMtUFZOLOwUNmHBSP+sMyC0+uSWUSwSomY6REFdQdPN8RVgH2PNxlcldrNzyjadVr9khUd2zup3rKDA/vdSaSckJCRj+PDZuPPOYRg8eLDhjDOCcIrvzpwkSZg4cSIaNWqEOnXq6B7Hy5FjQctR42kgKx09K0ZMfLz5AMlqFDsxTNzOyqkHUhGMC63BXUsnojl9vB27uLhzWWu7xrebgQgRdMKKF0a8aFo0wosAhNW1mMqpl6Tbc4iuWx5TLQG2dXHhsLFuzfrCss2BVW3ImTqegStR12u6ZSc40bj63Nat+2D79n9g/PgrsGLFN64U9YsIaM2cY3x35mbNmoXNmzdjxIgRhsfxKvzAY01RcrJxP6xcw2zuO89iECxrPLwwLKzs1RUkQwcoO5h7uVeX2dglr1+y2w+lrq2u2XBz+wavYY0C+61dPaNE9CCEG46dPGZbDUIkJ/OdUmcHL7IcQdAtUFa7ka5bq+Oscj2e2b6fRn830z1LxoyXboO89xwADBnyH/znPy0wa9YsXHPNNX53h4hQfHXmjhw5gjvuuAPdunVDvIHX0rJl6ayc3T2PrOzPwoK6YAoLen1QL8DXuh12snK85/lbaUO0KUR+42SvLh5BCLkNnhUxWYMRTrVnZgh79bJn2WA3iBhlnv00mJWFG3j0g9U4Zg2isUxZ86I6KwuRqF03dWunaqWMcrwy0q7ZNeS/exX09fOd7fTaok4RLl8+FaNHz8Ltt4/DsGHDUKNGDb+7JB6UmXOMr87c7bffjtq1a6N+/fqO25IjrzL5+Y6b1MSsCiaPfemcYndQdDIQKu9/JGbc1PAaJypUKNuWW9rVuz7AR7uyoeGGjv1Y70bBiHMYbcLsVz/cCkJEgnYj1ShmRZ7e6IVuWad18tKulm71NGslM2anKqXT7JwVmyHommzRYhDS0y/ErbfegTlz3vW7O+IRCvF3vqJsSqtvztyKFSuwYMECjBw50vA4dVZOCy0NqJ07lmkPTrVUoYJxFM6JsWw2KJtVteKZlVPfWyU8B9wgD96AfT15FZhQYqZdFvwORjhBvudB15yXqAMRfgUhnMA7a0badRcea+LkZ+RXEE2tXaf71tlFmfHzAiO7gRciO30jRryA6dObY8WKFejZs6ff3SEE4PTp00hISODSli/OXFFREa655hq0a9cOyQbfcBZHjhUekTGzAVc5jc2LqDXP6C/LOiBeg6Sog62oJCebr73jmSnUu4ZbWN2ewyleGBXRiNZ9ddtAdqsipt0+2MGqAepEvyIbu16jdgy1gmhOplrK6LXBql0nfdDLjPHaw5C1kiSPzFvQtZuWVg99+07FlVdei+3bfzKs3B51RMk0y88//xxz5szBd999h/379yMcDiMpKQnt27dH//79ccUVV6B27dq22vbl0z733HPIy8tDq1atHLfF8rzUx2jtG8P7uavb55mVs7rnjdUBW29vHeIcPLXCS7+8cVO/6us4OZ8F+bMkJ5Mj5zXJyd6NJX6MV15cT6ldI/0KaLv4Bg+jX77fZrricS0v37dWxnU7476bn8XO+1IkevS4DSdPhvDss8/63RVCxbfffouhQ4eidu3aCIVC+Pjjj7m1vWDBAmRkZODKK69EXFwc7r77bsyfPx9LlizBrFmz0LNnT3z99ddo1KgRrrvuOvzxxx+WrxGSJEni1mMGjhw5gkaNGqF3796GHihrVo7Hl5tlwbTTQc9J1PjsWeOB0akzx1Jljec6uKCvqWN9WfB68bAeI7J+lai1zCMYodSL3neFl+5Iv3yOUeqVpR2rGlZ/H+wGJLzWr9Y1tI5hacfuMVaO8xrSrzVk/emNizz066UNEXT9/vrrcrz55hDs3fsbqlev7nd3fCUvLw+pqanIff11pHD2/vMKCpB65ZXIzc1FSkqK6fGff/45Vq1ahQ4dOmDkyJFYsGCBaZV9VrKysnD//fdj4MCBiDEYLA4ePIgXXngBNWrUwO23327pGp5Ps7z//vtRu3Zt26lEJbyjNHpTMZ1Os4iL+7sNK9PXWKZC2Mla+LmPm6gDLG/8iA7yLBCh17aTdt3OJBoRLboLEuqZEW5pFnC+nY1ZQI3lfCNoBgQ7vPaSY21L7xj1M+O5P6K6fSf6TUlxtk2B2VRNwNvxNejTLZs06YVGjS7ElCn343//e9Xv7hD/z8CBAzFw4EBX2l6zZg3TcXXq1METTzxh6xqeOnNbt27FW2+9hYsvvtjwOJ5r5czQG8itGK9WnD2W9XQ818KZReVY8HrgVF5PpGlx+fneT7G0245bjp0dp84tQ5XWckYWbgcj7Bb4Mduf0+5+WiLt7RaJ8HT6WFCPc7zHXScBYZ790ILXmjeejpqyLSM7Ij/feztjyJBn8MwzrXH77bdwWW4UeFxcM5eXl1fq1wkJCdyKjvCguLgYW7duRYMGDVCpUiXb7XjmzEmShFtuuQUtWrRAamqq4/a8mjutzM7yGpz1DGI3Bl6vNgm32k4QI9EsAz5vI5SHhu0aAmZtmrXHa5G9ur2gIUpAwstqk04RJRjhlTHsJXYMZtKwddQaZt1TzuzvVsZeGaebiJtl97xGqWGn3yk/tJ2e3hTdu1+Hm266FcuXL/W+A1FEvXr1Sv37oYcewtSpU/3pDIDbbrsNrVu3xlVXXYXi4mL07NkTq1evRoUKFbBo0SL06tXLVrueOXNffvkl1q9fj9GjRxsed/75ZbNy6kHLrwWuWoOok7VIZoOQ1bnsVtdyuI2f0zn9Qq/sNeDf5stKDfKuVqmVaeZpsLIEJPxEBOOcFVajxc9NwrWQ7zGvjcOVbeq157UT5+fUsWjXsJOplqx4pWE/gw+8NKzXTqTZE4MHP4QHH2yEL7/8Ev379/e7O/7iYmZu//79pdbM+Z2VmzdvHv75z38CAD799FPs2bMH27dvx9tvv4377rsPq1atstWuJ86cJEm466670KpVK1s3Uv0lZilY4mbmzo/y7Xq4/SJmGTBZFj9HE2ZTd5XH+aUhK5kPs4CFG8V5RDIwI82IMIN3QILndDfeGTv1WM47ECHDIyDhZJoaafhv3BpzeWwgbmcbAq8cOLvTiZWwOnwijf9ukZRUCf37T8Gdd96NzZv7IRRlm1x7RUpKClMBFK84duwYatasCQD47LPPMGbMmJJKl//9739tt+uJM/fpp59i7969trJyRrg5Rx0wH1RlfXi9SbicrXC6N5edF7rdKmtEaeSXvtb99NrBM9OxV2jdCy+zciwGRLRrPagBCSttOcVvQ9Tv64uEloOldX+80rHaWbOqYTf2nJPxayql3erDQS+EAgC9et2Ir79+CosWLcLQoUP97o5/RMk+cwBQo0YNbNu2DbVq1cIXX3yBl19+GQBQUFCA2NhY2+267syFw2HcfffdyMzMRJzTspAwfj7qaJzTzB0rXmXqrLykeQzKFSpQcQk/iHQda13TaygowQ8RAhJOCpzwur4o1yUd28NMx24XVHFjKqaV6/KAxcFKTiaNyiQkJOGii+7H5Mn3YPDgwYZl6yMaAZy5/Px8/PrrryX/3rNnDzZt2oTKlSujfv363Lp1xRVXYOzYsahVqxZCoRD69u0LAPj+++/RvHlz2+267sx99NFHOHToELp06WJ4nNWsHAtOMnd2N8uUr8PBby3VJm9oKk5wcDsDrXc9N6/DuzgK6/UIb7CaweNlKLtZEdPoemY65jFFTXk9p0RCVoMnrNsPeKFj9TYYPHWs1KEdLfGo3MqTSNBxjx7X4auvnsT8+fNNZ68R7vHDDz/gwgsvLPn3HXfcAQCYMGECZs+eze06U6dORatWrbB//36MGTOmZOlZbGws7rnnHtvturppuCRJaNmyJapUqYLMzEzDY1mcOV7r4Fj2g3G6ybKT6JrZ9MmgbfJp5big4/WGtoC5np1qGbC/abhSi3amUdrZcFnrWtGwGThveGqUZe2SWVt2dSxfx2mAzUjLLDq1U1nYLR1bOS7ouD0m2ynQ5qeWI82+iAQdL18+Az/++CK2b/85qtbOlWwaPmeOO5uGX3op86bhbjN+/HgMHz4cAwYMQLILJVRdzel++eWXOHjwIJo1a2Z4nBtZOSOSk0v/qOGZVbOiT6vHW8XoM7tJJAy2ohIX576W5XLYdrQpn+emrpXXcPtaBD+8ema8rmHUDo/vGenYHdx+/3j5zJxcI1Lti0iYmdilyxX4/ffD+Oqrr/zuCuESTZo0wbRp01CtWjUMHDgQL7/8Mg4ePMitfVczcz179kRBQQHOO+88w+N4ZeVYjjN76ebn88nKaaGVqbOarbASAdYbVO1mO+weF03OnNvZDDVGWmTRslkbVrSshHX6md2/K7XNay9F0nJpvM4yK7WmtZ+YUy0r/25n42XScnDxc1y2o2Urf2fRstVMMuvfycbgx6efTkVu7gp8990yv7viGSWZuQ8/dCczN3asMJk5mQMHDuCTTz7BwoULsWLFCmRmZmL48OEYNmwY2rVrZ7td15y5jRs3IisrC5dccgkSDXLurFk5NwwGs2P0Nih1MhCblcB2MsgmJ/OZ7gP4P51HhE1q7WxQy0unQdAyYL7HHK/ABKCtCTIa3MNPZ06JrF2ezpyMlY2XeTpzbhvBpOXSiKJlgF3PPLQcLXaGXS2LYGcA5zSRn38M995bD99/v8aRUR8kotGZU/LXX3/h888/x8KFC/H555+jYsWKGDp0KK6//nrTpWlqXCuA8uSTTyIjI8PQkWPFyzS6coCUv+h2jHo9eE9zEGUw0kM5yBp9n0Q0LJT31kyDeXliT/dQfhbeei4ocGdbAVajIQj4/T3l+cy9Rr53ZoEJO3ix8bKM3xrghQifI1L07JZtoTcmO0H53HkV9OGFuhBKEG2N5OSq6N79Cjz22BOYO3eO313yFgGqWfpBxYoVMXbsWIwdOxbFxcVYvnw5PvnkE6xZs8ayM+dKZu7o0aOoW7cuRo4cidTUVN3jevfWzsrl5ZX+tx+ZDD2cFpswgyWTYfQydaugBMtxWgNopCzGd6LBaNWzHS2qte2Vnu3oNGgGgwxLYILlONb2WI+xk6lQG8M8iv3o4VTPomUz1Mfp6VlkLQN89ezn2OyllgE2PYtqawBl9RoJtsahQzsxZUor/P77QVSrVs3v7rhOSWZu3jx3MnOjRwudmeOJK5m52bNno06dOoaOnBHq+y4Pnmqj2A/cLNtutlG4KINQSoo4ffECpwGeaNUzK06mnLmNXYMhyMifWUv3fmpWa8NktzLOThAhc6WHHT0Hvfw7bz2zbD9gZ3NvtW7M1jw72UDcDB72Bkv2jkVbrPZG0HUKALVqZaBJkwswe/ZsTJ482e/ueEcoxD+TJmhV0D///BMPPvggli1bhqNHjyKsEu3x48dttct9KJAkCS+99BKaNm3KpT3l89VyrnlOb7MyMHqxn5HVQAVv49erYEbQB2ArsOiZF6LpWY0oRm+0BSecoKVZUYITycnm+4C5fX0RID2z46eezZwxWc+At3sm+okXNofoTl+fPjfihRfuxZ133hk92xRE0TTLyy+/HL/++iuuuuoq1KhRg9sz5u7MLV++HMePH0fDhg0Nj9ObYmmVlJSyz0xrEOYRwdLThjwI2t2LS6str1EOorwGOpEHTFHRiiJ7bSS7ma1T6tsPfUTBbAvfcDs4wYqXgQkrenZjnZGenkU3WHnCa8N5NaLoGfBuTLaCUz3L9zcnx3xcjiY9n3/+xXjzzRuwYsUK9OrVy+/uEJz57rvvsHLlSrRt25Zru9yduRkzZqBx48aIjY3l3TQz6oHBqwHY7oBbocK5QdFoM08eA5ly4A3q+ohoQG2YaOnZrek1Wtd1akD4HaAgTfuH38EJtxw7PzVNerYHD6cvkvSckmLsjPFwoJQOn57NkZbGT9OR4PSVK5eA7t0nYsaMGdHjzEVRZq558+Y4deoU93a5moQnT57EokWLMHjwYC7t8XoWaWl//7/dEu1WYHHqeBsDZqWEAcq4uYmX44Y6G213rRBrn+0YEHKAwkso6xYM/Ay2xcXZN4K9duBIz+KidAz1Mng81rQZOaCyHq1q2isd87Y7eCK609et2wQ88kgWTp48iaSkJL+7Q3BkxowZuOeee/Dggw+iVatWKFeuXKm/2y3WwtWZW7RoEVJSUlC5cmXD43hNsQSsG9Fai4x5XEdr0Pay7LUSUdZuRAKCBndKYVfTdjALVHhp8CYni/lCFrFPIqPOdrhdyMRqcEJ5vNuZDJYsheiGKMGuaV5FTFg07cbYrJ5q6abtEU26r1+/DSpXroPFixdj7NixfnfHfaIoM5eWloa8vDz07t271O8lSUIoFEJxcbGtdrk6c++88w7q1asXqEWbbu35osRsEDXLYJgNYEHejytaBmcv8VLTsuFAQQqCF6IEJ6JB09FkILPixho8PzXtto7NNMyiMdJhaUKhEDp3vgxvvvlOdDhzUcRll12GcuXK4b333hOzAEpeXh6WLFmCiy++mEt7fmwULmKZaz2sGgE89ybidT0n2MlE+11tzw/c1rSeoeA0QAH4b+gSYqDerNhLHfMmqJomY5svomjarIiJ3nO3un+il7Bq1a6mnUx/tmKDZGVdivvuexx5eXmRv09aFGXmfvrpJ2zcuBHNmjXj2i43Z27x4sWoWrUq0pQL1DTweoql3eepHKz83INLxsnmnSLh575ddsZDnntt+T22BCFYIbKR4DZ239fRFqQIgo6VkKatY1XTblW09AojTZt9Njf3m1MS1ECEEr/3DbXyfUhJaY5atTLw2Wef4dJLL3WvU4SnnH/++di/f7+4ztzHH3+MWrVqmR7n1+J3J5gZD24NpCIuIDbqixvbG4iI0d5EMn7r2kyTyj2M/DSInRgIXmssOVn/ufqpfasGs2ibgTtBVMcuEgxfwD9d8wi8aWmap9PH0pad63k5JdMMlnXJbmy5oYdRNk2pGZbtDoJAx46DsXDhp5HvzEVRZu7mm2/GrbfeismTJ6N169ZlCqC0adPGVrtc3JCzZ8/i888/L7OgjwWzL5xIL2iAv/GgHgRFNgJE7pufaI0ZRro20o0f44/XBrGXhUt4XEe5xUEkGAhaBCFAYYbfAQpRC/JoEQ2BN6M9+JT4rWsrm4d7NT4r4THFlte6OVYbhOd2B37SocNATJ8+GuFwGDGCOidciCJn7pJLLgEAXHnllSW/C4VCYhRAWbNmDQCgWrVqhseNGGF9iqXWlzc/n99zcpJVk/tWWOisD0YDFI8ByWobXjltog+2bo0FeveXV2VVJyj75lTXeu2Khsh9Ewm7AQo/8CpAIbJ2IjXwwJto13VcHJCYyKctXnj1vRJ9LWjz5l1QWFiIzZs3o3379n53h+DAnj17XGmXizP3ySefoG7dup5FDpKTyzphWtE1Ht1h2ZLAzgArn+PnGgrlS4xnP0QeHEWGVdc8YPluODUcRDN0RetPJOE0QOEmah07nRYvmo5E608kERRd2w28RbIdEgnExZVDmzZ9sHjx4sh25qIgM/fggw9i+PDh6NChgyvtc3HmPv30U9StW5dHU7bRiq75NdVG79puvHRZBz+K0gYTv3StNniNdK11nNOXstPz5ftGxoG/KLfJUOLX1DZlwMTq94jHFjBO1xeRrsXAa12brb1LTGTXtRt2CKuuyQ6xzvnnD8b8+a/h/vvv97srhAMOHDiAgQMHIj4+HkOHDsWwYcPQp08fxMfHc2nfsTN3+PBh7Nq1CxdccAGP/nDFz2IrfkZL/a7YRLiL1gvRK23rZetE0jshPm4FKawUnGDJPEeDrkWfasaKCBUt9cZmL/sl0hht1RbhWUwlUnR93nkX4eWXr0dOTo5ptfjAEgWZuddffx3hcBirVq3Cp59+ittuuw2HDh1Cv379MHz4cAwZMgSVK1e23b5jZ+7rr79GrVq1kGgy6drOejk9WKbJsBSl8HvLAR57cQFkzBL+aNtv4yASXtTE30Rr8E1GWWjHDC8rCEYaPJ0+lm0BUlL8K7rCS9esjlEQbRHRnb5q1eqhdu0m+PrrrzF69Gi/u0M4ICYmBt27d0f37t3x1FNP4ZdffsGnn36KmTNn4tprr0WnTp0wbNgwjBs3DnXq1LHUtmNn7vPPPzctfCIqZiWABXPsS1D222wQEnmQItxDpPLWTgiicUDwQevZ+x2A44WRrkU1LkXtVxDRClx4sVecHnaDA1ZsEcI+558/BIsWLYpcZy4U4m9wh0J823OBFi1aoEWLFrjrrrtw9OhRfPrpp/jkk08AAHfeeaelthwNH5Ik4auvvkKnTp2cNCMMagPYzHDwavDVi67xGjz9KH5CA7+3iLoflxoR91YkxCEoOtaCtE3ooc7eiaxtEbLY0UaHDoPw/POXlZSvJyKP6tWr46qrrsJVV11l63xH7siOHTuQk5ODGjVqOGlGWJTRMy+n/NAi93P7xLhNTo7zNkTM3pr1SV010899lsgwIOwievaZtE3YxY62WaZ82oHVHhExc8urT14tVdOzSVq06IKcnOPYuXMnmjVr5k1nvCQK1szJXHzxxZoOeSgUQmJiIpo2bYp//OMfyMjIsNSuo6/+smXLULt2bcSZjCBer5djwepz5u3YKQfGSJxKFoTP5HSA5u0E+TXNxk1t612LAhXuwiNQETTUFQa9DlKQtknbbuG1tt16f7M4V26tBw22TZKIzMwuWLZsGTlzVtoUkNTUVHz88cdIS0sr2abgxx9/RE5ODvr37485c+bgiSeewNKlS9G1a1fmdh2Zj0uWLGFaL8fyJeI5OLn9DOXPExNjPxpsdk9ENQjM+i1aZM5NtBa2axFt2tZrM1IIwucRLVDBAu9qhF7MrAiCFqwQhM9D2nZP20bPX9SiO9Fik3To0Buff/4lrrvuOr+7QjigZs2a+Mc//oEXX3yxZG/ucDiMW2+9FRUrVsScOXNw3XXX4e6778bKlSuZ2w1JkiTZ6ZAkSahcuTJ69OiBmjVrGh47frx5Zs5ooFNG4uxWsrR6jNl1tM43Mn7V0ybMBhiWQZNlkGI5RnktvRclrYXThvUFrXecH9pmuZa6DSuOXYUKxn/3S9ssGBkGpO2ysBqSrFlns2vy0raTQIVTfZO2/Yd3EI7H2O2HtnnbJW5p24ldEina3rJlJR54YAT+/POPiFk3l5eXh9TUVOSuXIkUzvPS8/LzkdqtG3Jzc5EiUJSqWrVqWLVqVZlplDt37kSXLl1w7NgxbN26Fd27d0eOhWkItjNzP//8MwoKCjypZKn8IvtV4pcF9eJ8v9dMGA1iVspgE+4RVG0b/V1kTWkZBSL3V3SMstMiT4ezWkglCPp2GoiLJlgyZV5rm1f2zspYLRK07YwxLVp0QkFBAbZt24bMzEy/u0PY5OzZs9i+fXsZZ2779u0oLi4GACQmJlp22G07c9988w1q166N2NhYw+NYsnKssOwdJx9nZAh7MZXW7QEzUvd8If5G7/k5nf7odG1ecrIYwQo9yCgQgyAHKkTVNkCBOBFQO85KfYuqbS/gtR8dz2IqIhZmsUO5cvHIzLwAy5YtizxnLorWzF1++eW46qqrcO+996Jjx44AgPXr12PatGkYP348AGDFihWWn7Fts+7LL79E9erV7Z7uGvLz0xosRBpkeaP1eb0ewCJhwHQDnmNKTIwY2hbB2KVgRXBxK1DhFBF0DZC2RcFOtsxPbfNem8cDEWyTSOH88/vj88+X4KabbvK7K4RNnn32WdSoUQNPPfUUjhw5AgCoUaMGbr/9dtx9990AgP79++Oiiy6y1K6tNXPhcBiVKlVC7969TR061swcr7VAVo4xMoDtrJljxem89JQUfnPFec45j8YBmpcmebZlpm83tQ24sx7UrkFA+raP17rVO06pYzfWg1rFjXVFan37oVvSt/3jnBwjkr7JNhGbn39ei7vvHogTJ/4sKZ4RZErWzK1d686auc6dhVszpyTv/7/8PPpnKzO3ZcsWFBUVoWrVqo47APgXSdLLcLhtDFhBUA0SEC8CqkaEDJ4dWAyCSHk5RwtOMgZqHZtNoxcdGtMJJUo9sASa/URZ0VIEHUfKFEpWmjXrgDNnzmDr1q1o27at390hbPD+++9j3LhxAMo6cZMnT8b06dNttWvLmVu5ciVq165tGhnguV7OK9SLnr2c9iMHJqJpcCK8xU99ayGCQUAEj6AEKmiKGSFjJaDhl76NnKMg2yeR4vTFxZVDixYdsXLlyshy5qJozdz111+PtLQ0DBw4sNTvb7/9dsyZM8dbZ27VqlVI82J3UAW8novVdtSZX57Gr92scjSV4yXcxU19612PtEm4gXKPRMCfQAWLvnkZlpFioBJ/Y+Twea1vUdaPEqVp3bo7Vq1ahRtvvNHvrvAjipy5d999F+PGjcOiRYvQrVs3AMDNN9+M+fPnY9myZbbbteXMrVmzBi1atLB9UbfwqkqlchqmlWiZPBiLsvFmEAwBnjEDkUul+xWsUONE33rtWSUIuiTER0t7vA1gMngJwJ/CI7z1zcs+iaZghR/2ScuWF2DGjHf4XZjwlMGDB2PGjBkYNmwYvvrqK/zvf//DwoULsWzZsjLbFVjBsjN3/Phx7Nu3Dz179jQ9Ni3NXKCCOs/MqKdDKI1frakSojhyvAmHgcqV2Y7zC9aB14omRXYQeWCkb73jRdF4NBkCMpGuR6c4DVZ4pe8gGLJmiK5vESs/OkV28GSNG+nbzynufuibxT4B/PvesX5fLrigE+6+ew9OnDiBSpUqudonz4iizBwA/OMf/0BOTg66du2KatWqYcWKFWjSpImjNi07c+vXr0eVKlWQmJjIdLyZQJX3WwRDxOnzj6Q1QPKzC7pR4SYsA7CsKaf6FmFskvUtGwmRpHczRDcGAGt6ZEGEMdlNlPrVMnxJ32URXd8Au8ajSd9A5I3b0WijVK5cDbVr18e6deswYMAAv7tDMHDHHXdo/r5atWo477zzMGPGjJLfPfPMM7auYdmZ27RpE6pUqWJ63C23WC9+wjJQ+73I3emGy2Z4NSixDubRNEi6TRD0zUokGQOkcX28DFb4TaRoWgnp2xirzqEIGudZGdYOXmXVIvH7yItmzdph8+bNkePMhUL8o9WhEN/2HLBx40bN3zdp0gR5eXklfw856LNl12TDhg2+7tlgdOmgl6zmCQ2EwcTsufldfTJIeFyjKeqJpGBFEKAx3nuiQePK7QfcRFT9BmGKc4sWHfDjjz/63Q2CESeFTVixlZlLT093oy9c0Bsg8vLEmKbGE73PKvpARNgjJsb4BRh0I8IKohoChDEUrGCHNB5MKOBcGrJT+JOR0QYzZrzvdzf4EWVr5tzAkjNXVFSE3377DR06dHCrP7Yxe27q/bWUiDy4qgdCGgCDhdcbzGtdz0t9847okiEQXURjsMJtjQch0xAthMORqXHaT9FbMjLa4LffdqOoqAjx8fF+d4cw4brrrsP999+PunXrmh77wQcf4OzZs7jsssssXcOSM7djxw7ExcWhYsWKli4iOsqBSDaGvR5U5T7QAEjwRv2i9UvjRij7SN8BQgv1PlsyVnV89qz7a5/VUFCOYIGXxt0kJSV6th4Qldq1GyIurhx27tyJVq1a+d0d50R4Zq5atWrIzMxE165dMXToUJx//vmoXbs2EhMTceLECWzbtg0rV67EnDlzULt2bbz66quWr2HplbZz505UrVrV0SI9JQLd6zLoRc8KCuy3KWctaPqMuIisSR4oP5+WDt02GngZAgQhI1qwgsZ3gjd+aJx0LC4xMTGoV68ROXNmbQrCo48+iptuugmzZs3CjBkzsG3btlJ/r1ixIvr27YtXX30VF110ka1rWHLmdu3ahWSGXVLtVLIUAZZnb2WjTvWxZMQSoqM1VdPOOiYyBAi/MVo/7Wb7NM4TXmGkcSvZ56DbKtGY5WvQIAO7du3yuxsEIzVq1MB9992H++67DydOnEB2djZOnTqFqlWronHjxo6TZJacuW3btiEpKcnRBSMRBv+WiWgbjIhgoNa32rlT/t1Mw6Rxwm/sBCysaDzSDctI/3yRAIvGedkthD80atSyTIYnsER4Zk5NpUqVuG/4bsmZ++WXX5Camsq1A0FCYG0EAjIAIgMyAohIgzRNRDo8NR7pDn0QPl+DBhlYsOBLv7tBCIIlZ27fvn3Iyspyqy9EwImmfb1E2DzWDShgQRAEITZONg4nIsNWadmyEZ5/fr/f3eBDlGXm3IDZmTt79iz+/PNPpjVzlSs76pNlQ5nlmUXZc7WMk8FN9AiWG3itccJf0tLOPbNIMAJYIY1GJ6RxQvTMFNkrQK1adXHs2FEUFxcjNjbW7+4QPsPszB05cgSSJKFChQpu9geA9S+qSGV7RSGaXshBxOrzIaODD3a/F+Fw9H2nKGARTMjQZSctzVmglzTunGgbV3lRvXotFBcX48iRI6hdu7bf3XEGZeYcw+zMHThwAMnJyYgR8AaxDgaR4PSZfdZoexlHC6xGRyRonBUyAsSGAhZ8IJ2Li51nEy1jNMu9IXvFPvHx8ahcuQoOHDgQfGeOcAyzM3fw4MHAbxZuVi49JsbfgZbKuRNOEV3jLJAREJ3wClgEYT0RaTx6iZTgMw97RfTpnKJTo0ZtHDx40O9uOCeKMnNHjhzBnXfeiaVLl+Lo0aOQJKnU34uLi221aykzV758edPjpk4N5h5zMkYDlBNDmGWzZBrUCC9wS+NOr00QLLBoyM7eiDwhnRNO8TswZ3Z9slf8p2bNujhw4IDf3XBOFDlzEydORHZ2Nh544AHUqlXL8f5yMszO3P79+5GQkMDlokHG7kuaBj4iKJhp3MiAIAOAEAEzHTpx9mJizMu8k84JPXhmjp0E5misDj516zbA/v0RUtEySli5ciW+++47tGvXjmu7zM7cvn37InrDcEGdeIIQDiMjgAwAIgg4zZyRzokgQBniyKZWrbrYu3eL391wTijE3wjnlPHiTb169cpMreQB893Lzs6OaGeOIESGgg0EQRAEQcjUrFkH2dkRMM0yinjuuedwzz33YO/evVzbZc7MHT58GJmZmVwvThAEQRAEQRBeEElFV2rWrIPDhw/53Q3nRNGauUsuuQQFBQVo3LgxKlSogHLlypX6+/Hjx221y+zM5ebmIjEx0dZFIgG3dREpgwtBEARBEAThLmlplZGbm+t3NwgLPPfcc660y+TMSZKEvLw8xMfHu9IJIrpwuhmxG9gMhhAEQRCEcLi9RUckZbiMENFekUlJSUNeXh4kSeJWFdEXoigzN2HCBFfaZXLm8vPzEQ6HmapZurnBKW0qax/aeNYYkQZs0nlwqVz5XGBAJD1pQcELggei6pz0HXzIZjGnYcNKKC4+i5MnTyLZrMQuIQzFxcX4+OOP8csvvwAAMjMzMWzYMMTGxtpuk8mZy8nJQSgU8j0zp/XlduJ8i2w02x3IoiFSFulEk855I4IBIKqBq8TvPkaTJt1ABJ2LjN/6lokmnZPN4j2pqakAztnogXbmoigz9+uvv2LQoEE4ePAgmjVrBgB4/PHHUa9ePSxevBiNGze21S6TM3fixAmUL18+2GlcDZy+EI32Kgry94qILNzUuVPIAIhO9J673fev6EazHZ2TxoNPkHSutlny8mhrA9GJjY1FxYoVceLECdStW9fv7tgnipy5W265BY0bN8batWtR+f+jTn/++Sf++c9/4pZbbsHixYtttcvszEVz8RM9yGEjogG1zpXOHX0HCBFwO2BBOidEgLfOjXRNjlwwSElJwYkTJ/zuBsHIihUrSjlyAFClShU88cQT6Nq1q+12madZkjNHEARAhi0ReZCmiWiAdB55pKamIUf0qQlmRFFmLiEhAX/99VeZ3+fn5ztaysb0aU+cOMFU/IQgCIIgCIIgCPdJTU2jzFyAGDJkCK699lp8//33kCQJkiRh7dq1uO666zBs2DDb7TI7c+qN7QiCIAiCIAiC8Ie0tErBd+bkzBzvHwF5/vnn0bhxY2RlZSExMRGJiYno2rUrmjRpgv/+97+222WaZnnq1ClHJTMJgiAIgiAIguBHhQpJOHXqlN/dIBhJS0vDwoULsWvXLmzfvh0A0KJFCzRp0sRRu0yu65kzZyKukiVBEARBEARBBJX4+HI4c+aM391whiCZuZdeegkNGzZEYmIiLrjgAqxbt86FD3uOpk2bYujQoRg6dKhjRw5gzMyxCuW552Y66gxBEARBEOdsEdqegCAII+Lj44PvzAnABx98gDvuuAOvvPIKLrjgAjz33HMYMGAAduzYgerVqztq+4477sCjjz6KpKQk3HHHHYbHPvPMM7auweTMFRUVIUbQ+acEQRAEQRAEEW3ExyegqKjI7244Q4Bqls888wyuueYaXHHFFQCAV155BYsXL8brr7+Oe+65x1FXNm7cWOJwb9y40VFbejA5c8XFxUyNlYcf83bJySwNhXIjE3F0fhpU2ZYgCCLoJOC0310492qjFLRtKsTH4OzZs353Q1jy8vJK/TshIaFMdf6ioiJs2LABU6ZMKfldTEwM+vbtizVr1jjuw7JlyzT/nydMzhwVPyEIQkYIA4CCFhGKOEELMSCdRyak8xLIkXNEUVERKiYl+d0NR0gIQQLfuhxye/Xq1Sv1+4ceeghTp04t9btjx46huLgYNWrUKPX7GjVqlBQp4cWVV16J//73v6hYsWKp3588eRI333wzXn/9dVvtMo0o8fHxCNMXjiAIgiAIgiCE4HRRkaPNpkUgHHbnBwD279+P3Nzckh9l9s0P3nzzTc3qo6dOncJbb71lu10mZ451j7lJt91muyMEQRAEQfw/FEAlCMKEoqIi2gfagJSUlFI/6imWAFC1alXExsbiyJEjpX5/5MgR1KxZk0s/8vLykJubC0mS8NdffyEvL6/k58SJE/jss88cFVphmmZZrlw5SJJk+yIEQRAEQRAEQfDjTAQ4c8pMGs82WYmPj0eHDh2wdOlSjBgx4v/PD2Pp0qW46aabuPQnLS0NoVAIoVAIGRkZZf4eCoXw8MMP226fyZkrX748cxEUgiAIgiAIgiDc5WRBAcqXL+93NwLPHXfcgQkTJuD8889Hp06d8Nxzz+HkyZMl1S2dsmzZMkiShN69e+Ojjz5C5cqVS/4WHx+PBg0aoHbt2rbbZ3LmKlWqRPtYEARBEARBEIQgnMjJQaVKlfzuhiP8zswBwCWXXII//vgDDz74IA4fPox27drhiy++KFMUxS49e/YEAOzZswf169dHKMS34AuzM3f6tAgV7AiCIAiCIAiCyMnNDbwzJwo33XQTt2mVenzzzTdITk7GmDFjSv1+7ty5KCgowIQJE2y1y1QAJS0tDYWFhbYuELHk5xv/EESkQNomCIKIPGhsDzw5ublIS0vzuxuOcLOapWg8/vjjqFq1apnfV69eHdOmTbPdLnNmLuKcuZyc0v822y3e6u706oHRTFlafw/4F5QQADd0rtR2crLlLhGEkBgZs6RzIlIw0rnybyzWsPoYslk8Jy8vjzJzASI7Oxvp6ellft+gQQNkZ2fbbpfZmTt16hQkSeI+z5MZtVEqU7my/t+Cjp3PZTQA00ArPnrP3GowwSucBi1IkwQvlN8d0YJzpHOCB1Y0znoMT8hm8ZTi4mL89ddfgXfmRFgz5xXVq1fHli1b0LBhw1K/37x5M6pUqWK7XSZnLi0tDZIkoaioSHOPhlJ47VgdPy6uoSsabj0bq98aRRUfoTh+nP1Y0hwf7GpST3P08g8GQQtaOIWM3Ogk2nTOG7JZ9Dl+HLknTgBAxEyz5N2miIwbNw633HILKlasiB49egAAVqxYgVtvvRWXXnqp7XaZnLnk5GTExMTg9OnT5s4cQZhhxWkiCCuI8vIHhDUAmCGDU1xI58aQzgmeCGqznMjNRVxsLJKSkvzuCsHIo48+ir1796JPnz6IizvngoXDYYwfP979NXOhUAgpKSkoKiqyfSGCIIioQlADgCC4QjoXE7edVFFTH1FETl4eUlJS/Fv+xIloyszFx8fjgw8+wKOPPorNmzejfPnyaN26NRo0aOCoXSZnDgBSU1MjrwiKFcJhdwfHmBhx1UcQBEEQBEEIw/GcHKSmpvrdDcIGGRkZyMjI4NYeszNXs2ZNFBQUcLswQRAEQRAEQXhGBAXNDx4+jFo1a/rdDcdEU2auuLgYs2fPxtKlS3H06FGEVR395ptvbLXL7MzVr18fe/futXURgiAc4nZmmCAIgiCIwHDw8GHUrV/f724QFrj11lsxe/ZsDB48GK1ateI2RZbZmWvQoAF+/vlnLhcVEhZjOS/P2TVoryIiCJjpPCXFm34QBEEQ7mA2zpO9IjwHDh1yvNZKBCSJfyZNkvi2x4s5c+bgww8/xKBBg7i2y+zM1atXD6dPn+Z6ceEwG9ycZkZo8CREwEiHLBo3Op80TAQFu8G5cJgCGoR9vJxh4SQATfaK8Ow7cAADO3b0uxuEBeLj49GkSRPu7TI7c3Xr1sWpU6dMj5s0dSpmTp3qpE/uwDKo+T2NjaWPZEQQRrgdkHB6fTIACK9wGrSw2zaN0YRXuKlxJ9eWoe+Cqxw4fBh169b1uxuOiaY1c//617/w3//+Fy+++CLXKqTMzlydOnXw119/cbswN3Jy2AYtvx01XrDsLxQO06aykUak6JwMAMIpfgcszMjLM7ckSOOEEUEIPrNgZq/I3xOyV2zx+5EjqFOnjt/dcEw0OXMrV67EsmXL8PnnnyMzMxPlypUr9ff58+fbatdSZi4/Px/hcBgxbg4ibm2GGm1YvY80mHoL6VwfClhELyzPPghGrBmk8eglWjRuxZq28z6M8u9GUVER/jx+PCIyc9FEWloaLr74Yu7tMjtzNWrUQCgUQkFBAZLNpkqxbiIaCQNWpKA1mFoNbUTT4Eoa9x8KWIiNHQONvi+lISNXfKw+I9I4H9T3PcrslUNHjyI2NhY1atTwuyuOiabM3BtvvOFKu8zOXFxcHKpUqYL8/HxzZ85rWCpRUml361jdyJx1SoXIkEYiFz19WtFlwA0AS1DAIpg4DcxFgsZzctg+B6sjFm0aD8K72ikBt1cO7NiB6lWqIDY21u+uEALA7MwB57Yn+Ouvv1AzAjYpJAhCAwp6GMM6PU5k6PkSRkSKxiN5Kjt9h6Oe3w4cQL0I2WMumjJz6enphoVPfvvtN1vtWnLmWrRoEdl7zZmhZejm5xufI1oW00+sZvoIMVBrnDRNEAQRXLTsFivjeqS/xwPw+Xbu24fmLVv63Q3CIrfddlupf585cwYbN27EF198gcmTJ9tu15Iz17JlS6xbt872xQJPXh4QZ+mWlR40z54991+9Smbk7BB+w6JxpaatOnakcUJEjIJyVjUe6fqO9M8XqZgFnq3YKoTvbPvtN3Tq29fvbnAhmjJzt956q+bvX3rpJfzwww+227XkmTRt2hT5ZgMCgEnPP4+Zt9xiu1O+IWfenGy0yYJe+zRwEl7BS+Pq8YCMAEJ0rAblSONE0Cgo4NOO3ntCtNkZolruLrJz3z5c1rSp390gODFw4EBMmTLFdoEUS85cRkYGjh07BkmS+Gx2J8L6HPVg5WZ/4uL+NgT0+qI1KJHR4B0iaJI3Xmpc75oA6ZjwHjcDc6RxQgS0dGh1BhGPa5L2PSMcDuO3/fuRkZHhd1e4EE2ZOT3mzZuHypUr2z7f0je+WbNmOHv2LP766y+kBOmLKw88QTXS1QOnrNIgPQPCXYKgcbmP6lGWdEw4RTlGmn0H3DR0KSBHOEVPv1Y07gd6dgqgrf+gWdsCsff333Hm7Fly5kzaFJH27duXSoZJkoTDhw/jjz/+wIwZM2y3a+mtFh8fj0aNGuH48ePiOXPhsPmc8EjDKOos2jSIaIV3ps/tKcBOMcs+a0HBCoKVvDwxDVkz/NS4qFZNNGKm3aDqW41ac1rvLbJRbLNl5040btQI8fHxfneFsMiIESNK/TsmJgbVqlVDr1690Lx5c9vtWg5RtmvXDnv27EHDhg1tX9Q2ZoYs7TX3N2b3igxlMTF6btGiXRkKVkQfogcreEMajy6iTd9GsNwLslM02bJzJ9q2b+93N7gR6Zm5O+64A48++iiSkpJw4YUXIisrC+XKleN6DcvOXIcOHbB582aunQBgvidMtBmybqM3HUhJJGweKxJGGid9W4OCFcGFAhZskMaDSdD1bXVmhZuw7BXI204RyQvQYcMvv6DrRRf53Q2CkRdeeAF33313iTN36NAhVK9enes1bGXm/vzzT9PjJj3/PGaOH2/eYBAGNyVnz+qvucjLO/eClQdzOy9bkUq3ywMpa3+izflj3ZQ2aBrXQ2mkiG5IUrDCHyhg4R2kcW/Iy/v7Poqgb6fXcTqOi2KfyOTksPUpgr4Lm3bswA133+13N7ghSfxlJUl823NCw4YN8fzzz6N///6QJAlr1qxBpUqVNI/t0aOHrWtYduY6duyIP//8E4WFhUhMTLR1UaGxMhVTKwKn/J3676IbwE4Ih4Hjx/m2yXvwZXW+WPHaOPV6mrBRhFkOXAQZClYYE23BCiBYAQsWWA1dIPr0DbBpPCaG/7vDL9RjeiTYKKz65m2fyPD63jBq7I+cHGT//js6derE57qE60yfPh3XXXcdHn/8cYRCIVx88cWax4VCIRQXF9u6hmVnrnLlymjQoAGOHj2K+vXr27poKYK0jk0usGK3v+pqfpG0JsKNjGKkvECDglV9i24I8NakG8YATwM66MEKPzALWCjxUt9+ZD8ixNhlJlL1rZw5ZHWNnjrb65aNIlp2zwke2ynrfvkF6Q0a6GZ2gkikr5kbMWIERowYgfz8fKSkpGDHjh3+T7MEgKysLOzcuZOPM8cT3o6h29Uxtdr30sETaUpntMNLu1ba4a1vXsGKaNIlBSy8JT+fgnFeEw0aF8UxdKJvvfaUsGie19gdLe8Ai3y/bRs6d+nidzcIGyQnJ2PZsmVIT09HHOctcmy11rVrV6xbt45rR0zxwtiVX9Zub7hpRH5+6QXIWtFgFmM3mgxigg2v9W3HECAInrgZkLOrbzJ2CT2s2jheb8fEYp8QrvLd1q0YfeWVfneDK5GemVPSs2dPAMDRo0dx9OhRhFUdbdOmja12bVl13bp1w+TJkxEOhxFjMPhMeusttiIofhCUEsFa/aQBlDBDRH3LhgcZA4Qb+B2MI30TRvAqXOKmvq1awEHZP05Uy94iZ86exfpffsFz3br53RWuRJMz9+OPP2L8+PH45ZdfIKmqtHi6Zg445znGx8fj2LFjfOZ9erFuTjnomF3LqGIl4P86P60qZmQ0eI/fOpBRv1BF6BMrdtclUeY5WPDSZH7+3xoRMWChRvR1pYS4iKhvlm0LvAxAR9k7YMOOHYiPj0fr1q397gphkyuuuAIZGRn43//+hxo1aiAUCnFp15YzFxMTg+7du+P333/nvoiPCyIOgkrMDNG4OOt7veh9Zh5RMjKcxcELbfvppKrXJQFkABN/6yImRvzx3QhRA3E0vvuHlUCzn0tAnKD+zoqYvQsAyzZuRNeuXQ1nxAWRaMrM/fbbb/joo4/QpEkTru3aHhn69++PZ599lmdfrKP3Uvdb6Mp57H4OWuGw/j1yw4Agp08bO86RqNoGzunbS127GaggxCLIjppdgjJVLRrhOd56oW2z/sq2STTZJRHElz/8gFFXXOF3NwgH9OnTB5s3bxbHmevduzcmT56M4uJixMbG6h7neN2cuhIWj8iUG5kHvYXIbjl2Th0n5WCqzgJG435DfqHUt1dRV7NpxFp4vdCeBTIIggsFK4whbQcbrecngrZl3LJLnAZz5fumNTPJrl0SIQHmojNnsPbnn/HihRf63RXuRFNmbtasWZgwYQJ++ukntGrVCuXKlSv192HDhtlq17b1mJmZiQoVKuCPP/5AzZo17TZzjry8c1/UoJUwtmrgKo+vUIFvX7Sw6/CZPQcyKNgJcqbBSN8iV6qkQIU4yGOJ6NPD1HoWZXaFGqvazsmh8VoLHo4V70CcW86emZ3itV1iFyO7JAo0/v22bUiqUAEtW7b0uyuEA9asWYNVq1bh888/L/M3zwugyBft2bMnDh48aO7MsRi0ojlyetkL5WdxMoAHeWG80fOMprVOeXliRVud4kTbVgwCO2tCeRHlBgF3ghqssBKIUx579qy4OtHTdl6euH0WGVZtixiosDOT4uzZ0p85SJqJAptk2caN6NG9O7eCGSIRTZm5m2++Gf/85z/xwAMPoEaNGtzadTQKDRgwAE899RSvvvCD9zRKLwwWLefOL4OXF6wDrBZeZFCMDHtRnbQgaDsSDQLgb80G6TPZxY9AhVcVjZ0a33I7QdIBaftvSNvW2gQiwx4BxLZJTBIa36xfj0tvuMHdPhCu8+eff+L222/n6sgBDp25Cy+8ELfeeqv5urmPP8bMESOcXOpv7Kz30cLMKM7Pd3cANstOKKueiTTNxyv8ztT6UdGRl7bN8FLbQc5A68FqGOtBgQrvcDMQF20BOIC07ScFBf5ty6GuwmrXJmFJl/jxHWLpl482SWFREdZs346ZEbheDoiuzNzIkSOxbNkyNG7cmGu7jizHZs2aIS0tDYcPH0adOnV49ckfRCzwICPy+qRoR5S95pSo+ySStpVbD0Srjv0OVEQybgcqjIj2ABxA2nYbIyfOy+meWmtKRbSeReyTDVb/8gsqpaYiIyPD7664QjQ5cxkZGZgyZQpWrlyJ1q1blymAcsstt9hq19G3PxQKYeDAgdi8eXPwnLm8POeDn1eZFDW813DwXMPEWnSFtjFwDx7a9gIKUhBOESlQoYS0TThFrSHRgoYycj9lGyISZl8IxpKNG9F3wICIXC8XbcyaNQvJyclYsWIFVqxYUepvoVDIH2cOAIYMGYIlS5Y4bcZ97ExLEDHrooXWZ5MHVHKaIp+gFqFQE5RCE4R/iOq8mWFF26KO16L2KxIoKPD3+jynNkbi1Hqf+XzjRtz96KN+d8M1JIn/8CJJfNvjxZ49e1xp17Ez169fP/zxxx/Iz89HskH00fN1czk55o6YW5k1I4NDeY/MMmJOHDHlgBpNi9ujAT+dNy9LthsFKYjoQK0BtzPOXu0x59TgDfraPD/hGaC1q0evdQ04G7t57WkbDos3hgsepPgjNxc/79uHvn37+t0VQmAcjyBpaWlo164dDhw4gObNm/Pok3VEyUywRI3lY/yYdkPGcfAQYfNZPV37oWXRDQPCPjzGcSffDVnP0aZrwY1ZZkSdReN3Nlnr+n7soyjrzMgO4RmkiBBdL928Gc2bNOFe/VAkomnNHAAcOHAAn3zyCbKzs1FUVFTqb88884ytNrmEg0aMGIG33nrLG2dOHoREGrjtDNbKeeZOBlOn692UBSlkaH2H94im65wc9mixG4YBq64pQBFMRAhSAMZjtxu6Zh2rSdfBxC1dm7WhHqut7qPo1A5x6oSRHaLLpz/8gEHDhvndDYITS5cuxbBhw9CoUSNs374drVq1wt69eyFJEs477zzb7XJx5gYPHoxp06YhHA4jhucL2WlEi8eaN702lH1zOkVChMXyyimdrNNEWdoiSuN3lFaGRdd24BWkcILWFGOAjAO/8LPCpJrCQnvnybpOTOTXF6uQrsVCJF3zeK/4ka0zQu8zidA3jyguLsbnGzbgkwheLwdEV2ZuypQpuPPOO/Hwww+jYsWK+Oijj1C9enVcdtlluOiii2y3y8WZa9euHcqXL48jR46gVq1auseVWTenN62GZYDkVZzEyro5rwxx9aDqVJU8nSujqVBWI8eiO312NeZE1yzwLszjlq7JOIguRAlUaCH3jWfgTRTd6N13moZsH+XayUjXtVZWTUSdy/C0QUS2PwCs27ULUiiEzp07+90VghO//PIL3n//fQBAXFwcTp06heTkZDzyyCMYPnw4rr/+elvtcnHmYmJicNFFF+GXX34xdOYAsK2LEKmKpN+bh+fnB2fvIr3IsZogGxhBc9T08Dqq7JdxwBIwUH7H1ARZq7xxW/u8cdsIF9ngldF7ZqTrv9GbGumVE2fVEfPauVTeHzc3C+fhWGlN11QTIO0vWr8eA/r3R1wQthpyQDRl5pKSkkrWydWqVQu7d+9GZmYmAODYsWO22+WmkKFDh2L58uW8mvMXq4OlV/vNiWA88MimsTp9RtgZkO0UWBDVUDVDS5OiRJh5BSi8yOyqNROpTp8oa9ic4pfG5euGw+I6dkpYxuCgaxooq2uemmZpi8f1RJ3OKevcy8qqPB0+J+15ZH98snYt7n3ySevXChjR5Mx17twZK1euRIsWLTBo0CD861//wtatWzF//nxHGVhuHsjgwYMxYcIE5OTkIC0tTfe4Sd98g5m9e/O5KEsWgzXTYWQEiJQplFH318+1HH4gSgVTK3itI1GcNyNECFDwIEAGgnBjmVOUGhLhs0WipgGxdS3Cc+eJFU37lbURYR2pX3hgf/xy8CB2Hj6MwYMHu34twjueeeYZ5P//d+fhhx9Gfn4+PvjgAzRt2tR2JUuAozOXkpKCAQMG4LfffnNUkaUELwxfnkVM9NDaDLRCBf7XMSuiwpLF4JnpEH09XKTitab1tGxnD8VIMYLtEsQAhR8EIUghEylBN177jBHauKlpo/HaLKvG8txFKOCmhFWrgtsnc9auxYB+/ZASCRlyE6IpM9eoUaOS/09KSsIrr7zCpV2u3tI///lPZGdnQxJ16/X8/NI/blJQoO3Iaf3NzOi249R6+VmdEGkRVa/xW9N6GndKUPRLeIMXWpD1radpHtPJRNO0qBaPn3j1TvJK0+p/uzVmy6g/l1fr5SIISZLw3tq1+OeECX53hXCBnJwczJo1C1OmTMHx48cBAD/++CMOHjxou02uofshQ4Zg4sSJOH78OKpUqaJ7nKdTLfPygLQ097c5kNcoWRkolcfGx9vvGwvyXjIyURDt4YJoU2zlKLeXU2vMNC3/3Y2Ms4xo0V8jKCvtHC+dHS1929G01WeupemcHPOxmbQVTLQ07cY4zmKDyMc4tTvMAhw87Y4o0v2W7Gz8fuJE1EyxjKbM3JYtW9C3b1+kpqZi7969uOaaa1C5cmXMnz8f2dnZeOutt2y1y3UkSUpKwpAhQ7Br1y5DZ44ZO4a01pQOlg2QnRYxKShwfr6MHaPY6ubhTjalJWO1LG45fW5OUTLqs6xHK5p2qmErKPezAyg4EXTy8sQKUKiPc1vPwN+alr/zpGlxMRvreenZ7DpFRX9fx07GzUt9A2XfZ35pXHD75c2VKzF46FAkJSX53RWCM3fccQcmTpyIp556ChUrViz5/aBBg/CPf/zDdrvc35433HADhg0bhvPPPx+xsbG8my+NPDD4mTnhNWVB6YxpGcU8HCgzh0+rrC8ZFN7Cqmm3Kqjy0nNBwbk++mUkAKRdUfFzDZVdfct6BqLP8I0U3LQTgqhppS2g5dTxcHjMAsx5eWWvE+XZu9NnzmD2d99h/qef+t0Vz4imzNz69esxc+bMMr+vU6cODh8+bLtd7tZgr169ULlyZezduxeNGzfWPc7yVEungyUP41fOZBitqeBtYHsdOVNDGTz3EKUwgJtrKLzM1qlRByfIGPYe0QJuPMZnu2Oy0zV3VoJt0TTueq2tvLzI0rNe22bFetzakkDrvSjytHrOLPjhB6RVqoSePXv63RXCBRISEpCnofGdO3eiWrVqttvl7syFQiHceOONePnllw2dOV3s7HfEa4qbmTOWn+9fGWBlZBjQHtysTrW0i1Y0TcaOwRzJTp+f+3eJpmc/HTuANlB2G1GCE4D7RR7U1whisI0oS37+3/fPbT3bncLuFfK0XxEcKZ5jt+C2xktLl+L6m29GKBTyuyueEU2ZuWHDhuGRRx7Bhx9+COCcz5SdnY27774bo0aNst2uK5bcxIkTcf/99yM3NxepqanGB4tkAGjh5UJ8K86Y32Xc9Rwwo72JgmpksBTZAcQqlKKHKFX0lMEJPf36HZwIql7dxs2NmI0wM35FCbb5bfzy1rOoVhEvlHqOiTG3SVj0zkOHhYXuX4MFu7YGy9jtVFtG+3sGcPzeeegQvv/1V8yfONHvrniKJPEfZkQtqv/0009j9OjRqF69Ok6dOoWePXvi8OHDyMrKwmOPPWa7XVdGg+rVq2PkyJHYtm0bsrKydI+b9M03mHn++XwuypKdszINUs/oNWvD6O9uFTlR9tVsagSLgexWpsyK4+63QQSI4/g4xa3PwWsKsN+BCUBb81p6jYTghBkUnHCGSBkNJZEYaGPB72mRVuC5T6jR+GxmA+j93Q9t27VFWO0Nv7+nimf+3KJFGDlihKPpdoTYpKam4quvvsKqVauwefNm5Ofn47zzzkPfvn0dtetaaOeee+5B586d0b59eyQ63SjVq/Lw8pfKi8ISbk3RKSw0n47pJXYdQxGNNDNE2sbASy3rYSezJoJjx0pQjAWZIH6ntHAzOMFzLI5ELQNifJZI0TLgzmdRjtFurLvPyfn7/0XQg5PgsyBaOpafjzfWrMHadev87ornRMs0yzNnzqB8+fLYtGkTunbtiq5du3Jr2zVnrl27drjggguwbds2nHfeebrHTfrhB2+zc2q82GiZ9ZgKFfhPLXPToIjktW5+YyfTbEfLVrLVelq2ayyYaV25R5HfUzGdIIixEGjcnEKpZfgC/B07HtMwRRhvI1XPXm4WbqZlu383sjd4BytktGwML6ZYRhgvLluGzhdcgLZt2/rdFcIlypUrh/r166O4uJh7265Our733nsxZswYtGnTBnG8Kkk65exZ87noLG2YTbUsKrLeLssm4k6MV/VL2ChjSo6ae/DM4LltWFnRspsFIZwEJUjL7uGmAWxV21YNYLNAm1uVhPW0zCsoQVp3D7vr5UQIGsvHmW0UbncKJvD35wyH+XxvokTLp4qK8PyKFZjz0Ud+d8UXoiUzBwD33Xcf7r33Xrz99tuoXLkyt3Zddeb69++POnXqYMeOHcjMzNQ9jmt2Tg/lYOfmHl52NlvWur5ywHQjmhYOl30BuFWRjYxpfqifmahals81MxzsYCUoQQQHUQxevfOMtMwjwMbLACZK4/XUdy8yl06qW3pVhdUr+yICbIs3Vq9Gzdq10a9fP7+7QrjMiy++iF9//RW1a9dGgwYNymwM/+OPP9pq11VnLhQK4ZFHHsE111yDZs2aeZOdM9sLjrUdM9RGMs/SwersmzpCbJads5u9U38GFiOZHLXS8F4350dJap7X9GKfRK+MBoIvVgMTTq/FK8DmlZZJx8HBSrDYiQ6d6lirPeBvrfHIDuvZA1b2sDNqJ8I4VVSERz7/HC/OmhVV2xEoiabM3PDhw115ziFJcreAZzgcRmZmJipVqoTWrVsbHsuUndMbKK0MpqzHsEzbMTJ8nRoPRjidKgGwqV19jJaBYaedSMaJ/qJBx0oNOZnSI2OmrQoV+GmUdGz9GPk4I43x0rES9fVIx9aOiRR46xjQ17IbOlZfj+wKa8cIznNLl+K1LVuwdds2xIhSQM0j8vLykJqaivfey0WFCnwr6hYU5OEf/0hFbm4uUiK5Wu//4/pGJTExMXjyySdx+eWXo0WLFvyyc04zb04zKLwjZHauL6M1ELpVGELrvlMGzz7RqGMvsnXq67EYDwRfrAYm3LiuF9chHUc28nP22tD2c1aGXV3ZdcDs2hUB5+Tp0/j3F1/gjXffjTpHTkk0ZeYaNWqE9evXo0qVKqV+n5OTg/POOw+//fabrXY9seKGDh2K9PR0/Pzzz4aVejTXzml9yb0SvdZ6I2V/nOw5p2zPjjOm/LvdqTm8HKzCQv12yNg4h586VqPui5N1dXJ7dp6zcqNlvfMpKBEM/DA81dcXYcNwr8c7mmJsjNUx1m0ds9gDRsfYtScAa9ljv6f7aq3pV/clAsbhF5cvR/2GDTFkyBC/u+IrQXPmHnvsMSxevBibNm1CfHw8cpRbdZiwd+9ezWqWp0+fxoEDB2z3yZO3XygUwpNPPolRo0ahefPmSEhI0D+Y12DKO6vBe5B3ax8YloqYVnBqvCr7Ew1RZb+iuCzY1bCes8fSHmtQwm/jATA3Hgh769zcXgvHqx2e469bRavM0Cu+QToujRvrNe22wWsKpbo9Xs+cZzErpxa2nj0RQH0fP3kSjy9Zgg8XLIjatXJBpaioCGPGjEFWVhb+97//MZ3zySeflPz/kiVLkJqaWvLv4uJiLF26FOnp6bb75PqaORlJktCnTx8cP34cF1xwgeGxM1u2NG+QlxFhdExBAZCSYm4wWJkDz2p8sC5ItvJ3N+elsw7SVtsSYUNSmfx862sr/D6GtSIlLw1racyJhitUMD/fLw0H0IBgwkpAwstjZA3q6Y/X3lzRpGEgMnUc7RpWwtuW0NML2RJs/H/A5baFC/FTTAy+Xr7c3/74iLxmbvZsd9bMTZzo7pq52bNn47bbbmPKzMnTaEOhENRuV7ly5dCwYUM8/fTTtrO0ns1LCYVCeP7559GhQwc0b968lFdqCzfXEykHxrw8ftN3rESR3SjtrpX94DVtzK3pZ5G6QS0rdjTs1lQhlnbdiAr7NYXNDLP1jjKiGBGAtYCESLgxjVLv+UW6htXjtN59IA3zpajIeM9Op4VR9OC9t5wIsyjs2BoC2RI7//gDr6xdix9slqEn2MnLyyv174SEBOPZgS4R/n/NpqenY/369ahatSrX9j1dZNCqVSuMHz8ey5cvR+/evXWPm7RtG1t2jgcsBVXMYF0bZ4eiImeGgN40NyvbEHi9TkjkdUk8tx7g1RYPDRthx5B2Y7qZnhFBAYnIxM+ghPI4Mw1bWdMpgiFshyBq2G+Hj2c1VaN2rZzDW3Nyu7y2GuA5/opqQwD416JFGH/55WjVqpXfXRECN9fM1atXr9TvH3roIUydOpXvxSywZ88eV9r1fLT797//jd9//x2///6788acDg4FBWwDo90CDHL7qsiAbbT6y+MFIS82Zr0fTvD7BesVXrxIlM/MjefGo123+8badrToLui4pWcn7eblOQ/28e5TNMPzu8x7iqWI47E6q6ZVAIv1fLO+eaFngZ00Fpb/+iuW79mDfz/+uN9diQr279+P3Nzckp8pU6ZoHnfPPfcgFAoZ/mzfvt12P9asWYNFixaV+t1bb72F9PR0VK9eHddeey1Onz5tu33Py3/VqFEDDz30EJ555hkMHTpUtxyra9k5rYGGZdqGlcqVbg9mvKO76oyE1hoSlqwFz8yGyNk5P+FdxETr724ZIjJuRIdFWwNE+mWDdW2T3aAV65pRK225oS+z74fXWiLtssFLv2Zr4dyYYsxLx2ZbDfDcH9FJnwTgTHExrluwAA889BCqV6/ud3eEwc3MXEpKCtOauX/961+YOHGi4TGNGjWy3Z9HHnkEvXr1KlkTt3XrVlx11VWYOHEiWrRogenTp6N27dq2s4a+1HK+7bbbMGvWLPz0009o06aNs8ZYpqqxrHvjNeVNzxB2Uv7dqCIgS/VKp+Xd5Wso2xBpDYXXeDnVUp7e5EXZdSMnjqd+rRrFVvXLUtCC8AevslBuXsdNp07ZvtVrCGrA+oJbmXgtXblxLS++JzzW0rFeR27Hqd0Q8I3En/v2W0hJSbj99tv97gqholq1aqhWrZpr7W/atAmPPvpoyb/nzJmDCy64AK+99hqAc9NBnUwB9cWZi4+Px2uvvYaLLroIjRo1QrLOF9x2ds6t+f1GBq1bETRWzp41r1xphNVMgtY9Tk72PoMXadjVrhMH0y/tKo1iN/aSU1+Hl0FBsJOf742uiorOXcfLKYu8ilSZLQUAvDWGowWW8bKw0Pl1WPVvt8KlEWbjqtMZEyx6UvZB/X6T9RxwJ42F/Tk5mPr11/j8yy9Rrlw5v7sjFEHbZy47OxvHjx9HdnY2iouLsWnTJgBAkyZNdP2ZEydOoEaNGiX/XrFiBQYOHFjy744dO2L//v22++ST5wH07NkTF198MX744Qf06tVL9zgmh47FAGbJLLhdOdCoD1pVrpRGgpVNxNX9qlCBz+bLZm1oPQcn0eugO30sevJzvQyva6u1a9W49bran55BQTjHj0IZcoEeO3p2ql35+gBp1wvcXPuqpV23AxGydo2qXOrhVLvqd7mXOpZR33On1xbYXrj5448xYsQI9OjRw++uEA558MEH8eabb5b8u3379gCAZcuW6fozNWrUwJ49e1CvXj0UFRXhxx9/xMMPP1zy97/++suRk++bMwcAzz77LJo0aYLs7GzUr1+f7SS/F4vLDhnP6ZR6A7n8e6eRX5apmIA7zpPefWKdRy8qVh1/v3WrhJd23dCtH9X+eAchooUgByJIu/oEeVwG2MZlXtp1uvWRVYycvqKi0rp1UrgNMP8OWM3KWbm2GpZqmQKzeNs2LNuzBzu//trvrgiJJPEfdtzcQXv27NmYPXu2pXMGDRqEe+65B08++SQ+/vhjVKhQAd27dy/5+5YtW9C4cWPbffLVmatRowaeeeYZ3HXXXahZsybidQaPSdu2YWbDhs4vyCM7V1joLDqo7ANrNE5pYFjJzmmhnDZiZ4DkkeEDyhatUBJkQ1r9MuIVSXayZg34+7nz6g+Ldp0GI6xEinkHIoyCENFGEAIRrNgZc40wW8scDntviGrdo2jULeBMLzyycmbTf1kLo/DWLQtObQWesIzHggYhck+dwjUffYT/PPtsqWl2xN8EbZqlHR599FGMHDkSPXv2RHJyMt58881SPs/rr7+O/v37224/JKm3IvcYSZJw4YUX4tixY+jatavucVycORmzAVRt8GrNm3dSvcrutAqW65s5WnoKVw7WZt8CXuubWL9tRsd5YaTovUhYHSNeDhSLcaG8Fm/dAs5HSKe6NTIqvNKt3rXUWhTtbSKj9QzcLOxgVbdqWAJoburW6NpWxls97fo93pJutSHdlkXWsBtZOat9sXKcj3bCNQsXYneFCli6YgVCoZD7/QgQeXl5SE1Nxcsv56J8efOKk1Y4dSoP11+fitzcXKZqll6Rm5uL5ORkxMbGlvr98ePHkZycrJvUMsPXzBwAhEIhzJ49Gy1btkTDhg1Rp04dzeMm7d3L16EzQs7O8Vj8rIV6aoyVh6d2AtUGglnmTC+Dof6sRn3ilZ3jkU3xM2vAs6olT9zQrdymnYFGK3BhN9IrUrRYjVqLfhsXgHfV93jDS8NOdKtuw6netNoRwXHyW7daZfLt6tZvR06pW7uOnJb27eiXl2612uSR+eOJ2ffIJzvh69278d7PP2Pb9u3kyBkQDZk5mdTUVM3fV65c2VG7vjtzANCwYUM89dRTeOihhzB8+HDdRYDcHDqWqpRmC8vNDHmta+gZKKxTI7SMYreMWz/Wf+gR9EIoXuBWRUq1Zq1O49HLQKsNDTtBCKva5xWE4IFIUxf9pqjo3PPj7cCpr+E0EMHbqQPIKHa7XS9wU7cyVvSrHnPVurWblZNhqZztZVZOUNsg//RpXLFwIZ76z3/QoEEDv7tDRDjChGhvuOEGNGvWDOvXr/enAwUFpV8oPKuyFRayDfhFReYL81muY3UaqRnyvVHeI15OQxCyBE7h9bLRqj6m1q3TvsjXMNOskVaVx5jB+t1gacfO/SD8RX5WvDTgVLMsx/LSLECaZUWk90RBwTlt8NCB3AarfWD2d6Nj3JppRBrW5LYvvkD9jAxcf/31fndFeOTMHO+faEKIzBwAxMTE4P3330erVq1Qu3ZtNNTJwHHPzjnZKJklOycPrlZeRursh9X1dYWFfyvZjcivcnE/IN50Ny/xcqolyxoMp4VSioqsRVW1IsZ21oPy1qxImWXib9ww+HhoVvk3VmTjmFdgS0uz+fl8xtdosGzcmmJpR7NGfZE1VlRkvc9Ox1t5nNXTv9P1m8rCZk51G+Cs3IJt2zB3+3Zs3bYNMSIFIoiIRRhnDgAaNGiAV199Fddccw2qVauGpKQkzeNsO3R2CkKYoWfMqwdYedCx6tTJg6cVg0E5wCn7oRzAzaYuWpmSpnVfrQzktNG4Nm5FUrVQ6sSqg6oMPtgt7KOlWV6BCKUx5kd1wWjHLQeOx/l2A2Yy4bC+Xp2MV8p7VlhImvUSM73add6dalbZjt2xVtaklmZ5vF+VbajfX1Y0HOB3/cG8PFz5ySeY+b//sW+5FeVE05o5txDKmQOAcePGYdGiRVi5ciX69+/vbNFoQYFzZ43X3lsyrE6d2pGy49Sp0XPs7GLkYCkHcvmYaM6QsG4gbnYM70ygnl6tXke5jsJu4MGobyx6ZQ1AODEyCGPcCJgpz+elV7P2zNDSrVW9WskmeqFZUa0fNwufqO8rj7GVRa8ydnQrj7VWbQE9zbLaAk7Xwcn3OhzmYwsIqNdwOIx/fPQRBg8bhksvvdTv7hBRhHDOHAC88soryMzMxJYtW9C2bVvNYzSzc3YiwCyDKet0SyuGgZFTZzRomhnMrAOcsq96bbEYx1YyZk737hI1O2fnhex3FU6WF7PbgQcrz1LWK+8CL0BZg46XsSGqXnniRfaYdVy1OvtBrVtWbbE8Uzf1CpQNlkVzoIwVr2Y6WA0QsNoger9zOs7y0qqVaZFGeyEGeHrlUytXYl9RERa9+qrfXQkUlJlzjpDOXMWKFTFv3jz06NED1atXR61atTSPm7R3L2ZWr27cGMtA6TTboX5J2MlMyNdnjX4pj5OvZ0e96spUVrc6YMHMqFWvwZOJBANF+dLyau68UfDBzjofve+HmS6MjA03tMoT2ni5NE73WrSD3TVpLGuZjX7vNFCmxI3y8EpYjOP8/OBq166+3NqSg3U7AV6aZXn36o33VvVqpFWnFTBZjlGut1MSEO2u2LMHj3z7LZZ/9x0qVqzod3cCBTlzzhHSmQOATp064emnn8aUKVMwbNgw/fVzR49649CpB0yjKJ/d6WZFRfaiY7KRa3XqpNYAbWc6j1sZCJbsld9T5KxEe3kFFqwGH7T6aHWajjLowFIxVX0twHnQQY2dbTmcaFW99k5JQAwOU3gHH6y2wUOrgPZ3xEqgTH09p5q1o1WnY6ryWZoVBAqi5SN/Jl7TMJ2OqUqcatZqAFV5Pd5a9Xs7FzM7wE8b4P/v1cG//sKYDz/Ef559Fp06dfKvP0TUIqwzB5zbrmD16tVYsWIFBgwYUGbHdM9RZwZYjgfMB3XltAw7jqB8Du81cUDpgd3JNAy3ipx4WSQkaLAYHIC15+rkfvMMOqjhpVNW1FqNtMCDl7D0y26AzK6TIl/PjkNrplfeVTCtYtc45lmIxawtEbVq5/1v9RlbDZSpzwWsja88tMprWqTd76rPWikqLsbIBQvQf+hQ2obAJpSZc05IkiTJ704YUVBQgI4dOyIuLg6dO3fWPc40Owc4i85pzYO3+qLXGhDN5tebDewsLxetwd1qtE3rm2G1eluA58Jzw+0oslJPVvRpJeDAeo4SLb3xLhIB8NEpz2OCDA+t8tYpwK47lnXBRii150aRCLV+SKfWcXM81Xs38xxX9a7j9thqd1zVajfK3/s3LlmCb/PzsW7jRpQvX97v7gSKvLw8pKamYvr0XJQvn8K17VOn8jB5cipyc3ORksK3bREROjMHABUqVMAnn3yC9u3bo0qVKmjatKnmca5Mt+RVmVJGHaljWSjNs4qlPBDzMJCV7cqwbFYe7VsQuDHVkkeFPz2dGWmUVZt6ejPLJLuhUzf2XSTMMdKRncqpRprTupaVLImW7sy2y+ChVas6jXAj2Rd4bR8go6c7s+uw6NVIc3p6dapTtUajXF9vb92Kd7Zvx8YtW8iRcwBl5pwTiN0MGzdujLlz52L16tU4cuSI7nGTjh41b8zsCRcWnpuGYqXaoBXVnD17rm2rLw15iodyMLY6MBcV/f3jBmfPnrt/8g/hDvL9ZXmWVkc05ZRdVp0YTT9i1aj6erwcOa3rkEb5YOSAWdEoYF+nMixjG0vBHrNj9BxFK7BWwySNuo98j+28k1lR6sPquKr3eyvjqll7erBUwZTf+XbbYD1GQNYcOIBJS5bgw48+QqNGjfzuDhHlCJ+ZkxkwYACefPJJPPDAAxg6dCiSk5P5Na43GFnJirFm6eTB1UnGzcmCZDfX16nRKqZC2Tl71VOdFIawkkFWGhtWtanUtF2NygaCFU1aDaYooT3ntOGhT8BaRsxOhs6uE6jukxW9yt8PO+vpnFTElCGNnsPq9ElejrFVnRYVOVu7KWvV7pgqB6ZZx1Q746lWgZ8IduSyc3Mx9KOP8MT06RgwYIDf3Qk8ksRfCmIvIONPYJw5ALjllluwdetWLF68GAMHDkS5cuXKHMM03dLqoG7VIAHKDvZ60TgnBU9knC6kN3LsnBjKarTuO01704ZVo7yMZadT05Q4KfBgNdjA+w1AGmXDrSyGnet7HRBTn++mkayFWqN61w+oocwFkfQJ2B9LAftFUbSy1wAfvfDQZ0DJLyrCoLlzcfHYsbj55pv97g5BAAhAARQ1Z86cwYUXXogjR47gwgsvRCgU0jyulEPHc2C3Mqha3UicpX0zI8TofKsGjNU58TxLGEf6fHylU8VDn1Z1afXaTtYbOTlXiZ3F91batwLp0xp29anEqB92s8hOz1XjtqHMSrTo0693u7IPMix9EWEcBdwN2rIQUH2GJQkjPvoIJypXxjfffquZUCDYkQugTJuWi8REvkVKCgvzcO+9VABFWMqVK4eFCxfivPPOww8//ICOHTtqHjfp6FHMTEvj3wErmTQ5QmV16pBe+6wbiGqdb2cAVkbYvI6uyS9GluqEQUH9sue54bLVDF1REd+iE0b6YvnOsOhTpMX3RlOngqhPN7UJOMsgsxaKYmlfS2dOzlWjzn44XQtoF73xM4jaBPhUkzbDbvbMikPpdBzlFawtKrI3hrqpzwBo865ly7C1oAA/rF5NjhxHqACKcwLnzAFAlSpV8NVXX6Fjx45ISkpCy5YtNY+blJPjjkMHWKtSZbXqpdw+YH++PI8qmErUn8vPgVfdF71vrZdrS9RTS3gbGixYrfJnZ40SYD9Q4GeggWdWzgzlfQ6qNu2s6+RJYaH16xvpn6X4CWD/fDWys89zzy+rmFXM1DvOT20C/uqOBSfbauhhZQzlMX6Gw9bGUDfGT6NKmXrH+Lhe9JUff8TrP/+M7zdsQJUqVXzrB0FoEUhnDgAyMjKwePFi9OvXD8nJyahfv77mca47dMC5wdVKxTYrLwCnG8wqK1/x3KRWpHLvegVT/KwEx2sLAqtovex5loWXr6F3LSvn2y2UYlYuW+96IiG6Nt3A7WCD1jWcBsHsakfWKOs46ZdGRRs3RYXndE5Zo3afudPzrW6L4YUjx3qMm9pUOYqTjh0r+f/s7GwsX74cX3/9te72WIR9KDPnnMA6cwDQrVs3vP7667jyyisxaNAgVK1aVfO4STk5AOCOUydX/7Ni1LI6dXrbENgtlmKlDSvfBHWFTr+duyDhlkNnRZN2M3ROsBtkYCmXLeOmDqPhTeFFsIFlaw07Dp2TghNyG3Yw0gWvvb+c9oPQp6AAqFDh3P+zBmi91qdbY6eMPAXTT116rN9J+flAfr7m344dO4bly5fjjTfeQNeuXT3tF0GwIvh8BnPGjRuHBx54AEuXLkW+zpdRRnbquKC1LxbPfVzM5s5bWT/npA1WlG0p93zyu6qYn3j94lLfcyvPlzU0pm7Tjo7stmH1PhUVubt/FGEP+ZmwPherxRmUmWM7yG1Y1bYVY1n+iSKDWXhkPbrx3tLSk51xU2vsNMNO2kP5HeV1LwKoy/z8fHz99dd48MEHcemll/rdnYhFlijvn2gi8M4cAEyZMgVjxozBV199hUKTNLwjh451Y1qnRrSV+fNOjQGtlwzvb0E0O3duv8DM7iuvAIOZ1ijAQOjB496bfT/0tGNFT0ZtmLVjp5CEnEGPcoPZN3iNCWZBWbMxzwwnY69dXapx8x7ZOY4jk3SSAIWFhfjqq69wySWX4J577vG4VwRhjUBPs5QJhUJ45ZVXcOTIESxduhT9+/c3rDRkadql0jnkWf1PjTyI2RnMtKZc2DGKlee4uaZGqxKg04XNIm80zjoVh+U4O3q0q8WYGHvRY6dFJLSmA7sRYJCJjz93X1k1KLBhwgxPTWphZvjZmWam1RcrAQSnlQD12uFVEVCkIlORCKsz4vUUXb3rOWnHrSqV6iqULGOmwOOlniN35swZLF26FJ07d8bLL7+suwUWwQdaM+eciMjMAUBsbCw+/PBD1K9fHytWrECY4UlqZukKC0v/KLGqOCuZBuW0Gx7Tg+ziVsTYDPV9j9ZF+Gp98bonVjVRVGT/elrTiZxo2k4/rFxP1ni0a88J8n2zMmbY0UQ4bH+cs5t10zvHjgViVZdW9Ciw0ew56nHT7fdYYSG/mQVO2rEzfjmZvWH2fhJYk3qOXDgcxvLly9GgQQN8+OGHiI2N9bhnBGGdiMjMySQmJuKzzz5DVlYWVq1ahW7duhlGVGYmJtoz3KxWpTSKDJtNj3O6oS2PCpa8qwWyDtx6zyaIEWuWDIdVg8OODs30oO6DXR3K5/KKcusVjzA6hxWWqmk+lsT2HbV2jcZMO8V0WPWh1KaT4hFOKgEq25FhHY+cGs1qlJoU2Gi2hJ0ssF/BF62x0okunaA+n2W8dOO9rX4WLN8NgTQpSRJWrVpVYksmRvO47yGUmXNORDlzAJCWloalS5eiU6dOWLduHTp16oRQKHTOceONE8PFavTayYa4Ts5XI8KWBEb3juf2C7yR9cI7SmxFh3p6cGNanLoQhdPABOCf/iIpsCDjRoDBDkbaMgp22f2uO9nuxUiTfhvOZn0IOl6uddXTlxuFUdTYrVathVyZ0up5apys6dZC7pNPFrdWVk6SJKxbtw55eXlYt24dUlNTfehZdELOnHMEtnztU7t2baxYsQJdunTBhg0bsKFbN/cuZic7cvas/b29nG6Ka9SGVZTz50Vxolhftm4YPazXdmM9ot3AghXjhNUp09OiF4EFr4wUrT4oCZJR7WdwQQ+WPll16NTacHq+Gl5bDzjRpJEeg2LdiFagyOoY6XR8Y2nDzjRyO9sNuKUZlmyqS2Oo3vTKDRs24NChQ1i9ejVq167tyrUJwi0EscD507hxY6xYsQJdu3ZFp9hYtG/f3p3snAyLAaMcSK06geo2eG6Ma6cNvTZlRHHu9BDNYOABqxGtzJjZMbqdFjlxGpjQQllURwTtWZn65Zbjx6Jxtwod2Qku2C3+5MTw5VUcRYl83+3cWz+NZ8DfIBcQfD3K5/IoAsWjKIpMOGw9I+2WFq1s4cGZSTptbty4EXv37sWqVavQuHFj7tcljKHMnHMEsHrco3nz5li+fDm6deuGuLg4TGrd2n2HDij90jAbfJ06dU7g0YZRKXslIhjYosAjc2G1bb1nzSuoYEdLPIMKSh2yZqFFGe39DCy4qUUW1M+bZ3DBipbcMJ6V+mIZ/0TQYyQGuVjQes68vhtOij85GV9ljLY+0tKlmzoUQeMqtmzZgp07d+K7775D8+bN/e4OQdgi4i3s1q1b45tvvkGvXr0QExODSZmZ7jp0gL1tBuwY1bwcJi8cLx5GWyThlUPHagTY7Q/PIid2MdvnSYYCCt5iNbBgdI4ZPAxfZXCBp/Gs7hMZ0GLAI5ipR2Ehn/HGSTssz10dUItgHWpl5X7++Wf89NNPWLFiBVq3bu1DrwgAkCT+8pAkvu2JTlRYNx06dMCXX36J/v37IxwOY9L/f2m5O3VaLwerhgmrU+e02AlLO1bbYkUrp87rOiLvN6fGDYdO+ezsaM9uMIFnJTe3nC71NGdy7txH1pQVw9nu98JJYRNe7VgxoOVrRLABLRRuOm9a1+A1Jlptx84z51Ep1ggBHbmtW7di69at+Oqrr3Deeef50CuC4EfUWDNZWVlYvnw5evfujbNnz6J9+/aYVFjo3KFzaxql0XmsxU54DMpGbfEcoJ1W9QoqPBw6oymUbgQTeBQ4MWrLSjDBjgblcyhrdw7RggqA9fWf6t/xqFRpRc88qv1FswYBdzVot32ra+G1/sajyA6LFu1q0Oo0TCdt+4CWI7dx40bs2LEDy5cvR4cOHXzoFaGE1sw5J6reHh06dMDKlSvRq1cvFBcXo0OHDvYcOjsL3Hk4dXYLnQB81pQYteUGWgVjglQlkBWrxnRREfvxTnSnPsfK4n2AT0W2IAYTou0tArgzddLoPJaAFuvzcxocc8OINrqe3fYjGS+ybm5e00lhFF7607uejFU9CqA/tSMnSRI2bNiAffv2YeXKlTS1kogYosqZA86toVu9ejV69uyJ4uJidOrUCZP+f1qNplNntCDcjqFs17h2UiENcCdb58dUtUgoBW8FXgUJnGTpnFS9BPgUluA1Nc3KeUqdA5GrMatYCSbI8HLo7ASgeFWq9NOQDoet6U8AQ9o17L4LeWjQbqEnnpV7le05mZlg9Rytd5GeJgXQn5Yj9/333+PIkSNYtWoVmjVr5lPPCDWUmXNO1DlzANCsWTOsWbMG3bt3x6pVq9ClS5dzxVHkLJ1VA9quoWxnGpFdZ1CvPbtoTVUD/JsqFNSNxGVE0pwML63wqHypRL5XFEjgh5429D6zl1UwnepFy5h2WiTF7md3YnyzGtORYsWIUlnTbjBL3Qav8Q+wPwbydv7Uzyg+/tzvBHvnhsNhrF69Grm5uVizZg3S09P97hKhgJw554j1jfOQ9PR0rFu3Dn369ME333yDnj17oly5cuccOif7A/HM0plNXbJ6Pb12eQ68Iq5DYnl5upV9sZPFYMUth06vTDfg7LPwKFBhZwsCrXPtXE+PoAcS/q+9ew+uqrr3AP5NwCQCJgSMBGwCSQiJ8ggYZcCI1XKZizzayqs6CrZIDFT7UqdibQfs2FEHcMYW0Ajt5SIdLEMwBBJaJV6tQiAkRjCBkBgCCeGVAEmAFJJwzv2jnvRwOI/9WGs/zvl+ZjLtyNlrr7P3Omuv33pto6ao6e1M0FP2XI1pEd9Vy2sHXMdpOZc/vsqeHcodYM70SCW8daLqrcdF7HDpa2quzLXFarjKY6D7KqN8ur0c3X1UrqurC59++imioqJQWlrKF4JTULJJjS/HkCFDUFJSgunTp+Ojjz7C5MmTERUVhZxvKzHTgjq1O7+pOZ+Ru1daZdRODav0BislcpMTpUGv3g4ErVN+9byCwKxuOqUbJNmpE8FFRmeCjLV3rnT1TjX3VYZkbU6hp8wqfYaonb6phN4lAWaQGVSK2OEyUFnwVQaNmI6uhcTnrHsgd/XqVezevRtJSUkoLCxETEyMtPOSdhyZ088GrWu5+vfvj+LiYjz++OMoKirClClTcNtttwEAchwObQEdoK3hoechqGcXQm+fkbFrlplr7QKR+UoD2VPS9GxyomUKkZrzBdrpDRBfFkR1Thj5NJDRuDFyKqQaetbBiZgqrKVBrWaNm4gGtRFlz9/0Tb2sWO48qQ3g1JQ9UTtcqi0HZqyns9A5ctz+f3t7O3bv3o1JkyZh8+bNiIyMlHZeIrPZoMaVLyoqClu3bsXcuXNRWFiIlpaWnn/LcTh6RupUU9rd4N5rrOY4NefUsuGEZ75Eck9f5nmswkoPSVHXPFA5VbNDm9IRLLW6u//dWA328mUWPfdFaxnUUqeq/Xf3c2lpULv+QrBBbVnudYGM+kBNmVZS32m9R52d6us8GUMjBp/DPZBraWlBUVER5s2bh61btzKQszhX0RD9F0oYzH2rV69eWLNmDV5++WUUFRXhxIkTN/y75oAO8F6ylFT8IoI61+iLHiIDrkCNfzODOyOmpcnmbyqYr+uqt+YT0XngOsbfej0tPNfYhULHgVXpDXLcBSrnavKk9hxKuepeNXkKtRaITDKeJ77qOq31nWfaojtylbYzZJN8DvdA7vjx4ygqKsLLL7+M1atXI9wOo8REOllsrpu5wsLCsHTpUgwfPhzz58/HuHHjMGrUKISFhQGAvrV0gPaKWus0OuDGSlxEpWbkS25FboAQSlzTgWROI/J2LKBt2qYn9+lqshoBgdZzslGtnK9yo2T0QU9ZcT9eT2Pdc3qkzEDTxcx1nbLPY1Y9bWQnjahzidj5Uc2MDEBcOVfKoEDO6XSisrISFRUV2LRpE2bPni31vCQO18zpx2DOizlz5iAxMRHTpk3DpUuXMGHChBt6d1QFdb4qfSM2V/HW86f13IHSN2INnK9rKfLcMtfOAXLXMYkIfrWWEc9pwnq/o8Oh/xUEau5jsHYcGL1uzsgOBEDsRi+uEUMj1ll61p1B0rA2lNEj7KI7Rt07wGRsiuKL58i4zGe3QYGcw+HAvn37cObMGfzzn//EfffdJ/W8RFYTJC0W8caPH48vv/wS3d3d2L17Nzq9LBL3OfXSqCmU/ig5t9rzK50iaTS7rb8T9YAL9J1FT530lwdvx+sp397OoXYNiFae0+PsUKbM4H5t9KxL1HKv3O+JiN+Te3mVuZbPG/d1XCxrN/P2W9RzjdR28ng7n6xlF1qPF3Fu0dNRDQrkOjs7sXv3bnR3d6O8vJyBnA1xzZx+DOb8SExMxP79+5GamorCwkK0trbe9JmeDVK0VoYygjotC58D5UHEA9BIng1Nzz9/jBjJUHM93fOtZQ2OqKDKndI8iOwwcD8vOw2MpeS7y+48CHRurVPYA3XK6UlDybH+zi17vZdoIqZYm/0bk3Fupc9ZMzuA3fPgyofSZ6bnuSRzBXKtra3YuXMnUlNTUVpaisTEROnnJvEYzOnHYC6A6Oho7Nq1C/Pnz8fOnTvR2Njo9XM5IqaV6a2oRfRYiv4FWLXh6y3A0/Lg0sN1rdXkRUZgFug492NldliozaOZI5KeeTCrDInkq9PA7N+u2s4LpZ/TO/qs5nx6j/XVOSXjXLJ5/k6sUM5kjf5reabKGAnUwrN8KXlGGRjINTQ0YMeOHXjqqaewa9eunldKEYUirplToFevXli1ahXGjRuH7OxsZGRkYMyYMT0bo7i4ArpcERWvnjVLIgJL97REVdDd3TemZbV3zbkzuwHrj8OhfT2c1rIh4kXA/sq2njLmfq8cDuuUKyWNbSPy6rrvahv/Rpcx92P1dkr5y4PWsubKk4gNJER1ygS6pxERxgVyasuY2UTU8b7KmohrrndzFCM7/gy67zm9e8PpdOLQoUM4ePAg1q9fjyeeeMKQc5M8Tqf4asrpFJue1Vmk1WMPTz75JNLT0zFjxgy0trYiKysLvb1UtoYGdYFGJkSNGIpc8O3imXdZDVvZm5qYwajGtrceYlGdBa50RN0bVzqejW61xxvJyp0GWmktI65rIbKucU9L1P01cmMevcfZKbgygshOT/c0RW9i41mXAfJeNK73OIPk9O6N7u5u7NmzB21tbfjiiy+QmZlpdraILIHTLFW699578dVXX/VMv7x06ZLPz+qeegn4Xxcnez2H63j3dGRW+Faa2mUHstZPBLoHosqB7PVARpUlizeCNDPie3m7R6IbxSLrLW9TjkVPzRN5nNXJXp9s1DNF1Cifv7Ia6DvoXaphYTm9e+PSpUvYtWsXoqOjUVFRwUAuiHDNnH4M5jSIj4/H559/jhkzZqCgoMDnOjrg3wGdsKAO0P5Q0lK6fX3eqF8Lg7vARE31Mrph6n6s3vKk5DiZm3fQzfR0FgQ6Xk0eRNVVejtAXGloPTcpo+aZobfu9FaP6UlLKZFr6mzQ6s3p3RuNjY0oKCjAzJkz8fnnnyM+Pt7sbBFZCqdZahQZGYn33nsPWVlZWLx4MUaPHo2xY8fetI7ORdfUS8+KW8S6pUDpKM2n6PT88fZwtsr6KDPpndYG6H9ZuNLjA5UD0en5YtV1dlajZ1qt+7FaO6AA9ef31wklKi1/rLC2LlQY2cmn5F6oKWN67637FFoj31NnoGd69ULFl1+isrISubm5WLBggdlZIglk9CnYoHgLxRaMTk899RTGjh2LmTNnori4GJMmTUJkZKTPzysO6pT28MrYkEJED7JRLypWGuAF47o5d0oaEYHKlKzNTdz/XVR6WtL0R8vaFNF5CCai178pSUdpYxsQl54/ejd8Ytm6kchOTZdAZUvLPZCRZqA01NRfNilXT3V34/P/+z9cv34d+/btQ0ZGhtlZIrIsTrMUICMjAwcPHkRqaip27NiBlpaWgMd4nXqpdaqbyClEIteWmDWFw3OqTahM0fT2gFdzDWQ0MvSm66sciSynnkK1/PiipOPJ1/WSeZ9c/13rFPJAaeql5/dokwa3NEp+gzKvkd4y4KselD3dFwiK6eSzW1uxY8cOpKWl4eDBgwzkgpznjHhRf6GEwZwgsbGxKCoqwq9+9SsUFhaiqqoKzgB7o96wnk5vg1FE6XX1JIv+FchKV2segvFX7/oeegMQkQ0Oz5EJvdzTFZWeUgzu/sOMTgLPdGQFXKLSVJKO7ADYLqzSeSL6eeD5zBGRNy15cP+zeNlyOp3Iqq5GYWEhnn/+eRQWFqJ///5mZ4skYzCnH6dZChQeHo7f/va3mDRpEubNm4dz584hKysLERERfo/LCQ8HIiKQK2IbaVcJVjMFJdBoisgpk57nMmo6ZiCBfvlWyKeRtZPDoX8dnd50/KWtpZyL5K/BaYWyopfoIEdUOejuFn99XU9+Ga9fUcNXmQrG8hTovxtF5L33TNf9f0XUpaL4S9PEstbW2Yl79+1De3s7PvroIzz44IOm5YXIboLgKWE93/3ud1FZWYmEhAQUFBSgublZ0XE5ERHICRD4Kaa0a0LpZ7Q+VAIdZ5euFFldR1buZlJ7Xl+flzWK4p622vRlXk+r3UdvzMijnjrEPV8i8+eZrsy6TiurlyXAHmUe8J0vUfWTvzpQS1pGM+n5VNbSguSiIgwdOhSVlZUM5EJMsDSZzMSROUni4uLw8ccf44033sDvf/97ZGZmYuTIkT53u3TnCuikjtRpKenux8jqwTPiHKSOwyFmYxNfZVHNsUo/Y9TGKVqYfX4z+StLnp9T8u+yRjzUpG/m/QzlsqSE2vpJVt3k/jkr10065GjYUdPpdOLw4cMoKyvDsmXL8NJLLyGcz30i1RjMSRQeHo7f/OY3ePDBBzF37lycPXsWWVlZiIqKUnS8lKBOFCUNZ73ntPGDLeh4NkT03BsjGsrsFLAfrR1MeqeUK/m8rDqOxNNbN8kO4L2VKZuXIy0ziq5evYo9e/bgypUrKC4uRlZWloSckR3IGEmz+U9KNbZyDPDAAw+gqqoKd999N/Lz89HU1KTqeGHTL2WNQRs1rh3KY+hW4HCI3aAg0H0UdY/dz8NyYz7P6W16f89Kjhd1DtFT80g/I58LIs9hk01JAtHSNjl58iTy8/Nx9913o6qqioEckU4cmTPIgAEDsH37dqxbtw6/+MUvkJ6ejszMTPTq1UtxGppG6pQ0lmVucCKTt3NxFEYsX/dT65Qkf+eQ3VMt4z1VpJ6rQSxj0wlR78z0x70csQwZzzOgll2OZJQhX50CNipPWoK469evo7y8HNXV1fjjH/+IRYsWKVp6QsGNI3P62afmCAJhYWF45plnUFFRga6uLhQVFaG1tVV1OgFH6tT2Uoru1TRzJWqor4IVQem1kzHCK2trcm/5ZFmRz981NrKRLCptzzRZduQy6zcq43U6Sr6DTcqTlkCutbUVRUVF6OrqQkVFBbKzsxnIEQnCYM4E6enpKC8vx9y5c1FQUIDDhw8HfCedNzcFdSIeAnofJv5GcmSkq/RYNtp903ttRFxPbw19kZ0LavPBcqKN2usnI+CS0SGg9Luw7Oij5RrK6ISUka7e/FiE2kDOtclJQUEB5s6di/LycqSnp0vKHdmRtyaaiL9QwmmWJomMjMTbb7+NGTNm4Mknn0RTUxOysrLQp08fRcfnXr0qOYf4z69B6dQPrQ9fM6aWBMqrjaa7KCazdlNbVrwdG+jfZO40p/T4YCwXeogK5AF919bXyKuMdLUcy3JzMyu0tgLlQVa9JiItg8uUltG4jo4O7N27F5cvX0ZBQQGmTJkiIWdkd06n+OpAw/iIrTGYM9mUKVNQXV2NnJwcfPjhh7j//vuRlJTU8++GBG2BKGmUBFujx9/3sUoefTGzkaSm8aM2n2rLiexpfJ6sXi70MKJMORxydqbU0iCXMWLoS7CWGyPrITVlR+somdVeU+HrXBLKk5ZA7tixYygpKcG0adOQm5uL2NhY4fkion9jMGcBsbGx2LJlCzZv3oycnBycPHkSJRkZiBH1AnGRvDWMZPVAWrWRo/f7ymx0WIW/BrQRozlmXDu7N9itUN4CNZpFdBoFuhdGXwcDG+XCWaHMBCJyuqSV6htftOTFT1lTG8h1dnZi//79aGpqwvr16/HYY4+pzw+FFBnTIq30kzSCDZ4WoePxxx/HkSNHMGjQICT94x/YfeqU2VnyzYiJycE6+TmUJnx7rkGRUWN7pmvFa2fUxP9gWGDga8qkyEa57HOIYPXyYqVr5UlWHj3rGatfB6W83Fstr0Q6efIktm/fjvj4eBw+fJiBHAWd48eP4+mnn0ZSUhJuvfVWpKSkYNmyZegU8T5oHTgyZzF33nkniouL8e677+L7L76I5ORk7B09GtFWHKUjUsqIBk8wNKq8Cdbv5Q/Li3bB+r0CMep7h8D1zYmKUvX5zs5OHDhwAPX19VixYgWWLFnCnSpJMTuNzFVXV8PhcCA3NxfDhw9HZWUlsrOzceXKFaxcuVLOSRUIc2rZRpEMcfz4cSxYsACVlZWYOHEiCm+/3ewsERERURBSG8QB/x6NKykpwahRo7Bx40YMGzZMfMYoKLW3tyMmJgaPPtqGW26JFpp2V1c7PvwwBm1tbYiOFpu2pxUrVuCdd97BsWPHpJ7HH47MWdiwYcPw6aefIjc3Fy+88AJGJSfjvvvuw/+EQM8gERERGUPPaNyqVauQk5PD0TjSRObIXHt7+w3/PTIyEpGRkULP1dbWhgEDBghNUy2umbO48PBwLFmyBIcPH8aAAQOQn5+PR86d09SDRkRERORObXvixIkTyM/Px8CBA1FVVYXFixczkCNLSkhIQExMTM/f66+/LjT9b775Bn/605+Qk5MjNF21ODJnE8OGDcNnn32GdevW4cUXX8SxY8cwf/x49OnTxxqvLyAiIiLbUBvEdXR0oLS0FKdPn8aqVauwaNEiBnGkm8yRucbGxhumWfoalVu6dCnefPNNv2keOXLkhhfeNzU1YerUqZg7dy6ys7P1Z1oHrpmzoTNnzuC5557Drl27kJmZifT0dISFhTGoIyIiooDUBHJOpxPV1dUoKyvDtGnTsHr1asTHx0vMHYUC15q5mTPlrJnbsUP5mrnm5macP3/e72eSk5MR8e1mhKdOncJDDz2ECRMmYMOGDQg3+VUyDOZsrLCwENnZ2ejduzcmTpyI/v37A7DIi8aJiIjIUtSOxl28eBElJSW4fv061q1bh+nTp0vKGYUaVzA3fbqcYK6wUM4GKE1NTXj44YeRmZmJTZs2oVevXkLT14Jr5mxs+vTpqKmpwaOPPor8/HyUlZWhu7sbOVFRXFNHREREPdS0C7q6ulBWVobt27dj1qxZqKmpYSBHUuh93aWRr8FsamrCQw89hMTERKxcuRLNzc04c+YMzpw5I+eECnFkLkiUl5fjmWeeQX19PTIzM5GUlNQzl50jdURERKFJ7ZTK+vp6lJWVISUlBe+99x7uueceibmjUOUamXvkETkjc7t2iR+Z27BhA37yk594/TczwykGc0HE4XBgw4YNePHFFxETE4Px48f3TL0EGNQRERGFEjWBXGtrK0pLS9HW1oaVK1fixz/+selrgSh4uYK5//5vOcHcP/5hzHvmrIC/0iASHh6OhQsXoq6uDo888gjy8/Nx4MABdHV1AUDP9EtOwSQiIgpeap71XV1dOHDgAPLz8zFt2jQcO3YMCxcuZCBHZBP8pQah2NhYrF27FqWlpYiIiEBeXh6qq6vhcJtEzKCOiIgouKh5tjscDlRXVyMvLw8REREoLS3FmjVrbpjRQySbndbMWRXfMxfEMjIyUFJSgq1bt+KFF15AdXU17rnnHiQkJPSsp3Ov9DkNk4iIyJ6UBnFOpxONjY348ssvERUVhfXr12POnDl8ZxyRTXHNXIjo7OzE2rVrsWzZMsTGxiIzMxO33367188yqCMiIrIHNbNsWlpaUF5ejtbWVrz66qtYsmRJz7uziIzkWjP3X//Vht69xa5r6+5ux+7dobNmjsFciGltbcVrr72G1atXIykpCePGjcNtt93m8/MM7IiIiKxHTRB36dIlVFRUoL6+Hj/72c/wyiuvcDolmYrBnDgM5kJUQ0MDli5diq1bt2LEiBEYM2YMgzoiIiKLUxPEtbe349ChQ6itrcWcOXPwxhtvIDExUWLuiJRxBXPf+56cYO6TTxjMUYiorq7G8uXLsW3bNqSmpmLMmDEBCz4DOxVE7QYmYjWv3ryE2opircLDea2IQo2e+lVFfaE0kGtvb8fXX3+NmpoazJ49G8uXL0daWprWHBIJ5wrmHnpITjD36aehE8xxA5QQl56ejg8++ABHjx7F8uXLkZeXhxEjRmD06NE+fwDcNMUEVtgi2pUHBiq+ua6RiPsl6jpbKS/BzErXWWR9wXvvm6jrHCgdh0NVEOcaiZs9ezby8vIYxBEFOQZzBABIS0vD5s2bbwjqUlNTMXLkSMTGxvo8joFdCGJQ553ogNsKAbwL77lvIu+Tle45eWfwPcpRuDnJxYsXUVVV1TOd8sMPP8SIESMk545IPxmvEgi1RxWDObqBK6irqanBa6+9hg8++ACJiYm46667MHjwYL9bF3v2HJoS3Cl90IbaL10G92ttxvU0+/zuQqURzimk/xEq99wKzO5MMOFeKwninE4nTp8+jSNHjqChoQGPPfYYgziiEMQ1c+TX6dOn8fbbb2Pt2rWIjo5Geno6kpKSEK7y4SY1sBP9oBXZYAi1Bp+sxpbW62hE4y/U7jFgbKNayfW1Wn6CiVHXVst1lZk3k+6zkiDO4XCgvr4e1dXVaG9vx7PPPouf//znGDx4sAE5JBLDtWbugQfkrJn74ovQWTPHYI4UuXz5Mv785z9jxYoV+Ne//oX09HSkpaXhlltu0ZSe7uDOjAetloZDqDX8XPQ2smReNwbrYshoSFtpwyBPoXqvRV9LWdfRCptE6aAkiOvq6sLRo0dRXV2NW2+9Fb/+9a+xcOFC9OvXz4AcEonFYE4cBnOkSnd3N7Zt24Y//OEPqK2tRWpqKu666y7ExMRoTlNxYGflxpSvhoSV82wUJY0sK1wntY1BK+TZCrQ2oo2+fnbJp9XY8bopzbMF7q2SIK6trQ1Hjhzpeea+8sormDVrFnr35koZsi9XMHf//XKCub17GcwR+eV0OrFv3z689dZbyM/PR2JiIkaMGIGEhAS/6+oCuSmws8DDlgRxb2DZ5b4ySFfGX+PZqtfKjnk2i91/Bxare5Suh2tsbERNTQ0aGhowa9Ys/PKXv8SECRN0PWOJrILBnDgM5ki306dPIzc3F2vWrIHT6URqairS0tIQGRmpO+3czk4BOTSBXaYJamGlLdiNZKUNV4iMEgzl3iLv2FQSxF27dg1Hjx5FbW0twsLC8Oyzz2Lx4sWIj48Xkgciq3AFcxMmyAnm9u1jMEekWldXF7Zt24a33noLBw8eREpKCkaMGIG4uDjhPYmWDfIs0OtrS1ZtJBpxP83+7lZewySbjO9uhe8tu9xa4Tt6Y7X699vrFCiIczqdaG5uRk1NDerq6jB27Fg8//zzePTRRzWvSyeyOlcwN368nGCutJTBHJEuX331Fd555x1s2rQJ0dHRSElJwfDhw4WM1vljapBntYaE3Zn9ugMSxwqNf95b8cy8rza4nzkB1rRdu3YNtbW1OHbsGC5duoQnnngCP/3pT5GRkWFQDonMw2BOHAZzJNWVK1ewZcsWrF69GpWVlUhJSUFqaioGDRpk6Lx/qUGeDRoVQYO7FAYHvjIiuAThKwL08BfEOZ1OnD17FrW1tairq8OoUaPw3HPPYd68eejbt6+BuSQylyuYu/deOcFcWRmDOSLhDh06hHfffRfvv/8++vTpg6SkJKSmpqJPnz6m5UlXkGfDRkbQseNOe3QjUYEA76k1hOhvMtAoXEdHB2pra1FfX4+Ojg4sWLAAixcvxujRow3KIZG1MJgTh8EcGa6jowN5eXlYt24dSkpKkJiYiKSkJAwdOtQyWy37DfJs3ugIenbfeS/U2eVVFuRfiPwO/QVx3d3dOHHiBOrr69HQ0ICJEyciOzsbs2fPNrUTk8gKXMFcZmYbevUSG3Bdv96O8nIGc0SGaGhowMaNG7Fu3Tq0tLQgOTkZKSkpuOOOOyy5/XKu2Rkgbbq7zc4BaeEKCIIsAAgJejvmLPybDTSN8ty5c/jmm29QX1+PuLg4LFq0CAsWLEBiYqKBuSSyNgZz4jCYI0twOp0oKSnBX/7yF/ztb39DVFQUEhISkJKSggEDBpidPakYINqQhRualmCREfYevF+BWe2eiSTo/vsL4i5cuIC6ujo0NDTg2rVr+NGPfoSFCxdi4sSJluyYJDKbK5gbN05OMFdRwWCOyDRXr17Frl278P7776OoqAj9+/fvCexiYmLMzp6tMFC0EbMCjmBuxMtkxv3ivTLOt/fXXwDX1taGuro6NDY2orW1FdOnT8f8+fMxdepUREVFGZVTIltiMCcOgzmytMuXL2PHjh3YuHEjiouLERcXhzvvvBPDhg1D//792eNpIgaKRGR1OQLTcjqdaG1txfHjx9HU1ITm5mZMnjwZCxYswMyZM9GvXz+BZyMKbq5gLiNDTjB38CCDOSLLuXjxIrZv344tW7aguLgYMTExGDJkCIYOHWr4qw5IPgaLROYTGQzZketVAidOnMCpU6fQ1taGyZMnY968efjBD36A2NhYs7NIZEuuYG70aDnB3NdfM5gjsrQrV67g448/xtatW7Fjxw4AwJAhQxAfH4/vfOc73CmMAmKwSEYJ9YDIbjo6OnDy5EmcPXsWTU1NAICZM2dizpw5mDJlCt8HRyQAgzlxGMyR7XV3d2PPnj34+9//jsLCQlRVVeGOO+7AoEGD0LdvX8u87oBCy1NmZyDI/K/ZGaCg19bWhrNnz+LcuXMYOXIkpk+fjqlTpyIrK4vPESLBXMHcyJFygrmqKgZzRLZ1/vx5FBcX45NPPkF1dTUcol5KTGQRYZ2dCPN4F2KYx4YcTo/GpzMiAs6ICOl5I7Kr5ORkTJs2DZMnT8bAgQPNzg5RUGMwJw6DOSIiIiIiMowrmLvrLjnB3JEjoRPM8U2sRERERERENsRJ4EREREREZDiHAxC9GXmora7hyBwREREREZENcWSOiIiIiIgMx5E5/RjMERERERGR4RjM6cdplkRERERERDbEkTkiIiIiIjKc0yl+JC3UXrrGkTkiIiIiIiIb4sgcEREREREZTsb6Nq6ZIyIiIiIiIsvjyBwRERERERmOI3P6cWSOiIiIiIjIhjgyR0REREREhuPInH4M5oiIiIiIyHAM5vTjNEsiIiIiIiIb4sgcEREREREZjiNz+nFkjoiIiIiIyIY4MkdERERERIbjyJx+HJkjIiIiIiKyIY7MERERERGR4Tgypx9H5oiIiIiIiGyII3NERERERGQ4jszpx2COiIiIiIgM53SKD76cTrHpWR2nWRIREREREdkQR+aIiIiIiMhwDgcQFiY2TY7MERERERERkeVxZI6IiIiIiAzHkTn9ODJHRERERERkQxyZIyIiIiIiw3FkTj+OzBEREREREdkQR+aIiIiIiMhwHJnTj8EcEREREREZjsGcfpxmSUREREREZEMcmSMiIiIiIsNxZE4/jswRERERERHZEEfmiIiIiIjIcByZ048jc0RERERERDbEYI6IiIiIiAzncMj5k+X73/8+EhMTERUVhcGDB2P+/Pk4deqUvBMqwGCOiIiIiIgogIcffhhbtmzB0aNHkZeXh7q6OsyZM8fUPIU5naE2s5SIiIiIiMzS3t6OmJgYAG0AokWnDiAGbW1tiI4WnfaNCgoK8MMf/hDXrl3DLbfcIvVcvnADFCIiIiIiMkG7tDTb229MOzIyEpGRkcLOcuHCBfz1r3/F/fffb1ogB3CaJRERERERGSgiIgLx8fEAEgDECP5LQL9+/ZCQkICYmJiev9dff11I3l966SX07dsXAwcORENDA7Zv3y4kXa04zZKIiIiIiAx19epVdHZ2Sknb6XQizOOdB75G5pYuXYo333zTb3pHjhxBeno6AKClpQUXLlzAiRMn8OqrryImJgY7d+686XxGYTBHREREREQhqbm5GefPn/f7meTkZERERNz030+ePImEhATs3bsXEydOlJVFv7hmjoiIiIiIQlJcXBzi4uI0Hev49j0I165dE5klVTgyR0RERERE5Mf+/ftx4MABPPDAA4iNjUVdXR1+97vf4ezZs6iqqhK6uYoa3ACFiIiIiIjIjz59+mDbtm2YPHky0tLS8PTTT2PMmDH47LPPTAvkAI7MERERERER2RJH5oiIiIiIiGyIwRwREREREZENMZgjIiIiIiKyIQZzRERERERENsRgjoiIiIiIyIYYzBEREREREdkQgzkiIiIiIiIbYjBHRERERERkQwzmiIiIiIiIbIjBHBERERERkQ0xmCMiIiIiIrKh/wdI0yLF+9AlxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1002,39 +929,11 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": { "tags": [] }, "outputs": [ - { - "data": { - "text/plain": [ - "[stderr:0] [4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 32768, errno = 1\n", - "[4d6ab76db141:01953] Read -1, expected 232672, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/plain": [ @@ -1046,7 +945,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD38ElEQVR4nOydd3gVxfrHvyekASGhE0IHKVIEpQiIgAihCSoCtqugXkRBvfbKVWyo4A87CuoVFbFeO6goCkpREEGxUBQQpIqQxBBCSM7+/sjdsGezZWZ2tp3zfp4nj5Lszs7Z8+6773femXciiqIoIAiCIAiCIAiCIOKOJL87QBAEQRAEQRAEQbgDCT6CIAiCIAiCIIg4hQQfQRAEQRAEQRBEnEKCjyAIgiAIgiAIIk4hwUcQBEEQBEEQBBGnkOAjCIIgCIIgCIKIU0jwEQRBEARBEARBxCkk+AiCIAiCIAiCIOIUEnwEQRAEQRAEQRBxCgk+giAIgiAIgiCIOIUEH0EQBEEQBEEQCc+DDz6ISCSCa6+9tuJ3xcXFmDx5MurUqYOMjAycc8452Lt3r3+dFIAEH0EQBEEQBEEQCc3q1asxe/ZsnHDCCTG/v+666/DBBx/gzTffxNKlS7Fr1y6MGjXKp16KQYKPIAiCIAiCIIiEpbCwEBdeeCGeffZZ1KpVq+L3+fn5eP755zFz5kwMGDAAXbt2xQsvvIAVK1bg66+/9rHHfCT73QGCIAiCIAiCIBKL4uJilJSUuNK2oiiIRCIxv0tLS0NaWprh8ZMnT8bw4cMxcOBA3HfffRW/X7NmDY4ePYqBAwdW/K5du3Zo2rQpVq5ciZ49e7rSf9mQ4CMIgiAIgiAIwjOKi4vRompV7HGp/YyMDBQWFsb87q677sLUqVMrHfvaa6/hu+++w+rVqyv9bc+ePUhNTUXNmjVjft+gQQPs2eNW7+VDgo8gCIIgCIIgCM8oKSnBHgA7IhFkSm67AECTwkLs2LEDmZnHWjfK7u3YsQP/+te/8OmnnyI9PV1yT4IDCT6CIAiCIAiCIDwnE0CmbuqlYxSlvO3MzBjBZ8SaNWuwb98+nHTSSRW/Kysrw5dffoknn3wSn3zyCUpKSpCXlxeT5du7dy+ys7Pl9ttFSPARBEEQBEEQBOE9SUmAG4KvrIzp0NNPPx3r16+P+d0ll1yCdu3a4ZZbbkGTJk2QkpKCxYsX45xzzgEAbNy4Edu3b0evXr3k9ttFSPARBEEQBEEQBJFw1KhRAx07doz5XfXq1VGnTp2K31922WW4/vrrUbt2bWRmZuLqq69Gr169QlOwBSDBRxAEQRAEQRCEH/ic4WPhkUceQVJSEs455xwcOXIEgwcPxqxZs6S17wURRfnfRFeCIAiCIAiCIAiXKSgoQFZWFvJTUqSv4StQFGQdPYr8/HzbNXyJAmX4CIIgCIIgCILwHrcyfEQMSX53gCAIgiAIgiAIgnAHyvARBEEQBEEQBOE9lOHzBBJ8BEEQBEEQBEF4Dwk+T6ApnQRBEARBEARBEHEKZfgIgiAIgiAIgvAeyvB5AmX4CIIgCIIgCIIg4hTK8BEEQRAEQRAE4T2U4fMEyvARBEEQBEEQBEHEKZThIwiCIAiCIAjCeyjD5wmU4SMIgiAIgiAIgohTKMNHEARBEARBEIT3RCLlWT6ZRKNy24sDSPARBEEQBEEQBOE9SUnyBR9RCbrDBEHEPUuWLEEkEsGSJUtsj+3fvz/69+/P1G5hYSHq16+PV155xVkHCS4ikQimTp3qdzdCgf5ezZ07F5FIBNu2beNu69Zbb8XJJ58sr3MEQRCEJ5DgI4gQMXXqVEQiEezfv9/w7x07dmQWK15RXFyMRx55BCeffDKysrKQnp6ONm3a4KqrrsKmTZv87p4jHnvsMdSoUQPnnXdexe8WL16MSy+9FG3atEG1atXQsmVL/POf/8Tu3bsN21ixYgX69OmDatWqITs7G9dccw0KCwtd7fdff/2FGTNmoG/fvqhXrx5q1qyJnj174vXXXzc8/siRI7jllluQk5ODqlWr4uSTT8ann37qah/dYtq0aXj33Xf97oZUFi5c6IkAvvbaa/H999/j/fffd/1aBEEkCGqGT/YPEQNN6SQIwjX279+PIUOGYM2aNTjjjDNwwQUXICMjAxs3bsRrr72GOXPmoKSkxPV+9O3bF4cPH0Zqaqq0No8ePYrHHnsM1113HapUqVLx+1tuuQUHDhzAmDFj0Lp1a2zZsgVPPvkkPvzwQ6xbtw7Z2dkVx65btw6nn346jj/+eMycORN//PEHHn74YWzevBkfffSRtL7qWblyJe644w4MGzYMU6ZMQXJyMv773//ivPPOw88//4y777475vjx48fjrbfewrXXXovWrVtj7ty5GDZsGL744gv06dPHtX6acfjwYSQni72+pk2bhtGjR+Oss86S2ykfWbhwIZ566ilD0efkXunJzs7GmWeeiYcffhgjR46U0iZBEAThPiT4CIJwjfHjx2Pt2rV46623cM4558T87d5778Udd9zh6vWLi4uRmpqKpKQkpKenS237ww8/xJ9//omxY8fG/H7mzJno06cPkjQjjEOGDEG/fv3w5JNP4r777qv4/e23345atWphyZIlyMzMBAA0b94cEyZMwKJFi5Cbmyu1zyodOnTA5s2b0axZs4rfTZo0CQMHDsRDDz2Em2++GdWrVwcArFq1Cq+99hpmzJiBG2+8EQBw8cUXo2PHjrj55puxYsUKV/pohezvMgwUFRWhWrVq3OfJvldjx47FmDFjsGXLFrRs2VJq2wRBJCCUkfMEusMEkYCUlpbi3nvvRatWrZCWlobmzZvj9ttvx5EjR2KOa968Oc444wwsW7YMPXr0QHp6Olq2bImXXnrJ9hrffPMNFixYgMsuu6yS2AOAtLQ0PPzww0z9feqpp9CyZUtUrVoVPXr0wFdffVVprZ26Tu+1117DlClT0KhRI1SrVg0FBQWma/jmzJmDVq1axbTLyrvvvovmzZujVatWMb/v27dvjNhTf1e7dm388ssvFb8rKCjAp59+in/84x8VYg8oF1MZGRl44403LK8/btw4pKenx7QJAIMHD0atWrWwa9cu03NbtGgRI/aA8rVeZ511Fo4cOYItW7ZU/P6tt95ClSpVcPnll1f8Lj09HZdddhlWrlyJHTt2WPazf//+6NixI9asWYPevXujatWqaNGiBZ555plKx+7btw+XXXYZGjRogPT0dHTu3BkvvvhipeP069LUqc6//vorxo8fj5o1ayIrKwuXXHIJioqKYs47dOgQXnzxRUQiEUQiEYwfPx4A8Pfff+Paa69F8+bNkZaWhvr162PQoEH47rvvLD+feu0NGzZg7NixyMzMRJ06dfCvf/0LxcXFlY6fN28eunbtiqpVq6J27do477zzKt1D7T3r27cvqlWrhttvv93w+uPHj8dTTz1V8fnUH7N7ZcZHH32EU089FdWrV0eNGjUwfPhw/PTTT5WOGzhwIADgvffes22TIAiCCAYk+AgiAfnnP/+JO++8EyeddBIeeeQR9OvXDw888EDMWjSVX3/9FaNHj8agQYPwf//3f6hVqxbGjx9vGAxqUdf5XHTRRY76+vTTT+Oqq65C48aNMX36dJx66qk466yz8Mcffxgef++992LBggW48cYbMW3aNNNpnM8//zwmTpyI7OxsTJ8+HaeccgpGjhxpK2BUVqxYgZNOOonp2MLCQhQWFqJu3boVv1u/fj1KS0vRrVu3mGNTU1PRpUsXrF271rLNxx57DPXq1cO4ceNQVlYGAJg9ezYWLVqEJ554Ajk5OUx907Jnzx4AiOnn2rVr0aZNmxhRCgA9evQAUD4t1Y6DBw9i2LBh6Nq1K6ZPn47GjRvjyiuvxH/+85+KYw4fPoz+/fvj5ZdfxoUXXogZM2YgKysL48ePx2OPPcbU/7Fjx+Lvv//GAw88gLFjx2Lu3Lkx01NffvllpKWl4dRTT8XLL7+Ml19+GRMnTgQAXHHFFXj66adxzjnnYNasWbjxxhtRtWrVSoLa6trFxcV44IEHMGzYMDz++OMxIhkA7r//flx88cVo3bo1Zs6ciWuvvRaLFy9G3759kZeXF3PsX3/9haFDh6JLly549NFHcdpppxled+LEiRg0aFDF51N/eHj55ZcxfPhwZGRk4KGHHsK///1v/Pzzz+jTp0+l4i5ZWVlo1aoVli9fznUNgiAIQ2gNnzcoBEGEhrvuuksBoPz555+Gf+/QoYPSr18/yzbWrVunAFD++c9/xvz+xhtvVAAon3/+ecXvmjVrpgBQvvzyy4rf7du3T0lLS1NuuOEGy+ucffbZCgDl4MGD1h/KgiNHjih16tRRunfvrhw9erTi93PnzlUAxHzWL774QgGgtGzZUikqKoppR/3bF198oSiKopSUlCj169dXunTpohw5cqTiuDlz5lRq14ijR48qkUjE9h6o3HvvvQoAZfHixRW/e/PNNyvdW5UxY8Yo2dnZtu1+8sknCgDlvvvuU7Zs2aJkZGQoZ511FlOf9Pz1119K/fr1lVNPPTXm9x06dFAGDBhQ6fiffvpJAaA888wzlu3269dPAaD83//9X8Xvjhw5onTp0kWpX7++UlJSoiiKojz66KMKAGXevHkVx5WUlCi9evVSMjIylIKCgorfA1Duuuuuin+rz8Wll14ac+2zzz5bqVOnTszvqlevrowbN65SP7OyspTJkydbfhYj1GuPHDky5veTJk1SACjff/+9oiiKsm3bNqVKlSrK/fffH3Pc+vXrleTk5Jjfq/fM7t6qTJ48WTF7nevv1QsvvKAAULZu3aooiqL8/fffSs2aNZUJEybEnLdnzx4lKyur0u8VRVFyc3OV448/nqlvBEEQRuTn5ysAlPycHEVp3FjqT35OTnnb+fl+f8zAQBKYIBKMhQsXAgCuv/76mN/fcMMNAIAFCxbE/L59+/Y49dRTK/5dr149tG3bNmbanxEFBQUAgBo1agj39dtvv8Vff/2FCRMmxBSeuPDCC1GrVi3Dc8aNG4eqVavatrtv3z5cccUVMRnA8ePHIysry7ZfBw4cgKIopn3Q8uWXX+Luu+/G2LFjMWDAgIrfHz58GED51FY96enpFX+3Ijc3FxMnTsQ999yDUaNGIT09HbNnz7Y9T080GsWFF16IvLw8PPHEEzF/O3z4sGkftZ/DiuTk5IpMGlCexZw4cSL27duHNWvWACi3y+zsbJx//vkVx6WkpFRULV26dKntda644oqYf5966qn466+/KmzRipo1a+Kbb76xnAprxeTJk2P+ffXVVwM49ry9/fbbiEajGDt2LPbv31/xk52djdatW+OLL76IOT8tLQ2XXHKJUF94+PTTT5GXl4fzzz8/pl9VqlTBySefXKlfAFCrVi3TSsEEQRBcUIbPE6hoC0HEGdr1O0b8/vvvSEpKwnHHHRfz++zsbNSsWRO///57zO+bNm1aqY1atWrh4MGDltdRpwD+/fffqFmzpuWxhw8fRn5+fqX+qH3R9zU5ORnNmzc3bKtFixaW1wJQ0W7r1q1jfp+SksJViEJRFMu/b9iwAWeffTY6duyI5557LuZvqijVr5sEyovN2IlWlYcffhjvvfce1q1bh/nz56N+/fqMvT/G1VdfjY8//hgvvfQSOnfuXKmfZn1U/25HTk5ORREYlTZt2gAAtm3bhp49e+L3339H69atK61/PP744wGgkl0aobdVVZAfPHiw0pRUPdOnT8e4cePQpEkTdO3aFcOGDcPFF1/MbA96W2rVqhWSkpIqpkRu3rwZiqJUOk4lJSUl5t+NGjWSWlXWjM2bNwNAzGCEFqP7piiKrZ8hCIJgggSaJ5DgI4gQYZdVKSoqYq7Kxxqwabcc0GIndtq1awegfK2aNkNoxOuvv14pm2HXvhmsQskJtWvXRiQSsRS9O3bsQG5uLrKysrBw4cJKmc6GDRsCgOH+fLt372Zeg7d27Vrs27cPQPm91mbIWLj77rsxa9YsPPjgg4brLRs2bIidO3ca9hGA0FpBtxC1VaB8Dd6pp56Kd955B4sWLcKMGTPw0EMP4e2338bQoUO5+6J/vqLRKCKRCD766CPDfmZkZMT82ws7VvsFlK/j024ZomK0pcPBgwdj1nkSBEEQwYYEH0GECLWy4saNG9GkSZOYvxUVFVWIDLs2otEoNm/eXJE9AYC9e/ciLy+vUvVGUUaMGIEHHngA8+bNsxV8gwcPNtzIW+3Lr7/+GlO0orS0FNu2bcMJJ5wg1De13c2bN8dkNo4ePYqtW7dWynLpSU5ORqtWrbB161bDv//111/Izc3FkSNHsHjx4gpxp6Vjx45ITk7Gt99+G7O1Q0lJCdatW1dpuwcjDh06hEsuuQTt27dH7969MX36dJx99tno3r277bkAKvZuu/baa3HLLbcYHtOlSxd88cUXKCgoiMn2fPPNNxV/t2PXrl04dOhQTJZv06ZNAFCRqW3WrBl++OEHRKPRmCzfhg0bKv4uA6uBjoYNG2LSpEmYNGkS9u3bh5NOOgn3338/k+DbvHlzTHb5119/RTQarfh8rVq1gqIoaNGiRUV2UxZOsm1qldn69etXVOC0g+UZIQiCYIIyfJ5Ad5ggQsTpp5+O1NRUPP300xUj8ypz5sxBaWmpbXA6bNgwAMCjjz4a8/uZM2cCAIYPHy6lr7169cKQIUPw3HPP4d13363095KSkop93Ro2bIiBAwfG/ABAt27dUKdOHTz77LMoLS2tOPeVV16xnVJqRbdu3VCvXj0888wzMRu/z507t1K1RKvP9+2331b6/aFDhzBs2DDs3LkTCxcuNJ3Cl5WVhYEDB2LevHn4+++/K37/8ssvo7CwEGPGjLHtwy233ILt27fjxRdfxMyZM9G8eXOMGzfOcAqmntdffx3XXHMNLrzwworv3ojRo0ejrKwMc+bMqfjdkSNH8MILL+Dkk0+uNPBgRGlpaczawpKSEsyePRv16tVD165dAZTb5Z49e/D666/HnPfEE08gIyMD/fr1s70OC9WrV6/0HZeVlVWaUly/fn3k5OQw3UsAFVsjqKhrIdXncdSoUahSpQruvvvuShlHRVHw119/8XyMGFQhzWq7WgYPHozMzExMmzYNR48erfT3P//8M+bf+fn5+O2339C7d2+hvhIEQRDeQxk+gggR9evXx5133okpU6agb9++GDlyJKpVq4YVK1bg1VdfRW5uLkaMGGHZRufOnTFu3DjMmTMHeXl56NevH1atWoUXX3wRZ511lmn5dxFeeukl5ObmYtSoURgxYgROP/10VK9eHZs3b8Zrr72G3bt3W+7Fl5qaiqlTp+Lqq6/GgAEDMHbsWGzbtg1z585Fq1athDMbKSkpuO+++zBx4kQMGDAA5557LrZu3YoXXniBec3WmWeeiZdffhmbNm2KydhceOGFWLVqFS699FL88ssvMWX9MzIycNZZZ1X8+/7770fv3r3Rr18/XH755fjjjz/wf//3f8jNzcWQIUMsr//5559j1qxZuOuuuyq2h3jhhRfQv39//Pvf/8b06dNNz121ahUuvvhi1KlTB6effjpeeeWVmL/37t274j6cfPLJGDNmDG677Tbs27cPxx13HF588UVs27YNzz//PNO9ysnJwUMPPYRt27ahTZs2eP3117Fu3TrMmTOnYu3a5ZdfjtmzZ2P8+PFYs2YNmjdvjrfeegvLly/Ho48+6qj4j5auXbvis88+w8yZM5GTk4MWLVqgbdu2aNy4MUaPHo3OnTsjIyMDn332GVavXo3/+7//Y2p369atGDlyJIYMGYKVK1di3rx5uOCCCyoyYa1atcJ9992H2267Ddu2bcNZZ52FGjVqYOvWrXjnnXdw+eWXVwyAiHwmALjmmmswePBgVKlSxXCLFSMyMzPx9NNP46KLLsJJJ52E8847D/Xq1cP27duxYMECnHLKKXjyyScrjv/ss8+gKArOPPNMob4SBEHEQBk+b/CpOihBEA6YN2+e0rNnT6V69epKWlqa0q5dO+Xuu+9WiouLmc4/evSocvfddystWrRQUlJSlCZNmii33XZbpfObNWumDB8+vNL5/fr1s926QKWoqEh5+OGHle7duysZGRlKamqq0rp1a+Xqq69Wfv31V6Y2Hn/8caVZs2ZKWlqa0qNHD2X58uVK165dlSFDhlQco2698Oabb1Y6X78tg8qsWbOUFi1aKGlpaUq3bt2UL7/8kvmzHTlyRKlbt65y7733xvxe3crC6KdZs2aV2vnqq6+U3r17K+np6Uq9evWUyZMnx2xBYERBQYHSrFkz5aSTTorZrkJRFOW6665TkpKSlJUrV5qer5bmN/t54YUXYo4/fPiwcuONNyrZ2dlKWlqa0r17d+Xjjz+2vkH/o1+/fkqHDh2Ub7/9VunVq5eSnp6uNGvWTHnyyScrHbt3717lkksuUerWraukpqYqnTp1qtQXRTHflkG/XYl+CwJFUZQNGzYoffv2VapWraoAUMaNG6ccOXJEuemmm5TOnTsrNWrUUKpXr6507txZmTVrlu3nU6/9888/K6NHj1Zq1Kih1KpVS7nqqquUw4cPVzr+v//9r9KnTx+levXqSvXq1ZV27dopkydPVjZu3FjpnrFSWlqqXH311Uq9evWUSCQSs0WD/l4Z3RNFKX9GBg8erGRlZSnp6elKq1atlPHjxyvffvttzHHnnnuu0qdPH+a+EQRBGFGxLUPLlopy3HFSf/JbtqRtGXREFEWwMgJBEIRPRKNR1KtXD6NGjcKzzz7rWz/uvfdevPDCC9i8ebNpwZBEp3///ti/fz9+/PFHv7viClOnTsXdd9+NP//8M+4LmezZswctWrTAa6+9Rhk+giAcUVBQgKysLOS3aoVMye/PgrIyZP32G/Lz820rNCcKlEMlCCLQFBcXV1rz9NJLL+HAgQPo37+/P536H9dddx0KCwvx2muv+doPgvCCRx99FJ06dSKxRxAEETJoDR9BEIHm66+/xnXXXYcxY8agTp06+O677/D888+jY8eOTIVN3CQjI6NiSwSCiHcefPBBv7tAEES84cYaPpq8WAkSfARBBJrmzZujSZMmePzxx3HgwAHUrl0bF198MR588EFPNqYmCIIgCMIlSPB5Aq3hIwiCIAiCIAjCMyrW8LVt684avo0baQ2fBsrwEQRBEARBEAThPZTh8wQq2kIQBEEQBEEQBBGnUIaPiDv279+PxYsXY+HChdi6davf3SEI6UQARMrKYn5TFjXahP7YKGc0qQqqVKFRT4Iwo2XLlhg6dChOP/30uN9igyACA2X4PIEEHxF6SktLsWzZMnz88cdYsGABfv75ZzRo0AD169dHVlaW390jEpBxZ54JbNvmdzfihnXogu+/f9HvbhBxzrp167Bo0SLs3bsX7du3x/DhwzFkyBD06dMHyckULhEEEV6oaAsRSg4dOoRFixbhrbfewocffggAaNSoEbKzs9GoUSNUq1bN5x4SQWf2GWf43QUiQZj4Px9FhIOioiLs3LkTe/bswc6dOwEAZ5xxBkaPHo3c3FxUr17d5x4SRPipKNrSqZM7RVvWr6eiLRpI8BGh4eDBg3j33Xfxxhtv4PPPP0dWVhYaNWqEZs2aoX79+ohEjKa0EWGFBBlB+E+ii1VFUbBv3z78/vvv2LlzJ/Lz8zFgwACMHTsWZ511FmrVquV3FwkilJDg8xYSfESgKSwsxPvvv4+XXnoJixcvRoMGDZCTk4PmzZujZs2aJPJ8hAQZQRBB5gOMwIcfTpTWnqIoyMvLw7Zt27Br1y7s27cPp59+Oi666CKMHDkSGRkZ0q5FEPFOheDr3Nkdwff99yT4NJDgIwJHcXExFi5ciJdffhkfffQRatWqhSZNmqBVq1b04HIye/x4Zw3UrCl23q+/OrsuQRCEJHZ3GyF87tSp5oIxPz8fv/32G/744w8cPHgQw4YNw0UXXYShQ4ciPT1d+JoEkQhUCL4TT3RH8K1dS4JPAwk+IhAoioIVK1bgP//5D15//XVUrVoVTZs2RcuWLVG7dm2/u+cqjkWZW4iKPTcgAUnEKSvrsouR/ftd7EjA6NbN7x5Uxkr8HThwAL/99ht27NiBw4cP49xzz8Wll16K3r1700wUgjCABJ+3kOAjfOX333/HSy+9hOeeew779+9Hy5Ytcdxxx6FevXqBfEnOvvba8v/Jy/OzG+4TJLEni/r1gRUr5LQ1cKCcdiRxGFX97kIMQXw8gtSnIPUFkC8kgyjWZGIl/NQ1f7/99hu2bNmCevXq4bLLLsO4cePQtGlTD3tJEMGmQvB17eqO4FuzhgSfBhJ8hOcUFRXhrbfewrPPPouvv/4azZo1Q4sWLdC0adPAlL6uEHZWBC1qk0E8Cj2V+vVj/x1HlVyDJvhkEq+7W8S7+4hnV6LFSvyVlpZi+/bt2LJlC7Zv346ePXtiwoQJGD16NFWSJhIeEnzeQoKP8IwffvgBTz/9NObNm4fq1aujRYsWOO6443x98TEJOzviJXKLpwhNL+7sCHnwFU+Cr6jI+u/79nnTDy9IRNcRT25Gi5XwA8oHOn/99Vds3boVhw4dwkUXXYQrrrgCJ5xwgkc9JIhgUSH4unVDpuTB/oLSUmR9+y0JPg0k+AhXOXToEF5//XU8+eST+Omnn9CqVSu0adPG820UpAg7O8IavYU9AuMVd3aEUPyFXfDZiTw7wi4Cw+g6ZLqNsLsgPSxTPjdt2oTffvsNHTp0wFVXXYVzzz2X9vcjEgoSfN5Cgo9whXXr1mHWrFl45ZVXkJmZiVatWuG4445DWlqaq9f1RNjZEaboLYyRlmyBZ0VIxF/YBJ9TgWdHGAVgWNyGly4jjO5Ji13W78iRI/j111/x22+/oaCgABdeeCEmTZqELl26eNNBgvCRCsHXo4c7gm/VKhJ8GkjwEdIoKSnB22+/jZkzZ+KHH36oyOa5UYAlEMLODjciOFlix0nJ8IICOX1gwUtxx0JABWAYBJ/bIs+OMIjAIIu+IImvsInOa6+1Fn6KouDPP/+syPp17twZ119/PUaNGoWUlBTnHSCIAEKCz1tI8BGO2b17N5555hnMmjULiqKgdevWaNu2rZRs3uxp08IRqZmRmQkUF/vdi1iCsD+UkWgMmrizQ5b4S0113EQZxBe8l5Q4vrwhfgs8O9x0K07iC6fuQvbnCpLQs8Oor0Hqv53wA8qzfhs3bsTmzZsRiUQwadIkXHnllcjOzvaghwThHRWCr2dPdwTf118zCb6nn34aTz/9NLb9r0JYhw4dcOedd2Lo0KEAyveGvuGGG/Daa6/hyJEjGDx4MGbNmoUGDRpI7bPbkOAjhFAUBStXrsTMmTPx3nvvoWnTpmjTpg2aNGniKJs3e9o06wOCKP7sorsgCb4giD0AyMio/LvSUu/74YSMDCAAVWWdiD3ZBDlDxUJQHtWg9CM93duEviy0Y0cBTcozZf127NiBTZs2Yfv27TjrrLNw3XXXoVevXoHcsoggeKkQfL17uyP4VqxgEnwffPABqlSpgtatW0NRFLz44ouYMWMG1q5diw4dOuDKK6/EggULMHfuXGRlZeGqq65CUlISli9fLrXPbkOCj+CitLQU//3vfzFt2jRs3rwZbdq0Qbt27ZCVlSXcpq3IM8Nr8Sc6bB+k6M1vjISeGUERgHZ99ln0BUXwmX1dhYXe9oMHs68uCH0OgtuwchlBEoKskwOCKP5Ysn75+fnYsGEDNm3ahNatW+P222/HOeecE5htjAhCBC8E344dO2IEX1paGtPss9q1a2PGjBkYPXo06tWrh/nz52P06NEAgA0bNuD444/HypUr0bNnT6n9dhMSfAQThYWFeO655zBjxgwUFxejXbt2aNu2rdD6AmGBZ4Us8efGXG+/I7ewCT0z3BaATvroY+Dlt+AT+Vr8EFQiX5Hfwi+srsMLMShjBniQBCCL8Dt69Cg2btyIDRs2oGrVqrjppptw2WWXIUOGfyUIj6kQfH36uCP4li2r9Pu77roLU6dONT2vrKwMb775JsaNG4e1a9diz549OP3003Hw4EHU1MwPb9asGa699lpcd911UvvtJjQ8RFiye/duPPbYY5g1axYyMzPRvn17NG/eHElJSVztuCLytGjf/nbiL5EW8Pop9mQHIfoXghMBKLtvpaW+Z/r8QPQrMLr9ssWVjK9D7adfwi893X/RJ4KZi3UqBGUv89WuM/Vb/D366GwA1sIvJSUFHTt2RPv27bFt2zbMmDED//73vzFp0iT861//QsOGDb3qLkGEAqMMnxHr169Hr169UFxcjIyMDLzzzjto37491q1bh9TU1BixBwANGjTAnj173Oy6dBIvQiGY2LhxI+6//3689tpraNq0Kfr374/s7GyutQOuizwz1KggOdn/IXo/8UvseTXazCIAvRz5TjDRJzvhavZVsTzCbt92P4VfWEWfEVZjbWZi0KtaTkERfyzCLykpCS1btkSLFi2wZ88evPXWW5g5cybOO+883HHHHWjbtq1X3SUI5yQllf/IbhNAZmYmU5XOtm3bYt26dcjPz8dbb72FcePGYenSpXL75DOJE50QTGzcuBF33XUX3n77bbRu3Rpnn312pZENM3wTeCpGUV9GRmKKPj/Ent/TimrXLv+vW2UnWUgQ0efl8kojs/JLAPkl/OJJ9Jmhj8nUe+3HUt4giD8W4ReJRNCwYUM0bNgQBw8exJo1a9CpUyecc845mDp1Kgk/gmAkNTUVxx13HACga9euWL16NR577DGce+65KCkpQV5eXkwsvHfv3tBVzo3/yIRgYsOGDZg6dSrefvtttGnTBqNHj0aNGjVsz/NV5LEG1mEXfTxOxe6e7N/vrC96/BZ5RiN36jYHfgm/OBZ9ftfRUb9a9b9+FQ7xQ/h5LfqCMhtc5kxuEdwWf3a7ssyaVS78Jk2yXuNXq1Yt9OnTByeccALWr1+PTp06YdSoUbj77rtJ+BHBxsUMnyjRaBRHjhxB165dkZKSgsWLF+Occ84BUJ4Y2b59O3r16iWjp55BRVsSnA0bNuCuu+7CO++8gzZt2uCEE06wFHqzH3+8/H/CUnVBi9d9rlu3/L9eRSheiAxVMPop9HjXYPol/CR8H0qSfUGWCMxdeFlUXvl2P8Uey1aFflaNlOlaVLdhBsv3IGNpSRhmhPtpk1rxJ2ErTWbshJ/K33//jR9++AGbNm3CqFGjMHXqVLRr187l3hEEOxVFW/r3d6doy5IlTNsy3HbbbRg6dCiaNm2Kv//+G/Pnz8dDDz2ETz75BIMGDcKVV16JhQsXYu7cucjMzMTVV18NAFixYoXUPrsNCb4E5ffff8dtt92Gt956i0/omeGGmHJDwMjup110BngTlXiUUVJSKy94jhTku39hGYV2PBR+Zclp0gcsjbASezI5UuLPvl+igbSf4s8LoeSVS5E9IcAOp+NIXglAo356ndQXEX6jR4/Ggw8+iKZNm7rcO4Kwp0LwDRjgjuD7/HMmwXfZZZdh8eLF2L17N7KysnDCCSfglltuwaBBgwAc23j91Vdfjdl4PWxTOknwJRh5eXm499578dRTT6Fly5bo0qWLM6Fnhoiw8uqNyds3FlFnRpyIPSOhZ4UUEehWNVWJwq8s2fq+uC36PBF80ajpn46UurMlhMyMiVviLyvT/N67LZCD4FbCMDtcxn3i7ZeXwo9V9AHlwm/t2rXYunUrrrrqKkyZMoV5fT5BuEGF4Bs40B3B99lnTIIvUSDBlyCUlJTgqaeewtSpU1G7dm2cdNJJqGsiZIRFnhVGIsuvdU5GfXEi6qxwOzILoNgzg0kEeuWYOUWfnbAzI94FnxFORKDbU+NExZ+VuDMjEUSfGbxi0KsZ4iz3TFZfgir89u/fjzVr1iAvLw9Tp07FpEmTkOrlnFSC+B8k+LyFBF+coygK3nzzTdx4440oKSnBiSeeiCZNmhhur+CK0NPid6UFAEpmFgAgUnLE/YuFXOzJEnpmVAhAP52xTviJCjsr3BR9rgs+TrFnhZUQ9CPeNHNDIuLOjLCLPtkuxkgI+rkcWL1/bvYhiMJPURTs2LED3333HdLS0vDwww9jzJgxXNsuEYRTKgTfoEHITEmR2/bRo8j69FMSfBpI8MUx69atw8SJE7FhwwZ06dIFbdq0qbRhumcizwiXhZ8q7owIveBzMYpwW+gBlasNVk333g0dLi4PbtwWG6EVfBLFnhksRWncxossqZvCL6RupoK0VAX5Bf4IDW0c6MUSXy/uJ0+2LxqNYtOmTVi3bh3atWuHOXPmoHPnzi72jiCOQYLPW0jwxSEHDx7E7bffjv/85z/o0KEDunTpghTdw+Sq0OONoCUJPyuBpyfUgi/EYs+urLybwk8VeEaEVfSFWvAZRNhKelV3r/k/IsWHK//S5WorYRR9bguUtFRj+3VbANrFf26Lv6AJv6NHj2LdunX46aefcNlll2HatGm0vo9wnQrBN3iwO4Lvk09I8GkgwRdHRKNRvPDCC7jpppuQlZWFHj16xDhtX7N5dgiIPh6BZ4Sroi9kEZjfQs8IGeLPSuTpcVP0hU7w+SD29MgWf4YizwgXhZ9boi9k7qYCM8FnhAwRGLQdXYIm/PLy8rBq1Srk5+djxowZuOSSSyrNCiIIWZDg8xYSfHHCmjVrcPnll2Pr1q3o1q0bmjdvXjEfP1DZPDsshJ9TgacnCILv72h15iZZYvCsdP7P5KbYk7FRNI/w4xF4RoRN9Lki+NwUe4IRtBPxxyz09IRM+IVR9PEIPj28AtBpzOem+BO9x1WS2O7fxCuuYG5TURRs27YN3377LVq2bInZs2eja9euYh0kCAsqBN/Qoe4Ivo8+IsGngQRfyCksLMTtt9+O2bNno2PHjujSpQuS//f2mDVrdsyxVUolCRwPSunJFndGyBJ8+cWxgikr/Qj+LpEromTH4NrgsHZtuW0DcoSeEUbiz6nI0+OWefMIPtbvuwrK/LmwCBIjZjsBKCzy9ARI9KUVM1S5ZfyuDyWZb8Wjxy3B50TsGWEmAN2I9dwSf2nJZShDFWYhxwuP8CstLcW6devw448/YuLEiZg2bRoy/KywQ8QdJPi8hQRfiFmwYAH++c9/IiUlBb169aqYvqkXemZwCUAPyuhpA3cvNi/mEXx6UWeF7EyOGzG4XTZAVAS6JfRUioqAatXcvQYgz9z191l28Mwk+HhQOyy7oy6mR7TiT5rQ0yPbIR04UP5fN9SUiw7oSLq8gTjZgk9PfkHE9QLATsw6Ldnm2XVpKiWP6APKawJ8/fXXKC0txbPPPovhw4e70i8i8agQfMOHuyP4FiwgwaeBBF8I2bNnDyZPnoyPP/4Y3bp1Q9u2bRGJRJiFnhUxItBjkafHbdGnFXw8gs6OoAs+J1O/zISg20IPKBd7WtwWfjzmz3pPAy34WD6EyAfwovyhVyMBIk5JFXdmyDYKnxwQjxh0W+wBiHFKXhQDsjJzW3Fnhovr53ineW7YsAFr1qzBkCFD8NRTTyE7O9u1vhGJQYXgGzHCHcH3wQck+DSQ4AsR0WgUzz33HG688UY0bNgQPXr0QLVq1aQIPS3aF5fsqom80+/cGlhXiZNYiwnZa3xKSgC3C7npRZ4eL0WfjPsn095cy+6JYvTh3BZ7ZgbitmEYOSY7YWeHTOMImCPSi0HXBZ/FCJRX4k9Y5BkRkGxfUVERVq1ahd27d+Phhx/GhAkTaO8+QhgSfN5Cgi8kbNu2DRdffDHWr1+Pnj17omnTplKFnl1c5kT4OVlj5VTwWcVgQZ9NFXSxp0em+LMTenpkx/fazydz0CGuBZ+e4mL3ZgmwGohbwi8vr/y/sj9fUEWfW9MMfF5A7HolWNn2ERDht337dnz99dfo1KkTXnrpJTRv3tyVfhHxTYXgO/NMdwTfe++R4NNAgi/gRKNRPPPMM7jxxhvRsmVLdO/eHc8994K09nkH4FmFn8xCGqwBN+8Ae5Cze2ETe3pExR+v0NPiJLa3+kyys8yy7M7z6Zw8GAXdsoJfESORIfxUkacnqKIvqA4JsLY3JyLQwdxyUfHHtG40BMKPV/SVlJRg9erV2Lp1Kx5++GFMnDiRtnAguCDB5y0k+ALM1q1bcfHFF+Onn35Cr1698P77C6S17XSmlRfVErUEfQYVIO8dHFSxJ2ozduLPicgzgiW25/0sQczyBVbwsQbdvEGwDEPhFX5mIk8PiT4+eOyNVQBKXEjMIv6ECgTFofD7448/sHLlSnTs2JGyfQQXFYLv7LPdEXzvvEOCTwMNxwSQaDSKp556Ch06dEBeXh62bPlditgrKTn245TDxZFKP25y4EDlnyARNLFXWhoMsQeUx8zqj5aiIvliT21Xj9b2RT6LF0VpfMMPsQfwfSmyDIXF6MwM1gpZjlVF1nfi5jYbXuGD848UH674MfubELLtxIXvd/Yzz3Ad37hxY5x55pk4cOAA2rdvj1mzZiEaD3ZHEHEGZfgCxs6dO/GPf/wD33//PV599Q0MHDjQcZuy6yYYxUuyl8oYxVpBHUQH+ATfvn3Gvzd6R9avz9+XoAg9q/bc3s6ppES+TQYtyyctwyfLYGSqYvVhd2NEQE+1anzizg6ZjipImb6gTj0AvKnQ6lYlWFn2Ivodm3yvEydN4m5KzfZ17twZ8+bNQ6NGjcT6RCQEFRm+c85xJ8P33/9Shk8DCb4AMX/+fFxxxRVo3Lgxli//2rGReiH0tDh9F9rFXEERfHrBFpTsnvb8unWdteVGcUWjNmULP/01gir6AiP4/MrusaA6HDe3hyksdOcafos+FiclMpokcwqCTLQPvhulg70Y5ZRhM6Wl5e1IFOe8wq+kpATffPMN/vjjD8yePRvnn3++tL4Q8QUJPm8hwRcADhw4gIkTJ+Ljjz9Gr1690KJFi4q/iVTilBmsu10tkWdg3SvBZ5aBMyMog+csbbAIQbeyemY4FX127cuMy5wIPm2MK0M4ShF8qkhzqkDdEnt6ZDkBVei51b6s9vbvL/+vDCcj21GJCEYVL6chOBWAXu8Nw2Izbu2ZaYJItm/r1q1YsWIFhg4dijlz5qBWrVrS+kPEBxWCb8wYdwTfm2+S4NNAgs9nFi1ahIsuuggZGRno3bs3qjG8PIxEoOyBareqJTqZOSXrswU5hvKrjbp1vRd6eniEH2/bXok+1jg2cILPCrvA0Suxp0XUGZgJPVnti7SlOiQ7nDobr52VlSD0a945r/jjeRG6Jfyc3CufRV9RURFWrFiBwsJCzJs3D4MGDZLWHyL8kODzFhJ8PnHkyBHcdNNNePbZZ9G9e3e0a9dOaAPT6dONM4Ai8YrM5TLad5+fy2OsYqkgCL4giD0gNqZwujWWU+FoJfyctC0rHpMRQwVC8MkQajIDd1EHxOIUWIUeb7s8FBQ4byNsos8MmfvvuVE+2OnL0Kmzkb0RqI/CT1EUbNiwAatXr8aECRMwY8YMpKWlSesPEV4qBN/YsciU7G8LSkqQ9cYbJPg0kODzgV9++QWjR4/GwYMHceqpp6KmwJQTM6FnhN1z5EZdhMJCd5beBGWwXFYbMtftiWIXs7PGZrIzhKrwk9muSBxmdH9kxGBO2wiE4NO3IRpYynBCRs5BROixtMuKvqKk08A7CI7LrVEqkYXHspyD9h3s1sinHXafJUDCTyTbl5eXh6+++gq1atXCW2+9heOPP15KX4jwUiH4zjvPHcH32msk+DTQtgweoigKZs+ejZNOOglpaWkYNmyY62IPMK58rlYnl/luKyw89uMF+/dX/gkTfos91q0b7Kqhy640rvYtL8/7wkPqPdH+ECYYCUaRmyfLCWkdnUxHxGPgdtsHODWoeC5376dDV7fh2LdP7gvM7iXLs1dMcbHzQRpJDm32rFnc59SsWRPDhg1DWloaTjrpJMyZMweUbyAI76AMn0f89ddfGD9+PL788kuceuqpQuWKeYWeEbIL39m9G2VdR42dglKl3O9Bchliz+n59eu7I/T0yF4aE40eyx46uQ9OB9ydnB/I7B4L+gfY7Y0YZe69Ahg7NJF94fzO9IXVgWmzgF6UEnZj/5hq1Zz3PeTZvj/++APLli1Dv379MHfuXNSWOcWXCA0VGb4LLnAnwzd/PmX4NJDg84Bly5ZhzJgxqF69Ok455RSkczprmUJPi9t1D5xcxyyGigfBF3axp29DRhV0lj7JEH7qvQvClMxQCz4ZgtGr9K1s0QfIyQKFWfT57cSAY05Dllhwu5yw/hoyHJpTJ+Sj6CsuLsby5ctx6NAhvPnmm+jTp4+UvhDhgQSft9CUTheJRqO4//77MXDgQLRs2RIDBgzgEnvTp892JPbspm3yTsVze7qm3dRBWSRqnCRjiqJRG+psKLf7JJoMikaP/aj4leCKC2TdPKMvRhQr45A1N1c19Lw8+aMmIsTz9E4eZLw4WF6ETl+A+mvIWFPhdJqnpGdDZIpneno6BgwYgJYtW2LgwIGYNm0aomTTiUlSkjs/RAwuDH0SALBv3z6cf/75WLduHYYNG4Z69eoxn+s0o8f7DikpMc/CyRB4Zu27Lexkod2Xr359/n36tDh5nznZTN2L+FQr+uyyfqL9KSpiGxhnuc/FxfI2Ug8VQVSq2i+M90XN6vBUo+PNapiNZpSWOs+QOG0jGhUPbJycm5QUTMGpf6m4MVVQ+1JkyfrZiUnVfp1k/NRnWtShaYWfYBsiewarrFmzBkOH5uLzzz/Hq6++yhUvEQTBBgk+F1i6dCnGjBmDmjVrYuTIkUhlTFV7LfS0qO+k1FT3snhBFXg8As5JHQGn8ZHVta3EoIysHi9qjKwXfjKEp5no8yP+dCIaQyk4vUiNsoo/UYfHKvxY0taiIlLfhpPznYxAyZiu4GQDdrfRvnTMxJ+TqcVW4o+3Xa+En0uVqKqgDGWoInRu165dsXnzFvTs2R0dO3bEm2++ib59+0ruIRFY3MjIUYavEiT4JKJO4bz//vvRrVs3tG/fnmlvvWnTyoWe6HtfRt0DtY2iIrlLXrQxkxtLaVjxu4Kn22LE6PNFo84HuJ3GBnl55f2QPYVeFX1O72soRVeY4RWMZuJPhtMzEmtO5ia7KfrccmAysnx2gtNIEPqRITTK/slcR6qKv4wMZ+3KEn6iGTsHTtGJ6MvKysLPP29E//6nIjc3F1OmTMHtt9+OJArcCUIKJPgkcfDgQZx//vlYvXo1hg8fjroM8+9UoadFG2DbxQ8yhZ6+D05iF5kbrfPiprBzMnPKa9Rris5wkjUIrPajoECu6CstLW9TRh0F0fgmiDPabHGSoSsqcjZq6jQ7qN5w2VNSVWNyGlg6zfape5F4jRPRx4KVIBSdpy7DQR04cKwdGZWnVLTfoRPRJiL8ZDluB1NEnYi+SCSCpUuXYezYc/DII49g+fLlePXVV4W2ryJCBGX4PIEEnwTWrVuHkSNHIiUlBSNGjEBaWprl8UZCzwgz8eeW0NNfmydu8SNO8TtrF1SshAiLAJQRMxj1oaCg/L+iws+oX4WF7lRON8LsvrKuK4wL9DeB9aUqS6Rpp9DJmjKgGqYs4cPjPI3muSdSoGLmxJ0sWGZF61B4FiCztgnIydbZtWHnsJ2s7xMcDXMi+gDgjTf+i8suK9/G6oQTTsAHH3yAzp07C7dHBBwSfJ5Ad8Qhc+fORa9evZCdnY3TTz9dmtjTU1rqvEgY72brLEU6eCo0OhESahE2vzZZD0t2j/d62vsqq5ihXR/U+JoVu37JWHOq1yPaApKyCkmGGjOnwXKj3BB7AP8G73oKCiobo6wv26xPdhuzq33wGtFruhVUBWETdt5RTCs7lFGRU9uGiO2LPoeClUCroMzR9jHPPz8XAwcORHZ2Nnr27IkXX3xRuC2CICjDJ8yRI0dw9dVXY/78+TjttNPQpEkTy+NFhR5gHIwC7O9aJ+8Z/WC1V5m8oBZ44SHoYk+P00FunuuzZPt4YhmnmT4SdRKRfSNZFD3PdEqWEQdeJ2vWJ97RDe31aYQ6Fq3ok7FAmQWz6lN6ePeWEc34RaPHngfRjJ2Tcz3O9j399BwAwIgRwzB58mQsX74cTzzxhO3AOhEyKMPnCST4BNizZw9GjBiBnTt3YuTIkahRo4bpsTKFnh67mETG1E/gWHbRTYIs8MLgN5zE2EbnssY5Tq+tX9vnJMPII/rMElGiBVxCMa1TdITfiSPRX5P3YeJ1PHbCj1eAiQov/ciYSBtei76wiUwnWzDwOhqr0TARp8Ur/Kwy5x6KN7+meH7wwUJcdNEF+PDDD7Fu3Tq8//77yM7OFm6PIBIREnycfPvttzjjjDNQq1YtDB06FMkWI8qiYk+0kF1SkjyRB8TGRrLjgCALPBl4mS2SLfa02GX9ZHzOgoLydmSsxbMSfZTB8xgjR8az356TUSa98BPNtAHs2T6r6Q+iYioMIiwoe/J5sQcfEPs9O3Va2he26F4zosLP4/Ocir6XX56Pyy+/DMuXL8eJJ56IDz74AN26dRNujwgQlOHzBBJ8HLz88su4/PLL0aVLF3Tq1Ml0ywWvhJ4WNTZyWsfALC6SEXeo78kwPIderxEUrVEgGmeJnKfN+smK77TtyCrAos0a8vbT620aAr8thMwRJD1W4k/WlAKZTsfICfLMcQ+D6AuDwGTFTADKLEHstBKVFm3WT8TBOsnaAZ5s3+BU9M2Z8zyuvPJy/PDDDzj11FPx7LPP4h//+IdwewSRSJDgY6CsrAw33XQTZs+ebblez0+hpyJaGdzJALgZfm7PYEUQq3va9clIEHop9rTnqnGUk2J2Zn2QJfqcfEYvRZjI2sEUHOW/kMz9xlhwst+eLJGpdY4y1uRp2/F6bZ4TIeaVw/OisqYTVMcVjcrdhgGItQcn4k+77lPEEXo9zVPgemohFydbN3Tu3Bm1a9fGxIkTsXbtWkyfPh1VqogLScJnIhH5A00Me2AnGhFFURS/OxFkCgoKcM455+D777/HaaedZrgfzH33xQo9LyqVswyA24k+kZjFyawm1jZknBtEUScLbWzMG2O5Mf2TJ3ZivT5vrGPUrhPhKCr49LOyWD4v77WEBJ+dszF6sESFl0zHJuos7BykaLtaB+eFI2M5L0zOTpYolOnI3KpQxSv8zDKPXjoy9XOJLEgWcJqiom/SpIkAgLy8PHzxxRfo3Lkz/vvf/yJT5mavhOsUFBQgKysL+RMnIlNyIZ6CI0eQNXs28vPzyS7+Bwk+C7Zv347BgwejuLgY/fv3R2pqaqVj9GLPCP072m2hp8VI9DnJ5hnFG7yZPJlxUphiHVlYxRpm8ZSb6/xUrOImkevbxTksbXot+rw4xxXBJ+scJ+cB5g6Ox2mwOkmeNs2cnJeiT3V28TLlUg+PGHTTodkJQJFr2wWcLNNMRZ2ZlYOx+iwhEX0lJSVYsmQJ0tPT8cknn6Bp06ZC7RHeUyH4rrzSHcH39NMk+DSQ4DNh1apVGDZsGBo2bIiePXsiSfeSZRF6etQ4SOR97WRJS3Ky3CmbSUnOpmuKfP54j3VY4Y016tb1Ruxp0cZLTtf6GcU4vG26ESf5eU6gBZ8Xo1lmTkDUSVo5FVZHJzNjp2I1mpVIjtDP+ex68efUoekDT5H1hE4dGu9n4BV+Poi+aDSKr7/+Grt378ZHH32E7t27C7VHeEuF4Js82R3B99RTJPg0JNBbg50333wT/fr1Q5s2bdCrVy+pYg/gW7fjdLP1wkJ5a+nUvWi9qLDp1567QUYk1ti/33qPZ6tricY2qr3JKOyi2r8fG6CLzGiUtce47wRV7AHGhuDESRq1x7vxthMBEo3ybzQehKqYXhHGTdjNKCg4NvoqWjxGxNajUfHN33nPEdioXXSD9lmzymOxpKQk9OrVC23atEHfvn3x1ltvCbVHEPEMFW3RoCgKHnzwQdxzzz3o168fmjVrFvN3p0JPj5tF6vTny9pOyi1I1FkjI77Tij6riuUyrqXaTRAG1lgLwcRtDO2VCuXZckGLqLNTryeryIu26qLo+TyfO973pnET/QvDi4IxMqpVqTjd2kF9ZqzONXNoIoVdRDYa5SwCI1rBc9as2Zg0aSIikQg6deqEGjVq4KKLLsKvv/6KW265xbSaOhEgaFsGTyDB9z/Kyspw9dVX45VXXsGwYcNQV/cCkS329MiIXeziJp54xE2hJyruEvX5dUOImIk/2dfSb6wuitONzY1EX9wKPKeICES949LfXNnTMM2uK4qsOe921UBlirx42kLBKSwCUNYDb7c5qR1m2WlZwo/1c/JW5eTdLF7gGk5FHwA0b94cGRkZeOCBB7Bjxw48/vjjVMGTIECCDwBQXFyM888/H8uWLcPw4cNRo0aNir+5LfRUnBSn450NZda2m1tK0WC2GF6IkgMHjn2XbmTkZG1V5VT0Afz3U8Y1CRhn/+JN7GnROkg3nR+JPmOMRhWdbMRu5jh4xZ+VA3Iq/KJR/nO9yPb5IPrq1q2LYcOG4Y033sDu3bsxf/58pAd6w9MEhzJ8npDwRVvy8vIwfPhw/P777zj99NNjnAKv2JMh9PRY2ayTeElt163iK27EOF48v25MLfV6U3VejO6rW1MxZbTLK8C0n0/kne92sTrXi7bwOibe451s3yBq5DLEnhtCT9+2nw9xPOP0vvKKP57rmQk/t6pNydqTxgvnyFE4piwphfuWJSUdK+QClA/mL168GM2bN8eCBQuQlZXF1yDhKhVFW/71L3eKtjz2GBVt0ZDQgm/nzp0YOHAgSkpK0K9fP6SkpADwL6tnhuz1fbLiHH2/3M7iOanuGQa0wjAocaIbfjIpyfnm6nZxhtXn8jKukX0swCn43BZ7gLzqNqxGH2SxZ9RuUB5mM2Q6Sa82X5d5T+3En5NrqeLPSRtmztKtfWl4HRLv5qMc7R9FCl9f/sdVVx0TfUePHq3YtuGzzz5DTk6OUJuEfCoE33XXuSP4HnmEBJ+GhBV8W7ZsQd++fZGVlYXevXtXVOIMQlbPDKdxjhsxjldFXQDzeCZMok4EJzORzOCNDWX6S/XaskUf62cKmuDjPT5Qgs+tUqZGQWPYhJ4WP0Rf0B2jE3Ho5v3UO1wZ15LhQEXW6enPY0VE9PH0yWPRF41GsWLFCuTn5+Orr75CixYthNok5EKCz1sSUvBt2LAB/fr1Q8OGDdGjRw9EIhESeoLteVn4gtYBHsOJCHSyZZgTkWZ0Xaeiz6s99kjwmSBSsp0XtaS8U1QHLMtpiThWtyswxQt2YtCrF0/t2nKv5cecdhUvhJ9LUxtkiD5FUfDNN99g7969WLp0Kdq2bSvUJiGPCsF3ww3uCL7/+z8SfBoSbOI/8MMPP+CUU05B48aNhcVeURHfvmCie+mJbpsDHNvuR5bYk92eHerecdof4hgHDohtEeV0f2hRW3arSKPT81nxQtf4jldr93iRKfYA5wUCnGyO6nStXaI4RqO99/zYlDUvL3gvUtHAgNduRQZaeHwIx7Hc65YNiEQiOPnkk9GoUSP07t0b69evd9wmIQnVJ8v+YeSBBx5A9+7dUaNGDdSvXx9nnXUWNm7cGHNMcXExJk+ejDp16iAjIwPnnHMO9u7dK/tOuEpCCb5vv/0Wp556Klq1aoVu3bpxiz0zP2sm/vwUejJgeTfJqBWQKDGMTPT3nUX8iXxXZn6T1bZZ/K4foo8l1hB8dyQGxcX8N8YPFWxlqLz917fldPSEBfWhJsd4jP37/XlZuDWKKooT4WeGUTDDe50Aib4nn4yN7yKRCLp164ZWrVqhT58+WLNmDXebRPyxdOlSTJ48GV9//TU+/fRTHD16FLm5uTh06FDFMddddx0++OADvPnmm1i6dCl27dqFUaNG+dhrfhJmSufKlSuRm5uLTp06oVOnTkJZPR5ECtA5GciW+Q7ihfdz5uXRHmhO4IkXk5LE9wlmvY7RTCGRWNjJ9E4ZUztZ+uxWMRZXpnS6OZ3T6lijh1tU7DkZDeDNZoi2JerMjM6zGrEhp8mOjIXPrE5M1nQxJ+04mebJY1c81wnQ9E7t1E6V9evXY/369Vi0aBF69erF3SbhnIopnbfc4s6UzoceEprS+eeff6J+/fpYunQp+vbti/z8fNSrVw/z58/H6NGjAZQvDTv++OOxcuVK9OzZU2rf3SIhxq3XrFmD3NxcdO7cmVvsiQxuqbEN6wCyk4xeYaFzsacOXLs1XVObffKyyEs8IiKkRKZ9iiY+nGTDCgudPQciUAbvf8jMvulTo0EXe4CzVLaoAannsTrHhDdSDrycMiIr6+ekHZEgIimp/Bye51M0GJJ4rIxMHwB06tQJnTt3Rm5uLmX64piCgoKYnyNHjtiek5+fDwCo/b+BozVr1uDo0aMYOHBgxTHt2rVD06ZNsXLlSnc67gJx/wb54YcfMGDAAHTq1AkdOnTgFnusWPkrs3jA6VR8bZAtgpOlKFqspheSwJMH7/fs1bRP9byiIjn25KXo82oZWlzhxdRMUUNy6tRUZy3SjshUTV4HSaJPDN6Xksh9VgWbjH2TnFR4s3NqRgEJr+jzeYqnLNHXoUMHdOrUCQMGDKA1fX4SichfvxeJAACaNGmCrKysip8HHnjAsivRaBTXXnstTjnlFHTs2BEAsGfPHqSmpqKmbrpUgwYNsGfPHlduiRsk+90BN9mwYQP69++Ptm3b4r33VjCf59Y6ZW3hCxGszktKYi8g47QNI8Im7PbvLy8EJ7sGgFvbUDkVe3rU70vrv2QtSSos5J9iqW+jqEhslpLItXkoLmaffcRzLCsyihd4iuw1RnbXUg1J1JFpR9FE2rA6z8xJ8l7LiaNORIwcm/67EJ33bnYt1Y5EnJGMNtTnTnWiLM6d12HxOGkXHGcKjgpX79TSqVMnlJaWon///li+fDnatWvnuE0iOOzYsSNmSmeazdTRyZMn48cff8SyZcvc7prnxK3g++2339CvXz+0aNECCxasYj7PrYErFZFYhmeDdrM4QHY1wyAKvAMH+OIgNwq+sc4e4lliIlvsacnLA5L/5wV4l5BYXYdVeFm1ISr6ePHqOlawf2cuZHhcKrIghKy9a0SEn/7aouJRex6rowyS6AvLKJhMtN+TzEXPWpsSdYgyhB/ruerzzSrOQib6nnxytuF6vhNPPBFlZWXo168fVqxYgVatWjG3SUjAjXUV/2svMzOTeQ3fVVddhQ8//BBffvklGjduXPH77OxslJSUIC8vLybLt3fvXmRnZ0vttpvEZdGWXbt2oXv37qhXrx7z1gtul113U+jpUeMAp+frkVlPQDRWsRNUfg58s/orq+P0sYabYg84Jva0sPhGnus4LerCGk9oP4ub++yxtp2UxH4s63FVUMZ2IMDupNwa5RJ1qqWlfOexXMfKMbA4Sl7Hoq7F4v0sPNfh7RPraJRfTjQpSU6xFaN2RY/nEX9OqlzJOF/2eUFwoozH8Wb6jESfoihYtWoV9u/fj1WrViEnJ4erTYKfiqItt9+OTMnTYQqKi5E1bRpT0RZFUXD11VfjnXfewZIlS9C6deuYv6tFW1599VWcc845AICNGzeiXbt2oSraEneCLy8vD7169UJSUhJOOeUURP43j9cIVQTqYxir912QhZ72fCfvbO25PJk8maJPf13WtsMu+IyOY405ZIg9LUY+UnQQTo01RM83iyWsPoNX8YrVZ/JN8MnI2ukfJi/Enh47wcR7HaO9c0TPNcKo6IbXos/MaQfdido5B1ExKGvUzMoR++EYgyb8eEa4eNr1WPSpU/lWrlyJrKwsrjYJPioE35Qp7gi+++5jEnyTJk3C/Pnz8d5776Ft27YVv8/KykLVqlUBAFdeeSUWLlyIuXPnIjMzE1dffTUAYMUK9uVifhNXgq+4uBgDBgzA3r17MWDAACQxONEpU6wzf9p3H0+847XQMzrXyXtbpLCZqOBjEZVhj1VkHuc0C2gn9PSovtLJjAv1mk6mTqrn8vSf5x3C0zfWYwMv+NwScbKnTBiJJr/2sTFyMnbtuSH6VMfpRlYwTI7UbkTMjWkSTp2w/lyv96SRIfrMPnNIRJ+R4APKi3YsXrwYDRs2xOLFi5EueyE2UUGF4LvzTncE3z33MAk+s8TQCy+8gPHjxwMo1xc33HADXn31VRw5cgSDBw/GrFmzaEqnH5SVleGss87C2rVrMXjwYCTbRIV2Qk8Lb1zBK9zMNnOXcS3WdvTxCm98wnotrbhzI/bwI06RLfZ4jk1O5lt7xyv2tOeIxBVG1xMVfSLbVLmV5ZM9eynwgs9PsaentNSZ2FPPFXFyKtEov2h0KvpkzKmPR8FnhGg1KhHhxuuEra4nKvySksQcq4jwY71Hske7PBR9R48exaJFi3DSSSfhnXfeQZUqVZjbJNgJiuBLFOKixrOiKLjiiivwzTff4PTTT/dN7IlU8jZr386nythSQa0ibRS3iAgDI7zcoiHIhevcEnuA9fdodDwP2nN47C052fx6PM+U2k5ysliMz1NBl+c7kr2dgxc7HXiCm5u9q5SUiDso7RdnZaQs7fCey3t8YaH8PfrcGJ0KIl69ePROmAezAi08jlbruET2eeK9nhsFntyYjcCI0VYNAJCSkoLTTz8dX3/9Na688krESV4kuMjeksGNIjBxQFzckQceeABvvvkmBg0aZJt+ZxV7PL5TVOixbJfj9FpGbcjaJ9boWom2B59LhaVsMYsdzcSfSGxqdA6L/bFcy872za4vU/QZvRfiRnix4EZ2D2B/6YrcbFHBZuVwedrRPwCyHiwV/QMsa+QtUVHtz6sXE+vom4wRXbM2RIUfKzzt+yD6eLeuMRN96enpGDRoEN544w08+OCDXG0SRBAJ/dvk1Vdfxb333othw4Yhw2Z6Ao/YY6W4+Ng7mWXGjkjsFI0630tY5B2XnGz/mdwQjmHBr0F11hiwoEBsywWW9o0qhfPGpkYVvVnFosjspYQZ8PNLtVopaxU1De9U7Gmxc8CsTtfK4Vk5YBZHaXUOS2qepX3WrRpkHxdGjPbhk70YWv1e9c6X5zpmWzKwtMHrKAsLyz+T7C0ZWLdjkHicrD36MjIycPrpp+Oee+5BixYtcN555zlukzDAxW0ZiGOEWvAtW7YMl156Kfr374+6Fnv9uCX09FjFHSKZCf1gtsiSE/V9IXq+EWERebdcdSj2FwwvkzLYz9U3+u5nzTI+1i+xpz/WLPYQbVuluNhZvQF1ZhyvgGONNdT7WlIif8P0IOzfFzrUL4RXTLA4UCMHzOt49W2wjrTxjPoB/Ns2+CX6EgXthqSA+Jo8I7QvTNF2tcJPZO65naPSfnae/fK8FH3az83g0FNQxvQ+B4CZM41jxOuvn4i6deuif//+uOSSS9C4cWP06dOHqU2CCBqhFXybNm3C8OHD0b17dzRt2tT0OK/Enhbtu9+p0NO3y/LOl73JetAE3k2X/hX7C5lVMQSZNCn230Y2Mneu8bluiz0tZrGHk/V9ovsCa68pIp7MzgnDwF71qTfF/sLNTt95Z+XfyZ7OKbK2xyjz56QPKuqCTycjXMXFYufbOWmjudZ+iT4z9u2r3J5buLHvngzsRJrTNaSiFbDUZ0fEWerPs/oMPBuws4pKuza1o3Ms12YQkVU4RJ8RWiH4/POzccYZI7B69apK+7QRDqEMnyeEUvD99ddfGDRoEFq1aoXjjz/e9DjZYk+kgjnP+5x1EFtk1hFvX/wWeTeM3VH+Px6mUESze6z8r7pvBer3/dZb9ufKEHt6CgqA1FR51TcLC9nasirmwvt1l5SUfwYW384zcM1zrJ4602449o8gvHTuuSf230Zi4NZbvekLz7RPwNmIGW/WTUU7LULkfL2jlTVlUwa7dsX+22/7NNr/R2+f9eu73w+7dZVaRLN0ZhWwRJwmq8jSwzulwq1sH+DZu51F9KWn27/bL7tsIrZs2Yzc3Fx8++23qFOnjsReEoT7hG5bhpKSkoq99k477TTT/TNYxJ7MrB5Lu06XmBi1xZvN4xl8ZjnHybHRqEbYGcHyQpCY3ZMl+FiOsfvOtSLQDbEHlAslLU7Emh6jtljPZY0D1PZ4hZmMKuBNHv4X2wcKYlVEluyPesy119of60blPvVYXiFk9WDZtWXlTEUEGe9mpqzXYDlu2zZ59um1KOSxz5wc6+Pcnj7BKv5Y2jdzwCzn8jpNnnNUWB2nzL1tJL3fWbN8du4pGo3i/PPPRl7eAXzxxedISXG+TjCRqdiWYdo0d7ZluP122pZBQ6gEn6IomDBhAhYsWIChQ4eaPmwsYk//YJu9Y9zYl1h9Xzsp7e6k0BjP4LPROaLHXnfG5mP/sHu4Ze5s7eELgfUYlu9e287HH9sf70TsaXESdxi1IzL7yezrN2vLzb1+mzz8L77OaAl7QG2GVgi6UVZdf6zMilhGbbGOnImIRnWKmoz2jY7bts34GNYHLx5tVBWCXs6XNwsqRR2nyLm8jtPqHCNYnKd6z1mODaHoO3ToEPr3Pxm9e/fCs8/OMU06EPZUCL4HH3RH8N16Kwk+DaGa0vn444/jjTfewIgRI6SKPaDyjCI3hJ5KcrL4lEmns40Ab6Zrxog7PbIebI/X7skSeyLXGjIk9t96AShL7AGV1+SJLldR41yR8/Wzg+zakDVds/Wjk9kumOg8+mis87nqKuvjnWYBtd+H06pYWufJO0XCbPqlVTupqeyij2V654YNx461orQ0ce1YnbqqvZfNm7t7TRnFWYDYlzzvfHv9VE/ZZY+N1uH5PS0Y8GQ9n0r16tXx9tsL0adPV5xwQidcc801jtskCC8Izdvg448/xi233IIhQ4bYbr/glJKSYz7MbqCRV+yJLC+RUYRF2wZP/MHK1f3Xl/+PXdQta9RPIjJeAjzI2LR7yJBj795ly9jOsRN6etT2RR437bVEq1mWlPCdJ7LurkLgEbHwFv548snYf9sJQDNYhKHeeYo+UOoCUF5nKCIYnYg+VeARsbDYqPZe6jOhqgB0a4E04Hy9n2hFLHWtHs8+lQC7w2UprMLikFleDk4WVOuQtZ6vSZOmeOON9zF8+Olo27YtBg8eLKV/CUskIn/ggDKvlQiF4Pvtt98wduxY9O7dGw0aNDA9TjS7Z4WsWgIilTdZYgm7AWGzNnjjHP11KgSeFpcrYXJfy+Psnl9oq0SbiT9esWdUX4Al5jC7Do/oc1q904pOT05M3KyHbKycjyoA1b9fcYU711cDW56pDnpnLCL6REbheK7z44/BstNo1NtMjhfbRmgFoGo/7drJaz81NfbFwSrazCpisbahd6AAuxO1O57XBrwUfYzCUJboO/nkXnjiidkYO3Ys1q5di5YtW9pemyD8JPBr+IqKitC9e3ckJyejZ8+epsfJEnssx/C860WWlYjEEiLn88Q4V/YxEHh6vMzuBWxeP+sxvGv3nByjij8nYs8Io5iD5xpeLzPp9ORE9gvJPias66NYj7MTWkZ/NxN/blbGsjtPxc4pmjlXHsFpdo1162L/TXYq5xiW78boGL344xXgbi6UFjmfd+RMPd7ue0/w9/7110/GsmVLsXr1KlSjjVm5qFjDN2MGMqtWldv24cPIuukmWsOnIdCCT1EUXHjhhfjqq68wePBgVKli/JB6Kfa0x1i9R0RnGYkWYxE9zyq+ubLb6mP/kOHU3VjEbfbCZ8zuHYV9lS07u1Dfh0ESfPq///CDfZs88Ywab/CKSRWeJSb6c+zo/txE6wPsLsraqXgOpFmPExF8eq64Qv6iaafr/Iwco91IGu+C6pKSyiJPS6ILPsB/0aelY0f7NlRYHaOTAi3a891wpKxlkP169wOO3v8s737A3jWVlpYgN/dUtGlzHObNm0dFXDggwectAZozUplZs2bhww8/xMiRI03FnpfoH3yjdXhON1rnnV3ktIiL/noxIk9FxtRIEYdv5szdnurDiV2RnyCsaT/hhPL/mgk/3lhDtTNRwVdaym9WVjN/us+6xFmHeBEJzszK9HtlIEHd5Fq7/u+f/7Q+ltXBah2iiFPWOkbWKROsU0tFU+9eQrZamR9/PPb9dulifhzP9+qkQIt6fmoqnz+ym7bJ69tkTbc0cvD6d31RkbSlGik4yiz6rEhOTsUrr7yDPn1OxNNPP41JkyZJ6F2CQRuve0JgBd+qVatwww03IDc3F9WrVzc9zqvsntXfVf/IW/3SLA5hEX1mMQjvcpbLTjAQeLzIWivHIuQkrsuT4exZUD+WG1lmXlThB5SLPxHdov0KeNfYaWMhkbX42utViDwe3FoX5XeAzILaR6vnTHagzeuQnnuu/L9Gwk90w1LRKlUiJZCtRt5Yqytpr++GvcabrfIWb3FyjIo+M2slAO1wUqBFdagiG7Frz7GyM4lFU5iw+y4lrudjEX0s6/kaNszBiy++gVGjhqJbt27o0aOH7bUJwmsCKfgKCgowevRodOnSBQ0bNjQ9zsupnHaotQMA58tIAOMYRUa1TgC47Lilmn/ZvCC8yu7JfKEkSLEWM1inlh53XPn/m23jpcfstrLEGmaD3iKxhJDQk4U6dzpIwbFMtGJAG3h5nXFRhR9QLv5ExJ72QVANkEX46a+lGiiPM1DFA6/I48VKFGrn+YfVXq3EnB+2aiYKtQKQJ9h3UqDFyKmKCL+SEuf73sjM8sl6f0sUqiyir0+ffrj11jsxZswY/Pjjj6hRo4aUaycElOHzhECu4bvwwguxfPly5Obmms6HZhF7QOV3t94GZAhC1voBIjFLSYnzIi6AXuT9D7uXgqhQ07+gPdxclfU4WfP3WY9hPc7OXlnaEbVXK+HH897Uft2ss5vs2u8350K2xuyO4VnzZLUwVuaap7Cu4atdW87aKLu/a0Xa+PH21wPsHwIz4WfnpFkf9kWL7G2RxZ5Z7dVuEXe82yvLMSz2KsOetbalLaGsR2TRNCCnQpbR9d2KB4DY78fLeMDDtfwAEI1GMXz4aWjevAnmzZvHdO1EpmIN32OPubOG71//ojV8GgKX4Xv11Vfx3nvv4ayzznK8+NXo3c27/MtJhkd0qqeK2n+W0SWja49rbiDyZKI6U6ub6nXVqoBm90QLuuhvrez9E7Wo21JphZ/I7Swt5f/ajfbz7TfnQr5GnKyJ0gbMQSqHH2QOHKhsoDVryr+OdrrD3Lnl/zUTfqwPrT7jxzoaZ5ftW7SIrR312qI264a9er31AissUzZZjmGxV94pyEZo7VXN8FoJPxac7McHxDpkUXvhyZh5sc4+gFM7k5KS8Pzz83HyyR3x2muv4bzzzrO9NkF4RaAim99//x2XX345TjnlFMfr9kSqIYq861gGhHmWkJi1xyP6xmV/Yu/knIzmqc5cllP3espniNHecrdis+zs8v+KVH7VLikR1frcQk8E0bK2hDX6++qGAASOCT/gmPgTGaFJTRWbeqF1yGYiz4mg00P26g4i9ioiCrVTe/v0EV88XVoqNqJWVFRui1bvUaebnkajbFMyPd5s3eupnTk5jTBr1n8wceJ49OrVC82aNZNy7biGpnR6QmAEXzQaxfnnn4/mzZujuZpqMIB1KqcdRg+tGkyzltnnmf1jt4SEJeawcjbjsj+xb0CUgFXFdIrMYi1+rvEzEn8y+6PGPiyxptPlJIOfG+Nu1UL1Q1D2zlvy8mKDYzcE4Ny55Y714ov5znNSHhkAPvwwGDbLUtxFZvYunjOB6j1XbVbUXq3sSRV/JSVAbi5be3rBwrtWT7VTO/FjJ8b05xvdS1kCS2IGjwVZVTsBYMSIs/HJJwtwwQUX4KuvvkJSEJ8XIuEITPQza9YsbNy4EWeeeabjtkT3wFPRltmX/Zzq3wO8fdWLPkOh5zS7l5pq/+J0a18dJ8TZdE6edrRJVyubFVmiZCX8WOJdqxhi8HNj7BsQhbIiwUP7ncgWfy+9VP5fFuFn9CCwFnZ56y2+fvFANmsMi5hzA7MMoIypn0BsdthM/NkJNMDcwbo1IOH0u3CaTeTF46mdAPDgg4+ie/fj8fTTT2Py5MmsPU1MKMPnCYEQfNu2bcPNN9+MAQMGICXF/GFzayqnFfqsH+t1rK6h+mDRd7v0bF7QM3gh3IrBT9ya9qkXfjyxhD4uqST0ZBS4sHugZG1STchB+32J7EFmhir8gMrij7VEMlBZ+Lkh9IIm8IKavQsK2u+rtFTuoIUq/rTCj/Xdp3ewVv5SNMunvlhYpm0GMcvn8dTOjIwMPP30XJx33kgMHz7ccuYaQXiB79GNoigYP348WrZsiUaNGpkeJ2sqJwtW0z0B5+9D1TfzziI6N/Ud55W01POdiLw4z+6xEoYtG2SLP3UpiCjSM3raACzIG1nr8aJkvlvr59zArcyfNuvHO51C66Bli72w262botDJ9y+rwAvrvn1Wdmv3gjf7uzbrN3KkdR/0qA5apk25NSAsM8vnw9ROFtHXv//pGDPmAlxyySX4/PPPHRcijFsow+cJvgu+5557Dt9//z3OOussy+NYAlfZ2T0z1IJZZv3guYbdLKJzU99hb8yOaFTOVE0Z/WAl5EJOa5Nu+x+7fqtfv2g/nEyVPnu+RKHnd1bE6gbyCjk3jcLsPhk9f0ESh26IP3Vfvwsu4Dtv/nz/C6/I2oDd6uHntVs3M4FW98mLqrCiuGG36kDD6NFsx7NWzbITSIWFzs5nPYZF9PkgDGWu57vvvofRvfvxeO655zBhwgQpbRKECL4Kvr179+L6669Hnz59kGrxUr399tjsntk6YTtkb8JuNt3TCrOgWT/YZyj0RLJ7vPvf2MGT3QvYVFG/p3Ma3Y6kJO8GKtTreFHpU+Xsuf9bk+s0aLYLlr3KkuTlxefIodH9VQ3Fz6Ba7VdJiZx+zJ9f/l874aetAmqFXSXOkhLni8pZYBGF8Wi7onYrK8vH0i8r22XNAtoJP1n+z893ttNry6zsyQhLli8rKwtPPPEcLrvsfIwcORINGjTwpnNhgjJ8nuCr4LvuuuuQk5ODpk2b+tkNLqz2SktKchaYS8vmiTpOWc6S5foyF2yHOAvotyaWZbtaKkSeU7QbWPqxts7vTGJQMLsPXgtBmRkUM+HHKvTs8NN2ndpt2NfxqWLOC7tlFYWybNdI+JmJPZ7MmNGLyGmWkPUYWVs5sOJDlm/w4GE49dTTcN1112P+/FektBlXRCLyfQ5Nn62Eb4Jv6dKleOeddzBq1CjL4/TZPSP8yO4ZYTdlztFAr9PKml5l92hdXgVeDOzLwul0T8AloecVtG0DP3l5sT7HSwGofl+yhB/vlgxmkO26i4xqner98mt6qN52RbYE0a4p5Z2mrKJuEhxPBLSACwDMmPEEunVrh6VLl6Jfv35Srk0QPPjyhigpKcGECRPQpUsXZFhUZ2MRe17CWplTJHA+GwLZPZnpIS/FlZflmP+H39M53UZ2xtHTAf7iYm8r4FDmzh2M7qvbQbT2mj74FQDORR7vBu1O7DcR9uNjRS8ejbZgkLH9gpmgY7VdEUGoYldx0ymysnyy1vtJRmYBl8aNm+C226ZiwoTL8dNPP1pWpE84aEqnJ/hyRx599FEUFBSgY8eOjtsKSnZPj74+itTsnr5xp/vuhZmQZwH9sE0WpNqvVTDLEiw7zVzk5cX+EN7h5b0vKPA+w+bF9VjvoYx94eIFGcEe632XkVlVbVfEntQsNStax273cgnaNBWZC959eLFOmnQtgAgeeeQRz69NEJ5n+Pbu3Yu7774bAwYMQJKFU/YyuydjY2yzNqQl4dxc7CVrqiZN5wwsvtuvFreD5CCIOhpdNEZ0LRNPlkO1r8xMsfNZ23cTvQ3LqtTJStizd25gtgk7C3b2p80kumW/bsUQXmb5ZPaJEZlZvpSUFDz66DMYO/YMjB8/HvXr15fSx9BDGT5P8PyOTJkyBTk5OcjJyXHcllfZEaeDXHZ9sJ3OaeWofRBGjkiQ6ZxBGxgNBG5mYOxG4hNhfVPYcDv75yRrokUNtEXbYi3qEcYstB9Vp2QGcixtmfkO7fel7tUkE1n2W1Rk/T3FY5aPFcYAMQVHpV3y1FP749RTT8Mdd0yR1iZBsOCp4Fu/fj1eeukldO3a1fK4oGX3vGjDFKeCzqtiLTJhvV7Is4Cy2gp8ZtItoae2KysAIFHoL16IPzfOFc28yAroCWO8HuF3U7Tb2QrvtE7ZBHFtjQ8vRtaQZNq0mXj55Zfw448/utuhsKBm+GT/EDF4FuEoioJrrrkGxx9/PLKyshy355XvKC4+ZjduDGYKFWthhcXgZYmmsGUaQ4Ksd5abNgyYVOhUgxNZleDCGhhbBX9evpSCtEm1HW5sYg0YT5djOV729f1EZLom2TA/ehvmmdZphHo+rw0D9lMcnf7da0K+TcNxx7XGZZddgX/9619YvHixlDYJwg7PBN+iRYuwevVqjDbbOPR/TJlSObunD1L9ymgYBc12fXHUVzsnpP+7/sXrt4MOQH9YHbRsmzKKgfzac0/72dwWfgDkBrUFBcHOvJkFwkEcXTQrR68naEG12u/SUr4g1wq7oNlroef1Gj0tYbRhwNqOeWzY7U3YAW9seP588S0azOCxAVmi0KwdEXsM6GbsAHDLLXfhhBNaYtGiRcjNzXW/Y0GG1vB5gidvGEVRcPPNN6Njx45IS0vjPl//vbEErW5mAGUFzVKye24bNYuz9KMKqN9i1gIzuzKyY79EoLYvdn1gek7MAlq77J7Z34OQCVHRB8Tx/iKxEoYiYlBGaXsVrV3ICJy1QbM2eyID2Zuvs4hCs2NEbDjMhVtk2zALrHZuZcMiz4psX2n2ncsQT6xteG13PmT5atWqhRtuuA233HILBg0ahAhtFE64jCeC74MPPsC2bduEsntW6H2C7ODZafbO1eyeX2vzgiAwfcKN5QVByAQGZg2gUeDiZdaDZd1NWANgWejvUTTqX0ZQpvgrKAhXFU8rvC76EmRhaDSqZnR/vLJjvaDjtWEn1TpZpm36MXhrZDteV/WUDGuWb8KEyXj00en48MMPMWLECPc7FlQow+cJrkdT0WgUt9xyCzp06IBkCcGb1UOkfr8yt2pxC1fX7gHyHKGshyagjhnw3xb0hMmOHeNXcGx0XXpBiOHHhut6CgrkTpcTuX5Qrkt2LIadHcvMVBuhfpdO7PiZZ4ArrpDXJ15YhZqXwpJVGPqQ5atevTpuumkKbr31VgwfPtxyq7K4hgSfJ7h+R/773/9i9+7dOP744y2P483uuY3TQDrwgXhQp2qywCge/diOgWCksNCdUuZmaKvc+Z2BSQT0FQvt7rmsTK7X3zGrHcuc0irjM/o1l1wmXmzP4IcdJye7Z8fxFtgErT8aWMe4L7vsCvz11wG8/fbb7naISHhczfApioI777wTHTt2dD27p+JVVsTVrWmcTuf0MpsW8s3WZeP1+4d16oib1zj78dPYGvJa4GkJcuGXREH/nbidjROpZmhGSUnselOvbJnsOHg4tWPeTKF+2qeMTdjNkFH9kiVTxnIdPzZi9yHLl56ejptv/jfuvPNOnHPOOYm5lo8yfJ7g6h1ZtGgRdu7cibZt21oeF2/ZPTtcn84ZNEjIuYar60hltKFmQNwMkPVZD8rghQOvvjO1fac2aGXLMjJ4QbRjygTa4+V3xnKNZ55xtw9BI6gvZ7CHPv/4xyXYs2cPPv30U3c7RCQ0rnrCadOmoW3btp5l97xqxy6756r/8apYS1CnczLi13YMQb2mKMJ99VLk2UFZEfeQGUw7DZrtvufkZDG79MqWZU379EOkxYMwZIHF3ouK3BeATgbS7Jy6rwGOi9dibcuHF3TVqlUxceI1eOCBBzy/diCgjdc9wbU7snbtWnzzzTdo37695XEys3uypln6aitOsmFJSfE/nTMOsoUsyJqabGfL0qcm8wQhvELMKIgiMRefeBUwOz1GFNHP52bRkDDixTo+pxhlAFkGJ1j/7vV6aJb7JGv9TYBJwVGm41hDlokTr8LXX3+NdevWiXeKICxwLVp66KGH0KZNG6RLCNC9HHDRTo13Y5Nq6dM5gz6KkSACDQh25o5n3z0hjAIOuz34WNoMun2z4vf0vKBtps6DtnohIHftn2q3GRmVfycbv21AFkH4HPFiz27YMuBOtU6tL9avafUbyWv0/KBOnbr4xz8uwQMPPIjXX3/N7+54C63h8wRXBN++ffvw9ttvY9SoUZbHeZ3dc7rROmAfC3gyndOJISfAdE7CGul+UGaA7OVItRaRm2IV+AbtZcOzN5tfWxuwInvzdaDc7twohKG156DZhH7/PDN7Dlq/AX57NtqPLwi4YcsAW6BiFQuoRVWC8N37IdIkF29hLa525ZXXomfPjvjzzz9Rr149lp4SBDOuCL65c+eiUaNGyMrKcqN5X1FnUrgys8bKwSQnB8P5qgR0lMwNgpy5c4qr9syKWXASBHvXB8FB6JPbqJ/ZKED2UwwaVTd0K2B2gl+DFiyI2HOQN1ZnQbY9s4hHkT37jKp/WrXh5r6AMuINWdU6ZV4v4LRu3Qbdup2MuXPn4qabbvK7O94Ricj3MYlY7dQG6YJPURQ89dRTaN26tZT2vJwKzjPAq51Cz+pzuadz8q5PCtIUCx4kr9+jgi3luG3PAHD2tO7sB+sJSmBcUBDugNZLjLJAavDrt+AqKCjvi3Z6Jg9Oy92TPYcPP+3ZTrCp9gyI2fTDDwM33sjXn0Qg4MJwwoTJuOee23HjjTcmzhYNNKXTE6Q/4UuWLMGBAwfQvHlzy+NkTufU+ykjH+pmeXr1+lLe9345XTeuG2CnGnREBZjMa7tyXe1D4oetB2H9UbxidG/9EIFaGxMVfyLXsrNnNzJlZvYc9qxcEAiKPQPGa01lIeqHna7j47luAk3rHDHibFx//SQsXboU/fv3Z+goQbAh/Y0wa9YstGrVClWqVJHdNDPJybE/Xl9X6MSMDOuTZTg7bRtmNymsWcI4Qp9kMPqqvMgUlpZKen682IvP6rpB2tcs0fB7bzm3bM8Pe1avS/YshgwBHE/2bOfgZY+Sm8UcMtfOxsH6i7S0NFx44XjMmjXL7654RwC2Zfjyyy8xYsQI5OTkIBKJ4N133435u6IouPPOO9GwYUNUrVoVAwcOxObNmyXeBPeRKvgOHTqEDz/8EMcdd5yU9mQ9u6pfs/JtMn2O0bUqTeeUrUithJre0Tq9JmXuKuHle0bWV8naZ6FrFRV5HxRrg6GgTK8jKuNXwOzULry2Lb09k00HB32xG5GtF3ivo6ewsNyJ89qFVyPhfo28syB5Tz7ZWzRccME4fPjhhzh06BDbCYRjDh06hM6dO+Opp54y/Pv06dPx+OOP45lnnsE333yD6tWrY/DgwSgO0SCD1Kfwww8/RGZmJmrXrm15nMzpnLxCjWX6pxF236nR3w2nxnnlaAkphOFZFrVpJ9cyvYaXeysVFgbT1mkqHR/6ohpeTsNkuZbWpq3sTUZKPC/Pn6mhhFxYbVpW4RUzm9au43PDV+qndbrpjwO+9k4mHTuegIYNG2HBggUYO3as391xnwCs4Rs6dCiGDh1q+DdFUfDoo49iypQpOPPMMwEAL730Eho0aIB3330X5513nuPueoHUOzxv3jw0adIkVAtNvRiASk6G9UXsnJjd34M8kmZHAhVs8QqvbDqm/aIi98UeZTsSAy+/Z6trJIJNB3GrAr9xQ0z7adNevQzMrsHysnVjS5QQE4lEMHbshZg3b57fXQk9BQUFMT9HjhzhbmPr1q3Ys2cPBg4cWPG7rKwsnHzyyVi5cqXM7rqKNM9WUFCATz75BK1atZLSnh/VDN0KlEfgA7kNAvydZRFMMtfvuT0SZzJnW9J07rjBdfFnFhTbXZClQ34Hw0Qw8MIO1LZVe3ZL6IXVpkkYysVLm7ZCZOoSEOwBZsnTNSsdZxJgpCSVMS0pYw2NRo8+D5988gkKEmGtrotr+Jo0aYKsrKyKnwceeIC7e3v27AEANGjQIOb3DRo0qPhbGJD2tC5YsAB169ZFzZo1LY/zejqnqHDU+rFAvJetHGuYCq3olRerEpOg2LRNOLmsaOzjd1bRz8qfzAR5o2q3EX2x+70dgtd4WYVTBmTT/JBNH8Nu3z839+PTXyfs+Bh/aJthaa5du3Y47rg2WLhwYWimDAaRHTt2IFPjT9LS0nzsjb9Ie4LfffddNGzY0P6CHq43koVdoOxaIK9eOEiO1m5zeJU4DmyMPlrQ7NpuMEQ7OBvITddZ8Pq5KCw0D0S1ga3Xti9jBDisAXZQxV8gRgkl4Jddu2XTLJums8LSlsj19Lbjp12zZPGcbs/Ag9U6Pn0/4yAGGTJkOD744IP4F3wuruHLzMyMEXwiZGdnAwD27t0bo3P27t2LLl26OGrbS6RETKWlpfjoo48wYMAA/g4Y9KC4OCDBqAHSsyR65xUkcacnqFM4fMZIXBndJhab9mMpg+eZv6Ii717GMq6jDcDidXqN1QbUKkEXhYWF3hV+McJLu3ZKvAhSK6z2KNTit13bZeic2vWUKcB99/H1R4uMYiksbbAIR9YYpLQ00DOfWPfkGzRoKC66aDSi0SiSwuJbRAhA0RYrWrRogezsbCxevLhC4BUUFOCbb77BlVdeKe06biMlelcXLdarV8/yuKlT+adzGj3bpaXyAmMn7UjTPl7uv8eCV6JOcsGWMsjd+9GtzK3Z7ZVVMdYJPF/9iFs7sB/sZfVOXgoLwxOo+4mV2A1Sdg3wLvMXZLsuKCC7ZiHR7bq4OHif06sYhFXMMh5XBWVS45CePXujuLgY33//PU488URp7RKVKSwsxK+//lrx761bt2LdunWoXbs2mjZtimuvvRb33XcfWrdujRYtWuDf//43cnJycNZZZ/nXaU6kPFXvv/8+Gjdu7NkIRHJy5UE6t6Za2rWhH5TSC0jTgi3qSX5mzNzacD3AI2uA/2vpzGC1axmw3AMru2YiaMFwImQ1/MLs3gYhkNQHyU4fKrLrxCEsdi06MByEd7U2DmGJhxJoe4aUlBT063c6FixYEN+CLwAZvm+//RannXZaxb+vv/56AMC4ceMwd+5c3HzzzTh06BAuv/xy5OXloU+fPvj444+RHiJblKI2PvjgAzRu3FhGU8IEZaah6j8NA2Q3nCtrm0G5QQQXfn1tevu1tGstajDstONOnb8aDFGGw1/U70E/kuFXwKydHletGt+5RUXO7drpHnpk18HAa7u2WwtYXMxu127EIazr+CgO4WbIkOF46aVnMWXKFL+7Etf0798fiqKY/j0SieCee+7BPffc42Gv5OL46duzZw82b96Mk08+WUZ/pGZf9P7Hy/VRx67twwia/oPLcrIhGsmIZ4zeq17Ztuk73c+sB2U4wofRd8YrwIzgKZKhtVmza5NdEzwYfWcZGd5ua2Fk11OmANOne9cHFe0Lg+UeyCwA42UxGQ2s0zrZ1/ENwbXXXom8vDzbKvihJQAZvkTAsRL47LPP0LBhQ9u0psj6PTNYglujY/TPvu/vUztnxCqwgjAtg7DE7Wmkvgxu+BEMa69JDj2+8LM6oWpXflYJU/vAYtdOM4WJjNeVOrVZZRWvbFuWj2adRhnGWETyOj7ZNG7cBC1bHofPPvsMo0eP9vz6RPzgWPB99NFHtsVagopdKX2nQfpgfOKsATN41t6F0QETjgnaNhHCBG29FOEdRiNy8TLLwMqugyrmgtqvMGI0uOGnkxbNhrlVB4CIYejQM/Dhhx/Gr+CLROT7lkhEbntxgCPBpygKPv30U/To0UNKZ/wupsE789GzKaJmHZMV/PhRsEVyhU7CmlBsug7wZTlkQUFseGCZhukENzex9sO2iXCgzwK6YduyCMI6vAQq3AIAubnDcNllF0JRFERIyBCCOHpyN27ciLy8PDRo0EBWfwKF1p94KkbVCwfBsfoFZ1DEWgq5pORY0zJm9fixb54ddraanOyjbeuhDB4hit52ghYkk20ToojYtsypqlpY45EgijBZ6/jUoIGxPZ51fNoYwuzr69mzNw4ePIBNmzahbdu2LD0OF7SGzxMcKYovvvgCOTk5SLZxBF6v32OBN8iVHiBrnUbQnKQRvH20e9gC8DBadaG42L6Lst+tfolH6bZt5Q8oy8G/eJj1XmkNMghl471GtS3RKpyyrk+2zQ7ZNhte27ZbMQmLYHKr2IqVrZWUBCIOM+titWrp6NmzN7744gsSfDxtEjE4EnyffPIJ0/o91jXosnA7cFb9QlKSgwDZzrkENbsXAiHnFaw+KuFsW0+8ZTrC8HmcVqTyI6iWnaFwe/qn/hrxQBg+D9m2mG1fdRXw5JPWx1jFJaWlwYxLEiQm6ddvAD75ZBGuuOIKv7tChBThp1dRFCxduhR9+/aV0hErX+LHmiO7a6qBt1l2pFLBlgCMHjFh9iXEidP0g6SkYNk2K8KZP7ugMci2FIaA1wtYg+qgTaM0Q/u9RqPi/S4tDeY8bhbItsuRbdtuTaVkxYlthzkuKS1NqEIx/fqdhlmzHovPdXyU4fMEYcH3008/oaioyJMKnVaDSkF698b4zmL9L3zAyhmqfwviiF0CEUbbLi4GBl/RIvYArSIMsqM1CnqD3N+gYyUigiwGeTMkYbBvs+8iqP3lwQ9R5bVty/qMdrbtd1xihjZeiYO4hHUdX2oq27u+W7ceKCoqws8//4wOHTpI6CGRaAg/VZ9//jlycnJQpYq1Qd9zj7z1e0bZEDNNY/UAeVKkwm2nGuY9cYL6wgkYRl9faqrzGU1Os4oVX5/fZXXNoL36goE+86AlSGLQKEAOqm0D8bVWMKxbPejFYFArbOr76fa7V9Z+fTKnj7KuCWTtu08buqempqJ795PxxRdfxJ/gowyfJwg/UYsWLUL9+vVl9kUKqtAzeh6DlDGRThDEnew+BOEzSUCm3Zm9azy37SAExDRFLbyYfXd+DwYVFfk7PU/bDyKc+Gnbfk8vNSJO3uNB4PTTc/HJJ5/gqquu8rsrRAgRksDRaBRfffUVcnJyZPfHVVJTy3/S032OK+wcoN3IVnr6sQ+j/rhJwB0265YM8YzWFJzadyAHRoqLK/8Q8UdRUeWfRIBsO/4xsm1e+3aatbjgAmfn2+F1bJJg9Ot3Gr76ahmiQRP1TlEzfLJ/iBiEMnw//PADSkpKULduXSmdCEI5epXiYvaCLWb0w1LxTunxe8Q7jpBtZ4EURhrM7DvwsOyJQYQLJ5kHo6A4zH4xFA8h4Rlhsm/tVMsg9NGn6ZWsyF7Hd+KJXXH06FGsX78enTt3ltBDIpEQEnzLli1DTk4OkmyCMpnr97wiPT1W8NGG64lHPMdjvtq3Eb53gAglRnYThABUj1E/aTAjMeEZ9PDLvq0EVJjjE9nC0CehmZKSgm7dumPZsmXxJfhoDZ8nCD25y5cvR82aNSV3xRpZ5et5szJ6Hys1PhV14CyOJsCjXkRwcNW+jQh6WpQIL6rxqkG1HwKQxb5lFSoJa8ETQgyv7TuIAyhuw1q4xUd69z4Vy5cvx+TJk/3uijxI8HmCkOBbuXIljj/+eNl9cYwXsWR6euwAF9cUfLV6V1BGyILSD8K3AQ09juzbCJEOkaMmZOBFloQGMAjAn2Ipsu1bVnwiK/sV1I3efaZ795Px+uvz/O4GEUK4n6YDBw7g999/R79+/WyPZZmXHPb3pb4Cc0yAbFSeOV4dWGoq22fzMfPIqiNYv6Lk5PivKWFp30aUlARHsAWlH2a4kU4N+Oi07+jvOa8/CpJ9Bx2yb+/hsW8/t4/wY0ok64vdp+c7NZVt4LdHjx7YunUrDh48iFq1arnfMS+gDJ8ncKuP1atXo06dOkhndLw8z3QQxJ/TTEu/aqsBBGgfHieoXx7LlyhbyIZAGJeWemvfQXg+KsUIQeiUV4RhvaHsPsZ7gK2130Dsd+IjZN/xh95+VRsP0l6BTuCJUXyCtXALK/Xq1UOTJk2xatUqDB48WFq7RPzDHVWvW7cOderUsT3uwQf5C7ZYPbOqWPf7/Str6p0pXgmdEGTk4o0w2DczoemoDTwBZCKOGLLcH3UqW9iDSNWm46nkOdm3Naz3J0g27mT6aEkJMHo0sHCh+PW9mmrJGqP4hY9TTjt37oLvv/8+fgRfJCLf/0QictuLA7itdc2aNcjMzHSjL6ZoRZZd0ByGQUpPSBChFm978Fl9bampQGGhd30JPeQMvIVlfnO8Z1S8JF4GXcJEIti4l4LOS1g/V8C3egDKt2f47rvv/O4GETKEMnwtWrRwoy9SMPO1xcVx+H40+7BBHhUjhCkttY4lEkrfxN3DnCDYGWnAAy1PIRsPJ2TjsTgRwFS4xZBOnU7Am2++6nc35EFr+DyB60kqKSnBli1b0LVrV7f6I4zdVEt99UEtgS68oZ9CQs4vVHgZs5nZuKf2LdvJUtCbWFh93/EaKJONJxbxaOOJVKAuAHTseAJ+/fU3lJSUIDWsNkN4DtcTuXHjRiQnJ6NGjRpu9ccXtL5KFY6ei0Cvt2xIMGfs+trLAKN/F/tm41ZogyAamSOMMAuUwxDw6PtONk4YEQYbr1ZNTvxA2btKJCezxSrNmzdHSkoKNm3ahI4dO7rfMbehDJ8ncD1tmzZtQt26dRGRtBgyyAObZmuzCwocNKo6tyAs/CYMYbXJsApIbb+NzNB1ERjkh54IJ3qbUgta+BUkk40TsvHDxilOkYbsSp1JSUlo2bIlCT67NokYuATf5s2bkZGRYXucSIXOIMASxBt9fLWQRnestj6YDJAIONWqVS4Apy8U032IfZVeCnoJ33E7W0I2TviNLBsPe6wSgkIrsjnuuDbYvHmz390gQgSX4Pv5559RvXp1t/oSWo75SnsxbAlNbyACiO0YT1jTnURiYhQk2wWLiWDj0Wj4An3CGBYbZxi8J2zwcVrq8ce3x88//+zLtaVDGT5P4Lojv/zyC7KystzqiyFBes/G0/ZMUmF1eAk2Ahe3lJbG/hBE2CkpOfajt2+ycSIe0Nr4wIHO2grrM8Ha7xBk71u3boMNGzb43Q0iRHANTfz+++/o1auXW30hwo6d8GMdceEYMWMdsZB96bC+7+ygQQ0TaLSQIIig4GTzdYLtRc/q8xmPkx2rtGrVEtu372BsNeBQhs8TmCPr0tJS/PXXX0xr+FiDZrPvg3c/MZbgO14DdGkY7ZXjgkCLF2TaONlmCFDXiIRg5FcalJFPTMjGiaBP743jeIW1UmejRo3x55/7UFZWhipV5BWEIYLBkSNH8M033+D3339HUVER6tWrhxNPPNHRPujMlr93714oioJqHlRu0j7LLIavLypBwH6z04A7vXiH18YTalN1N3GirhMpEAacf17yMf5AI0jskI37D8vG7HSfK9GwYUOUlZVh7969yMnJ8bs7zqAMXwXLly/HY489hg8++ABHjx5FVlYWqlatigMHDuDIkSNo2bIlLr/8clxxxRXcW+QxP0V//PEHMjIykCTpJsqcjcCiQUtLA7bvmCh2HzakRk5Yk57O9sw42jYkbNgFa/Qs+Auv8KCgzhgrOycb9xcRcZ0odp6aKm+ZB1GJ1NRU1KlTB3/88Uf4BR8BABg5ciS+++47XHDBBVi0aBG6deuGqlWrVvx9y5Yt+Oqrr/Dqq69i5syZeOmllzBo0CDm9pk9z86dO0O/4bqdVopGfc4W2nUwUV4UhDCBt3EWEi2TRpRTWso2qmE3DS8M65vIxhMX1u8+6NNNZcz2CvrUUYlEoECBnD2sVXJycrBz506pbfoCZfgAAMOHD8d///tfpKSkGP69ZcuWaNmyJcaNG4eff/4Zu3fv5mqfK8OnVZpmPPxwOPfgU7FaougoWM7ICKUBBhnZzjPssA42u2bjLNB0M8IpLAGz34NjZOeEU/y2c9q2IfA0atQYf/zxh9/dcA4JPgDAxIkTmY9t37492rdvz9U+s7fYsWMH0tLSuBqPR6x9oMUfQ2h8RGLi6D1PgS4RBOzs0GmgTHZOiCIzA+3EzknQycHHvfiaNm2GHTvipFInEcOOHTsQiUTQuHFjAMCqVaswf/58tG/fHpdffrlQm8wq5Pfff4/rTdeDPgNIKn6PfhPhxmifMtqvjAgTVjbM8hMUEurFRXATBhuWRQI+C40aNcbvv//udzecE4kcy/LJ+omEewbYBRdcgC+++AIAsGfPHgwaNAirVq3CHXfcgXvuuUeoTWbBt3379rgWfE5pAhplIdwjAd9lBEEQBOEPIRDFjRo1wo4dcTClk6jEjz/+iB49egAA3njjDXTs2BErVqzAK6+8grlz5wq1ySz49uzZ48mWDARBEARBEAQhnRAIOVZychphzx6+wh2BRHZ2z401gR5z9OjRimV0n332GUaOHAkAaNeuHXexFhXmO5Kfn490lv1SJBKk59L1DEvIjTPIBMmOCIIgCIIgnFK7dm3k5+f73Q3CBTp06IBnnnkGX331FT799FMMGTIEALBr1y7UqVNHqE2mxVyKoqCgoACpQS8TTIQDj8Uty+VoyiRBEARBMJIoWyr48BmTk9likqysmigoKICiKIiEec0aVemsxEMPPYSzzz4bM2bMwLhx49C5c2cAwPvvv18x1ZMXJsFXWFiIaDTKVKVTpibUG7zoxumU4UHsnjl+PVgBfgDVrrHWs5H5UWTZOREA1IptQXc6VLiJkEFQ7ZzsO/xQzGJLnTq1UFpaikOHDiGDqq7GBUVFRahWrRr69++P/fv3o6CgALVq1ar4++WXXy68vI7JK+bl5SESifie4TP6jCyjIGbHBHoDaqOHl8X5BNxBEfYklJ3LRnsT/ErbBjUI1uJ3Hykgd0YQ7DzI+G3fKkG283btgA0b5LVHMYvnZGVlASiP0UMt+CjDV0HdunUxYMAAjBw5EmeeeSYaNGgQ8/fmzZsLt83kjQ4ePIiqVauGO2VsAM/zYfROLSiwOCEzM/bfITU+Ivy4audOoWA1MZEdkAfdv5KdJyZhsnN9zFJYWPl3RKCoUqUKatSogYMHD1bs1xZKSPBVsGHDBrz33nt44403cM0116Bz584YOXIkRo4ciU6dOjlqm1nweV2wJQzE+sIEdYwhfagIdizf+RTIEkHAqR3a+TGycyIIyLZzK+cepIxRoqwXFCAzMxMHDx70uxuEJJo2bYqrr74aV199NfLz87Fw4UK89957mDFjBmrXrl0h/vr164cqVapwtc30BOXl5ZHgI+IeiukYiUaP/RBEPKC1aaMfgogHyK59JQJFeptZWTWRl5cnvV1PoW0ZDMnKysL555+P1157DX/++SeeeeYZlJWV4ZJLLkG9evXwyiuvcLXHnOFjKdhCEKbEwcNHEARBEAQRFGrVqkkZvgQgJSUFubm5yM3NxRNPPIG1a9eilHPKOLPgS0lJEeokQRAEQRAEQRByqVmzVvgFH63hM6S4uBg//PAD9u3bh6gmIx+JRDBixAju9pgE3+HDh7nnihJEvEIzYQiCIAiC8Jvq1avj8OHDfneDkMzHH3+Miy++GPv376/0t0gkgrKyMu42mSTw0aNH465CJ0EQBEEQBEGElZSUFBw9etTvbjgjIGv4nnrqKTRv3hzp6ek4+eSTsWrVKhc+LBtXX301xowZg927dyMajcb8iIg9gEPwsfD447OFOkEQBEEQBEHEETQdxnVSU1PDL/gCwOuvv47rr78ed911F7777jt07twZgwcPxr59+3zpz969e3H99ddX2ofPCUyCr6SkBElxMB+WIAiCIAiCIOKBtLQ0lJSU+N0NZwQgwzdz5kxMmDABl1xyCdq3b49nnnkG1apVw3/+8x+XPrQ1o0ePxpIlS6S2ybSGjzV9mJYqv+RseEjQffh8hLXEcRXG5571OIIgCIIIPbSxuufIjlvSUlO4qzUmEgUFBTH/TktLq7TrQElJCdasWYPbbrut4ndJSUkYOHAgVq5c6Uk/9Tz55JMYM2YMvvrqK3Tq1KlS4cxrrrmGu00mwUcFWwiCIAiCIAgiOJQcPYoaId8nW0EECuTWCVHba9KkSczv77rrLkydOjXmd/v370dZWVml6ZMNGjTAhg0bpPaLlVdffRWLFi1Ceno6lixZElNHJRKJuCf4UlNTY0qCEgRBEARBEAThH0eOHEGdOnX87oYjolH5yz3V9nbs2IFMTSY7LHuK33HHHbj77rtx6623SltSx9QK6x58E6+4wlFnCIIgCIIgCIKwp6SkhPbJtiAzMzPmx0jw1a1bF1WqVMHevXtjfr93715kZ2d71dUYSkpKcO6550qtn8Is+BQlkdfnEQRBEARBEERwOBoHgk/N8Mn+YSU1NRVdu3bF4sWLNX2KYvHixejVq5cLn9iecePG4fXXX5faJtOUzqpVqwrv+0AQBEEQBEEQhFwOFRWhatWqfncj9Fx//fUYN24cunXrhh49euDRRx/FoUOHcMkll/jSn7KyMkyfPh2ffPIJTjjhhEqifubMmdxtMgm+WrVq0T4fBEEQBEEQBBEQDh48iFq1avndDUe4uYaPlXPPPRd//vkn7rzzTuzZswddunTBxx9/LHUfPB7Wr1+PE088EQDw448/xvxNW8CFB2bBd+TIEaELEARBEARBEAQhl7y8vNALvqBw1VVX4aqrrvK7GwCAL774QnqbTIKvZs2aKC4uln7xUKPb2yMfWTH/zsqkNY9EnKCzdYIgCCL85BfEZgoobgkfeXl5qFmzpt/dcEQQMnyJAHOGL+4EX2Eh3/Gc1qN3pCKFdmpkkPMlHOKGnWuNmbwqES9YOWmycyJesLBzbdxCMUs4KCgooAxfnHDFFVdgypQpaNy4se2xr7/+OkpLS3HhhRcyt88s+A4fPgxFUYTnjjrGTHCmpwNFRdbnhvRl/Xchv2i0OqZqOjnjwGNm5yw27IedOy0ZHNJnkwggEstXS2+b7JyQgZs2LgGKWbylrKwMf//9d+gFH2X4yqlXrx46dOiAU045BSNGjEC3bt2Qk5OD9PR0HDx4ED///DOWLVuG1157DTk5OZgzZw5X+8xTOhVFQUlJif2mhSUlXB2whOUbi7fMo4scLi53xrLfGaztqcdVSQqoE+fxOjK9SRg9kyxkG2Mi38swkWzy6onX74/sPDEJsJ3n7zrkdxdsoZjFgmgU+QcPAgBN6TRpM2zce++9uOqqq/Dcc89h1qxZ+Pnnn2P+XqNGDQwcOBBz5szBkCFDuNtnEnwZGRlISkrCkSNHQrNLfQxJSeH89uOUsqh1lpjVGUfA6ITpu08ctMbj92h4aam/1zfCLAAlwgXZuTVk54REPI9ZAKa45eDBg0hOTkb16tXZ2yUCTYMGDXDHHXfgjjvuwMGDB7F9+3YcPnwYdevWRatWrRzNsmTyipFIBJmZmSiRmb0jCIKIZyjoJBIBsnOCkAvjIHVeXh4yMzP9W2olCcrwGVOrVi2p03WZhwazsrK8L9zi98illiD1heCDvjuCIAiCIOKIAwcOICsry/5AggBjhg8AsrOzUWRXHIUgCIIgCIIgAkg8jf/u3LULDRs29LsbjqEMnzcwm37Tpk1x6FDwF/n6RRby/e4CEc/E01uKIAiCIAJMGF65O3fuZCrhTxAAR4avWbNm+Omnn9zsS/Cx2YC6ANap9aAUUopGw+HMCJ+gjdYJIhyQIycEsXPzQYlXCHP+2LkTzZo187sbjlEU+Rk5JYCFVf2GWfA1adIER44ccbMv/uNyoGvXfGamq5cniHKsDJHF61oVaQhixT6CMMJJsRGyc0IUL+eaObBxilfY8HPM5ffff8fQYcP86wARKpi9QePGjXH48GHb4yZecw1mP/64o065QmGh3z2whaWL5GSPoSDCV+Y43klKsn9Lux1s2AUYFCgTXuFm9Uga9CCCgI8VUile8Z8/4mRKJ63hO0atWrUMq65mZWWhTZs2uPHGGzFo0CChtpm9RaNGjfD3338LXcRViorC+80KwFI3JykJqFbN/b4QHhIvds4SoFDATFiRmmr9d7+fE7Jxwil2Ng74b+cM2MUranYsEeIVNwand+3ahUaNGklv12tI8B3j0UcfNfx9Xl4e1qxZgzPOOANvvfUWRowYwd02V4avsLAQ0WgUSW7msPVbP9CLUQg7R6uPSdLT3esLYYDWzsnGY2EJdgCA9gWNP1i/+7BDNp64JIiN8yQfeeMVgGKWkpIS/PXXX3GR4SOOMW7cOMu/d+nSBQ888IC7gq9BgwaIRCIoKipCRkaG9cGsL6mwSvA4xGiLRVZdrzrjhNp/l2zcf3gDJxLW3pJQDsElRMQB2bm3kJ27itnt1ccsiRav7N69G1WqVEGDBg387opjKMPHzhlnnIH77rtP6Fxmk09OTkadOnVQWFhoL/i8JinJ/ttNTqYXISe81Tztbi+rg41GXXDGrE+/HzZCtukNToxKfRASKePCKjbi9c0aVpzaeTzYeGoq2+cgGzckEYq/yopXpN8rxljgjx07UL9ePVSpUkVyB4ggc+TIEaQKzhLgejM0a9YMf//9N7Kzs4UuRhBEwGEZPElE1NGPBJmORSQw8WLj8fI5jCAfnfBs2bIFTZo29bsbUqAMHzvPP/88unTpInQul+A7/vjjvd+LL0jZD6NgWFOqyqhoVdCSoW5QWspepyDs0ygSkhBUuCUIgiDY+OXr/EoBC0+sEtYMIGv8EYY4ZdPmzWjXrp3f3SAkc/311xv+Pj8/H9999x02bdqEL7/8UqhtLrNu3749Vq1aJXShuKCwkHvYQBsrq07SzLHShuiE77DYuPZtGJTBGIJwgjYbpLf/RLFxevnENzYZT55YhSjHT2H48y+/oEfPnv51QCKU4TvG2rVrDX+fmZmJQYMG4e2330aLFi2E2uYy19atW6OQYbR/4o03YvbDDwt1yFfUDJ5gRuN4/IJfcLztcWbNk3MlPMNJ1m7ZMqBPn/L/17/xEnGtGxEueKf6kY0TYUPSdFaz10TQ9tdLxLGKTZs348KLLvK7G4RkvvjiC9fa5hJ8bdq0wf79+6EoiuHGgNwEYb2Qvh6wi6O5dhm8wkLjEaNE2KMmMLBOIQ7SVGM7PLTxCowCDgqQCa9xcx0X2TgRBHxYq2i0jQLFKebI3oMvGo1iy9ataNOmjdR2/YIyfN7AJfjatm2L0tJS/P3338gM2hCPFap3CkuArkPvXFVR6MTBJtx6ujAJNBHCYONmgQkFyYRTrKZk+tUPLWTjhFOCYuMmmMUpgHGskohZOVsY39/btm3D0ZISEnw2bRKxcIX8qampaNmyJQ4cOBA8wZeUlHDFJaw2K6XpoQFBdhbbbodavxFZiKoPkmnKHGFGWCsvko0TLITVvnXoB5ONXlsUo4jzw/r1aHXcccLl+YnEhDvH06VLF2zduhXNmzd3oTs2GO0OzkO8Z3k02N2q9HRv+kFwYvXFJYjtVmD1MqNAOT5JtACGbDyxSDT7toAlnCNRaMwP69ejc+fOfndDGpTh8wZuwde1a1d8//338nti9/QnWrDrMsXF9lM6wyAKFUSkz493DRJz8rALnChYDi5WjoXe0scgGw8nIbfvIE21ZBGFrHFKPG3JsGbtWpyiFk4jCEaEMnx//fWX7XETb7wRsx980L7BsL20rKboFRYCGcdmloqMTgVpbZ3qbFkGJUtLwyEQpcIq0sJm42aEacp0aqp95OJ0xgBRGauFxSEIdkMF2bg3pKcfm5MYBPt2eJ3VC/+s2INPJEYJSnyiUlzMFqPI7ref92HdunWYNHmyfx2QjKLIf3yUkOQBvITbZLt3746//voLxcXFSI/HCJ9n2qdBAHx84WqsRnfDP8fz9ATW21ZayuacS0pcmP3C6lGCmm3zekqylcBLTQ2/kFX9F+uQdqIFz/Ho3+1ITT3mJ8Ju30D5d0j2bQ6rjcdLCUrdSzUeYhTWOIH11cn6uKhuwu545hlIjPMa//zzT2zfsQM9evRga5cg/ge34KtduzaaNWuGffv2oWnTps57EKbA0WElRNW5yqiyGTTcyEyy6rMqoMyBFHjtW/+mDdpzLFJAxgo3BJDMIDsRBZpTrKLFoNu3bNyyH1k2TvbND+eoqX5rKLdilKBlCZ1gF6cwxyeM791V336LFi1aoFatWmzthgBaw+cNQo9dr169sGnTJjmCTyayMyAuV0T0ey+bIE0fTXhk2S5PO7LtWw0unFYglC3UggxLEMs75EyYk54ufp9k2XeiYWfj8WDfQembE/s2QP+KYIlPZMUUFJsY882qVejZs6ff3SBCiNAjdcopp2DVqlWy+2KNFwFxAPYyKyqyH2FjEWok5ohKeG3fiZYhIYKHm1khUfuWNZiRKIMihDkeZz1Z4pMwE4Yiql+tWIHRY8b43Q2pUIbPG4TeGH369MGuXbsQtbmjE2+9VahTnlBUVPkngISkm/FFGLy+HUE0nNTU8p/09GM/BCELrV35YV9k34QVTiNQD+ybd5A4iK8ZI+KlYMvRo0exevVq9ImzCp2q4JP9Q8QiZLYnnHACUlNTsX//ftSvX995L7xYx6ddR2B3Lbtsos3fu+NY4RY3KCqqrEkotmBA9pTfoOzrqF8jE6ZMmt5wE7FwRCIg6+2bnn7MRsLg9Mi+CVECaN8sQsfIxN36KEEfm62CMrYDGeOINd99h9TUVHTq1MlBr4hERUjwJSUl4dRTT8WuXbvkCD7ZBPylajfdUmQ6ptlHllF1y5WKmRIpQxV2xxp2vLBtP4WsUeXMgD/PhAeoc8ei0UAGwswYVc0k+05stPMi7QZGnG7J8O5OR+eLojfxMFYDDQJfLF2KU/r0QVKcTeemKZ3eIJyYzs3NxSOPPCKzL/wENZNRVAR1ZoOfc9ytEqduCDjZ6wbjZh2iSAY7qLYNeD9vxyzAp0A5/oi3RUEsGNk32Xb84YVt20S5LNsJuo3XcUk8sWjxYpwzerTf3SBCivAwwYABA7Br1y6UlVlnVhyv4yspOfYTjcb+WxQ3vIrJJHa35rY71QPqLSwqir2lXuiMIGsZz9HffC++BBEVHcRFGtWqGf8QwSfI310QMohBvj8yibNMRQUB/+7ccudOQyuzUM/JK5H1dcfad78GoUtKSvD1N9/gtNNO86cDLkJr+LxB2HQ7dOiAatWq4c8//0R2drazXqhPc9iUAKe31B6emSm5LwaITsW0+xpoFI6DsNo2YG3fr70GjB9/7N9Bykhogyt9QBkkwZoIaKdiBhmtzZSWxoq+MNt2RkZ82HwQ7YdnKiYLbn1GG7HpdVwiitUrNIgxiez1e9+sWoXq1aujffv2DnpFJDLCgi8SiaBfv37YuXOnveALY7Brto6J8eXfD0uxFP1M/65vJgiDyqywfp1xMR3TitLScNq2GTyFjfRoDdjuXD/32TMKftS+xENg7DUBy1www9NvrW0nJwfXTsw+U7Vqwe1zkGG1kaCLUUZSU2NfAUGPSbQiLxFiki+WLkXfvn0RiUT87op0aA2fNzgy/8GDB2P69Omy+iIP2VU/PRjhNRKAYXZOgH2hUys80QNWHiEI1TeNCINta4ONMAWarEFSmD6TKBkZ3r8x3b6erGyj2k6Y7IBs+xgJattLn9vM1aRe/IU9HgECHpPY2MjnS5bgvAsucLkTRDzj6BE+7bTT8K9//QtlZWWoUqWK6XET77wTs++5x8mljiGrgqBd4Fxc7GrQbzfdsrj4mAMKwkib15U6XXs/sjasLf/uFV5Vx3TZtmOq7egDzXgIKO2CZ7vIoLBQXl/MoDJ45biZgTSy7bCvSSPbDi7p6b5VXdHGI2pXRGCJIfwQliyfx8+YpLi4GCu/+Qazn33WpU74C2X4vMHRo9W2bVvUrFkTe/bsQaNGjWT1yR+CtE5DR5inf3oF89YMsjNkXuwhyYu+T0GybTVQSUqKD/EnQqIGrF5QrZp/b/pq1Wh6MNm2u1gJPQ/t3mjqZxDX0cnuE2t7zOv3GGOHFV9/jVo1a6JNmzZs7YYMEnze4EjwRSIRDB06FN9//70cwedl8FxS4jwQ9inYV7tdXFzubJ06NZnbH7BmAtW+y2qP0CDDtr0gKNk/P9cUEs6QnemQlfkOim0T4UVvQwGNYPWvGi/e14kWE3zy2WcYOGhQXK7fI7zDcZRzxhlnYM+ePTL64i4iNX4dqqB+WOrofFasqvoHLflEuIDX+2q4RYDLmBMBIaw2wtPvoA4+BLVf8UB6uq+2LVNAxcvrKEh89MknGDp0qN/dcA1Fkb8lg6L4/amCh+O8zqBBg/Dnn3+isLAQGRbTOXxZx2fnbdxap6VpU9+6vpihlaN1knkz+uiJNioWKGRmg/18i3qZOTQKeihTkljo3ylur3H1qqKl0wwgiS9xZGbKRNvy2q7hrAKnk7Fv/esqaHEI673wq99//vknfvrlFwwcONCfDhBxg2PBV7NmTXTp0gV//PEH2rVr57xHIoFxUIaRGIJh9RA/1uE5FYE0vdIHgmDbZnbtR7VCbaCcnOxNkQjCG2Ss/3ISzFerVh54k10TMvE7E12tGj6Z/n3Mr/zYfkGNHaziEJkFW/yKVWSv31u8ZAnatW2LBg0aOOhVsKE1fN4g5fE666yz8NJLL8kRfHaoI2FBCIRVBLIe6inRqDOHy7oWzgyj2xgP5ZdDR9DsOhpl74sb2zCwrqszEgkULAcfo+/Njze0VTDuhl2zZubIrsOJW3Zt14b+7xwis7jYeRziVDRSHGLOBwsXYtjw4X53g4gDpDxSw4cPx7Rp0xCNRpEkc6qJ02kOMqbROdyAfTA+wScYbHlMEKpwarN3VredZdQs8JlAPytrBmV/P4d2bYoaaPi5QbU26NL6IwqY/cGPfc/MEHWuql37OSBDdh0sgmTXErKIQdt03exV6XfC1EvKysrw0aJFeP/99/3uiqtQhs8bpKizLl26oGrVqti7d6/lcRPvvDP2F2arLUtL7QNjWYqCx7MVFx/7cRHtZWToA5kxitUiWV5YbyNr/8tgvhekEKJvPSu7loFsNS1q1zNnWv89aMU1MjKMfwg5BPn+yupL0GwaML/vmZl+9yy8aG0lzu3a6HXiUagjhMwYRPb6PebpnIys+vZbKNEoevbsKbVdIjGRIviSkpIwZMgQ7Nixw/5glqczCMNLKqWlrno+OzGjir6gJIasYK2eFGqMPlBysrwP6FVq1GW7roRfgTLL92EW0AUlqAsKmZnGP0G9V25/j0EUf3rIru0xsmnAu3vF+3Ln/B716/dEcBqDsLzWZLz6zF7JgYs/GEexP1y4EIOHDEFynM9vlV2h0+3v+v7770fv3r1RrVo11KxZ0/CY7du3Y/jw4ahWrRrq16+Pm266CaU+B/LSrGjEiBFYsmSJrOb8hfdL8WiKoLZbfj3/TtcMArEPom8OmPXCgXlDcGJUgTYoowbVqh0zYCfT0WRuIGmGPqgym7JeUOBuP9zGKBsURtv3S8xopzKHYYql2fRQLWG3aaCyXXtdoVPG9QI0ddQoBvFyfF7GtcIUf7y/YAFunzLF5c74T9imdJaUlGDMmDHo1asXnn/++Up/Lysrw/Dhw5GdnY0VK1Zg9+7duPjii5GSkoJp06a51zEbpEVLw4cPx7hx45CXl2eqeAFg4tSpmD11qpyLsggtVjFmFQy7tX2DA7TdLSykQdtQ4LUdBUXgWaE13DAEymZoA0vRdcwiATZN24u1oSAExvFo0wDZtZfw2LRPfj4Mr5cw88uGDdj0668YTgVbHFGg8z9paWlIS0tz1Obdd98NAJg7d67h3xctWoSff/4Zn332GRo0aIAuXbrg3nvvxS233IKpU6ci1aciF9IEX2ZmJgYPHowtW7bgpJNOct6gF8GxKgTd3NOopASD8QE+wIiKX7nxXdvtdcNSSEVmsZXAF26JV7woKsE6gGKVfTP6e7wEyqIkepDLSphGt/R9Des+kk7ekWTX9rho01p3rX8n272jWTJqQdtnj/X6rNlC1uOY1+8xxrWvvfUWBg8ejMwEeH7czPA1adIk5vd33XUXpspKOpmwcuVKdOrUKWYrjcGDB+PKK6/ETz/9hBNPPNHV65shdT7UP/7xD1xzzTU48cQTEYlEZDYtBy8rrFlcS/2Tdl8aKyclMo0yaE7YDNbPxnpcGaqwOd4AZm2F8Num3dqoOiODKhESx1ADYjfTChkZx2zcyKZlTB8O2qAGbeBeGa+yxF7ZtAZ97OEGeoHp1fq9eEJRFMx/4w3c/8ADfncl9OzYsSNGNDvN7rGwZ8+eSvsmqv/es2eP69c3Q6q3P+OMM1BQUIADBw5YHjdRprq28xSy9jezUxta9cZ4LfVQr5Iy6sJrmorBQZAKCAHHvkCvDAewv5YXhSvCVHQiCNMKw46X37fRNURsmlcQGn1Gi+UQFZBICydG37cbL2PNNT64dbnhIbJeHyyzhmTFHUF7FbvJDz/+iF27dyfMdE43i7ZkZmbG/JgJvltvvRWRSMTyZ8OGDR7eFflIzfBVr14dZ5xxBjZv3ow6deo4b1AkC2PkVVhekE4Lr6hBuAkjdNM6jU5XERlI5p1CaXSbWK8ro3BL3OFW4R431bnV81VaWv7c8Dx/bmxUbYYaMMko/kL4T2amtyNRrCJStWkvpmKqfVL/SzYdXOwGdWTZs9110tOP2YnAwIjaRa+KwOlviV/F54I+nfPFV17B8DPOQPXq1dnaJRxzww03YPz48ZbHtGzZkqmt7OxsrFq1KuZ36rZ12dnZQv2TgfTHbdKkSRg5ciS6deuGKlUk74umR/UefqasJF1bK6KMxJ8MkWXXhjoKpxWOcV4NOHioQstOPLo1JVXWs1StWrkheRW0GgU7FDAHEz/XpIhmC1V7BvyzabJnZ7iZeQ+hTWtjASPhJ2NQ164NNd6QVYE8HqaGHjlyBHPnzcPb77zjd1c8IwhVOuvVq4d69epJuXavXr1w//33Y9++fahfvz4A4NNPP0VmZibat28v5RoiSA/n+/fvj9q1a2Pbtm1o1aqV6XHc1TplzAdwGiCrbZj1xYUg3OsROLPra2HtCxVusSEoc2u9WkPidcCqzwLGQ5n5sKEGwn5Oc9XaoAxbF83AOZ2KqbdnwNymadqne2Rmxpc9a+Bpzq13u1Ef/JjF71d2753330fNmjXRr18/tnYJz9m+fTsOHDiA7du3o6ysDOvWrQMAHHfcccjIyEBubi7at2+Piy66CNOnT8eePXswZcoUTJ482ZM1hGZIlxGRSASTJ0/G008/bSn4TDHK+ds9KLKm09m143Aiut20Tiv0lzYSXV4JLKvbICJM47pwi4g9y8JlewYA3HkncM89bMf6XbDCbBSehKAcglRNTiRC5H2H+G3PgPE9J3sWJyPj2P1z2555fK+APZut32PF78FmLTLjjaAvR3nq2Wdx5aRJwSx86BJByPDxcOedd+LFF1+s+LdadfOLL75A//79UaVKFXz44Ye48sor0atXL1SvXh3jxo3DPayxkku48iiPHz8eU6ZMQX5+PrKysqwPDkqWwwwP+8czbdPvTdjN+mo1Rz+0g852wlD1LEG3ZSA4fczIsF9/F416YzSZmcbXocDZGDc3s7bCzna9XgeohcWevUK2PYfWcTOitedo1F7osdi7DDu0Kxrkka2LxhossYzTAWpt39LTY7+aMJrtps2b8c3q1Xj73Xf97oqnKIr814iiyG1Py9y5c0334FNp1qwZFi5c6F4nBHBFKtSvXx+jRo3Czz//jF69epkeN3HqVMyeMkXORVmyfDwZHdFpmzaFMNRWZWbCtF21c6AsotKtTKHVA63/WyCctbZTYa686FZgIKvdIGRKjMSlUeCnPSZeBWEQpmGyEqSsokpQi65YbaQer7YM+D8Fkwftd+TQv1pl6OxiALO/+5H1E83ImX3lLLGGp9M5NR169KmnMGrUKGlryQhCi2uP7a233oqePXvixBNPRLrTHLpXe6axFswQbRvA2XgH7+Bs1zJ0RUXBKroiWmyG1VmbUQWMB8oMBIK0t5+bBY1Y2xQZOQiC+GPFSmwEMZhWS/6HJfg1wy2Rl5Eh1+bi0ZaBYNizdvsKsudKvHPjsemcboi0pKRgTfl0UnXTyHz8iDP2//UXXpg3D19//TVbm3FE2KZ0hhXXHtUuXbrg5JNPxs8//4yTTjrJ9LiJ993nbZZPj9vTIhja1zpO2VseuDn1U2ZfZa/jCz0iGWsRW5aR9RbNaJSWWhuldpqcWZBp10YQ4AmmCWPcnK6p2m9JiXsijcWWWQiCrZvZsx+2LDOq8ypCZLFl0b9brPVzy1UaxRheTOf0mxQcZTuQ8f365OzZ6NmzJzp37uygVwRhjqtvj9tvvx1jxozBCSecgGSnnkZW9kS7b41bfRG8huo4CwvN/bYTwaNtH7BeBx72CptHkcLmkP3Iysm8ptsDFjy27GZGQxtk8gbMYRCFYSVIpe55g2S7QhhuTc00s2VZNuqH8EqUgQvR9XtuTz1mLOpSWmp/qF18YRUXaCeWyDBnmYO7svfek8nhw4fx+OzZeO2117y/eACgDJ83uOqlc3Nz0ahRI2zcuNHyuIn33edmN8pRKxKyBMhOlA7DNc6G9f4q6el83RVBfw03dUNQZjk6IihpRd4vzWVbNiUjw71a2pmZsT9EfOD296raJK9tshwvGt0G3ZbjQch5Hfnpv1OPbfmdKz6xPNWLd77+Om5eKyivZkMYg58X5s1DdnY2Bg0a5HKHiETGVW8eiURwzz334Mcff0SpjCeeZ56AlbdxY0dRiV5N7yP0Tdv5ENEliCIOWqaYI2FogFdvTaNrsnLNNeZ/c1P4qQQ9aCaM8fJ7c9p+aqr3tkyEB57vzYkfz8yU+o7Ru3o3N1vXvsZYxiGDnN1jns7JwOHDh3HPQw/hnnvuSaitGLSoGT7ZP0Qsrg/fnXPOOWjYsCF++eUXy+OkZvlkBMasmRGz4NiFYSeZcT+LuCoqcn4dN2AVhkeR4m5H3MbLEvNui0qRzIooJACDidX34obduWUDInYskgF0044pc+esLbPvRoYdm00JlWADdmLMjqAt84iH7N7s//wHderWxahRo1zuEJHouL6wJSkpCQ899BAuuugiHH/88d6s5atWzV6tOF1HFY06cu5qtU4nl1cxencHbQ1eoIutBKm6ppYQ2LEQXpetz8ysHHAHodJgvKOtpOiljXkl8smOEwPVjr32kwJ2bDed0w41rhAdD2B5x9ttLyibIGf3Dh06hPtmzMALc+ciKR4GYQShNXze4ImFjRgxAi1atMBPP/1keZwna/l4MFJMWsu081wOFI5dDK/VAaIpbFkaJ2Gmdfoxx8QN9Abj9RtYJSPDfuTarSBLdJ0NvUWMqVmz8o+X+JnRZbFjtwhCNjvIgSrv8+q2Hdv5M7vv0sGWUXavHO1rwO9pcSyvx8AOIAPslTnnzEHTZs1wxhlnuNyhYENTOr3Bk9J1kUgEDz30EM455xy0a9cOaWlp7l9UdnbEBetxmuUzQnY3i4r80wNWUMZQAFHjcPJ57FLN6t+dVOGUhVFwl5fndS+Cjf4eiVYtlIUskZOeLmf/VbU/btgwy+yY2rWNfy9ix0EWck4RsWM7RO1c9pRQyai3Rsb7NoixBOBPdu/AgQN44P/+D2+8+WbCrt0jvMWzWuW5ubno0aMH1q1bh5NPPtn0OKZ9+bwOqK1eBnbC0kFf7USNnRgLmijyoz+B3p7BK1JT3f9sMgPdIIg/FSMRqAbC8SoGg75Bu+xMVmZmudjz04bd3jZEb8daMRdGO7azTR4b9mPQwgUbfueCN+W2yYmsd3voJ9IwvmvvmT4d3bp1Q25urssdCj40pdMbPBN8kUgEjz/+OLp27Yp27dohKyvLWYOy1vLZ4XKw7EaWjwdZIixo4jJukGHDXjB+PDB3rvwMh3bdkt/iT4/VdK+gBtQ1a4bzTVizppwMnBazoDvebVifuTOzY7Jhudilt+xEpZH9MwpHnumcIud7jR+iUGZ2b9PmzXjm+efx7bffSmuTIOzwdDfijh074uKLL8aSJUswYMAA0+OYsnyykJHZcTEodyqkWM53mkmUDetn9kVkyswEymoriNlJN6a2mWVNZO3y69YG7azCkIjFrXWArNkVVhvmqY4VpOw1D2G0Yb9Fof6eyRqwMLDfMGT3WGKIRMnu3XDHHbj4oovQsWNHlzsUDijD5w2eCj4AuO+++9CyZUvs2rULOTk5zhrzKsvnNKC2Od9Jlk+GGPPSMQZ6WqdMgijC/CAzszwglh3c8gbObok5Qi5uijzRgLtu3fL/itqwmd1pbTgMWXwj/BB7Xm/HwDKdUz3GzWJFgtNAKbvnvC2Z8cOSr77CkmXL8Ntvv0lrkyBY8NxbN2jQAHfddRdWr16NqIWz9bRip4ySUEFdjcyArD35Ql+tM2hvNpn4bb9uVhLMzPSvOqQZNLzIBmtFRFGxptqcrIIsblXCtLsHXg9WBDVrFzRk2a+ZqFRtLsDvpnjP7jGLPYag5ejRo7ji2mvx73//G/Xr13fYs/iBqnR6gy9e/dprr0VmZiZ+/PFH543Jqt/rtkN1eYsGK0EmSzwF8UEKvTC0aysaDcbL3kkf9MEOb+DMWzDBz+0BCGu8+m7cFGdub4Egen8og30Mt15SRvbrRmVNDhtzMp3Tq+yerLhBZijnx2v10VmzoAC47rrrvL84kfD4IvhSU1Px7LPPYt26dSi02LRWOMvnlsy38hAOA/Oz8Y7wuUD5pZ18ZF7hZDaawtKOHyLtKFK8v6gIorbr5O3ll4qXmX2xggSgf3h179XI1cv96GRdy2oNoOz7JzNzF/YsIIvPy8hwfv9Z/ZvZLAgX995zGibxCjCz11sQxuSNkJnd2/HHH5j6wAN49rnnkJISknjEIyjD5w0RRVEUvy5+wQUXYM2aNejfv7/lcbYFXKJReUrD7hj93/VWxXv+/2BZw2fn8Mz+rr6XRc93coxZTCBzFE76PHyZqtXuuDiw3UrMnVv5d3aFLdS/m62TsstesBTOMGtDW4GQJUvCGuiyHBfkNVAiJe2NgmKeNVBmWAW9LBU8zf4+enTsv+fPr3wM2a6ztmRCtlvB66NjM3tGZmT1brSLF+zOZ/k77zFWJuVHdo8pZmB8L551/vmonpmJV4x8TIJSUFCArKwszJmTj2rV5A7UFRUV4PLLs5Cfn49MrwYBA46vc0AeeeQRHHfccdi+fTuaNm3KdpLfsl0txmHWD4FiHW5vy6B21Y99+8xuk8xrhaJap992q0Wi7Royfnz5f42Enx1+VDHUBnpq0BykMvRBxc/y+E6zXXqhp3LBBeX/FQnK4sV2EyFzJ8t2RaZzOrBdvcjTUlISK/pE34nqbZEx3VMkA2iEzCXmfhRqWfDxx/jiq6+wadMmaW3GE4oi/1XiXyoruPgq+Bo0aICZM2fi5ptvRnZ2NlJNRjon3ncfZt9+u3VjLMGqrGOcWKamfV6hZydsvBA+MrZ5APyJE32p1snyQWXZJct1vKwG6ET4AXxbO+ijHaeYBWWJKASDNA3WLaGnh1X4mdmcarupqd7YjDa7Z3SPEtFuAXN78Wqz9WrVyn2TWT8Ys3tWQs+oOZmuMCwEdRuG/Px8TLjmGjz88MNo0KCBB50KH7Qtgzf4vsr7n//8J1555RWsXr0ap5xyirPGvAqc7bZ6YLiGaFZPbdYt5xa0DdRDkb2zwsuN093eCkK0fVX4AeKZEzWC8TtwVQM3oyyISN+i0WBkVIwC0qC8MWVsus4q9PRccAHw1lvOrq3eW1HblVGMpWZNczsT6VdQpnOGwW5dyuhZUVIiNp1TxY/snmhfePAju3fjlClo164d/vnPf0prkyBE8F3wRSIRzJ07F+3bt0fz5s3RqFEjw+MmTptmn+WThcuB8+slsWKPZzRO7/yMlmE53URdRiaR5RiZG7qzCkOpWb5E2mvPSYCnDdbVwFs0iNYGT36LPz36wM7qnnnV9yAHxFbIyirm5jpv4+KLy//70kvO2jESfkFIxfhttzVrVm5X1G5lHSO6dk/bb8G1eR+c90rF/6uvR5Exw337yv8b1Or/ibANw2dffIH5b76Jn3/+GZFIxGHP4hfK8HmD74IPAJo3b47p06fjrrvuwplnnmlawYhJ9AU4y/d6wVDDQ1mnYRiJI+27OV4NPGhZx4RCH/ypRsgagdgVy1CFn92UTKO/84o/ls3XvdqgXdv3IGT4/CQjo/z7c1PkiToRrdOVLfyA4G24bmeLVhluJwRp2jAvkvquFXp6eCaK6EMbvfALSnaPBZn790mNIRjix8LCQlwyaRKmT5+OZs2aSbw4QYgRCMEHAJMmTcL8+fOxevVq9O7d21ljstY7ScremAk9PVbCj8Xxqe9gGVk+O8Kc5WPC62mdQRuosAvoWIQfyzQ8pxk/lZo1Yx+coGX/CGNq1iwX2TKCZrtsHs98eCunJEv4AcHOWAeJII1mqjYrASuRp8fOddu9GvbtC062z+sBXD+qcl57661o2qwZrrzySraLJzCU4fOGwAi+pKQkvPrqq+jYsSNycnLQvHlzw+OkTe2UEWAzBM8vbj+toilW9MKPVxAlJR2L18noKxPX0zqd9kdrPCwYPQMi661Gjz7W70WL+M/XQ4F0MHEjk9OnD19W1mpkiMfZqsLvtdfYz7HCyGbr1rW3X5nbMbAQ1Iy0W9M5RWzWwgcu/scLx/7BmeA1crc87n7fvvKP17KleftWhDW7x4LMdXvvfPAB3nz3Xaxfvx5JQX1eiIQjMIIPAJo1a4Y5c+ZgwoQJqFevHqpXr254XBimdqpCT0Wk2EpJybEiXzxLPcz2wdO+6/zYosEMGesKCYfoN1/ieS602T7R4hra66mZGhnCD6hcup4EoLe4JfKcoHfIotMMqlUDLr20/P//85/YvzlZn6e9Z0Zr3Aj3sLNXwexejNBzgBpyiIQuate3bCn/r1b4yZhpE+ZCLUww3PSdu3bh0kmTMHv2bPbtxhIcyvB5Q6AEHwCcf/75+PDDD7Fs2TLk5uY6W+gqo0IiZ/CrF3p6WIWf3uHJKLcse70f67RO9bN48QCGelqnrKmfPJiNPvJep6SkXEwlJ/M9c1bX0E7RYxF/rCMj+oCOgml5iG5ebYV2EMFM6ImuvSwuBmrX5j/PKCJVhR9QWfwZwePMvbDZoGYiZGXujNDfVxlTNTX2aifyREIU1dXyYvTRtmwxz/bpkfVeTUqSEwvIzDbKmsoZjUZxwWWXYfgZZ+C8885juzhBeEREUYK3PeHff/+NDh06ICcnB507dzY9rlKWz+iFxeJNWQJbu2OKimzFnhFGDolldMssVhBxyk7KN7McY/d5olH2Eb0gOnnm47S2aBZcybBXGfbMc6xZVs/us4gI1yVLrP9uF0SzREosWUDW4JjlOK8DbdZoi+U47WbjZtgF0XZ/79HD/hpaWKPhjIzYf7MKMJ70w7x55n9juZ6X9hpEWwXkCT4ZtspwzOKxs+3b0GHnKq0mThQWWp/LqmE7drT+u9171WnmjnXDd9ZrsR4nsyrngzNn4pkXXsD69etRo0YNtnYTmIKCAmRlZeGRR/JRtSrD88nB4cMFuO66LOTn5yOT5dlPAAIp+ABg1apV6Nu3L3Jzc9GwYUPT42ZPmWLfmMtB9PM/nhzzb5HRNyczi9S4wWkROsD4vem2o+dpJ6iOXtoxbg9QqAEb77CyUXus0zeNruVkPpLKsmWVj5El+IzQBtWJJvjMsmASAmTTv3fpUv5fkWkNVt+zXujpMbueiHNWz5kzh/06Wuzs1erv2nWABw7YXytebBUwtlcXbXXl+FiRJzKxyOgcVhdrJPp4k5XqtU46qfLfghQDsB7n9cDv0mXLMHTUKCxZuhQ9eAepEhRV8P3f/7kj+G64gQSflsAKPgB46qmncNttt2HkyJGm6/kAf0SfXuQZwSv8MjLEp2xWq8Z/PRYHHI16k+VjaYPnuMBm+bwSfdq/O8kmGrXLO21Tfz0ZYk+PKv7cDqLNjjELqMMWRGsDZRn7lfEG2arI0yND9NkJPavrORF7elTx5+bghNUxRrYqcwBDJiy26ua+eibH6AWeEU5cpMhSaFX0icxKNbveSSd5uy7Pyw3dAXnv/527duHEPn0w9e67MWnSJLaLEyT4PCZwa/i0TJo0CStWrMDSpUsxePBgVKlSxd8Opafj+W/Np5jqUR2v3TtZG4eIrNVTHanW0cvaSiwpSc76Qa8LswR2LZ+XyNhaQY8Tw1IrEPHCEsFo13atWsV/DV70a8bMMmDa74Aly+ImPAGyl5iJPC0iTsjJdg/q9UTOt3N0l19e/t+5c/nbloGRrbLYKWumkLUPVm0F0FZX/uMpruNF1uelptpP0TRDfd/xnG/njr/7rvy/VjtlBU3ssSKrKmdJSQlGXXghcgcPpi0YBKGiLd4Q6AwfABQVFaF79+5ITk5Gz549TY9zO8v39IrKQo9XABnFyqKzi1RYHKnRdXkHrI0crf6BCmOWL+6mdWoDNx6RandNI9HFE80YRRYskYnovCQt69bF/tutzIkRYcvw8R4nmuFr1+7Y//MOIrA6Xq1zFRmoEDmfx7Hqj501K/bfZKdyjhHM7n1/ubHA43F7LMcadY9HtImczzvupl6jb9/Kf0v09/7kG27AlytWYNXq1ahatSpbuwSAYxm+GTPcyfDddBNl+LQEXvABwG+//YYTTzwR3bp1Q+vWrU2Pky36jESeETzCT/vudTLDSIUnvlCvLUPsGcFyH+J5WgfzcbJFn1UgxpuZ1F+XJVhyUnFAReYiFCvWraNA2g/BpxV4RsgUfWaOVbSYC0sbvE7V7vhZs9yZemxEGKdz8hzDIfjMRJ4W3qyd0fEsXZJRjEXfhqjQM6Jv3+Bl97x+57/86qu46qabsHbtWrRkLXdKVKAKvoceckfw3XILCT4toRB8APDJJ5/gzDPPxJAhQ9CgQQPT45yKvicWta34f54YhEf0ZWQ4mxknuiG7Cu96P55pFNpjjd7F8T7a54ngUwMvmSJUf22RhSBOqg6oiC5E4bmOtu0NG4yPIcFnf5zVd9S8efl/eRyNE9HHOnrmpJiLWRuyxZ6K6rwef5ytH6LHxLONApZ2unHSYxX/z+omnazN43VrMsbB1DZkij39ccOGGf8tnsXeym++wekjRuCdd9/F4MGD2S5OxECCz1sCvYZPy+DBg/HQQw/h3//+N0aMGIEMnvSYDVqRp4V1DR7AvsRE7TZP22bXclJHwI31fnr0MUI0GsxN1o8iRdp8fiZE1gQaBVys7ag3k+XY0tJyI05N5Y9sZGzAnpFR3geZC1G06KMYfebJTAAmGrwLIFSBp4dnfzzevfRKSvj30DNzvDzvE7UNkSBCxGlfc03sv80EYKLBKfa04s4JvGvzSkvFt/fLyHBWjAU45v5Z3STPddRjFy489jtV/IV23R7De3L7jh0Ycd55ePChh0jsSUBR5K+5C0cqy1tCk+EDAEVRMGHCBCxYsABDhw5FSkqK4XF2Wb5H3mpS8f+s8YXTGUd28QRP+/q2eM61c8L6tkSze06PpSwf4zE8x1kda/aWFxnOVtsSqT7AuyDFzWFrlW3bjI+J5+yJ3TE5Oez9diPLpxVboiNWogVdgFhH6sb6Pp65cg8/bPx31n7FoY3uuPb/Kv6f1YUFacmzvi1ZrhQACgr4jndybDQKjB1r/ncvs3uy3vGFhYXoefrp6NW7N+Y8+ywikQhbu0Ql1Azfgw/mIz1dbhauuLgAt95KGT4toRJ8AHD06FGcdtpp2Lt3L0477TTTh00r+rQCzwi3Zh2lpvINHLO070Q48g4uJyf7J/i8PgaQuJbPa8Hn5FjWNzdrtOKkAoFdX4zacZLdc3Lstm3hXR/FG0zn5Jgf56Xos3ppi+yBI3qulSOVscaP1WFZtfnwwwkxIKEVdma4IfiM2pWx3NmqLVluFKgs+twSe2aMHRtOsReNRnHW+efj4N9/4/PPPzdNOhBsqIJv2jR3BN/tt5Pg0xI6wQcAf/31F0466STUqVMH3bt3Nz2uXTv7vXK0yBZ+qo2JDECLVPS0Ot/pNlIs73w3xKFRv3mrg7Ie43rxFv1NlLXJusix6vxaHqyOd1qFQGRhihfZPSvMIppdu479f1gEX/36sf92o9+iDpb1Zc3SvpOCLkGqkMW7DlDlwQdj/x0SwffnzTMq/c6NNXciWT5e1+XEjcp0oQUF/OfIEHtmx40fH/u3IA7m3njHHfjvBx/g22+/RZ06ddguTpiiCr777nNH8E2ZQoJPS2jW8GmpU6cOPv30U3Tv3h3Vq1dH+/btDY/bsGEil+iTsdzEyK5E1uvpz+HNFDpZI2iE3oF7HQNYXdusL7xzwpnW8pmtm2PtFC886/3sjtXfEN7FKGb79rFGAaoR66MWkcUp6enH3vZmc5ScXkMUbUbMzAj37fOmL0DldW4sthmNyj2OF97KUoC1A7dzoHYOk1e4lZYGT+wBwK232h93zz1s7Uvg7ykPVfpd0Lc8VU1FZJmzXZt2aNf08Z6rP0drRnYulOcaovV2jLal1B8jsqe5LLH3zPPP4z8vv4xvVq0isUeEklAKPgBo06YNFixYgEGDBiEjIwNNmzY1PE5E9AFssYb2WJYBBBER5nTBsurYeesh2KF1xH6KP8C8yIu2XyUlrPdS0og3i1BjFVxORZ/VG1hkd2Bt5R+RiEcr/ESjFS3ah88ocnFjvpJT9Bk1L3eJdUuk2WHnhPROVMRp6c9xOlLmpBSytj1tm0Z4WaXK7rp33ml/jAFHYT+9LehizgyZbkF1uU4LuYieb3SelQuVndVjPdboGP1WlWywTLtMwS2T/o75zcQbb6z4/+3bt2PJkiX47LPPLLcGI8Sgjde9IbSCDwD69OmD//znP7j00ksxbNgw1K1b1/C4DRsmAuCb4skaa4hkilmFnzZWEa2qqY1XeNrgiXPUB0v9r98C0AllqIIqKLM+SKTKphluib5olP14kbJzTiktPRZIOt1lWIud+JNFIrxN3Mjy6R2rnQMVFX2Zmc4ckdoGL1aO08zx84g9J9k9F2ERe2FA62ZZ3JzIeFk0Wn4dkUIs6vmqGfC4OFa3nZnJP91T5i4aPMfJYsuWiZh4o/Hf9u/fjyVLluCFF17AKaec4m3HCEIiIQ7Nyzn//PPx73//G4sXL0ahjQdVhR8rVuWUMzNj4wGR0stWx1sNTLNeyy72kDlqqd9/T/sTFDwfXfZiipYW/U3nDSRZ+qE3GtbzrNrIyGDLxPAabGZmed9YA3cvp30mMhkZlR2oFTzfi7ZdUeej2iOvA2N9DlTnqx30kNm+zBLHEvEruyfinmS7AqP3IW/y2cgcWWcW8X6ejIzyIrbqj12/WAiq2LOisLAQn332Ge68806cd955fncnbtHHjLJ+iFhCL/gA4LbbbsOYMWPw6aefotjmrcIr+oDYbZfs4hRe52p0POuLQMaLSRt7qIjOYjIjbA9hGarYHyQ7qBIN5uxuLG9QZ9YPO2MTFYxaWIUfK9praR/eoC3gDsNDYYfVZ9BGjqJbIbBkdo2+V557a2Z/LI6L12ny2rpfYs+vqaYhwuqrsTMdFhOwa8PKpfHGB2bXMnp0ed7nQRZ7W7YYx4TFxcX49NNPce655+JWo7WvBBEy4kLwRSIRPPPMM+jZsycWL16Mo0etF+lu2DCRWfipjk50KQjP8aWlYvGuUSwuItrUdtycCQe449R9GT32U/Sp0zZlXl/bD+0aJB5jZpnSZocaDJvNaZaBXvzxPHhBjl5YceMzaI+1E3gi98Zs8ZGdgGeJTJ1E3iJijwfZI3CSiZfpnCpOx5x4BzfNrsc7QOpkxhHrtdRHOjOTfewmyO7STOwdPXoUixcvRs+ePfH000/TXnsuQxk+b4gLwQcAVapUwRtvvIGmTZti6dKliDJ820aiz2owmteIeJyuGrc4MVT1ek7iAzXWN8r8xQOswpApy+cGbgV3vKKvtLS8DJ0I+myfE0PKyBAfvWBFjZScZqESGZEsnqjoE83UGl1PJKusOmmR6cy813JjYCcBsnteB37Vqsm7lpN2RM1Z9Hi7xz6MYi8ajWLJkiVo1qwZ3njjDVSp4lMsQBCSCXXRFj3p6elYuHAhevXqheXLl6NPnz6WIzM9esQWcWFd4686J546BQD7Ng4i11BRl56oyCigYlfsRdasQSOKiiq3H6iiMKzFVFiO0669Y2nTbJsEJ30wSxWLVONUoyDR6gTAsXuiPihubMFgNodJS14eX5vxRDQa+9BZCTr9sbxtW6Fel/caRtdzmsYROV9E7KkY2aj2Hvgk4lize062L7UjKCP5Rlsm8JzrZGaN/h6oj4qV23Ii9MzQu4YDB+S06xWKomD58uUVsWR6iAc9woQbAzNBsqugEFeCDwBq1qyJxYsXo0ePHli1ahV69OiBSCRSSdwZwSuyeOMObcE51sFpnj6ZLT9hPZ93CZbMbR54MHuQi4rkJsiYKnYC/KJPtifiKRWnvsD0/bUTSaLl6ADz/fdYz9fiVRVOPVqxoSXMQpDFgen38PO6H1ZTQkVFnzoQIXK+qFB0IvbMUG3RjVkBIQh03QzonIg3HrSfQcRN2t2DmjWNXZQbYs8IM/ehCkG/gnKj7J6iKFi1ahUKCgqwatUqZGVl+dCzxCRMgm/btm2499578fnnn2PPnj3IycnBP/7xD9xxxx1I1cyK+uGHHzB58mSsXr0a9erVw9VXX42bb77ZnU4xEneCDwBycnKwdOlS9O7dG2vWrMGkSWu4zueJBUSyfSIzxuyuYxdPyM76AcGc7snykMsWhlwXT02VlxHUwivI1PZF1ufZXcfsPvBENCz30kj8ycju8WD2MIdJCMoWdU7EmAqLk+S9jt5JOj3frfPcqNzJ024IxF5QYRWKVm6HpQ0et6XN9nkl9OxgcTn797tzbbOpnGvWrMHu3buxYsUK5OTkuHNxIvRs2LAB0WgUs2fPxnHHHYcff/wREyZMwKFDh/Dwww8DAAoKCpCbm4uBAwfimWeewfr163HppZeiZs2auPzyy33re0RRFMW3q7vMhg0bcMopp6BVq1Y48cQTmbJ8enjiAbtjjWIY0bhIe55oHKJtw4kAcrsGAU/84UZMkwLrIkAVuDFviXeOE28WTnQY2+w6PBGC2bVFowz1PB6xJVqURCZuRTYm+5J6Bq9zExWedtdhcVBWbXgl9AD/xR7HsTzFWtxwjbyujqftaFRsFruKDNdm1IZT1wiwu8d4nBK3apWx2Fu7di1+++03LF++HO3atfO4V4lLQUEBsrKycOut+UhP51yTbUNxcQEefDAL+fn5yHS5MveMGTPw9NNPY8uWLQCAp59+GnfccQf27NlTkfW79dZb8e6772LDhg2u9sWKuMzwqbRr1w5LlixBnz59kJycDGAit+hzmu1j3cOGNzbSL20SQYZDl1lF30uKi10YyJa5nk/kWIA/0yc63VKf7RMxJqNry4hotA+dzEUsbuG3MPMT7Xclmhk0O4+38qrTNrSo00ZVWD5XEDJrLvTBr/33eDByBSKz2FnbZkGb6XPiqszW9wFypnuGnR9++AGbNm3CV199RWIvDinQLf1IS0tDWlqa1Gvk5+ejtmbAcuXKlejbt2/MFM/BgwfjoYcewsGDB1GrVi2p12clSOUvXKFTp074/PPPsX79evz000+mIzxW8M4vVo/nmbopModZuzewEyfttWiT8RL1ElfKjruRtlQRSdc6CWydzo/VbnQtgtV5VHnTP8y+Fxll/azOE93PUetInewJafQ82DlqN59xF0RcPGzF4GYVT+27WUY7IrBcX/8YxrPYM4r9fvrpJ/z444/4/PPP0alTJx96RQCAosQ+jzJ+1LmLTZo0QVZWVsXPAw88ILXvv/76K5544glMnHjMvvbs2YMGDRrEHKf+e8+ePVKvz0NcZ/hUunbtikWLFiE3Nxfl2zWUfzGys31G2ziIZu5EZimJZAv9yNAZVRqXta6QJ3Pna5bPrWPVG8ubGQScl5kTPddpcRdW9JGNW1M/iWOoTpB39MvLgioy22ERYvrMX1DEXhAyjC7i9SOcmSmnrhRvOyKfU/t4slTWDBtGYm/9+vVYv349Pv30U5x00kk+9Irwgh07dsRM6TTL7t1666146KGHLNv65ZdfYrLAO3fuxJAhQzBmzBhMmDBBToddJCEEHwD06tULS5YswYABA1BaWooTTzwRq1aJTfEEjsUjbk/ZFJllJHpNXmSKRaOXVJC2XziKFPa1fF6LPqusgYjoA8REl6wyc1rDklm9QH8O69RPgh+nhWBYRZ/MtRlO2hLNcmvPY7HlAGzC7sbaPd5jWZDx/nA6rVOm6AOs25IlaLWPbjyIPyOxt3btWmzcuBFLlixB165dfegVocXNKp2ZmZlMa/huuOEGjB8/3vKYli1bVvz/rl27cNppp6F3796YM2dOzHHZ2dnYu3dvzO/Uf2dnZzP03h0SRvAB5Zm+ZcuWoX///igrK0PXrl2FRJ9ILCND+P1/e/ceXUV1qAH8S4AkIhKCoAEkEBACghAMWhERLAIWpA9FqlfkulhAQLT2VhcP8Sp2qRVfVBcqAbUF6bWlgVKeFsRHeUQUSoIgAcRIIEAAIQkQSYCc+wdOmEzOYx5775k55/utRSvknJnJOTN79jf75WRBVZHDU1TRjl/arJpeYTX0Ac6XYYjEaWsfICashduWyDtEsCc3DIHmyVi+IVzo80rQA+wXTsYC2Pi7Gs9vL8x25VFeejgoU7AAKbPl0u/hzxj2AoEAtm7div3792PDhg3sxkm1WrZsiZYtW5p6bUlJCW6//XZkZWXhT3/6E+INBVCfPn0wffp0nDt3Do0aXXxAtnbtWmRkZLg2fg+I8lk6Q9m9ezf69++P1NTU2nX6gOBdPGUtQ2X1BiWqfiNidk9N48b2brR26hYyh6xImbET8NZsnHb2oZExZZ2TWsrp03LG+0XixxqPDC1aqO0fpy9kRM+25pWwF4nMQs3Ca62O3ZNZBNopzkRPSmyW6CVDte2pugxD3edlTTAsQrCwt3nzZpSWluKzzz5DRkaGS0dGGm2WzscfL0diotiyvaqqAq++Kn6WzpKSEgwYMADt2rXD/Pnz0aBBg9qfaa135eXlyMjIwODBgzFlyhTs2LEDY8aMwaxZs1xdliGmWvg0GRkZyMvLQ79+/bBx40bccsstiI+Pr23tc3utYT3R9RsRs3sCl+o5ssbiOSFlbN6PpHbtBMy/3k5fI6tdPEXVJoytdCJmMgDULrwORF5FOBqFmkE0Pl5dbVPGlNp+CXqA3LAnkR9m5zRDxD1NVNdOjdYhQUXRE+73NxYPx49f/DevBcGamhps2rQJ5eXlyMvLQ3p6utuHRDoyu3SKtnbtWnzzzTf45ptvcM0119T5mdZ+lpycjDVr1mDSpEnIyspCixYt8PTTT7sa9oAYbeHTHDp0CAMHDkR1dTX69+9f2/R6553W1+tzQkWvJdHbNVPfCfV7yW7hs7MPaa18gP9a+sKVlCKmWJUR1Mxs043H4V6r+QRjd1kI2Z+nMWCL2J+Iwi/YAu523meG3cLS7DFZ3L7o8Xv6S0Xmunoasy18we5dTueSio933ks81D1VRvCT+fBWRrGoFWPHj9dt3Tt37hw+/fRTJCUl4aOPPuKi6h6itfD9z//IaeGbNUvNOnx+EZMtfJrWrVsjLy8Pw4YNw5o1azBw4EAkJSXhww8vFhaqgp9xfJ/Mc1Plee/F1j8RLLXyWSV73T1tH0D9/ZidNMJp6DMzA4HdbYbarlt9n8yGKdE1IBVr+8lo5QvXvcLJ/kTMPR8qsGnfebjtqgx7+mOKxMJnajbsabu2Ut67vVSPzHuTcV1eO6Ev0vFpl42o4Cf7Xi2zeNKHvbNnz+Kjjz5Ceno6Vq5cieTkZHk7Jtv81MLnZzHdwqc5e/Ys7r//fmzYsAGDBg3CFVdcUfszla19WqEt60QVFfZELLtm9Xe0s0/ftvLZeT1gr9YUH+/ewBaNzK6ZXhnsEq1EfK5W+9Bb2WeoaZTtLHpqlnHbqsOepH1cQIPIL/qRFzoqBKMv6uxcqk5aCPXMhj47x+gk9Pm9+Fq16lLYq6iowEcffYR+/frhgw8+EL7YNjmntfA99picFr7XX2cLn57PL28xkpKSkJubi3vvvRcrV67Ecd3T9g8/zK5t8ZOlefO6dZ74ePEFr9fOd+131P/xE8sLD6sYh2O2wifqQxex6Dpw8eSU2X+5WTN5sy/FOrvnkFbo2flezOwz1MLu+m2Y2Y6dBdj111cMhj2vio+/WBzIut9YKVYjLefk5BhbtLj0xyw/3oON9GHv+PHjWLVqFUaOHInc3FyGPY8Tvei6jBbDaODzS1ycBg0a4M0338S0adOwatUq7N+/v87PRYc+M/UdUYWwl8JeuPqP2wHQ6hNjX4W+cB+snUqtmX1aJSP46X9fJyGDnNPXRJ1e4KHeHynomd0O4Hwa4yZNrBdoKsJejJBxPwl2StjdvvE0dXqswd5rJvz5PegBdcPed999h1WrVmHatGmYPXt2vSnziWJVTI/hM4qLi8PUqVNx7bXX4sEHH0SvXr3QvXv32mUbRIztc/JA284TCxFDV/T0NzzZT1D05bSdmTdlztapjJ3F07VxdlZvdE7W3tOPHXI6u4GMMX5GxgtRxOCXWK1YhBoHFqmJwekYQP37rYS8YNsBLm1LRNALtx/9vvRUhT3JrXtuzc6p8vITta/mzeVN5GKkn9TEyvu8Tgt7gUAAO3bswLZt27Bw4ULcc889Lh8ZmcUxfGow8AUxYsQIpKWlYejQoTh16hRuvvnmOk+JrAS/UHUeOyej1eAX7Ami3X2HOx6R23Sb1ZBoeQIXOwHObuizU/Myu2i6kXGBRxFT2mknsN0akZUajYwAGIuszsbgNPQ1by62QGvaFDh/3v42zIZFY+Gp6smU75+AXaI6sDT8sbbUrJmYZ1Ha8cuayCUUYwO7HyYSDkULezU1Nfj8889x5MgR/Pvf/8aNN97o8pEReQ8nbQmjuLgYQ4YMwdmzZzFgwAAkJCTUe02w0GelzuOkrhLuvWYfeFvZv9m6jOjJ6jR26iqq3iN9EheV79GYCW2Rah12gl+4bcqc7SDSeyPVjKLlkblZxoJOVmEWjLGAcxr6gnUlthr87BZuwQocszPmithXGHbG7omesCXUZSW7aAMuhbxg7IY+p8WbjKJNzy8BUAt71dXVtcsu/Otf/0JaWprLR0ZmaZO2TJwoZ9KWt9/mpC16DHwRVFRUYMSIEcjPz8ftt9+OZiGS1KhRzmbzFFlXstu7SUZQEzFhncbuw+lg9aJIn7fVfdlapsFsjcXJYlVW92UUqmZkpdZhJfRZ2W642pHsWpFGXzuK5sBn9imWzNBnpmCzun8zFYFIwU9FoWb8vaIk7AF1izQrl5CswBcu5OlZCXwiijVVRZpGW0Rd/3ev0MJeWVkZPv74Y/Tq1QuLFy+uM8M6eZ8W+LKz5QS+nBwGPj0GPhMuXLiAyZMnY86cOejfvz/atm0b9HVOQx/grL4k6pwOdgxOh7Vo2/VK4IskSGNuRLZDn9W7serQB1yqITmpdUQKfna3bawhqa4ZhXqfl2pIZohYHEtG4LP6BMvMMdgpLIMFPzcKNEXdFlQFPrvFksjAZzbkGUUKfU6KIn2x5kaRZoXKok4Le8XFxfjss8/w8MMPY+bMmWjQwP8zycYaBj61GPgsWLhwIcaNG4eePXuiR48etZO5GLkR/ERPzqLfloiwp3Ey6YvKwGd3fw1wwfqbVK25Z3dfwKVag9OxeaG2IapWEh/vbBYEkYHPDJU1JRWLsQNiQp+TSVgiHYPTm78W/Bj26lAd3JwGPrshzyhY6BNRnDVs6J819ezsy04xsWBBNgKBALZv346CggK88847eOCBB6xviDxBC3zjx5cjIUFsKKuursDcuQx8epy0xYJRo0ahS5cuuOuuu1BWVoa+ffuiYZC7xsKF2T++3n7wMzvBSrB6kcjJVOLjL954nMxjoDHWj4w3CVkTv1RWRuHM5dpMnFZZnQDG+CWJmJDFODGMyLAH2J/sxY0umXZCmKralV12J2LRJs4RUdgEK0BF3fS17dj9TFWGPapDOy2aNrX/zMyoefOLwUxk8aFVK/RzSZkNf6qLMZVh7/z589i4cSPKy8uxYcMGZGVlWd8QUYyK4kEncvTu3Rv5+flo2rQpVq9ejVOnToV8rRb8nAi1Lo/Z5aacrkGk1W0aNrz0Rxa31+EzsvME2dYCxW40XYbbZ6Qvwem6fRqra6aFE+4iEbUPK/smc4KtjSiykNFm3hQV9vTXnJ3CSnXYU9S6Z5fsJRxU3VNELO0Z6R6rat1eK1SGvVOnTmH16tVo2rQptm3bxrAXRbjwuhqsqdiQmpqK9evX46677sKyZctw4MCBkK9duDBbWPAD7Ndf7dwMQtWRVIQ/wHsB0CxfhD7jPu180HZDn/Hk0SrkdivlZo5ZH/4iNYuTc+E+z2Ahz0hE4aJ91yIKq8aNw19rZq4fH4Q9u9xae8/Iyj3DSdEZ7B5o97mS1dMz2KXjRtBTGfYOHDiAZcuWYfjw4Vi/fj1SU1Otb4goxnEMn0Pz58/HhAkTcP311yMzMzPkuD6NnW6exsJdRI8nQPwwl3DHJaJByO7s5YC4XGSWrbF8gP2ak53+ScaV7Z0QMc+5ntkp8GJtsIyT/bnxyFPbp5MmEKsFXriat9VtOSk4tN/dSfBSHPbstu65MQ7PznxXRlaKTbNFl9me5E6fQejfr3IosMriZ/788di2bRt27NiBnJwcjB492t7OyZO0MXxjxsgZw/feexzDp8fAJ0BBQQGGDx+ORo0aoV+/fkhMTIz4nkjBz2z9SET4MxbEIq4N43HJCnzBhLqxqJy8BfBg6It0pxbxmD5U8JMxDZ6ooGU8Nivhz42WQT8EPm1soqinU2a2Y6WJxcz2RAz81W/D6mfhQlD0cuAzXqaixuCF247dYitc6BPReB1uG7LCn+piZ+7c/8b69etx4cIFLFu2DD179rS3IfIsBj612I9JgJ49e6KgoACdOnXC8uXLcdxEiRusm6eZnk5GInor6btniLouVHX7DMbYrcdpndxuZcb2WBhR3TutfggiuoAFS/ZOToJQ3T1lhT2g7oVo9YKMRS1a1P+jEVUAhNqO3XGa4QqnSN03zTJuQ18oRvpcYiDshWP8qIJ9XDIn4nJ67wp2Ooq4H5rZRrDL0CnVYe+11+7B8uXLkZGRgYKCAoa9KMcxfGqwhU+gmpoavPDCC3juuefQu3dvXHfddRG7eAIXW/tE1SmdPFDX36REPZgH6t6YnVyETvOIGz2rABda+py+V8T7gYu1BFGP4fUaNnS29IJ+O3ZprYCx2MJnpyYpuqVP5EQ8+mOTEfSsHoePwh7gvJhychmKKF60bYh+OJmQ4KynuJ6TYzMWF0ePOnu/WXaKm0AggClTbsXWrVvx1FNP4cknn0Q8x1dHLa2Fb/RoOS18CxawhU+PgU+Czz77DCNHjkRycjL69u2LBJOreP/mN87X79NYqV9Fqjs5rauFq/9YuSmIaIByI/TZDnyAP0Of8QYtMvQZaz5Ogp/IQTR6sgfUOKkAmb3grrrK/ntDERH6mjcHqqudb8eoSRMx23UaGIMVMmY/NweFm+zWvVCXitMiymnRot2aRSwvGmy7GrvBT0TvHSv0YVBFMaN3+nQ5HnmkNyoqKvD3v/8dt912m/0DIF9g4FOLgU+SY8eO4b777kN+fj769++Pli1bmn6vyuAnetiLkdX6T7gbhV8Dn8aXLX1WthGphuC0dhap9mMl/MkeSBOO00AooiYWLNCZfa8TdgqRYN0fRIW+UIOL7WxfRtiLRP95uti6Z+dSEFE0WS1Swj17dRr6Ij3XtRL6VAc9Ee/XwqKdYqKwcAsmTx6CXr164YMPPrBUXyL/0gLfqFFyAt/ChQx8egx8EtXU1ODFF1/E73//e2RlZaFbt26munhqZAY/pz2izNbbRExyp3E78Dl9v29b+sJtw07NwE7ws1oDcnPWBDOc1MhUP3oX+X7AXOFhto+73eBndhYpM9sX0Q3UacHk4Hx0EvicNNqqCHwmO9fUshP6rO4jXPATUTS5VbS89JL15acCgQC+/vprbNmyBc888wymTJnCLpwxhIFPLQY+BTZs2IB7770Xl19+Ofr27Yskizd3kcEPEDNjpl6om77oQfVWb6zB+DbwAd4Yl6dtQ8RN2UzwE1EDMoa/WA58gLPQJjPw2R3IbCX02S38Qu2DYc82WYHP6X3CTOgTcS/SBz+3g57T99sJe2fPnsXGjRtx5swZ5Obmom/fvvYPgHxJC3z/9V9yAt///R8Dnx4fpShw6623YufOnbjuuuuwdOlSlJSUWHr/G29k4403nC/erk04mJAg5oalUTUjp5VJ7kJxMzM5qVwBcDetAhc/9CZNxD0xiDQboqgTSj+LoxfCnp+JWvdQI2ImVDMFmtPzVtuHfj8xHPa8RP/ViLyvhduXCKmpF/+InGXbjffbCXsHDx7E0qVLcd1112Hnzp0Me0QKsIVPoUAggHnz5uGxxx5Dly5dkJWVhQYNrN90rbT4malHyZgDQcaN10z9ysxTZ7dzk69a+sLVRkTPwKnfnoxQ5ZWZFAD/tvCJ2IY2y6eMgse4TdHdGYC6BZGT38HFsAc4D3xutfAZL2MZEwHrW/lk3MtCbdPK8F4Rz15UB70LFy5g69atKCwsxBtvvIGxY8daGuZC0UVr4bvvPjktfH/9K1v49Bj4XFBYWIgRI0bgxIkT6NevH5rZHFAXKvg5eVguog4WrI7l5gR4xoqJF8YCejr0Wa1IiqxxqZo2LxQzIdDtGRVEbEPVWL5ISzjIDH2iw16kAsjK7xLjYQ8wV4SZuWxlBL7GjcWs/KJnNTiGCn9eKD7shL2ysjKsX78ezZs3R25uLrp06eLsIMj3GPjUYuBzSVVVFSZPnoy5c+eid+/e6Nq1q+0nXVrwE70+tJ26mJk6lhsT4Bk5rbOLCI2uhz5tGyJarETNj24kIvg5eURvDIBut+6J2oasVj47a/SJDH36h2cik4CdAijU7+Vy2AO8G/jsXqoivupgX7GI0CeihVALf26O09NYDXuBQAC7du3Cli1bMH78eLz00ktITEx0fiDke1rgGzlSTuBbtIiBTy+GB6O4KzExEa+//jruuusujBo1CiUlJejbty8am6xYvPBC+G6dIupQ2o3K7LbMPlA33gBlPOSPJFKdKVKF5uxZMaHPkaQk590zmzQRExy189ZOzStcjUh/UqmYQs9I/xQlIUH+Gnt+YyfgGVktaIIJ1kvCyTlp3IYd+nOvulpMgeGBsCeK7PF2ZkT6erXTyk7wE/n7pabW/zdVC6hr7LTqVVZWYtOmTTh9+jSWLVuGQYMGOTsIikqBgJhnkMZtUl0MfC4bNGgQCgsLkZ2djX/84x+45ZZbkJ6eXvvzSMEuFBF1KOO2wm3P6XwIkbavWrh6lYin28DFipfjVr5goc9qpdBqcAzHSiXbao3IaviTUaMMF3D8FAbj463dYUOt2yfqYgAufl9WCgCzXeHtBD/RXQrCFZAiP8MIRIQ9s4cbqRgSWdY3bmz+67Xz1TZrZi70iS5ywn2GoS5JYxB0o1UPAL799lvk5eVh6NChyMnJQUpKivMDISLbGPg8ICUlBYsWLcIHH3yA7OxsHDx4ECtX5qFp02TH2xYZ/EJtT+RQGS+GPyPtJnz+vPMH7sJCn9NKo9b6oCL4iagVaSddqOAnuuZlZnt+D4N2FmNv2FBt6HOygKjZ4Kd6PZlQhYjxc/Xg7LAePKR6RH2d4UKfyqAXiXYZWwl64VoLrYa96upqbN68GSUlJXjnnXdw3333WXo/xZ6aGvEtfKK3Fw18UFzHjvvvvx+33XYbRo0ahaysdLzzziL073+HkG3LCH5a3UvGoHltH/r/9moAdEpI6BNV8ZYZ/GS0uAVr9fNCXzEjLQzaqclZ6btlJbSJuiOqCH1Ogp5RqODntYVD9eeKldp7iO81WOuendafWAp5RvrQ56WQZ2T1ew1WbDzxhL3lFvLy8pCZmYm1a9eiTZs2lrdBRHL4oOiOLW3atMG6deswZ84cjBr1c3To0AErVmzCFVeIGXQqogXNWPfS31xlzZgGeGPsn5GIVj7AY6EPENfNU/vStP+X9XQAuBj+tJNF5BR7bgfIYLUxURO/eDn0yaq1a2RuX+Q5Y/W7DvL6AOKELLrr5afmVzYP4Iez8qf414+ns7uyi56bQS8Uq2GvuroaX375JYqKivDyyy9j4sSJXG6BTGMLnxoMfB4UHx+Phx9+GEOHDsXo0aNxww3t0adPHyxYsFLofqy2+pl5yC46/IWrkwWrU3khBLpK39/UKbutfeEquyIm0gi3XY3xZLUbAN0Oe7Em2FTDolqbDQJJl9X7t7izPzjfsJthL0ZclhR8RobLkuSEvlDz7Winq53gFw1BD7jUqte9e3esWLEC7du3F3MwRCQUA5+HtW/fHp9++ilycnLw+OOPo3//7rjxxhvxyit/ErqfSMHPbm8q2S1/wbgRAj3VyqdR3dpntZIrMviZaanRn8SiF9gyy4t94dxu5TOzlozISYUQPOgF+5nl8Cf64YCgWnwA/m9pCRXwQr1WROizMqmqleAnuhjwQqveq6++iuzsbLbqkS1s4VPDgzUQ0ouPj8fEiRPxs5/9DKNHj8bSpUtx5MgRpKWl2Z7BMxRj8JMxbAaQO5taMF7sChqKp0MfULfiLaKC6+SpgN0TxGzrH1v3rIt0ztldLFTA2NJwQS/S6yOGvxgIeyorUFYCXqj32wl9TlfO0J/eMpbw1BPZ+Gs17O3fvx+bN29Gjx492KpH5BNceN1HAoEA5s2bhyeeeAKtWrXCTTfdhMaNGwsLfgp7U9UKVceXPXwnWP3MaTYSeUMXFvoAcaFP/wvKTM1mgp/ME6Ss7OJAHREDdPS82IdLI7o2rz/n7Ia8cCwUTFaDnhm1AdCjQU/j5cCnFSFOw104ZkKfzPVUT5wArmxShfKz4hYadzPoVVZW4osvvsDhw4fx6quvYuzYsWzVI9u0hdeHDy9Ho0ZiF0c/d64Cy5dz4XU9Bj4fOnLkCB555BGsXr0aWVlZ6NKlC+Li4iwHP6v1MNnhD7hY15cd9gDr9TQzmUn0E1xXQ5+ZX0Z2U2mw4Kfi5AhWA4zW2Rk0AmrzVUl1l5FJTJB8awlTIMkIeUb60z+xoYBr1cNhD3B+ijQ4X1X/HxW0ogcLfTJDniauOsjvq2M1BIq+5K2EvUAggMLCQmzZsgVDhw7F7NmzkRpsNXgiCxj41GLg87GVK1di3LhxaNiwIfr06YNmP3ZVCxb8RD9klxn+tCe+MmdcE13P0PKUp0MfIGdtLxV9ZFU9CbBTE3Rj4A7gWugzBrtwpIc+oE5hpDroRWI6CEZJ2Asa6sJRGPi8EPIiCRYC3Qx6AHDy5Enk5eXhwoULmDdvHoYNGyb2gChmaYFv2DA5gW/lSgY+PQY+nzt9+jSmT5+OOXPmoHv37sjMzETDHyuXL7yQI6U3lZGo8Bepa4/IACirnmH15mymImU69JnduazBOBKCn7SZFIMRXSPUB0EfBj4rwS4cFaGvvCIOsu/pIk/vOkFQwkycMgOf5VAXjuzAV1FR+5+BpmLOZyOnIS8kE70yTtVcbmmTVsLeuXPnUFBQgB07dmDChAl4/vnn0US/7imRQ1rg+9nP5AS+1asZ+PQY+KLE1q1bMX78eBQVFSErKwvp6em1fevnzBE7uUsodoOfkzEcdkOgzHqGjJnU4yD4MpU5A4OAmrHZlhph4U/i4/+qamvnaOLZcnMvNHminYm/wvS+ZU0kKjr0lVeE/kxF39tlNmBb+bwbxJv7DM2Evbgaiz0HRK6xaCSyMNYFvFBEBT83g55V2b/7nenXBgIBFBUVYcuWLejYsSPmzp2LG264QfgxETHwqcXAF0Vqamrw5z//GU888QSSk5Nx00031XbzBNQFP8B8+BM9YN9sAIz5wKfxUPBz2h3PdviT3NfLauAzS0YdXPbKEU6CX7iQF4qT+7zsnsoyPmvhXcA1Xg18JgJeKHaCn7SQB0j7jK2EvbKyMnzxxRcoLy/HK6+8goceegjxXAuSJNEC35AhcgLfv/7FwKfHwBeFTp48ienTp+Pdd99Ft27dkJmZiUaNGtV5jdvhT+bMbHrBAqDsXkSy7o++DH1AxJqzrHFXpgKgT8MeIK8O7qXQZyfkhWLlnu+VVj0rfBn2NGYKZQfhLpxIwU9qyAM8EfTOnTuH/Px87Ny5E2PHjsXzzz9f52ExkQwMfGox8EWxgoICZGdnY9euXcjMzETnzp3rPa1TGfyAi+FPVdgL5UKN/GmkfRf6AOXBT8UEG5qg4U/BLA5+DHyAe6FPZMALJdy934+tepqoC3ySAl4oxuAXC0GvpqYGe/bsQX5+Prp27YqcnBz07NlTynERGWmBb9AgOYFv7VoGPj0GvigXCASQm5uLxx9/HFVVVbjhhhvQtm3boGvnyAp/cRVhxiS5cSGGqNVdaOjNtZKMpIY+QErwqzrfoM7f3V7TvKICSG4q93OUGfYAfwc+4FLoUxHyQtGKHxUTzfoy7AHqAp/igGcUaJqMuEMlF//SooWcnUj+LM2GvUAggAMHDuA///kPkpKS8Morr2DEiBFcU4+UYuBTi4EvRlRXV+Ott97CM888g5SUFGRlZaFFiJua0+AXNuBF4tGp9uyEwVgNfcZwF47q4BeuTik6APo58AFyAsrx4/X/za2J/4J9fjKORXZ4lhr2APEn2unToX+m4kmDXrhj0XMaAD0S9ADg+PHj2Lp1K8rKyvDss89i4sSJSHD7CRzFJC3w3XFHORo2FFv3O3++Ah99xMCnx8AXY8rKyvDcc89h9uzZSE9PR69evXDFFaFn8TMT/hwFvEhEXqiSHuOHCoOyx7pLD32AqeBnJeCFI7PO4aTxwE4QlB32ADUNL3br38GCXSSqgp/Vz83Jcfk+7AH2TjSzQSoY2R+ak2PTmA2AHgp6p06dwrZt21BUVIRHH30U06dP5zg9chUDn1oMfDGquLgYU6dORW5uLjp37owePXqYDn5SA14kdi9cFX22DAIJ4rqIhqI69IkKd5GICn8ye4mFC4KxEvjsBLtIZAQ/GZ9VuONU0VDlibAnIjwFI/IDlHWMRvoQ6KGgV1FRge3bt2Pv3r0YMWIEXnzxRaSlpUk8OiJztMD305/KCXwff8zAp8fAF+MKCwsxY8YMLFmyBJ06dUKPHj0iXhw5L72k6OhMMHMhuxD2agmquATiQwcts6HP6WQ1KgJGMHbCn5vDgU6fljcEyEhV6JMR7CJxGvzcOF+bNFHXK1FZ4FMVmIzsfpBuHa/dhWgBIDXV9EvNhr2Kigp89dVX2LNnD+655x7MmDEDGRkZdo+QSDgt8A0YICfwffopA58eAx8BAHbv3o0ZM2Zg8eLF6Ny5M66//npTF4mnwh9QPwC6GfYApWNSLkBN65tbwQ+IHP5cnvdBaF3TTGg0810cOeL8WBRMaBqSleDn5rnZuLHzbZh9uBEx7Iks9yorxW3LKjPlp1sBD3AW8qxITbUU9LQWPQY98jIGPrUY+KgOffDr1KkTunXrhpSUFFPv9Vz4A9ytqQLKJyFQFfoAdyvXQP3KcTSFPbNU1Tc1Xgx+bp+HIoKeFZfBxPqSIrkZ+IDgZWgshLwfZZu8r548eRI7d+6s7bo5Y8YMdO7cWfLREdmnBb7bbpMT+P79bzmB7+c//zny8/Nx9OhRpKSk4I477sDMmTPRunXr2tds374dkyZNwpdffomWLVvi0UcfxeTJk4Ueh1UMfBTUnj178Nxzz+Gvf/0r0tLS0LVrV7Rq1crStM2uBECztT9VM0SonnUOakOfxo1Kt77O58LHXIcfe5HZ5fYzFO3SjbWgB7gQ9gBvBL5Dhy7+t1tP6l240MwEvUAggMOHD2PXrl0oLi7Gfffdh6eeeopBj3zBr4Fv1qxZ6NOnD1q1aoWSkhI88cQTAIBNmzYBuPh7de7cGXfccQemTZuGr776CmPGjMEf//hHjB8/XuixWMHAR2EdPnwYr7/+Ot566y00bdoUXbp0QXp6er0F3CORGv5E1/xEhkGXkogboQ+QVwm3G6hUfPwx1NhQS2XoM9Nye9VV8o9D40bQA1wKe4C6wHf0qPX3yAyALl1cZoJeTU0NioqKUFhYiIqKCkyaNAm/+c1v0KpVKwVHSCSGFvhuvVVO4NuwQU2XzmXLluGXv/wlqqqq0KhRI7z99tuYPn06jhw5UrvkydSpU7F06VIUFhZKPZZwGPjIlNOnT+Pdd9/Fyy+/jB9++AFdunRBRkYGGjVqZGt7jgOgWzMyWOVi05NboQ9w/vXIDFF+nAAwFLcCHyAn9InqlisjALoV9AAXwx4gPvDZCXZmiKjUuXhBmQl6586dw+7du1FYWIjLLrsMkydPxpgxY9DErcUsiRxQEfgOHDhQJ/AlJiYiMVHcDOonTpzAxIkTUVJSgg0bNgAARo8ejYqKCixdurT2dZ988gl++tOf4sSJE6aHSYnGwEeWnD9/HkuWLMHzzz+PvXv3olOnTujatSuSk5Ntb9N0+HO7D1c4oW64bvc1hLvBDzD3tbkdnADrX5UXjtnNwKexG/xUj7m0GwLdDHqAy2EPsB/4ZAU7M8yGPw9cQGaCXnl5OXbt2lV7z50+fTruvvtuNPTA/YXILi3w3XKLnMC3aVP9eukzzzyDGTNmON7+lClTMHv2bFRWVuLmm2/GihUrcOWVVwIABg8ejPT0dOTkXFrO7Ouvv0a3bt3w9ddfo2vXro73bwcDH9kSCATw+eef47XXXsPSpUuRlpaGzp07o23btpbG+RnVC39eDnlmeGRhW7dDH1D3q/RCWDIjVH3KK8fvgfoqgPChz+3JdEIJFwDdDnka18OeJlToczPUWaEPgB64aMyOzztw4AD27NmD4uJi3H333fjtb3+Lm2++2dE9lsgrVAQ+sy18U6dOxcyZM8Nuc9euXejSpQsA4Pjx4zhx4gT279+PZ599FsnJyVixYgXi4uIY+Ch6HT58GDk5OXjzzTcRCATQqVMnZGRkCGk2z3nhBQFH6AKZNUabq5KLCn0iZnx3ex4IO/R1W6/M8uyBumstt1dAEaF9e7eP4BLPhL2ysuD/7SdOj1tQH2EzQa+qqgq7d+/G3r17ERcXh0mTJmHChAlItbBWH5EfaIHv5pvlBL7PPzc/hu/YsWP4/vvvw76mQ4cOtWPy9A4ePIi2bdti06ZN6NOnD7t0UvQ7d+4clixZgtdeew0FBQXo2LEjOnfujJYtWwp/IunZIOiVpoEwfsBlbh9CPV4NgCoaMJyGR6ehT9bv6JHG7bBkHKOIbToOe7KDmVeDn9eO68egGCnoBQIBHDt2DHv27MG+ffuQmZmJ3/3ud/jVr35le5w8kddpge+mm+QEvi++UDNpS3FxMdq1a4dPPvkEAwYMqJ20pbS0tPb6ffLJJ7FkyRJO2kLRJz8/H2+//TYWLlyIpk2bomPHjrj22muFDpYNxtUg6IOwp/Fi6DNyIwT6pYeantfquMF4Ifx54RjMaIXDbh+CeW6efD448bP//OewP6+qqsLevXvx7bff4tSpU3jggQfw8MMPo2fPnmoOkMhFfgx8mzdvxpdffolbb70VKSkp2LdvH/73f/8XpaWl2LlzJxITE1FeXo6MjAwMHjwYU6ZMwY4dOzBmzBjMmjWLyzJQ9Dpz5gwWLVqE2bNnY8eOHejYsSM6deqEq6++Wuk4BKlB0EdBT88Poc9IRgj0Y8jT80G9tx4V4csvAU/PV2FPT+ZJ6MMTPFzQCwQCKC0txd69e7Fv3z50794djzzyCEaOHInLL79c3UESuUwLfL17ywl8W7aID3xfffUVHnvsMRQUFODMmTNo1aoV7rzzTjz11FNo06ZN7ev0C6+3aNECjz76KKZMmSLsOOxg4CNltm/fjjlz5uD9999H48aNkZ6ejk6dOqGxi4HJURD0adAz8mPw0/hxAkHRfFgfrkNUMPNjwNP4NugFY/eE9PmJHKk1r7KyEnv37kVRUREqKysxevRoTJgwAddff72aAyTyGD8GPj9j4CPlKisrsXjxYsybNw95eXlIS0tDeno62rVr55lppsMGwSgJenp+Dn1Gfp9Q0Cqf15PrMRPc/BzujKIq7OmFOjGj7IQNF/TOnz+P/fv3o6ioCMXFxejTpw/GjRuHe+65x9UHnUReoAW+rKxyNGggNpRduFCBrVsZ+PQY+MhVxcXFWLBgAebNm4fjx4+jQ4cO6NixI6666ipPTj2dI2D9FrLmMFo53kaU1THriObfTQt20RTw9KI27AHAli3O3t+ihZjjkCBSl82jR4/im2++QVFREVq2bImxY8di9OjRSEtLU3eQRB7HwKcWAx95QiAQQF5eHt577z387W9/Q1JSEtq2bYuOHTuiefPmbh+eVNEWIkUENK/zUsjy0rFojh93+wjq6t3b7SOoz3Nhz2lA8zJB4TFc0Dtx4gT27duH4uJiVFVV4de//jXGjBmDPn36ePLhJZHbtMDXq5ecwLdtGwOfHgMfec7Zs2exevVqvP/++1i1ahWaNWtWG/6Sk5PdPjxfcRomYyG8eYWT4ObkvV4LZ37hJETaDnvRHMq85seQGC7klZeXY9++fThw4ADKysowbNgwPPjgg7jzzjuRlJSk6ECJ/ImBTy0GPvK006dPY/ny5ViwYAHWrVuHli1bok2bNmjfvj2aNWvGJ6cumjEjx+1DoB8xB3jHcCx3+xBI07s3sgX2oAgEAigrK8N3332HkpISHDt2DAMHDsTo0aMxfPhwNGnSRNi+iKKdFvh69pQT+AoKGPj0GPjIN06ePIl//vOfWLRoEdatW4fk5GS0bt0a7dq1U77MA8nHQGkeA581DGXmZa9Y4fYhuEpbRmH//v04dOgQysvLMXDgQIwcORK/+MUvkJKS4vYhEvmSFviuv15O4PvqKwY+PQY+8qUzZ85g7dq1yM3NxfLlFytvrVu3RmpqKq655hrOgEYRRVOgjLbAF22BLNZDk99UVlbi4MGDKC0tRUlJCQBg+PDhGDFiBAYNGsT18ogEYOBTi4GPfO/8+fPYuHEjPvzwQ6xcuRI7d+7EVVddhauvvhqXX365Z5Z6oNjyi1/8t7J9ffedsl3VykS+up21b4/5//ynuv1RTCovL0dpaSmOHj2Kbt26YdiwYbjzzjvRt29f3keIBNMCX7ducgLfzp0MfHoMfBR1vv/+e6xbtw4ff/wxCgsLUVNT4/YhEQkVp/tfTc25uud5g/i6fw80aAAW9kShdejQAUOHDsXAgQNx5ZVXun04RFGNgU8tBj4iIiIiIlJGC3xdu8oJfLt2MfDpxbt9AERERERERCQHO6UTEREREZFyNTWA6EnWOZKnPrbwERERERERRSm28BERERERkXJs4VODgY+IiIiIiJRj4FODXTqJiIiIiIiiFFv4iIiIiIhIuUBAfIscF5yrjy18REREREREUYotfEREREREpJyM8XYcw1cfW/iIiIiIiIiiFFv4iIiIiIhIObbwqcEWPiIiIiIioijFFj4iIiIiIlKOLXxqMPAREREREZFyDHxqsEsnERERERFRlGILHxERERERKccWPjXYwkdERERERBSl2MJHRERERETKsYVPDbbwERERERERRSm28BERERERkXJs4VODLXxERERERERRii18RERERESkHFv41GDgIyIiIiIi5QIB8QEtEBC7vWjALp1ERERERERRii18RERERESkXE0NEBcndpts4auPLXxERERERERRii18RERERESkHFv41GALHxERERERUZRiCx8RERERESnHFj412MJHREREREQUpdjCR0REREREyrGFTw0GPiIiIiIiUo6BTw126SQiIiIiIopSbOEjIiIiIiLl2MKnBlv4iIiIiIiIohRb+IiIiIiISDm28KnBFj4iIiIiIqIoxcBHRERERETK1dTI+SNbVVUVMjMzERcXh/z8/Do/2759O/r164ekpCS0bdsWL730kvwDioCBj4iIiIiIyKTJkyejdevW9f69oqICgwcPRrt27bB161a8/PLLmDFjBubOnevCUV7CMXxERERERKRcIOC/MXerV6/GmjVrsHjxYqxevbrOz/7yl7+guroa7733HhISEtCtWzfk5+fjtddew/jx4106YgY+IiIiIiJyRYW0bVZU1N12YmIiEhMTHW25tLQU48aNw9KlS9G4ceN6P8/Ly8Ntt92GhISE2n8bMmQIZs6ciZMnTyIlJcXR/u1il04iIiIiIlImISEBqampANoCSBb8py2aNGmCtm3bIjk5ufbPH/7wB0fHHAgE8NBDD2HChAno3bt30NccOXIEV199dZ1/0/5+5MgRR/t3gi18RERERESkTFJSEoqKilBdXS1l+4FAAHGG9R5Cte5NnToVM2fODLu9Xbt2Yc2aNTh16hSmTZsm7DhVYeAjIiIiIiKlkpKSkJSU5PZh4PHHH8dDDz0U9jUdOnTAxx9/jLy8vHrBsXfv3njggQcwf/58pKamorS0tM7Ptb9fbNF0R1wg4LehkkREREREROoUFxfXGRd46NAhDBkyBLm5ufjJT36Ca665Bm+//TamT5+O0tJSNGrUCADw5JNPYsmSJSgsLHTr0Bn4iIiIiIiIrPjuu++Qnp6Obdu2ITMzEwBQXl6OjIwMDB48GFOmTMGOHTswZswYzJo1i7N0EhERERER+VlycjLWrFmDSZMmISsrCy1atMDTTz/tatgD2MJHREREREQUtbgsAxERERERUZRi4CMiIiIiIopSDHxERERERERRioGPiIiIiIgoSjHwERERERERRSkGPiIiIiIioijFwEdERERERBSlGPiIiIiIiIiiFAMfERERERFRlGLgIyIiIiIiilIMfERERERERFHq/wFQJYvX+PvLSQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD38ElEQVR4nOydd3gVxfrHvyekASGhE0IHKVIEpQiIgAihCSoCtqugXkRBvfbKVWyo4A87CuoVFbFeO6goCkpREEGxUBQQpIqQxBBCSM7+/sjdsGezZWZ2tp3zfp4nj5Lszs7Z8+6773femXciiqIoIAiCIAiCIAiCIOKOJL87QBAEQRAEQRAEQbgDCT6CIAiCIAiCIIg4hQQfQRAEQRAEQRBEnEKCjyAIgiAIgiAIIk4hwUcQBEEQBEEQBBGnkOAjCIIgCIIgCIKIU0jwEQRBEARBEARBxCkk+AiCIAiCIAiCIOIUEnwEQRAEQRAEQRBxCgk+giAIgiAIgiCIOIUEH0EQBEEQBEEQCc+DDz6ISCSCa6+9tuJ3xcXFmDx5MurUqYOMjAycc8452Lt3r3+dFIAEH0EQBEEQBEEQCc3q1asxe/ZsnHDCCTG/v+666/DBBx/gzTffxNKlS7Fr1y6MGjXKp16KQYKPIAiCIAiCIIiEpbCwEBdeeCGeffZZ1KpVq+L3+fn5eP755zFz5kwMGDAAXbt2xQsvvIAVK1bg66+/9rHHfCT73QGCIAiCIAiCIBKL4uJilJSUuNK2oiiIRCIxv0tLS0NaWprh8ZMnT8bw4cMxcOBA3HfffRW/X7NmDY4ePYqBAwdW/K5du3Zo2rQpVq5ciZ49e7rSf9mQ4CMIgiAIgiAIwjOKi4vRompV7HGp/YyMDBQWFsb87q677sLUqVMrHfvaa6/hu+++w+rVqyv9bc+ePUhNTUXNmjVjft+gQQPs2eNW7+VDgo8gCIIgCIIgCM8oKSnBHgA7IhFkSm67AECTwkLs2LEDmZnHWjfK7u3YsQP/+te/8OmnnyI9PV1yT4IDCT6CIAiCIAiCIDwnE0CmbuqlYxSlvO3MzBjBZ8SaNWuwb98+nHTSSRW/Kysrw5dffoknn3wSn3zyCUpKSpCXlxeT5du7dy+ys7Pl9ttFSPARBEEQBEEQBOE9SUmAG4KvrIzp0NNPPx3r16+P+d0ll1yCdu3a4ZZbbkGTJk2QkpKCxYsX45xzzgEAbNy4Edu3b0evXr3k9ttFSPARBEEQBEEQBJFw1KhRAx07doz5XfXq1VGnTp2K31922WW4/vrrUbt2bWRmZuLqq69Gr169QlOwBSDBRxAEQRAEQRCEH/ic4WPhkUceQVJSEs455xwcOXIEgwcPxqxZs6S17wURRfnfRFeCIAiCIAiCIAiXKSgoQFZWFvJTUqSv4StQFGQdPYr8/HzbNXyJAmX4CIIgCIIgCILwHrcyfEQMSX53gCAIgiAIgiAIgnAHyvARBEEQBEEQBOE9lOHzBBJ8BEEQBEEQBEF4Dwk+T6ApnQRBEARBEARBEHEKZfgIgiAIgiAIgvAeyvB5AmX4CIIgCIIgCIIg4hTK8BEEQRAEQRAE4T2U4fMEyvARBEEQBEEQBEHEKZThIwiCIAiCIAjCeyjD5wmU4SMIgiAIgiAIgohTKMNHEARBEARBEIT3RCLlWT6ZRKNy24sDSPARBEEQBEEQBOE9SUnyBR9RCbrDBEHEPUuWLEEkEsGSJUtsj+3fvz/69+/P1G5hYSHq16+PV155xVkHCS4ikQimTp3qdzdCgf5ezZ07F5FIBNu2beNu69Zbb8XJJ58sr3MEQRCEJ5DgI4gQMXXqVEQiEezfv9/w7x07dmQWK15RXFyMRx55BCeffDKysrKQnp6ONm3a4KqrrsKmTZv87p4jHnvsMdSoUQPnnXdexe8WL16MSy+9FG3atEG1atXQsmVL/POf/8Tu3bsN21ixYgX69OmDatWqITs7G9dccw0KCwtd7fdff/2FGTNmoG/fvqhXrx5q1qyJnj174vXXXzc8/siRI7jllluQk5ODqlWr4uSTT8ann37qah/dYtq0aXj33Xf97oZUFi5c6IkAvvbaa/H999/j/fffd/1aBEEkCGqGT/YPEQNN6SQIwjX279+PIUOGYM2aNTjjjDNwwQUXICMjAxs3bsRrr72GOXPmoKSkxPV+9O3bF4cPH0Zqaqq0No8ePYrHHnsM1113HapUqVLx+1tuuQUHDhzAmDFj0Lp1a2zZsgVPPvkkPvzwQ6xbtw7Z2dkVx65btw6nn346jj/+eMycORN//PEHHn74YWzevBkfffSRtL7qWblyJe644w4MGzYMU6ZMQXJyMv773//ivPPOw88//4y777475vjx48fjrbfewrXXXovWrVtj7ty5GDZsGL744gv06dPHtX6acfjwYSQni72+pk2bhtGjR+Oss86S2ykfWbhwIZ566ilD0efkXunJzs7GmWeeiYcffhgjR46U0iZBEAThPiT4CIJwjfHjx2Pt2rV46623cM4558T87d5778Udd9zh6vWLi4uRmpqKpKQkpKenS237ww8/xJ9//omxY8fG/H7mzJno06cPkjQjjEOGDEG/fv3w5JNP4r777qv4/e23345atWphyZIlyMzMBAA0b94cEyZMwKJFi5Cbmyu1zyodOnTA5s2b0axZs4rfTZo0CQMHDsRDDz2Em2++GdWrVwcArFq1Cq+99hpmzJiBG2+8EQBw8cUXo2PHjrj55puxYsUKV/pohezvMgwUFRWhWrVq3OfJvldjx47FmDFjsGXLFrRs2VJq2wRBJCCUkfMEusMEkYCUlpbi3nvvRatWrZCWlobmzZvj9ttvx5EjR2KOa968Oc444wwsW7YMPXr0QHp6Olq2bImXXnrJ9hrffPMNFixYgMsuu6yS2AOAtLQ0PPzww0z9feqpp9CyZUtUrVoVPXr0wFdffVVprZ26Tu+1117DlClT0KhRI1SrVg0FBQWma/jmzJmDVq1axbTLyrvvvovmzZujVatWMb/v27dvjNhTf1e7dm388ssvFb8rKCjAp59+in/84x8VYg8oF1MZGRl44403LK8/btw4pKenx7QJAIMHD0atWrWwa9cu03NbtGgRI/aA8rVeZ511Fo4cOYItW7ZU/P6tt95ClSpVcPnll1f8Lj09HZdddhlWrlyJHTt2WPazf//+6NixI9asWYPevXujatWqaNGiBZ555plKx+7btw+XXXYZGjRogPT0dHTu3BkvvvhipeP069LUqc6//vorxo8fj5o1ayIrKwuXXHIJioqKYs47dOgQXnzxRUQiEUQiEYwfPx4A8Pfff+Paa69F8+bNkZaWhvr162PQoEH47rvvLD+feu0NGzZg7NixyMzMRJ06dfCvf/0LxcXFlY6fN28eunbtiqpVq6J27do477zzKt1D7T3r27cvqlWrhttvv93w+uPHj8dTTz1V8fnUH7N7ZcZHH32EU089FdWrV0eNGjUwfPhw/PTTT5WOGzhwIADgvffes22TIAiCCAYk+AgiAfnnP/+JO++8EyeddBIeeeQR9OvXDw888EDMWjSVX3/9FaNHj8agQYPwf//3f6hVqxbGjx9vGAxqUdf5XHTRRY76+vTTT+Oqq65C48aNMX36dJx66qk466yz8Mcffxgef++992LBggW48cYbMW3aNNNpnM8//zwmTpyI7OxsTJ8+HaeccgpGjhxpK2BUVqxYgZNOOonp2MLCQhQWFqJu3boVv1u/fj1KS0vRrVu3mGNTU1PRpUsXrF271rLNxx57DPXq1cO4ceNQVlYGAJg9ezYWLVqEJ554Ajk5OUx907Jnzx4AiOnn2rVr0aZNmxhRCgA9evQAUD4t1Y6DBw9i2LBh6Nq1K6ZPn47GjRvjyiuvxH/+85+KYw4fPoz+/fvj5ZdfxoUXXogZM2YgKysL48ePx2OPPcbU/7Fjx+Lvv//GAw88gLFjx2Lu3Lkx01NffvllpKWl4dRTT8XLL7+Ml19+GRMnTgQAXHHFFXj66adxzjnnYNasWbjxxhtRtWrVSoLa6trFxcV44IEHMGzYMDz++OMxIhkA7r//flx88cVo3bo1Zs6ciWuvvRaLFy9G3759kZeXF3PsX3/9haFDh6JLly549NFHcdpppxled+LEiRg0aFDF51N/eHj55ZcxfPhwZGRk4KGHHsK///1v/Pzzz+jTp0+l4i5ZWVlo1aoVli9fznUNgiAIQ2gNnzcoBEGEhrvuuksBoPz555+Gf+/QoYPSr18/yzbWrVunAFD++c9/xvz+xhtvVAAon3/+ecXvmjVrpgBQvvzyy4rf7du3T0lLS1NuuOEGy+ucffbZCgDl4MGD1h/KgiNHjih16tRRunfvrhw9erTi93PnzlUAxHzWL774QgGgtGzZUikqKoppR/3bF198oSiKopSUlCj169dXunTpohw5cqTiuDlz5lRq14ijR48qkUjE9h6o3HvvvQoAZfHixRW/e/PNNyvdW5UxY8Yo2dnZtu1+8sknCgDlvvvuU7Zs2aJkZGQoZ511FlOf9Pz1119K/fr1lVNPPTXm9x06dFAGDBhQ6fiffvpJAaA888wzlu3269dPAaD83//9X8Xvjhw5onTp0kWpX7++UlJSoiiKojz66KMKAGXevHkVx5WUlCi9evVSMjIylIKCgorfA1Duuuuuin+rz8Wll14ac+2zzz5bqVOnTszvqlevrowbN65SP7OyspTJkydbfhYj1GuPHDky5veTJk1SACjff/+9oiiKsm3bNqVKlSrK/fffH3Pc+vXrleTk5Jjfq/fM7t6qTJ48WTF7nevv1QsvvKAAULZu3aooiqL8/fffSs2aNZUJEybEnLdnzx4lKyur0u8VRVFyc3OV448/nqlvBEEQRuTn5ysAlPycHEVp3FjqT35OTnnb+fl+f8zAQBKYIBKMhQsXAgCuv/76mN/fcMMNAIAFCxbE/L59+/Y49dRTK/5dr149tG3bNmbanxEFBQUAgBo1agj39dtvv8Vff/2FCRMmxBSeuPDCC1GrVi3Dc8aNG4eqVavatrtv3z5cccUVMRnA8ePHIysry7ZfBw4cgKIopn3Q8uWXX+Luu+/G2LFjMWDAgIrfHz58GED51FY96enpFX+3Ijc3FxMnTsQ999yDUaNGIT09HbNnz7Y9T080GsWFF16IvLw8PPHEEzF/O3z4sGkftZ/DiuTk5IpMGlCexZw4cSL27duHNWvWACi3y+zsbJx//vkVx6WkpFRULV26dKntda644oqYf5966qn466+/KmzRipo1a+Kbb76xnAprxeTJk2P+ffXVVwM49ry9/fbbiEajGDt2LPbv31/xk52djdatW+OLL76IOT8tLQ2XXHKJUF94+PTTT5GXl4fzzz8/pl9VqlTBySefXKlfAFCrVi3TSsEEQRBcUIbPE6hoC0HEGdr1O0b8/vvvSEpKwnHHHRfz++zsbNSsWRO///57zO+bNm1aqY1atWrh4MGDltdRpwD+/fffqFmzpuWxhw8fRn5+fqX+qH3R9zU5ORnNmzc3bKtFixaW1wJQ0W7r1q1jfp+SksJViEJRFMu/b9iwAWeffTY6duyI5557LuZvqijVr5sEyovN2IlWlYcffhjvvfce1q1bh/nz56N+/fqMvT/G1VdfjY8//hgvvfQSOnfuXKmfZn1U/25HTk5ORREYlTZt2gAAtm3bhp49e+L3339H69atK61/PP744wGgkl0aobdVVZAfPHiw0pRUPdOnT8e4cePQpEkTdO3aFcOGDcPFF1/MbA96W2rVqhWSkpIqpkRu3rwZiqJUOk4lJSUl5t+NGjWSWlXWjM2bNwNAzGCEFqP7piiKrZ8hCIJgggSaJ5DgI4gQYZdVKSoqYq7Kxxqwabcc0GIndtq1awegfK2aNkNoxOuvv14pm2HXvhmsQskJtWvXRiQSsRS9O3bsQG5uLrKysrBw4cJKmc6GDRsCgOH+fLt372Zeg7d27Vrs27cPQPm91mbIWLj77rsxa9YsPPjgg4brLRs2bIidO3ca9hGA0FpBtxC1VaB8Dd6pp56Kd955B4sWLcKMGTPw0EMP4e2338bQoUO5+6J/vqLRKCKRCD766CPDfmZkZMT82ws7VvsFlK/j024ZomK0pcPBgwdj1nkSBEEQwYYEH0GECLWy4saNG9GkSZOYvxUVFVWIDLs2otEoNm/eXJE9AYC9e/ciLy+vUvVGUUaMGIEHHngA8+bNsxV8gwcPNtzIW+3Lr7/+GlO0orS0FNu2bcMJJ5wg1De13c2bN8dkNo4ePYqtW7dWynLpSU5ORqtWrbB161bDv//111/Izc3FkSNHsHjx4gpxp6Vjx45ITk7Gt99+G7O1Q0lJCdatW1dpuwcjDh06hEsuuQTt27dH7969MX36dJx99tno3r277bkAKvZuu/baa3HLLbcYHtOlSxd88cUXKCgoiMn2fPPNNxV/t2PXrl04dOhQTJZv06ZNAFCRqW3WrBl++OEHRKPRmCzfhg0bKv4uA6uBjoYNG2LSpEmYNGkS9u3bh5NOOgn3338/k+DbvHlzTHb5119/RTQarfh8rVq1gqIoaNGiRUV2UxZOsm1qldn69etXVOC0g+UZIQiCYIIyfJ5Ad5ggQsTpp5+O1NRUPP300xUj8ypz5sxBaWmpbXA6bNgwAMCjjz4a8/uZM2cCAIYPHy6lr7169cKQIUPw3HPP4d13363095KSkop93Ro2bIiBAwfG/ABAt27dUKdOHTz77LMoLS2tOPeVV16xnVJqRbdu3VCvXj0888wzMRu/z507t1K1RKvP9+2331b6/aFDhzBs2DDs3LkTCxcuNJ3Cl5WVhYEDB2LevHn4+++/K37/8ssvo7CwEGPGjLHtwy233ILt27fjxRdfxMyZM9G8eXOMGzfOcAqmntdffx3XXHMNLrzwworv3ojRo0ejrKwMc+bMqfjdkSNH8MILL+Dkk0+uNPBgRGlpaczawpKSEsyePRv16tVD165dAZTb5Z49e/D666/HnPfEE08gIyMD/fr1s70OC9WrV6/0HZeVlVWaUly/fn3k5OQw3UsAFVsjqKhrIdXncdSoUahSpQruvvvuShlHRVHw119/8XyMGFQhzWq7WgYPHozMzExMmzYNR48erfT3P//8M+bf+fn5+O2339C7d2+hvhIEQRDeQxk+gggR9evXx5133okpU6agb9++GDlyJKpVq4YVK1bg1VdfRW5uLkaMGGHZRufOnTFu3DjMmTMHeXl56NevH1atWoUXX3wRZ511lmn5dxFeeukl5ObmYtSoURgxYgROP/10VK9eHZs3b8Zrr72G3bt3W+7Fl5qaiqlTp+Lqq6/GgAEDMHbsWGzbtg1z585Fq1athDMbKSkpuO+++zBx4kQMGDAA5557LrZu3YoXXniBec3WmWeeiZdffhmbNm2KydhceOGFWLVqFS699FL88ssvMWX9MzIycNZZZ1X8+/7770fv3r3Rr18/XH755fjjjz/wf//3f8jNzcWQIUMsr//5559j1qxZuOuuuyq2h3jhhRfQv39//Pvf/8b06dNNz121ahUuvvhi1KlTB6effjpeeeWVmL/37t274j6cfPLJGDNmDG677Tbs27cPxx13HF588UVs27YNzz//PNO9ysnJwUMPPYRt27ahTZs2eP3117Fu3TrMmTOnYu3a5ZdfjtmzZ2P8+PFYs2YNmjdvjrfeegvLly/Ho48+6qj4j5auXbvis88+w8yZM5GTk4MWLVqgbdu2aNy4MUaPHo3OnTsjIyMDn332GVavXo3/+7//Y2p369atGDlyJIYMGYKVK1di3rx5uOCCCyoyYa1atcJ9992H2267Ddu2bcNZZ52FGjVqYOvWrXjnnXdw+eWXVwyAiHwmALjmmmswePBgVKlSxXCLFSMyMzPx9NNP46KLLsJJJ52E8847D/Xq1cP27duxYMECnHLKKXjyyScrjv/ss8+gKArOPPNMob4SBEHEQBk+b/CpOihBEA6YN2+e0rNnT6V69epKWlqa0q5dO+Xuu+9WiouLmc4/evSocvfddystWrRQUlJSlCZNmii33XZbpfObNWumDB8+vNL5/fr1s926QKWoqEh5+OGHle7duysZGRlKamqq0rp1a+Xqq69Wfv31V6Y2Hn/8caVZs2ZKWlqa0qNHD2X58uVK165dlSFDhlQco2698Oabb1Y6X78tg8qsWbOUFi1aKGlpaUq3bt2UL7/8kvmzHTlyRKlbt65y7733xvxe3crC6KdZs2aV2vnqq6+U3r17K+np6Uq9evWUyZMnx2xBYERBQYHSrFkz5aSTTorZrkJRFOW6665TkpKSlJUrV5qer5bmN/t54YUXYo4/fPiwcuONNyrZ2dlKWlqa0r17d+Xjjz+2vkH/o1+/fkqHDh2Ub7/9VunVq5eSnp6uNGvWTHnyyScrHbt3717lkksuUerWraukpqYqnTp1qtQXRTHflkG/XYl+CwJFUZQNGzYoffv2VapWraoAUMaNG6ccOXJEuemmm5TOnTsrNWrUUKpXr6507txZmTVrlu3nU6/9888/K6NHj1Zq1Kih1KpVS7nqqquUw4cPVzr+v//9r9KnTx+levXqSvXq1ZV27dopkydPVjZu3FjpnrFSWlqqXH311Uq9evWUSCQSs0WD/l4Z3RNFKX9GBg8erGRlZSnp6elKq1atlPHjxyvffvttzHHnnnuu0qdPH+a+EQRBGFGxLUPLlopy3HFSf/JbtqRtGXREFEWwMgJBEIRPRKNR1KtXD6NGjcKzzz7rWz/uvfdevPDCC9i8ebNpwZBEp3///ti/fz9+/PFHv7viClOnTsXdd9+NP//8M+4LmezZswctWrTAa6+9Rhk+giAcUVBQgKysLOS3aoVMye/PgrIyZP32G/Lz820rNCcKlEMlCCLQFBcXV1rz9NJLL+HAgQPo37+/P536H9dddx0KCwvx2muv+doPgvCCRx99FJ06dSKxRxAEETJoDR9BEIHm66+/xnXXXYcxY8agTp06+O677/D888+jY8eOTIVN3CQjI6NiSwSCiHcefPBBv7tAEES84cYaPpq8WAkSfARBBJrmzZujSZMmePzxx3HgwAHUrl0bF198MR588EFPNqYmCIIgCMIlSPB5Aq3hIwiCIAiCIAjCMyrW8LVt684avo0baQ2fBsrwEQRBEARBEAThPZTh8wQq2kIQBEEQBEEQBBGnUIaPiDv279+PxYsXY+HChdi6davf3SEI6UQARMrKYn5TFjXahP7YKGc0qQqqVKFRT4Iwo2XLlhg6dChOP/30uN9igyACA2X4PIEEHxF6SktLsWzZMnz88cdYsGABfv75ZzRo0AD169dHVlaW390jEpBxZ54JbNvmdzfihnXogu+/f9HvbhBxzrp167Bo0SLs3bsX7du3x/DhwzFkyBD06dMHyckULhEEEV6oaAsRSg4dOoRFixbhrbfewocffggAaNSoEbKzs9GoUSNUq1bN5x4SQWf2GWf43QUiQZj4Px9FhIOioiLs3LkTe/bswc6dOwEAZ5xxBkaPHo3c3FxUr17d5x4SRPipKNrSqZM7RVvWr6eiLRpI8BGh4eDBg3j33Xfxxhtv4PPPP0dWVhYaNWqEZs2aoX79+ohEjKa0EWGFBBlB+E+ii1VFUbBv3z78/vvv2LlzJ/Lz8zFgwACMHTsWZ511FmrVquV3FwkilJDg8xYSfESgKSwsxPvvv4+XXnoJixcvRoMGDZCTk4PmzZujZs2aJPJ8hAQZQRBB5gOMwIcfTpTWnqIoyMvLw7Zt27Br1y7s27cPp59+Oi666CKMHDkSGRkZ0q5FEPFOheDr3Nkdwff99yT4NJDgIwJHcXExFi5ciJdffhkfffQRatWqhSZNmqBVq1b04HIye/x4Zw3UrCl23q+/OrsuQRCEJHZ3GyF87tSp5oIxPz8fv/32G/744w8cPHgQw4YNw0UXXYShQ4ciPT1d+JoEkQhUCL4TT3RH8K1dS4JPAwk+IhAoioIVK1bgP//5D15//XVUrVoVTZs2RcuWLVG7dm2/u+cqjkWZW4iKPTcgAUnEKSvrsouR/ftd7EjA6NbN7x5Uxkr8HThwAL/99ht27NiBw4cP49xzz8Wll16K3r1700wUgjCABJ+3kOAjfOX333/HSy+9hOeeew779+9Hy5Ytcdxxx6FevXqBfEnOvvba8v/Jy/OzG+4TJLEni/r1gRUr5LQ1cKCcdiRxGFX97kIMQXw8gtSnIPUFkC8kgyjWZGIl/NQ1f7/99hu2bNmCevXq4bLLLsO4cePQtGlTD3tJEMGmQvB17eqO4FuzhgSfBhJ8hOcUFRXhrbfewrPPPouvv/4azZo1Q4sWLdC0adPAlL6uEHZWBC1qk0E8Cj2V+vVj/x1HlVyDJvhkEq+7W8S7+4hnV6LFSvyVlpZi+/bt2LJlC7Zv346ePXtiwoQJGD16NFWSJhIeEnzeQoKP8IwffvgBTz/9NObNm4fq1aujRYsWOO6443x98TEJOzviJXKLpwhNL+7sCHnwFU+Cr6jI+u/79nnTDy9IRNcRT25Gi5XwA8oHOn/99Vds3boVhw4dwkUXXYQrrrgCJ5xwgkc9JIhgUSH4unVDpuTB/oLSUmR9+y0JPg0k+AhXOXToEF5//XU8+eST+Omnn9CqVSu0adPG820UpAg7O8IavYU9AuMVd3aEUPyFXfDZiTw7wi4Cw+g6ZLqNsLsgPSxTPjdt2oTffvsNHTp0wFVXXYVzzz2X9vcjEgoSfN5Cgo9whXXr1mHWrFl45ZVXkJmZiVatWuG4445DWlqaq9f1RNjZEaboLYyRlmyBZ0VIxF/YBJ9TgWdHGAVgWNyGly4jjO5Ji13W78iRI/j111/x22+/oaCgABdeeCEmTZqELl26eNNBgvCRCsHXo4c7gm/VKhJ8GkjwEdIoKSnB22+/jZkzZ+KHH36oyOa5UYAlEMLODjciOFlix0nJ8IICOX1gwUtxx0JABWAYBJ/bIs+OMIjAIIu+IImvsInOa6+1Fn6KouDPP/+syPp17twZ119/PUaNGoWUlBTnHSCIAEKCz1tI8BGO2b17N5555hnMmjULiqKgdevWaNu2rZRs3uxp08IRqZmRmQkUF/vdi1iCsD+UkWgMmrizQ5b4S0113EQZxBe8l5Q4vrwhfgs8O9x0K07iC6fuQvbnCpLQs8Oor0Hqv53wA8qzfhs3bsTmzZsRiUQwadIkXHnllcjOzvaghwThHRWCr2dPdwTf118zCb6nn34aTz/9NLb9r0JYhw4dcOedd2Lo0KEAyveGvuGGG/Daa6/hyJEjGDx4MGbNmoUGDRpI7bPbkOAjhFAUBStXrsTMmTPx3nvvoWnTpmjTpg2aNGniKJs3e9o06wOCKP7sorsgCb4giD0AyMio/LvSUu/74YSMDCAAVWWdiD3ZBDlDxUJQHtWg9CM93duEviy0Y0cBTcozZf127NiBTZs2Yfv27TjrrLNw3XXXoVevXoHcsoggeKkQfL17uyP4VqxgEnwffPABqlSpgtatW0NRFLz44ouYMWMG1q5diw4dOuDKK6/EggULMHfuXGRlZeGqq65CUlISli9fLrXPbkOCj+CitLQU//3vfzFt2jRs3rwZbdq0Qbt27ZCVlSXcpq3IM8Nr8Sc6bB+k6M1vjISeGUERgHZ99ln0BUXwmX1dhYXe9oMHs68uCH0OgtuwchlBEoKskwOCKP5Ysn75+fnYsGEDNm3ahNatW+P222/HOeecE5htjAhCBC8E344dO2IEX1paGtPss9q1a2PGjBkYPXo06tWrh/nz52P06NEAgA0bNuD444/HypUr0bNnT6n9dhMSfAQThYWFeO655zBjxgwUFxejXbt2aNu2rdD6AmGBZ4Us8efGXG+/I7ewCT0z3BaATvroY+Dlt+AT+Vr8EFQiX5Hfwi+srsMLMShjBniQBCCL8Dt69Cg2btyIDRs2oGrVqrjppptw2WWXIUOGfyUIj6kQfH36uCP4li2r9Pu77roLU6dONT2vrKwMb775JsaNG4e1a9diz549OP3003Hw4EHU1MwPb9asGa699lpcd911UvvtJjQ8RFiye/duPPbYY5g1axYyMzPRvn17NG/eHElJSVztuCLytGjf/nbiL5EW8Pop9mQHIfoXghMBKLtvpaW+Z/r8QPQrMLr9ssWVjK9D7adfwi893X/RJ4KZi3UqBGUv89WuM/Vb/D366GwA1sIvJSUFHTt2RPv27bFt2zbMmDED//73vzFp0iT861//QsOGDb3qLkGEAqMMnxHr169Hr169UFxcjIyMDLzzzjto37491q1bh9TU1BixBwANGjTAnj173Oy6dBIvQiGY2LhxI+6//3689tpraNq0Kfr374/s7GyutQOuizwz1KggOdn/IXo/8UvseTXazCIAvRz5TjDRJzvhavZVsTzCbt92P4VfWEWfEVZjbWZi0KtaTkERfyzCLykpCS1btkSLFi2wZ88evPXWW5g5cybOO+883HHHHWjbtq1X3SUI5yQllf/IbhNAZmYmU5XOtm3bYt26dcjPz8dbb72FcePGYenSpXL75DOJE50QTGzcuBF33XUX3n77bbRu3Rpnn312pZENM3wTeCpGUV9GRmKKPj/Ent/TimrXLv+vW2UnWUgQ0efl8kojs/JLAPkl/OJJ9Jmhj8nUe+3HUt4giD8W4ReJRNCwYUM0bNgQBw8exJo1a9CpUyecc845mDp1Kgk/gmAkNTUVxx13HACga9euWL16NR577DGce+65KCkpQV5eXkwsvHfv3tBVzo3/yIRgYsOGDZg6dSrefvtttGnTBqNHj0aNGjVsz/NV5LEG1mEXfTxOxe6e7N/vrC96/BZ5RiN36jYHfgm/OBZ9ftfRUb9a9b9+FQ7xQ/h5LfqCMhtc5kxuEdwWf3a7ssyaVS78Jk2yXuNXq1Yt9OnTByeccALWr1+PTp06YdSoUbj77rtJ+BHBxsUMnyjRaBRHjhxB165dkZKSgsWLF+Occ84BUJ4Y2b59O3r16iWjp55BRVsSnA0bNuCuu+7CO++8gzZt2uCEE06wFHqzH3+8/H/CUnVBi9d9rlu3/L9eRSheiAxVMPop9HjXYPol/CR8H0qSfUGWCMxdeFlUXvl2P8Uey1aFflaNlOlaVLdhBsv3IGNpSRhmhPtpk1rxJ2ErTWbshJ/K33//jR9++AGbNm3CqFGjMHXqVLRr187l3hEEOxVFW/r3d6doy5IlTNsy3HbbbRg6dCiaNm2Kv//+G/Pnz8dDDz2ETz75BIMGDcKVV16JhQsXYu7cucjMzMTVV18NAFixYoXUPrsNCb4E5ffff8dtt92Gt956i0/omeGGmHJDwMjup110BngTlXiUUVJSKy94jhTku39hGYV2PBR+Zclp0gcsjbASezI5UuLPvl+igbSf4s8LoeSVS5E9IcAOp+NIXglAo356ndQXEX6jR4/Ggw8+iKZNm7rcO4Kwp0LwDRjgjuD7/HMmwXfZZZdh8eLF2L17N7KysnDCCSfglltuwaBBgwAc23j91Vdfjdl4PWxTOknwJRh5eXm499578dRTT6Fly5bo0qWLM6Fnhoiw8uqNyds3FlFnRpyIPSOhZ4UUEehWNVWJwq8s2fq+uC36PBF80ajpn46UurMlhMyMiVviLyvT/N67LZCD4FbCMDtcxn3i7ZeXwo9V9AHlwm/t2rXYunUrrrrqKkyZMoV5fT5BuEGF4Bs40B3B99lnTIIvUSDBlyCUlJTgqaeewtSpU1G7dm2cdNJJqGsiZIRFnhVGIsuvdU5GfXEi6qxwOzILoNgzg0kEeuWYOUWfnbAzI94FnxFORKDbU+NExZ+VuDMjEUSfGbxi0KsZ4iz3TFZfgir89u/fjzVr1iAvLw9Tp07FpEmTkOrlnFSC+B8k+LyFBF+coygK3nzzTdx4440oKSnBiSeeiCZNmhhur+CK0NPid6UFAEpmFgAgUnLE/YuFXOzJEnpmVAhAP52xTviJCjsr3BR9rgs+TrFnhZUQ9CPeNHNDIuLOjLCLPtkuxkgI+rkcWL1/bvYhiMJPURTs2LED3333HdLS0vDwww9jzJgxXNsuEYRTKgTfoEHITEmR2/bRo8j69FMSfBpI8MUx69atw8SJE7FhwwZ06dIFbdq0qbRhumcizwiXhZ8q7owIveBzMYpwW+gBlasNVk333g0dLi4PbtwWG6EVfBLFnhksRWncxossqZvCL6RupoK0VAX5Bf4IDW0c6MUSXy/uJ0+2LxqNYtOmTVi3bh3atWuHOXPmoHPnzi72jiCOQYLPW0jwxSEHDx7E7bffjv/85z/o0KEDunTpghTdw+Sq0OONoCUJPyuBpyfUgi/EYs+urLybwk8VeEaEVfSFWvAZRNhKelV3r/k/IsWHK//S5WorYRR9bguUtFRj+3VbANrFf26Lv6AJv6NHj2LdunX46aefcNlll2HatGm0vo9wnQrBN3iwO4Lvk09I8GkgwRdHRKNRvPDCC7jpppuQlZWFHj16xDhtX7N5dgiIPh6BZ4Sroi9kEZjfQs8IGeLPSuTpcVP0hU7w+SD29MgWf4YizwgXhZ9boi9k7qYCM8FnhAwRGLQdXYIm/PLy8rBq1Srk5+djxowZuOSSSyrNCiIIWZDg8xYSfHHCmjVrcPnll2Pr1q3o1q0bmjdvXjEfP1DZPDsshJ9TgacnCILv72h15iZZYvCsdP7P5KbYk7FRNI/w4xF4RoRN9Lki+NwUe4IRtBPxxyz09IRM+IVR9PEIPj28AtBpzOem+BO9x1WS2O7fxCuuYG5TURRs27YN3377LVq2bInZs2eja9euYh0kCAsqBN/Qoe4Ivo8+IsGngQRfyCksLMTtt9+O2bNno2PHjujSpQuS//f2mDVrdsyxVUolCRwPSunJFndGyBJ8+cWxgikr/Qj+LpEromTH4NrgsHZtuW0DcoSeEUbiz6nI0+OWefMIPtbvuwrK/LmwCBIjZjsBKCzy9ARI9KUVM1S5ZfyuDyWZb8Wjxy3B50TsGWEmAN2I9dwSf2nJZShDFWYhxwuP8CstLcW6devw448/YuLEiZg2bRoy/KywQ8QdJPi8hQRfiFmwYAH++c9/IiUlBb169aqYvqkXemZwCUAPyuhpA3cvNi/mEXx6UWeF7EyOGzG4XTZAVAS6JfRUioqAatXcvQYgz9z191l28Mwk+HhQOyy7oy6mR7TiT5rQ0yPbIR04UP5fN9SUiw7oSLq8gTjZgk9PfkHE9QLATsw6Ldnm2XVpKiWP6APKawJ8/fXXKC0txbPPPovhw4e70i8i8agQfMOHuyP4FiwgwaeBBF8I2bNnDyZPnoyPP/4Y3bp1Q9u2bRGJRJiFnhUxItBjkafHbdGnFXw8gs6OoAs+J1O/zISg20IPKBd7WtwWfjzmz3pPAy34WD6EyAfwovyhVyMBIk5JFXdmyDYKnxwQjxh0W+wBiHFKXhQDsjJzW3Fnhovr53ineW7YsAFr1qzBkCFD8NRTTyE7O9u1vhGJQYXgGzHCHcH3wQck+DSQ4AsR0WgUzz33HG688UY0bNgQPXr0QLVq1aQIPS3aF5fsqom80+/cGlhXiZNYiwnZa3xKSgC3C7npRZ4eL0WfjPsn095cy+6JYvTh3BZ7ZgbitmEYOSY7YWeHTOMImCPSi0HXBZ/FCJRX4k9Y5BkRkGxfUVERVq1ahd27d+Phhx/GhAkTaO8+QhgSfN5Cgi8kbNu2DRdffDHWr1+Pnj17omnTplKFnl1c5kT4OVlj5VTwWcVgQZ9NFXSxp0em+LMTenpkx/fazydz0CGuBZ+e4mL3ZgmwGohbwi8vr/y/sj9fUEWfW9MMfF5A7HolWNn2ERDht337dnz99dfo1KkTXnrpJTRv3tyVfhHxTYXgO/NMdwTfe++R4NNAgi/gRKNRPPPMM7jxxhvRsmVLdO/eHc8994K09nkH4FmFn8xCGqwBN+8Ae5Cze2ETe3pExR+v0NPiJLa3+kyys8yy7M7z6Zw8GAXdsoJfESORIfxUkacnqKIvqA4JsLY3JyLQwdxyUfHHtG40BMKPV/SVlJRg9erV2Lp1Kx5++GFMnDiRtnAguCDB5y0k+ALM1q1bcfHFF+Onn35Cr1698P77C6S17XSmlRfVErUEfQYVIO8dHFSxJ2ozduLPicgzgiW25/0sQczyBVbwsQbdvEGwDEPhFX5mIk8PiT4+eOyNVQBKXEjMIv6ECgTFofD7448/sHLlSnTs2JGyfQQXFYLv7LPdEXzvvEOCTwMNxwSQaDSKp556Ch06dEBeXh62bPlditgrKTn245TDxZFKP25y4EDlnyARNLFXWhoMsQeUx8zqj5aiIvliT21Xj9b2RT6LF0VpfMMPsQfwfSmyDIXF6MwM1gpZjlVF1nfi5jYbXuGD848UH674MfubELLtxIXvd/Yzz3Ad37hxY5x55pk4cOAA2rdvj1mzZiEaD3ZHEHEGZfgCxs6dO/GPf/wD33//PV599Q0MHDjQcZuy6yYYxUuyl8oYxVpBHUQH+ATfvn3Gvzd6R9avz9+XoAg9q/bc3s6ppES+TQYtyyctwyfLYGSqYvVhd2NEQE+1anzizg6ZjipImb6gTj0AvKnQ6lYlWFn2Ivodm3yvEydN4m5KzfZ17twZ8+bNQ6NGjcT6RCQEFRm+c85xJ8P33/9Shk8DCb4AMX/+fFxxxRVo3Lgxli//2rGReiH0tDh9F9rFXEERfHrBFpTsnvb8unWdteVGcUWjNmULP/01gir6AiP4/MrusaA6HDe3hyksdOcafos+FiclMpokcwqCTLQPvhulg70Y5ZRhM6Wl5e1IFOe8wq+kpATffPMN/vjjD8yePRvnn3++tL4Q8QUJPm8hwRcADhw4gIkTJ+Ljjz9Gr1690KJFi4q/iVTilBmsu10tkWdg3SvBZ5aBMyMog+csbbAIQbeyemY4FX127cuMy5wIPm2MK0M4ShF8qkhzqkDdEnt6ZDkBVei51b6s9vbvL/+vDCcj21GJCEYVL6chOBWAXu8Nw2Izbu2ZaYJItm/r1q1YsWIFhg4dijlz5qBWrVrS+kPEBxWCb8wYdwTfm2+S4NNAgs9nFi1ahIsuuggZGRno3bs3qjG8PIxEoOyBareqJTqZOSXrswU5hvKrjbp1vRd6eniEH2/bXok+1jg2cILPCrvA0Suxp0XUGZgJPVnti7SlOiQ7nDobr52VlSD0a945r/jjeRG6Jfyc3CufRV9RURFWrFiBwsJCzJs3D4MGDZLWHyL8kODzFhJ8PnHkyBHcdNNNePbZZ9G9e3e0a9dOaAPT6dONM4Ai8YrM5TLad5+fy2OsYqkgCL4giD0gNqZwujWWU+FoJfyctC0rHpMRQwVC8MkQajIDd1EHxOIUWIUeb7s8FBQ4byNsos8MmfvvuVE+2OnL0Kmzkb0RqI/CT1EUbNiwAatXr8aECRMwY8YMpKWlSesPEV4qBN/YsciU7G8LSkqQ9cYbJPg0kODzgV9++QWjR4/GwYMHceqpp6KmwJQTM6FnhN1z5EZdhMJCd5beBGWwXFYbMtftiWIXs7PGZrIzhKrwk9muSBxmdH9kxGBO2wiE4NO3IRpYynBCRs5BROixtMuKvqKk08A7CI7LrVEqkYXHspyD9h3s1sinHXafJUDCTyTbl5eXh6+++gq1atXCW2+9heOPP15KX4jwUiH4zjvPHcH32msk+DTQtgweoigKZs+ejZNOOglpaWkYNmyY62IPMK58rlYnl/luKyw89uMF+/dX/gkTfos91q0b7Kqhy640rvYtL8/7wkPqPdH+ECYYCUaRmyfLCWkdnUxHxGPgdtsHODWoeC5376dDV7fh2LdP7gvM7iXLs1dMcbHzQRpJDm32rFnc59SsWRPDhg1DWloaTjrpJMyZMweUbyAI76AMn0f89ddfGD9+PL788kuceuqpQuWKeYWeEbIL39m9G2VdR42dglKl3O9Bchliz+n59eu7I/T0yF4aE40eyx46uQ9OB9ydnB/I7B4L+gfY7Y0YZe69Ahg7NJF94fzO9IXVgWmzgF6UEnZj/5hq1Zz3PeTZvj/++APLli1Dv379MHfuXNSWOcWXCA0VGb4LLnAnwzd/PmX4NJDg84Bly5ZhzJgxqF69Ok455RSkczprmUJPi9t1D5xcxyyGigfBF3axp29DRhV0lj7JEH7qvQvClMxQCz4ZgtGr9K1s0QfIyQKFWfT57cSAY05Dllhwu5yw/hoyHJpTJ+Sj6CsuLsby5ctx6NAhvPnmm+jTp4+UvhDhgQSft9CUTheJRqO4//77MXDgQLRs2RIDBgzgEnvTp892JPbspm3yTsVze7qm3dRBWSRqnCRjiqJRG+psKLf7JJoMikaP/aj4leCKC2TdPKMvRhQr45A1N1c19Lw8+aMmIsTz9E4eZLw4WF6ETl+A+mvIWFPhdJqnpGdDZIpneno6BgwYgJYtW2LgwIGYNm0aomTTiUlSkjs/RAwuDH0SALBv3z6cf/75WLduHYYNG4Z69eoxn+s0o8f7DikpMc/CyRB4Zu27Lexkod2Xr359/n36tDh5nznZTN2L+FQr+uyyfqL9KSpiGxhnuc/FxfI2Ug8VQVSq2i+M90XN6vBUo+PNapiNZpSWOs+QOG0jGhUPbJycm5QUTMGpf6m4MVVQ+1JkyfrZiUnVfp1k/NRnWtShaYWfYBsiewarrFmzBkOH5uLzzz/Hq6++yhUvEQTBBgk+F1i6dCnGjBmDmjVrYuTIkUhlTFV7LfS0qO+k1FT3snhBFXg8As5JHQGn8ZHVta3EoIysHi9qjKwXfjKEp5no8yP+dCIaQyk4vUiNsoo/UYfHKvxY0taiIlLfhpPznYxAyZiu4GQDdrfRvnTMxJ+TqcVW4o+3Xa+En0uVqKqgDGWoInRu165dsXnzFvTs2R0dO3bEm2++ib59+0ruIRFY3MjIUYavEiT4JKJO4bz//vvRrVs3tG/fnmlvvWnTyoWe6HtfRt0DtY2iIrlLXrQxkxtLaVjxu4Kn22LE6PNFo84HuJ3GBnl55f2QPYVeFX1O72soRVeY4RWMZuJPhtMzEmtO5ia7KfrccmAysnx2gtNIEPqRITTK/slcR6qKv4wMZ+3KEn6iGTsHTtGJ6MvKysLPP29E//6nIjc3F1OmTMHtt9+OJArcCUIKJPgkcfDgQZx//vlYvXo1hg8fjroM8+9UoadFG2DbxQ8yhZ6+D05iF5kbrfPiprBzMnPKa9Rris5wkjUIrPajoECu6CstLW9TRh0F0fgmiDPabHGSoSsqcjZq6jQ7qN5w2VNSVWNyGlg6zfape5F4jRPRx4KVIBSdpy7DQR04cKwdGZWnVLTfoRPRJiL8ZDluB1NEnYi+SCSCpUuXYezYc/DII49g+fLlePXVV4W2ryJCBGX4PIEEnwTWrVuHkSNHIiUlBSNGjEBaWprl8UZCzwgz8eeW0NNfmydu8SNO8TtrF1SshAiLAJQRMxj1oaCg/L+iws+oX4WF7lRON8LsvrKuK4wL9DeB9aUqS6Rpp9DJmjKgGqYs4cPjPI3muSdSoGLmxJ0sWGZF61B4FiCztgnIydbZtWHnsJ2s7xMcDXMi+gDgjTf+i8suK9/G6oQTTsAHH3yAzp07C7dHBBwSfJ5Ad8Qhc+fORa9evZCdnY3TTz9dmtjTU1rqvEgY72brLEU6eCo0OhESahE2vzZZD0t2j/d62vsqq5ihXR/U+JoVu37JWHOq1yPaApKyCkmGGjOnwXKj3BB7AP8G73oKCiobo6wv26xPdhuzq33wGtFruhVUBWETdt5RTCs7lFGRU9uGiO2LPoeClUCroMzR9jHPPz8XAwcORHZ2Nnr27IkXX3xRuC2CICjDJ8yRI0dw9dVXY/78+TjttNPQpEkTy+NFhR5gHIwC7O9aJ+8Z/WC1V5m8oBZ44SHoYk+P00FunuuzZPt4YhmnmT4SdRKRfSNZFD3PdEqWEQdeJ2vWJ97RDe31aYQ6Fq3ok7FAmQWz6lN6ePeWEc34RaPHngfRjJ2Tcz3O9j399BwAwIgRwzB58mQsX74cTzzxhO3AOhEyKMPnCST4BNizZw9GjBiBnTt3YuTIkahRo4bpsTKFnh67mETG1E/gWHbRTYIs8MLgN5zE2EbnssY5Tq+tX9vnJMPII/rMElGiBVxCMa1TdITfiSPRX5P3YeJ1PHbCj1eAiQov/ciYSBtei76wiUwnWzDwOhqr0TARp8Ur/Kwy5x6KN7+meH7wwUJcdNEF+PDDD7Fu3Tq8//77yM7OFm6PIBIREnycfPvttzjjjDNQq1YtDB06FMkWI8qiYk+0kF1SkjyRB8TGRrLjgCALPBl4mS2SLfa02GX9ZHzOgoLydmSsxbMSfZTB8xgjR8az356TUSa98BPNtAHs2T6r6Q+iYioMIiwoe/J5sQcfEPs9O3Va2he26F4zosLP4/Ocir6XX56Pyy+/DMuXL8eJJ56IDz74AN26dRNujwgQlOHzBBJ8HLz88su4/PLL0aVLF3Tq1Ml0ywWvhJ4WNTZyWsfALC6SEXeo78kwPIderxEUrVEgGmeJnKfN+smK77TtyCrAos0a8vbT620aAr8thMwRJD1W4k/WlAKZTsfICfLMcQ+D6AuDwGTFTADKLEHstBKVFm3WT8TBOsnaAZ5s3+BU9M2Z8zyuvPJy/PDDDzj11FPx7LPP4h//+IdwewSRSJDgY6CsrAw33XQTZs+ebblez0+hpyJaGdzJALgZfm7PYEUQq3va9clIEHop9rTnqnGUk2J2Zn2QJfqcfEYvRZjI2sEUHOW/kMz9xlhwst+eLJGpdY4y1uRp2/F6bZ4TIeaVw/OisqYTVMcVjcrdhgGItQcn4k+77lPEEXo9zVPgemohFydbN3Tu3Bm1a9fGxIkTsXbtWkyfPh1VqogLScJnIhH5A00Me2AnGhFFURS/OxFkCgoKcM455+D777/HaaedZrgfzH33xQo9LyqVswyA24k+kZjFyawm1jZknBtEUScLbWzMG2O5Mf2TJ3ZivT5vrGPUrhPhKCr49LOyWD4v77WEBJ+dszF6sESFl0zHJuos7BykaLtaB+eFI2M5L0zOTpYolOnI3KpQxSv8zDKPXjoy9XOJLEgWcJqiom/SpIkAgLy8PHzxxRfo3Lkz/vvf/yJT5mavhOsUFBQgKysL+RMnIlNyIZ6CI0eQNXs28vPzyS7+Bwk+C7Zv347BgwejuLgY/fv3R2pqaqVj9GLPCP072m2hp8VI9DnJ5hnFG7yZPJlxUphiHVlYxRpm8ZSb6/xUrOImkevbxTksbXot+rw4xxXBJ+scJ+cB5g6Ox2mwOkmeNs2cnJeiT3V28TLlUg+PGHTTodkJQJFr2wWcLNNMRZ2ZlYOx+iwhEX0lJSVYsmQJ0tPT8cknn6Bp06ZC7RHeUyH4rrzSHcH39NMk+DSQ4DNh1apVGDZsGBo2bIiePXsiSfeSZRF6etQ4SOR97WRJS3Ky3CmbSUnOpmuKfP54j3VY4Y016tb1Ruxp0cZLTtf6GcU4vG26ESf5eU6gBZ8Xo1lmTkDUSVo5FVZHJzNjp2I1mpVIjtDP+ex68efUoekDT5H1hE4dGu9n4BV+Poi+aDSKr7/+Grt378ZHH32E7t27C7VHeEuF4Js82R3B99RTJPg0JNBbg50333wT/fr1Q5s2bdCrVy+pYg/gW7fjdLP1wkJ5a+nUvWi9qLDp1567QUYk1ti/33qPZ6tricY2qr3JKOyi2r8fG6CLzGiUtce47wRV7AHGhuDESRq1x7vxthMBEo3ybzQehKqYXhHGTdjNKCg4NvoqWjxGxNajUfHN33nPEdioXXSD9lmzymOxpKQk9OrVC23atEHfvn3x1ltvCbVHEPEMFW3RoCgKHnzwQdxzzz3o168fmjVrFvN3p0JPj5tF6vTny9pOyi1I1FkjI77Tij6riuUyrqXaTRAG1lgLwcRtDO2VCuXZckGLqLNTryeryIu26qLo+TyfO973pnET/QvDi4IxMqpVqTjd2kF9ZqzONXNoIoVdRDYa5SwCI1rBc9as2Zg0aSIikQg6deqEGjVq4KKLLsKvv/6KW265xbSaOhEgaFsGTyDB9z/Kyspw9dVX45VXXsGwYcNQV/cCkS329MiIXeziJp54xE2hJyruEvX5dUOImIk/2dfSb6wuitONzY1EX9wKPKeICES949LfXNnTMM2uK4qsOe921UBlirx42kLBKSwCUNYDb7c5qR1m2WlZwo/1c/JW5eTdLF7gGk5FHwA0b94cGRkZeOCBB7Bjxw48/vjjVMGTIECCDwBQXFyM888/H8uWLcPw4cNRo0aNir+5LfRUnBSn450NZda2m1tK0WC2GF6IkgMHjn2XbmTkZG1V5VT0Afz3U8Y1CRhn/+JN7GnROkg3nR+JPmOMRhWdbMRu5jh4xZ+VA3Iq/KJR/nO9yPb5IPrq1q2LYcOG4Y033sDu3bsxf/58pAd6w9MEhzJ8npDwRVvy8vIwfPhw/P777zj99NNjnAKv2JMh9PRY2ayTeElt163iK27EOF48v25MLfV6U3VejO6rW1MxZbTLK8C0n0/kne92sTrXi7bwOibe451s3yBq5DLEnhtCT9+2nw9xPOP0vvKKP57rmQk/t6pNydqTxgvnyFE4piwphfuWJSUdK+QClA/mL168GM2bN8eCBQuQlZXF1yDhKhVFW/71L3eKtjz2GBVt0ZDQgm/nzp0YOHAgSkpK0K9fP6SkpADwL6tnhuz1fbLiHH2/3M7iOanuGQa0wjAocaIbfjIpyfnm6nZxhtXn8jKukX0swCn43BZ7gLzqNqxGH2SxZ9RuUB5mM2Q6Sa82X5d5T+3En5NrqeLPSRtmztKtfWl4HRLv5qMc7R9FCl9f/sdVVx0TfUePHq3YtuGzzz5DTk6OUJuEfCoE33XXuSP4HnmEBJ+GhBV8W7ZsQd++fZGVlYXevXtXVOIMQlbPDKdxjhsxjldFXQDzeCZMok4EJzORzOCNDWX6S/XaskUf62cKmuDjPT5Qgs+tUqZGQWPYhJ4WP0Rf0B2jE3Ho5v3UO1wZ15LhQEXW6enPY0VE9PH0yWPRF41GsWLFCuTn5+Orr75CixYthNok5EKCz1sSUvBt2LAB/fr1Q8OGDdGjRw9EIhESeoLteVn4gtYBHsOJCHSyZZgTkWZ0Xaeiz6s99kjwmSBSsp0XtaS8U1QHLMtpiThWtyswxQt2YtCrF0/t2nKv5cecdhUvhJ9LUxtkiD5FUfDNN99g7969WLp0Kdq2bSvUJiGPCsF3ww3uCL7/+z8SfBoSbOI/8MMPP+CUU05B48aNhcVeURHfvmCie+mJbpsDHNvuR5bYk92eHerecdof4hgHDohtEeV0f2hRW3arSKPT81nxQtf4jldr93iRKfYA5wUCnGyO6nStXaI4RqO99/zYlDUvL3gvUtHAgNduRQZaeHwIx7Hc65YNiEQiOPnkk9GoUSP07t0b69evd9wmIQnVJ8v+YeSBBx5A9+7dUaNGDdSvXx9nnXUWNm7cGHNMcXExJk+ejDp16iAjIwPnnHMO9u7dK/tOuEpCCb5vv/0Wp556Klq1aoVu3bpxiz0zP2sm/vwUejJgeTfJqBWQKDGMTPT3nUX8iXxXZn6T1bZZ/K4foo8l1hB8dyQGxcX8N8YPFWxlqLz917fldPSEBfWhJsd4jP37/XlZuDWKKooT4WeGUTDDe50Aib4nn4yN7yKRCLp164ZWrVqhT58+WLNmDXebRPyxdOlSTJ48GV9//TU+/fRTHD16FLm5uTh06FDFMddddx0++OADvPnmm1i6dCl27dqFUaNG+dhrfhJmSufKlSuRm5uLTp06oVOnTkJZPR5ECtA5GciW+Q7ihfdz5uXRHmhO4IkXk5LE9wlmvY7RTCGRWNjJ9E4ZUztZ+uxWMRZXpnS6OZ3T6lijh1tU7DkZDeDNZoi2JerMjM6zGrEhp8mOjIXPrE5M1nQxJ+04mebJY1c81wnQ9E7t1E6V9evXY/369Vi0aBF69erF3SbhnIopnbfc4s6UzoceEprS+eeff6J+/fpYunQp+vbti/z8fNSrVw/z58/H6NGjAZQvDTv++OOxcuVK9OzZU2rf3SIhxq3XrFmD3NxcdO7cmVvsiQxuqbEN6wCyk4xeYaFzsacOXLs1XVObffKyyEs8IiKkRKZ9iiY+nGTDCgudPQciUAbvf8jMvulTo0EXe4CzVLaoAannsTrHhDdSDrycMiIr6+ekHZEgIimp/Bye51M0GJJ4rIxMHwB06tQJnTt3Rm5uLmX64piCgoKYnyNHjtiek5+fDwCo/b+BozVr1uDo0aMYOHBgxTHt2rVD06ZNsXLlSnc67gJx/wb54YcfMGDAAHTq1AkdOnTgFnusWPkrs3jA6VR8bZAtgpOlKFqspheSwJMH7/fs1bRP9byiIjn25KXo82oZWlzhxdRMUUNy6tRUZy3SjshUTV4HSaJPDN6Xksh9VgWbjH2TnFR4s3NqRgEJr+jzeYqnLNHXoUMHdOrUCQMGDKA1fX4SichfvxeJAACaNGmCrKysip8HHnjAsivRaBTXXnstTjnlFHTs2BEAsGfPHqSmpqKmbrpUgwYNsGfPHlduiRsk+90BN9mwYQP69++Ptm3b4r33VjCf59Y6ZW3hCxGszktKYi8g47QNI8Im7PbvLy8EJ7sGgFvbUDkVe3rU70vrv2QtSSos5J9iqW+jqEhslpLItXkoLmaffcRzLCsyihd4iuw1RnbXUg1J1JFpR9FE2rA6z8xJ8l7LiaNORIwcm/67EJ33bnYt1Y5EnJGMNtTnTnWiLM6d12HxOGkXHGcKjgpX79TSqVMnlJaWon///li+fDnatWvnuE0iOOzYsSNmSmeazdTRyZMn48cff8SyZcvc7prnxK3g++2339CvXz+0aNECCxasYj7PrYErFZFYhmeDdrM4QHY1wyAKvAMH+OIgNwq+sc4e4lliIlvsacnLA5L/5wV4l5BYXYdVeFm1ISr6ePHqOlawf2cuZHhcKrIghKy9a0SEn/7aouJRex6rowyS6AvLKJhMtN+TzEXPWpsSdYgyhB/ruerzzSrOQib6nnxytuF6vhNPPBFlZWXo168fVqxYgVatWjG3SUjAjXUV/2svMzOTeQ3fVVddhQ8//BBffvklGjduXPH77OxslJSUIC8vLybLt3fvXmRnZ0vttpvEZdGWXbt2oXv37qhXrx7z1gtul113U+jpUeMAp+frkVlPQDRWsRNUfg58s/orq+P0sYabYg84Jva0sPhGnus4LerCGk9oP4ub++yxtp2UxH4s63FVUMZ2IMDupNwa5RJ1qqWlfOexXMfKMbA4Sl7Hoq7F4v0sPNfh7RPraJRfTjQpSU6xFaN2RY/nEX9OqlzJOF/2eUFwoozH8Wb6jESfoihYtWoV9u/fj1WrViEnJ4erTYKfiqItt9+OTMnTYQqKi5E1bRpT0RZFUXD11VfjnXfewZIlS9C6deuYv6tFW1599VWcc845AICNGzeiXbt2oSraEneCLy8vD7169UJSUhJOOeUURP43j9cIVQTqYxir912QhZ72fCfvbO25PJk8maJPf13WtsMu+IyOY405ZIg9LUY+UnQQTo01RM83iyWsPoNX8YrVZ/JN8MnI2ukfJi/Enh47wcR7HaO9c0TPNcKo6IbXos/MaQfdido5B1ExKGvUzMoR++EYgyb8eEa4eNr1WPSpU/lWrlyJrKwsrjYJPioE35Qp7gi+++5jEnyTJk3C/Pnz8d5776Ft27YVv8/KykLVqlUBAFdeeSUWLlyIuXPnIjMzE1dffTUAYMUK9uVifhNXgq+4uBgDBgzA3r17MWDAACQxONEpU6wzf9p3H0+847XQMzrXyXtbpLCZqOBjEZVhj1VkHuc0C2gn9PSovtLJjAv1mk6mTqrn8vSf5x3C0zfWYwMv+NwScbKnTBiJJr/2sTFyMnbtuSH6VMfpRlYwTI7UbkTMjWkSTp2w/lyv96SRIfrMPnNIRJ+R4APKi3YsXrwYDRs2xOLFi5EueyE2UUGF4LvzTncE3z33MAk+s8TQCy+8gPHjxwMo1xc33HADXn31VRw5cgSDBw/GrFmzaEqnH5SVleGss87C2rVrMXjwYCTbRIV2Qk8Lb1zBK9zMNnOXcS3WdvTxCm98wnotrbhzI/bwI06RLfZ4jk1O5lt7xyv2tOeIxBVG1xMVfSLbVLmV5ZM9eynwgs9PsaentNSZ2FPPFXFyKtEov2h0KvpkzKmPR8FnhGg1KhHhxuuEra4nKvySksQcq4jwY71Hske7PBR9R48exaJFi3DSSSfhnXfeQZUqVZjbJNgJiuBLFOKixrOiKLjiiivwzTff4PTTT/dN7IlU8jZr386nythSQa0ibRS3iAgDI7zcoiHIhevcEnuA9fdodDwP2nN47C052fx6PM+U2k5ysliMz1NBl+c7kr2dgxc7HXiCm5u9q5SUiDso7RdnZaQs7fCey3t8YaH8PfrcGJ0KIl69ePROmAezAi08jlbruET2eeK9nhsFntyYjcCI0VYNAJCSkoLTTz8dX3/9Na688krESV4kuMjeksGNIjBxQFzckQceeABvvvkmBg0aZJt+ZxV7PL5TVOixbJfj9FpGbcjaJ9boWom2B59LhaVsMYsdzcSfSGxqdA6L/bFcy872za4vU/QZvRfiRnix4EZ2D2B/6YrcbFHBZuVwedrRPwCyHiwV/QMsa+QtUVHtz6sXE+vom4wRXbM2RIUfKzzt+yD6eLeuMRN96enpGDRoEN544w08+OCDXG0SRBAJ/dvk1Vdfxb333othw4Yhw2Z6Ao/YY6W4+Ng7mWXGjkjsFI0630tY5B2XnGz/mdwQjmHBr0F11hiwoEBsywWW9o0qhfPGpkYVvVnFosjspYQZ8PNLtVopaxU1De9U7Gmxc8CsTtfK4Vk5YBZHaXUOS2qepX3WrRpkHxdGjPbhk70YWv1e9c6X5zpmWzKwtMHrKAsLyz+T7C0ZWLdjkHicrD36MjIycPrpp+Oee+5BixYtcN555zlukzDAxW0ZiGOEWvAtW7YMl156Kfr374+6Fnv9uCX09FjFHSKZCf1gtsiSE/V9IXq+EWERebdcdSj2FwwvkzLYz9U3+u5nzTI+1i+xpz/WLPYQbVuluNhZvQF1ZhyvgGONNdT7WlIif8P0IOzfFzrUL4RXTLA4UCMHzOt49W2wjrTxjPoB/Ns2+CX6EgXthqSA+Jo8I7QvTNF2tcJPZO65naPSfnae/fK8FH3az83g0FNQxvQ+B4CZM41jxOuvn4i6deuif//+uOSSS9C4cWP06dOHqU2CCBqhFXybNm3C8OHD0b17dzRt2tT0OK/Enhbtu9+p0NO3y/LOl73JetAE3k2X/hX7C5lVMQSZNCn230Y2Mneu8bluiz0tZrGHk/V9ovsCa68pIp7MzgnDwF71qTfF/sLNTt95Z+XfyZ7OKbK2xyjz56QPKuqCTycjXMXFYufbOWmjudZ+iT4z9u2r3J5buLHvngzsRJrTNaSiFbDUZ0fEWerPs/oMPBuws4pKuza1o3Ms12YQkVU4RJ8RWiH4/POzccYZI7B69apK+7QRDqEMnyeEUvD99ddfGDRoEFq1aoXjjz/e9DjZYk+kgjnP+5x1EFtk1hFvX/wWeTeM3VH+Px6mUESze6z8r7pvBer3/dZb9ufKEHt6CgqA1FR51TcLC9nasirmwvt1l5SUfwYW384zcM1zrJ4602449o8gvHTuuSf230Zi4NZbvekLz7RPwNmIGW/WTUU7LULkfL2jlTVlUwa7dsX+22/7NNr/R2+f9eu73w+7dZVaRLN0ZhWwRJwmq8jSwzulwq1sH+DZu51F9KWn27/bL7tsIrZs2Yzc3Fx8++23qFOnjsReEoT7hG5bhpKSkoq99k477TTT/TNYxJ7MrB5Lu06XmBi1xZvN4xl8ZjnHybHRqEbYGcHyQpCY3ZMl+FiOsfvOtSLQDbEHlAslLU7Emh6jtljPZY0D1PZ4hZmMKuBNHv4X2wcKYlVEluyPesy119of60blPvVYXiFk9WDZtWXlTEUEGe9mpqzXYDlu2zZ59um1KOSxz5wc6+Pcnj7BKv5Y2jdzwCzn8jpNnnNUWB2nzL1tJL3fWbN8du4pGo3i/PPPRl7eAXzxxedISXG+TjCRqdiWYdo0d7ZluP122pZBQ6gEn6IomDBhAhYsWIChQ4eaPmwsYk//YJu9Y9zYl1h9Xzsp7e6k0BjP4LPROaLHXnfG5mP/sHu4Ze5s7eELgfUYlu9e287HH9sf70TsaXESdxi1IzL7yezrN2vLzb1+mzz8L77OaAl7QG2GVgi6UVZdf6zMilhGbbGOnImIRnWKmoz2jY7bts34GNYHLx5tVBWCXs6XNwsqRR2nyLm8jtPqHCNYnKd6z1mODaHoO3ToEPr3Pxm9e/fCs8/OMU06EPZUCL4HH3RH8N16Kwk+DaGa0vn444/jjTfewIgRI6SKPaDyjCI3hJ5KcrL4lEmns40Ab6Zrxog7PbIebI/X7skSeyLXGjIk9t96AShL7AGV1+SJLldR41yR8/Wzg+zakDVds/Wjk9kumOg8+mis87nqKuvjnWYBtd+H06pYWufJO0XCbPqlVTupqeyij2V654YNx461orQ0ce1YnbqqvZfNm7t7TRnFWYDYlzzvfHv9VE/ZZY+N1uH5PS0Y8GQ9n0r16tXx9tsL0adPV5xwQidcc801jtskCC8Izdvg448/xi233IIhQ4bYbr/glJKSYz7MbqCRV+yJLC+RUYRF2wZP/MHK1f3Xl/+PXdQta9RPIjJeAjzI2LR7yJBj795ly9jOsRN6etT2RR437bVEq1mWlPCdJ7LurkLgEbHwFv548snYf9sJQDNYhKHeeYo+UOoCUF5nKCIYnYg+VeARsbDYqPZe6jOhqgB0a4E04Hy9n2hFLHWtHs8+lQC7w2UprMLikFleDk4WVOuQtZ6vSZOmeOON9zF8+Olo27YtBg8eLKV/CUskIn/ggDKvlQiF4Pvtt98wduxY9O7dGw0aNDA9TjS7Z4WsWgIilTdZYgm7AWGzNnjjHP11KgSeFpcrYXJfy+Psnl9oq0SbiT9esWdUX4Al5jC7Do/oc1q904pOT05M3KyHbKycjyoA1b9fcYU711cDW56pDnpnLCL6REbheK7z44/BstNo1NtMjhfbRmgFoGo/7drJaz81NfbFwSrazCpisbahd6AAuxO1O57XBrwUfYzCUJboO/nkXnjiidkYO3Ys1q5di5YtW9pemyD8JPBr+IqKitC9e3ckJyejZ8+epsfJEnssx/C860WWlYjEEiLn88Q4V/YxEHh6vMzuBWxeP+sxvGv3nByjij8nYs8Io5iD5xpeLzPp9ORE9gvJPias66NYj7MTWkZ/NxN/blbGsjtPxc4pmjlXHsFpdo1162L/TXYq5xiW78boGL344xXgbi6UFjmfd+RMPd7ue0/w9/7110/GsmVLsXr1KlSjjVm5qFjDN2MGMqtWldv24cPIuukmWsOnIdCCT1EUXHjhhfjqq68wePBgVKli/JB6Kfa0x1i9R0RnGYkWYxE9zyq+ubLb6mP/kOHU3VjEbfbCZ8zuHYV9lS07u1Dfh0ESfPq///CDfZs88Ywab/CKSRWeJSb6c+zo/txE6wPsLsraqXgOpFmPExF8eq64Qv6iaafr/Iwco91IGu+C6pKSyiJPS6ILPsB/0aelY0f7NlRYHaOTAi3a891wpKxlkP169wOO3v8s737A3jWVlpYgN/dUtGlzHObNm0dFXDggwectAZozUplZs2bhww8/xMiRI03FnpfoH3yjdXhON1rnnV3ktIiL/noxIk9FxtRIEYdv5szdnurDiV2RnyCsaT/hhPL/mgk/3lhDtTNRwVdaym9WVjN/us+6xFmHeBEJzszK9HtlIEHd5Fq7/u+f/7Q+ltXBah2iiFPWOkbWKROsU0tFU+9eQrZamR9/PPb9dulifhzP9+qkQIt6fmoqnz+ym7bJ69tkTbc0cvD6d31RkbSlGik4yiz6rEhOTsUrr7yDPn1OxNNPP41JkyZJ6F2CQRuve0JgBd+qVatwww03IDc3F9WrVzc9zqvsntXfVf/IW/3SLA5hEX1mMQjvcpbLTjAQeLzIWivHIuQkrsuT4exZUD+WG1lmXlThB5SLPxHdov0KeNfYaWMhkbX42utViDwe3FoX5XeAzILaR6vnTHagzeuQnnuu/L9Gwk90w1LRKlUiJZCtRt5Yqytpr++GvcabrfIWb3FyjIo+M2slAO1wUqBFdagiG7Frz7GyM4lFU5iw+y4lrudjEX0s6/kaNszBiy++gVGjhqJbt27o0aOH7bUJwmsCKfgKCgowevRodOnSBQ0bNjQ9zsupnHaotQMA58tIAOMYRUa1TgC47Lilmn/ZvCC8yu7JfKEkSLEWM1inlh53XPn/m23jpcfstrLEGmaD3iKxhJDQk4U6dzpIwbFMtGJAG3h5nXFRhR9QLv5ExJ72QVANkEX46a+lGiiPM1DFA6/I48VKFGrn+YfVXq3EnB+2aiYKtQKQJ9h3UqDFyKmKCL+SEuf73sjM8sl6f0sUqiyir0+ffrj11jsxZswY/Pjjj6hRo4aUaycElOHzhECu4bvwwguxfPly5Obmms6HZhF7QOV3t94GZAhC1voBIjFLSYnzIi6AXuT9D7uXgqhQ07+gPdxclfU4WfP3WY9hPc7OXlnaEbVXK+HH897Uft2ss5vs2u8350K2xuyO4VnzZLUwVuaap7Cu4atdW87aKLu/a0Xa+PH21wPsHwIz4WfnpFkf9kWL7G2RxZ5Z7dVuEXe82yvLMSz2KsOetbalLaGsR2TRNCCnQpbR9d2KB4DY78fLeMDDtfwAEI1GMXz4aWjevAnmzZvHdO1EpmIN32OPubOG71//ojV8GgKX4Xv11Vfx3nvv4ayzznK8+NXo3c27/MtJhkd0qqeK2n+W0SWja49rbiDyZKI6U6ub6nXVqoBm90QLuuhvrez9E7Wo21JphZ/I7Swt5f/ajfbz7TfnQr5GnKyJ0gbMQSqHH2QOHKhsoDVryr+OdrrD3Lnl/zUTfqwPrT7jxzoaZ5ftW7SIrR312qI264a9er31AissUzZZjmGxV94pyEZo7VXN8FoJPxac7McHxDpkUXvhyZh5sc4+gFM7k5KS8Pzz83HyyR3x2muv4bzzzrO9NkF4RaAim99//x2XX345TjnlFMfr9kSqIYq861gGhHmWkJi1xyP6xmV/Yu/knIzmqc5cllP3espniNHecrdis+zs8v+KVH7VLikR1frcQk8E0bK2hDX6++qGAASOCT/gmPgTGaFJTRWbeqF1yGYiz4mg00P26g4i9ioiCrVTe/v0EV88XVoqNqJWVFRui1bvUaebnkajbFMyPd5s3eupnTk5jTBr1n8wceJ49OrVC82aNZNy7biGpnR6QmAEXzQaxfnnn4/mzZujuZpqMIB1KqcdRg+tGkyzltnnmf1jt4SEJeawcjbjsj+xb0CUgFXFdIrMYi1+rvEzEn8y+6PGPiyxptPlJIOfG+Nu1UL1Q1D2zlvy8mKDYzcE4Ny55Y714ov5znNSHhkAPvwwGDbLUtxFZvYunjOB6j1XbVbUXq3sSRV/JSVAbi5be3rBwrtWT7VTO/FjJ8b05xvdS1kCS2IGjwVZVTsBYMSIs/HJJwtwwQUX4KuvvkJSEJ8XIuEITPQza9YsbNy4EWeeeabjtkT3wFPRltmX/Zzq3wO8fdWLPkOh5zS7l5pq/+J0a18dJ8TZdE6edrRJVyubFVmiZCX8WOJdqxhi8HNj7BsQhbIiwUP7ncgWfy+9VP5fFuFn9CCwFnZ56y2+fvFANmsMi5hzA7MMoIypn0BsdthM/NkJNMDcwbo1IOH0u3CaTeTF46mdAPDgg4+ie/fj8fTTT2Py5MmsPU1MKMPnCYEQfNu2bcPNN9+MAQMGICXF/GFzayqnFfqsH+t1rK6h+mDRd7v0bF7QM3gh3IrBT9ya9qkXfjyxhD4uqST0ZBS4sHugZG1STchB+32J7EFmhir8gMrij7VEMlBZ+Lkh9IIm8IKavQsK2u+rtFTuoIUq/rTCj/Xdp3ewVv5SNMunvlhYpm0GMcvn8dTOjIwMPP30XJx33kgMHz7ccuYaQXiB79GNoigYP348WrZsiUaNGpkeJ2sqJwtW0z0B5+9D1TfzziI6N/Ud55W01POdiLw4z+6xEoYtG2SLP3UpiCjSM3raACzIG1nr8aJkvlvr59zArcyfNuvHO51C66Bli72w262botDJ9y+rwAvrvn1Wdmv3gjf7uzbrN3KkdR/0qA5apk25NSAsM8vnw9ROFtHXv//pGDPmAlxyySX4/PPPHRcijFsow+cJvgu+5557Dt9//z3OOussy+NYAlfZ2T0z1IJZZv3guYbdLKJzU99hb8yOaFTOVE0Z/WAl5EJOa5Nu+x+7fqtfv2g/nEyVPnu+RKHnd1bE6gbyCjk3jcLsPhk9f0ESh26IP3Vfvwsu4Dtv/nz/C6/I2oDd6uHntVs3M4FW98mLqrCiuGG36kDD6NFsx7NWzbITSIWFzs5nPYZF9PkgDGWu57vvvofRvfvxeO655zBhwgQpbRKECL4Kvr179+L6669Hnz59kGrxUr399tjsntk6YTtkb8JuNt3TCrOgWT/YZyj0RLJ7vPvf2MGT3QvYVFG/p3Ma3Y6kJO8GKtTreFHpU+Xsuf9bk+s0aLYLlr3KkuTlxefIodH9VQ3Fz6Ba7VdJiZx+zJ9f/l874aetAmqFXSXOkhLni8pZYBGF8Wi7onYrK8vH0i8r22XNAtoJP1n+z893ttNry6zsyQhLli8rKwtPPPEcLrvsfIwcORINGjTwpnNhgjJ8nuCr4LvuuuuQk5ODpk2b+tkNLqz2SktKchaYS8vmiTpOWc6S5foyF2yHOAvotyaWZbtaKkSeU7QbWPqxts7vTGJQMLsPXgtBmRkUM+HHKvTs8NN2ndpt2NfxqWLOC7tlFYWybNdI+JmJPZ7MmNGLyGmWkPUYWVs5sOJDlm/w4GE49dTTcN1112P+/FektBlXRCLyfQ5Nn62Eb4Jv6dKleOeddzBq1CjL4/TZPSP8yO4ZYTdlztFAr9PKml5l92hdXgVeDOzLwul0T8AloecVtG0DP3l5sT7HSwGofl+yhB/vlgxmkO26i4xqner98mt6qN52RbYE0a4p5Z2mrKJuEhxPBLSACwDMmPEEunVrh6VLl6Jfv35Srk0QPPjyhigpKcGECRPQpUsXZFhUZ2MRe17CWplTJHA+GwLZPZnpIS/FlZflmP+H39M53UZ2xtHTAf7iYm8r4FDmzh2M7qvbQbT2mj74FQDORR7vBu1O7DcR9uNjRS8ejbZgkLH9gpmgY7VdEUGoYldx0ymysnyy1vtJRmYBl8aNm+C226ZiwoTL8dNPP1pWpE84aEqnJ/hyRx599FEUFBSgY8eOjtsKSnZPj74+itTsnr5xp/vuhZmQZwH9sE0WpNqvVTDLEiw7zVzk5cX+EN7h5b0vKPA+w+bF9VjvoYx94eIFGcEe632XkVlVbVfEntQsNStax273cgnaNBWZC959eLFOmnQtgAgeeeQRz69NEJ5n+Pbu3Yu7774bAwYMQJKFU/YyuydjY2yzNqQl4dxc7CVrqiZN5wwsvtuvFreD5CCIOhpdNEZ0LRNPlkO1r8xMsfNZ23cTvQ3LqtTJStizd25gtgk7C3b2p80kumW/bsUQXmb5ZPaJEZlZvpSUFDz66DMYO/YMjB8/HvXr15fSx9BDGT5P8PyOTJkyBTk5OcjJyXHcllfZEaeDXHZ9sJ3OaeWofRBGjkiQ6ZxBGxgNBG5mYOxG4hNhfVPYcDv75yRrokUNtEXbYi3qEcYstB9Vp2QGcixtmfkO7fel7tUkE1n2W1Rk/T3FY5aPFcYAMQVHpV3y1FP749RTT8Mdd0yR1iZBsOCp4Fu/fj1eeukldO3a1fK4oGX3vGjDFKeCzqtiLTJhvV7Is4Cy2gp8ZtItoae2KysAIFHoL16IPzfOFc28yAroCWO8HuF3U7Tb2QrvtE7ZBHFtjQ8vRtaQZNq0mXj55Zfw448/utuhsKBm+GT/EDF4FuEoioJrrrkGxx9/PLKyshy355XvKC4+ZjduDGYKFWthhcXgZYmmsGUaQ4Ksd5abNgyYVOhUgxNZleDCGhhbBX9evpSCtEm1HW5sYg0YT5djOV729f1EZLom2TA/ehvmmdZphHo+rw0D9lMcnf7da0K+TcNxx7XGZZddgX/9619YvHixlDYJwg7PBN+iRYuwevVqjDbbOPR/TJlSObunD1L9ymgYBc12fXHUVzsnpP+7/sXrt4MOQH9YHbRsmzKKgfzac0/72dwWfgDkBrUFBcHOvJkFwkEcXTQrR68naEG12u/SUr4g1wq7oNlroef1Gj0tYbRhwNqOeWzY7U3YAW9seP588S0azOCxAVmi0KwdEXsM6GbsAHDLLXfhhBNaYtGiRcjNzXW/Y0GG1vB5gidvGEVRcPPNN6Njx45IS0vjPl//vbEErW5mAGUFzVKye24bNYuz9KMKqN9i1gIzuzKyY79EoLYvdn1gek7MAlq77J7Z34OQCVHRB8Tx/iKxEoYiYlBGaXsVrV3ICJy1QbM2eyID2Zuvs4hCs2NEbDjMhVtk2zALrHZuZcMiz4psX2n2ncsQT6xteG13PmT5atWqhRtuuA233HILBg0ahAhtFE64jCeC74MPPsC2bduEsntW6H2C7ODZafbO1eyeX2vzgiAwfcKN5QVByAQGZg2gUeDiZdaDZd1NWANgWejvUTTqX0ZQpvgrKAhXFU8rvC76EmRhaDSqZnR/vLJjvaDjtWEn1TpZpm36MXhrZDteV/WUDGuWb8KEyXj00en48MMPMWLECPc7FlQow+cJrkdT0WgUt9xyCzp06IBkCcGb1UOkfr8yt2pxC1fX7gHyHKGshyagjhnw3xb0hMmOHeNXcGx0XXpBiOHHhut6CgrkTpcTuX5Qrkt2LIadHcvMVBuhfpdO7PiZZ4ArrpDXJ15YhZqXwpJVGPqQ5atevTpuumkKbr31VgwfPtxyq7K4hgSfJ7h+R/773/9i9+7dOP744y2P483uuY3TQDrwgXhQp2qywCge/diOgWCksNCdUuZmaKvc+Z2BSQT0FQvt7rmsTK7X3zGrHcuc0irjM/o1l1wmXmzP4IcdJye7Z8fxFtgErT8aWMe4L7vsCvz11wG8/fbb7naISHhczfApioI777wTHTt2dD27p+JVVsTVrWmcTuf0MpsW8s3WZeP1+4d16oib1zj78dPYGvJa4GkJcuGXREH/nbidjROpZmhGSUnselOvbJnsOHg4tWPeTKF+2qeMTdjNkFH9kiVTxnIdPzZi9yHLl56ejptv/jfuvPNOnHPOOYm5lo8yfJ7g6h1ZtGgRdu7cibZt21oeF2/ZPTtcn84ZNEjIuYar60hltKFmQNwMkPVZD8rghQOvvjO1fac2aGXLMjJ4QbRjygTa4+V3xnKNZ55xtw9BI6gvZ7CHPv/4xyXYs2cPPv30U3c7RCQ0rnrCadOmoW3btp5l97xqxy6756r/8apYS1CnczLi13YMQb2mKMJ99VLk2UFZEfeQGUw7DZrtvufkZDG79MqWZU379EOkxYMwZIHF3ouK3BeATgbS7Jy6rwGOi9dibcuHF3TVqlUxceI1eOCBBzy/diCgjdc9wbU7snbtWnzzzTdo37695XEys3uypln6aitOsmFJSfE/nTMOsoUsyJqabGfL0qcm8wQhvELMKIgiMRefeBUwOz1GFNHP52bRkDDixTo+pxhlAFkGJ1j/7vV6aJb7JGv9TYBJwVGm41hDlokTr8LXX3+NdevWiXeKICxwLVp66KGH0KZNG6RLCNC9HHDRTo13Y5Nq6dM5gz6KkSACDQh25o5n3z0hjAIOuz34WNoMun2z4vf0vKBtps6DtnohIHftn2q3GRmVfycbv21AFkH4HPFiz27YMuBOtU6tL9avafUbyWv0/KBOnbr4xz8uwQMPPIjXX3/N7+54C63h8wRXBN++ffvw9ttvY9SoUZbHeZ3dc7rROmAfC3gyndOJISfAdE7CGul+UGaA7OVItRaRm2IV+AbtZcOzN5tfWxuwInvzdaDc7twohKG156DZhH7/PDN7Dlq/AX57NtqPLwi4YcsAW6BiFQuoRVWC8N37IdIkF29hLa525ZXXomfPjvjzzz9Rr149lp4SBDOuCL65c+eiUaNGyMrKcqN5X1FnUrgys8bKwSQnB8P5qgR0lMwNgpy5c4qr9syKWXASBHvXB8FB6JPbqJ/ZKED2UwwaVTd0K2B2gl+DFiyI2HOQN1ZnQbY9s4hHkT37jKp/WrXh5r6AMuINWdU6ZV4v4LRu3Qbdup2MuXPn4qabbvK7O94Ricj3MYlY7dQG6YJPURQ89dRTaN26tZT2vJwKzjPAq51Cz+pzuadz8q5PCtIUCx4kr9+jgi3luG3PAHD2tO7sB+sJSmBcUBDugNZLjLJAavDrt+AqKCjvi3Z6Jg9Oy92TPYcPP+3ZTrCp9gyI2fTDDwM33sjXn0Qg4MJwwoTJuOee23HjjTcmzhYNNKXTE6Q/4UuWLMGBAwfQvHlzy+NkTufU+ykjH+pmeXr1+lLe9345XTeuG2CnGnREBZjMa7tyXe1D4oetB2H9UbxidG/9EIFaGxMVfyLXsrNnNzJlZvYc9qxcEAiKPQPGa01lIeqHna7j47luAk3rHDHibFx//SQsXboU/fv3Z+goQbAh/Y0wa9YstGrVClWqVJHdNDPJybE/Xl9X6MSMDOuTZTg7bRtmNymsWcI4Qp9kMPqqvMgUlpZKen682IvP6rpB2tcs0fB7bzm3bM8Pe1avS/YshgwBHE/2bOfgZY+Sm8UcMtfOxsH6i7S0NFx44XjMmjXL7654RwC2Zfjyyy8xYsQI5OTkIBKJ4N133435u6IouPPOO9GwYUNUrVoVAwcOxObNmyXeBPeRKvgOHTqEDz/8EMcdd5yU9mQ9u6pfs/JtMn2O0bUqTeeUrUithJre0Tq9JmXuKuHle0bWV8naZ6FrFRV5HxRrg6GgTK8jKuNXwOzULry2Lb09k00HB32xG5GtF3ivo6ewsNyJ89qFVyPhfo28syB5Tz7ZWzRccME4fPjhhzh06BDbCYRjDh06hM6dO+Opp54y/Pv06dPx+OOP45lnnsE333yD6tWrY/DgwSgO0SCD1Kfwww8/RGZmJmrXrm15nMzpnLxCjWX6pxF236nR3w2nxnnlaAkphOFZFrVpJ9cyvYaXeysVFgbT1mkqHR/6ohpeTsNkuZbWpq3sTUZKPC/Pn6mhhFxYbVpW4RUzm9au43PDV+qndbrpjwO+9k4mHTuegIYNG2HBggUYO3as391xnwCs4Rs6dCiGDh1q+DdFUfDoo49iypQpOPPMMwEAL730Eho0aIB3330X5513nuPueoHUOzxv3jw0adIkVAtNvRiASk6G9UXsnJjd34M8kmZHAhVs8QqvbDqm/aIi98UeZTsSAy+/Z6trJIJNB3GrAr9xQ0z7adNevQzMrsHysnVjS5QQE4lEMHbshZg3b57fXQk9BQUFMT9HjhzhbmPr1q3Ys2cPBg4cWPG7rKwsnHzyyVi5cqXM7rqKNM9WUFCATz75BK1atZLSnh/VDN0KlEfgA7kNAvydZRFMMtfvuT0SZzJnW9J07rjBdfFnFhTbXZClQ34Hw0Qw8MIO1LZVe3ZL6IXVpkkYysVLm7ZCZOoSEOwBZsnTNSsdZxJgpCSVMS0pYw2NRo8+D5988gkKEmGtrotr+Jo0aYKsrKyKnwceeIC7e3v27AEANGjQIOb3DRo0qPhbGJD2tC5YsAB169ZFzZo1LY/zejqnqHDU+rFAvJetHGuYCq3olRerEpOg2LRNOLmsaOzjd1bRz8qfzAR5o2q3EX2x+70dgtd4WYVTBmTT/JBNH8Nu3z839+PTXyfs+Bh/aJthaa5du3Y47rg2WLhwYWimDAaRHTt2IFPjT9LS0nzsjb9Ie4LfffddNGzY0P6CHq43koVdoOxaIK9eOEiO1m5zeJU4DmyMPlrQ7NpuMEQ7OBvITddZ8Pq5KCw0D0S1ga3Xti9jBDisAXZQxV8gRgkl4Jddu2XTLJums8LSlsj19Lbjp12zZPGcbs/Ag9U6Pn0/4yAGGTJkOD744IP4F3wuruHLzMyMEXwiZGdnAwD27t0bo3P27t2LLl26OGrbS6RETKWlpfjoo48wYMAA/g4Y9KC4OCDBqAHSsyR65xUkcacnqFM4fMZIXBndJhab9mMpg+eZv6Ii717GMq6jDcDidXqN1QbUKkEXhYWF3hV+McJLu3ZKvAhSK6z2KNTit13bZeic2vWUKcB99/H1R4uMYiksbbAIR9YYpLQ00DOfWPfkGzRoKC66aDSi0SiSwuJbRAhA0RYrWrRogezsbCxevLhC4BUUFOCbb77BlVdeKe06biMlelcXLdarV8/yuKlT+adzGj3bpaXyAmMn7UjTPl7uv8eCV6JOcsGWMsjd+9GtzK3Z7ZVVMdYJPF/9iFs7sB/sZfVOXgoLwxOo+4mV2A1Sdg3wLvMXZLsuKCC7ZiHR7bq4OHif06sYhFXMMh5XBWVS45CePXujuLgY33//PU488URp7RKVKSwsxK+//lrx761bt2LdunWoXbs2mjZtimuvvRb33XcfWrdujRYtWuDf//43cnJycNZZZ/nXaU6kPFXvv/8+Gjdu7NkIRHJy5UE6t6Za2rWhH5TSC0jTgi3qSX5mzNzacD3AI2uA/2vpzGC1axmw3AMru2YiaMFwImQ1/MLs3gYhkNQHyU4fKrLrxCEsdi06MByEd7U2DmGJhxJoe4aUlBT063c6FixYEN+CLwAZvm+//RannXZaxb+vv/56AMC4ceMwd+5c3HzzzTh06BAuv/xy5OXloU+fPvj444+RHiJblKI2PvjgAzRu3FhGU8IEZaah6j8NA2Q3nCtrm0G5QQQXfn1tevu1tGstajDstONOnb8aDFGGw1/U70E/kuFXwKydHletGt+5RUXO7drpHnpk18HAa7u2WwtYXMxu127EIazr+CgO4WbIkOF46aVnMWXKFL+7Etf0798fiqKY/j0SieCee+7BPffc42Gv5OL46duzZw82b96Mk08+WUZ/pGZf9P7Hy/VRx67twwia/oPLcrIhGsmIZ4zeq17Ztuk73c+sB2U4wofRd8YrwIzgKZKhtVmza5NdEzwYfWcZGd5ua2Fk11OmANOne9cHFe0Lg+UeyCwA42UxGQ2s0zrZ1/ENwbXXXom8vDzbKvihJQAZvkTAsRL47LPP0LBhQ9u0psj6PTNYglujY/TPvu/vUztnxCqwgjAtg7DE7Wmkvgxu+BEMa69JDj2+8LM6oWpXflYJU/vAYtdOM4WJjNeVOrVZZRWvbFuWj2adRhnGWETyOj7ZNG7cBC1bHofPPvsMo0eP9vz6RPzgWPB99NFHtsVagopdKX2nQfpgfOKsATN41t6F0QETjgnaNhHCBG29FOEdRiNy8TLLwMqugyrmgtqvMGI0uOGnkxbNhrlVB4CIYejQM/Dhhx/Gr+CLROT7lkhEbntxgCPBpygKPv30U/To0UNKZ/wupsE789GzKaJmHZMV/PhRsEVyhU7CmlBsug7wZTlkQUFseGCZhukENzex9sO2iXCgzwK6YduyCMI6vAQq3AIAubnDcNllF0JRFERIyBCCOHpyN27ciLy8PDRo0EBWfwKF1p94KkbVCwfBsfoFZ1DEWgq5pORY0zJm9fixb54ddraanOyjbeuhDB4hit52ghYkk20ToojYtsypqlpY45EgijBZ6/jUoIGxPZ51fNoYwuzr69mzNw4ePIBNmzahbdu2LD0OF7SGzxMcKYovvvgCOTk5SLZxBF6v32OBN8iVHiBrnUbQnKQRvH20e9gC8DBadaG42L6Lst+tfolH6bZt5Q8oy8G/eJj1XmkNMghl471GtS3RKpyyrk+2zQ7ZNhte27ZbMQmLYHKr2IqVrZWUBCIOM+titWrp6NmzN7744gsSfDxtEjE4EnyffPIJ0/o91jXosnA7cFb9QlKSgwDZzrkENbsXAiHnFaw+KuFsW0+8ZTrC8HmcVqTyI6iWnaFwe/qn/hrxQBg+D9m2mG1fdRXw5JPWx1jFJaWlwYxLEiQm6ddvAD75ZBGuuOIKv7tChBThp1dRFCxduhR9+/aV0hErX+LHmiO7a6qBt1l2pFLBlgCMHjFh9iXEidP0g6SkYNk2K8KZP7ugMci2FIaA1wtYg+qgTaM0Q/u9RqPi/S4tDeY8bhbItsuRbdtuTaVkxYlthzkuKS1NqEIx/fqdhlmzHovPdXyU4fMEYcH3008/oaioyJMKnVaDSkF698b4zmL9L3zAyhmqfwviiF0CEUbbLi4GBl/RIvYArSIMsqM1CnqD3N+gYyUigiwGeTMkYbBvs+8iqP3lwQ9R5bVty/qMdrbtd1xihjZeiYO4hHUdX2oq27u+W7ceKCoqws8//4wOHTpI6CGRaAg/VZ9//jlycnJQpYq1Qd9zj7z1e0bZEDNNY/UAeVKkwm2nGuY9cYL6wgkYRl9faqrzGU1Os4oVX5/fZXXNoL36goE+86AlSGLQKEAOqm0D8bVWMKxbPejFYFArbOr76fa7V9Z+fTKnj7KuCWTtu08buqempqJ795PxxRdfxJ/gowyfJwg/UYsWLUL9+vVl9kUKqtAzeh6DlDGRThDEnew+BOEzSUCm3Zm9azy37SAExDRFLbyYfXd+DwYVFfk7PU/bDyKc+Gnbfk8vNSJO3uNB4PTTc/HJJ5/gqquu8rsrRAgRksDRaBRfffUVcnJyZPfHVVJTy3/S032OK+wcoN3IVnr6sQ+j/rhJwB0265YM8YzWFJzadyAHRoqLK/8Q8UdRUeWfRIBsO/4xsm1e+3aatbjgAmfn2+F1bJJg9Ot3Gr76ahmiQRP1TlEzfLJ/iBiEMnw//PADSkpKULduXSmdCEI5epXiYvaCLWb0w1LxTunxe8Q7jpBtZ4EURhrM7DvwsOyJQYQLJ5kHo6A4zH4xFA8h4Rlhsm/tVMsg9NGn6ZWsyF7Hd+KJXXH06FGsX78enTt3ltBDIpEQEnzLli1DTk4OkmyCMpnr97wiPT1W8NGG64lHPMdjvtq3Eb53gAglRnYThABUj1E/aTAjMeEZ9PDLvq0EVJjjE9nC0CehmZKSgm7dumPZsmXxJfhoDZ8nCD25y5cvR82aNSV3xRpZ5et5szJ6Hys1PhV14CyOJsCjXkRwcNW+jQh6WpQIL6rxqkG1HwKQxb5lFSoJa8ETQgyv7TuIAyhuw1q4xUd69z4Vy5cvx+TJk/3uijxI8HmCkOBbuXIljj/+eNl9cYwXsWR6euwAF9cUfLV6V1BGyILSD8K3AQ09juzbCJEOkaMmZOBFloQGMAjAn2Ipsu1bVnwiK/sV1I3efaZ795Px+uvz/O4GEUK4n6YDBw7g999/R79+/WyPZZmXHPb3pb4Cc0yAbFSeOV4dWGoq22fzMfPIqiNYv6Lk5PivKWFp30aUlARHsAWlH2a4kU4N+Oi07+jvOa8/CpJ9Bx2yb+/hsW8/t4/wY0ok64vdp+c7NZVt4LdHjx7YunUrDh48iFq1arnfMS+gDJ8ncKuP1atXo06dOkhndLw8z3QQxJ/TTEu/aqsBBGgfHieoXx7LlyhbyIZAGJeWemvfQXg+KsUIQeiUV4RhvaHsPsZ7gK2130Dsd+IjZN/xh95+VRsP0l6BTuCJUXyCtXALK/Xq1UOTJk2xatUqDB48WFq7RPzDHVWvW7cOderUsT3uwQf5C7ZYPbOqWPf7/Str6p0pXgmdEGTk4o0w2DczoemoDTwBZCKOGLLcH3UqW9iDSNWm46nkOdm3Naz3J0g27mT6aEkJMHo0sHCh+PW9mmrJGqP4hY9TTjt37oLvv/8+fgRfJCLf/0QictuLA7itdc2aNcjMzHSjL6ZoRZZd0ByGQUpPSBChFm978Fl9bampQGGhd30JPeQMvIVlfnO8Z1S8JF4GXcJEIti4l4LOS1g/V8C3egDKt2f47rvv/O4GETKEMnwtWrRwoy9SMPO1xcVx+H40+7BBHhUjhCkttY4lEkrfxN3DnCDYGWnAAy1PIRsPJ2TjsTgRwFS4xZBOnU7Am2++6nc35EFr+DyB60kqKSnBli1b0LVrV7f6I4zdVEt99UEtgS68oZ9CQs4vVHgZs5nZuKf2LdvJUtCbWFh93/EaKJONJxbxaOOJVKAuAHTseAJ+/fU3lJSUIDWsNkN4DtcTuXHjRiQnJ6NGjRpu9ccXtL5KFY6ei0Cvt2xIMGfs+trLAKN/F/tm41ZogyAamSOMMAuUwxDw6PtONk4YEQYbr1ZNTvxA2btKJCezxSrNmzdHSkoKNm3ahI4dO7rfMbehDJ8ncD1tmzZtQt26dRGRtBgyyAObZmuzCwocNKo6tyAs/CYMYbXJsApIbb+NzNB1ERjkh54IJ3qbUgta+BUkk40TsvHDxilOkYbsSp1JSUlo2bIlCT67NokYuATf5s2bkZGRYXucSIXOIMASxBt9fLWQRnestj6YDJAIONWqVS4Apy8U032IfZVeCnoJ33E7W0I2TviNLBsPe6wSgkIrsjnuuDbYvHmz390gQgSX4Pv5559RvXp1t/oSWo75SnsxbAlNbyACiO0YT1jTnURiYhQk2wWLiWDj0Wj4An3CGBYbZxi8J2zwcVrq8ce3x88//+zLtaVDGT5P4Lojv/zyC7KystzqiyFBes/G0/ZMUmF1eAk2Ahe3lJbG/hBE2CkpOfajt2+ycSIe0Nr4wIHO2grrM8Ha7xBk71u3boMNGzb43Q0iRHANTfz+++/o1auXW30hwo6d8GMdceEYMWMdsZB96bC+7+ygQQ0TaLSQIIig4GTzdYLtRc/q8xmPkx2rtGrVEtu372BsNeBQhs8TmCPr0tJS/PXXX0xr+FiDZrPvg3c/MZbgO14DdGkY7ZXjgkCLF2TaONlmCFDXiIRg5FcalJFPTMjGiaBP743jeIW1UmejRo3x55/7UFZWhipV5BWEIYLBkSNH8M033+D3339HUVER6tWrhxNPPNHRPujMlr93714oioJqHlRu0j7LLIavLypBwH6z04A7vXiH18YTalN1N3GirhMpEAacf17yMf5AI0jskI37D8vG7HSfK9GwYUOUlZVh7969yMnJ8bs7zqAMXwXLly/HY489hg8++ABHjx5FVlYWqlatigMHDuDIkSNo2bIlLr/8clxxxRXcW+QxP0V//PEHMjIykCTpJsqcjcCiQUtLA7bvmCh2HzakRk5Yk57O9sw42jYkbNgFa/Qs+Auv8KCgzhgrOycb9xcRcZ0odp6aKm+ZB1GJ1NRU1KlTB3/88Uf4BR8BABg5ciS+++47XHDBBVi0aBG6deuGqlWrVvx9y5Yt+Oqrr/Dqq69i5syZeOmllzBo0CDm9pk9z86dO0O/4bqdVopGfc4W2nUwUV4UhDCBt3EWEi2TRpRTWso2qmE3DS8M65vIxhMX1u8+6NNNZcz2CvrUUYlEoECBnD2sVXJycrBz506pbfoCZfgAAMOHD8d///tfpKSkGP69ZcuWaNmyJcaNG4eff/4Zu3fv5mqfK8OnVZpmPPxwOPfgU7FaougoWM7ICKUBBhnZzjPssA42u2bjLNB0M8IpLAGz34NjZOeEU/y2c9q2IfA0atQYf/zxh9/dcA4JPgDAxIkTmY9t37492rdvz9U+s7fYsWMH0tLSuBqPR6x9oMUfQ2h8RGLi6D1PgS4RBOzs0GmgTHZOiCIzA+3EzknQycHHvfiaNm2GHTvipFInEcOOHTsQiUTQuHFjAMCqVaswf/58tG/fHpdffrlQm8wq5Pfff4/rTdeDPgNIKn6PfhPhxmifMtqvjAgTVjbM8hMUEurFRXATBhuWRQI+C40aNcbvv//udzecE4kcy/LJ+omEewbYBRdcgC+++AIAsGfPHgwaNAirVq3CHXfcgXvuuUeoTWbBt3379rgWfE5pAhplIdwjAd9lBEEQBOEPIRDFjRo1wo4dcTClk6jEjz/+iB49egAA3njjDXTs2BErVqzAK6+8grlz5wq1ySz49uzZ48mWDARBEARBEAQhnRAIOVZychphzx6+wh2BRHZ2z401gR5z9OjRimV0n332GUaOHAkAaNeuHXexFhXmO5Kfn490lv1SJBKk59L1DEvIjTPIBMmOCIIgCIIgnFK7dm3k5+f73Q3CBTp06IBnnnkGX331FT799FMMGTIEALBr1y7UqVNHqE2mxVyKoqCgoACpQS8TTIQDj8Uty+VoyiRBEARBMJIoWyr48BmTk9likqysmigoKICiKIiEec0aVemsxEMPPYSzzz4bM2bMwLhx49C5c2cAwPvvv18x1ZMXJsFXWFiIaDTKVKVTpibUG7zoxumU4UHsnjl+PVgBfgDVrrHWs5H5UWTZOREA1IptQXc6VLiJkEFQ7ZzsO/xQzGJLnTq1UFpaikOHDiGDqq7GBUVFRahWrRr69++P/fv3o6CgALVq1ar4++WXXy68vI7JK+bl5SESifie4TP6jCyjIGbHBHoDaqOHl8X5BNxBEfYklJ3LRnsT/ErbBjUI1uJ3Hykgd0YQ7DzI+G3fKkG283btgA0b5LVHMYvnZGVlASiP0UMt+CjDV0HdunUxYMAAjBw5EmeeeSYaNGgQ8/fmzZsLt83kjQ4ePIiqVauGO2VsAM/zYfROLSiwOCEzM/bfITU+Ivy4audOoWA1MZEdkAfdv5KdJyZhsnN9zFJYWPl3RKCoUqUKatSogYMHD1bs1xZKSPBVsGHDBrz33nt44403cM0116Bz584YOXIkRo4ciU6dOjlqm1nweV2wJQzE+sIEdYwhfagIdizf+RTIEkHAqR3a+TGycyIIyLZzK+cepIxRoqwXFCAzMxMHDx70uxuEJJo2bYqrr74aV199NfLz87Fw4UK89957mDFjBmrXrl0h/vr164cqVapwtc30BOXl5ZHgI+IeiukYiUaP/RBEPKC1aaMfgogHyK59JQJFeptZWTWRl5cnvV1PoW0ZDMnKysL555+P1157DX/++SeeeeYZlJWV4ZJLLkG9evXwyiuvcLXHnOFjKdhCEKbEwcNHEARBEAQRFGrVqkkZvgQgJSUFubm5yM3NxRNPPIG1a9eilHPKOLPgS0lJEeokQRAEQRAEQRByqVmzVvgFH63hM6S4uBg//PAD9u3bh6gmIx+JRDBixAju9pgE3+HDh7nnihJEvEIzYQiCIAiC8Jvq1avj8OHDfneDkMzHH3+Miy++GPv376/0t0gkgrKyMu42mSTw0aNH465CJ0EQBEEQBEGElZSUFBw9etTvbjgjIGv4nnrqKTRv3hzp6ek4+eSTsWrVKhc+LBtXX301xowZg927dyMajcb8iIg9gEPwsfD447OFOkEQBEEQBEHEETQdxnVSU1PDL/gCwOuvv47rr78ed911F7777jt07twZgwcPxr59+3zpz969e3H99ddX2ofPCUyCr6SkBElxMB+WIAiCIAiCIOKBtLQ0lJSU+N0NZwQgwzdz5kxMmDABl1xyCdq3b49nnnkG1apVw3/+8x+XPrQ1o0ePxpIlS6S2ybSGjzV9mJYqv+RseEjQffh8hLXEcRXG5571OIIgCIIIPbSxuufIjlvSUlO4qzUmEgUFBTH/TktLq7TrQElJCdasWYPbbrut4ndJSUkYOHAgVq5c6Uk/9Tz55JMYM2YMvvrqK3Tq1KlS4cxrrrmGu00mwUcFWwiCIAiCIAgiOJQcPYoaId8nW0EECuTWCVHba9KkSczv77rrLkydOjXmd/v370dZWVml6ZMNGjTAhg0bpPaLlVdffRWLFi1Ceno6lixZElNHJRKJuCf4UlNTY0qCEgRBEARBEAThH0eOHEGdOnX87oYjolH5yz3V9nbs2IFMTSY7LHuK33HHHbj77rtx6623SltSx9QK6x58E6+4wlFnCIIgCIIgCIKwp6SkhPbJtiAzMzPmx0jw1a1bF1WqVMHevXtjfr93715kZ2d71dUYSkpKcO6550qtn8Is+BQlkdfnEQRBEARBEERwOBoHgk/N8Mn+YSU1NRVdu3bF4sWLNX2KYvHixejVq5cLn9iecePG4fXXX5faJtOUzqpVqwrv+0AQBEEQBEEQhFwOFRWhatWqfncj9Fx//fUYN24cunXrhh49euDRRx/FoUOHcMkll/jSn7KyMkyfPh2ffPIJTjjhhEqifubMmdxtMgm+WrVq0T4fBEEQBEEQBBEQDh48iFq1avndDUe4uYaPlXPPPRd//vkn7rzzTuzZswddunTBxx9/LHUfPB7Wr1+PE088EQDw448/xvxNW8CFB2bBd+TIEaELEARBEARBEAQhl7y8vNALvqBw1VVX4aqrrvK7GwCAL774QnqbTIKvZs2aKC4uln7xUKPb2yMfWTH/zsqkNY9EnKCzdYIgCCL85BfEZgoobgkfeXl5qFmzpt/dcEQQMnyJAHOGL+4EX2Eh3/Gc1qN3pCKFdmpkkPMlHOKGnWuNmbwqES9YOWmycyJesLBzbdxCMUs4KCgooAxfnHDFFVdgypQpaNy4se2xr7/+OkpLS3HhhRcyt88s+A4fPgxFUYTnjjrGTHCmpwNFRdbnhvRl/Xchv2i0OqZqOjnjwGNm5yw27IedOy0ZHNJnkwggEstXS2+b7JyQgZs2LgGKWbylrKwMf//9d+gFH2X4yqlXrx46dOiAU045BSNGjEC3bt2Qk5OD9PR0HDx4ED///DOWLVuG1157DTk5OZgzZw5X+8xTOhVFQUlJif2mhSUlXB2whOUbi7fMo4scLi53xrLfGaztqcdVSQqoE+fxOjK9SRg9kyxkG2Mi38swkWzy6onX74/sPDEJsJ3n7zrkdxdsoZjFgmgU+QcPAgBN6TRpM2zce++9uOqqq/Dcc89h1qxZ+Pnnn2P+XqNGDQwcOBBz5szBkCFDuNtnEnwZGRlISkrCkSNHQrNLfQxJSeH89uOUsqh1lpjVGUfA6ITpu08ctMbj92h4aam/1zfCLAAlwgXZuTVk54REPI9ZAKa45eDBg0hOTkb16tXZ2yUCTYMGDXDHHXfgjjvuwMGDB7F9+3YcPnwYdevWRatWrRzNsmTyipFIBJmZmSiRmb0jCIKIZyjoJBIBsnOCkAvjIHVeXh4yMzP9W2olCcrwGVOrVi2p03WZhwazsrK8L9zi98illiD1heCDvjuCIAiCIOKIAwcOICsry/5AggBjhg8AsrOzUWRXHIUgCIIgCIIgAkg8jf/u3LULDRs29LsbjqEMnzcwm37Tpk1x6FDwF/n6RRby/e4CEc/E01uKIAiCIAJMGF65O3fuZCrhTxAAR4avWbNm+Omnn9zsS/Cx2YC6ANap9aAUUopGw+HMCJ+gjdYJIhyQIycEsXPzQYlXCHP+2LkTzZo187sbjlEU+Rk5JYCFVf2GWfA1adIER44ccbMv/uNyoGvXfGamq5cniHKsDJHF61oVaQhixT6CMMJJsRGyc0IUL+eaObBxilfY8HPM5ffff8fQYcP86wARKpi9QePGjXH48GHb4yZecw1mP/64o065QmGh3z2whaWL5GSPoSDCV+Y43klKsn9Lux1s2AUYFCgTXuFm9Uga9CCCgI8VUile8Z8/4mRKJ63hO0atWrUMq65mZWWhTZs2uPHGGzFo0CChtpm9RaNGjfD3338LXcRViorC+80KwFI3JykJqFbN/b4QHhIvds4SoFDATFiRmmr9d7+fE7Jxwil2Ng74b+cM2MUranYsEeIVNwand+3ahUaNGklv12tI8B3j0UcfNfx9Xl4e1qxZgzPOOANvvfUWRowYwd02V4avsLAQ0WgUSW7msPVbP9CLUQg7R6uPSdLT3esLYYDWzsnGY2EJdgCA9gWNP1i/+7BDNp64JIiN8yQfeeMVgGKWkpIS/PXXX3GR4SOOMW7cOMu/d+nSBQ888IC7gq9BgwaIRCIoKipCRkaG9cGsL6mwSvA4xGiLRVZdrzrjhNp/l2zcf3gDJxLW3pJQDsElRMQB2bm3kJ27itnt1ccsiRav7N69G1WqVEGDBg387opjKMPHzhlnnIH77rtP6Fxmk09OTkadOnVQWFhoL/i8JinJ/ttNTqYXISe81Tztbi+rg41GXXDGrE+/HzZCtukNToxKfRASKePCKjbi9c0aVpzaeTzYeGoq2+cgGzckEYq/yopXpN8rxljgjx07UL9ePVSpUkVyB4ggc+TIEaQKzhLgejM0a9YMf//9N7Kzs4UuRhBEwGEZPElE1NGPBJmORSQw8WLj8fI5jCAfnfBs2bIFTZo29bsbUqAMHzvPP/88unTpInQul+A7/vjjvd+LL0jZD6NgWFOqyqhoVdCSoW5QWspepyDs0ygSkhBUuCUIgiDY+OXr/EoBC0+sEtYMIGv8EYY4ZdPmzWjXrp3f3SAkc/311xv+Pj8/H9999x02bdqEL7/8UqhtLrNu3749Vq1aJXShuKCwkHvYQBsrq07SzLHShuiE77DYuPZtGJTBGIJwgjYbpLf/RLFxevnENzYZT55YhSjHT2H48y+/oEfPnv51QCKU4TvG2rVrDX+fmZmJQYMG4e2330aLFi2E2uYy19atW6OQYbR/4o03YvbDDwt1yFfUDJ5gRuN4/IJfcLztcWbNk3MlPMNJ1m7ZMqBPn/L/17/xEnGtGxEueKf6kY0TYUPSdFaz10TQ9tdLxLGKTZs348KLLvK7G4RkvvjiC9fa5hJ8bdq0wf79+6EoiuHGgNwEYb2Qvh6wi6O5dhm8wkLjEaNE2KMmMLBOIQ7SVGM7PLTxCowCDgqQCa9xcx0X2TgRBHxYq2i0jQLFKebI3oMvGo1iy9ataNOmjdR2/YIyfN7AJfjatm2L0tJS/P3338gM2hCPFap3CkuArkPvXFVR6MTBJtx6ujAJNBHCYONmgQkFyYRTrKZk+tUPLWTjhFOCYuMmmMUpgHGskohZOVsY39/btm3D0ZISEnw2bRKxcIX8qampaNmyJQ4cOBA8wZeUlHDFJaw2K6XpoQFBdhbbbodavxFZiKoPkmnKHGFGWCsvko0TLITVvnXoB5ONXlsUo4jzw/r1aHXcccLl+YnEhDvH06VLF2zduhXNmzd3oTs2GO0OzkO8Z3k02N2q9HRv+kFwYvXFJYjtVmD1MqNAOT5JtACGbDyxSDT7toAlnCNRaMwP69ejc+fOfndDGpTh8wZuwde1a1d8//338nti9/QnWrDrMsXF9lM6wyAKFUSkz493DRJz8rALnChYDi5WjoXe0scgGw8nIbfvIE21ZBGFrHFKPG3JsGbtWpyiFk4jCEaEMnx//fWX7XETb7wRsx980L7BsL20rKboFRYCGcdmloqMTgVpbZ3qbFkGJUtLwyEQpcIq0sJm42aEacp0aqp95OJ0xgBRGauFxSEIdkMF2bg3pKcfm5MYBPt2eJ3VC/+s2INPJEYJSnyiUlzMFqPI7ref92HdunWYNHmyfx2QjKLIf3yUkOQBvITbZLt3746//voLxcXFSI/HCJ9n2qdBAHx84WqsRnfDP8fz9ATW21ZayuacS0pcmP3C6lGCmm3zekqylcBLTQ2/kFX9F+uQdqIFz/Ho3+1ITT3mJ8Ju30D5d0j2bQ6rjcdLCUrdSzUeYhTWOIH11cn6uKhuwu545hlIjPMa//zzT2zfsQM9evRga5cg/ge34KtduzaaNWuGffv2oWnTps57EKbA0WElRNW5yqiyGTTcyEyy6rMqoMyBFHjtW/+mDdpzLFJAxgo3BJDMIDsRBZpTrKLFoNu3bNyyH1k2TvbND+eoqX5rKLdilKBlCZ1gF6cwxyeM791V336LFi1aoFatWmzthgBaw+cNQo9dr169sGnTJjmCTyayMyAuV0T0ey+bIE0fTXhk2S5PO7LtWw0unFYglC3UggxLEMs75EyYk54ufp9k2XeiYWfj8WDfQembE/s2QP+KYIlPZMUUFJsY882qVejZs6ff3SBCiNAjdcopp2DVqlWy+2KNFwFxAPYyKyqyH2FjEWok5ohKeG3fiZYhIYKHm1khUfuWNZiRKIMihDkeZz1Z4pMwE4Yiql+tWIHRY8b43Q2pUIbPG4TeGH369MGuXbsQtbmjE2+9VahTnlBUVPkngISkm/FFGLy+HUE0nNTU8p/09GM/BCELrV35YV9k34QVTiNQD+ybd5A4iK8ZI+KlYMvRo0exevVq9ImzCp2q4JP9Q8QiZLYnnHACUlNTsX//ftSvX995L7xYx6ddR2B3Lbtsos3fu+NY4RY3KCqqrEkotmBA9pTfoOzrqF8jE6ZMmt5wE7FwRCIg6+2bnn7MRsLg9Mi+CVECaN8sQsfIxN36KEEfm62CMrYDGeOINd99h9TUVHTq1MlBr4hERUjwJSUl4dRTT8WuXbvkCD7ZBPylajfdUmQ6ptlHllF1y5WKmRIpQxV2xxp2vLBtP4WsUeXMgD/PhAeoc8ei0UAGwswYVc0k+05stPMi7QZGnG7J8O5OR+eLojfxMFYDDQJfLF2KU/r0QVKcTeemKZ3eIJyYzs3NxSOPPCKzL/wENZNRVAR1ZoOfc9ytEqduCDjZ6wbjZh2iSAY7qLYNeD9vxyzAp0A5/oi3RUEsGNk32Xb84YVt20S5LNsJuo3XcUk8sWjxYpwzerTf3SBCivAwwYABA7Br1y6UlVlnVhyv4yspOfYTjcb+WxQ3vIrJJHa35rY71QPqLSwqir2lXuiMIGsZz9HffC++BBEVHcRFGtWqGf8QwSfI310QMohBvj8yibNMRQUB/+7ccudOQyuzUM/JK5H1dcfad78GoUtKSvD1N9/gtNNO86cDLkJr+LxB2HQ7dOiAatWq4c8//0R2drazXqhPc9iUAKe31B6emSm5LwaITsW0+xpoFI6DsNo2YG3fr70GjB9/7N9Bykhogyt9QBkkwZoIaKdiBhmtzZSWxoq+MNt2RkZ82HwQ7YdnKiYLbn1GG7HpdVwiitUrNIgxiez1e9+sWoXq1aujffv2DnpFJDLCgi8SiaBfv37YuXOnveALY7Brto6J8eXfD0uxFP1M/65vJgiDyqywfp1xMR3TitLScNq2GTyFjfRoDdjuXD/32TMKftS+xENg7DUBy1www9NvrW0nJwfXTsw+U7Vqwe1zkGG1kaCLUUZSU2NfAUGPSbQiLxFiki+WLkXfvn0RiUT87op0aA2fNzgy/8GDB2P69Omy+iIP2VU/PRjhNRKAYXZOgH2hUys80QNWHiEI1TeNCINta4ONMAWarEFSmD6TKBkZ3r8x3b6erGyj2k6Y7IBs+xgJattLn9vM1aRe/IU9HgECHpPY2MjnS5bgvAsucLkTRDzj6BE+7bTT8K9//QtlZWWoUqWK6XET77wTs++5x8mljiGrgqBd4Fxc7GrQbzfdsrj4mAMKwkib15U6XXs/sjasLf/uFV5Vx3TZtmOq7egDzXgIKO2CZ7vIoLBQXl/MoDJ45biZgTSy7bCvSSPbDi7p6b5VXdHGI2pXRGCJIfwQliyfx8+YpLi4GCu/+Qazn33WpU74C2X4vMHRo9W2bVvUrFkTe/bsQaNGjWT1yR+CtE5DR5inf3oF89YMsjNkXuwhyYu+T0GybTVQSUqKD/EnQqIGrF5QrZp/b/pq1Wh6MNm2u1gJPQ/t3mjqZxDX0cnuE2t7zOv3GGOHFV9/jVo1a6JNmzZs7YYMEnze4EjwRSIRDB06FN9//70cwedl8FxS4jwQ9inYV7tdXFzubJ06NZnbH7BmAtW+y2qP0CDDtr0gKNk/P9cUEs6QnemQlfkOim0T4UVvQwGNYPWvGi/e14kWE3zy2WcYOGhQXK7fI7zDcZRzxhlnYM+ePTL64i4iNX4dqqB+WOrofFasqvoHLflEuIDX+2q4RYDLmBMBIaw2wtPvoA4+BLVf8UB6uq+2LVNAxcvrKEh89MknGDp0qN/dcA1Fkb8lg6L4/amCh+O8zqBBg/Dnn3+isLAQGRbTOXxZx2fnbdxap6VpU9+6vpihlaN1knkz+uiJNioWKGRmg/18i3qZOTQKeihTkljo3ylur3H1qqKl0wwgiS9xZGbKRNvy2q7hrAKnk7Fv/esqaHEI673wq99//vknfvrlFwwcONCfDhBxg2PBV7NmTXTp0gV//PEH2rVr57xHIoFxUIaRGIJh9RA/1uE5FYE0vdIHgmDbZnbtR7VCbaCcnOxNkQjCG2Ss/3ISzFerVh54k10TMvE7E12tGj6Z/n3Mr/zYfkGNHaziEJkFW/yKVWSv31u8ZAnatW2LBg0aOOhVsKE1fN4g5fE666yz8NJLL8kRfHaoI2FBCIRVBLIe6inRqDOHy7oWzgyj2xgP5ZdDR9DsOhpl74sb2zCwrqszEgkULAcfo+/Njze0VTDuhl2zZubIrsOJW3Zt14b+7xwis7jYeRziVDRSHGLOBwsXYtjw4X53g4gDpDxSw4cPx7Rp0xCNRpEkc6qJ02kOMqbROdyAfTA+wScYbHlMEKpwarN3VredZdQs8JlAPytrBmV/P4d2bYoaaPi5QbU26NL6IwqY/cGPfc/MEHWuql37OSBDdh0sgmTXErKIQdt03exV6XfC1EvKysrw0aJFeP/99/3uiqtQhs8bpKizLl26oGrVqti7d6/lcRPvvDP2F2arLUtL7QNjWYqCx7MVFx/7cRHtZWToA5kxitUiWV5YbyNr/8tgvhekEKJvPSu7loFsNS1q1zNnWv89aMU1MjKMfwg5BPn+yupL0GwaML/vmZl+9yy8aG0lzu3a6HXiUagjhMwYRPb6PebpnIys+vZbKNEoevbsKbVdIjGRIviSkpIwZMgQ7Nixw/5glqczCMNLKqWlrno+OzGjir6gJIasYK2eFGqMPlBysrwP6FVq1GW7roRfgTLL92EW0AUlqAsKmZnGP0G9V25/j0EUf3rIru0xsmnAu3vF+3Ln/B716/dEcBqDsLzWZLz6zF7JgYs/GEexP1y4EIOHDEFynM9vlV2h0+3v+v7770fv3r1RrVo11KxZ0/CY7du3Y/jw4ahWrRrq16+Pm266CaU+B/LSrGjEiBFYsmSJrOb8hfdL8WiKoLZbfj3/TtcMArEPom8OmPXCgXlDcGJUgTYoowbVqh0zYCfT0WRuIGmGPqgym7JeUOBuP9zGKBsURtv3S8xopzKHYYql2fRQLWG3aaCyXXtdoVPG9QI0ddQoBvFyfF7GtcIUf7y/YAFunzLF5c74T9imdJaUlGDMmDHo1asXnn/++Up/Lysrw/Dhw5GdnY0VK1Zg9+7duPjii5GSkoJp06a51zEbpEVLw4cPx7hx45CXl2eqeAFg4tSpmD11qpyLsggtVjFmFQy7tX2DA7TdLSykQdtQ4LUdBUXgWaE13DAEymZoA0vRdcwiATZN24u1oSAExvFo0wDZtZfw2LRPfj4Mr5cw88uGDdj0668YTgVbHFGg8z9paWlIS0tz1Obdd98NAJg7d67h3xctWoSff/4Zn332GRo0aIAuXbrg3nvvxS233IKpU6ci1aciF9IEX2ZmJgYPHowtW7bgpJNOct6gF8GxKgTd3NOopASD8QE+wIiKX7nxXdvtdcNSSEVmsZXAF26JV7woKsE6gGKVfTP6e7wEyqIkepDLSphGt/R9Des+kk7ekWTX9rho01p3rX8n272jWTJqQdtnj/X6rNlC1uOY1+8xxrWvvfUWBg8ejMwEeH7czPA1adIk5vd33XUXpspKOpmwcuVKdOrUKWYrjcGDB+PKK6/ETz/9hBNPPNHV65shdT7UP/7xD1xzzTU48cQTEYlEZDYtBy8rrFlcS/2Tdl8aKyclMo0yaE7YDNbPxnpcGaqwOd4AZm2F8Num3dqoOiODKhESx1ADYjfTChkZx2zcyKZlTB8O2qAGbeBeGa+yxF7ZtAZ97OEGeoHp1fq9eEJRFMx/4w3c/8ADfncl9OzYsSNGNDvN7rGwZ8+eSvsmqv/es2eP69c3Q6q3P+OMM1BQUIADBw5YHjdRprq28xSy9jezUxta9cZ4LfVQr5Iy6sJrmorBQZAKCAHHvkCvDAewv5YXhSvCVHQiCNMKw46X37fRNURsmlcQGn1Gi+UQFZBICydG37cbL2PNNT64dbnhIbJeHyyzhmTFHUF7FbvJDz/+iF27dyfMdE43i7ZkZmbG/JgJvltvvRWRSMTyZ8OGDR7eFflIzfBVr14dZ5xxBjZv3ow6deo4b1AkC2PkVVhekE4Lr6hBuAkjdNM6jU5XERlI5p1CaXSbWK8ro3BL3OFW4R431bnV81VaWv7c8Dx/bmxUbYYaMMko/kL4T2amtyNRrCJStWkvpmKqfVL/SzYdXOwGdWTZs9110tOP2YnAwIjaRa+KwOlviV/F54I+nfPFV17B8DPOQPXq1dnaJRxzww03YPz48ZbHtGzZkqmt7OxsrFq1KuZ36rZ12dnZQv2TgfTHbdKkSRg5ciS6deuGKlUk74umR/UefqasJF1bK6KMxJ8MkWXXhjoKpxWOcV4NOHioQstOPLo1JVXWs1StWrkheRW0GgU7FDAHEz/XpIhmC1V7BvyzabJnZ7iZeQ+hTWtjASPhJ2NQ164NNd6QVYE8HqaGHjlyBHPnzcPb77zjd1c8IwhVOuvVq4d69epJuXavXr1w//33Y9++fahfvz4A4NNPP0VmZibat28v5RoiSA/n+/fvj9q1a2Pbtm1o1aqV6XHc1TplzAdwGiCrbZj1xYUg3OsROLPra2HtCxVusSEoc2u9WkPidcCqzwLGQ5n5sKEGwn5Oc9XaoAxbF83AOZ2KqbdnwNymadqne2Rmxpc9a+Bpzq13u1Ef/JjF71d2753330fNmjXRr18/tnYJz9m+fTsOHDiA7du3o6ysDOvWrQMAHHfcccjIyEBubi7at2+Piy66CNOnT8eePXswZcoUTJ482ZM1hGZIlxGRSASTJ0/G008/bSn4TDHK+ds9KLKm09m143Aiut20Tiv0lzYSXV4JLKvbICJM47pwi4g9y8JlewYA3HkncM89bMf6XbDCbBSehKAcglRNTiRC5H2H+G3PgPE9J3sWJyPj2P1z2555fK+APZut32PF78FmLTLjjaAvR3nq2Wdx5aRJwSx86BJByPDxcOedd+LFF1+s+LdadfOLL75A//79UaVKFXz44Ye48sor0atXL1SvXh3jxo3DPayxkku48iiPHz8eU6ZMQX5+PrKysqwPDkqWwwwP+8czbdPvTdjN+mo1Rz+0g852wlD1LEG3ZSA4fczIsF9/F416YzSZmcbXocDZGDc3s7bCzna9XgeohcWevUK2PYfWcTOitedo1F7osdi7DDu0Kxrkka2LxhossYzTAWpt39LTY7+aMJrtps2b8c3q1Xj73Xf97oqnKIr814iiyG1Py9y5c0334FNp1qwZFi5c6F4nBHBFKtSvXx+jRo3Czz//jF69epkeN3HqVMyeMkXORVmyfDwZHdFpmzaFMNRWZWbCtF21c6AsotKtTKHVA63/WyCctbZTYa686FZgIKvdIGRKjMSlUeCnPSZeBWEQpmGyEqSsokpQi65YbaQer7YM+D8Fkwftd+TQv1pl6OxiALO/+5H1E83ImX3lLLGGp9M5NR169KmnMGrUKGlryQhCi2uP7a233oqePXvixBNPRLrTHLpXe6axFswQbRvA2XgH7+Bs1zJ0RUXBKroiWmyG1VmbUQWMB8oMBIK0t5+bBY1Y2xQZOQiC+GPFSmwEMZhWS/6HJfg1wy2Rl5Eh1+bi0ZaBYNizdvsKsudKvHPjsemcboi0pKRgTfl0UnXTyHz8iDP2//UXXpg3D19//TVbm3FE2KZ0hhXXHtUuXbrg5JNPxs8//4yTTjrJ9LiJ993nbZZPj9vTIhja1zpO2VseuDn1U2ZfZa/jCz0iGWsRW5aR9RbNaJSWWhuldpqcWZBp10YQ4AmmCWPcnK6p2m9JiXsijcWWWQiCrZvZsx+2LDOq8ypCZLFl0b9brPVzy1UaxRheTOf0mxQcZTuQ8f365OzZ6NmzJzp37uygVwRhjqtvj9tvvx1jxozBCSecgGSnnkZW9kS7b41bfRG8huo4CwvN/bYTwaNtH7BeBx72CptHkcLmkP3Iysm8ptsDFjy27GZGQxtk8gbMYRCFYSVIpe55g2S7QhhuTc00s2VZNuqH8EqUgQvR9XtuTz1mLOpSWmp/qF18YRUXaCeWyDBnmYO7svfek8nhw4fx+OzZeO2117y/eACgDJ83uOqlc3Nz0ahRI2zcuNHyuIn33edmN8pRKxKyBMhOlA7DNc6G9f4q6el83RVBfw03dUNQZjk6IihpRd4vzWVbNiUjw71a2pmZsT9EfOD296raJK9tshwvGt0G3ZbjQch5Hfnpv1OPbfmdKz6xPNWLd77+Om5eKyivZkMYg58X5s1DdnY2Bg0a5HKHiETGVW8eiURwzz334Mcff0SpjCeeZ56AlbdxY0dRiV5N7yP0Tdv5ENEliCIOWqaYI2FogFdvTaNrsnLNNeZ/c1P4qQQ9aCaM8fJ7c9p+aqr3tkyEB57vzYkfz8yU+o7Ru3o3N1vXvsZYxiGDnN1jns7JwOHDh3HPQw/hnnvuSaitGLSoGT7ZP0Qsrg/fnXPOOWjYsCF++eUXy+OkZvlkBMasmRGz4NiFYSeZcT+LuCoqcn4dN2AVhkeR4m5H3MbLEvNui0qRzIooJACDidX34obduWUDInYskgF0044pc+esLbPvRoYdm00JlWADdmLMjqAt84iH7N7s//wHderWxahRo1zuEJHouL6wJSkpCQ899BAuuugiHH/88d6s5atWzV6tOF1HFY06cu5qtU4nl1cxencHbQ1eoIutBKm6ppYQ2LEQXpetz8ysHHAHodJgvKOtpOiljXkl8smOEwPVjr32kwJ2bDed0w41rhAdD2B5x9ttLyibIGf3Dh06hPtmzMALc+ciKR4GYQShNXze4ImFjRgxAi1atMBPP/1keZwna/l4MFJMWsu081wOFI5dDK/VAaIpbFkaJ2Gmdfoxx8QN9Abj9RtYJSPDfuTarSBLdJ0NvUWMqVmz8o+X+JnRZbFjtwhCNjvIgSrv8+q2Hdv5M7vv0sGWUXavHO1rwO9pcSyvx8AOIAPslTnnzEHTZs1wxhlnuNyhYENTOr3Bk9J1kUgEDz30EM455xy0a9cOaWlp7l9UdnbEBetxmuUzQnY3i4r80wNWUMZQAFHjcPJ57FLN6t+dVOGUhVFwl5fndS+Cjf4eiVYtlIUskZOeLmf/VbU/btgwy+yY2rWNfy9ix0EWck4RsWM7RO1c9pRQyai3Rsb7NoixBOBPdu/AgQN44P/+D2+8+WbCrt0jvMWzWuW5ubno0aMH1q1bh5NPPtn0OKZ9+bwOqK1eBnbC0kFf7USNnRgLmijyoz+B3p7BK1JT3f9sMgPdIIg/FSMRqAbC8SoGg75Bu+xMVmZmudjz04bd3jZEb8daMRdGO7azTR4b9mPQwgUbfueCN+W2yYmsd3voJ9IwvmvvmT4d3bp1Q25urssdCj40pdMbPBN8kUgEjz/+OLp27Yp27dohKyvLWYOy1vLZ4XKw7EaWjwdZIixo4jJukGHDXjB+PDB3rvwMh3bdkt/iT4/VdK+gBtQ1a4bzTVizppwMnBazoDvebVifuTOzY7Jhudilt+xEpZH9MwpHnumcIud7jR+iUGZ2b9PmzXjm+efx7bffSmuTIOzwdDfijh074uKLL8aSJUswYMAA0+OYsnyykJHZcTEodyqkWM53mkmUDetn9kVkyswEymoriNlJN6a2mWVNZO3y69YG7azCkIjFrXWArNkVVhvmqY4VpOw1D2G0Yb9Fof6eyRqwMLDfMGT3WGKIRMnu3XDHHbj4oovQsWNHlzsUDijD5w2eCj4AuO+++9CyZUvs2rULOTk5zhrzKsvnNKC2Od9Jlk+GGPPSMQZ6WqdMgijC/CAzszwglh3c8gbObok5Qi5uijzRgLtu3fL/itqwmd1pbTgMWXwj/BB7Xm/HwDKdUz3GzWJFgtNAKbvnvC2Z8cOSr77CkmXL8Ntvv0lrkyBY8NxbN2jQAHfddRdWr16NqIWz9bRip4ySUEFdjcyArD35Ql+tM2hvNpn4bb9uVhLMzPSvOqQZNLzIBmtFRFGxptqcrIIsblXCtLsHXg9WBDVrFzRk2a+ZqFRtLsDvpnjP7jGLPYag5ejRo7ji2mvx73//G/Xr13fYs/iBqnR6gy9e/dprr0VmZiZ+/PFH543Jqt/rtkN1eYsGK0EmSzwF8UEKvTC0aysaDcbL3kkf9MEOb+DMWzDBz+0BCGu8+m7cFGdub4Egen8og30Mt15SRvbrRmVNDhtzMp3Tq+yerLhBZijnx2v10VmzoAC47rrrvL84kfD4IvhSU1Px7LPPYt26dSi02LRWOMvnlsy38hAOA/Oz8Y7wuUD5pZ18ZF7hZDaawtKOHyLtKFK8v6gIorbr5O3ll4qXmX2xggSgf3h179XI1cv96GRdy2oNoOz7JzNzF/YsIIvPy8hwfv9Z/ZvZLAgX995zGibxCjCz11sQxuSNkJnd2/HHH5j6wAN49rnnkJISknjEIyjD5w0RRVEUvy5+wQUXYM2aNejfv7/lcbYFXKJReUrD7hj93/VWxXv+/2BZw2fn8Mz+rr6XRc93coxZTCBzFE76PHyZqtXuuDiw3UrMnVv5d3aFLdS/m62TsstesBTOMGtDW4GQJUvCGuiyHBfkNVAiJe2NgmKeNVBmWAW9LBU8zf4+enTsv+fPr3wM2a6ztmRCtlvB66NjM3tGZmT1brSLF+zOZ/k77zFWJuVHdo8pZmB8L551/vmonpmJV4x8TIJSUFCArKwszJmTj2rV5A7UFRUV4PLLs5Cfn49MrwYBA46vc0AeeeQRHHfccdi+fTuaNm3KdpLfsl0txmHWD4FiHW5vy6B21Y99+8xuk8xrhaJap992q0Wi7Royfnz5f42Enx1+VDHUBnpq0BykMvRBxc/y+E6zXXqhp3LBBeX/FQnK4sV2EyFzJ8t2RaZzOrBdvcjTUlISK/pE34nqbZEx3VMkA2iEzCXmfhRqWfDxx/jiq6+wadMmaW3GE4oi/1XiXyoruPgq+Bo0aICZM2fi5ptvRnZ2NlJNRjon3ncfZt9+u3VjLMGqrGOcWKamfV6hZydsvBA+MrZ5APyJE32p1snyQWXZJct1vKwG6ET4AXxbO+ijHaeYBWWJKASDNA3WLaGnh1X4mdmcarupqd7YjDa7Z3SPEtFuAXN78Wqz9WrVyn2TWT8Ys3tWQs+oOZmuMCwEdRuG/Px8TLjmGjz88MNo0KCBB50KH7Qtgzf4vsr7n//8J1555RWsXr0ap5xyirPGvAqc7bZ6YLiGaFZPbdYt5xa0DdRDkb2zwsuN093eCkK0fVX4AeKZEzWC8TtwVQM3oyyISN+i0WBkVIwC0qC8MWVsus4q9PRccAHw1lvOrq3eW1HblVGMpWZNczsT6VdQpnOGwW5dyuhZUVIiNp1TxY/snmhfePAju3fjlClo164d/vnPf0prkyBE8F3wRSIRzJ07F+3bt0fz5s3RqFEjw+MmTptmn+WThcuB8+slsWKPZzRO7/yMlmE53URdRiaR5RiZG7qzCkOpWb5E2mvPSYCnDdbVwFs0iNYGT36LPz36wM7qnnnV9yAHxFbIyirm5jpv4+KLy//70kvO2jESfkFIxfhttzVrVm5X1G5lHSO6dk/bb8G1eR+c90rF/6uvR5Exw337yv8b1Or/ibANw2dffIH5b76Jn3/+GZFIxGHP4hfK8HmD74IPAJo3b47p06fjrrvuwplnnmlawYhJ9AU4y/d6wVDDQ1mnYRiJI+27OV4NPGhZx4RCH/ypRsgagdgVy1CFn92UTKO/84o/ls3XvdqgXdv3IGT4/CQjo/z7c1PkiToRrdOVLfyA4G24bmeLVhluJwRp2jAvkvquFXp6eCaK6EMbvfALSnaPBZn790mNIRjix8LCQlwyaRKmT5+OZs2aSbw4QYgRCMEHAJMmTcL8+fOxevVq9O7d21ljstY7ScremAk9PVbCj8Xxqe9gGVk+O8Kc5WPC62mdQRuosAvoWIQfyzQ8pxk/lZo1Yx+coGX/CGNq1iwX2TKCZrtsHs98eCunJEv4AcHOWAeJII1mqjYrASuRp8fOddu9GvbtC062z+sBXD+qcl57661o2qwZrrzySraLJzCU4fOGwAi+pKQkvPrqq+jYsSNycnLQvHlzw+OkTe2UEWAzBM8vbj+toilW9MKPVxAlJR2L18noKxPX0zqd9kdrPCwYPQMi661Gjz7W70WL+M/XQ4F0MHEjk9OnD19W1mpkiMfZqsLvtdfYz7HCyGbr1rW3X5nbMbAQ1Iy0W9M5RWzWwgcu/scLx/7BmeA1crc87n7fvvKP17KleftWhDW7x4LMdXvvfPAB3nz3Xaxfvx5JQX1eiIQjMIIPAJo1a4Y5c+ZgwoQJqFevHqpXr254XBimdqpCT0Wk2EpJybEiXzxLPcz2wdO+6/zYosEMGesKCYfoN1/ieS602T7R4hra66mZGhnCD6hcup4EoLe4JfKcoHfIotMMqlUDLr20/P//85/YvzlZn6e9Z0Zr3Aj3sLNXwexejNBzgBpyiIQuate3bCn/r1b4yZhpE+ZCLUww3PSdu3bh0kmTMHv2bPbtxhIcyvB5Q6AEHwCcf/75+PDDD7Fs2TLk5uY6W+gqo0IiZ/CrF3p6WIWf3uHJKLcse70f67RO9bN48QCGelqnrKmfPJiNPvJep6SkXEwlJ/M9c1bX0E7RYxF/rCMj+oCOgml5iG5ebYV2EMFM6ImuvSwuBmrX5j/PKCJVhR9QWfwZwePMvbDZoGYiZGXujNDfVxlTNTX2aifyREIU1dXyYvTRtmwxz/bpkfVeTUqSEwvIzDbKmsoZjUZxwWWXYfgZZ+C8885juzhBeEREUYK3PeHff/+NDh06ICcnB507dzY9rlKWz+iFxeJNWQJbu2OKimzFnhFGDolldMssVhBxyk7KN7McY/d5olH2Eb0gOnnm47S2aBZcybBXGfbMc6xZVs/us4gI1yVLrP9uF0SzREosWUDW4JjlOK8DbdZoi+U47WbjZtgF0XZ/79HD/hpaWKPhjIzYf7MKMJ70w7x55n9juZ6X9hpEWwXkCT4ZtspwzOKxs+3b0GHnKq0mThQWWp/LqmE7drT+u9171WnmjnXDd9ZrsR4nsyrngzNn4pkXXsD69etRo0YNtnYTmIKCAmRlZeGRR/JRtSrD88nB4cMFuO66LOTn5yOT5dlPAAIp+ABg1apV6Nu3L3Jzc9GwYUPT42ZPmWLfmMtB9PM/nhzzb5HRNyczi9S4wWkROsD4vem2o+dpJ6iOXtoxbg9QqAEb77CyUXus0zeNruVkPpLKsmWVj5El+IzQBtWJJvjMsmASAmTTv3fpUv5fkWkNVt+zXujpMbueiHNWz5kzh/06Wuzs1erv2nWABw7YXytebBUwtlcXbXXl+FiRJzKxyOgcVhdrJPp4k5XqtU46qfLfghQDsB7n9cDv0mXLMHTUKCxZuhQ9eAepEhRV8P3f/7kj+G64gQSflsAKPgB46qmncNttt2HkyJGm6/kAf0SfXuQZwSv8MjLEp2xWq8Z/PRYHHI16k+VjaYPnuMBm+bwSfdq/O8kmGrXLO21Tfz0ZYk+PKv7cDqLNjjELqMMWRGsDZRn7lfEG2arI0yND9NkJPavrORF7elTx5+bghNUxRrYqcwBDJiy26ua+eibH6AWeEU5cpMhSaFX0icxKNbveSSd5uy7Pyw3dAXnv/527duHEPn0w9e67MWnSJLaLEyT4PCZwa/i0TJo0CStWrMDSpUsxePBgVKlSxd8Opafj+W/Np5jqUR2v3TtZG4eIrNVTHanW0cvaSiwpSc76Qa8LswR2LZ+XyNhaQY8Tw1IrEPHCEsFo13atWsV/DV70a8bMMmDa74Aly+ImPAGyl5iJPC0iTsjJdg/q9UTOt3N0l19e/t+5c/nbloGRrbLYKWumkLUPVm0F0FZX/uMpruNF1uelptpP0TRDfd/xnG/njr/7rvy/VjtlBU3ssSKrKmdJSQlGXXghcgcPpi0YBKGiLd4Q6AwfABQVFaF79+5ITk5Gz549TY9zO8v39IrKQo9XABnFyqKzi1RYHKnRdXkHrI0crf6BCmOWL+6mdWoDNx6RandNI9HFE80YRRYskYnovCQt69bF/tutzIkRYcvw8R4nmuFr1+7Y//MOIrA6Xq1zFRmoEDmfx7Hqj501K/bfZKdyjhHM7n1/ubHA43F7LMcadY9HtImczzvupl6jb9/Kf0v09/7kG27AlytWYNXq1ahatSpbuwSAYxm+GTPcyfDddBNl+LQEXvABwG+//YYTTzwR3bp1Q+vWrU2Pky36jESeETzCT/vudTLDSIUnvlCvLUPsGcFyH+J5WgfzcbJFn1UgxpuZ1F+XJVhyUnFAReYiFCvWraNA2g/BpxV4RsgUfWaOVbSYC0sbvE7V7vhZs9yZemxEGKdz8hzDIfjMRJ4W3qyd0fEsXZJRjEXfhqjQM6Jv3+Bl97x+57/86qu46qabsHbtWrRkLXdKVKAKvoceckfw3XILCT4toRB8APDJJ5/gzDPPxJAhQ9CgQQPT45yKvicWta34f54YhEf0ZWQ4mxknuiG7Cu96P55pFNpjjd7F8T7a54ngUwMvmSJUf22RhSBOqg6oiC5E4bmOtu0NG4yPIcFnf5zVd9S8efl/eRyNE9HHOnrmpJiLWRuyxZ6K6rwef5ytH6LHxLONApZ2unHSYxX/z+omnazN43VrMsbB1DZkij39ccOGGf8tnsXeym++wekjRuCdd9/F4MGD2S5OxECCz1sCvYZPy+DBg/HQQw/h3//+N0aMGIEMnvSYDVqRp4V1DR7AvsRE7TZP22bXclJHwI31fnr0MUI0GsxN1o8iRdp8fiZE1gQaBVys7ag3k+XY0tJyI05N5Y9sZGzAnpFR3geZC1G06KMYfebJTAAmGrwLIFSBp4dnfzzevfRKSvj30DNzvDzvE7UNkSBCxGlfc03sv80EYKLBKfa04s4JvGvzSkvFt/fLyHBWjAU45v5Z3STPddRjFy489jtV/IV23R7De3L7jh0Ycd55ePChh0jsSUBR5K+5C0cqy1tCk+EDAEVRMGHCBCxYsABDhw5FSkqK4XF2Wb5H3mpS8f+s8YXTGUd28QRP+/q2eM61c8L6tkSze06PpSwf4zE8x1kda/aWFxnOVtsSqT7AuyDFzWFrlW3bjI+J5+yJ3TE5Oez9diPLpxVboiNWogVdgFhH6sb6Pp65cg8/bPx31n7FoY3uuPb/Kv6f1YUFacmzvi1ZrhQACgr4jndybDQKjB1r/ncvs3uy3vGFhYXoefrp6NW7N+Y8+ywikQhbu0Ql1Azfgw/mIz1dbhauuLgAt95KGT4toRJ8AHD06FGcdtpp2Lt3L0477TTTh00r+rQCzwi3Zh2lpvINHLO070Q48g4uJyf7J/i8PgaQuJbPa8Hn5FjWNzdrtOKkAoFdX4zacZLdc3Lstm3hXR/FG0zn5Jgf56Xos3ppi+yBI3qulSOVscaP1WFZtfnwwwkxIKEVdma4IfiM2pWx3NmqLVluFKgs+twSe2aMHRtOsReNRnHW+efj4N9/4/PPPzdNOhBsqIJv2jR3BN/tt5Pg0xI6wQcAf/31F0466STUqVMH3bt3Nz2uXTv7vXK0yBZ+qo2JDECLVPS0Ot/pNlIs73w3xKFRv3mrg7Ie43rxFv1NlLXJusix6vxaHqyOd1qFQGRhihfZPSvMIppdu479f1gEX/36sf92o9+iDpb1Zc3SvpOCLkGqkMW7DlDlwQdj/x0SwffnzTMq/c6NNXciWT5e1+XEjcp0oQUF/OfIEHtmx40fH/u3IA7m3njHHfjvBx/g22+/RZ06ddguTpiiCr777nNH8E2ZQoJPS2jW8GmpU6cOPv30U3Tv3h3Vq1dH+/btDY/bsGEil+iTsdzEyK5E1uvpz+HNFDpZI2iE3oF7HQNYXdusL7xzwpnW8pmtm2PtFC886/3sjtXfEN7FKGb79rFGAaoR66MWkcUp6enH3vZmc5ScXkMUbUbMzAj37fOmL0DldW4sthmNyj2OF97KUoC1A7dzoHYOk1e4lZYGT+wBwK232h93zz1s7Uvg7ykPVfpd0Lc8VU1FZJmzXZt2aNf08Z6rP0drRnYulOcaovV2jLal1B8jsqe5LLH3zPPP4z8vv4xvVq0isUeEklAKPgBo06YNFixYgEGDBiEjIwNNmzY1PE5E9AFssYb2WJYBBBER5nTBsurYeesh2KF1xH6KP8C8yIu2XyUlrPdS0og3i1BjFVxORZ/VG1hkd2Bt5R+RiEcr/ESjFS3ah88ocnFjvpJT9Bk1L3eJdUuk2WHnhPROVMRp6c9xOlLmpBSytj1tm0Z4WaXK7rp33ml/jAFHYT+9LehizgyZbkF1uU4LuYieb3SelQuVndVjPdboGP1WlWywTLtMwS2T/o75zcQbb6z4/+3bt2PJkiX47LPPLLcGI8Sgjde9IbSCDwD69OmD//znP7j00ksxbNgw1K1b1/C4DRsmAuCb4skaa4hkilmFnzZWEa2qqY1XeNrgiXPUB0v9r98C0AllqIIqKLM+SKTKphluib5olP14kbJzTiktPRZIOt1lWIud+JNFIrxN3Mjy6R2rnQMVFX2Zmc4ckdoGL1aO08zx84g9J9k9F2ERe2FA62ZZ3JzIeFk0Wn4dkUIs6vmqGfC4OFa3nZnJP91T5i4aPMfJYsuWiZh4o/Hf9u/fjyVLluCFF17AKaec4m3HCEIiIQ7Nyzn//PPx73//G4sXL0ahjQdVhR8rVuWUMzNj4wGR0stWx1sNTLNeyy72kDlqqd9/T/sTFDwfXfZiipYW/U3nDSRZ+qE3GtbzrNrIyGDLxPAabGZmed9YA3cvp30mMhkZlR2oFTzfi7ZdUeej2iOvA2N9DlTnqx30kNm+zBLHEvEruyfinmS7AqP3IW/y2cgcWWcW8X6ejIzyIrbqj12/WAiq2LOisLAQn332Ge68806cd955fncnbtHHjLJ+iFhCL/gA4LbbbsOYMWPw6aefotjmrcIr+oDYbZfs4hRe52p0POuLQMaLSRt7qIjOYjIjbA9hGarYHyQ7qBIN5uxuLG9QZ9YPO2MTFYxaWIUfK9praR/eoC3gDsNDYYfVZ9BGjqJbIbBkdo2+V557a2Z/LI6L12ny2rpfYs+vqaYhwuqrsTMdFhOwa8PKpfHGB2bXMnp0ed7nQRZ7W7YYx4TFxcX49NNPce655+JWo7WvBBEy4kLwRSIRPPPMM+jZsycWL16Mo0etF+lu2DCRWfipjk50KQjP8aWlYvGuUSwuItrUdtycCQe449R9GT32U/Sp0zZlXl/bD+0aJB5jZpnSZocaDJvNaZaBXvzxPHhBjl5YceMzaI+1E3gi98Zs8ZGdgGeJTJ1E3iJijwfZI3CSiZfpnCpOx5x4BzfNrsc7QOpkxhHrtdRHOjOTfewmyO7STOwdPXoUixcvRs+ePfH000/TXnsuQxk+b4gLwQcAVapUwRtvvIGmTZti6dKliDJ820aiz2owmteIeJyuGrc4MVT1ek7iAzXWN8r8xQOswpApy+cGbgV3vKKvtLS8DJ0I+myfE0PKyBAfvWBFjZScZqESGZEsnqjoE83UGl1PJKusOmmR6cy813JjYCcBsnteB37Vqsm7lpN2RM1Z9Hi7xz6MYi8ajWLJkiVo1qwZ3njjDVSp4lMsQBCSCXXRFj3p6elYuHAhevXqheXLl6NPnz6WIzM9esQWcWFd4686J546BQD7Ng4i11BRl56oyCigYlfsRdasQSOKiiq3H6iiMKzFVFiO0669Y2nTbJsEJ30wSxWLVONUoyDR6gTAsXuiPihubMFgNodJS14eX5vxRDQa+9BZCTr9sbxtW6Fel/caRtdzmsYROV9E7KkY2aj2Hvgk4lize062L7UjKCP5Rlsm8JzrZGaN/h6oj4qV23Ii9MzQu4YDB+S06xWKomD58uUVsWR6iAc9woQbAzNBsqugEFeCDwBq1qyJxYsXo0ePHli1ahV69OiBSCRSSdwZwSuyeOMObcE51sFpnj6ZLT9hPZ93CZbMbR54MHuQi4rkJsiYKnYC/KJPtifiKRWnvsD0/bUTSaLl6ADz/fdYz9fiVRVOPVqxoSXMQpDFgen38PO6H1ZTQkVFnzoQIXK+qFB0IvbMUG3RjVkBIQh03QzonIg3HrSfQcRN2t2DmjWNXZQbYs8IM/ehCkG/gnKj7J6iKFi1ahUKCgqwatUqZGVl+dCzxCRMgm/btm2499578fnnn2PPnj3IycnBP/7xD9xxxx1I1cyK+uGHHzB58mSsXr0a9erVw9VXX42bb77ZnU4xEneCDwBycnKwdOlS9O7dG2vWrMGkSWu4zueJBUSyfSIzxuyuYxdPyM76AcGc7snykMsWhlwXT02VlxHUwivI1PZF1ufZXcfsPvBENCz30kj8ycju8WD2MIdJCMoWdU7EmAqLk+S9jt5JOj3frfPcqNzJ024IxF5QYRWKVm6HpQ0et6XN9nkl9OxgcTn797tzbbOpnGvWrMHu3buxYsUK5OTkuHNxIvRs2LAB0WgUs2fPxnHHHYcff/wREyZMwKFDh/Dwww8DAAoKCpCbm4uBAwfimWeewfr163HppZeiZs2auPzyy33re0RRFMW3q7vMhg0bcMopp6BVq1Y48cQTmbJ8enjiAbtjjWIY0bhIe55oHKJtw4kAcrsGAU/84UZMkwLrIkAVuDFviXeOE28WTnQY2+w6PBGC2bVFowz1PB6xJVqURCZuRTYm+5J6Bq9zExWedtdhcVBWbXgl9AD/xR7HsTzFWtxwjbyujqftaFRsFruKDNdm1IZT1wiwu8d4nBK3apWx2Fu7di1+++03LF++HO3atfO4V4lLQUEBsrKycOut+UhP51yTbUNxcQEefDAL+fn5yHS5MveMGTPw9NNPY8uWLQCAp59+GnfccQf27NlTkfW79dZb8e6772LDhg2u9sWKuMzwqbRr1w5LlixBnz59kJycDGAit+hzmu1j3cOGNzbSL20SQYZDl1lF30uKi10YyJa5nk/kWIA/0yc63VKf7RMxJqNry4hotA+dzEUsbuG3MPMT7Xclmhk0O4+38qrTNrSo00ZVWD5XEDJrLvTBr/33eDByBSKz2FnbZkGb6XPiqszW9wFypnuGnR9++AGbNm3CV199RWIvDinQLf1IS0tDWlqa1Gvk5+ejtmbAcuXKlejbt2/MFM/BgwfjoYcewsGDB1GrVi2p12clSOUvXKFTp074/PPPsX79evz000+mIzxW8M4vVo/nmbopModZuzewEyfttWiT8RL1ElfKjruRtlQRSdc6CWydzo/VbnQtgtV5VHnTP8y+Fxll/azOE93PUetInewJafQ82DlqN59xF0RcPGzF4GYVT+27WUY7IrBcX/8YxrPYM4r9fvrpJ/z444/4/PPP0alTJx96RQCAosQ+jzJ+1LmLTZo0QVZWVsXPAw88ILXvv/76K5544glMnHjMvvbs2YMGDRrEHKf+e8+ePVKvz0NcZ/hUunbtikWLFiE3Nxfl2zWUfzGys31G2ziIZu5EZimJZAv9yNAZVRqXta6QJ3Pna5bPrWPVG8ubGQScl5kTPddpcRdW9JGNW1M/iWOoTpB39MvLgioy22ERYvrMX1DEXhAyjC7i9SOcmSmnrhRvOyKfU/t4slTWDBtGYm/9+vVYv349Pv30U5x00kk+9Irwgh07dsRM6TTL7t1666146KGHLNv65ZdfYrLAO3fuxJAhQzBmzBhMmDBBToddJCEEHwD06tULS5YswYABA1BaWooTTzwRq1aJTfEEjsUjbk/ZFJllJHpNXmSKRaOXVJC2XziKFPa1fF6LPqusgYjoA8REl6wyc1rDklm9QH8O69RPgh+nhWBYRZ/MtRlO2hLNcmvPY7HlAGzC7sbaPd5jWZDx/nA6rVOm6AOs25IlaLWPbjyIPyOxt3btWmzcuBFLlixB165dfegVocXNKp2ZmZlMa/huuOEGjB8/3vKYli1bVvz/rl27cNppp6F3796YM2dOzHHZ2dnYu3dvzO/Uf2dnZzP03h0SRvAB5Zm+ZcuWoX///igrK0PXrl2FRJ9ILCND+P1/e/ceXUV1qAH8S4AkIhKCoAEkEBACghAMWhERLAIWpA9FqlfkulhAQLT2VhcP8Sp2qRVfVBcqAbUF6bWlgVKeFsRHeUQUSoIgAcRIIEAAIQkQSYCc+wdOmEzOYx5775k55/utRSvknJnJOTN79jf75WRBVZHDU1TRjl/arJpeYTX0Ac6XYYjEaWsfICashduWyDtEsCc3DIHmyVi+IVzo80rQA+wXTsYC2Pi7Gs9vL8x25VFeejgoU7AAKbPl0u/hzxj2AoEAtm7div3792PDhg3sxkm1WrZsiZYtW5p6bUlJCW6//XZkZWXhT3/6E+INBVCfPn0wffp0nDt3Do0aXXxAtnbtWmRkZLg2fg+I8lk6Q9m9ezf69++P1NTU2nX6gOBdPGUtQ2X1BiWqfiNidk9N48b2brR26hYyh6xImbET8NZsnHb2oZExZZ2TWsrp03LG+0XixxqPDC1aqO0fpy9kRM+25pWwF4nMQs3Ca62O3ZNZBNopzkRPSmyW6CVDte2pugxD3edlTTAsQrCwt3nzZpSWluKzzz5DRkaGS0dGGm2WzscfL0diotiyvaqqAq++Kn6WzpKSEgwYMADt2rXD/Pnz0aBBg9qfaa135eXlyMjIwODBgzFlyhTs2LEDY8aMwaxZs1xdliGmWvg0GRkZyMvLQ79+/bBx40bccsstiI+Pr23tc3utYT3R9RsRs3sCl+o5ssbiOSFlbN6PpHbtBMy/3k5fI6tdPEXVJoytdCJmMgDULrwORF5FOBqFmkE0Pl5dbVPGlNp+CXqA3LAnkR9m5zRDxD1NVNdOjdYhQUXRE+73NxYPx49f/DevBcGamhps2rQJ5eXlyMvLQ3p6utuHRDoyu3SKtnbtWnzzzTf45ptvcM0119T5mdZ+lpycjDVr1mDSpEnIyspCixYt8PTTT7sa9oAYbeHTHDp0CAMHDkR1dTX69+9f2/R6553W1+tzQkWvJdHbNVPfCfV7yW7hs7MPaa18gP9a+sKVlCKmWJUR1Mxs043H4V6r+QRjd1kI2Z+nMWCL2J+Iwi/YAu523meG3cLS7DFZ3L7o8Xv6S0Xmunoasy18we5dTueSio933ks81D1VRvCT+fBWRrGoFWPHj9dt3Tt37hw+/fRTJCUl4aOPPuKi6h6itfD9z//IaeGbNUvNOnx+EZMtfJrWrVsjLy8Pw4YNw5o1azBw4EAkJSXhww8vFhaqgp9xfJ/Mc1Plee/F1j8RLLXyWSV73T1tH0D9/ZidNMJp6DMzA4HdbYbarlt9n8yGKdE1IBVr+8lo5QvXvcLJ/kTMPR8qsGnfebjtqgx7+mOKxMJnajbsabu2Ut67vVSPzHuTcV1eO6Ev0vFpl42o4Cf7Xi2zeNKHvbNnz+Kjjz5Ceno6Vq5cieTkZHk7Jtv81MLnZzHdwqc5e/Ys7r//fmzYsAGDBg3CFVdcUfszla19WqEt60QVFfZELLtm9Xe0s0/ftvLZeT1gr9YUH+/ewBaNzK6ZXhnsEq1EfK5W+9Bb2WeoaZTtLHpqlnHbqsOepH1cQIPIL/qRFzoqBKMv6uxcqk5aCPXMhj47x+gk9Pm9+Fq16lLYq6iowEcffYR+/frhgw8+EL7YNjmntfA99picFr7XX2cLn57PL28xkpKSkJubi3vvvRcrV67Ecd3T9g8/zK5t8ZOlefO6dZ74ePEFr9fOd+131P/xE8sLD6sYh2O2wifqQxex6Dpw8eSU2X+5WTN5sy/FOrvnkFbo2flezOwz1MLu+m2Y2Y6dBdj111cMhj2vio+/WBzIut9YKVYjLefk5BhbtLj0xyw/3oON9GHv+PHjWLVqFUaOHInc3FyGPY8Tvei6jBbDaODzS1ycBg0a4M0338S0adOwatUq7N+/v87PRYc+M/UdUYWwl8JeuPqP2wHQ6hNjX4W+cB+snUqtmX1aJSP46X9fJyGDnNPXRJ1e4KHeHynomd0O4Hwa4yZNrBdoKsJejJBxPwl2StjdvvE0dXqswd5rJvz5PegBdcPed999h1WrVmHatGmYPXt2vSnziWJVTI/hM4qLi8PUqVNx7bXX4sEHH0SvXr3QvXv32mUbRIztc/JA284TCxFDV/T0NzzZT1D05bSdmTdlztapjJ3F07VxdlZvdE7W3tOPHXI6u4GMMX5GxgtRxOCXWK1YhBoHFqmJwekYQP37rYS8YNsBLm1LRNALtx/9vvRUhT3JrXtuzc6p8vITta/mzeVN5GKkn9TEyvu8Tgt7gUAAO3bswLZt27Bw4ULcc889Lh8ZmcUxfGow8AUxYsQIpKWlYejQoTh16hRuvvnmOk+JrAS/UHUeOyej1eAX7Ami3X2HOx6R23Sb1ZBoeQIXOwHObuizU/Myu2i6kXGBRxFT2mknsN0akZUajYwAGIuszsbgNPQ1by62QGvaFDh/3v42zIZFY+Gp6smU75+AXaI6sDT8sbbUrJmYZ1Ha8cuayCUUYwO7HyYSDkULezU1Nfj8889x5MgR/Pvf/8aNN97o8pEReQ8nbQmjuLgYQ4YMwdmzZzFgwAAkJCTUe02w0GelzuOkrhLuvWYfeFvZv9m6jOjJ6jR26iqq3iN9EheV79GYCW2Rah12gl+4bcqc7SDSeyPVjKLlkblZxoJOVmEWjLGAcxr6gnUlthr87BZuwQocszPmithXGHbG7omesCXUZSW7aAMuhbxg7IY+p8WbjKJNzy8BUAt71dXVtcsu/Otf/0JaWprLR0ZmaZO2TJwoZ9KWt9/mpC16DHwRVFRUYMSIEcjPz8ftt9+OZiGS1KhRzmbzFFlXstu7SUZQEzFhncbuw+lg9aJIn7fVfdlapsFsjcXJYlVW92UUqmZkpdZhJfRZ2W642pHsWpFGXzuK5sBn9imWzNBnpmCzun8zFYFIwU9FoWb8vaIk7AF1izQrl5CswBcu5OlZCXwiijVVRZpGW0Rd/3ev0MJeWVkZPv74Y/Tq1QuLFy+uM8M6eZ8W+LKz5QS+nBwGPj0GPhMuXLiAyZMnY86cOejfvz/atm0b9HVOQx/grL4k6pwOdgxOh7Vo2/VK4IskSGNuRLZDn9W7serQB1yqITmpdUQKfna3bawhqa4ZhXqfl2pIZohYHEtG4LP6BMvMMdgpLIMFPzcKNEXdFlQFPrvFksjAZzbkGUUKfU6KIn2x5kaRZoXKok4Le8XFxfjss8/w8MMPY+bMmWjQwP8zycYaBj61GPgsWLhwIcaNG4eePXuiR48etZO5GLkR/ERPzqLfloiwp3Ey6YvKwGd3fw1wwfqbVK25Z3dfwKVag9OxeaG2IapWEh/vbBYEkYHPDJU1JRWLsQNiQp+TSVgiHYPTm78W/Bj26lAd3JwGPrshzyhY6BNRnDVs6J819ezsy04xsWBBNgKBALZv346CggK88847eOCBB6xviDxBC3zjx5cjIUFsKKuursDcuQx8epy0xYJRo0ahS5cuuOuuu1BWVoa+ffuiYZC7xsKF2T++3n7wMzvBSrB6kcjJVOLjL954nMxjoDHWj4w3CVkTv1RWRuHM5dpMnFZZnQDG+CWJmJDFODGMyLAH2J/sxY0umXZCmKralV12J2LRJs4RUdgEK0BF3fS17dj9TFWGPapDOy2aNrX/zMyoefOLwUxk8aFVK/RzSZkNf6qLMZVh7/z589i4cSPKy8uxYcMGZGVlWd8QUYyK4kEncvTu3Rv5+flo2rQpVq9ejVOnToV8rRb8nAi1Lo/Z5aacrkGk1W0aNrz0Rxa31+EzsvME2dYCxW40XYbbZ6Qvwem6fRqra6aFE+4iEbUPK/smc4KtjSiykNFm3hQV9vTXnJ3CSnXYU9S6Z5fsJRxU3VNELO0Z6R6rat1eK1SGvVOnTmH16tVo2rQptm3bxrAXRbjwuhqsqdiQmpqK9evX46677sKyZctw4MCBkK9duDBbWPAD7Ndf7dwMQtWRVIQ/wHsB0CxfhD7jPu180HZDn/Hk0SrkdivlZo5ZH/4iNYuTc+E+z2Ahz0hE4aJ91yIKq8aNw19rZq4fH4Q9u9xae8/Iyj3DSdEZ7B5o97mS1dMz2KXjRtBTGfYOHDiAZcuWYfjw4Vi/fj1SU1Otb4goxnEMn0Pz58/HhAkTcP311yMzMzPkuD6NnW6exsJdRI8nQPwwl3DHJaJByO7s5YC4XGSWrbF8gP2ak53+ScaV7Z0QMc+5ntkp8GJtsIyT/bnxyFPbp5MmEKsFXriat9VtOSk4tN/dSfBSHPbstu65MQ7PznxXRlaKTbNFl9me5E6fQejfr3IosMriZ/788di2bRt27NiBnJwcjB492t7OyZO0MXxjxsgZw/feexzDp8fAJ0BBQQGGDx+ORo0aoV+/fkhMTIz4nkjBz2z9SET4MxbEIq4N43HJCnzBhLqxqJy8BfBg6It0pxbxmD5U8JMxDZ6ooGU8Nivhz42WQT8EPm1soqinU2a2Y6WJxcz2RAz81W/D6mfhQlD0cuAzXqaixuCF247dYitc6BPReB1uG7LCn+piZ+7c/8b69etx4cIFLFu2DD179rS3IfIsBj612I9JgJ49e6KgoACdOnXC8uXLcdxEiRusm6eZnk5GInor6btniLouVHX7DMbYrcdpndxuZcb2WBhR3TutfggiuoAFS/ZOToJQ3T1lhT2g7oVo9YKMRS1a1P+jEVUAhNqO3XGa4QqnSN03zTJuQ18oRvpcYiDshWP8qIJ9XDIn4nJ67wp2Ooq4H5rZRrDL0CnVYe+11+7B8uXLkZGRgYKCAoa9KMcxfGqwhU+gmpoavPDCC3juuefQu3dvXHfddRG7eAIXW/tE1SmdPFDX36REPZgH6t6YnVyETvOIGz2rABda+py+V8T7gYu1BFGP4fUaNnS29IJ+O3ZprYCx2MJnpyYpuqVP5EQ8+mOTEfSsHoePwh7gvJhychmKKF60bYh+OJmQ4KynuJ6TYzMWF0ePOnu/WXaKm0AggClTbsXWrVvx1FNP4cknn0Q8x1dHLa2Fb/RoOS18CxawhU+PgU+Czz77DCNHjkRycjL69u2LBJOreP/mN87X79NYqV9Fqjs5rauFq/9YuSmIaIByI/TZDnyAP0Of8QYtMvQZaz5Ogp/IQTR6sgfUOKkAmb3grrrK/ntDERH6mjcHqqudb8eoSRMx23UaGIMVMmY/NweFm+zWvVCXitMiymnRot2aRSwvGmy7GrvBT0TvHSv0YVBFMaN3+nQ5HnmkNyoqKvD3v/8dt912m/0DIF9g4FOLgU+SY8eO4b777kN+fj769++Pli1bmn6vyuAnetiLkdX6T7gbhV8Dn8aXLX1WthGphuC0dhap9mMl/MkeSBOO00AooiYWLNCZfa8TdgqRYN0fRIW+UIOL7WxfRtiLRP95uti6Z+dSEFE0WS1Swj17dRr6Ij3XtRL6VAc9Ee/XwqKdYqKwcAsmTx6CXr164YMPPrBUXyL/0gLfqFFyAt/ChQx8egx8EtXU1ODFF1/E73//e2RlZaFbt26munhqZAY/pz2izNbbRExyp3E78Dl9v29b+sJtw07NwE7ws1oDcnPWBDOc1MhUP3oX+X7AXOFhto+73eBndhYpM9sX0Q3UacHk4Hx0EvicNNqqCHwmO9fUshP6rO4jXPATUTS5VbS89JL15acCgQC+/vprbNmyBc888wymTJnCLpwxhIFPLQY+BTZs2IB7770Xl19+Ofr27Yskizd3kcEPEDNjpl6om77oQfVWb6zB+DbwAd4Yl6dtQ8RN2UzwE1EDMoa/WA58gLPQJjPw2R3IbCX02S38Qu2DYc82WYHP6X3CTOgTcS/SBz+3g57T99sJe2fPnsXGjRtx5swZ5Obmom/fvvYPgHxJC3z/9V9yAt///R8Dnx4fpShw6623YufOnbjuuuuwdOlSlJSUWHr/G29k4403nC/erk04mJAg5oalUTUjp5VJ7kJxMzM5qVwBcDetAhc/9CZNxD0xiDQboqgTSj+LoxfCnp+JWvdQI2ImVDMFmtPzVtuHfj8xHPa8RP/ViLyvhduXCKmpF/+InGXbjffbCXsHDx7E0qVLcd1112Hnzp0Me0QKsIVPoUAggHnz5uGxxx5Dly5dkJWVhQYNrN90rbT4malHyZgDQcaN10z9ysxTZ7dzk69a+sLVRkTPwKnfnoxQ5ZWZFAD/tvCJ2IY2y6eMgse4TdHdGYC6BZGT38HFsAc4D3xutfAZL2MZEwHrW/lk3MtCbdPK8F4Rz15UB70LFy5g69atKCwsxBtvvIGxY8daGuZC0UVr4bvvPjktfH/9K1v49Bj4XFBYWIgRI0bgxIkT6NevH5rZHFAXKvg5eVguog4WrI7l5gR4xoqJF8YCejr0Wa1IiqxxqZo2LxQzIdDtGRVEbEPVWL5ISzjIDH2iw16kAsjK7xLjYQ8wV4SZuWxlBL7GjcWs/KJnNTiGCn9eKD7shL2ysjKsX78ezZs3R25uLrp06eLsIMj3GPjUYuBzSVVVFSZPnoy5c+eid+/e6Nq1q+0nXVrwE70+tJ26mJk6lhsT4Bk5rbOLCI2uhz5tGyJarETNj24kIvg5eURvDIBut+6J2oasVj47a/SJDH36h2cik4CdAijU7+Vy2AO8G/jsXqoivupgX7GI0CeihVALf26O09NYDXuBQAC7du3Cli1bMH78eLz00ktITEx0fiDke1rgGzlSTuBbtIiBTy+GB6O4KzExEa+//jruuusujBo1CiUlJejbty8am6xYvPBC+G6dIupQ2o3K7LbMPlA33gBlPOSPJFKdKVKF5uxZMaHPkaQk590zmzQRExy189ZOzStcjUh/UqmYQs9I/xQlIUH+Gnt+YyfgGVktaIIJ1kvCyTlp3IYd+nOvulpMgeGBsCeK7PF2ZkT6erXTyk7wE/n7pabW/zdVC6hr7LTqVVZWYtOmTTh9+jSWLVuGQYMGOTsIikqBgJhnkMZtUl0MfC4bNGgQCgsLkZ2djX/84x+45ZZbkJ6eXvvzSMEuFBF1KOO2wm3P6XwIkbavWrh6lYin28DFipfjVr5goc9qpdBqcAzHSiXbao3IaviTUaMMF3D8FAbj463dYUOt2yfqYgAufl9WCgCzXeHtBD/RXQrCFZAiP8MIRIQ9s4cbqRgSWdY3bmz+67Xz1TZrZi70iS5ywn2GoS5JYxB0o1UPAL799lvk5eVh6NChyMnJQUpKivMDISLbGPg8ICUlBYsWLcIHH3yA7OxsHDx4ECtX5qFp02TH2xYZ/EJtT+RQGS+GPyPtJnz+vPMH7sJCn9NKo9b6oCL4iagVaSddqOAnuuZlZnt+D4N2FmNv2FBt6HOygKjZ4Kd6PZlQhYjxc/Xg7LAePKR6RH2d4UKfyqAXiXYZWwl64VoLrYa96upqbN68GSUlJXjnnXdw3333WXo/xZ6aGvEtfKK3Fw18UFzHjvvvvx+33XYbRo0ahaysdLzzziL073+HkG3LCH5a3UvGoHltH/r/9moAdEpI6BNV8ZYZ/GS0uAVr9fNCXzEjLQzaqclZ6btlJbSJuiOqCH1Ogp5RqODntYVD9eeKldp7iO81WOuendafWAp5RvrQ56WQZ2T1ew1WbDzxhL3lFvLy8pCZmYm1a9eiTZs2lrdBRHL4oOiOLW3atMG6deswZ84cjBr1c3To0AErVmzCFVeIGXQqogXNWPfS31xlzZgGeGPsn5GIVj7AY6EPENfNU/vStP+X9XQAuBj+tJNF5BR7bgfIYLUxURO/eDn0yaq1a2RuX+Q5Y/W7DvL6AOKELLrr5afmVzYP4Iez8qf414+ns7uyi56bQS8Uq2GvuroaX375JYqKivDyyy9j4sSJXG6BTGMLnxoMfB4UHx+Phx9+GEOHDsXo0aNxww3t0adPHyxYsFLofqy2+pl5yC46/IWrkwWrU3khBLpK39/UKbutfeEquyIm0gi3XY3xZLUbAN0Oe7Em2FTDolqbDQJJl9X7t7izPzjfsJthL0ZclhR8RobLkuSEvlDz7Winq53gFw1BD7jUqte9e3esWLEC7du3F3MwRCQUA5+HtW/fHp9++ilycnLw+OOPo3//7rjxxhvxyit/ErqfSMHPbm8q2S1/wbgRAj3VyqdR3dpntZIrMviZaanRn8SiF9gyy4t94dxu5TOzlozISYUQPOgF+5nl8Cf64YCgWnwA/m9pCRXwQr1WROizMqmqleAnuhjwQqveq6++iuzsbLbqkS1s4VPDgzUQ0ouPj8fEiRPxs5/9DKNHj8bSpUtx5MgRpKWl2Z7BMxRj8JMxbAaQO5taMF7sChqKp0MfULfiLaKC6+SpgN0TxGzrH1v3rIt0ztldLFTA2NJwQS/S6yOGvxgIeyorUFYCXqj32wl9TlfO0J/eMpbw1BPZ+Gs17O3fvx+bN29Gjx492KpH5BNceN1HAoEA5s2bhyeeeAKtWrXCTTfdhMaNGwsLfgp7U9UKVceXPXwnWP3MaTYSeUMXFvoAcaFP/wvKTM1mgp/ME6Ss7OJAHREDdPS82IdLI7o2rz/n7Ia8cCwUTFaDnhm1AdCjQU/j5cCnFSFOw104ZkKfzPVUT5wArmxShfKz4hYadzPoVVZW4osvvsDhw4fx6quvYuzYsWzVI9u0hdeHDy9Ho0ZiF0c/d64Cy5dz4XU9Bj4fOnLkCB555BGsXr0aWVlZ6NKlC+Li4iwHP6v1MNnhD7hY15cd9gDr9TQzmUn0E1xXQ5+ZX0Z2U2mw4Kfi5AhWA4zW2Rk0AmrzVUl1l5FJTJB8awlTIMkIeUb60z+xoYBr1cNhD3B+ijQ4X1X/HxW0ogcLfTJDniauOsjvq2M1BIq+5K2EvUAggMLCQmzZsgVDhw7F7NmzkRpsNXgiCxj41GLg87GVK1di3LhxaNiwIfr06YNmP3ZVCxb8RD9klxn+tCe+MmdcE13P0PKUp0MfIGdtLxV9ZFU9CbBTE3Rj4A7gWugzBrtwpIc+oE5hpDroRWI6CEZJ2Asa6sJRGPi8EPIiCRYC3Qx6AHDy5Enk5eXhwoULmDdvHoYNGyb2gChmaYFv2DA5gW/lSgY+PQY+nzt9+jSmT5+OOXPmoHv37sjMzETDHyuXL7yQI6U3lZGo8Bepa4/IACirnmH15mymImU69JnduazBOBKCn7SZFIMRXSPUB0EfBj4rwS4cFaGvvCIOsu/pIk/vOkFQwkycMgOf5VAXjuzAV1FR+5+BpmLOZyOnIS8kE70yTtVcbmmTVsLeuXPnUFBQgB07dmDChAl4/vnn0US/7imRQ1rg+9nP5AS+1asZ+PQY+KLE1q1bMX78eBQVFSErKwvp6em1fevnzBE7uUsodoOfkzEcdkOgzHqGjJnU4yD4MpU5A4OAmrHZlhph4U/i4/+qamvnaOLZcnMvNHminYm/wvS+ZU0kKjr0lVeE/kxF39tlNmBb+bwbxJv7DM2Evbgaiz0HRK6xaCSyMNYFvFBEBT83g55V2b/7nenXBgIBFBUVYcuWLejYsSPmzp2LG264QfgxETHwqcXAF0Vqamrw5z//GU888QSSk5Nx00031XbzBNQFP8B8+BM9YN9sAIz5wKfxUPBz2h3PdviT3NfLauAzS0YdXPbKEU6CX7iQF4qT+7zsnsoyPmvhXcA1Xg18JgJeKHaCn7SQB0j7jK2EvbKyMnzxxRcoLy/HK6+8goceegjxXAuSJNEC35AhcgLfv/7FwKfHwBeFTp48ienTp+Pdd99Ft27dkJmZiUaNGtV5jdvhT+bMbHrBAqDsXkSy7o++DH1AxJqzrHFXpgKgT8MeIK8O7qXQZyfkhWLlnu+VVj0rfBn2NGYKZQfhLpxIwU9qyAM8EfTOnTuH/Px87Ny5E2PHjsXzzz9f52ExkQwMfGox8EWxgoICZGdnY9euXcjMzETnzp3rPa1TGfyAi+FPVdgL5UKN/GmkfRf6AOXBT8UEG5qg4U/BLA5+DHyAe6FPZMALJdy934+tepqoC3ySAl4oxuAXC0GvpqYGe/bsQX5+Prp27YqcnBz07NlTynERGWmBb9AgOYFv7VoGPj0GvigXCASQm5uLxx9/HFVVVbjhhhvQtm3boGvnyAp/cRVhxiS5cSGGqNVdaOjNtZKMpIY+QErwqzrfoM7f3V7TvKICSG4q93OUGfYAfwc+4FLoUxHyQtGKHxUTzfoy7AHqAp/igGcUaJqMuEMlF//SooWcnUj+LM2GvUAggAMHDuA///kPkpKS8Morr2DEiBFcU4+UYuBTi4EvRlRXV+Ott97CM888g5SUFGRlZaFFiJua0+AXNuBF4tGp9uyEwVgNfcZwF47q4BeuTik6APo58AFyAsrx4/X/za2J/4J9fjKORXZ4lhr2APEn2unToX+m4kmDXrhj0XMaAD0S9ADg+PHj2Lp1K8rKyvDss89i4sSJSHD7CRzFJC3w3XFHORo2FFv3O3++Ah99xMCnx8AXY8rKyvDcc89h9uzZSE9PR69evXDFFaFn8TMT/hwFvEhEXqiSHuOHCoOyx7pLD32AqeBnJeCFI7PO4aTxwE4QlB32ADUNL3br38GCXSSqgp/Vz83Jcfk+7AH2TjSzQSoY2R+ak2PTmA2AHgp6p06dwrZt21BUVIRHH30U06dP5zg9chUDn1oMfDGquLgYU6dORW5uLjp37owePXqYDn5SA14kdi9cFX22DAIJ4rqIhqI69IkKd5GICn8ye4mFC4KxEvjsBLtIZAQ/GZ9VuONU0VDlibAnIjwFI/IDlHWMRvoQ6KGgV1FRge3bt2Pv3r0YMWIEXnzxRaSlpUk8OiJztMD305/KCXwff8zAp8fAF+MKCwsxY8YMLFmyBJ06dUKPHj0iXhw5L72k6OhMMHMhuxD2agmquATiQwcts6HP6WQ1KgJGMHbCn5vDgU6fljcEyEhV6JMR7CJxGvzcOF+bNFHXK1FZ4FMVmIzsfpBuHa/dhWgBIDXV9EvNhr2Kigp89dVX2LNnD+655x7MmDEDGRkZdo+QSDgt8A0YICfwffopA58eAx8BAHbv3o0ZM2Zg8eLF6Ny5M66//npTF4mnwh9QPwC6GfYApWNSLkBN65tbwQ+IHP5cnvdBaF3TTGg0810cOeL8WBRMaBqSleDn5rnZuLHzbZh9uBEx7Iks9yorxW3LKjPlp1sBD3AW8qxITbUU9LQWPQY98jIGPrUY+KgOffDr1KkTunXrhpSUFFPv9Vz4A9ytqQLKJyFQFfoAdyvXQP3KcTSFPbNU1Tc1Xgx+bp+HIoKeFZfBxPqSIrkZ+IDgZWgshLwfZZu8r548eRI7d+6s7bo5Y8YMdO7cWfLREdmnBb7bbpMT+P79bzmB7+c//zny8/Nx9OhRpKSk4I477sDMmTPRunXr2tds374dkyZNwpdffomWLVvi0UcfxeTJk4Ueh1UMfBTUnj178Nxzz+Gvf/0r0tLS0LVrV7Rq1crStM2uBECztT9VM0SonnUOakOfxo1Kt77O58LHXIcfe5HZ5fYzFO3SjbWgB7gQ9gBvBL5Dhy7+t1tP6l240MwEvUAggMOHD2PXrl0oLi7Gfffdh6eeeopBj3zBr4Fv1qxZ6NOnD1q1aoWSkhI88cQTAIBNmzYBuPh7de7cGXfccQemTZuGr776CmPGjMEf//hHjB8/XuixWMHAR2EdPnwYr7/+Ot566y00bdoUXbp0QXp6er0F3CORGv5E1/xEhkGXkogboQ+QVwm3G6hUfPwx1NhQS2XoM9Nye9VV8o9D40bQA1wKe4C6wHf0qPX3yAyALl1cZoJeTU0NioqKUFhYiIqKCkyaNAm/+c1v0KpVKwVHSCSGFvhuvVVO4NuwQU2XzmXLluGXv/wlqqqq0KhRI7z99tuYPn06jhw5UrvkydSpU7F06VIUFhZKPZZwGPjIlNOnT+Pdd9/Fyy+/jB9++AFdunRBRkYGGjVqZGt7jgOgWzMyWOVi05NboQ9w/vXIDFF+nAAwFLcCHyAn9InqlisjALoV9AAXwx4gPvDZCXZmiKjUuXhBmQl6586dw+7du1FYWIjLLrsMkydPxpgxY9DErcUsiRxQEfgOHDhQJ/AlJiYiMVHcDOonTpzAxIkTUVJSgg0bNgAARo8ejYqKCixdurT2dZ988gl++tOf4sSJE6aHSYnGwEeWnD9/HkuWLMHzzz+PvXv3olOnTujatSuSk5Ntb9N0+HO7D1c4oW64bvc1hLvBDzD3tbkdnADrX5UXjtnNwKexG/xUj7m0GwLdDHqAy2EPsB/4ZAU7M8yGPw9cQGaCXnl5OXbt2lV7z50+fTruvvtuNPTA/YXILi3w3XKLnMC3aVP9eukzzzyDGTNmON7+lClTMHv2bFRWVuLmm2/GihUrcOWVVwIABg8ejPT0dOTkXFrO7Ouvv0a3bt3w9ddfo2vXro73bwcDH9kSCATw+eef47XXXsPSpUuRlpaGzp07o23btpbG+RnVC39eDnlmeGRhW7dDH1D3q/RCWDIjVH3KK8fvgfoqgPChz+3JdEIJFwDdDnka18OeJlToczPUWaEPgB64aMyOzztw4AD27NmD4uJi3H333fjtb3+Lm2++2dE9lsgrVAQ+sy18U6dOxcyZM8Nuc9euXejSpQsA4Pjx4zhx4gT279+PZ599FsnJyVixYgXi4uIY+Ch6HT58GDk5OXjzzTcRCATQqVMnZGRkCGk2z3nhBQFH6AKZNUabq5KLCn0iZnx3ex4IO/R1W6/M8uyBumstt1dAEaF9e7eP4BLPhL2ysuD/7SdOj1tQH2EzQa+qqgq7d+/G3r17ERcXh0mTJmHChAlItbBWH5EfaIHv5pvlBL7PPzc/hu/YsWP4/vvvw76mQ4cOtWPy9A4ePIi2bdti06ZN6NOnD7t0UvQ7d+4clixZgtdeew0FBQXo2LEjOnfujJYtWwp/IunZIOiVpoEwfsBlbh9CPV4NgCoaMJyGR6ehT9bv6JHG7bBkHKOIbToOe7KDmVeDn9eO68egGCnoBQIBHDt2DHv27MG+ffuQmZmJ3/3ud/jVr35le5w8kddpge+mm+QEvi++UDNpS3FxMdq1a4dPPvkEAwYMqJ20pbS0tPb6ffLJJ7FkyRJO2kLRJz8/H2+//TYWLlyIpk2bomPHjrj22muFDpYNxtUg6IOwp/Fi6DNyIwT6pYeantfquMF4Ifx54RjMaIXDbh+CeW6efD448bP//OewP6+qqsLevXvx7bff4tSpU3jggQfw8MMPo2fPnmoOkMhFfgx8mzdvxpdffolbb70VKSkp2LdvH/73f/8XpaWl2LlzJxITE1FeXo6MjAwMHjwYU6ZMwY4dOzBmzBjMmjWLyzJQ9Dpz5gwWLVqE2bNnY8eOHejYsSM6deqEq6++Wuk4BKlB0EdBT88Poc9IRgj0Y8jT80G9tx4V4csvAU/PV2FPT+ZJ6MMTPFzQCwQCKC0txd69e7Fv3z50794djzzyCEaOHInLL79c3UESuUwLfL17ywl8W7aID3xfffUVHnvsMRQUFODMmTNo1aoV7rzzTjz11FNo06ZN7ev0C6+3aNECjz76KKZMmSLsOOxg4CNltm/fjjlz5uD9999H48aNkZ6ejk6dOqGxi4HJURD0adAz8mPw0/hxAkHRfFgfrkNUMPNjwNP4NugFY/eE9PmJHKk1r7KyEnv37kVRUREqKysxevRoTJgwAddff72aAyTyGD8GPj9j4CPlKisrsXjxYsybNw95eXlIS0tDeno62rVr55lppsMGwSgJenp+Dn1Gfp9Q0Cqf15PrMRPc/BzujKIq7OmFOjGj7IQNF/TOnz+P/fv3o6ioCMXFxejTpw/GjRuHe+65x9UHnUReoAW+rKxyNGggNpRduFCBrVsZ+PQY+MhVxcXFWLBgAebNm4fjx4+jQ4cO6NixI6666ipPTj2dI2D9FrLmMFo53kaU1THriObfTQt20RTw9KI27AHAli3O3t+ihZjjkCBSl82jR4/im2++QVFREVq2bImxY8di9OjRSEtLU3eQRB7HwKcWAx95QiAQQF5eHt577z387W9/Q1JSEtq2bYuOHTuiefPmbh+eVNEWIkUENK/zUsjy0rFojh93+wjq6t3b7SOoz3Nhz2lA8zJB4TFc0Dtx4gT27duH4uJiVFVV4de//jXGjBmDPn36ePLhJZHbtMDXq5ecwLdtGwOfHgMfec7Zs2exevVqvP/++1i1ahWaNWtWG/6Sk5PdPjxfcRomYyG8eYWT4ObkvV4LZ37hJETaDnvRHMq85seQGC7klZeXY9++fThw4ADKysowbNgwPPjgg7jzzjuRlJSk6ECJ/ImBTy0GPvK006dPY/ny5ViwYAHWrVuHli1bok2bNmjfvj2aNWvGJ6cumjEjx+1DoB8xB3jHcCx3+xBI07s3sgX2oAgEAigrK8N3332HkpISHDt2DAMHDsTo0aMxfPhwNGnSRNi+iKKdFvh69pQT+AoKGPj0GPjIN06ePIl//vOfWLRoEdatW4fk5GS0bt0a7dq1U77MA8nHQGkeA581DGXmZa9Y4fYhuEpbRmH//v04dOgQysvLMXDgQIwcORK/+MUvkJKS4vYhEvmSFviuv15O4PvqKwY+PQY+8qUzZ85g7dq1yM3NxfLlFytvrVu3RmpqKq655hrOgEYRRVOgjLbAF22BLNZDk99UVlbi4MGDKC0tRUlJCQBg+PDhGDFiBAYNGsT18ogEYOBTi4GPfO/8+fPYuHEjPvzwQ6xcuRI7d+7EVVddhauvvhqXX365Z5Z6oNjyi1/8t7J9ffedsl3VykS+up21b4/5//ynuv1RTCovL0dpaSmOHj2Kbt26YdiwYbjzzjvRt29f3keIBNMCX7ducgLfzp0MfHoMfBR1vv/+e6xbtw4ff/wxCgsLUVNT4/YhEQkVp/tfTc25uud5g/i6fw80aAAW9kShdejQAUOHDsXAgQNx5ZVXun04RFGNgU8tBj4iIiIiIlJGC3xdu8oJfLt2MfDpxbt9AERERERERCQHO6UTEREREZFyNTWA6EnWOZKnPrbwERERERERRSm28BERERERkXJs4VODgY+IiIiIiJRj4FODXTqJiIiIiIiiFFv4iIiIiIhIuUBAfIscF5yrjy18REREREREUYotfEREREREpJyM8XYcw1cfW/iIiIiIiIiiFFv4iIiIiIhIObbwqcEWPiIiIiIioijFFj4iIiIiIlKOLXxqMPAREREREZFyDHxqsEsnERERERFRlGILHxERERERKccWPjXYwkdERERERBSl2MJHRERERETKsYVPDbbwERERERERRSm28BERERERkXJs4VODLXxERERERERRii18RERERESkHFv41GDgIyIiIiIi5QIB8QEtEBC7vWjALp1ERERERERRii18RERERESkXE0NEBcndpts4auPLXxERERERERRii18RERERESkHFv41GALHxERERERUZRiCx8RERERESnHFj412MJHREREREQUpdjCR0REREREyrGFTw0GPiIiIiIiUo6BTw126SQiIiIiIopSbOEjIiIiIiLl2MKnBlv4iIiIiIiIohRb+IiIiIiISDm28KnBFj4iIiIiIqIoxcBHRERERETK1dTI+SNbVVUVMjMzERcXh/z8/Do/2759O/r164ekpCS0bdsWL730kvwDioCBj4iIiIiIyKTJkyejdevW9f69oqICgwcPRrt27bB161a8/PLLmDFjBubOnevCUV7CMXxERERERKRcIOC/MXerV6/GmjVrsHjxYqxevbrOz/7yl7+guroa7733HhISEtCtWzfk5+fjtddew/jx4106YgY+IiIiIiJyRYW0bVZU1N12YmIiEhMTHW25tLQU48aNw9KlS9G4ceN6P8/Ly8Ntt92GhISE2n8bMmQIZs6ciZMnTyIlJcXR/u1il04iIiIiIlImISEBqampANoCSBb8py2aNGmCtm3bIjk5ufbPH/7wB0fHHAgE8NBDD2HChAno3bt30NccOXIEV199dZ1/0/5+5MgRR/t3gi18RERERESkTFJSEoqKilBdXS1l+4FAAHGG9R5Cte5NnToVM2fODLu9Xbt2Yc2aNTh16hSmTZsm7DhVYeAjIiIiIiKlkpKSkJSU5PZh4PHHH8dDDz0U9jUdOnTAxx9/jLy8vHrBsXfv3njggQcwf/58pKamorS0tM7Ptb9fbNF0R1wg4LehkkREREREROoUFxfXGRd46NAhDBkyBLm5ufjJT36Ca665Bm+//TamT5+O0tJSNGrUCADw5JNPYsmSJSgsLHTr0Bn4iIiIiIiIrPjuu++Qnp6Obdu2ITMzEwBQXl6OjIwMDB48GFOmTMGOHTswZswYzJo1i7N0EhERERER+VlycjLWrFmDSZMmISsrCy1atMDTTz/tatgD2MJHREREREQUtbgsAxERERERUZRi4CMiIiIiIopSDHxERERERERRioGPiIiIiIgoSjHwERERERERRSkGPiIiIiIioijFwEdERERERBSlGPiIiIiIiIiiFAMfERERERFRlGLgIyIiIiIiilIMfERERERERFHq/wFQJYvX+PvLSQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1067,7 +966,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2SklEQVR4nOydd3gVRffHvzedEJLQIUDoRTpSFEWadAQVUPG1ADYE1NfeFWxYsP0sIFZe9UVfQbGAShMQBUVRpChgASkSEEOIIYSUu78/4iZ7N1tmdmfbvefzPHmUe3dn5u6enT3fOWdmQpIkSSAIgiAIgiAIgiCijjivG0AQBEEQBEEQBEE4Awk+giAIgiAIgiCIKIUEH0EQBEEQBEEQRJRCgo8gCIIgCIIgCCJKIcFHEARBEARBEAQRpZDgIwiCIAiCIAiCiFJI8BEEQRAEQRAEQUQpJPgIgiAIgiAIgiCiFBJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEDHPI488glAohOuvv77is6KiIkybNg21a9dGWloaxo4di4MHD3rXSAuQ4CMIgiAIgiAIIqb55ptvMHfuXHTu3Dni8xtuuAEfffQRFixYgDVr1uCPP/7AmDFjPGqlNUjwEQRBEARBEAQRsxQUFOCiiy7CSy+9hJo1a1Z8fvToUbzyyit48sknMXDgQHTv3h2vvfYa1q1bh6+++srDFvOR4HUDCIIgCIIgCIKILYqKilBcXOxI2ZIkIRQKRXyWnJyM5ORkzeOnTZuGkSNHYtCgQXjwwQcrPt+4cSNKSkowaNCgis/atWuH7OxsrF+/Hqeeeqoj7RcNCT6CIAiCIAiCIFyjqKgIzatVQ45D5aelpaGgoCDis+nTp2PGjBlVjn377bfx3Xff4ZtvvqnyXU5ODpKSkpCZmRnxef369ZGT41TrxUOCjyAIgiAIgiAI1yguLkYOgL2hENIFl50PoElBAfbu3Yv09MrStaJ7e/fuxb///W8sX74cKSkpglviH0jwEQRBEARBEAThOukA0lWpl7aRpPKy09MjBJ8WGzduxKFDh3DyySdXfFZWVobPP/8czz33HJYuXYri4mLk5eVFRPkOHjyIBg0aiG23g5DgIwiCIAiCIAjCfeLiACcEX1kZ06FnnnkmtmzZEvHZpEmT0K5dO9x2221o0qQJEhMTsXLlSowdOxYAsGPHDuzZswe9e/cW224HIcFHEARBEARBEETMUaNGDXTs2DHis+rVq6N27doVn19++eW48cYbUatWLaSnp+Paa69F7969A7NgC0CCjyAIgiAIgiAIL/A4wsfCU089hbi4OIwdOxYnTpzA0KFDMXv2bGHlu0FIkv5JdCUIgiAIgiAIgnCY/Px8ZGRk4GhiovA5fPmShIySEhw9etR0Dl+sQBE+giAIgiAIgiDcx6kIHxFBnNcNIAiCIAiCIAiCIJyBInwEQRAEQRAEQbgPRfhcgQQfQRAEQRAEQRDuQ4LPFSilkyAIgiAIgiAIIkqhCB9BEARBEARBEO5DET5XoAgfQRAEQRAEQRBElEIRPoIgCIIgCIIg3IcifK5AET6CIAiCIAiCIIgohSJ8BEEQBEEQBEG4D0X4XIEifARBEARBEARBEFEKRfgIgiAIgiAIgnCfUKg8yieScFhseVEACT6CIAiCIAiCINwnLk684COqQFeYIIioZvfu3QiFQpg3b57psRMnTkSzZs2Yyg2Hw+jYsSMeeughew0kuGjWrBkmTpzodTMCgfparV69GqFQCKtXr+Yu64UXXkB2djZOnDghroEEQRCEK5DgI4iAMHr0aKSmpuLvv//WPeaiiy5CUlIS/vrrLxdbpk9ZWRlee+019O/fH7Vq1UJycjKaNWuGSZMm4dtvv/W6ebZ46623sHfvXlxzzTUVn33zzTe45ppr0KFDB1SvXh3Z2dk4//zzsXPnTs0yfvrpJwwbNgxpaWmoVasWLrnkEvz555+OtruwsBDPP/88hgwZgoYNG6JGjRro1q0b5syZg7KysirHh8NhPPbYY2jevDlSUlLQuXNnvPXWW4620Slmz57NJPyDxLp16zBjxgzk5eU5Ws/EiRNRXFyMuXPnOloPQRAxhhzhE/1HREBXhCACwkUXXYTjx49j0aJFmt8XFhbigw8+wLBhw1C7dm2XW1eV48eP46yzzsJll10GSZJw5513Ys6cObj00kuxfv169OrVC/v27XO8HU2bNsXx48dxySWXCC131qxZGD9+PDIyMio+e/TRR/Huu+/izDPPxP/93//hqquuwueff46TTz4ZW7dujTh/37596Nu3L3755RfMnDkTN998M5YsWYLBgwejuLhYaFuV/Pbbb7j22mshSRJuvPFGPP7442jevDmmTp2Kyy67rMrxd911F2677TYMHjwYzz77LLKzs/Gvf/0Lb7/9tmNtNGLHjh146aWXLJ0brYLvvvvu0xR8dq6VmpSUFEyYMAFPPvkkJFoBjyAIIlhIBEEEgsLCQqlGjRrS0KFDNb+fP3++BEB6++23XW6ZNtOmTZMASE899VSV70pLS6VZs2ZJe/fudaz+kpIS6cSJE1znTJgwQWratKnpcd99950EQFqxYkXE519++WWVOnfu3CklJydLF110UcTnU6ZMkapVqyb9/vvvFZ8tX75cAiDNnTuXq908/Pnnn9LWrVurfD5p0iQJgPTzzz9XfLZv3z4pMTFRmjZtWsVn4XBYOuOMM6TGjRtLpaWljrXTCTp06CD169fP62ZwU1BQoPvdrFmzJADSrl27TMtZtWqVBEBatWqVpXZ8++23EgBp5cqVls4nCIKQOXr0qARAOtqggSRlZQn9O9qgQXnZR496/TN9A0X4CCIgVKtWDWPGjMHKlStx6NChKt/Pnz8fNWrUwOjRo03Lmj17Njp06IDk5GRkZWVh2rRpVSIE/fv3R8eOHfHjjz9iwIABSE1NRaNGjfDYY4+Zlr9v3z7MnTsXgwcPxvXXX1/l+/j4eNx8881o3LixaVkLFixA+/btkZKSgo4dO2LRokVV5trJ8/Qef/xxPP3002jZsiWSk5Px448/6s7he//999GxY8eIcll5//33kZSUhL59+0Z8ftpppyEpKSnis9atW6NDhw746aefIj5/9913cdZZZyE7O7vis0GDBqFNmzZ45513DOufPn064uLisHLlyojPr7rqKiQlJeGHH37QPbdOnTro0KFDlc/PPfdcAIho5wcffICSkhJMnTq14rNQKIQpU6Zg3759WL9+vWE7J06ciLS0NPz2228YOnQoqlevjqysLNx///1VokTHjh3DTTfdhCZNmiA5ORlt27bF448/XuU49by0efPmIRQK4csvv8SNN96IunXronr16jj33HMj0mObNWuGbdu2Yc2aNQiFQgiFQujfvz8AoKSkBPfddx9at26NlJQU1K5dG3369MHy5csNf59c9+eff47Jkyejdu3aSE9Px6WXXoojR45UOf6TTz7BGWecgerVq6NGjRoYOXIktm3bpnnNfv31V4wYMQI1atTARRddpFn/jBkzcMsttwAAmjdvXvG7du/erXmt9Pj6668xbNgwZGRkIDU1Ff369cOXX35Z5bju3bujVq1a+OCDD0zLJAiCIPwDCT6CCBAXXXQRSktLqwiC3NxcLF26FOeeey6qVatmWMaMGTMwbdo0ZGVl4YknnsDYsWMxd+5cDBkyBCUlJRHHHjlyBMOGDUOXLl3wxBNPoF27drjtttvwySefGNbxySefoLS01HYa5ZIlS3DBBRcgMTERDz/8MMaMGYPLL78cGzdu1Dz+tddew7PPPourrroKTzzxBGrVqqV53LJlyzB27FiEQiE8/PDDOOecc7jmFa5btw4dO3ZEYmKi6bGSJOHgwYOoU6dOxWf79+/HoUOH0KNHjyrH9+rVC99//71hmXfffTe6du2Kyy+/vGJO59KlS/HSSy/h3nvvRZcuXZh+h5KcnBwAiGjn999/j+rVq+Okk06q0kb5ezPKysowbNgw1K9fH4899hi6d++O6dOnY/r06RXHSJKE0aNH46mnnsKwYcPw5JNPom3btrjllltw4403MrX/2muvxQ8//IDp06djypQp+OijjyLmVz799NNo3Lgx2rVrhzfeeANvvPEG7rrrLgDlz8R9992HAQMG4LnnnsNdd92F7OxsfPfdd0x1X3PNNfjpp58wY8YMXHrppfjvf/+Lc845J0KsvvHGGxg5ciTS0tLw6KOP4p577sGPP/6IPn36VAg0mdLSUgwdOhT16tXD448/jrFjx2rWO2bMGFx44YUAgKeeeqrid9WtW5ep3QDw2WefoW/fvsjPz8f06dMxc+ZM5OXlYeDAgdiwYUOV408++WRNMUgQBGEJmsPnDp7GFwmC4KK0tFRq2LCh1Lt374jPX3jhBQmAtHTpUsPzDx06JCUlJUlDhgyRysrKKj5/7rnnJADSq6++WvFZv379JADS66+/XvHZiRMnpAYNGkhjx441rOeGG26QAEjff/89x6+rSqdOnaTGjRtLf//9d8Vnq1evlgBEpF7u2rVLAiClp6dLhw4diihD/u61116r+Kxr165Sw4YNpby8vIrPli1bVqVcPRo3bmx6DWTeeOMNCYD0yiuvVHz2zTffVLm2MrfccosEQCoqKjIsd8uWLVJSUpJ0xRVXSEeOHJEaNWok9ejRQyopKWFql5ITJ05I7du3l5o3bx5x/siRI6UWLVpUOf7YsWMSAOn22283LHfChAkSAOnaa6+t+CwcDksjR46UkpKSpD///FOSJEl6//33JQDSgw8+GHH+uHHjpFAoJP3yyy8VnzVt2lSaMGFCxb9fe+01CYA0aNAgKRwOV3x+ww03SPHx8RH3WC+ls0uXLtLIkSMNf4sWct3du3eXiouLKz5/7LHHJADSBx98IEmSJP39999SZmamdOWVV0acn5OTI2VkZER8Ll8zs2srY5TSqb5W6pTOcDgstW7dWho6dGjEtSssLJSaN28uDR48uEqZV111lVStWjWmthEEQehRkdKZlSVJjRsL/TualUUpnSpIAhNEgIiPj8f48eOxfv36iKjA/PnzUb9+fZx55pmG569YsQLFxcW4/vrrEacYAbvyyiuRnp6OJUuWRByflpaGiy++uOLfSUlJ6NWrF3777TfDevLz8wEANWrUYP1pVfjjjz+wZcsWXHrppUhLS6v4vF+/fujUqZPmOWPHjjWNbhw4cACbNm3ChAkTIhZcGTx4MNq3b8/Utr/++gs1a9Y0PW779u2YNm0aevfujQkTJlR8fvz4cQBAcnJylXNSUlIijtGjY8eOuO+++/Dyyy9j6NChOHz4MP7zn/8gIYF/e9VrrrkGP/74I5577rmI848fP26rjcryZUKhEK655hoUFxdjxYoVAICPP/4Y8fHxuO666yLOu+mmmyBJkmlEGShPZw2FQhX/PuOMM1BWVobff//d9NzMzExs27YNP//8M9Pv0apbGe2dMmUKEhIS8PHHHwMAli9fjry8PFx44YU4fPhwxV98fDxOOeUUrFq1qkqZU6ZMsdQWHjZt2oSff/4Z//rXv/DXX39VtOvYsWM488wz8fnnnyOs2sC4Zs2aOH78OAoLCx1vH0EQMQBF+FyBrghBBAx5Ps/8+fMBlM+XW7t2LcaPH4/4+HjDc2Xnt23bthGfJyUloUWLFlWc48aNG0c40UC5w6c1P0lJeno6ABhuISFTXFyMnJyciD+lo96qVasq52h9BpTPYzJDLrd169ZVvlNfFyMkk5UKc3JyMHLkSGRkZGDhwoUR90ZOu9Xa06yoqCjiGCNuueUWdOnSBRs2bMD06dOZBauSWbNm4aWXXsIDDzyAESNGRHxXrVo1222Mi4tDixYtIj5r06YNAFQMWvz+++/IysqqMkAgp5KyiDblXEgAFYLczFYB4P7770deXh7atGmDTp064ZZbbsHmzZtNz5NR21JaWhoaNmxY8ftkITlw4EDUrVs34m/ZsmVV5uQmJCQwzW+1i9yuCRMmVGnXyy+/jBMnTuDo0aMR58h2r+4XCIIgLEGCzxX4h4IJgvCU7t27o127dnjrrbdw55134q233oIkSboLO9hBT0CaiZ127doBALZs2YKuXbsaHrtu3ToMGDAg4rNdu3axN1IBiwARQe3atQ2FxNGjRzF8+HDk5eVh7dq1yMrKivi+YcOGAMqjjWoOHDhQsWehGb/99luF075lyxaenwCgfNGR2267DVdffTXuvvvuKt83bNgQq1atgiRJEQ6+3G717/ISq7YKAH379sWvv/6KDz74AMuWLcPLL7+Mp556Ci+88AKuuOIK222To2RvvPEGGjRoUOV7dVQ2OTk5IgLvFHK7Zs2apfucKqPrQLmATk1Nde1ZIwiCIOxDgo8gAshFF12Ee+65B5s3b8b8+fPRunVr9OzZ0/S8pk2bAijfn0sZdSkuLsauXbswaNAgIe0bPnw44uPj8eabb5ou3NKlS5cqqyE2aNCgYrXLX375pco5Wp+xIl8DrfS9HTt2MJXRrl07XVFaVFSEUaNGYefOnVixYoVm1K1Ro0aoW7eu5iIxGzZsMBXJQLmzPnHiRKSnp+P666/HzJkzMW7cOIwZM4bpN3zwwQe44oorMGbMGDz//POax3Tt2hUvv/wyfvrpp4jf8fXXX1d8z9LO3377rSKqB6BiI3p5pdWmTZtixYoV+PvvvyOifNu3b6/4XgRGUalatWph0qRJmDRpEgoKCtC3b1/MmDGDSfD9/PPPEYMWBQUFOHDgQEXEtGXLlgCAevXqCXvGZOxE2uR2paenM7dr165dVRbxIQiCsAxF5FyBrjBBBBA5mnfvvfdi06ZNzNG9QYMGISkpCc8880xE5OOVV17B0aNHMXLkSCHta9KkCa688kosW7YMzz77bJXvw+EwnnjiCezbtw81a9bEoEGDIv5SUlKQlZWFjh074vXXX0dBQUHFuWvWrLEUzZJp2LAhunbtiv/85z8R6WrLly/Hjz/+yFRG7969sXXr1irpjmVlZbjggguwfv16LFiwAL1799YtY+zYsVi8eDH27t1b8dnKlSuxc+dOnHfeeaZtePLJJ7Fu3Tq8+OKLeOCBB3DaaadhypQpOHz4sOm5n3/+OcaPH4++ffviv//9r2406eyzz0ZiYiJmz55d8ZkkSXjhhRfQqFEjnHbaaaZ1AcBzzz0Xcf5zzz2HxMTEijmnI0aMQFlZWcRxQPnKk6FQCMOHD2eqx4zq1atrblD+119/Rfw7LS0NrVq10kxn1eLFF1+MWOF2zpw5KC0trWj30KFDkZ6ejpkzZ1ZZCRdAxPYRvFSvXh0ANH+XGd27d0fLli3x+OOPRzxjRu367rvvmO87QRAE4Q8owkcQAaR58+Y47bTTKvbDYhV8devWxR133IH77rsPw4YNw+jRo7Fjxw7Mnj0bPXv2jFigxS5PPPEEfv31V1x33XV47733cNZZZ6FmzZrYs2cPFixYgO3bt2P8+PGGZcycORNnn302Tj/9dEyaNAlHjhzBc889h44dO2o6qKw8/PDDGDlyJPr06YPLLrsMubm5ePbZZ9GhQwemcs8++2w88MADWLNmDYYMGVLx+U033YQPP/wQo0aNQm5uLt58882I85TX984778SCBQswYMAA/Pvf/0ZBQQFmzZqFTp06YdKkSYb1//TTT7jnnnswceJEjBo1CkB5embXrl0xdepUw338fv/9d4wePRqhUAjjxo3DggULIr7v3LkzOnfuDKB8Duf111+PWbNmoaSkBD179sT777+PtWvX4r///a/pnFGgfIGXTz/9FBMmTMApp5yCTz75BEuWLMGdd95ZscDOqFGjMGDAANx1113YvXs3unTpgmXLluGDDz7A9ddfXxGJskv37t0xZ84cPPjgg2jVqhXq1auHgQMHon379ujfv3/FPnPffvstFi5cGLHYjBHFxcU488wzcf7551c8T3369KnYEzM9PR1z5szBJZdcgpNPPhnjx49H3bp1sWfPHixZsgSnn356FbHL85sA4K677sL48eORmJiIUaNGVQhBI+Li4vDyyy9j+PDh6NChAyZNmoRGjRph//79WLVqFdLT0/HRRx9VHL9x40bk5ubi7LPPttRWgiCIKlCEzx28Wh6UIAh7PP/88xIAqVevXtznPvfcc1K7du2kxMREqX79+tKUKVOkI0eORBzTr18/qUOHDlXOnTBhAtPWBZJUvo3Eyy+/LJ1xxhlSRkaGlJiYKDVt2lSaNGkS85YNb7/9ttSuXTspOTlZ6tixo/Thhx9KY8eOldq1a1dxjLz1wqxZs6qcr7UtgyRJ0rvvviuddNJJUnJystS+fXvpvffe4/ptnTt3li6//PKIz+StLPT+1GzdulUaMmSIlJqaKmVmZkoXXXSRlJOTY1hvaWmp1LNnT6lx48YRWw5IkiT93//9nwRA+t///qd7vrw0v97f9OnTI44vKyuTZs6cKTVt2lRKSkqSOnToIL355psmV6ecCRMmSNWrV5d+/fXXit9Zv359afr06RHbgkhS+dYFN9xwg5SVlSUlJiZKrVu3lmbNmhWxXYAk6W/L8M0332j+TnkLAkkq3wZh5MiRUo0aNSQAFVs0PPjgg1KvXr2kzMxMqVq1alK7du2khx56KGKrBS3kutesWSNdddVVUs2aNaW0tDTpoosukv76668qx69atUoaOnSolJGRIaWkpEgtW7aUJk6cKH377bdVrhkPDzzwgNSoUSMpLi4uYosGs20ZZL7//ntpzJgxUu3ataXk5GSpadOm0vnnny+tXLky4rjbbrtNys7OrnJPCIIgeKnYlqFFC0lq1Uro39EWLWhbBhUhSWKY0U4QBOEjunbtirp161aZ++cmb7zxBqZNm4Y9e/YgMzPTs3b4mYkTJ2LhwoW2orF+Zt68eZg0aRK++eYb9OjRw+vmOMqJEyfQrFkz3H777fj3v//tdXMIggg4+fn5yMjIwNGWLZHOkC3CVXZZGTJ+/RVHjx6tWDU81qEYKkEQvqWkpASlpaURn61evRo//PAD+vfv702j/uGiiy5Cdna27oInBBFNvPbaa0hMTMTVV1/tdVMIgiAITmgOH0EQvmX//v0YNGgQLr74YmRlZWH79u144YUX0KBBA88dz7i4OGzdutXTNhCEW1x99dWeP3MEQUQhTszho+TFKpDgIwjCt9SsWRPdu3fHyy+/jD///BPVq1fHyJEj8cgjj6B27dpeN48gCIIgCDuQ4HMFmsNHEARBEARBEIRrVMzha9vWmTl8O3bQHD4FFOEjCIIgCIIgCMJ9KMLnCrRoC0EQBEEQBEEQRJRCET4i6jh8+DBWrlyJjz/+GLt27fK6OQQhnFBZGcrCleN1IQBSXNWUGOUYZ3y8pPqEIAglLVq0wPDhw3HmmWeiTp06XjeHIGIDivC5Agk+IvCUlpbiiy++wKeffoolS5bgxx9/RP369VGvXj1kZGR43TwiBpnQpQs2oavXzYgamjUDPvjgP143g4hyNm3ahGXLluHgwYNo3749Ro4ciWHDhqFPnz5ISCB3iSCI4EKLthCB5NixY1i2bBkWLlyIxYsXAwAaNWqEBg0aoFGjRkhNTfW4hYTfOeusuV43gYgRFi+e7HUTCA4KCwuxf/9+5OTkYP/+/QCAs846C+PGjcOQIUNQvXp1j1tIEMGnYtGWTp2cWbRlyxZatEUBCT4iMBw5cgTvv/8+3nnnHXz22WfIyMhAo0aN0LRpU9SrVw+hUMjrJhICIUFGEN4T62JVkiQcOnQIv//+O/bv34+jR49i4MCBOP/883HOOeegZs2aXjeRIAIJCT53IcFH+JqCggJ8+OGHeP3117Fy5UrUr18fWVlZaNasGTIzM0nkeQgJMoIg/EyPHsCMGeIEqyRJyMvLw+7du/HHH3/g0KFDOPPMM3HJJZdg9OjRSEtLE1YXQUQ7FYKvSxdnBN8PP5DgU0CCj/AdRUVF+Pjjj/HGG2/gk08+Qc2aNdGkSRO0bNmSHlxOZsywJ8oa4oCl8z76tqGtegmCIETRqpX1c59+Wl8wHj16FL/++iv27duHI0eOYMSIEbjkkkswfPhwpKSkWK+UIGKACsHXrZszgu/770nwKSDBR/gCSZKwbt06vPrqq/jf//6HatWqITs7Gy1atECtWrW8bp6j2BVlTmFV7DkBCUgiWhk0iP3YvDzHmuE7/PhbjcRfbm4ufv31V+zduxfHjx/HBRdcgMsuuwynnXYaZaIQhAYk+NyFBB/hKb///jtef/11vPzyyzh8+DBatGiBVq1aoW7dur58SV5/fbk4y8z0th1O4yexJ4y8PHz0y0lCihpVZ72QcoThN4P0W3sAX7XpOKp53YQIRIsrP4o1kRgJP3nO36+//orffvsNdevWxeWXX44JEyYgOzvbxVYShL+pEHzduzsj+DZuJMGngAQf4TqFhYVYuHAhXnrpJXz11Vdo2rQpmjdvjuzsbN8sfS0LOyN85D8KIyqFnozaC40mrzQajVGmWTOvW+AIfhN9IigsrPz/Q4e8a4ebGIm/0tJS7NmzB7/99hv27NmDU089FVdeeSXGjRtHK0kTMQ8JPnchwUe4xubNmzFnzhy8+eabqF69Opo3b45WrVp5+uJjEXZmRIuvHVVij1fMBV38RYsRAkC9esbfR5GjHC2iTyn0zIhWIWgk/IDygc5ffvkFu3btwrFjx3DJJZfg6quvRufOnV1qIUH4iwrB16MH0gUP9ueXliLj229J8CkgwUc4yrFjx/C///0Pzz33HLZt24aWLVuiTZs2rm+jIELYmRFUnzvwQo/y0YJrfDJmIs+MgIvAIAo/HpFnRrSJQJaUz507d+LXX39Fhw4dcM011+CCCy6g/f2ImIIEn7uQ4CMcYdOmTZg9ezb++9//Ij09HS1btkSrVq2QnJzsaL1uCDszguR7B1LsuSnIgiL+gmR0gH2BZ0YABWBQRJ9IoWdG0IWgWdTvxIkT+OWXX/Drr78iPz8fF110EaZOnYquXbu600CC8JAKwderlzOCb8MGEnwKSPARwiguLsZ7772HJ598Eps3b66I5jmxAIsfhJ0ZTvjgosqshuPWT45lweW39sgEQfA5LfLMCIAI9LPoc1PomeGmEBThK95/v7HwkyQJf/75Z0XUr0uXLrjxxhsxZswYJCYm2m8AQfgQEnzuQoKPsM2BAwfwwgsvYPbs2ZAkCa1bt0bbtm2FRPPuvXcu8vMFNNIj6tXzn59pS+yJQks4+VVM6SGqvSKEkJ09v5x6wLwWeGY4+WAmJVk+tQz2Fi8oLrZ1ehX8JPTM0BKCfvL1zIQfUB7127FjB37++WeEQiFMnToVU6ZMQYMGDVxoIUG4R4XgO/VUZwTfV18xCb45c+Zgzpw52L17NwCgQ4cOuPfeezF8+HAA5XtD33TTTXj77bdx4sQJDB06FLNnz0b9+vWFttlpSPARlpAkCevXr8eTTz6JDz74ANnZ2WjTpg2aNGliK5p3773GkTs/ir8grTHhC7EHaHuRQcvfSk8Hioq8boU9sScaP7XFCj6JlNoVfaIoLQUKCrxuBT9K39Gv7WeJ+u3duxc7d+7Enj17cM455+CGG25A7969fbllEUHwUiH4TjvNGcG3bh2T4Pvoo48QHx+P1q1bQ5Ik/Oc//8GsWbPw/fffo0OHDpgyZQqWLFmCefPmISMjA9dccw3i4uLw5ZdfCm2z05DgI7goLS3Fu+++i5kzZ+Lnn39GmzZt0K5dO2RkZFgu00zk6eG2+LMasPCL4POF2Avicn5mIQKvRZ9fRFZamvbnpaXutoMHvTb7YHsYP4g+o1vnJyHFerv81GYZlqjf0aNHsX37duzcuROtW7fGnXfeibFjx/pmGyOCsIIbgm/v3r0Rgi85OZkp+6xWrVqYNWsWxo0bh7p162L+/PkYN24cAGD79u046aSTsH79epx66qlC2+0kJPgIJgoKCvDyyy9j1qxZKCoqQrt27dC2bVtL8wusCjwjRIk/J7LQvBZ8gRN6ejgtAO3kfnkp+rwWfHqiyQgvRKCVdnrsUHst+qzeJjeElYhb4ycByCL8SkpKsGPHDmzfvh3VqlXDLbfcgssvvxxpVmybIDymQvD16eOM4PviiyqfT58+HTNmzNA9r6ysDAsWLMCECRPw/fffIycnB2eeeSaOHDmCTEUGSNOmTXH99dfjhhtuENpuJ6HhIcKQAwcO4P/+7/8we/ZspKeno3379mjWrBni4uK4ynFC5ClR+upm4s/vU4tE4qnYEz35R33j7AhA0RN7UlK8j/R5gVVHU+vlLloEinCC5TZ5JPziUea56LOC3qW3K7BE3wZlO70Wf/I70kj4JSYmomPHjmjfvj12796NWbNm4Z577sHUqVPx73//Gw0bNnSruQQRCLQifFps2bIFvXv3RlFREdLS0rBo0SK0b98emzZtQlJSUoTYA4D69esjJyfHyaYLhwQfocmOHTvw0EMP4e2330Z2djb69++PBg0acM0dcFrk6SE/22lp/s4mcxrPxJ5bqzywCEA3V2yINdEnOqqg582zPMRORzg8FH5BFX1aGN0mPcHl1iX3i/hjEX5xcXFo0aIFmjdvjpycHCxcuBBPPvkkxo8fj7vuugtt27Z1q7kEYZ+4uPI/0WUCSE9PZ1qls23btti0aROOHj2KhQsXYsKECVizZo3YNnkMCT4igh07dmD69Ol477330Lp1a5x77rlVRjb08ErgyWg5EwkJsSn6PBF7Xi/nl5VV/l8vvbVYEX1uppBpefxepbF6JPyiSfTpoTYpeaFTLxbq8oP4YxF+oVAIDRs2RMOGDXHkyBFs3LgRnTp1wtixYzFjxgwSfgTBSFJSElq1agUA6N69O7755hv83//9Hy644AIUFxcjLy8vwhc+ePBg4FbOJcFHACifhDpjxgy89957aNOmDcaNG4caNWqYnuelyGP1OYMu+nhWeI9HmXyW9gHRtma7luMtG4ZXnlo0iz6v5wqpR2pF2zMrHgg/t0Wfl32mss9T33K3BaDT4q9OHePvn3mm/B173XXGc/xq1qyJPn36oHPnztiyZQs6deqEMWPG4L777iPhR/gbByN8VgmHwzhx4gS6d++OxMRErFy5EmPHjgVQHhjZs2cPevfuLaKlrkGLtsQ427dvx/Tp07Fo0SK0adMGnTt3NhR68svn8GG3WliJXV/TbQdGbq9bPmGl2HMQ2cH2UujxXlCvhJ8I0ccygmh0PUQ+qF6KPZbUXK/EHyD0IZfijEVdCOav7LKw/WX7vRJ8PANcXm7To+xWzESbSMyEn8zff/+NzZs3Y+fOnRgzZgxmzJiBdu3aOdw6gmCnYtGW/v2dWbRl9WqmbRnuuOMODB8+HNnZ2fj7778xf/58PProo1i6dCkGDx6MKVOm4OOPP8a8efOQnp6Oa6+9FgCwbt06oW12GhJ8Mcrvv/+OO+64AwsXLuQSeno4IQCd8C+9WBfCDcHnitgDtC8gLclXlTp13PGY3RpN8CpiaXUOpofiT0oyX/LbLiyizzbhME6UuptGamO/egDuCcCM9KrX/0Sxu3vjWRF+48aNwyOPPILs7GyHW0cQ5lQIvoEDnRF8n33GJPguv/xyrFy5EgcOHEBGRgY6d+6M2267DYMHDwZQufH6W2+9FbHxetBSOknwxRh5eXl44IEH8Pzzz6NFixbo2rWrLaGnhxUB6FYAgdcPt9OuqBF7vBdNhLhy6uKJFH5mQ/tOiz4XDMxIwITyjzpTqcjFdhwSf2UJ+tdFdHaSGrcEnxGixaBdsaeFCAGoJe6McFP4sYo+oFz4ff/999i1axeuueYa3H333czz8wnCCSoE36BBzgi+FSuYBF+sQIIvRiguLsbzzz+PGTNmoFatWjj55JNRR8dZtSryjNASgF5liGn54E61xWl/3JdiTw8WoeVWxIpX9FnN2YpywaeFLRHo9IvZovgzEnd6xILo04NXDDoh9rRgEYC8Ak8Pvwq/w4cPY+PGjcjLy8OMGTMwdepUJLl1AwhCAQk+dyHBF+VIkoQFCxbg5ptvRnFxMbp164YmTZpobq/ghNBTkpxUbmpH891NfVEiP/duZHwFXuw5LVZk0eXl5tZq4efEZBwnr6PD105keqKhEPTihazTCVgRd3oEXvRZFHx6aAlBL7WGLABFiTwt/Cj8JEnC3r178d133yE5ORmPP/44zjvvPK5tlwjCLhWCb/BgpCcmii27pAQZy5eT4FNAgi+K2bRpEyZPnozt27eja9euaNOmTZUN090SeVo4LfyMnvGgCz5HxZ4bc8/UXp4Hqy9I6RkAgFDxCWcrCqjgi5q5aCaIWODEDCeFn6PXULDg06S4GFJKNefr0SBUpNi+xoWtPtwQfzzRvnA4jJ07d2LTpk1o164dXnzxRXTp0sXB1hFEJST43IUEXxRy5MgR3HnnnXj11VfRoUMHdO3aFYmqh8lJoWck8rQQJfx4nukgC75Aiz2z4XwHhZ8s8LQIrOgLsODTWgemWoo7r6PjRVX7HKcjTYEUfU4LPp2O2GkBGCH0tHBY/PlN+JWUlGDTpk3Ytm0bLr/8csycOZPm9xGOUyH4hg51RvAtXUqCTwEJvigiHA7jtddewy233IKMjAz06tUrotP2MppnhhXRZ/cZdlL0BU7seS30tBAg/oxEnhpHRV/ABJ8XYk+NaPGnJfK0cFL4OSX6ok3waSFCBJoKPTUxJvzy8vKwYcMGHD16FLNmzcKkSZOqZAURhChI8LkLCb4oYePGjbjqqquwa9cu9OjRA82aNavIx/dTNM8MI+En+pn1g+CLj2O/fhLMnYNQ2IIgdFLsifCeOYQfj8DTInCizwHB56TYs7q7gx3xxyr01ARN+AVS9NnohHkFILfYU+Og+LMq/JKL2BZImnzrrcxlSpKE3bt349tvv0WLFi0wd+5cdO/e3VL7CMKICsE3fLgzgu+TT0jwKSDBF3AKCgpw5513Yu7cuejYsSO6du2KhH+cwLmPPRZx7IkUe86wjGiRp+ZofsiVNRxECb7khEiRdaI0Xvg1YhF7PCh9uPhSB0SOU96yhvizK/LUOCb6OATf3+HqTMex+OIZKey/x49iTwszAWhV5Knxk+hjudfMGQA8lTsl+ASPuOkJQNtCTwunxF9uLk6k1WYWcrzwCL/S0lJs2rQJW7duxeTJkzFz5kykebW0NhGVkOBzFxJ8AWbJkiW44oorkJiYiN69e1ekb6qFnh48AtBpkQcgwiN0YxI/j7+hFnWGCB6+Fy32AHMfzrIIdHgi1PGikBtrKwgTfUeLIgWU6MiOaF9c1qS1aokt18l925XiT5TQUyParOXr7ERGrvC0b+VAhcgGOzyRWkqp5ozYU2KnM8rNNf7eoXRtHtEHlK8J8NVXX6G0tBQvvfQSRo4c6Ui7iNijQvCNHOmM4FuyhASfAhJ8ASQnJwfTpk3Dp59+ih49eqBt27YIhULMQs8IpQh0W+SpcVr0Kf0NLkFnhs8Fnx2RoCsEXVhbXe3MOy38eESfWtjp4WfBxxKAtCIEnRR7MoWFQGqq8/VYMXOz6yrar3dU8BnB80PcWDWrsLDy/90wDqMOyUzc6eHgoky8aZ7bt2/Hxo0bMWzYMDz//PNo0KCBY20jYoMKwTdqlDOC76OPSPApIMEXIMLhMF5++WXcfPPNaNiwIXr16oXU1FQhQi8C5Qve46F+0aKvyoivaKHiY7EnOhpUXOz8qopmERs3RR+rqDNCpHk4Fd2zilZX4bTYU/r0Spz277W6DbvXT6Rv75no00P945wWfHqGAbgn/qyKPC18Eu0rLCzEhg0bcODAATz++OO48sorae8+wjIk+NyFBF9A2L17Ny699FJs2bIFp556KrKzs8UKPbMXuh3hZ8Prsyv4DFN6nIhKCfTo/S721IgUf7ypeaKFn9JXE+lrRbPgU1NcDDi1sruRP6/EKd9etn/Rdudb0SfaOOR3ghN9MKtxAOINJC8v8t+if59PhN+ePXvw1VdfoVOnTnj99dfRrFkzR9pFRDcVgu/ss50RfB98QIJPAa2363PC4TBmz56N9u3bIzc3F+eccw4+efttcWKvtJTtZZ6byzdiWVRU+WcDnjkYoaLjVf5cJYbFHlAu0uQ/q1g9324kSTZvXjPnxY19rK3ghNgDyv1f+U8UPP58YSHf8UYUF1f+yYiOYDq9O4rvUF5U9cW1Au/Nlg3EjpEYGbmI36SE9X3NCa8/kZ2djXPOOQe5ubno0KED5syZg7BfOzeCIABQhM/X7Nq1C5deeim2bduG3r17Y8n8+eIKD1j+llakz7ag82k6p1/FnlW/xa0VFWVYoi68os6PUT635++xwmonvNE/EcKNN6DD+lv8GunzbZSP513B2k+LUvYAm6FYGcUIQMSPN9q3b98+rF+/Hh07dqRoH8FFRYTv3HOdifAtWkQRPgUU4fMh4XAYzz//PDp06IC8vDz8vnmzGLEnjw6KeHHLoRBBkTwzPI/emeEzsRcO+0PsAfqRP7vRQD20TNFuBC+aIy9eiD0gMjBi5juL8uVZgjlWgk2iu0BR96QM8WIK8hLRUUAWjCJ/dkLWTkT8BMMb7WvcuDHOPvts5Obmon379pg9ezZF+wjCh1CEz2fs378fF198MX744Qe889prGNS/v/1CncrXUiJ6so7Wi1b0fAuRo60C9rXScs6s6Ei/CD0t5Nvq9LoJeXn+HkwXMT4g6j6L6h5E2orcnYgM2uiRmiq27SKjfb6K9HkV4WPBjRGZggJn5hyKKtOqsRw6pPnx5Mcf5y5KjvZ16dIFb775Jho1amStTURMUBHhGzvWmQjfu+9ShE8BCT4fMX/+fFx99dVo3Lgxvlq61L6RuiH0lNgVfWbenV8En/q6CvLK7I7Gi9wuy4lBdDc0fFDWTOAVfFo+mVrw1avH3w6vons85Tm517Nch2g79JvoE5baKcpgRAs+ZefihCgrKKj6meh6RJR3+DDQoIGuiLMCr/ArLi7G119/jX379mHu3Lm48MILhbWFiC5I8LkLCT4fkJubi8mTJ+PTTz9F79690bx584rvLC3O4qUX5+TEHLcEH+/1E+CRiUi9Ymk2S1OdiurpYfe2mmVXifTL7NxqpQ/mlwifXEadOvbKcUrsqREl/vTK95vwk59pEQJSiOhTCjU7D4NIwWfWwdjtALTEnsjyrZR3+LD5MQIXEbMS7du1axfWrVuH4cOH48UXX0TNmjWFtYeIDioE33nnOSP4FiwgwaeABJ/HLFu2DJdccgnS0tJw2mmnIZXB49AUgTk55f+167nJ2PHgjESfnRwtUd6YyDXVAyT2jEhIcF/oqeG5vbxTaNwSfawD634TfEaYdSluiT0lVoUfa1tFCj+zbob12bXbXQkXfGYYPShuCj4lvB2BmdizUzZreSziTg+PRV9hYSHWrVuHgoICvPnmmxg8eLCw9hDBhwSfu5Dg84gTJ07glltuwUsvvYSePXuiXbt2ljYwnXvjjdpfWBF+TkzCAdxfPU2J0W/ygeDzg9gDIv0vu36L3dttdIvtLO8vyh8TsW2DHwSfCMEo8j1qtfthEX9WyhYd7RORmhk40aeHyCwUqx2OUYfAI/R4y2ZB9EagHgo/SZKwfft2fPPNN7jyyisxa9YsJCcnC2sPEVwqBN/55yNd8IBJfnExMt55hwSfAhJ8HvDTTz9h3LhxOHLkCM444wxkWpj7piv0tHB7iF4u04nJN2ZemJvrqPsguida7GnhxaroQOWtFrmHm5V3itYAuwj/yW4ZfhB8avvT2q2FBRFdkFZ3I6JcO8JPfX3sdju+SO0UIfi0yrDSn4rqdJQdg12xp1euGWYjST4SflaifXl5eVi7di1q1qyJhQsX4qSTThLSFiK4VAi+8eOdEXxvv02CTwFty+AikiRh7ty5OPnkk5GcnIwRI0Y4L/aAco9V/pNxYolrN5fNVtfnZr2C8FrssS4lb3Z5RW5uLVNQUJ4eKVLsAeYmonxU1I8MEYmW/VnZ/kLUY1tQUPknsjvgsW/lzjda18euVnJ49xtvUV88N/dCkQ0mL0/8HHgjQ+R5WERcE0FL+869+WbuczIzMzFixAgkJyfj5JNPxosvvgiKNxCEe1CEzyX++usvTJw4EZ9//jnOOOMMS8sVcws9LeQXhtWheDVmXpXoVRZE5VnZHSr3OJVThNizQ2FhedauE0JPjeipMbm55QvZAd5Oj7Fzvh+jeyyoux0nxmiU7RKdlqlVnpXr4HWkz/Mon9Xzlf2uE3t2qMt0YGNzJCXZzwsPeLRv3759+OKLL9CvXz/MmzcPtUT5I0SgqIjw/etfzkT45s+nCJ8CEnwu8MUXX+C8885D9erVcfrppyOF820tVOgpcSv/yoroc3oZPQ8FX9DFHiB+FXSWLCoR9ch+lh/8pSALPhFBENEZ33ptcmLPRxG2GGjR54dQpVyGqPlpZgJSRKehTFkQUZ7dMjwUfUVFRfjyyy9x7NgxLFiwAH369BHSFiI4kOBzF0rpdJBwOIyHHnoIgwYNQosWLTBw4EAusTf3xhvtiT2z1BievCvA+bRJt1IzY1TssaZwGqGV3mbnlskpeCxYrUMra0qEYBG5wX2QEHHtSkvLfV/5T0R5eohKOQ6HK/+cmsbm5vlRg/LGWIXFQOymVKoNXUSKpt0y7F63f7CS4pmSkoKBAweiRYsWGDRoEGbOnIlwrHaqsU5cnDN/RAQO5CsQAHDo0CFceOGF2LRpE0aMGIG6desyn2s7osf7AsjN1Y/2iRBfBQXOrajgBiJ3NLdIUZH3216Z+UTK22k2WGd1XYTiYrboCuuUGI9up6f40adS+sK805pZuzvZfnkjfnrXq6jI/tiR3TLsnF+GeOtRvpQUfypO9c1ywunjfR+YjWjI5dnpjOyWEQ7bnrA8d+JEy+du3L4dQ26+GZ999hneeustLn+JIAg2YtDdcZ41a9bgvPPOQ2ZmJkaPHo0kxlC160JPiewh16rlnBDzq8DjuW4+je45ueWVleiIfKvVpi9iATw90SdiuwRewmF+n1LEBux2RZvV7TpFRfeMYBV/VtvCKvxYrrH8bHkl2kScH9Uob6Lew2Yn/Gsk/nhD124JP6dWorLSGf5D93bt8Nvbb6PntGno2LEjFixYgL59+wpuIOFbnIjIUYSvCiT4BCKncD700EPo0aMH2rdvz7S33txLLy3/n8OHrXliIr2wQ4f4h9hZys3Lc2YyDW87UlLcXf3tH+yIPRbBprcioN0Ilt1UuOLi8jJER9Jk0WdX5DkV5WPdgN0rjHw+q2KQBd5HT0/8iXiEtYSfVSEdVNHmWZTPiwihVvRP5MIvSrFlJ09ZlPCTO0c3HV8boi8jLQ075s3DGbfeiiFDhuDuu+/GnXfeiThy3AlCCLRoiyCOHDmCCy+8EN988w369++POgxeU4XQ08OsDCeH2+2IPidXTzArw+ya2PGqLJ7rtNjjOY/VhxDlBynLESmsZH9KVJlWyhExUO5VhM9qnXYW0xM1zuLE9p6lpeLK9aCLsX2uZdFnR7QVFlp/AESJRTnlQGTnlJ9f+f8ixApP27RGwLwQTDbrHPv441i9ejV69eqFt956y9L2VYT/qVi0ZeJEZxZtmTePFm1RQBE+AWzatAmjR49GYmIiRo0aheTkZMPjTYWejNKjVIo/t/KqeDpZD6JmntTpIqLFHlD1kmn5EiLEnlYZdgeutQbN3ZyHR3vyVfUnWQWgqEc1HK70p0W9w+W26U015oUnWqcW7oWF1sfFApnaqTdy4YZIUeaXi5qnrRR7QOXvs/N7zDpOszQHEW3gxUakDwDevflmTKxRA59//jk6d+6Mjz76CF26dBHYQMJXUEqnK5Dgs8m8efMwZcoUdOrUCV27djVN4WQWe2oOH67suK0Os1vJpxI5icaONyP/dq9EnsvRPSfEnhby5Swqcm91c16RxrLmgV3Rpy6DxF0ken65lq+p7p5Eij0lSt/aivjTapesAewKPz3xxRKZ9UL0WU7tdCo1U+tCueXAWRV/arGnRLTws5LLblOEWaoPsFznvMmTcVVSEjZt2oRTTz0VL7zwAiZMmCCwgQQRW5Dgs8iJEydw7bXXYv78+RgwYACaNGlieLxloQdUffkpF1hhwe5S0qInz7DgRM6ay8Pffhd7aljWNzCCJzLIEu3jmQZjV/Tl5tKAoCjUvqjdSBxLV8AT9WPpwkQIv6Ii6/v12RF9UYvSENwSL6xpCUZiT4ld4afsFK2UEbBo34uTJgEARjzwAKZNm4Yvv/wSzz77rGkWFREwKMLnCiT4LJCTk4NRo0Zh//79GD16NGrUqKF7rFChp8ZM+IkSZ3l5zkycUeLHteJlXBSKXog9rXN5/AK7i9wpfSm7ax2wij6tAXK3B8CDgp1HMxy2t+UCb91mwo+3S7Sa5im3284qnlZFn+tRPq+wswUD73LBRlE/VrGnhFd4aXWMdsSbF9E+G/V9fM89+Nezz2Lx4sXYtGkTPvzwQzRo0EBgAwki+iH3hpNvv/0WXbt2RUFBAYYPH+6M2OPdDFW5q7TZZutW2uGEGFOW7WexZxEr0T2/iD0lZrdIxHw/eUE5pzfg1tqAnXAOLZvh2WzdTreQnx/ph9vpEgsK2PSB0bNi9Rm1+ny5ugCm1QEx0SFMt94pynesFbGnxKy9LA+L1d/r9rvXZl3zr70Ww4cPR35+Prp164Zvv/1WUMMIz6GN112BInwcvPHGG7jqqqvQtWtXdOrUSXe+ni2hZxV541S7q1nptSE/335ulvyCdDpaqIVVp8TCebxiz0nBJvI85YCyqFU8lf6SqEFn5e4mvOIuYAPfjuOkP2gU+RNVr1yHiC5HK9rH006rkTc3I32Bi/IZoRcBFLEZqLocEQ+xsoO1MvpltTMRkebJM+m5Xj3L+9a8Mno0roqPx+bNm3HGGWfgpZdewsUXX2ypLIKINUjwMVBWVoZbbrkFc+fONZyv55nQUyK/KJzOnWIh6KtouiD27OBFRFDp44hczE5GlACyE8VzU4S5tTiMk3vracHbnSj9W1GrbyrbIGoxFrkctxdVsSP6eOcRhhGPRJTwnZSUVL45pp+RDcKJB9zuBGgZL+foGV0XkR2VzU1KQ6EQunTpglq1amHy5Mn4/vvv8dhjjyE+3r13LyGYUEj8M8mwB3asQfvwmZCfn4+xY8fihx9+wIABAzT3g5k7YkTkB6zelUihp4WZ6LNSv5k3xiLy7HhdVtc7t+ItuST4eAWYMrrG20eKEntKRC1kp4T3d2kNiNt5f4h69wRltU+tLstq9ySyW7OasGDWBqtdkLJcN7oxNVrdmNlvtVIXt+AD2DoX9YPlRc6quiOz8rCzRAlFdGJWyrFzrtxh+TntAMDkjz8GAOTl5WHVqlXo0qUL3n33XdpvLWBU7MM3eTLSBS/Ek3/iBDLmzqV9+BSQ4DNgz549GDp0KIqKitC/f38kaQyVVhF7Wqi9KaeFnhItj8lO/VoPDm8kT6SnxPpbXBB8bs3bM/KR9N7TTgg9NUbCz8pUFzOfgyXryQ1fKSiijhf50eKNDjrRvfEIP9b6ebohvTK9EH1WznNF9FnpZLxOU9DC7MG3khLqZWdmdJ5R5xUQ0VdcXIzVq1cjJSUFS5cuRXZ2tsctI1ipEHxTpjgj+ObMIcGngASfDhs2bMCIESPQsGFDnHrqqYhTdX5MQk+NVQ9Kea4VMjPFpmymp9tL17Sz7J0Vz8Wn0T3RYk+LuDh3xJ4SpfCzu6aBls/BO71FpJ8UreJOC6MuQ68Lc2MsS0/8Wa3bqDtyQjwq8bPocyzKZ+d4u+fxdmjqTsDu/D91eVbm6tnt0Hg7MR8LP1n0hcNhfPXVVzhw4AA++eQT9OzZ0+OWESxUCL5p05wRfM8/T4JPgX+fZA9ZsGAB+vXrhzZt2qB3795ixR5Q3uGydrp2V9IKh8UtSyi3RcRyiqx1BWQVTz+KPfkcK5eQdWVCLeSxALtiD6g0X57VHUVx6FDlo8rzyEYDZvaivi6HD7uXuKBlB3bq1rJ13mfG6rNSVORuYIyHEiQ6X4nLe6NyI/odpCzLamdmpS25udY7MR+/f2VfLC4uDr1790abNm3Qt29fLFy40OOWEYT/oEVbFEiShEceeQT3338/+vXrh6ZNm0Z8b1voqVF2viLTPrXOV2+gbrUcp/DTS8XhVE63xJ66HtZ1BewOYotcvE6EwGNdoyGWBJ0TKMeV9LYG1cLqoy/bhqjBW7sLsvDu2af83W5stG51wRhfYmcPPquIWt0TsN+xsSzOInL/GR8vJzx3xAhM/vhjhEIhdOrUCTVq1MAll1yCX375BbfddpvuauqEj6CN112BBN8/lJWV4dprr8V///tfjBgxAnVUAky42FMje5s8nhJvfTyiz0kBZrVst9I5fYYIsadGT/zZ8Wm0zrXqJ2hFcOz031rnk8DTRsSjr/Y19bo1EXWZbbbOix3xZbYaqMhu1YqA4z2nBIl8qZ0pKS5vAvgPLAJQpGCzg4jUBxkt4efURqMitm9wCFn0AUCzZs2QlpaGhx9+GHv37sUzzzxDK3gSBEjwAQCKiopw4YUX4osvvsDIkSMjNlN3XOipkTtrp4bIjUQfbw6T1eFs3nPdxGfRPSfEnppwuNIXsvouN/KlePwEo4FvEYPMvCLPxwPbgUIr+id6TEmk8JOfOxHRPtbfaUVoRlXUTiSijcuJjUdFEg6Xl+1GpoxPO0Wl6KtTpw5GjBiBd955BwcOHMD8+fORQg+Kf6EInyvEvODLy8vDyJEj8fvvv2PEiBERnQK32BPZ2bIIPzu5ULLoc+oF4acUTR442s06x0Xud5wWeyLWMeAdxOUZNNfzE3iym6z4Gk4NeBPWkO9HXJy4qJwS0cLPiuiLiys/l9fHdEP0OR7l8yvKjsOL95NTYk9Zrvwbnf59dqN9LCNvdepwj9ApRV96ejpGjBiBlStXYtCgQViyZAkyMjKstJYgooKYXqVz//79GDRoEIqLi9GvXz8kJpY78K5H9cxQiz5Rddn1iNRROp52WYnw8XpPqal8beIsn2dRA94tqrwQe1rovc/tZEfl55ePN9iZxmLmZ4gWeW4MFopMMbW60bpbfrDW9XRqITVR5bIIMa3f5deFhXmOd3yLBi9TH8yMXkR0zwmxx1KmGw+0D3PlJ2/YUPH/JSUlFds2rFixAllZWR62jFBSsUrnDTc4s0rnU0/RKp0KYjbC99tvv6Fv377IyMjAwIEDK1binNurV9UOy8h7cqNDlb1Xq7sQO0VBgb/nyDl4b0SLPaCyuW6sbM4q2LQGckVMhRGxZoHaz/BjJM8r34e1XqvC0A564lnpv4p8P4sq1yj6ZjQgYCXt0m/pnVET5dNCffNEvzecmDvIKiDj4px7Dyo7XAvROCeZ26tXhehLTEzEmWeeiXXr1qFXr15Yu3Ytmjdv7nELCcJ9YlLwbd++Hf369UPDhg3Rq1cvhEKhcqGnh1ZHZmdxFV7kF1J+vnhPiEY+yuHwlJxcrtxPYk9JOGx/oFv0IHdenn8yh33k63Bh1G4nujjWSKkT4i8uzv70YeXcPp6or/yc8ggyp1fujKn5fzwdpcjUT/XkaBHl8ZYhqm6jETUfdoBK0RcXF4fTTz8dX3/9NXr37o01a9agbdu2HreQqIDm8LlCzF2RzZs34/TTT0fjxo3ZxJ4eubmVf06h9RDk54v1nJ2aV2AX9T58vC8rn3gyPH6Glawmt/YL85PYUz4CbvXp8jXW2n/Oh76OEJRdnBvdnR529oSUUUeo7ZZn9Xnw6zxeFrgGunzS/9pG1GItMvI73UrHpRSPVs7nPU+54aUf0yc4CYVCOOWUU9CoUSOcdtpp2LJli9dNImSUz4XIP0Yefvhh9OzZEzVq1EC9evVwzjnnYMeOHRHHFBUVYdq0aahduzbS0tIwduxYHDx4UPSVcJSYEnzffvstzjjjDLRs2RI9evSwLvbUiPaGWIzVL0JNxAuRRdw5OdTtUHTPabGnhEUXW3FyCwvt3WKR4xN6ZTkl+tRCJ1qFHS+5uZW+IE9qrt37ZEWoGXWldoWfnc3WWYmLczbq78UOCkKwI5zcgmWCNEv79QzVjvDTQ+vBzsvz93U2QO3fhUIh9OjRAy1btkSfPn2wceNGj1pG+Ik1a9Zg2rRp+Oqrr7B8+XKUlJRgyJAhOHbsWMUxN9xwAz766CMsWLAAa9aswR9//IExY8Z42Gp+YmbRlvXr12PIkCHo1KkTOnXqJEboGREXxz/nzkqnKirfyU45vGIsLs7aAiw88JQfMMHHI8CKiqxn8tgVeqJwa22CKBjEdg2jrkqr27PqL5qdZ5SeyVOnnTRPq+dqdTtGbXZyURbWY7nm8TmpPHk2GrVSPuD+aIBWJ8Y72dpKnbzLJAcQ5SIuMlu2bMGWLVuwbNky9O7d24NWERWLttx2mzOLtjz6qKVFW/7880/Uq1cPa9asQd++fXH06FHUrVsX8+fPx7hx4wCUTw076aSTsH79epx66qlC2+4UwRy24WTjxo0YMmQIunTp4rzYU466sQ6B2xmpFDEhXJ7c4hQWw+yuEMViT4b3stuJ6tmN6MlmKJfDszYBL3l53qYqRivKIIGd4IDd4AcPdqJ9Vs8tKir/Y+0a/RCNcyytU3QKqJfvHKuGpG4rTzlWfmdeXnkHy3Oe397fjGj5fJ06dUKXLl0wZMgQivRFMfn5+RF/J06cMD3n6NGjAIBa/0xk37hxI0pKSjBo0KCKY9q1a4fs7GysX7/emYY7QDCfXg42b96MgQMHolOnTujQoYNzYs+ow9UTfnZz8eVzRb1grKJWB14LPI/nj/hF7KnLZrklVoWe7PSKuN12zNkMdcZSQP0XT7HiVzqd/qm0Pzv31K7wcxqn+hY/iElfYedm2u1U4uKsd8QsD4DWw8gr+gLYcWr5fh06dECnTp0wcOBAmtPnJaGQ+Pl7oRAAoEmTJsjIyKj4e/jhhw2bEg6Hcf311+P0009Hx44dAQA5OTlISkpCpip9pX79+sjJyXHkkjhBVK/SuX37dvTv3x9t27bFussvd64i1s5P7mStLn9nVA/r8nMiyuAtNwpgHdn2q9hTI98uZYaOHbGnLps380dEGXrn2d0CgrCOultQ3gu9jHc7EUHZjux2Y1ZXyLTShfLWxbO6phMrcQZuiwbRC6+w1KXVwbIiYmVP9bmsmUY8dVntpFlxaHN2NZ06dUJpaSn69++PL7/8Eu3atbNVHuEv9u7dG5HSmWySOjpt2jRs3boVX3zxhdNNc52oFXy//vor+vXrh+bNm2PD5MnOVGI1Oid3vqxz/FjrMfI2olyQVeBlGhEHXoo9JXayeY3OY/UFRJShhlfgOe23sODEgjBO7LEnshvREn+i0j+tCD91GcotGHiwUreToo+nTIC1HYw3KjXVXcHlJVq/U2lUVjtEEeKRFd66rHSeIvPnOTvOuS1aYPJvv1X5vFu3bigrK0O/fv2wbt06tGzZUlQLCRaciBr/U156ejrzHL5rrrkGixcvxueff47GjRtXfN6gQQMUFxcjLy8vIsp38OBBNGjQQGiznSQqBd8ff/yBvn37omHDhujevTsmb9ggPpWT1zi1jjcTflYeAKXos3s+AUB8dM8vYg9wNn3NyHdgrZfHn1CmaXot4IByv8bLdrD6VU5tKcrT/eTlAQn/vI14148yS1oA7C3uYiXal5DAL8qc2nePT8ixUYZ4xKOM7WBWQ/DLg1tUVGmMpaXiyjUTUyyrehqdr0Y5ATohge+38NwLvXbpjbyxlu2QPeiJvu7du1eIvg0bNiArK0t43YQ/kSQJ1157LRYtWoTVq1ejefPmEd93794diYmJWLlyJcaOHQsA2LFjB/bs2ROoBX+ibpXOvLw89O7dG/JGm6F/8ni1qBCB6o7JKPImQujpYXeYW1mnF8vO8Z5n5A2prwGr5yT4OCcWauE9jvWd54bYsyoQ5d9g93w1RtE8Xl/Bqm9hJKy88l9FrMOg7gadXNshQWfo0Uz88daj7qJ4zmcRTFq/w8kFiXlW+hTdhTILPlEdo/Jh8mLUzEgwWY1i2ukY9ToXs5WueEUsz4hbejp7igVruQ51olqiT5KkilS+9evXIyMjw5G6iXIqVum8+26kC05ZyC8qQsaDDzKt0jl16lTMnz8fH3zwAdq2bVvxeUZGBqpVqwYAmDJlCj7++GPMmzcP6enpuPbaawEA69atE9puJ4kqwVdUVISBAwfi4MGDGDhwIOIY3uZz27QxPkDp9Ti9mpWdoXat+twWfVYFH8u18rngc0rsaWF3xXEvFqWQz7Xz7uaZjqI+R8Sxyno99lVM4Qmq8JQpOgtdRk/wyWi9r+2Mi4nehcas/U6KPrsC0c5xTKLPiYnNPALLiTQJtWiyk7ZaWGgvkih3MjzLI4sQfXodschO10qZjGgJvvKqwli5ciUaNmyIlStXIsXjReCimQrBd++9zgi+++9nEnx6gaHXXnsNEydOBFCuL2666Sa89dZbOHHiBIYOHYrZs2cHKqUzagRfWVkZzjnnHHz//fcYOnQoEkzewKZCT4nSs2DxeER4O6weiVldrCJMXY6V/B9ewcdahxPz8hiO8zKV0wm/B7C++TogbgqJE5E0PaxG+cxEpRM+jUhECz6j4+xEAgFzsaQmPd2e2JPrs5PimJrK324/iL7AR/lknBJ8VpYrtSPY1G2zWk5BgbVzrQg/ryJ4Loq+kpISLFu2DCeffDIWLVqE+Ph44XUT/hF8sUJUrOQhSRKuvvpqfP311zjzzDOdE3uA8friViae6rXVbLROxCRXo3X6gzjRXrQ3I5Cgiz2Az9yMlrfnKUe5Hx+vg81Tl3rvOFHlxgLK68ZrY1buaWGh9Wizsj47+00WFzs/v9aJrEUnBqd8j5MPq3zhExL4jVnrpvGWo+xorbSB5RxlJ8y7N6AXx3Ewt0ULzc8TExNx5pln4quvvsKUKVMQJXER/yJ6SwYnFoGJAqLiijz88MNYsGABBg8ebBp+ZxZ7Zgaj3lnYitBj6Wh526VGb9UvJx4GNzaicgkntmEQWZ7TYk/PGWYxHZ4FXfTQ23RdpOjTEnix9I5wys9S+odG41ZW7qXyHJ4984y6Wx7hpy7HiugzesbVvorfhVcZfB75kC+gW46gbCBmxm1mOCxl6Bm/VeGnxOgB5ik/wKIvJSUFgwcPxjvvvINHHnlEeL0E4TaBd2/eeustPPDAAzjzzDORZpJSyCX2WElIMPds1MfzdMZyuXZeVModiXnKYPFmlC84Kx5cgHFz3p4S3gwlXqeRpXwtU+LdtFrLFFkeJatmxhvFCypeiVajZAX1fbUr9pSY2R1rXUZ2byYYeVE+k2Zds+h+wZMon9/mQWkJQNEdpZ7R8BiMXhksHa0V0VdYyOfLsBAA0adHWloazjzzTNx///14++23Xas35qAInysE2kP/4osvcNlll6F///6oY7DplGNCT43cUWrlC9vxcOQXhJWFVJRliFqXOyjC7v77I//NcX9Z4nvKY/6++1HNY7wWezIsq4xbdVztrDcQF2dt+gnrKuM86xgo2+ThquFRjXw/EhL4Fk5h6XK0tmCwmmUnd5W8YpG1i42LK08LFb2BOms3L3IfP64tGvyK2kEU+WArjchqZ6nswHlG1Vi3l7C6hQPrsSI61UOHqh4riLk6azNMzstDnTp10L9/f0yaNAmNGzdGnz59hNVLEG4SEM+9Kjt37sTIkSPRs2dPZGdn6x7nmthTohR+ooeyWUSfaEHmN4GnTq9guXcOj/bUePC2yA/+eWnVUHz0562zNM91Wuwp0fM9rIg95fQVdXksKP0W3m2ijM6xIvLcZurUyH+zON+JKDE/SOPGz3qhRpXPRA+m83QR8rHK+2Qk/ni7n4KC8nPsLFJcXGxtfMxMcKmvJ4/wEi369FD624WFbHXGg8GZ13Lk/ToKbyb+7Ez+tNLZAZFz9ax0lkDkeSz51iz1sB4rX1M9QffHH9rH6xEOO24/FUIwMxNzw2GMGj4cG777Dq1bt3a03pjDiYicX/sWD/GZJ8/GX3/9hcGDB6Nly5Y46aSTdI+bm5ZW2YkYbaLplFcjvxRYh7JZh7H1PBmWeQOsnoBclvyCcpvHH49sRxRQ97FbIj/458W39/onTM91YqE52USt+B566w2wlGU09YS3LbJJs4g8nvLtRO/+WcUZgD8y2W65+u/IDzQM5InX67rSFpY1qpTdpZ3xMpZN143O543ayai7WbPXi8homxlWxJwwUlKq2p76IUtKqnqMG46b2cRKJVY7BmWnyRv1U3eaVkfZEhLKyyouZj9edLRvz57K4wPE5K5d8XNeHoYMHIhvN21C7dq1vW4SQXARuG0ZiouLK/baGzBggO7+GXPN3vJZWWKjeizH6gk/Kx2f/Pt4zzXyXvTKcmKjJ7lcWdjxtEeJD6J7VWBxCEyOUYpAp1YVt7IiOGtbtMpizURi9S9kkcDr87Aeb3SLzj+fzdRFLhxrNcJn55inFjYxPVRE16hFUpJ1saaFWVlG57qxS40XW42KtGEv7NP149THsnYmLB2nXlksHSdrO5RlsYo+3jqUx+3erX9cAN/vYUnCue+/j9xatfDZ2rVITGRb3I3QpmJbhpkzndmW4c47aVsGBYESfJIk4corr8SSJUswfPhw3YfNVOwBVTuvZs20j3PCm5GNz84IF+sOyFoovRfWNogQfc88w16vyAnhARR8ACJsdMfU/zM9XNQy7nrvdd4sJrkcK4u36rVBL5LHI/p4Bd/552t/H8sOtVIIsj6qvGJPichMdq2yRHWDWuV4tI2o62UJs0/W47wQhkbHiu44Af7O04po5BF+LJ3n9u3l/2V5qAIo+o4VF+OU+fPRe+RIvPjKK7pBB8KcCsH3yCPOCL7bbyfBpyBQMfVnnnkG77zzDkaNGiVW7AGRI1HNmjk3bA2Ue621avGdo67Lar6SsgwnUYo7p+r32YsAgLjJ/iobbTv73xH/VgtAkXt2qbOFrE5XsbPKnzo7iGXlThGZRyNGlP9X1PpG0coN4/ZGGMazy9oaHm9H7AGR/qodwaYsKy3N2qIuWrZhVI7oeXrhMFt2vpuposxopXU6ibI/dvpdIGJxFmU5VjpedefNIhiTkvhSPJXlA5UCz0tcmM8nUz0pCR+PGYPub7yBTl274rrrrnOlXoKwS2AE36efforbbrsNw4YNM91+wTa//FL5/+3aGR/L6zHI3gyPYBMhkJRliFyxU2b27Kr1mLXDzjFBRoAobDv73xUv3R+uep7pHF7/gTfjR4ndBVmAcr+Qpw1W6pEFHqGC0zG/dsiOiH+bCUA9tMSeGnXXabW7KC62tjiLcm4fa912RF9QVoItQSJblE8ULDaamlp5w9QX0sp2DDwTpAHrwk9us/xA8HbG8lw9Vnjr2bq1sh49SkvNHxCWY1wUc6xkp6fjw3POwZm33IK2bdti6NChXjcp2IRC4u8xRV6rEIiUzl9//RXdunVDjx49DFdHshzdYz1GKf6sCj0trC7CYna+WRm8no7yeFngsdYl+hg/RvcAR9I5eY7RE3+8Yk/reDsLsrCer1WGyIyjvn3ZHG+WRyOqUzpZjzMzrH/KmLOuC1OVLIJPidxV8IwBatXB2xXK9fKex3qvw2HzY920UdbjmAWfmymbLJ2fcoN2u/Xp1Stivh9LZ6jVCfMKT716Nm2K/HeMv/Pf2LYN16xeje83b0YLnQ3cCX0qUjoffRTp1aqJLfv4cWTcdhuldCrwveArLCxEz549kZCQgFNPPVX3OMfFnpKOHc2PkWH1YOxsHmX1fB5vZd4882PcjO75sPP3WuypkcWfCLFnVjXPYLLb00z69o38Nwk+9wWfEj3xxyP29LoJs9eAWR1W5uixnKdE736ruwayUw8EnxKtPTR4cHKitF6HKGLETV2HWuSpifH3/rQVK7CmoAAbvv8eqTQXgIsKwTdrljOC75ZbSPAp8HXunCRJuOKKK5Cfn28YMndV7JWWVnaAXbvqH8c7VC131FYXY7EiEs1SO198sfL/zX6Pm2mYyg49N9f8GKexOh/TSUpL0WX25Ip/rp841/QUVl9DmTppZUEWK+fzTDNRCzxe6J3tLFNO+yHi33PWdREi9gDjTHmWOoy2YjCqlydLXtYNKSnBSdf0BJaUTd60Tp5y7Nwc3onSLOcoUadgsnSkvGmmGzZE1mUVUamdWvjg/f/UgAE44+23ceVll+HNt96iRVwI3+JrwTd79mwsXrwYo0ePRnx8vNfNqdpRagk/K52jsqNj3VxdXZ+oTaOUIk9dhx2sjPL5oDNnIjfX2DnwgSDsPa9c/OkJPzfn9wHlvhXvgLOR6Dv55PL/urVIhe8WwwgwU07+uuL/X9l6iuGxrD6hUvhZ6b6U3SJrnayiT+4qgib2hC4C4/biLSJQ7hFo9A7i6Uxl47J6LZKS+DtvM+H3xRd85YkSdFrHaPkAPnv/Jx09ikV9+6LbBx9gzpw5mDp1qtdNCh608bor+Dalc8OGDejbty+GDBmChg0b6h43V+0BajnXIqJ7LGX06mV+jBI7m0YZeTE8ou/NN82PERHd0zsmL6/y/0WmawQhndMpW2U8Zv3EuZYWglOfwyP+1APRVtY0kOuTRZ4SM4fUzTQ51uN8OTeK9Tir6XIm32sJPysBAPnaWonayt2eFZGjVZ+VlE235vGJao9MINOPWcrR+175vuHtVNVl8nSo6rqsCMfSUnOR56QPAFT6AXXq6A/0KvFhaueaAwcwfPlyrF67Fr14fcEYpSKl84knnEnpvOkmSulU4EvBl5+fj44dOyIrKwtduuhP9q8i9rRgudEiHGhlW/r0MT7W6mIsrEPVZl7Aq6+yl8lSJ0sOv1LYaSFSyAV5sRYR9spizwp7XXnxa+bHw9yPMXocRU4tMZpC67Tgk28hq4AItOBT3nC9Z8pJJ/ofXtl6ii2xp4Tlvul1ebzCLzXV+JEXZRt6v0lZt9sLvLi+J59btspyjKhVP838G6Pfw9OGZcvY3vOiRJ8IX8CnA7+P/PAD5uzbh607dqBGjRqu1h1EKgTfU085I/huuIEEnwJfpnROmTIFcXFx6Ny5s+4xTGIPqNq5qOfIiRZ7QOVomVr48Xotcnonb06SVm6RUuTJOCX21NfczX33vEBkbpaZvYpAZa9nvjkJgLHwY/GVtFb2Zp1aYvaItWjh/tw6u7c1qtI+tS6GS8/j5S1WVfz/f/YMYDpH79qbZb4bdXk8KY3hsLspm27VFYi0Tr2LwTKXT3T9Rs+I2W9XGqOyU2X5DfJNMqpj2bLI8p2cq6d8r4nYhsGHWzUAwK2dO+OT/fsx5cor8ebbb3vdnOBAKZ2u4DvB99Zbb+GDDz7AOeecY3/yq1bHr3aozVIn7WygKgu//v2tnZ+SUl5/aam1uXlOdzhyx200Yuf2nnp+fcitRgB57dUGWsLPin9UWsrvx2lNK+Fd5VqUIxq0uVWe4daFUjjqE7LLxZ+e8GO1AbXwY/V1lQuuaMFzSUSJJ1G3QaSYE7onn6iFWVgulAgRqrX3n933ktX9+LSEn1Lo8cAjCs2ieCLwoTCMC4Uwv18/dFy0CG+//TbGjx/vWt0EYYavBN/vv/+Oq666CqeffjqqV6+uexxTdI91+Xtlx2QlmmLWluLi8g52yBC28oyGpllF3+uv24/eGX0vXzM3I3d+FXJuY9deGTjz1YsAAB+N/y/3ubKfY8dvou2MCDNk4QdUij8rYqWwsLyr4w1uKMWR3quGp8smAoSVzk0d9bPSOSo3Y7ci/BYuNDZ0u1E+Vr/A7c3WXRZ9japXx6t9+mDi5Zejd+/eaNq0qWt1BxaK8LmCb+bwhcNh9OnTB3///TdOO+003eOYUznNBJ9R5E52pHlTOVm+1xN+rN6Kngfx+uuR/xYp+PRG6/y4oaofF2thPc7OHn2sNgtw2y2L8LM7naRePfsLVLi535jbi2V4PofPyfoE7ff3v/zh5uUoUHeBvOJMxOboZLOIaZtlfl/plcXqDy1cWPn/fvAN3N53zwPn/4ovvsBPNWpg7VdfIY7EhyYVc/iefdaZOXzXXktz+BT4xgpnz56NHTt2oGfPnvYLs5vjkpcHHD7sTFqCOp0iJYVvaFrd8b/+unixV1hY/tvlPy3cFHus+LVTdWNDdrP7JWNhkGLU2xdh1NsXaR5eWMi2xZUe9eqV/xGEXS5I/wQXpH/CdKxWF8hiy4D78/MI+G9CrMj8cTODMjJKs/D0woWRYk8ULO8aI+xMlbGCBw/s06ecgj07dmDOnDmu1x045Aif6D8iAl+kdO7evRu33norBg4ciMTERN3jhKZysiJ3aur0OSvRPRlZ9I0ezd4OJWqBZxd1xy1i3z2RGD24vNs6WMWh9ElHcCjtUxZ9csSPZ36feiqJWuSJWH6etQ12jyEEI3jxDqXoU0f97Gy+Hgsiz7fz+GIBrfl+rJ2seo6fkcgzS93U+175XjF7kKxupK5GxDw9Xh8hM9O6mFW8b9MSEzHv9NMx+qabMHLkSDRr1sxamQQhCM8FnyRJmDhxIlq0aIFGjRrpHsecyikCLUEo0olWdsrjxrGfN3++uHQMO6NzTkf31G3zQ8qG1vXS8gD9JgxFi7/iYox6/Tz8b9wCS6dTNI9wE1n8/S9/uK3Fjp0Se0JXvQwqIgU/y+ItLPWJOMasLXrn2zG2pCRg3jyxg7ZOLcBiVxRa8ROslGvj3DOrV8e/srIw6eKL8dnatfYXIoxWaA6fK3gu+F5++WX88MMPOOecc4wPZHFcRUf39Dh0yLgdPOJUHonTE37z57OXZUZ+vnkH60Z0T76XfhByolG/LJQ26bQYNLPtvLxy27TaDoVdX7DwPABgFn7RlEIvciGOmHf2XeKCpEUAgEU4l+u8wkLv75EoUShyERlPhKpT2zhEE/Pmlf/XahRP5vBhY1+BZYEXFkHHckxubmAXcAGAxzt3xkkrVuDll1/GlVde6WrdBKHE00VbDh48iFatWqFPnz7Izs7WPW6uLLCMcGuDdaCqoONJ9zT6Tin6tISelehefn7l/7OMponaXBWI6g1WAYiZm5eZKW6gwsoiQ4JsV0/4yeZkd0N0vyx+ERcndmELoRtZA2IXwJCPM7JPUfWxLJJhpx2q73mEX6zZrkj7BjzYhJ3FbnnLsluGQNvVRBZ6Spz2F6zu06t3jJG/INIP8MBX+PjAAVz4/ffY+dtvqF+/vuv1+5WKRVvmznVm0ZbJk2nRFgWeRvhuuOEGZGVlGYo9ZtzYsBrQdnqV8/zspJ6KiuYpO20eRCzJDMTGYi2icrzy8qqW5WZaqCDbvWBhZZqnqCCx18Fdr+v3DXoXwu1Jbcp22Kz7XFiL+LHipe3YrTvw0Tu5LDfslrXdAm23ClpiD+DbZkHLZzCLvtmN8onejJ0VD6J8Ixo2xIDff8eN112H//7vf67WHQhCIfH3hNJnq+CZ4FuzZg0WLVqEMWPGGB7HFN0TtWG13XTPvLzyMvRGE+yIQbOOtajI+MUjYgK12xutB93jtvpid2vwQl2nke0yEGShJ9cZdJNzFfW8CzcFoFyvz4Qf2a7DiBCGehfMLftV265XqarFxe7W65fN2HmOE8iznTuj3aJFWLNmDfr16+dq3QQBeCT4iouLceWVV6Jr165IMxBiTGKPFRGLV5gJNlkw5ufzO85WxKByVM6ut+23jdaJSmQxJqNlv6KWuZZtysUUCLc3pybzcwitC+u0Ey3XybJYh8NNsApvRM1OfSKjd4FfcEYttLQEoAgxplcG64200wa9KJzcz9v1G8yifH7djN0DmqSmYka7drhq4kRs3bnTcEX6mIMWbXEFT67I008/jfz8fHTs2NF+YVbmP2ntWSZ6X5j8/EhBJjK6py5bxLw7Jcrr48aonB2CnM7JWhaL/YpGoP3adQpFOZW0NY8H0AUXAsvWUn5dz6QEHji2IjoN1g7Da9U7cSLf8Tz9uhW/yMn3k6g9bXmOE8j1rVsjdOQInnrqKdfrJgjX38YHDx7Efffdh549eyLOoDMVGt0zgnWTdasdo9pxtopcjoiy1Li50Tor5CiyIWrDdaftN8bw2geMOvwyauARbgcvPRGPAb9Hhrixso8ZTvXlxcXm7yFRC+ax4tNNMxPj4vBCly64f/p0HHLLxw0CtPG6K7h+Re6++25kZWUhKyvLfmFObLKu1WnZ3QOwuNi4s9Urn0XkWUnJUJbrtjMfKw+hFy8cJ0dWAy783E4bJaIHu+LHr5E3EQReGLKUxdJ5+FmsHj5s3HfbHQx0+73gdoaNYPrXq4cBtWvj7ttvd71uIrZxdQ7fli1b8Prrr+Pcc40nyLsW3QP0OzPl6oVWy9CCZX6fyLl5ctTNTqcsMnLHglIUiliqWRSsWyiwIqosLfsTveG6jAdz/MwQ5Wv52Wcj/IvI/e2ilRIksm8tIopY2rdv4kTt1TpFizG98kTtuWd3M3Ylyjl/Rn5ErVquT115smNHdHrjDVx3441ipjYFHZrD5wquefKSJOG6667DSSedhIyMDPsFurXJ+uHDlf8vyslVOs3K0TUnOmezzlNU52plnqAefn1QtbZQUCN6RU0RNqxc9MUJGwaw6F9sG7ATBOEtvl5sJZpFmtlvM1t4iOfaqH0Juxux5+a6P/BrBKuYY/ElRG7szkjrsjJc3bAh/j1lClauXetq3UTs4toTvGzZMnzzzTcYp9xcXIO5O3dW/VDtRHuVn60V3bCy2bWyPKPveTdOVXfyXnfQ6o7Yr0JOJPJv1rJRN/fXU6K0UdEROisr0nIQCyZDMBIX59u5OXbxtQjzI07s22eEqFVgnbThiROBZ54RWybPILSo6JxeOVb8CR+v7Dm9RQu0+OorLFu2DEOGDPG6Od5CET5XcEURSJKEW2+9FR07dkRycjJ/AeoHXe4wjRxoJycJi3Ka7c4NVLbFKVg68IICZ9ughZ8fZr0XupYdeyUClXZjZsdmdmpgg1bXKvDz7SU4EbllgkP7/p2LRcI3YRdtwyypo7TtgoeI2ITdw+1FKrCTtmkGaxlurw7ugTCsmZiIO5o0wW3XX4/B27YhRBuFEw7jioV/9NFH2L17Nzp06GB4nGZ0zwintw8wE4S5ufYmQxthFN0rKCh/sdgVe1Y6b/WCL6IFp589fSfm76lt2IttMMzs2CW0FtcStZm7KMgB9hE+XY3Nh01yFF9nYPrtgVV3aLw2bOf3mPkjXr0HtHwKkdsv+JhpTZpg765dWLx4sddN8RZapdMVHL8i4XAYt912Gzp06IAEEeF+o4dcdphZOi6RSwBbET5WxGBBAXs0TcS1Finu6OFjJ0h2bBPqmwkhxMV5msJOdmwO8358fhNpMk6vzCMbkB07vu46/nN4/AozWN5H8nvNrfeNj/flqx4fj7uzs3H7jTciHAUC1jIk+FzB8Svy7rvv4sCBAzjppJMMj+OO7rFgR6xYcaSV9YhI1wQqO2PRaZNaLxX19fJ6DqAesfYgu72Nhgv1JCT417wIBzC72aKcfNmwXDIu1qpEvQ5E4euoHCtub88AuGPHKSnO2bHSEK34FXamwTjxXokCkXR1o0bI3b8f7733ntdNIaIcR9+KkiTh3nvvRceOHZ2P7rEcI3c2IkbqjDq+/Pzy79PSrJVdXGzsIYhYeVNUxytSfEWDkHPjBaS+d06NPCvrMXBkFl29lKk4NwUeiUkfor4pIqPTRvUJqEc9n80t+yI79iF27TgpiW8EQFlfaan9BWuMRJ6oeXpm8xBZ6hE5r461LA/m8qXEx+Oe7Gzce9ttGDt2bGzO5aNFW1zB0SuybNky7N+/H23btjU8zpHonhFmERNRjojeCJpeZ+9EJE8JbbZuHb+OJJaWOm/LpaWWbdONgIuyDoocBgi3bpqgOoyKEREx86MdUySQATdvGksdemmd0epf+PXdzMGkrCzk7N+P5cuXe90UIopxtHeaOXMm2rZt6150jwUtB5hnxUK9Moy+lztZrYgfbwfMcy31Ol6WMvzgbUQrTr6geG3ZDB5bVuCG38OK3xZ+iSpELo+vjmSIbovye47y3bJlUatierG6JmudnmzALhKW6FxaWqQdOhHJ5n1WlH6G2Z57ZtE35fdOi7sYifJVi4/HdY0a4eEZM2JziwaK8LmCY6+y77//Hl9//TUuuOACw+OERvdEONJyOiYgfn+xgoJKR1lP6NnxTgsK3DVyJ9M5fbBqpGdbJgBstmz2omexZavOiI7w43GOeZ1SrbL9ur4DYRO74o+1fIOynQ46WsHMV48aWAcS3N6PzwpaKaBmwpFn8MLIlp2I6LH4GSwpm6L27bODH/wMAMjMxDWNG+PRdeuwadMmdO3a1esWEVGIY0/bo48+ijZt2iBFhEfmZsjeyU2qgfIVqkTixR54PChfDEadqx9HY3i2SEhP93dqiejIn8w/9ueEGPNLWpsI9Myb3ewZDiwq0i/Qz7ZphmwE8m8QKQA1nGWnbI5sueJIexUB0WPPTtgyUJ7WOXOmuLKBSF/Dbxuaq9sTQF+jDoBJNWvikfvvx9uxtoALRfhcwZFX0KFDh/Dee+9hzJgxhsfN/fZb7S+sOKQiIiJ6KDsPswUynFyIQO7Q7Yg8J9M5tTrZWHnojPYOEh0ptguPPTMg0pH1yim2Ik6NTNt3Zq9skFnj/O5MOxH9S0hw5GXoZ5GnTsO0L+RchNeenYre2cWpSLaZ4bGmdfphQFlPXKr9DV8aKh/X16+Pjh9+iD///BN169b1ujlElOHI62jevHlo1KgRMjIyrBWgfpBlB8QPjjPjHCZLmG227hfvIT8/KjpX14hVe2ZEz6z9kLqmbltMmL38I7VujNMraxqhlQbndOqnBfzSTWthxZ69mBMoFNH2zDKPz4rAVLePJ61TNCL8DVFpnaz+ht+ijhZok5KCU9LSMG/ePNxyyy1eN8c9QiHx9y4WVzs1QfjTIUkSnn/+ebRs2VJMgcrRZr2NwJ1c0EUPK/vj8W7GxFuH6AdG63o7kfMe8E6aCxZ7FoXT9gzgo9u/5GxUJX5J2dRaHdEvbQOAeJR53YRK/HyxbLZjFD7ysnpheHWLWLVHGeKdbQgP6guUlubejTQb0bJ74+69l+94p/b85cENf8PnGQzTatfGnKeegiRJXjfFPWjjdVcQ3qutXr0aubm5aNasmeFxuumcvGil0mlFTkSM/up1FHIHKWIY1KvOVlmvqAeFHjh+tAYx3I4EOhj189oh9rp+JYGOmmjhl4igi1E/HntyYsEVvfoDH5UDvFm4RYlf7BlgWmTIMlZ9DrsRNbnezExzYRcF0TtWzs3MxNR9+7BmzRr079/f6+YQUYTwJ2j27Nlo2bIl4uM9HMVzeoRID6ujY4WF5d6A0bkiPFVlGcrRPCfEHmEd9cCClj274Xjk5QkZgPAqCOTHIFTM4fVNcKher+yJ7NkGItR2NNmzWf8uag9XGT2fg2dxNDN8Hr1jITkuDhNr1sTs2bO9bop7+CDC9/nnn2PUqFHIyspCKBTC+++/H/G9JEm499570bBhQ1SrVg2DBg3Czz//LPAiOI9Q7/7YsWNYvHgxWrVqJaZAUQ+v3LE53bnJaNWlTucsLKz8E4GRcas7WrtOPInCqrj5osnPF3MvWdtsoa6kJPf9IXKGA4JXNyohwZbT73aTvdYWhAFKO9K7USJCrEZlyCmovDYt0u8wQqTPIRqfC8MJtWtj8fvv49ixY143JWY4duwYunTpgueff17z+8ceewzPPPMMXnjhBXz99deoXr06hg4diiI/Lgalg9BXyOLFi5Geno5atWoZHicsnRPgf3DVHQ9r2ppZPUZ74CjrcKujJWIHqzZtpy6dOtxcaEUWlX4j8Kl0biPfRNl4eOc686I0Uoa6lM0ysm8RaZThsPkzFDN78QUZVptmWQCGBT2bvvde4P77y//fCd9DnWrppO8RQ2mdnatVQ6OkJCxZsgTnn3++181xHh9syzB8+HAMHz5c8ztJkvD000/j7rvvxtlnnw0AeP3111G/fn28//77GD9+vO3muoHQK/zmm2+iSZMmCAVpdRw3RqAKCoxH1cy8VrPv/TySZkaMdOCu4pZNK8pPSnLeCZXrcKMuwkPcvNEGdcSCTTutrQOJEyM2Xtq00xE9s/cNS/aUzyNubhMKhXBRRgbefOUVr5sSePLz8yP+Tpw4wV3Grl27kJOTg0GDBlV8lpGRgVNOOQXr168X2VxHETY+np+fj6VLl+Lcc88VU6AXm60rOyyRURI/TLRmCYWIFF9OCzkrczP9sA2C2zhl0/+g57uY+TQsPhWJOgJApCGI3qxaVYfTJhdUm2aNXrIeV4Z4ttVn/bp/nl1ctGlDzLZF0Pvez/P+WSOBViOGdtaF4PBBxtesiYc/+wz5+flIj3bfxcEIX5MmTSI+nj59OmbMmMFVVE5ODgCgfv36EZ/Xr1+/4rsgIEzwLVmyBHXq1EFmZqbhca6nc1oVjsoOTcDm1LYxEnh+63CN8HKzVFEL+FjtfL0exXRY/InAjymahM/w4d57RpBNu0DQhaGRTZv9NlFpoWYELXtIC683a+fwQdoBaJOQgI8//jgwKYN+ZO/evRGCOTk52cPWeIuwV9H777+Phg0bmh+oNvggjFyYOcpOOR1yGoafBJ3Z4jCxgFanzbI1iJuY2WRBQWWbfbjpOgtuR0tSUvQ1u/Kx8OxxZa1Y6zivByOs4lPxFy0iL9B2rWXTIsURS1lW6lMbj5d2XVhofv3dnFtnVJfS/0hPd3eFdocYWa0aPnr33egXfA5G+NLT021HSBs0aAAAOHjwYITOOXjwILp27WqrbDcR8loqLS3FJ598goEDB/KfbPZQ+i0SITpKou7c3VjUxSoFBf4Sn35By7Ewsmsju/HC8XY58peS4p5DLEIU+sLpdRqtH8biQPuJhITKfEIPoj1u2rVdYtamtT732q7NInh27frJJ4Ebb2Q/Xu2DiBB0ZqmjrPWw+iBRIPYAYHj16hi3dCnC4TDiovZBhS8WbTGiefPmaNCgAVauXFkh8PLz8/H1119jypQpwupxGiGvJ3nSYt26dQ2Pm/vZZ/yFa0WN0tLEddJ2Rs9EbbhuJPJEGC2vF+JWpC6aOzAj9K6vqBVj7aBsm4ldL33sB+Zi/bxyZUJC7JoiF3oXKSHBV9E1AJEG56D487Ndl5YGd86gq2jZdWpqeWQuFuy6tNR/q/e45YP4fOXP06pVQ1FODn744Qd069bN6+ZENQUFBfjll18q/r1r1y5s2rQJtWrVQnZ2Nq6//no8+OCDaN26NZo3b4577rkHWVlZOOecc7xrNCdCBN+HH36Ixo0buzcCoUxHk9FylkU4xmZlhMORgk0930/vhSGf4+WQsJ8nXscirHYtApZnw8iuGfCbMxyU6Esg0bu4fnCY1YZo07klu44hgmLXVm06iH6Iz0WaSBJDIZxZrRqWLFkS3YLPBxG+b7/9FgMGDKj4943/RMUnTJiAefPm4dZbb8WxY8dw1VVXIS8vD3369MGnn36KFL+9EAwQ8pR/9NFHaNy4sYiirKM1IuTFYityB6pVtxPpmqxGHSvz66INr+xaLQiN7FqB3PfZjSzY7UPl+skZ9hi9G+BVRCElpbLP5IyQpKTYt2u7e/WRXfsEt+3aLIqenl5Zt5ldu7Efnx7kh3Azslo1vDR/Pu6++26vmxLV9O/fH5Ik6X4fCoVw//334355X8sAYvu1kZOTg59//hmnnHKKiPaIxc0NqdXInaoXI4HqDl3UyEmMjKr5Hr00ZzfQcRa8HOSitLUAonXTRDjLPOmlDOlxsWDXvt/InXXhEz+s1Kl3Id0c4NCy6yefBK6+2r02yPD6IjEUvWNlWPXqmLJ9O/Ly8kxXwQ8sPojwxQK2Bd+KFSvQsGFD07Cmpfl7eljdjkHtKHsdijUbpmU1WD8v9EK4gwe27cXjo/SnfO2kEvyob6gHTrKXbwT554vYPi0IMO/FJxqRK3WyDDA4NbjBgqhOmlWIBdEX8bnIbJKYiFbVqmHFihUYN26c180hAoztV8Ynn3xiuliLb1F3Tup0NbtzAJ3ergEw76h83JERDmJm2wGBRF0Mo3XzvY7gCMLIrv0acWNNR/Vr+32F32zb6ggCjy9CWOas5GQsXrw4egVfKCTefkIhseVFAbYEnyRJWL58OXr16iWqPd6idpLN3m5uLeesN2oW5FRNejm4i80FWNxC1BxAHsg5DRAOr77ZD2uwBv2Elwt4Y9uEDdza0FyuS4mfBzb8EMXzeVRONCOqV8dFH3wASZIQIiFDWMSW4NuxYwfy8vJQv359Ue3xF145yX7ccN1teCd3s14rpUgXMe/N6z2ctDBrU2Fh5DEeCkCvs6qJAKM2Hp85yWTbhGWs2LZTApXVH4lmEWZlsRmBPslpKSnI/eMP7Ny5E23btuVvi9+hOXyuYEvwrVq1CllZWUgwSQVwff6eE+WIFn/Ka+aHETMzeB+eIPwmuyuGiV4oxSvxKNi2jSIYsh8T9PlHdnDsPaQs2I8DEU4jG5ecSu+yACTbJtt2DLdt26n3N4sodEo4BtgnSQFwWmIiVq1aRYKPp0wiAluvpqVLl7LN32N50ERGGZx+Ici/Jxy23m6za+JXYw1Cp+kWrIIx1mxbRbRFOkStteQoRo1gUSRerC4sOkLhwubrZNseQLZtzbbnzQMmTjQ+xuj97tcIXoz4JAOTkrDsgw9wtRerrRJRgWXBJ0kS1qxZg759+4ppidFD60XKGcuG64B+dET9UlF3yn7sOAHn5wvGIn6zbVYsRv7MnGA/R0CMopN+brdwWH+sV/vp8aI0yoQEy05icXH5lmdBhGz7H0TbNs9WIE5gx7bJLwkMA5KS8H9r10bnPD6K8LmC5W5+27ZtKCwsdGeFTuXDrhZifnKYle1MSvJ+TomRwdM8QX8QRNtOTcWal3+O+NpPTTVCy+mlRTRsYLbcpF9RGiyDgxwE+9a7FVFh36yiijWSZnU7BRknbFtUFNDMtr32S/SIthU/WSOicXFMmTu9kpJQmJeHH3/8ER06dBDQQCLWsCz4PvvsM2RlZSE+Pt7wuLmLF1utoipaD4VWh2aWjubGHACnO9Vo3ROHqETv/tnNI7Nr//+0y69OsNJPi6nIhd9Q3gh1f+UnMajhIPvVtoHKyxoNtu3ZXnx2UYtBpX371bYB5/0SUfv1+TV91EOSQiGckpyMVatWRZ/gowifK1h+ZSxbtgz16tUT2RYxaKVayvj5LW4Xv47aEWIJh31h2354lKIichGr6N08r53l1FT4wLTJtv2Claibl7btdXqpFuSbCGNIfDyWvv8+rrnmGq+bQgQQS4IvHA5j7dq1GDhwoOj2OAvvPntOYXez9KIid0cv/D5S4vf2uYGWCLRq3z5cBS/aFscgdNC60THgMHpt31b33XarvKhA7ybz2LddQffhh8Do0dbPN8Nt3yTGGJCcjMfWrUM4HEZcNF1nivC5gqUuefPmzSguLkadOnVEt8ddtDralBT2BVusfs9DDDg7ruFDIeMoevbtc1JTzZ1FciYDhh1HVWmzKSnl5QQ4XT0Aj6AuxcUUfRSOetEVwL/2rUy19INv4vfUT8Hz+LonJqKkuBhbtmxBly5dBDSQiCUsuU1ffPEFsrKyTEcYhM7fc4uiosgHz823s9fpTET046V9a+CH1FAigGgZjg+dZLJvogKeQQ+v7NtIoJB/4jmJoRB6pqTgiy++iC7BRxE+V7Ak+L788ktkZmYKbooJXkVn1KNYIh1kqx0oGTIhCiftWwOW6B1BWEJ2kmWn2gMByGLfotIdKW0yCjEShW7bNwk8X3JGKIQvv/wS06ZN87op4iDB5wqWXhfr16/HSSedJLot9vFi9U2e/Ba5A/WLIfqlHUaITBvxcy6VX9JN7di3BlYiHOTEEkJwIUpCETwCgDeLpYi2b1H+iag0S7+nawKe+CenJCXhzVWrxNVLxAzcrlVubi5+//139OvXz/zgoiJ/O9kiUI+CKR1krREyv3dgdvBDTr8RTrQvlu1bg7Q0/5i434Uj+3ViPJBxHkhMk5oaeY0KCrhOd8u+oyF655l9i9yLL2jIIlC+Tkb2HWsRvCjxT3qFw9iVk4MjR46gZs2aDjfKJSjC5wrcr5RvvvkGtWvXRgqro2tmxMoO3A/DpXYdJr93Kjzw/JZYfbhYrpFsU3bt2w/OvMpJSEvzqB0ewOqAe/oosFTOoySizSFWozRgDeeY7Lsqntk3j0Bj/TGxZN9ApY1Hi9iLQR+lblwcspOTsWHDBgwdOtTr5hABglvwbdq0CbVr1zY9bu7ChfytYUlHiPaIiltES4cfJKLIvqPFEU5JiRo/wBlYHGc/rdpnh3+MOkpMGwDZtyks9p2QUDnY5gcbtxOZTEsDPvsM6NNHbJucgHwUXbrGxeGHH36IHsEXConvqEIhseVFAdyCb+PGjUhPT3eiLWyYdbi0ZnQ51FkGE7JvYQREO0cPZhe8tNQfDnOUkJIS/LTPwGFk47IIC7qNuzV3zm0fJQhzAhnpDuC7777zuhlEwLAU4WvevLkTbRGDXicSjY4yibrYw+ieR6ON60BiLqCY3TjOOXXRTKzYuIQQQpC8boY4jG5cOOzL7UMchfwU4XSOj8db69Z53Qxx0Bw+V+ASfMXFxfjtt9/QvXt3p9rjHEF1lNXtJiMOFm7Ou/PBYIdo8/TDtF7CRYxueJQ6yk7beBQFNoJPXFx02nisLVDnMZ3j4/Hr/v0oLi5Gkp/9V8JXcAm+HTt2ICEhATVq1HCqPd6g7KxkB93th4hGwQinUNuWVzZugNIHojQ1QhP1PmQyvE6yB6uZqn18snFCE1E27iTkq3hOs7g4JIZC2LlzJzp27Oh1c+xDET5X4Hrt7Ny5E3Xq1EFI1GRIP6w6qIcT0RLZAKnDJLxC+cxp2aHDItBP2zYQUYJaTbEsSe8gFJUuJxq2lvANXtg4+Sm+JS4UQovERBJ8ZmUSEXB1xz///DPSGJbns7RCpx9gEaBGTrL6/Ghf8pmIPhhE4E+f/2laTLSs4kkEGD0jFOQkk40TEXixr5+RjfMMqJOvEjjahEL4+eefvW4GESC4BN+PP/6I6tWrO9WW4EIjYUQ0Y2LfSp/DbFCNBt0Iz0lLq+oMm4hAHhsP6pw51ogcRe4CAIuNk8gLNO0lCT/++KPXzRADRfhcgavb/umnn5CRkeFUW4igQg9WTEGRDSLqUBg1mTcRlSg77k2bgGhIBeQlqKMxGrSJj8eyjRu9bgYRILgE3++//47evXs71RYi6MRSpNNHC54QzkMRjdihCfZiL5p43QzCDbxIwxSBBwsPRRVR4Ku0CIexd9cur5shBorwuQKzG1NaWoq//vqLaQ6f7YeJvCv3CeJLz0vIxmMK2S80u22evmNYK2e1PeoTYhIW8/DMzlkrTkpiE0Rk48GE7hsah0I4dPw4ysrKEB8f73VzCIHk5eVh0aJFWLt2LX7//XcUFhaibt266NatG4YOHYrTTjvNUrnMXufBgwchSRJS3ViCjPdhJue5KmaChEY/vIVs3BPsbGYdc7fAbhS7qEhMOwgu7Nh4zL0WEhLs/WiycfuwDJ7GnGGa0zAUQpkk4eDBg8jKyvK6OfagCB8A4I8//sC9996L//73v8jKykKvXr3QtWtXVKtWDbm5uVi1ahUef/xxNG3aFNOnT8cFF1zAVT6zC7Nv3z6kpaUhzo8XkTXaEg1peFGQikBYoLSUbcQ6GmycEbOxJz92VTGFWnmY2a+f9hrzEUZ2TjbuMbw2Dni2XYjrkK/iKEmhEGonJGDfvn3BF3wEAKBbt26YMGECNm7ciPbt22sec/z4cbz//vt4+umnsXfvXtx8883M5TMLvv379wd/w3WWDsjLYXxKUyDs4ncbZ4AliYAc3SgkNZXNYc7PN/4+APObyMYtEoB7awrLzQ+H/S8MyV/xnKy4OOzfv9/rZtiHInwAyndCqF27tuEx1apVw4UXXogLL7wQf/31F1f5XBG+atWqmR43d/58rgb4DrNOzKqzTJ0j4RecsnEGaIVPwjYsRmQmCh2G7Jywjdd2Tj6L72mMct888JDgAwBTsWf3eGbPbu/evUhOTuYqPCqhTpCIdmzYeHq6wHYQhFXMDDEvz3LR4TCQmWn5dCLWERmlNLLzcNhYEJIvE3iahsPYu3ev180gHOA///kP6tSpg5EjRwIAbr31Vrz44oto37493nrrLTRt2pS7TGbB9/vvv9Om69FCAEc+CP9Aoo4IPCZGHBQTj6JtxQgnoM46qmkcF4fNv//udTPsEwqJ78hCIbHluczMmTMxZ84cAMD69evx/PPP46mnnsLixYtxww034L333uMuk1nw7dmzhwQfQXhF0OetEARBEGxEw1xFwnEahUL4ePt2r5tBOMDevXvRqlUrAMD777+PsWPH4qqrrsLpp5+O/v37WyqTWVLn5OS4syUDQRAEQRAEQRC6NAqFcODgQa+bYR95Dp/ovwCTlpZWsSjLsmXLMHjwYABASkoKjh8/bqlM5gjf0aNHkWJngx+CIAiCIAgVEkIIQfK6GQQRKGqFQjjq99VcCUsMHjwYV1xxBbp164adO3dixIgRAIBt27ahWbNmlspkEnySJCE/Px9JMbTHF+Egfpws7vOtCgiCIAif46dUTD+1Jcj40V/5h8y4OOQfPw5JkhAK8pw1WqWzCs8//zzuvvtu7N27F++++27FipwbN27EhRdeaKlMJi+3oKAA4XCYbZVOJx8Ocsqto+z46SVQFT916mTngSU+TkJZOIT4OA+iFawvuLg4f9k7EVh8a+f0jgs+5LOYUrOsDKXhMI4dO4Y02gsmKnj11VcxevRo1KlTB88991yV7++77z7LZTN5lnl5eQiFQt5H+EQ7KX4eAaAOLnaJJTsXTLUU79PCPHGCefF6UKGoyNv6A44f7NzX+GUOj5/t/I8/gKwsceWRz+I6Gf/8Ny8vL9iCjyJ8Fbz55puYOnUqTj75ZJx99tk4++yz0a5dOyFlM731jxw5gmrVqgU7ZKyF3Q7KyKCo8yP8gpN2bpMaaeS4xiSi54P7fB4L2XmMEiQ7V78nKCXU98SHQqgRH48jR46gcePGXjfHOiT4Kvjss89w5MgRLFmyBB9++CEeeugh1K9fH6NHj8bZZ5+NPn36IM7ib2MWfLRgiwbUGRKxgIGdZ6STI0v4ALuj20YbVIPsnPAJou3cyIch/yYQpMfF4ciRI143gxBIzZo1cfHFF+Piiy9GcXExPvvsM3z44Ye46KKLcPz4cYwYMQKjR4/G8OHDubbLY07pJMFHEARAzi8Rhag2qM6gFSOJaIQ2Yo86MkMh5OXled0Me1CET5ekpCQMGzYMw4YNw+zZs/Htt9/iww8/xAMPPICffvoJ99xzD3NZzBE+pgVbCIIgCIIgCIJwnMxQiCJ8MUSPHj3Qo0cP3H///SgpKeE6l1nwJSYmWmocQRAEQRAEQRBiqSlJwRd8FOGrgiRJWLhwIVatWoVDhw4hrEixDoVCePfdd7l1GZPgO378OOLj4/laSxAEQRAEQRCEI1RHuY9ORBfXX3895s6diwEDBqB+/fpCFs1kEnwlJSXRt0InQRAEQRAEQQSUREniTu3zHT6J8D3//POYNWsWcnJy0KVLFzz77LPo1auX2HYx8sYbb+C9997DiBEjhJXJdEVYjWnu66/bagxBEARBEARBEOYkRYPg8wH/+9//cOONN2L69On47rvv0KVLFwwdOhSHDh3ypD0ZGRlo0aKF0DKZBF9xcbHlfR8IgiAIgiAIghBLMsp99EAjR/hE/3Hw5JNP4sorr8SkSZPQvn17vPDCC0hNTcWrr77q0I82ZsaMGbjvvvuEpusypXSWlZUJq5AgCIIgCIIgCHskSRJKS0u9boZvyVftPZmcnFxl14Hi4mJs3LgRd9xxR8VncXFxGDRoENavX+9KO9Wcf/75eOutt1CvXj00a9asygIt3333HXeZTIKPFmwhCKICo02qRWQCsJQh6hhWWMviqZPxWAls86dZ90kWfRwrLOWJOsZuGRk4anwA2bnwMsnO+Y+xW0aG/SoIjykOhVAjgcmV9y0SQszPP0+ZANCkSZOIz6dPn44ZM2ZEfHb48GGUlZWhfv36EZ/Xr18f27dvF9ouViZMmICNGzfi4osvdnfRlqSkpIglQQmCIAiCIAiC8I4TAGonJXndDFuEw84NvOzduxfp6ekVnwdlT/ElS5Zg6dKl6NOnj7AymYbeWPd6mHzppbYaQxAEQRAEAr+PFIDo+A0E4WOKQyHaJ9uA9PT0iD8twVenTh3Ex8fj4MGDEZ8fPHgQDRo0cKupETRp0iRCqIqAWfBJkiS0YoIgCIIgCIIgrFESBYJPjvCJ/mMlKSkJ3bt3x8qVKxVtCmPlypXo3bu3A7/YnCeeeAK33nordu/eLaxMppTOatWq0cItBEEQBEEQBOETjqHcRyfsceONN2LChAno0aMHevXqhaeffhrHjh3DpEmTPGnPxRdfjMLCQrRs2RKpqalVRH1ubi53mUyCr2bNmrTPB0EQBEEQBEH4hCOhEGrWrOl1M2zh5Bw+Vi644AL8+eefuPfee5GTk4OuXbvi008/rbKQi1s8/fTTwstkFnwnTpwQXjlBEARBEARBEPzkSVLgBZ9fuOaaa3DNNdd43QwA5at0ioZJ8GVmZqKoqEh45YHGbDI6rWpKRAu08AJBEET0oe7byW8JHHmShMzMTK+bYQs/RPj8wLFjx1C9enXHjmfy5GrWrBl9gi8uzt6f0+WTk02IwAk7zM+v/COIKCHCrJX/cMLOqX8nPMLQrMlnCRz54TBF+KKEVq1a4ZFHHsGBAwd0j5EkCcuXL8fw4cPxzDPPcJXPnNJ5/PhxSJIkZPM/S+htLFlaGr0djejfFcQhj1hDz879eu/UXoOZzaq/T0sT2x4iZikoqPx/s8eF+3EiOyd8AI+Nsx4jFPJZXKVMkvB3WVngBR9F+MpZvXo17rzzTsyYMQNdunRBjx49kJWVhZSUFBw5cgQ//vgj1q9fj4SEBNxxxx2YPHkyV/nMKZ2SJKG4uNh800I9h9UpEhKCeWe9QO6MvRbIpaXe1q+H27ZLRHowMiz3Qc+GU1PttYdwhcJC7c9ZunK/dh+GqO3cjo0DZOcBwc923qQdeyqYZ5DPok9CAo5KEnDiBKV06pQZNNq2bYt3330Xe/bswYIFC7B27VqsW7cOx48fR506ddCtWze89NJLGD58OOLj47nLZ/Jw09LSEBcXhxMnTgRml3rCx5CwIpxC6WHZdaqVsNqs8jivnRQNwmF234X1ONYXqx99psBCdm4I2TkhFJ/6LEckCQlxcVzzuAj/k52djZtuugk33XST0HKZrDgUCiE9PR3FxcVCKycIgvCUcNg5h9XMQxRcbxBHNIkowMjwHHi2/GznfhJ7fr5OhBjyJAnp1ap5N9VKEBThcwfm3jgjIyP6Fm4hCIIgCMJTJATbYSUIL8iVJGTQ/GCCEeY4dYMGDVCol5BOEARBEARBEIQr7JckNPRoY3CRUITPHZgjfNnZ2Th27JiTbSEIQg8fzpMhCIIgxOOn1FDCv+yXJDRu187rZhABgTnC17RpU2zbts3JtvgfuxN3/dKLOzlviQg+Pp2gThCECnpWCauY2Y5f/BVCl33hMJo2bep1M2wjSeIjcpIktjy32Lp1Kzp27OhI2cxviyZNmuDEiROONMI3OP3ypA6W8AN27VxrKwWZ9HR7ZROESxiZMWDwZVwc7atHWMbNVDNjGzeB/BXf83tcHIY3aeJ1MwiBdO7cGT179sQVV1yB8ePHo0aNGsLKZg7zNG7cGMePHzc9bvK//mWrQY6RlGT+5zUJCeZ/BGGEmY07bUMFBcZ/BOESjpoi2TjhAzztbslf8Zx9KPfNg448h0/0XxBZs2YNOnTogJtuugkNGzbEhAkTsHbtWiFlMz+RjRo1wt9//y2kUqHEWqfCKkxpC43oIlrsnGXhJ4oSEgaYmZDngYeCAvPnlWzcEp7fW5dg6SYDcS3IX3GUP8JhNGrUyOtm2IYWbankjDPOwBlnnIFnn30W77zzDubNm4d+/fqhVatWuPzyyzFhwgQ0aNDAUtnMXmTjxo1RUFCAcDiMOCfnf0WLY+s1vBHLQLw9ogiyc31YvJ2EBCAlxfm2EK4SMwtBk40HCpHOY8zYOI+faCXDKsZ9lmJJwl+lpVER4SOqUr16dUyaNAmTJk3CL7/8gtdeew3PP/887rnnHgwbNgwffvghd5nMXmf9+vURCoVQWFiINLP5C6wPb1AleDRiR4DIHXssjdKRjXuP2b6gapsm59lV1Lcnxv0za/DaOEB27jLKW0Q27iJWfZYo8VcOSBLiQyHUp20ZdMuMFlq1aoU777wTTZs2xR133IElS5ZYKof5iUlISEDt2rVRUFBgLviI2MQP8yAJQg8955nHblkWMoiS6C2r8xpwvyn60LJzkTYeAIqK2H5GaSmbnZONRyEB91f2lZSgXrVqiI+P97ophIN8/vnnePXVV/Huu+8iLi4O559/Pi6//HJLZXH17E2bNsXff/9tOX+UIAgikMhCjsU7ZE1lYhyCDIPthc46oklRCGNOwk9eN8FbosDGAbafEdRnIajtJsTxWziMJs2be90MIVCEL5I//vgD8+bNw7x58/DLL7/gtNNOwzPPPIPzzz8f1atXt1wul+A76aSTaC8+NcpRIi0Li4Wemfb1i24CPhJKEARBVHJSn9pVQ6Cx4KtEkZ+ys6wM7bp397oZhGCGDx+OFStWoE6dOrj00ktx2WWXoW3btkLK5hJ87du3x4YNG4RUHEisOL7KTjVKcseJKIbFxpXrffOmd0dRyiMRPUQuYa9az57XxoNq36ztpgGgQGK6TQP5KoHix1AIvdq397oZQqAIXyWJiYlYuHAhzjrrLOHpulxvptatW6OAYXOXyePGYe7ChZYb5RlxceVWYvWFJp9vhl751LkSbmHHaRsxAvj44/L/V/cHstOQmmq9fIJwkMJCzmAG2TjBgJ8CZPn5ggoiX8W37JQkXNS6tdfNIARjZfVNVrgEX5s2bXD48GFIkoRQKGS/dlaB5CTqDs3J9pilPlLnSjiBmzYuo7X2ODnIhMs4ugQ+2bgxQY10BgxPtnnQ8lXIT3GNsCTht5IStGnTxuumCIEifO7A1SO3bdsWpaWl+Pvvv5EepI1jg56Com4/pVsQaoJg47JnonYEyUkmbKJ0es0iLY5GYgoLtYUO2TjBiJ598ti4J+j5KQD5KoLZHQ6jRJJI8JmUSUTCJfiSkpLQokUL5Obm+lPwBcHpFYnR76UO1h+IjmL73catzNFTD1HLv5H2EyNUFBUFtGvz0sb93mfEEGZCLbD2rUadyUQRQaFsLitDy0aNkETPNsEBd85F165dsWvXLjRr1syB5phg9nIkSV+JWUdAna0/MbLxWLNvo02naS/QqMRsn/Gog2wcZYxbMkQDMWffRrCIFfJTNNlcVoYup53mdTOEQRE+d+AWfN27d8cPP/wgviVmKS9098SSlGS+RDG9ncRiZONk33yYOQI08ulbyIdjhGw8kATevv20dQFLBJzVT/HT77LJRgCnn3yy180gAoalCN9ff/1letzkceMwd/FiS40KLElJ5Z2P/CIOes8vd7asHWWsCcRYSzkMkoNZXGwuooP0ewKCUZfny3lHQYZs3BUKCthe6W7Zt916eo5uGD0+ClD+HmbxUaLIP9kUDmNqly5eN0MYkiR+zFuSxJYXDXALvp49e+Kvv/5CUVERUqLR4eWZc6X1Mk1JqTxf/X00dK5GiLYH0R100O3V7VVtjZzFwsLgL0TB+zzG2KqDrJcnmrq18ql2/8y3C7p9A3w3x+f27YSgijUbr7KiZzT4KKwD0k69/0X5KampTO/3P8vKsOfECfTq1UtMvUTMwN3D16pVC02bNsWhQ4eQnZ3tRJv8i9xhWHW65c6VVtlkg7WDZu3wKW3SGF77VnsPfnOQRW/yzupxeuQ4s942irRVYrikvZf27UVkLkrsm9X/jtbXr/I2cm/ZoJ7qEa0XSSRmfopg/2RDSQmaN2iAmjVrspUbAGgOnztY6rl79+6NnTt3+k/wiY6AOB0R8nrlKrN9AQn38GJPStH2LXsXdlcgLC6mVDTCEWytgijKvomowy+DKMJX+bQSARTlU5BvosnXxcU4dehQr5tBBBBLgu/000/Hhg0bRLfFGDccYrsRPBGoR9i0hitJqBFWcNu+1bZLDjLhMo5O27Fq36IGM3yegknwwyvWXJ+WxuKfEI6yVpIw7vTTvW6GUCjC5w6WVEOfPn3wxx9/IGxyRSefdZalRrlCSkrVPz8SlHYS/sKPdlNUVPWPIAThuXl53gDCz9iNvLliXrwDyX58z0QxJZKEb4qK0KdPH6+bIhRZ8In+IyKxNETYuXNnJCUl4fDhw6hXr57oNjmDcv6FmSWYRRPtfm8XrVWpyLkwx4u0STdQzy0K0m+0GiWhtM9AISrlLT+/0kQC0eVFW5Q76O0PEL60bxZBqGUjTv0Yv2c6CZ6/t7GkBEnJyejUqZONRhGxiiXBFxcXhzPOOAN//PGHPwWf3xaPUGOWkmklZVPvRSyio/V7Cqnf2ycSN2zbS2GsZa8k7GIeZXTEl44wK361b9Ft8MNvCgg8tm134KTf+Ib2CrCK2j8J9EPsHatOnMDpvXsjLsr8HUrpdAfLkwCGDBmCp556SmRb+NFzfr2+06mplT2zlx1bXJz+NeJevotwFb/aNuD+gIpeLhQ5lVFHTC4KqPWjybZ9gUh7dMO2TevwQ3ic/BLLLCsrw9hzzvG6GURAsSz4Bg4ciFtuuQVlZWWIj4/XPW7yWWfZ24DdiXQ1JyIYeh2YcmRLZCdrN6qlbK+6HOp03YMn1VgUVuzfj1FzEoKBxdfCrqjI+9TFGLHtMuj7DkHG1/YNOOeX2I08ye8ZrXJi3C8pliR8VVSE5wYM8LopwqEInztYFnwdOnRAamoq/vzzTzRo0MBeK1JTg7mRM297lZ2sG28Eq6JQ63cpy4nxjpeLoNm0EqO2X3EF8Nxzlf/22kFWYvRs0cqGriInOvjdAa7i8yo/CLJtR4m9s9qPm3vwKdMrRZTnVNDNtFy3/RKrGPklfvRJBM/f+7q4GNWrVUP79u1tNIqIZSy/DUKhEPr164f9+/ebCz4Wp9dvjrFeFIQ1IpOQYJxwr/69fuyw9GC9V0H6TVZIS4uuYSQ70UalV2EWhRC9IToPWs+k3JYomxfhBuGwf/Yg44HLueaxbS/Rs+1YmuMsEFbb9qNGsiQeExIi+2W/v7+VNh0DPsmq4mL0PeMMhEIhr5siHIrwuYMtr2vo0KF47LHHRLVFHKJTNt0Qo1oCMOgvaaPrZvbbCgrEtkWLtDTn6xBNEGzbr9ERM8yuq/x90J9LBrxY1tppx1k2S9v1yAWRbQeSWLXtoVc35ytU+W6IBn8E8LdPYuKPfHbkCMaffbazbSCiGluCb8CAAfj3v/9tPo9v4EDM/ewzO1VVIsrhNSsnNdXZt4JZlCM11V/pCm6PEgdRjNnFrdUxnbZt5ZYJ0bYsPcDuPOvhwnNk1IRYGvl0feP1oKdQkm37loICD9dcUfojgHWfhMU+vBCWLHV66JMUhcNYf+IE5kbh/D2AInxuYevt1LZtW2RmZiInJweNGjUS1SZv8FtKqZIgp39GO37c20/dJj/ZtjI6EnTn2CoO2YvfzNALSks9XIBQudgL2XYQig0cRrbtamqpOvoHREcE0KesKypCzRo10KZNG6+b4ggk+NzB1lspFAph+PDh+OGHH4In+NLS7E8+8crZV6+waVcAejHHg+aVOIcI23YDdRu9cpL9sCojYQnRZj4US8UU5BfbJizj9VZxQejCAVRdWdONAekY8x2WHjuGQWedFZXz9wj3sP0WOuuss7B0qaCXpJNYCcfbFXRmC7eIQiuCI3e6JKyin2hJf1Uve+fnBTIITwiME6yGx7b9avesgyI0eMKNG1PWDRE5IEEZScL5pLgYtw0f7nUzHEOSxMdOJElsedGA7ad88ODB+PPPP1FQUIA0A8fT9Xl86enmxzglyJQdnrp8ZednNo/PjlhTtkGuw/O3CiEELwWem+mhtCF1zOP6CohuDTSofxhvnVHwHHi1B58fNlP3ZGVPrTRMVkTt+ZuQ4D8/xOcD4n+WlmJbYSEGDRrkdVOIgGNb8GVmZqJr167Yt28f2rVrJ6JN/PglwsGz/YQXo15a14mn86Voofto3TO304j17Fr2Wtx0PpWeUlwcpcpFEV7vZVZRf6zZtc/FI+s99ToFUw+v9U1xMTDq9g6RH9oRf1aRbdrIDyH/ogorCwvRrmlT1K9f3+umOAbN4XMHIW+Vc845B6+//ro7gk/uLPx0N61EPeRzEhLsdbh2RZh8PZVleP2GikX8Ztfp6ezRb6WzKsp5ZI20GO2rR/gWv6RmGopMJ+yatRyy60DilF2biVm1HXMNnqSm2vdD7Ao18kN0+ej4cYy4+GKvm0FEAULeICNHjsTMmTMRDocRJ3KExm7kTsSiKnplKNtm1MuzpI36IeddKRyNrjvl49vDL9FoFru2guxpeBl9Uz5vyv6IHGZPKC31j8Cz7EN6EfVTQ3btK/xk10JSRL2I+hmh9y7yQ9tcokyS8Mnx4/gwyvffowifOwh5U3Tt2hXVqlXDwYMH0bBhQ93jqszjS0/XPpDlTolaIZNnHp9bzrroDU/N5gryYHQNeL2paE0RtWPXLIheHdaqXd99N/Dgg/rfK58rPziles+5H9oWBfjF+dVCWNv8ZtOA/o+jxVMsU1BQeXuj3q617Nhv4k+JSB/E5/7HhqIiSAkJOPXUU71uChEFCHljxcXFYdiwYfjpp58MBR8AfWc4skD/yPO0NO83YA/KoivKjtioI83Pd74tThE0MaeH03atxitHmSU11Gio3i9OvQ/Qu0R+dYgdb5cfxZ8asmtTvLZr3ugcb7uqzN/jRfnOs+qDsNibCPGllRqqJkD+x+JjxzB06FAkRPnzGrQI30MPPYQlS5Zg06ZNSEpKQl5eXpVj9uzZgylTpmDVqlVIS0vDhAkT8PDDD3t6L4XVPGrUKKxevVpUcd7CG/Fwa/sFZbu8En8ionLKF4jVsqx02iyDDdGClk36JZ1UKbDsdH5u7J+nvIalpfr1+Xyk2Aytl6NfhZwRnrVZrlhkNoWTsIjVgNs0UNWuRS7swiLURNTnp9RRTR/ETTsRUVeA/I8P9+7Fneedx19XwAia4CsuLsZ5552H3r1745VXXqnyfVlZGUaOHIkGDRpg3bp1OHDgAC699FIkJiZi5syZzjXMBGFvppEjR2LChAnIy8tDZmam7nGTe/TA3G+/FVMpSzSENWJi5Az7KeIoo26v39IunCaI4s1tO/KLwDMiCFESFpT3lfUeq4+z4HyIqDbo+MYZlolGm9b6txYpKZ7YtV9X6LSK0oTMfptnv11+v8Sa7wG44n/8dPw4dpaUYOTIkY7XFc3kq8R5cnIykpOTbZV53333AQDmzZun+f2yZcvw448/YsWKFahfvz66du2KBx54ALfddhtmzJiBJI/mggsbmklPT8fQoUPx22+/iSnQjVGjtLTyPwOBKqSOzMzy1Ez5z6l6lH9qWLwikZ5gtHmVQcHIBtysw4qXIg9l+86Ddwl5mFP1p/NxzD5iSjPxvakEqrEG2ImkaxhuSTieya6jTcjp4aiZGPkeZgMSLAMWZr6H27D6jj6PYL+dm4uhAwciPYiD25wY9QV2/gCgSZMmyMjIqPh7+OGHHf8969evR6dOnSK20hg6dCjy8/Oxbds2x+vXQ+jw48UXX4zrrrsO3bp1QygUElm0GNzsjIzqUu/FZ5YGZCVNSF2/X+f/RevCLW7htU07lcJWWkorERIVKDMmna3DINVYRPqw36J/tLBLFdwSme7ZtAI39gFWp326NX8vipAkCfPz8/HQ5Zd73ZTAs3fv3gjRbDe6x0JOTk6VfRPlf+fk5Dhevx5Cn7KzzjoL+fn5yM3NNTxuco8e4io16yjkGy1iiwcjlJuKstbldNRPid9G4QhrpKeX/7l5H83qciN6EaRISayEJRzEzdutWYeVinnFk9aPZHGOfb5ROqGN1u0Wsp2CQT3nzuypfZAov8PMLxLpd8SQKNx8/Dj+iKF0TicjfOnp6RF/eoLv9ttvRygUMvzbvn27i1dFPEKHGKtXr46zzjoLP//8M2rXrm2/QCtznrTC35mZ5i9vuwuvpKUZn5+UZNy7212QhTdSptX5stZLUbmqODU/z8l0DqM2y/bB80y4Gb1QD4/7IVpCWMZtHc9cl5v2JUfLyaZ9j5lQKy0VM+5jVobt7SPkft6tDCC/ZB753H/5z19/YeTZZ6N69epeNyVmuOmmmzBx4kTDY1q0aMFUVoMGDbBhw4aIzw4ePFjxnVcIf6NMnToVo0ePRo8ePRAfHy+6+EhkZ9jLySyioizK5eO1xJ+I1DmzMuR6lccEaAnjqIDVpp1aGVaUPcsevFtOq9a1IIfZl3gZoLVct6iVZXnrVEL2bAsnA++BtGllpFhL+ImwN7My0tKqHmPH5/C5kGPhRDiMeUeO4L2pU71uimv4YZXOunXrom7dukLq7t27Nx566CEcOnQI9erVAwAsX74c6enpaN++vZA6rCD8DdK/f3/UqlULu3fvRsuWLXWP416t026kQ4SDLEdE9JxiJ5xwt0fg1Ghdd9YOmSKBxvhlMraTqaFezlmS6/ZrCpwb20r4hEA6xGYF8tqzXTvksecosCtWgeZFBnVU2bMS5bvA7MI69W7Xei/6dQ0CB1iUl4fM2rXRr18/r5tC6LBnzx7k5uZiz549KCsrw6ZNmwAArVq1QlpaGoYMGYL27dvjkksuwWOPPYacnBzcfffdmDZtmitzCPUQ7oGFQiFMmzYNc+bMMRR8umg97KK2XjDDTLClp9vrbc3SOo1Qj4RpdYBuCaz0dP16rIzORbMwtGLPonDangHg8ceBm29mO9ZvC1YEhESUoASJXjcjUFgx63OxyHolZM/MItPPtuymeORxBSzZs978PVa8HmxWojc4asXf8Lmv8fxff2HKXXf5c+FDh/BDhI+He++9F//5z38q/t2tWzcAwKpVq9C/f3/Ex8dj8eLFmDJlCnr37o3q1atjwoQJuP/++51rFAOOvKUmTpyIu+++G0ePHkVGRobxwX6JcujhZvuUaZ1meL0Ju55IU18v5THRmh7qh9RiVvzyvJWWVl4vvRcwz/NARD1mDnI47PHG62b2HFSiIFooEpYFLkUIR7PXumvi1KqvwTIIYnegxGgT9QD6GzuLivB1QQHeM5lLFm1Iknj3SZLElqdk3rx5unvwyTRt2hQff/yxc42wgCOCr169ehgzZgx+/PFH9O7dW/e4yT16YO7OnWIqZYny8aRc6jnGZmUYfZ+WVum1WBFpenOilB2y2duIZV6VU3OvjMSGHztr5f6MQRBzejgl8kSlgiqvrVfOcgylV0YTvnwsgyL8Ysjeg7JwrlB7NorQmQ2k6b3/vYj6WX2O9N57fvM1FH7G0z/9hDGjRwubS0YQShzLQ7n99ttx6qmnolu3bkix+2JxagVENXIH4eRiGHJap1MRutRUfy26YjVdk7Wz9hNu2SkLbtiyGVZElB/EX0BJSQmOY2sHvzxippAtEww4Yc/nPjOg8h9OiDTlYKjXPgZgb7N1LV/Dg+f1cHExXjt4EF9Nn+563V4TtJTOoOKYVXft2hWnnHIKfvzxR8PjJrdpI65Sq8JC/nMClv1nlMeI3pjHyd8n8oliLStWnmIWW1aPwlq51zyRXNF7/5lFo1nudSwoHAKAM06Ba4hquBt7tvoALxZscbMrKSoytmezrtFSW51anEvrveNGOmeU8dy+fTi1Vy906dLF66YQUYqjT9ydd96J8847D507d0aC3Ydb5MIsdl+aLGmdVqKayg5ZT/jZSbdUCwGjt4qbS+rHGiIjgU7PybNqy36isDBmHGW38ZPedsRJdhNRz5kXz2sULNjCglvz9xxDOa1ED7P3vtH38vsoIUFM5E9kpM1OFNBhjpeV4Zn9+/H2nDmu1+0HKMLnDo5a9pAhQ9CoUSPs2LHD8DihUT49eKIfdoQOSx1m+fNJSZXRFKdG5RISIq+Jk8IhGp48v6Rk8d4zp22ZIIjoHVAI+mAPfC7AHCAinVMLp30LGbf8C7+8m23w2h9/oEGjRhg8eLDXTSGiGEeflFAohPvvvx9bt25FqYi5RCwPtnyMUWfjxIaiIjs19QicunM2u5ZWr7WVDtqLtE4/I/rl49ZLU6tOVl54wbm2EIQfiALhQ/gDuwJUqIBV+xZObraufI+x1BND0b379+zB/Y8+GlNbMSiRI3yi/4hIHLfusWPHomHDhvjpp58Mj7Md5cvMrPwT4Rizdnx6zrETy8mLHJljEYWpqd4IDjOi+UkWbces+O0eEzFF1Edh/CYY/dYeC/hx/p6IcljSRi2j55ew+hWipnmI8iuiILo3d/9+1G7UCGPGjPG6KUSU4/gkrbi4ODz66KO45JJLcNJJJ4mby6dcJUoNy/YLPFs0aOHlJuxy/TJaufJubq3AsvpXNG+uboeg23FQUA8SkC06TjSPy3hGgO2Ydf6e38S/fMn91i4tTNM5zZDf71bn31ldrMWqX8GCj6N7x8rK8OCePXjtnXcQF6BnWTQ0h88dXFmVY9SoUWjevDm2bdtmuALR5DZtqu7Lp+UQu3UntZxp9UpURs4yi6hLT9fuXM02nVZ+byb+9BAlCtPS9MvJy+Mry8/C0M5iK17asRqtFGe7otEqZnuWObU/ntVrT/v1aeL1y9Xr+j3be88PAtDHzwOvSHPajszaY1a/6e/R8ycAtrUDlOXIeLHtQkKC9jtT6U/41U/g4Lm9e5HdogXOOussr5viKST43MEVwRcKhfDoo49i7NixaNeuHZKTk/UPNop48CA6OiI61U0ur7jY/qiaVrmAmNwQu6JQeT/VHTSvGFTiV2Eo/14/9jZWbVhv4IKlPDOBJH/vhz3LtO6ZH23MQ9SXyOudM0Q9ZudikZiCnBR+LMIqKUmcHftYyNnFih2bYdXOlXULeVZE+hPK8kT4E3YHmPX8CTu+hLosl8gtKcHDe/bgnY8+itm5e4S7uLbu/pAhQ9CrVy9s2rQJp5xyiu5xk+vVw9xDh4wLc2uD68xM4PBhY8eWN8pnVJZ6VI0nyqeF3zdh1xP3IjtykWRm+lPIGSFfY5H7Ozo9z88P4k8maPdbIH796X5tVwS8Nuy0uArERWOHVRiJGpAQPWjhyGbr886O/MAp4adXnqgpJFbKCZIv8U9b79+0CT169cKQIUO8bY8PoAifO7gm+EKhEJ555hl0794d7dq1Q0ZGhr0CWUSf1VQ1ZedRp444Z1lvcRej6InIN41WmoaotE6n5gwaRXy9FgNuYMWGRUXJ1RgJvfnzgX/9S3yd1GsT/xBYU/Bbw328hUQQ5slZxe4+kZavTXq6+clm6Z7Kd7vX6Z6AtXc/iyh0iZ1//40Xdu/Gt4sEZRYQBAOuWnrHjh1x6aWXYuPGjYbHTa5Xz6UWobIjU66OaLUMI6xGRVJS7K1kpScWlCtkmTkAbi/qweogeeFIebFUtBlqGxaN31fv9NMSe0TsEcWpj6LwYsN1R1e79BlVontqnOrDebZZEHUMKz4eEL5p61Zceskl6Nixo9dN8QW0LYM7uBbhk3nwwQfRokUL/PHHH8jKyrJXmN0on+wcHz5sXIbVFTWVHazR+azla6VUmKV1spCUFFmGk6kPfp17Jxo30o6V4s4JUS7KQXArBdsIWmwlprHV5cgDYlZt2McRNdt48Ey5vR2DFymfQtFajEXpQ/BE9/RQDzQ66UP4cdCVg9WHDmH1X3/h10cecb1uIrZx3drr16+P6dOn45tvvkHY4AXqWJRPK5JXp475ebwpD05GRETvmaYWm8prJF8nFkEhUnR4LRD8itVItNf2GxdX+RcL+NoDDB5WozWyyQmJ9nhpv24Lq4ALOb9hNZ1TNjnh10Zk/671blG/pyi6BwAoCYdx9Q8/4J777kM9NzPZfA5F+NzBk6fi+uuvR3p6OrZu3Wq/MJYHu04dcydZ5IaiWtiJwhlF/9LTy1/ORi9ou0JMLQCdmiNmhWhP68zMZLNfERgJPTv2q/Z2eB3nWMrNIoTgqDbz68CFTyPY0Z7O6YRQ5TEx03ROPdLTxUT3zBDpN7BcFB/vu/f0zz9DqlkTN9xwg+t1E4TrKZ0AkJSUhJdeegnDhg1DixYtkJaWpnkc04qdWjjlGBulXtpdDdHuRuzqtEzeydS8qaF6e+SwLN4SK2mdVrBqu3b20nNiJU8WZBugdEvCJrLputqtiKrMTdsXmV4a8GfWrVRNVvGpZ062xKvZO93uAiwsPoPSH9BL/WQRlgH3GfYWFmLG9u34ZMUKJCa6PwjiZ2iVTnfwRPABQL9+/XDuuefi22+/Rf/+/XWPYxJ9tWqJWbHT6RURjUSd1gqH8+ZV/j/vFg3qjlzEKppmZWilb0TjXnussMxd83KrB1EDI+PGlf9Xtm3eaKByOJt6aYIT2XSsdBWyyf4P5wIALkiysGoe2a5rRFvap5yuaec1t2jiBwAsRPrU/bTobRxYUPsMbu2n54Ffce3mzTjn3HPRt29f1+smCMBDwQcATz31FFq1aoU9e/YgOzub7SSv0wll0abXDiuROr3l7CdOLP+vUvhZgXUzdhELwKjRu055eeI6XS+EIe9CJF7brRJRtisLPTVWhR8QeR+9TNcl590UL8di7NatZ+b/KxYg/IBg227A5++xRMRE2a6Vdjv13Cya+EGk6LP6LmfdaJ03usdyjN67SaQI9aDjWnLgAFbl5mLnM8+4XncQkCTxXaYkiS0vGvBU8NWvXx9PPvkkbr31VjRo0ABJOh3I5Hr1MNfMERW1L5/ZMZmZ9lMv5fNZ9y1TCj87G7EDkR2qldE0lkghyzGZmfodr182SLWC+oXF0os5uaekjOi0TT2xp8SO8AP4HFjRaaF6thmDQtBPQXanhJ4aZuGnZ3NyQ1NT3bEZZaqm1kXyyG69mL+nxE6apAgRKpeh1w6zOnjTOS1H+7Sw6yuIxGjgWMZPHZWCoyUluHLTJjz+9NOoX7++183xJZTS6Q4hSfJWB0uShAEDBuDw4cM4/fTTdY8zFXwyLHfZzHFWf6/V2Zi1x+j74mL7m1TPn6/9uZlzrfe9suMUMZFbZE6+0XFyu53s7PVeNiL3CxRht+pjRNstAIwebd4GI/SupZlYY1ka36wMFkHIOseJpSxWAcpwHKvjLHJeEstxohxno2NYVtk0q8OOv3pB5lL9L1ntFtC3XbfsVqA9spZFdmuvDjvz986df57+l3b9BCeie3oE3E+4cu1a/FqnDlauXYtQKORc/QEkPz8fGRkZmDPnKKpVE7sy+PHj+ZgyJQNHjx5Fup/3EXYRTyN8ABAKhTBv3jy0b98ezZo1Q6NGjTSPm5yUxC767CJHU5xKw7viish/8/Tq8jWQIywLF1b93koUUP1bjdokKsonIhVT2W6/p3W6hRN2O2SI9XOVzqioqB/gz2tPCEHUoyzilfGfnKEAgAkNDIQfC1oR64AvfCICt/fVc1LsKe3WqtjTGpyw0l0uvWIBAGDoywbCjxf53SJiGVQ3t2GQ2+2yj7Bi/37M370bPy5dSmLPAIrwuYPngg8AmjVrhsceewzTp0/H2WefrbuCEZPo88tm7FrfX3qp9rGyQ2zWiWrVp0ytU4s/O/gpnSPoi7e4Ac9+iTyohZ7spbA6qnqRB7XwM0vJLCysWhav+GNJ+9Sqh3AU0StsanWTqanWfFSlUy5c+PkRgQLU63ROtxB1O41eszzT69XdVxXhZzW6p/xeeYxWw0WJuQBvw1BQUoJJX36Jx554Ak2bNnW1boLQwvOUTplwOIw+ffrg77//xmmnnaZ7nLDUTpa0TTPnmTU9Tk/o6aHlmfAMVS9cKKZT14NnKWVRKRs+7dQ9Teu0YrMAm92yRvSMHEQe4ZSUxJceZ9YWq+lzLPWwlkMpnablsG4qzRItYe0iRUV4JjRYSjZrANmseR28Y6lGr2UWExj68nn+8A1YBaEo38CDQZYrvvgCP9WogbVffYU4Pw/yeIic0vnss86kdF57LaV0KvFFhA8A4uLi8NZbb6Fjx47IyspCs2bNNI8TltrJkrZptlAGS5RPXnCFJ29FHfHj/b3jxlXWt2wZ37ksiF5KOci4mdaZmenM1iJK+vThG53VippZiZAVF1fWK2J0mFI/fYkTfk9pKV8XaRTt4+mmKyJ+zdawn2SEls2yLPoicv4eCwLLCkI6pxWbNapn9+7K/+e9lFqRPp7udukVC5CSAvR78SLtA+yKwcxMd7dY8KmQWrR7Nxbs2YMtP/1EYo/wDb4RfADQtGlTvPjii7jyyitRt25dVK9eXfM4y6mdViMiRuiJPlnoycg9O6/wkx1hnnwkZR3KSI1S/Fmd66eF3ibsrLCkbMZiWqebWzn06VP5/7x7NirTPK2mQyrPk59JJ9KC/DrvMopxSuTZQT2mZlV4lJYCr/zSDwBweSuV8LOTGkw26xlm9mrVVpRCzw7yq9mKecluyJqr/gtAJfxEbMnkx03WXfYb9h87hsu++AJzX3uNfbuxGIfm8LmDrwQfAFx44YVYvHgxvvjiCwwZMsTeRNc6dex7BrwRE7XQU8Mq/NQiknWenxF64s8qRsJA2dm7GQn0qzBkcdpY7NVuBE+NUugp4RV9aWnl/+Xdy9HIa1H+Tpa2sG7NoLYPejMIw4lHT9nl6Zm+1Tl6qalAbi7/eVrtkIUfoCH+tOAJ77hhsz6dvycy5VON+rKKiDgq7dBM5FnZTcbqOIJWPWuu+q9+tE+NXUGozAwS4Qv4MAIYliT8a80ajDz7bIwfP97VugnCDN/M4VPy999/o0OHDsjKykKXLl10j6sS5atVq+pBvEvZWz2muNhc7Gmh9YZhyU8SkZMks3q1/ncill82+55nE3YfdvIA+OfoadkqIMYWWcro1cv8GBmz+yeLPTVmtmPFczHLxRexxL3Lc52CPB9KxDFm3/Puucwq/NTdbEEB23k84y2Xd/5G/0s3bdFlu2exV7/ZoahjfvzRvAw1dqaCmnWzrF1Vv3mTjA9wersmnq0TfDqn/5EffsAL+/djy/btqFGjhqt1BxF5Dt9TTzkzh++GG2gOnxLfRfgAoEaNGli4cCH69u2LevXqoWHDhprHTU5Kwlw9Z1NGxGbrZtjZZkEd8WOdjKJ8A9jJSyotjYzyfPFF5Pe8ERu9Oow6evWcQBkrQ++Av6J8SmHnViTJyJ67duUvT+/+mT17RlswWBF7qan8UT8isFjtks2ifXpdrGzOesLPSnvmfNsTADClh4HwswPrgi4BjWKLnOMnAr32bN4c+W/erkkv0sfSTeq9onkjh99MfQ0A0HO2hvBzY29e5fw/JVb9AJd9gDUHDuD+H37A6rVrSexxQimd7uBbj6lXr1544okncMcdd2D06NH68/kKCtwRferv1SJPiZX0y5QU/tUHlPVZOU/r96pT/NQCUK8cJ5xvvSiYsiO3+jIQBY+gs7tlCM8xSrREHq+QV86rS0nhu99q4WdV7Om1SW4XC1ZyqLRwOS00ESWuLHMv2kfiddi1zNpKuqbWOaxdZFpaVdFnRewp65OFH8Ah/kQutGK2iJFP0zmNkH+SG5uoq1ELPDVWXonKrom3i1R251ZupbI+WfgB/4g/EXP77KD2A9SdlJYP4JbY+6dt+//+G+etWoXHn3oKvXiyZwjCRXwr+ABg6tSpWLduHdasWYOhQ4ciPj7e2wYlJPClbbIKP6U3YUUsyp6FUviy5ieZoRSAGzZYL0fUZu1q9EQh4J8on1eYRfOsbIJuxzEsLjaPCmrB4v3Iz1BBgbU6eFHv16dnaz5aLVRuit8eCxYxZaVbTE21PlVINiEr55sJy4qoX58t/IWLQMsAWOxUYKSQZc01dbO8hvf1Z+V1lpBgXV9ZGXM161oron4vT7ZXsZNbOGn5AC4aTnFZGcZ8+CGGjB6NKVOmuFZvNEERPnfw5Rw+JYWFhejZsycSEhJw6qmn6h5nGuUD7M2Puvrqqp/xDl9reStmbbKyGbsaLfHHO2StVc+mTZH/FrH3jtv784jEib32eI9p167y/3k8ADMvQ+v5srKoC+/5vEPdWser7UDUXCWX9z4rg/mAl8hIhojIid73yseAN3rHerzyEbEy/mXlfJ5EC/UjfG1/lQAkOzXFyeieXnILjyBj6eK0uka7616Z1cvbrcq3vtNzGsIvxt/701aswOfHjmHD99+jWrVqrtYddOQ5fLNmOTOH75ZbaA6fEl9H+AAgNTUVH374Ibp164batWujdevWmsc5ktqpJfKU8G61oM4zcmpoW416cooIsQdUjSBt3WpcjlNRPr/AkrLpRFqnUuQp4bmWetE+o2eKdfsEvTLMUjJFiD0g8nr7KWQQQxiZPG/KptnxWo+OVpom7/mAfhm8GfVadTy7ulPF/1cRf1q4KfYYYRF7foZlBgMPdqY/21nzSq9rtir0ZLZcM7fi/zs9N9ndd7UPxd4b27bhzR078P3mzST2bEARPncIhGfdsmVLLFiwAGeffTbS09NRv359zeOEiL5rrqn8f1Yhl5LCJ/pKS61NSpGxuiG7fG1KS8WlfCrp2DHy2m7fLr4OmVjeu69Zs/L/srxseQW07GnwpEUaCT/WctRliBJ7atRvlmi0D5cw6vLkS8z60rUr+ljGsMxEn9UyRIg9Nc+u7lRx3A1n/cxXgRO4vNm6W4u1fPpp5f87pV2UXTBPt6on+ni6RmXddsWeGln8paQArZ+epn2Qk6mcVo4RyPr9+zF5+XIs+vBDtGjRwtW6CcIKgRB8ADB06FA8+uijuOeeezBq1CikiZynoxR5SngieKzHym9xO5E7+Vw7C7U4Md9PjTrytH179Ef5WLCykbIs8pSwXieejczl1Acr90BZj9Xns7TUObEHVPVi1PeBBCAA/m5Jz5x5x8J4RR/vlg16kTqepAe5DFH795nx1OLIrBZfCEAN3I7u8aZzKsWdHXjXu0pLs/46U9Zldf893jmBPNpePvbn65+v+KxC/Lkp9lxmT34+Rr3/Ph6ZNQtDhw71ujmBR5LER+T8PVnNG3w/h0+JJEm48sorsWTJEgwfPhyJidqrgZlG+a6/vvL/RW4GZHS83bl6RmXxCDazdtgZvubxZuRj9XamDXBOv5C5fFlZ7O3m8Sb0jtXLcbfiqcjPn6hVBIzKET1szVNujM+NYu2yeLpOK/PzrGa729n7WVk/q+i00j0aIXchN52/V/sA1mdDkI2Ksk/W44zu+8KFlf/P2g35acqzuiyRC7LolWVF6LEc1+Txf+sfEMDoXkFxMU6dPx+9R47Ei6+8glAo5Frd0YY8h++RR44iJUXsPLuionzcfjvN4VMSKMEHACUlJRgwYAAOHjyIAQMG6D5sEaJPKfC04PFIeI/lHdLlWdFTC7s5S+qynBZ8euzeHciXAQB+wZeVpX0MT7utij7WjpC1fDuejpmDaneeH49H46bgYzzOb4KP5zgRos+oy+AVfXYWdDFqh574Ey32AONu5qbz98bEgIRS2OnhhOAD+KY789bhZDeqVZZTYk+PJo//O5Dv97Ak4Zz338eR2rXx2eef6wYdCDZkwTdzpjOC7847SfApCZzgA4C//voLJ598MmrXro2ePXvqHjf37rv5ChYt/OQ3spUhaCsreioRsZEU7zC2W17NH39E/ttnLwUA2u2uVy/y36LbzeOxpKdbWzNcD7veDm+kLiHB2+ieUXnKexYQwac2V5ErefKWqS6XtatgaYteWSyij6d7k7tL3m5XhNgzOu6Wy/6K/MDF6B5g3T7nzav6mZsJEFrIgo83e91ONyq6C+WdmimwOwMQ2ebaM2+K/NKH7/WbV6/Gu3/8gW83bULt2rVdrTsakQXfgw86I/juvpsEn5JACj4A2LlzJ3r27InOnTujffv2use5LvqM3sR2hJ8VwQZYX5nT7BwtAej2MLbZMYcOVf6/0y8Gs81htWBtkyjRp9XpWckVUp9j1+OxuxE7y28QHd1jLZNFFDKWZVXwWRVzokUfT9dqZV0ro7awdjd6ws9q98kzx9Bpscd63G3XHIv8wEHbnD276meiu0XRgk/ZjYroPgG+LlR09wmYX0snIoBWAtDVZ9wS+YGLgu+F77/HnV99ha83btRdLZ7ggwSfuwRW8AHAF198gcGDB6N///7Izs7WPY5b9AH8wo9nxqmV+Xp2tmVQbkpt5TwzrAxne+HduL1Or19En1lnZ3VySXq6vReulSgdYHyO1m9xQuyxlitwSLwE5ulDIsWc21E+rS7BrujzYpxM7zwj8cdTD3WJfMf5bYqzfJ6ddeesdp2A+XlWti3lOY6lDazlsRwTjzLzgwDgzjsj/jlZMcl3z549WL16NVasWIHTTz+drTzCFFnw3X+/M4Lv3ntJ8CkJ9FKIffr0wauvvorLLrsMI0aMQJ06dTSPm/zggwA4hR/r8nLhcHluB49AZF2hU+kFaG3LwIKyDJ6VOXk8EOXKjgD/0nmxDOvWETxbTJSWApmZfMfzpoPaRbZF3q0zzDwFs739RCFwmXq/wtoF8qyuqS7TrJvhXblTPicctrf4cFqatUVdjH6P/Niou0evxB5RFaW9sXRzVhYztrvAuNwF8tbNs3NNXJx3UT2e8kQxeepU3e8OHz6M1atX47XXXiOxRwQa/613y8mFF16Ie+65BytXrkSByRteFn7MpKTo9zzq/byMjtWDZedUvfNYek6jMtLS7L959OpKT4/88wt+mMfn5HGZmZV/POUC5fePxfNU308rO6aq7Y61DN4h7dJS56J7PiUIOjQlhd3cAL7bojQlq92bXAZv98X6e5Rdo5diz4/RPSfguS/yf0W/tuTXrdImeaPHWq99ljJY3QUlSUmVz4GZnXgl9oRG93QoKCjAihUrcO+992L8+PG2yiL0UdqayD8iksALPgC44447cN5552H58uUoMhmS5hZ9QGXPwmJJvMLPai+udy4vIt5EZvhVALqB016aWuRZLVdG796b3TvWHtbICxfdS4sc0HCSIKg0E5zWymbl65kOjwnolcHSbfF2mXJdZo+v8njWckUeF82Iei3ZGVcVIdiMBk+srGul1R1pPRs8ro6fxZ5edK+oqAjLly/HBRdcgNtvv52tYQThYwI9h09JWVkZzj33XHz33XcYMmQI03K53HP7eHOLePfuA+ylQ4qYvCLDm89kxeNhqY/HM/HjpBUZURNTlJ4hz5C5leH1hARrnpBeXVYEmFyWFUXBU19KCvs1Ej2phfE4ljl8gPhFWZzYRw+wlnKpLp/ncTaqj6ccOymZPHXJXaLoLpC3TFGInpvHO62Zpyuzs4CxlW7O7o4z6nKcWsBYhqf8IIq9kpISLFu2DCeffDIWLVqE+Hi2VWgJPuQ5fPfe68wcvvvvpzl8SqIiwgcA8fHxeOedd5CdnY01a9YgzPBG44728UbUeIbA5GE6O1E7+Vw7Yk+dz+TWg6Ic6mYZ8raKV3lFrBhF8OxcE14PLzPTfk6cjJ304XDYebGnrItyQSwhIrOXBXl+nqj6rJSjTMd0SuwB5Y9gejr7Y+9nsec26m7T6ddYaqq4WRJ2XICkJPNN4dVEm9hjRU/shcNhrF69Gk2bNsU777xDYo+IGgK9aIualJQUfPzxx+jduze+/PJL9OnTR3djdgCYqxZ8rEPZrIuuVDZMv3yzXAzeqGI4zLc4CwvKt6Xd7RgAdo9Dby6aldUUvIZlcRL11g4sZQLsIpalDWrvkrcO9bl2PSAr5/Oeo5fDpMTvAwUOol5oxSyjnScimJbG30VZOUd9rl3RI6djAuzdEW+dyuO1RJ+yXr+LPSeidjJOjQ2aoTWd2Wo3UVpqT5TqzQoxilQ6KfTc3shdiZ15e5Ik4csvv6zwJVOiIN0+CDgxzhoLA1u8RJXgA4DMzEysXLkSvXr1woYNG9CrVy+EQqGq4k4LI2GmBe8SckpviHfFApZ6jCaxsHhILE+ImfhzA6M3fG6ua83gRvYIeIUda7msxwJVj2eZRMTrzShX4tSqk/V8PyD/hihY2EWGR5w5+fJ0W/TJt9DK+VrXgUX42RF7emg9sn7u/uyi/r1OjsHorYDpxGIuMla6SZZFi+3uVMNSj17ZenYs/0avxJ5WdE+SJGzYsAH5+fnYsGEDMjIy2ColbBMkwbd792488MAD+Oyzz5CTk4OsrCxcfPHFuOuuu5CkCK9v3rwZ06ZNwzfffIO6devi2muvxa233upMoxiJOsEHAFlZWVizZg1OO+00bNy4ERs//ZSvAB5PyGq0j9fbMKvHzLpFR/2AyrdfOOyfqBurmDp8WHzdOtuCuAKvIJOP5xkeZ/VI9IQaj0djVeyJiO4FHN4oGwt2tl5wCl7Rp+4i7Z6vRk/4OSH29NDr/nJzgzPi7VXETg8ekcfaDZutXWVWBo8AU0b7nBR6AHv5sl9sZJO8otDuvL2NGzfiwIEDWLduHbKystgqJWKO7du3IxwOY+7cuWjVqhW2bt2KK6+8EseOHcPjjz8OoHxu4pAhQzBo0CC88MIL2LJlCy677DJkZmbiqquu8qztUbNoixbbt2/H6aefjpYtW6Jbt25sUT41Tq1YIGNVfCnrsvomV9ZtxxvQOtft4W6iHBZvw+rCLyz18AgukYu7AJXeCc9v8nJTds5jWRdtAbxfkIW3bMB6V2h2Hkv3IWpBFyVWom1ed3VBGgfj7bp4jufZxpSnLrvdo9UEA6vzZVlxIoWT59hElDAdN/maazQ///777/Hrr7/iyy+/RLt27VibR9hEXrTl9tudWbTlkUfcWbRl1qxZmDNnDn777TcAwJw5c3DXXXchJyenIup3++234/3338f27dsdbYsRURnhk2nXrh1Wr16NPn36ICEhAZPvvptf9DkZ7QP4Ui616rK7u7CM1fRMPQ9FPUzrlwhgtKM3PGy2bQOvd6M+z+oiKeq67Yo9ZbnqstVEYXSPF97uzcqYlhHKW2W1fL1IHY94ElGG+jzlI8fS/Xkt9gBvkxS8RKt7tDMnT4md9arsLFJstX4nV/j0UuzpsXnzZuzcuRNr164lsReF5Kt82+TkZCQnJwut4+jRo6ilSK9Yv349+vbtG5HiOXToUDz66KM4cuQIatasKbR+VqJ+JYJOnTrhs88+w5YtW7Bt2zZM5t2KARCzt54ZVpf40tpHjxd5cQ3Rm7ErUS6ZJnoOGxGJerUHlhwpO56tXZuRE/hFiD29sv3gTdvErmPjNnpdptEtERHBsHq7ld2fHZPRm+cncrtMwj5OLggtatVOOyt2Wqk/msWeVnRv27Zt2Lp1Kz777DN06tSJuSxCLJIU+V4Q8SfnLjZp0gQZGRkVfw8//LDQtv/yyy949tlnMXny5IrPcnJyUL9+/Yjj5H/n5OQIrZ+HqI7wyXTv3h3Lli3DkCFDEA6HK0Sf8Gif+q1tZTKL1Yif1XONFnqx2g6WOikC6Ax2xDTvkLaoNAm3tv5Q2npaGp+XHUWLtdjB6jpVvJfaaqQPsL+WlJ1yeBdbycsjsecWbswNVA88WI0Q2hGKVs6VBRZrm3mTI5zYdsGu2NuyZQu2bNmC5cuX4+STT2avmAgUe/fujUjp1Ivu3X777Xj00UcNy/rpp58iosD79+/HsGH/396dR1dRHX4A/yZAEiMSgoABJBAoBApCMLhEZFE2C9JFkeoP5cfhsCO1v+JhEauxR624USkKAbUuWFoKlCpIy6KgQESgBAQJIEYCAQIISVgkIcn7/YETJi9vmeXeOzMv38856Snmzcx9LzP33e/cO/fegwceeABjxowRU2CJakXgA4CMjAxs2LABd999N8rLy9GtWzfrQzyBq0Eu3Le12Zk/NaqDn5V9iWyphJt3nIIT2WNqZIinyIBmd1921ujTv8cIa3WbudckY5IVux+tneGjDRqImUBYOzWN7Mvq6aOv9iJ5hk0niAh4RgKQ3QlYjO5L1rb+ISvciHine/UA+2Fv586d2L9/PzZs2ID09HTjByYpZM7S2aBBA0PP8E2ZMgUjR44M+Zo2bdpU/f9jx47hrrvuwh133IEFCxZUe11SUhIKCwur/Tft30lJSQZKL0etCXzAlZ6+TZs2oU+fPqioqEB6erq10AdcqZ3M3uoGnAl+wbY3+5BLqH3JUNvmHTeqcWP5ASVQS0V0T5wTYS+YQC0bq59xhD8bGCiMhWrUWl1CwQ2hT9sXEHx/oi5F//s2rOqMc2JmT5FPP7gh6AXiH/68HvZ8Ph927NiBw4cPY9OmTRzGSVWaNGmCJk2aGHptQUEB7rrrLqSnp+Mvf/kLov2+ADMyMjBz5kxcvnwZ9epdmWxt7dq1SE1Ndez5PSDCZ+kMZv/+/ejduzeSkpKq1ukDLAzx1FhplZgNflrNa3fWBFEzc2pkjXsyK1JbR8FmUVDZI9WokfjjORX27Ix3csHrZczUafa1Vl4PiJmQ2AqRy4X670vVZRgdLWcGTS+yM6DB7qTEVsOV6AmJ7Wxv5X6UW57tsxv2tm7disLCQmzcuBGpqanGD0xSaLN0TplSjNhYsTeUS0tL8Mor4mfpLCgoQJ8+fdCqVSu8++67qFOnTtXvtN674uJipKamYsCAAZg2bRr27NmDUaNGYfbs2Y4uy1Crevg0qampyM7ORs+ePbF582bccccdiI6Ott7bZ+VWtNFxVP4tCiszgeqJetBF438hObUYu38rQP8N64WWktnp8aKj5bc2ZU2uY7fy9V/Q3ctc0htodlinqrX2RJDR26dytLlWlQWqIrxQtVnllrm9RLQV9QMmRPQMWr3fVVvCnr/Kykps2bIFxcXFyM7ORkpKiuV9kXheWnh97dq1+Oabb/DNN9/gxhtvrPY7rf8sISEBa9aswaRJk5Ceno7GjRvjqaeecjTsAbW0h09z7Ngx9O3bF2VlZejdu3dV16vlnj5AbG+fkTNWxDzpskKa7DFQoVi9lSu6BSV7nnMZn2Wolpad42njruzsI9yi7la2DcVuC8noM74Gyejh0y4V2evsAeZ6+fwvYbsjyUVVc/7lkjm4wC3VmCz66tFNXwsy5pESsc9g4Svc+3Jb0DP7erNhT9+7d/nyZWzYsAFxcXFYt24dF1V3Ea2H7//+T04P3+zZatbh84paHfgAoKioCIMHD8bhw4fRt29fxOlqIceCn5VvPlELZMnsodP27aZv9kgg6yEikccLttCVGUYDW7iZZ80w24qx2koy+FkYDXzR0eYDmYqR6UDo4BbusrUa+vT7tdo7F65sooOfqirMDfe4VA6NDURme1Bm0PPn//6sDiCIlLB36dIlrFu3DikpKVi1ahUSEhJM7Yvk0gLfY4/JCXyvvcbAp1frAx9wpVJ46KGHsGnTJvTv3x/XXXdd1e+Uhj6ttrZzK9sLwS86Ws0zd7Up9AHWWk12JoAxOwe9nf0A9hZ3j4SHXQBUoE74F+nIDn1Wh3Xqqzizl6mdXkKN2dBnpowiqjZWXXLoP1e3hzzA2tBN7T2qqL6sHEdV2CspKcG6devQs2dPLF68WPhi22QfA59aDHw/qqiowOTJk/HBBx+gX79+aOx3m1Jq8Av27e6G4AeID3/B3q9Xb5G7iZGWk/8teLutrWDbm506L1Q5RExjZ/Z9MvBJOYbV4+iFqxqNXvrhgp/dKsRKlcZqSw5tAIOsY4lsU9qZgNh/LUBZx5M9l5WdsHf69GmsW7cODz/8MP785z/XmEWR3EELfJMnywl8f/4zA58er4If1alTB6+//jpmzJiBjz/+GIcPH672e22xdkvi42vWqNHRV3+CqV/fekNXO6aIqesbNLj6Y1eo99uoUfUfMi/Y59u48dWfQNvY+UIMtK2VedKDlUPUnOVGrjmSRv/xy5qd0OyfN9Rpavc0iY4OfdnJOCZdperrRNRXo92v7EDNBSNVXqSFve+++w4ff/wxZsyYgblz5zLsEf2IPXwBLF26FI888gi6deuGzp07Vy3boLHV22dnajsrPX76yk7E+nl2H4axU/nydrlxlZXOPEzTsKG4W+iVlermLfcvs0vHQ8nu4QPE9fIZufTsVkna9iIuc606ExH0wgn03FxtraoAMVWGzEeQ/YnqMKhf3355zFaR2vFUBD0r21gNez6fD3v27MHOnTuxaNEi3H///eYOTMppPXyTJsnp4Xv9dfbw6dXKZRnCGTp0KJKTkzFo0CCcO3cOt99+e7W7RFpvn+UF2wFrLTGzi7D7tyDsLOIeiP72uIp5yoMFGK9MSSebiKGa2jljdlv9uSBiyQh9BV1ebm0fZlpCEdraVr18gtmP0eqi7JqGDcWNOG/Y8Er57VRlRt+//lI9fTpiTz+pVA8C0VdxIkKjVj1ZrS7trAmoIrhZ2cZq2KusrMQXX3yBEydO4LPPPsMtt9xi7sBEtQB7+ELIz8/HwIEDcenSJfTp0wcxMTE1XmOrtw+Q1+NntAUhYgYEf6FaTKKHDgajhcBIbkkZ6cGz0zIRMSmLleOHuhtnNPzZ6RkM1koJ915c2MMHyOvl87+0VA5eqOt3q9Ju6AtUTcic2CXcdrXpHla4yypYNSe7agNCV29Wjx+qapK1uozG6qydsodwAtbDXllZWdWyC//5z3+QnJxs/uDkCK2Hb8IEOT188+axh0+PgS+MkpISDB06FDk5ObjrrrvQMMg3gKuCn9WWh4gA6c+/1aQq8IXbzkstKhFr+YmeidPMM3pmjm2mYg4V/lS1ivTvLYIDn9FLT2bo8w95gZgNfkbel8yJXYxu66Xqyiz9JWSmqpMV+IxWbWaOb6Y6CrZfJ4KemSVF7RzLatgrKirCJ598gm7dumHZsmXVZlgn99MC37hxcgJfVhYDnx4DnwEVFRWYOnUq5s+fj969e6Nly5YBX2c79AH2WkyiZuYM1PIS9ZCMWwJfOCpbWLIXZ9eIaCFZmYzF6PGtVsr+wc8Lt8Atbqcq8FmthmQEPiNBT89I6LNSJQQKfk5UZ3peDIKiJgkWGfisVmvhymCnKtLv2+mwF45WVpVhLz8/Hxs3bsTEiRMxa9Ys1Kljvm4kZzHwqcXAZ8KiRYswZswYdO3aFV26dKkxmYvGkeAnenIW/b5EDou0M+mLysBnlZVjqVqEys6xtAdmrD5PF64MIheusvN5qgx8Fo9VG0Kf2ZDnL1Tos1sdiJjcxauLqoejcp4ou4HPzr2rcOWwO9eUtg8nqjJVk7nUQYXpbcZNnAifz4fdu3dj165dePPNNzF8+HDzBydX0ALf2LHFiIkRG8rKykqwYAEDnx4Dn0nbt2/Hvffei4YNG6JHjx6oG6JloiT4hWs5iAh/deuKmRkhXFndMHbKLrcHPrPHCzQzgojQpy+HrFWKVay7Z2fbCA18VrfVLh1ZS4iKqgK0Kt/qsqGqHyt2e5WkMvCJnngFuFJ9FRWJCXmaQPuSOaQSsL4chMqwV15ejs2bN6O4uBgrV65Eenq6+YOTazDwqRXBM1rI0b17d+Tk5KBBgwZYvXo1zp07F/S1ttbu08TFBa5RjS44ZWctP+Bq60bkWnzBNGxY/ceL7MyMqUq4cyfc4lV169rvgtEfR4RArRVV6+7ZCYoupuJtBfoTiVg6VNOggdhTQH/aW1njjWFP7bFUfaWI2Lf2VW11jclgTQUjvBD2zp07h9WrV6NBgwbYuXMnw14EqayU80PVsYfPotLSUkyePBl//etf0atXr6DP9WmE9fbZbTGY6fETPUuC3bLb6WVkSyv0Ma0GLyu9faFaR1b2Z6W1ImLdPbvburyHz852obY1emnY7enzr77sLLdg5v5GsJ4/L1RBgHcCX6BtzQYvq8cPdt/TSvVl9X6svuxeCHqA9bB35MgRfPbZZxg+fDjmzJmD2NhYawUgV9F6+EaPltPD9+ab7OHTY+Cz6d1338X48eNx0003IS0tLehzfRpLwU/k/Od6ocKflR4cmQ/OAIHLZHRcFVtbNekfuLE7TNPo9kZbZEb3J6I7KD7e3vv3QOADnA19di4/s8EvVNVlNvTZ6cjWqiYnVobxQvVj93ginsOTMYGwipVjgOrVh5XP0Qthb+yECdi5cyf27NmDrKwsjBgxwtrByZW0wDdqlJzA9/bbDHx6DHwC7Nq1C0OGDEG9evXQs2dPQ3efwgY/FfOga/yDn4jhev7hT1bgC4S32AMLN6OCiGfzgu3DasssVJlEjf3z34+Zz8GBnkEvBD7tUhX1PJ6R/ZiptowEPxHVoH4fKidQcVvVI+J4/oMQRD9KHIioiYP1RDzrF6rqkLFcaLhjhmIl6AHA/44ahc8//xwVFRX48MMP0bVrV2sFINdi4FOLgU+Qs2fP4qGHHsK2bdvQp08fNDYwXVmN0GcnkIgKfiJaOf5KStQGvkDOnKl9t9qtTJknI/SJenhGv19ZYc/IsfVqQeALt224y1Jm6LNbXQUKfqKqwHD7kRUAvRL2Qh3T6AhzN08aLHK1GI3ZKsP/vXkl7N0/bBg+/fRT3HbbbVi8eHHQ9Y/J27TAN3KknMD3zjsMfHoMfAJVVlbi+eefx7PPPovu3bvjpz/9adghnsCPwU9UGLHTqtOXQeRUefqWj6oHacxuL/P2u4oWWNOm1rcNRERLqlEjoKzM/n781a8vZr92QqP2+dTCwGflMhQd+kTel9JXSaJ79cwQUQV5Kexpx7Uzb5PIwCe6TWh3hRg9Jx4xtru9lbDn8/lwZ+/e2LFjB5588kk88cQTiHbiRi0poQW+ESPkBL733mPg02Pgk2Djxo0YNmwYEhIS0KNHD8TExBjaLuv558UVwkzrLlyFKnr2BD0zAdCrrTE7X1j6FoN/qDOzrRVWW1P+LTiRoc//NrmdfdvtJQzWEjLyudlohVkNfIDxaiHQZWJ3EIGI0BcTI3aZUf1+rS6zoGe3igpUVZw8aX1bo2QHvmCDDVQ9OhyM1nEkanioxu4KMRqnwprdba2EveLiYnS/7TaUlJTgH//4B3r16mW9AOQJDHxqMfBJcurUKTz44IPIyclB79690aRJE8PbKg1+ZloJVlpsZltAoQKgk4EPsN8L68TtdxEtOaOtoXC36u0Gv3BjoszsX8SQUKstovJyxwOflctAxKhxK1VIoPtlokJfsHtxVsKfjLAXjj4McvR4eKInCNYLV6WY+ZydDHp2t7cS9rZv346BgwahW7duWLx4san2EnmXFvgeflhO4Fu0iIFPj4FPosrKSrzwwgv4wx/+gPT0dHTq1MnQEE+N1OBnN7wYbbnZaQX5hz+nAx/g3OLvbg19VsZjWQl+Zh+ACXUMJ8OexsZ5aCfw2W3Uqgp9BgdFWA5+RvdvJPiJqJacupcEOFe1qAh8Zh/9UrEqTKjPTMTal0716k2cOM70Nj6fD19//TW2b9+Op59+GtOmTeMQzlqEgU8tBj4FNm3ahAceeADXXnstevTogTiTtarQ4AeIf64qWAtO9AQwIm7rezXwAfaDm8jgJ2LBdCPnoYiZDvyPU4sDH2CvoS0z8BkNYf7MVAtWjxEs+DHsWScr8Nmd38NIuURUISLW0dNzslfPSti7dOkSNm/ejAsXLmDp0qXo0aOH9QKQJ2mB73/+R07g++tfGfj0GPgUOXPmDEaOHImNGzeiZ8+eaNGihel92A5+/q0TkROzBNqn6MDn31qz+tANQ581+nFbIm8aBNuXiLDnfxw3hD3As4EPEBv6rAawQEIFP5HH0aqd2hz2RGwvKvCJnsBRxUow+n3Z/RycHv5pJewdPXoUmzZtQu/evfHOO++gkYgbiOQ5DHxqMfAp5PP5sHDhQjz22GPo0KED0tPTUaeO+cabqeBnpFUiI/jJmJ3RSKtNxRgsJ1tpgNqWWqiHc0T/jfX7Ex32gJqtNavlr+WBD7AX+rTLWEa14x/6RAa9QPt0ai4nEdt7NfDJnBNKI2MFGL1g+1S1BKiIfVgJehUVFdixYwdyc3MxZ84cjB492tRjLhRZtMD34INyAt/f/sbAp8fA54Dc3FwMHToUZ86cQc+ePS2vMRM0+NkJNKKm0vMnYjimqPFYXr81D8htrZmdgUFki0u7FkSnAaOtNiPvxcHhnBqnQ5/RwBfukpUZ+kSHvXD7MxP+Irn6MMrIOWik48fNK7/omQ2OMpb+FLUPK2GvqKgIn3/+ORo1aoSlS5eiQ4cO9gpBnsfApxYDn0NKS0sxdepULFiwAN27d0fHjh0t3+mqCn6ih1CKmlLPn5XwJ7r1VlJib3sRD5Y73WrT9mFlij1/dltHwW56iEgEdm7R+78vh3v3NE4HPiBw6LNymYoMffo/tZ0lP/1ZeV/BAqDTYQ9wb+CzOrJPRDgLNKjA6eU+NSKW/RSxPWA+7Pl8Puzbtw/bt2/H2LFj8eKLLyI2NtZ+QcjztMA3bJicwLdkCQOfnuCEQEbFxsbitddew7333ouHH34YBQUF6NGjB+INfjtkzZkT+gUiHrTRymK0RWa0VeT/zSpjYa1wwoWccLfrKyvFtLzsiI62tzi7RkTrX/vbW2khherh1l8PVpKB3daW/pyOiRG/YJfHibgPY7aaCbUPPe20shP87Lw/fRVz+rQ77hEBzi2y7s8Nj22FGzlup1oTORQ0UDnNVkVO9OpdvHgRW7Zswfnz5/Hhhx+if//+9gpBEcnnE18vsSurJgY+h/Xv3x+5ubkYN24c/vnPf+KOO+5ASkpK1e/DBrtgtNpdZPADxE+xB1T/NnMi/AUSKhDaeXBHT0RoDBT6zC7QXreuuCBjpoVkdiiz2fAn4+GbUL1zHgqDZv/kgd626GFv8fHmQp/RP6+V4Cd6QEFSUvDfGV1YXQRRgwKMCHdPTeS5ExNjfH9WHg82un/RVU6okBasKvK/rp3o1QOAb7/9FtnZ2Rg0aBCysrKQmJhovyBEZBkDnwskJiZiyZIlWLx4McaNG4ejR48ie8MGJCQk2N+5yOAHBL4dL7J15Mbw50/fkrEyPE/fwgsV+swEN7stOe19qAh+IqbVC9ctJLrlZeQc93gYtHIqm2loGxEu9Nn5sxoNfqLDXrjPNdhl7h8EnR5QEIiI0eCyiZr/KdS5rjLohaOdb6Ke8DAb9srKyrB161YUFBTgzTffxIMPPiimIBSxKivF9/C5ZSSDmzDwuchDDz2EXr164eGHH0ZKhw5YsmgR+vXtK2bnMoKfzOn2gOrf1PHxYh/KcVKgFp6Mnj4rZAY/0fOnA4F7/WT07Nmlfa5W/s4m/q5mdi+qQagi9In8kwYLfqqDXjj6asLM3zVYj2Gg08jsYADAE/cupEzyC1Q/190U8vyJuLatLreQnZ2NtLQ0rF271tLyU0QkBwOfy7Ro0QLr16/H/Pnz8fOhQ9GmTRts+fRTcQ+d6r9VrIY//5aR3eeswtH27x8Y3BAAy8vFfLvKGt5plahhnv4P6oi64RBIfDx8cdcAAKIu/SBuvzLm9jcjwHkhorNH5OkiI/TJJmtCWEDs/Flmq4VAIU7U39nNYa9pU3n3HvX0X0Miznm3BT3AWq/etm3bkJeXh5deegkTJkzgcgtkGHv41GDgc6Ho6GhMnDgRgwYNwogRI9A6NRUZGRlYtXy52AOZ7fUz0vAVHf5CtfwC9Ri5IQQ6SWsdOtnbF2o2BtE9zT/Sgl6wf1sOgE6HvVrmmriaT9r/cElOw1E7FfUNbiPLeIbjZNirLYINFjD7HKhRwb6G7EzqEglBD7jaq9e5c2esXLkSrVu3FlMYIhKKgc/FWrdujQ0bNiArKwtTpkxB5/R03HLLLfjL/PliDxSuEW610Su75y8QJ0Kgm3r5NKp7+8xOuScw+PmHu3CvEdr7Z4YLW+9O9/IFCniBXiMy9IVqaOtPY7PhT/SqOKJOl0i4021mNLio0Geml9lM8BMZ9AB39Oq98sorGDduHHv1yBL28KnBwOdy0dHRmDBhAn72s59hxIgRWLFiBU6cOIHk5GTrM3gG498IF9m7YSX8iRrX5cahoMG4OfQB1YOfiHnVbQwxNhL0jGwXNACyd8+0cKHPSMALtZ2d4Ge2oW0m/NWGsKdyOKfdx32thj6Rq7jIWMJTT+Q5ZzbsHT58GFu3bkWXLl3Yq0fkEVx43UN8Ph8WLlyIxx9/HM2aNcOtt96K+Ph4ccEv0DeIyAdzAlE1y6K/QN++dsdzuXUsl6BWX2nc1VljY2MkVhsGgp/VsGdE1KUfUBp9DWLrVojdscC/qQ9i76SLvhuqrzashrxQzAQ/0Q1t4GpV4dagp3Fz4NPOERlzOWmcWr1FU1Z2ZQIZkZ+dk0Hv4sWL+PLLL3H8+HG88sorGD16NHv1yDJt4fUhQ4pRr57YxdEvXy7BRx9x4XU9Bj4POnHiBB599FGsXr0a6enp6NChA6KioswHP7PfHLLDH3DlG1rFjA1mW4FGwqCbW38mW376cBeM1NAHBAx+MoOeJtBpLiT8RXjgq1NeWv0/SO4hDRX6ZIQ8f1FlV99v8aVY2/tzc9gD7IeWQAMCZM7hpAkU+lR8xYQ7/c1+nqK/XsyEPZ/Ph9zcXGzfvh2DBg3C3LlzkRRqcUkiAxj41GLg87BVq1ZhzJgxqFu3LjIyMtDwx1ulAYOf6G8LieFPykyL/kS3CD16y99IsAtHevADgEuXHAt74RgKgxKe33Mq9NUIdqEoGBarD36qg144RoNgpIQ9s6O8VQY+N4S8cAJ9zk4GPQA4e/YssrOzUVFRgYULF2Lw4MFiC0S1lhb4Bg+WE/hWrWLg02Pg87jz589j5syZmD9/Pjp37oy0tDTU/fEbImvOHPHfFoEICn/hGvRCA6CklmFpmblGeOyl4vAvMtgavBB9naHXyTolZAS/4pKan6esulv0PYxqQdCDgc9UsAtFxbOQJSXwNbB/8yIUM0EvHH0QlDGXj8zAJ+LRXY3swKcfTixrtldZp7eR88Ls39lM2Lt8+TJ27dqFPXv2YPz48XjuuedQX9YCh1QraYHvZz+TE/hWr2bg02PgixA7duzA2LFjkZeXh/T0dKSkpFSNrc964w01hbDYYrbTc2M5BErsCjAb+owQ/fyMzPsAIoJfoKAXiKh6XOZoZbOfdZ1oY5+f0cAXVWliOKqsmTlEt4pLSoL+SnTwExn0ajDxeZ+rvNbQ64yEgIQ4c+/JF2N/yGowIkOfkedFRQU/J4OeWePHmxu+mZeXh+3bt6Nt27ZYsGABbr75ZvGFolqPgU8tBr4IUllZiXfeeQePP/44EhIScOutt1YN8wQUBj/AcAta9DA9wwGwlgc+jZuCn9GQF4zVOl32o6myPuM6EDypDCB/KkY7reQQIS8YO+FPatAD5HzWkk42twY+OxMCWQl+MjurZa3aYibsFRUV4csvv0RxcTFefvlljBw5EtEuXE6GIoMW+AYOlBP4/vMfBj49Br4IdPbsWcycORNvvfUWOnXqhLS0NNSrV6/aa5wOfyqexwKCBEDJD/rICHyAN0MfED742Q16wRip470a9gBJgQ9wV+izEPKCMRP+3NKrZ4oHw57GSOiTMdsrED74yR6R7Iagd/nyZeTk5GDv3r0YPXo0nnvuuWo3i4lkYOBTi4Evgu3atQvjxo3Dvn37kJaWhvbt29e4W6c0+AFAWZmysBdMFOSf8l4LfYD64Ccr6AUSqL5XMemsJwMf4FzoExjwggkV/DzZq6eJsMAnK+AF4x/8akPQq6ysxIEDB5CTk4OOHTsiKysLXbt2lVMwIj9a4OvfX07gW7uWgU+PgS/C+Xw+LF26FFOmTEFpaSluvvlmtGzZMuDaObLCX2l5naC/c2Jt62BtyoQG4i4FWYEPkN8Wl9FuPH26+r+dfva/vFx+GWQHaE8HPuDqxa8g5AWjhT/pQQ/wZNgD1AU+1QHP3w+XonBN9JXzoKKunPcse3Sk0bDn8/lw5MgR/Pe//0VcXBxefvllDB06lGvqkVIMfGox8NUSZWVleOONN/D0008jMTER6enpaNy4ccDX2g1+oQJeOLIDoNW2pZUwWFtDn3+4C0V18Av1uYkui6cDHyDnJDt/vuZ/UzGTcCCByhKkTrTFzRerAaIDX1RJiJmJVTfMDHbz2w2Abgl6AHD69Gns2LEDRUVFeOaZZzBhwgTEOHHnlWo9LfD161eMunXFXvvl5SVYt46BT4+Br5YpKirCs88+i7lz5yIlJQXdunXDddcFn87fSPizE/DCEfk9JKsjIVgYlBn4ADWdMEbakmYCXigyw5+dz8pKuVRkGOmBD7D+wQUKU+GoCn5my2YnBHo87AHWAl/IUBeO7MaZgLHcRgOgm4LeuXPnsHPnTuTl5WHy5MmYOXMmn9MjRzHwqcXAV0vl5+dj+vTpWLp0Kdq3b48uXboYDn4yA144VgOgE6PGVCwCrTr0iQp34YgKfzI/n1BlrDWBz0qwC0fGhyejnKGCoFvuxtgULuzZCnahiGygqXhYF9VDoJuCXklJCXbv3o2DBw9i6NCheOGFF5CcnCyxdETGaIHv7rvlBL5PPmHg02Pgq+Vyc3ORmZmJ5cuXo127dujSpUvYi2POnCxFpQvPSAB08BEhYe1MEW3LEyfslUFFgA3ESvhT0d4OJj5e3bOpykKfjMAUjt1A40SZGzdWd/IpCnzSQl04bl1nJRgbfw9ftPGbqEbDXklJCb766iscOHAA999/PzIzM5Gammq1iETCaYGvTx85gW/DBgY+PQY+AgDs378fmZmZWLZsGdq3b4+bbrrJ0EXipvAH1GxoOxn2ALVtTpELGIfiVPADwoc/J4MecCXsiWIkNBoKfCIawBcv2t+HVWYa0k6EPI2ICzApydjrwn0mIrvinZxhyQ1rq4SiaBiyL7qOqaCn9egx6JGbMfCpxcBH1eiDX7t27dCpUyckJiYa2tZt4Q9QF4KCUd3+VPl+nQx+QM12aCSFPaOuQYB1JmVyY/BzMuQB6isZ1Ree01PqOrWmSjCKJxkaN3GiodedPXsWe/furRq6mZmZifbt20suHZF1WuDr1UtO4PvsMzmB7+c//zlycnJw8uRJJCYmol+/fpg1axaaN29e9Zrdu3dj0qRJ2LZtG5o0aYLJkydj6tSpQsthFgMfBXTgwAE8++yz+Nvf/obk5GR07NgRzZo1MzVtsxMB0Gjbz63zQ4jgRMh1Ivzpe2+bNlV/fD0nwh7gQOADnA19wNWLt7YFPcCZC80Nge/MGWfL4sBMskaCns/nw/Hjx7Fv3z7k5+fjwQcfxJNPPsmgR57g1cA3e/ZsZGRkoFmzZigoKMDjjz8OANiyZQuAK++rffv26NevH2bMmIGvvvoKo0aNwp/+9CeMHTtWaFnMYOCjkI4fP47XXnsNb7zxBho0aIAOHTogJSWlxgLu4cgMf6LbfSK/251qkzrVsymrPWp1aK6KIOhU2AMcCnyA2tB38mT416gcshNpF1c4qkKWlS56mWVzaLkQI0GvsrISeXl5yM3NRUlJCSZNmoTf/OY3aNasmYISEomhBb4775QT+DZtUjOk88MPP8Qvf/lLlJaWol69epg3bx5mzpyJEydOVC15Mn36dKxYsQK5ublSyxIKAx8Zcv78ebz11lt46aWX8MMPP6BDhw5ITU1FvXr1LO3PbgD0yhwSXn+kyCq7bVOZz16KDIFOhj3AwcAHyAl9RsKdETK+4L18QdkhOlTJGnstopxOrQkJY0Hv8uXL2L9/P3Jzc3HNNddg6tSpGDVqFOo73QtLZIGKwHfkyJFqgS82NhaxseLWFj1z5gwmTJiAgoICbNq0CQAwYsQIlJSUYMWKFVWv+/TTT3H33XfjzJkzhh+TEo2Bj0wpLy/H8uXL8dxzz+HgwYNo164dOnbsiISEBMv7NBr+nB7BFYpbHy8CnH+O0Uhb1enJdQDzQdDpsAc4HPg0VoOfqHBnlNUQ6IULSCarYcLJh2qNltnBgKcxEvSKi4uxb9++qu/cmTNn4r777kNdF5SfyCot8N1xh5zAt2VLzXbp008/jczMTNv7nzZtGubOnYuLFy/i9ttvx8qVK3H99dcDAAYMGICUlBRkZV1t23799dfo1KkTvv76a3Ts2NH28a1g4CNLfD4fvvjiC7z66qtYsWIFkpOT0b59e7Rs2dLUc37+/MOfGwKTHU63FTVuKIe+3eqGgGdEsBDohrAHuCTwAaFDn+pgZ1SoAOiGCwZwPuxpggUop2dKMkpffheEJKPP5x05cgQHDhxAfn4+7rvvPvz2t7/F7bffbus7lsgtVAQ+oz1806dPx6xZs0Luc9++fejQoQMA4PTp0zhz5gwOHz6MZ555BgkJCVi5ciWioqIY+ChyHT9+HFlZWXj99dfh8/nQrl07pKamCuk2f/559838aYTMNq7THRUi3lvDhvb3oZq+zG4pv2sCHwB8953TJbBP1QKKRrgl7LlpdiSr7N6hEXReGAl6paWl2L9/Pw4ePIioqChMmjQJ48ePR5LRJTuIPEILfLffLifwffGF8Wf4Tp06he+//z7ka9q0aVP1TJ7e0aNH0bJlS2zZsgUZGRkc0kmR7/Lly1i+fDleffVV7Nq1C23btkX79u3RpEkT4Xck3RoE3dqZoVdU5HQJanJLgPKnolx2j2E79Mk6Idx4ovmTUUYRocjND8EC7g1+bul61/zYOAwX9Hw+H06dOoUDBw7g0KFDSEtLw+9+9zv86le/svycPJHbaYHv1lvlBL4vv1QzaUt+fj5atWqFTz/9FH369KmatKWwsLDq+n3iiSewfPlyTtpCkScnJwfz5s3DokWL0KBBA7Rt2xY/+clPhD4sG4iTQdALYU/jhba4EyHQrcEzlGY47nQRwnPDCeeGMhjhpZPQyeDntnAXwLjf/jbk70tLS3Hw4EF8++23OHfuHIYPH46JEyeia9euagpI5CAvBr6tW7di27ZtuPPOO5GYmIhDhw7h97//PQoLC7F3717ExsaiuLgYqampGDBgAKZNm4Y9e/Zg1KhRmD17NpdloMh14cIFLFmyBHPnzsWePXvQtm1btGvXDjfccIPS5xBkBkEvBT09r7R/9WS0hb3Uvg7EE4HPn4qTjye4OjKDnweCnb9QQc/n86GwsBAHDx7EoUOH0LlzZzz66KMYNmwYrr32WnWFJHKYFvi6d5cT+LZvFx/4vvrqKzz22GPYtWsXLly4gGbNmuGee+7Bk08+iRYtWlS9Tr/weuPGjTF58mRMmzZNWDmsYOAjZXbv3o358+fj/fffR3x8PFJSUtCuXTvEO/iFbicIejXo+fNiu1hjtX3s1XZ1IJ4MfHqiTsDaeCK7kdXw58FgpxeuN+/ixYs4ePAg8vLycPHiRYwYMQLjx4/HTTfdpKaARC7jxcDnZQx8pNzFixexbNkyLFy4ENnZ2UhOTkZKSgpatWrlmmmmQwXBSAl6el5uK/sL1naOpDa1nucDnz8jJ2NtOGG9zu1T3AoSKuiVl5fj8OHDyMvLQ35+PjIyMjBmzBjcf//9jt7oJHIDLfClpxejTh2xoayiogQ7djDw6THwkaPy8/Px3nvvYeHChTh9+jTatGmDtm3bomnTpq6cejoz052TxUSy7dvt76N7d/v7cKuIC3x6WrCLpICnF6lhD7D/3lz82YQbsnny5El88803yMvLQ5MmTTB69GiMGDECycnJ6gpJ5HIMfGox8JEr+Hw+ZGdn4+2338bf//53xMXFoWXLlmjbti0aNWrkdPGkirQQKSKguZ2bAqQrA5/bToLGjZ0uQU1uCzRuK49Igt5bqKB35swZHDp0CPn5+SgtLcWvf/1rjBo1ChkZGa68eUnkNC3wdesmJ/Dt3MnAp8fAR65z6dIlrF69Gu+//z4+/vhjNGzYsCr8JSQkOF08T7EbJt3Wbo9kdkKkrdDHP7I1dkIkHz51vx8/61Ahr7i4GIcOHcKRI0dQVFSEwYMH45FHHsE999yDOLeso0jkUgx8ajHwkaudP38eH330Ed577z2sX78eTZo0QYsWLdC6dWs0bNiQd04ddO+9kdUz6WVD8JHTRSCNm7p/a7njaIbMzHHC9ufz+VBUVITvvvsOBQUFOHXqFPr27YsRI0ZgyJAhqF+/vrBjEUU6LfB17Son8O3axcCnx8BHnnH27Fn861//wpIlS7B+/XokJCSgefPmaNWqlfJlHkg+BkrjGPhMYigzbFxmptNFcJS2jMLhw4dx7NgxFBcXo2/fvhg2bBh+8YtfIDEx0ekiEnmSFvhuuklO4PvqKwY+PQY+8qQLFy5g7dq1WLp0KT766Epjt3nz5khKSsKNN97IGdAorEgKlBEX+CIskNX20OQ1Fy9exNGjR1FYWIiCggIAwJAhQzB06FD079+f6+URCcDApxYDH3leeXk5Nm/ejH//+99YtWoV9u7di6ZNm+KGG27Atdde65qlHqh26dr1f5UdKw05yo5VpXVrZYcqQkP861/vKjse1U7FxcUoLCzEyZMn0alTJwwePBj33HMPevTowe8RIsG0wNepk5zAt3cvA58eAx9FnO+//x7r16/HJ598gtzcXFRWVjpdJCLBolBRUX0Icz2UV/u3r06d6v/W/S8R1dSmTRsMGjQIffv2xfXXX+90cYgiGgOfWgx8RERERESkjBb4OnaUE/j27WPg04t2ugBEREREREQkBwelExERERGRcpWVgOhJ1vkkT03s4SMiIiIiIopQ7OEjIiIiIiLl2MOnBgMfEREREREpx8CnBod0EhERERERRSj28BERERERkXI+n/geOS44VxN7+IiIiIiIiCIUe/iIiIiIiEg5Gc/b8Rm+mtjDR0REREREFKHYw0dERERERMqxh08N9vARERERERFFKPbwERERERGRcuzhU4OBj4iIiIiIlGPgU4NDOomIiIiIiCIUe/iIiIiIiEg59vCpwR4+IiIiIiKiCMUePiIiIiIiUo49fGqwh4+IiIiIiChCsYePiIiIiIiUYw+fGuzhIyIiIiIiilDs4SMiIiIiIuXYw6cGAx8RERERESnn84kPaD6f2P1FAg7pJCIiIiIiilDs4SMiIiIiIuUqK4GoKLH7ZA9fTezhIyIiIiIiilDs4SMiIiIiIuXYw6cGe/iIiIiIiIgiFHv4iIiIiIhIOfbwqcEePiIiIiIiogjFHj4iIiIiIlKOPXxqMPAREREREZFyDHxqcEgnERERERFRhGIPHxERERERKccePjXYw0dERERERBSh2MNHRERERETKsYdPDfbwERERERERRSgGPiIiIiIiUq6yUs6PbKWlpUhLS0NUVBRycnKq/W737t3o2bMn4uLi0LJlS7z44ovyCxQGAx8REREREZFBU6dORfPmzWv895KSEgwYMACtWrXCjh078NJLLyEzMxMLFixwoJRX8Rk+IiIiIiJSzufz3jN3q1evxpo1a7Bs2TKsXr262u8++OADlJWV4e2330ZMTAw6deqEnJwcvPrqqxg7dqxDJWbgIyIiIiIiR5RI22dJSfV9x8bGIjY21taeCwsLMWbMGKxYsQLx8fE1fp+dnY1evXohJiam6r8NHDgQs2bNwtmzZ5GYmGjr+FZxSCcRERERESkTExODpKQkAC0BJAj+aYn69eujZcuWSEhIqPr54x//aKvMPp8PI0eOxPjx49G9e/eArzlx4gRuuOGGav9N+/eJEydsHd8O9vAREREREZEycXFxyMvLQ1lZmZT9+3w+RPmt9xCsd2/69OmYNWtWyP3t27cPa9aswblz5zBjxgxh5VSFgY+IiIiIiJSKi4tDXFyc08XAlClTMHLkyJCvadOmDT755BNkZ2fXCI7du3fH8OHD8e677yIpKQmFhYXVfq/9+0qPpjOifD6vPSpJRERERESkTn5+frXnAo8dO4aBAwdi6dKluO2223DjjTdi3rx5mDlzJgoLC1GvXj0AwBNPPIHly5cjNzfXqaIz8BEREREREZnx3XffISUlBTt37kRaWhoAoLi4GKmpqRgwYACmTZuGPXv2YNSoUZg9ezZn6SQiIiIiIvKyhIQErFmzBpMmTUJ6ejoaN26Mp556ytGwB7CHj4iIiIiIKGJxWQYiIiIiIqIIxcBHREREREQUoRj4iIiIiIiIIhQDHxERERERUYRi4CMiIiIiIopQDHxEREREREQRioGPiIiIiIgoQjHwERERERERRSgGPiIiIiIiogjFwEdERERERBShGPiIiIiIiIgi1P8DkQvxiZPVPwkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAHvCAYAAAAPed3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2SklEQVR4nOydd3gVRffHvzedEJLQIUDoRTpSFEWadAQVUPG1ADYE1NfeFWxYsP0sIFZe9UVfQbGAShMQBUVRpChgASkSEEOIIYSUu78/4iZ7N1tmdmfbvefzPHmUe3dn5u6enT3fOWdmQpIkSSAIgiAIgiAIgiCijjivG0AQBEEQBEEQBEE4Awk+giAIgiAIgiCIKIUEH0EQBEEQBEEQRJRCgo8gCIIgCIIgCCJKIcFHEARBEARBEAQRpZDgIwiCIAiCIAiCiFJI8BEEQRAEQRAEQUQpJPgIgiAIgiAIgiCiFBJ8BEEQBEEQBEEQUQoJPoIgCIIgCIIgiCiFBB9BEARBEARBEDHPI488glAohOuvv77is6KiIkybNg21a9dGWloaxo4di4MHD3rXSAuQ4CMIgiAIgiAIIqb55ptvMHfuXHTu3Dni8xtuuAEfffQRFixYgDVr1uCPP/7AmDFjPGqlNUjwEQRBEARBEAQRsxQUFOCiiy7CSy+9hJo1a1Z8fvToUbzyyit48sknMXDgQHTv3h2vvfYa1q1bh6+++srDFvOR4HUDCIIgCIIgCIKILYqKilBcXOxI2ZIkIRQKRXyWnJyM5ORkzeOnTZuGkSNHYtCgQXjwwQcrPt+4cSNKSkowaNCgis/atWuH7OxsrF+/Hqeeeqoj7RcNCT6CIAiCIAiCIFyjqKgIzatVQ45D5aelpaGgoCDis+nTp2PGjBlVjn377bfx3Xff4ZtvvqnyXU5ODpKSkpCZmRnxef369ZGT41TrxUOCjyAIgiAIgiAI1yguLkYOgL2hENIFl50PoElBAfbu3Yv09MrStaJ7e/fuxb///W8sX74cKSkpglviH0jwEQRBEARBEAThOukA0lWpl7aRpPKy09MjBJ8WGzduxKFDh3DyySdXfFZWVobPP/8czz33HJYuXYri4mLk5eVFRPkOHjyIBg0aiG23g5DgIwiCIAiCIAjCfeLiACcEX1kZ06FnnnkmtmzZEvHZpEmT0K5dO9x2221o0qQJEhMTsXLlSowdOxYAsGPHDuzZswe9e/cW224HIcFHEARBEARBEETMUaNGDXTs2DHis+rVq6N27doVn19++eW48cYbUatWLaSnp+Paa69F7969A7NgC0CCjyAIgiAIgiAIL/A4wsfCU089hbi4OIwdOxYnTpzA0KFDMXv2bGHlu0FIkv5JdCUIgiAIgiAIgnCY/Px8ZGRk4GhiovA5fPmShIySEhw9etR0Dl+sQBE+giAIgiAIgiDcx6kIHxFBnNcNIAiCIAiCIAiCIJyBInwEQRAEQRAEQbgPRfhcgQQfQRAEQRAEQRDuQ4LPFSilkyAIgiAIgiAIIkqhCB9BEARBEARBEO5DET5XoAgfQRAEQRAEQRBElEIRPoIgCIIgCIIg3IcifK5AET6CIAiCIAiCIIgohSJ8BEEQBEEQBEG4D0X4XIEifARBEARBEARBEFEKRfgIgiAIgiAIgnCfUKg8yieScFhseVEACT6CIAiCIAiCINwnLk684COqQFeYIIioZvfu3QiFQpg3b57psRMnTkSzZs2Yyg2Hw+jYsSMeeughew0kuGjWrBkmTpzodTMCgfparV69GqFQCKtXr+Yu64UXXkB2djZOnDghroEEQRCEK5DgI4iAMHr0aKSmpuLvv//WPeaiiy5CUlIS/vrrLxdbpk9ZWRlee+019O/fH7Vq1UJycjKaNWuGSZMm4dtvv/W6ebZ46623sHfvXlxzzTUVn33zzTe45ppr0KFDB1SvXh3Z2dk4//zzsXPnTs0yfvrpJwwbNgxpaWmoVasWLrnkEvz555+OtruwsBDPP/88hgwZgoYNG6JGjRro1q0b5syZg7KysirHh8NhPPbYY2jevDlSUlLQuXNnvPXWW4620Slmz57NJPyDxLp16zBjxgzk5eU5Ws/EiRNRXFyMuXPnOloPQRAxhhzhE/1HREBXhCACwkUXXYTjx49j0aJFmt8XFhbigw8+wLBhw1C7dm2XW1eV48eP46yzzsJll10GSZJw5513Ys6cObj00kuxfv169OrVC/v27XO8HU2bNsXx48dxySWXCC131qxZGD9+PDIyMio+e/TRR/Huu+/izDPPxP/93//hqquuwueff46TTz4ZW7dujTh/37596Nu3L3755RfMnDkTN998M5YsWYLBgwejuLhYaFuV/Pbbb7j22mshSRJuvPFGPP7442jevDmmTp2Kyy67rMrxd911F2677TYMHjwYzz77LLKzs/Gvf/0Lb7/9tmNtNGLHjh146aWXLJ0brYLvvvvu0xR8dq6VmpSUFEyYMAFPPvkkJFoBjyAIIlhIBEEEgsLCQqlGjRrS0KFDNb+fP3++BEB6++23XW6ZNtOmTZMASE899VSV70pLS6VZs2ZJe/fudaz+kpIS6cSJE1znTJgwQWratKnpcd99950EQFqxYkXE519++WWVOnfu3CklJydLF110UcTnU6ZMkapVqyb9/vvvFZ8tX75cAiDNnTuXq908/Pnnn9LWrVurfD5p0iQJgPTzzz9XfLZv3z4pMTFRmjZtWsVn4XBYOuOMM6TGjRtLpaWljrXTCTp06CD169fP62ZwU1BQoPvdrFmzJADSrl27TMtZtWqVBEBatWqVpXZ8++23EgBp5cqVls4nCIKQOXr0qARAOtqggSRlZQn9O9qgQXnZR496/TN9A0X4CCIgVKtWDWPGjMHKlStx6NChKt/Pnz8fNWrUwOjRo03Lmj17Njp06IDk5GRkZWVh2rRpVSIE/fv3R8eOHfHjjz9iwIABSE1NRaNGjfDYY4+Zlr9v3z7MnTsXgwcPxvXXX1/l+/j4eNx8881o3LixaVkLFixA+/btkZKSgo4dO2LRokVV5trJ8/Qef/xxPP3002jZsiWSk5Px448/6s7he//999GxY8eIcll5//33kZSUhL59+0Z8ftpppyEpKSnis9atW6NDhw746aefIj5/9913cdZZZyE7O7vis0GDBqFNmzZ45513DOufPn064uLisHLlyojPr7rqKiQlJeGHH37QPbdOnTro0KFDlc/PPfdcAIho5wcffICSkhJMnTq14rNQKIQpU6Zg3759WL9+vWE7J06ciLS0NPz2228YOnQoqlevjqysLNx///1VokTHjh3DTTfdhCZNmiA5ORlt27bF448/XuU49by0efPmIRQK4csvv8SNN96IunXronr16jj33HMj0mObNWuGbdu2Yc2aNQiFQgiFQujfvz8AoKSkBPfddx9at26NlJQU1K5dG3369MHy5csNf59c9+eff47Jkyejdu3aSE9Px6WXXoojR45UOf6TTz7BGWecgerVq6NGjRoYOXIktm3bpnnNfv31V4wYMQI1atTARRddpFn/jBkzcMsttwAAmjdvXvG7du/erXmt9Pj6668xbNgwZGRkIDU1Ff369cOXX35Z5bju3bujVq1a+OCDD0zLJAiCIPwDCT6CCBAXXXQRSktLqwiC3NxcLF26FOeeey6qVatmWMaMGTMwbdo0ZGVl4YknnsDYsWMxd+5cDBkyBCUlJRHHHjlyBMOGDUOXLl3wxBNPoF27drjtttvwySefGNbxySefoLS01HYa5ZIlS3DBBRcgMTERDz/8MMaMGYPLL78cGzdu1Dz+tddew7PPPourrroKTzzxBGrVqqV53LJlyzB27FiEQiE8/PDDOOecc7jmFa5btw4dO3ZEYmKi6bGSJOHgwYOoU6dOxWf79+/HoUOH0KNHjyrH9+rVC99//71hmXfffTe6du2Kyy+/vGJO59KlS/HSSy/h3nvvRZcuXZh+h5KcnBwAiGjn999/j+rVq+Okk06q0kb5ezPKysowbNgw1K9fH4899hi6d++O6dOnY/r06RXHSJKE0aNH46mnnsKwYcPw5JNPom3btrjllltw4403MrX/2muvxQ8//IDp06djypQp+OijjyLmVz799NNo3Lgx2rVrhzfeeANvvPEG7rrrLgDlz8R9992HAQMG4LnnnsNdd92F7OxsfPfdd0x1X3PNNfjpp58wY8YMXHrppfjvf/+Lc845J0KsvvHGGxg5ciTS0tLw6KOP4p577sGPP/6IPn36VAg0mdLSUgwdOhT16tXD448/jrFjx2rWO2bMGFx44YUAgKeeeqrid9WtW5ep3QDw2WefoW/fvsjPz8f06dMxc+ZM5OXlYeDAgdiwYUOV408++WRNMUgQBGEJmsPnDp7GFwmC4KK0tFRq2LCh1Lt374jPX3jhBQmAtHTpUsPzDx06JCUlJUlDhgyRysrKKj5/7rnnJADSq6++WvFZv379JADS66+/XvHZiRMnpAYNGkhjx441rOeGG26QAEjff/89x6+rSqdOnaTGjRtLf//9d8Vnq1evlgBEpF7u2rVLAiClp6dLhw4diihD/u61116r+Kxr165Sw4YNpby8vIrPli1bVqVcPRo3bmx6DWTeeOMNCYD0yiuvVHz2zTffVLm2MrfccosEQCoqKjIsd8uWLVJSUpJ0xRVXSEeOHJEaNWok9ejRQyopKWFql5ITJ05I7du3l5o3bx5x/siRI6UWLVpUOf7YsWMSAOn22283LHfChAkSAOnaa6+t+CwcDksjR46UkpKSpD///FOSJEl6//33JQDSgw8+GHH+uHHjpFAoJP3yyy8VnzVt2lSaMGFCxb9fe+01CYA0aNAgKRwOV3x+ww03SPHx8RH3WC+ls0uXLtLIkSMNf4sWct3du3eXiouLKz5/7LHHJADSBx98IEmSJP39999SZmamdOWVV0acn5OTI2VkZER8Ll8zs2srY5TSqb5W6pTOcDgstW7dWho6dGjEtSssLJSaN28uDR48uEqZV111lVStWjWmthEEQehRkdKZlSVJjRsL/TualUUpnSpIAhNEgIiPj8f48eOxfv36iKjA/PnzUb9+fZx55pmG569YsQLFxcW4/vrrEacYAbvyyiuRnp6OJUuWRByflpaGiy++uOLfSUlJ6NWrF3777TfDevLz8wEANWrUYP1pVfjjjz+wZcsWXHrppUhLS6v4vF+/fujUqZPmOWPHjjWNbhw4cACbNm3ChAkTIhZcGTx4MNq3b8/Utr/++gs1a9Y0PW779u2YNm0aevfujQkTJlR8fvz4cQBAcnJylXNSUlIijtGjY8eOuO+++/Dyyy9j6NChOHz4MP7zn/8gIYF/e9VrrrkGP/74I5577rmI848fP26rjcryZUKhEK655hoUFxdjxYoVAICPP/4Y8fHxuO666yLOu+mmmyBJkmlEGShPZw2FQhX/PuOMM1BWVobff//d9NzMzExs27YNP//8M9Pv0apbGe2dMmUKEhIS8PHHHwMAli9fjry8PFx44YU4fPhwxV98fDxOOeUUrFq1qkqZU6ZMsdQWHjZt2oSff/4Z//rXv/DXX39VtOvYsWM488wz8fnnnyOs2sC4Zs2aOH78OAoLCx1vH0EQMQBF+FyBrghBBAx5Ps/8+fMBlM+XW7t2LcaPH4/4+HjDc2Xnt23bthGfJyUloUWLFlWc48aNG0c40UC5w6c1P0lJeno6ABhuISFTXFyMnJyciD+lo96qVasq52h9BpTPYzJDLrd169ZVvlNfFyMkk5UKc3JyMHLkSGRkZGDhwoUR90ZOu9Xa06yoqCjiGCNuueUWdOnSBRs2bMD06dOZBauSWbNm4aWXXsIDDzyAESNGRHxXrVo1222Mi4tDixYtIj5r06YNAFQMWvz+++/IysqqMkAgp5KyiDblXEgAFYLczFYB4P7770deXh7atGmDTp064ZZbbsHmzZtNz5NR21JaWhoaNmxY8ftkITlw4EDUrVs34m/ZsmVV5uQmJCQwzW+1i9yuCRMmVGnXyy+/jBMnTuDo0aMR58h2r+4XCIIgLEGCzxX4h4IJgvCU7t27o127dnjrrbdw55134q233oIkSboLO9hBT0CaiZ127doBALZs2YKuXbsaHrtu3ToMGDAg4rNdu3axN1IBiwARQe3atQ2FxNGjRzF8+HDk5eVh7dq1yMrKivi+YcOGAMqjjWoOHDhQsWehGb/99luF075lyxaenwCgfNGR2267DVdffTXuvvvuKt83bNgQq1atgiRJEQ6+3G717/ISq7YKAH379sWvv/6KDz74AMuWLcPLL7+Mp556Ci+88AKuuOIK222To2RvvPEGGjRoUOV7dVQ2OTk5IgLvFHK7Zs2apfucKqPrQLmATk1Nde1ZIwiCIOxDgo8gAshFF12Ee+65B5s3b8b8+fPRunVr9OzZ0/S8pk2bAijfn0sZdSkuLsauXbswaNAgIe0bPnw44uPj8eabb5ou3NKlS5cqqyE2aNCgYrXLX375pco5Wp+xIl8DrfS9HTt2MJXRrl07XVFaVFSEUaNGYefOnVixYoVm1K1Ro0aoW7eu5iIxGzZsMBXJQLmzPnHiRKSnp+P666/HzJkzMW7cOIwZM4bpN3zwwQe44oorMGbMGDz//POax3Tt2hUvv/wyfvrpp4jf8fXXX1d8z9LO3377rSKqB6BiI3p5pdWmTZtixYoV+PvvvyOifNu3b6/4XgRGUalatWph0qRJmDRpEgoKCtC3b1/MmDGDSfD9/PPPEYMWBQUFOHDgQEXEtGXLlgCAevXqCXvGZOxE2uR2paenM7dr165dVRbxIQiCsAxF5FyBrjBBBBA5mnfvvfdi06ZNzNG9QYMGISkpCc8880xE5OOVV17B0aNHMXLkSCHta9KkCa688kosW7YMzz77bJXvw+EwnnjiCezbtw81a9bEoEGDIv5SUlKQlZWFjh074vXXX0dBQUHFuWvWrLEUzZJp2LAhunbtiv/85z8R6WrLly/Hjz/+yFRG7969sXXr1irpjmVlZbjggguwfv16LFiwAL1799YtY+zYsVi8eDH27t1b8dnKlSuxc+dOnHfeeaZtePLJJ7Fu3Tq8+OKLeOCBB3DaaadhypQpOHz4sOm5n3/+OcaPH4++ffviv//9r2406eyzz0ZiYiJmz55d8ZkkSXjhhRfQqFEjnHbaaaZ1AcBzzz0Xcf5zzz2HxMTEijmnI0aMQFlZWcRxQPnKk6FQCMOHD2eqx4zq1atrblD+119/Rfw7LS0NrVq10kxn1eLFF1+MWOF2zpw5KC0trWj30KFDkZ6ejpkzZ1ZZCRdAxPYRvFSvXh0ANH+XGd27d0fLli3x+OOPRzxjRu367rvvmO87QRAE4Q8owkcQAaR58+Y47bTTKvbDYhV8devWxR133IH77rsPw4YNw+jRo7Fjxw7Mnj0bPXv2jFigxS5PPPEEfv31V1x33XV47733cNZZZ6FmzZrYs2cPFixYgO3bt2P8+PGGZcycORNnn302Tj/9dEyaNAlHjhzBc889h44dO2o6qKw8/PDDGDlyJPr06YPLLrsMubm5ePbZZ9GhQwemcs8++2w88MADWLNmDYYMGVLx+U033YQPP/wQo0aNQm5uLt58882I85TX984778SCBQswYMAA/Pvf/0ZBQQFmzZqFTp06YdKkSYb1//TTT7jnnnswceJEjBo1CkB5embXrl0xdepUw338fv/9d4wePRqhUAjjxo3DggULIr7v3LkzOnfuDKB8Duf111+PWbNmoaSkBD179sT777+PtWvX4r///a/pnFGgfIGXTz/9FBMmTMApp5yCTz75BEuWLMGdd95ZscDOqFGjMGDAANx1113YvXs3unTpgmXLluGDDz7A9ddfXxGJskv37t0xZ84cPPjgg2jVqhXq1auHgQMHon379ujfv3/FPnPffvstFi5cGLHYjBHFxcU488wzcf7551c8T3369KnYEzM9PR1z5szBJZdcgpNPPhnjx49H3bp1sWfPHixZsgSnn356FbHL85sA4K677sL48eORmJiIUaNGVQhBI+Li4vDyyy9j+PDh6NChAyZNmoRGjRph//79WLVqFdLT0/HRRx9VHL9x40bk5ubi7LPPttRWgiCIKlCEzx28Wh6UIAh7PP/88xIAqVevXtznPvfcc1K7du2kxMREqX79+tKUKVOkI0eORBzTr18/qUOHDlXOnTBhAtPWBZJUvo3Eyy+/LJ1xxhlSRkaGlJiYKDVt2lSaNGkS85YNb7/9ttSuXTspOTlZ6tixo/Thhx9KY8eOldq1a1dxjLz1wqxZs6qcr7UtgyRJ0rvvviuddNJJUnJystS+fXvpvffe4/ptnTt3li6//PKIz+StLPT+1GzdulUaMmSIlJqaKmVmZkoXXXSRlJOTY1hvaWmp1LNnT6lx48YRWw5IkiT93//9nwRA+t///qd7vrw0v97f9OnTI44vKyuTZs6cKTVt2lRKSkqSOnToIL355psmV6ecCRMmSNWrV5d+/fXXit9Zv359afr06RHbgkhS+dYFN9xwg5SVlSUlJiZKrVu3lmbNmhWxXYAk6W/L8M0332j+TnkLAkkq3wZh5MiRUo0aNSQAFVs0PPjgg1KvXr2kzMxMqVq1alK7du2khx56KGKrBS3kutesWSNdddVVUs2aNaW0tDTpoosukv76668qx69atUoaOnSolJGRIaWkpEgtW7aUJk6cKH377bdVrhkPDzzwgNSoUSMpLi4uYosGs20ZZL7//ntpzJgxUu3ataXk5GSpadOm0vnnny+tXLky4rjbbrtNys7OrnJPCIIgeKnYlqFFC0lq1Uro39EWLWhbBhUhSWKY0U4QBOEjunbtirp161aZ++cmb7zxBqZNm4Y9e/YgMzPTs3b4mYkTJ2LhwoW2orF+Zt68eZg0aRK++eYb9OjRw+vmOMqJEyfQrFkz3H777fj3v//tdXMIggg4+fn5yMjIwNGWLZHOkC3CVXZZGTJ+/RVHjx6tWDU81qEYKkEQvqWkpASlpaURn61evRo//PAD+vfv702j/uGiiy5Cdna27oInBBFNvPbaa0hMTMTVV1/tdVMIgiAITmgOH0EQvmX//v0YNGgQLr74YmRlZWH79u144YUX0KBBA88dz7i4OGzdutXTNhCEW1x99dWeP3MEQUQhTszho+TFKpDgIwjCt9SsWRPdu3fHyy+/jD///BPVq1fHyJEj8cgjj6B27dpeN48gCIIgCDuQ4HMFmsNHEARBEARBEIRrVMzha9vWmTl8O3bQHD4FFOEjCIIgCIIgCMJ9KMLnCrRoC0EQBEEQBEEQRJRCET4i6jh8+DBWrlyJjz/+GLt27fK6OQQhnFBZGcrCleN1IQBSXNWUGOUYZ3y8pPqEIAglLVq0wPDhw3HmmWeiTp06XjeHIGIDivC5Agk+IvCUlpbiiy++wKeffoolS5bgxx9/RP369VGvXj1kZGR43TwiBpnQpQs2oavXzYgamjUDPvjgP143g4hyNm3ahGXLluHgwYNo3749Ro4ciWHDhqFPnz5ISCB3iSCI4EKLthCB5NixY1i2bBkWLlyIxYsXAwAaNWqEBg0aoFGjRkhNTfW4hYTfOeusuV43gYgRFi+e7HUTCA4KCwuxf/9+5OTkYP/+/QCAs846C+PGjcOQIUNQvXp1j1tIEMGnYtGWTp2cWbRlyxZatEUBCT4iMBw5cgTvv/8+3nnnHXz22WfIyMhAo0aN0LRpU9SrVw+hUMjrJhICIUFGEN4T62JVkiQcOnQIv//+O/bv34+jR49i4MCBOP/883HOOeegZs2aXjeRIAIJCT53IcFH+JqCggJ8+OGHeP3117Fy5UrUr18fWVlZaNasGTIzM0nkeQgJMoIg/EyPHsCMGeIEqyRJyMvLw+7du/HHH3/g0KFDOPPMM3HJJZdg9OjRSEtLE1YXQUQ7FYKvSxdnBN8PP5DgU0CCj/AdRUVF+Pjjj/HGG2/gk08+Qc2aNdGkSRO0bNmSHlxOZsywJ8oa4oCl8z76tqGtegmCIETRqpX1c59+Wl8wHj16FL/++iv27duHI0eOYMSIEbjkkkswfPhwpKSkWK+UIGKACsHXrZszgu/770nwKSDBR/gCSZKwbt06vPrqq/jf//6HatWqITs7Gy1atECtWrW8bp6j2BVlTmFV7DkBCUgiWhk0iP3YvDzHmuE7/PhbjcRfbm4ufv31V+zduxfHjx/HBRdcgMsuuwynnXYaZaIQhAYk+NyFBB/hKb///jtef/11vPzyyzh8+DBatGiBVq1aoW7dur58SV5/fbk4y8z0th1O4yexJ4y8PHz0y0lCihpVZ72QcoThN4P0W3sAX7XpOKp53YQIRIsrP4o1kRgJP3nO36+//orffvsNdevWxeWXX44JEyYgOzvbxVYShL+pEHzduzsj+DZuJMGngAQf4TqFhYVYuHAhXnrpJXz11Vdo2rQpmjdvjuzsbN8sfS0LOyN85D8KIyqFnozaC40mrzQajVGmWTOvW+AIfhN9IigsrPz/Q4e8a4ebGIm/0tJS7NmzB7/99hv27NmDU089FVdeeSXGjRtHK0kTMQ8JPnchwUe4xubNmzFnzhy8+eabqF69Opo3b45WrVp5+uJjEXZmRIuvHVVij1fMBV38RYsRAkC9esbfR5GjHC2iTyn0zIhWIWgk/IDygc5ffvkFu3btwrFjx3DJJZfg6quvRufOnV1qIUH4iwrB16MH0gUP9ueXliLj229J8CkgwUc4yrFjx/C///0Pzz33HLZt24aWLVuiTZs2rm+jIELYmRFUnzvwQo/y0YJrfDJmIs+MgIvAIAo/HpFnRrSJQJaUz507d+LXX39Fhw4dcM011+CCCy6g/f2ImIIEn7uQ4CMcYdOmTZg9ezb++9//Ij09HS1btkSrVq2QnJzsaL1uCDszguR7B1LsuSnIgiL+gmR0gH2BZ0YABWBQRJ9IoWdG0IWgWdTvxIkT+OWXX/Drr78iPz8fF110EaZOnYquXbu600CC8JAKwderlzOCb8MGEnwKSPARwiguLsZ7772HJ598Eps3b66I5jmxAIsfhJ0ZTvjgosqshuPWT45lweW39sgEQfA5LfLMCIAI9LPoc1PomeGmEBThK95/v7HwkyQJf/75Z0XUr0uXLrjxxhsxZswYJCYm2m8AQfgQEnzuQoKPsM2BAwfwwgsvYPbs2ZAkCa1bt0bbtm2FRPPuvXcu8vMFNNIj6tXzn59pS+yJQks4+VVM6SGqvSKEkJ09v5x6wLwWeGY4+WAmJVk+tQz2Fi8oLrZ1ehX8JPTM0BKCfvL1zIQfUB7127FjB37++WeEQiFMnToVU6ZMQYMGDVxoIUG4R4XgO/VUZwTfV18xCb45c+Zgzpw52L17NwCgQ4cOuPfeezF8+HAA5XtD33TTTXj77bdx4sQJDB06FLNnz0b9+vWFttlpSPARlpAkCevXr8eTTz6JDz74ANnZ2WjTpg2aNGliK5p3773GkTs/ir8grTHhC7EHaHuRQcvfSk8Hioq8boU9sScaP7XFCj6JlNoVfaIoLQUKCrxuBT9K39Gv7WeJ+u3duxc7d+7Enj17cM455+CGG25A7969fbllEUHwUiH4TjvNGcG3bh2T4Pvoo48QHx+P1q1bQ5Ik/Oc//8GsWbPw/fffo0OHDpgyZQqWLFmCefPmISMjA9dccw3i4uLw5ZdfCm2z05DgI7goLS3Fu+++i5kzZ+Lnn39GmzZt0K5dO2RkZFgu00zk6eG2+LMasPCL4POF2Avicn5mIQKvRZ9fRFZamvbnpaXutoMHvTb7YHsYP4g+o1vnJyHFerv81GYZlqjf0aNHsX37duzcuROtW7fGnXfeibFjx/pmGyOCsIIbgm/v3r0Rgi85OZkp+6xWrVqYNWsWxo0bh7p162L+/PkYN24cAGD79u046aSTsH79epx66qlC2+0kJPgIJgoKCvDyyy9j1qxZKCoqQrt27dC2bVtL8wusCjwjRIk/J7LQvBZ8gRN6ejgtAO3kfnkp+rwWfHqiyQgvRKCVdnrsUHst+qzeJjeElYhb4ycByCL8SkpKsGPHDmzfvh3VqlXDLbfcgssvvxxpVmybIDymQvD16eOM4PviiyqfT58+HTNmzNA9r6ysDAsWLMCECRPw/fffIycnB2eeeSaOHDmCTEUGSNOmTXH99dfjhhtuENpuJ6HhIcKQAwcO4P/+7/8we/ZspKeno3379mjWrBni4uK4ynFC5ClR+upm4s/vU4tE4qnYEz35R33j7AhA0RN7UlK8j/R5gVVHU+vlLloEinCC5TZ5JPziUea56LOC3qW3K7BE3wZlO70Wf/I70kj4JSYmomPHjmjfvj12796NWbNm4Z577sHUqVPx73//Gw0bNnSruQQRCLQifFps2bIFvXv3RlFREdLS0rBo0SK0b98emzZtQlJSUoTYA4D69esjJyfHyaYLhwQfocmOHTvw0EMP4e2330Z2djb69++PBg0acM0dcFrk6SE/22lp/s4mcxrPxJ5bqzywCEA3V2yINdEnOqqg582zPMRORzg8FH5BFX1aGN0mPcHl1iX3i/hjEX5xcXFo0aIFmjdvjpycHCxcuBBPPvkkxo8fj7vuugtt27Z1q7kEYZ+4uPI/0WUCSE9PZ1qls23btti0aROOHj2KhQsXYsKECVizZo3YNnkMCT4igh07dmD69Ol477330Lp1a5x77rlVRjb08ErgyWg5EwkJsSn6PBF7Xi/nl5VV/l8vvbVYEX1uppBpefxepbF6JPyiSfTpoTYpeaFTLxbq8oP4YxF+oVAIDRs2RMOGDXHkyBFs3LgRnTp1wtixYzFjxgwSfgTBSFJSElq1agUA6N69O7755hv83//9Hy644AIUFxcjLy8vwhc+ePBg4FbOJcFHACifhDpjxgy89957aNOmDcaNG4caNWqYnuelyGP1OYMu+nhWeI9HmXyW9gHRtma7luMtG4ZXnlo0iz6v5wqpR2pF2zMrHgg/t0Wfl32mss9T33K3BaDT4q9OHePvn3mm/B173XXGc/xq1qyJPn36oHPnztiyZQs6deqEMWPG4L777iPhR/gbByN8VgmHwzhx4gS6d++OxMRErFy5EmPHjgVQHhjZs2cPevfuLaKlrkGLtsQ427dvx/Tp07Fo0SK0adMGnTt3NhR68svn8GG3WliJXV/TbQdGbq9bPmGl2HMQ2cH2UujxXlCvhJ8I0ccygmh0PUQ+qF6KPZbUXK/EHyD0IZfijEVdCOav7LKw/WX7vRJ8PANcXm7To+xWzESbSMyEn8zff/+NzZs3Y+fOnRgzZgxmzJiBdu3aOdw6gmCnYtGW/v2dWbRl9WqmbRnuuOMODB8+HNnZ2fj7778xf/58PProo1i6dCkGDx6MKVOm4OOPP8a8efOQnp6Oa6+9FgCwbt06oW12GhJ8Mcrvv/+OO+64AwsXLuQSeno4IQCd8C+9WBfCDcHnitgDtC8gLclXlTp13PGY3RpN8CpiaXUOpofiT0oyX/LbLiyizzbhME6UuptGamO/egDuCcCM9KrX/0Sxu3vjWRF+48aNwyOPPILs7GyHW0cQ5lQIvoEDnRF8n33GJPguv/xyrFy5EgcOHEBGRgY6d+6M2267DYMHDwZQufH6W2+9FbHxetBSOknwxRh5eXl44IEH8Pzzz6NFixbo2rWrLaGnhxUB6FYAgdcPt9OuqBF7vBdNhLhy6uKJFH5mQ/tOiz4XDMxIwITyjzpTqcjFdhwSf2UJ+tdFdHaSGrcEnxGixaBdsaeFCAGoJe6McFP4sYo+oFz4ff/999i1axeuueYa3H333czz8wnCCSoE36BBzgi+FSuYBF+sQIIvRiguLsbzzz+PGTNmoFatWjj55JNRR8dZtSryjNASgF5liGn54E61xWl/3JdiTw8WoeVWxIpX9FnN2YpywaeFLRHo9IvZovgzEnd6xILo04NXDDoh9rRgEYC8Ak8Pvwq/w4cPY+PGjcjLy8OMGTMwdepUJLl1AwhCAQk+dyHBF+VIkoQFCxbg5ptvRnFxMbp164YmTZpobq/ghNBTkpxUbmpH891NfVEiP/duZHwFXuw5LVZk0eXl5tZq4efEZBwnr6PD105keqKhEPTihazTCVgRd3oEXvRZFHx6aAlBL7WGLABFiTwt/Cj8JEnC3r178d133yE5ORmPP/44zjvvPK5tlwjCLhWCb/BgpCcmii27pAQZy5eT4FNAgi+K2bRpEyZPnozt27eja9euaNOmTZUN090SeVo4LfyMnvGgCz5HxZ4bc8/UXp4Hqy9I6RkAgFDxCWcrCqjgi5q5aCaIWODEDCeFn6PXULDg06S4GFJKNefr0SBUpNi+xoWtPtwQfzzRvnA4jJ07d2LTpk1o164dXnzxRXTp0sXB1hFEJST43IUEXxRy5MgR3HnnnXj11VfRoUMHdO3aFYmqh8lJoWck8rQQJfx4nukgC75Aiz2z4XwHhZ8s8LQIrOgLsODTWgemWoo7r6PjRVX7HKcjTYEUfU4LPp2O2GkBGCH0tHBY/PlN+JWUlGDTpk3Ytm0bLr/8csycOZPm9xGOUyH4hg51RvAtXUqCTwEJvigiHA7jtddewy233IKMjAz06tUrotP2MppnhhXRZ/cZdlL0BU7seS30tBAg/oxEnhpHRV/ABJ8XYk+NaPGnJfK0cFL4OSX6ok3waSFCBJoKPTUxJvzy8vKwYcMGHD16FLNmzcKkSZOqZAURhChI8LkLCb4oYePGjbjqqquwa9cu9OjRA82aNavIx/dTNM8MI+En+pn1g+CLj2O/fhLMnYNQ2IIgdFLsifCeOYQfj8DTInCizwHB56TYs7q7gx3xxyr01ARN+AVS9NnohHkFILfYU+Og+LMq/JKL2BZImnzrrcxlSpKE3bt349tvv0WLFi0wd+5cdO/e3VL7CMKICsE3fLgzgu+TT0jwKSDBF3AKCgpw5513Yu7cuejYsSO6du2KhH+cwLmPPRZx7IkUe86wjGiRp+ZofsiVNRxECb7khEiRdaI0Xvg1YhF7PCh9uPhSB0SOU96yhvizK/LUOCb6OATf3+HqTMex+OIZKey/x49iTwszAWhV5Knxk+hjudfMGQA8lTsl+ASPuOkJQNtCTwunxF9uLk6k1WYWcrzwCL/S0lJs2rQJW7duxeTJkzFz5kykebW0NhGVkOBzFxJ8AWbJkiW44oorkJiYiN69e1ekb6qFnh48AtBpkQcgwiN0YxI/j7+hFnWGCB6+Fy32AHMfzrIIdHgi1PGikBtrKwgTfUeLIgWU6MiOaF9c1qS1aokt18l925XiT5TQUyParOXr7ERGrvC0b+VAhcgGOzyRWkqp5ozYU2KnM8rNNf7eoXRtHtEHlK8J8NVXX6G0tBQvvfQSRo4c6Ui7iNijQvCNHOmM4FuyhASfAhJ8ASQnJwfTpk3Dp59+ih49eqBt27YIhULMQs8IpQh0W+SpcVr0Kf0NLkFnhs8Fnx2RoCsEXVhbXe3MOy38eESfWtjp4WfBxxKAtCIEnRR7MoWFQGqq8/VYMXOz6yrar3dU8BnB80PcWDWrsLDy/90wDqMOyUzc6eHgoky8aZ7bt2/Hxo0bMWzYMDz//PNo0KCBY20jYoMKwTdqlDOC76OPSPApIMEXIMLhMF5++WXcfPPNaNiwIXr16oXU1FQhQi8C5Qve46F+0aKvyoivaKHiY7EnOhpUXOz8qopmERs3RR+rqDNCpHk4Fd2zilZX4bTYU/r0Spz277W6DbvXT6Rv75no00P945wWfHqGAbgn/qyKPC18Eu0rLCzEhg0bcODAATz++OO48sorae8+wjIk+NyFBF9A2L17Ny699FJs2bIFp556KrKzs8UKPbMXuh3hZ8Prsyv4DFN6nIhKCfTo/S721IgUf7ypeaKFn9JXE+lrRbPgU1NcDDi1sruRP6/EKd9etn/Rdudb0SfaOOR3ghN9MKtxAOINJC8v8t+if59PhN+ePXvw1VdfoVOnTnj99dfRrFkzR9pFRDcVgu/ss50RfB98QIJPAa2363PC4TBmz56N9u3bIzc3F+eccw4+efttcWKvtJTtZZ6byzdiWVRU+WcDnjkYoaLjVf5cJYbFHlAu0uQ/q1g9324kSTZvXjPnxY19rK3ghNgDyv1f+U8UPP58YSHf8UYUF1f+yYiOYDq9O4rvUF5U9cW1Au/Nlg3EjpEYGbmI36SE9X3NCa8/kZ2djXPOOQe5ubno0KED5syZg7BfOzeCIABQhM/X7Nq1C5deeim2bduG3r17Y8n8+eIKD1j+llakz7ag82k6p1/FnlW/xa0VFWVYoi68os6PUT635++xwmonvNE/EcKNN6DD+lv8GunzbZSP513B2k+LUvYAm6FYGcUIQMSPN9q3b98+rF+/Hh07dqRoH8FFRYTv3HOdifAtWkQRPgUU4fMh4XAYzz//PDp06IC8vDz8vnmzGLEnjw6KeHHLoRBBkTwzPI/emeEzsRcO+0PsAfqRP7vRQD20TNFuBC+aIy9eiD0gMjBi5juL8uVZgjlWgk2iu0BR96QM8WIK8hLRUUAWjCJ/dkLWTkT8BMMb7WvcuDHOPvts5Obmon379pg9ezZF+wjCh1CEz2fs378fF198MX744Qe889prGNS/v/1CncrXUiJ6so7Wi1b0fAuRo60C9rXScs6s6Ei/CD0t5Nvq9LoJeXn+HkwXMT4g6j6L6h5E2orcnYgM2uiRmiq27SKjfb6K9HkV4WPBjRGZggJn5hyKKtOqsRw6pPnx5Mcf5y5KjvZ16dIFb775Jho1amStTURMUBHhGzvWmQjfu+9ShE8BCT4fMX/+fFx99dVo3Lgxvlq61L6RuiH0lNgVfWbenV8En/q6CvLK7I7Gi9wuy4lBdDc0fFDWTOAVfFo+mVrw1avH3w6vons85Tm517Nch2g79JvoE5baKcpgRAs+ZefihCgrKKj6meh6RJR3+DDQoIGuiLMCr/ArLi7G119/jX379mHu3Lm48MILhbWFiC5I8LkLCT4fkJubi8mTJ+PTTz9F79690bx584rvLC3O4qUX5+TEHLcEH+/1E+CRiUi9Ymk2S1OdiurpYfe2mmVXifTL7NxqpQ/mlwifXEadOvbKcUrsqREl/vTK95vwk59pEQJSiOhTCjU7D4NIwWfWwdjtALTEnsjyrZR3+LD5MQIXEbMS7du1axfWrVuH4cOH48UXX0TNmjWFtYeIDioE33nnOSP4FiwgwaeABJ/HLFu2DJdccgnS0tJw2mmnIZXB49AUgTk55f+167nJ2PHgjESfnRwtUd6YyDXVAyT2jEhIcF/oqeG5vbxTaNwSfawD634TfEaYdSluiT0lVoUfa1tFCj+zbob12bXbXQkXfGYYPShuCj4lvB2BmdizUzZreSziTg+PRV9hYSHWrVuHgoICvPnmmxg8eLCw9hDBhwSfu5Dg84gTJ07glltuwUsvvYSePXuiXbt2ljYwnXvjjdpfWBF+TkzCAdxfPU2J0W/ygeDzg9gDIv0vu36L3dttdIvtLO8vyh8TsW2DHwSfCMEo8j1qtfthEX9WyhYd7RORmhk40aeHyCwUqx2OUYfAI/R4y2ZB9EagHgo/SZKwfft2fPPNN7jyyisxa9YsJCcnC2sPEVwqBN/55yNd8IBJfnExMt55hwSfAhJ8HvDTTz9h3LhxOHLkCM444wxkWpj7piv0tHB7iF4u04nJN2ZemJvrqPsguida7GnhxaroQOWtFrmHm5V3itYAuwj/yW4ZfhB8avvT2q2FBRFdkFZ3I6JcO8JPfX3sdju+SO0UIfi0yrDSn4rqdJQdg12xp1euGWYjST4SflaifXl5eVi7di1q1qyJhQsX4qSTThLSFiK4VAi+8eOdEXxvv02CTwFty+AikiRh7ty5OPnkk5GcnIwRI0Y4L/aAco9V/pNxYolrN5fNVtfnZr2C8FrssS4lb3Z5RW5uLVNQUJ4eKVLsAeYmonxU1I8MEYmW/VnZ/kLUY1tQUPknsjvgsW/lzjda18euVnJ49xtvUV88N/dCkQ0mL0/8HHgjQ+R5WERcE0FL+869+WbuczIzMzFixAgkJyfj5JNPxosvvgiKNxCEe1CEzyX++usvTJw4EZ9//jnOOOMMS8sVcws9LeQXhtWheDVmXpXoVRZE5VnZHSr3OJVThNizQ2FhedauE0JPjeipMbm55QvZAd5Oj7Fzvh+jeyyoux0nxmiU7RKdlqlVnpXr4HWkz/Mon9Xzlf2uE3t2qMt0YGNzJCXZzwsPeLRv3759+OKLL9CvXz/MmzcPtUT5I0SgqIjw/etfzkT45s+nCJ8CEnwu8MUXX+C8885D9erVcfrppyOF820tVOgpcSv/yoroc3oZPQ8FX9DFHiB+FXSWLCoR9ch+lh/8pSALPhFBENEZ33ptcmLPRxG2GGjR54dQpVyGqPlpZgJSRKehTFkQUZ7dMjwUfUVFRfjyyy9x7NgxLFiwAH369BHSFiI4kOBzF0rpdJBwOIyHHnoIgwYNQosWLTBw4EAusTf3xhvtiT2z1BievCvA+bRJt1IzY1TssaZwGqGV3mbnlskpeCxYrUMra0qEYBG5wX2QEHHtSkvLfV/5T0R5eohKOQ6HK/+cmsbm5vlRg/LGWIXFQOymVKoNXUSKpt0y7F63f7CS4pmSkoKBAweiRYsWGDRoEGbOnIlwrHaqsU5cnDN/RAQO5CsQAHDo0CFceOGF2LRpE0aMGIG6desyn2s7osf7AsjN1Y/2iRBfBQXOrajgBiJ3NLdIUZH3216Z+UTK22k2WGd1XYTiYrboCuuUGI9up6f40adS+sK805pZuzvZfnkjfnrXq6jI/tiR3TLsnF+GeOtRvpQUfypO9c1ywunjfR+YjWjI5dnpjOyWEQ7bnrA8d+JEy+du3L4dQ26+GZ999hneeustLn+JIAg2YtDdcZ41a9bgvPPOQ2ZmJkaPHo0kxlC160JPiewh16rlnBDzq8DjuW4+je45ueWVleiIfKvVpi9iATw90SdiuwRewmF+n1LEBux2RZvV7TpFRfeMYBV/VtvCKvxYrrH8bHkl2kScH9Uob6Lew2Yn/Gsk/nhD124JP6dWorLSGf5D93bt8Nvbb6PntGno2LEjFixYgL59+wpuIOFbnIjIUYSvCiT4BCKncD700EPo0aMH2rdvz7S33txLLy3/n8OHrXliIr2wQ4f4h9hZys3Lc2YyDW87UlLcXf3tH+yIPRbBprcioN0Ilt1UuOLi8jJER9Jk0WdX5DkV5WPdgN0rjHw+q2KQBd5HT0/8iXiEtYSfVSEdVNHmWZTPiwihVvRP5MIvSrFlJ09ZlPCTO0c3HV8boi8jLQ075s3DGbfeiiFDhuDuu+/GnXfeiThy3AlCCLRoiyCOHDmCCy+8EN988w369++POgxeU4XQ08OsDCeH2+2IPidXTzArw+ya2PGqLJ7rtNjjOY/VhxDlBynLESmsZH9KVJlWyhExUO5VhM9qnXYW0xM1zuLE9p6lpeLK9aCLsX2uZdFnR7QVFlp/AESJRTnlQGTnlJ9f+f8ixApP27RGwLwQTDbrHPv441i9ejV69eqFt956y9L2VYT/qVi0ZeJEZxZtmTePFm1RQBE+AWzatAmjR49GYmIiRo0aheTkZMPjTYWejNKjVIo/t/KqeDpZD6JmntTpIqLFHlD1kmn5EiLEnlYZdgeutQbN3ZyHR3vyVfUnWQWgqEc1HK70p0W9w+W26U015oUnWqcW7oWF1sfFApnaqTdy4YZIUeaXi5qnrRR7QOXvs/N7zDpOszQHEW3gxUakDwDevflmTKxRA59//jk6d+6Mjz76CF26dBHYQMJXUEqnK5Dgs8m8efMwZcoUdOrUCV27djVN4WQWe2oOH67suK0Os1vJpxI5icaONyP/dq9EnsvRPSfEnhby5Swqcm91c16RxrLmgV3Rpy6DxF0ken65lq+p7p5Eij0lSt/aivjTapesAewKPz3xxRKZ9UL0WU7tdCo1U+tCueXAWRV/arGnRLTws5LLblOEWaoPsFznvMmTcVVSEjZt2oRTTz0VL7zwAiZMmCCwgQQRW5Dgs8iJEydw7bXXYv78+RgwYACaNGlieLxloQdUffkpF1hhwe5S0qInz7DgRM6ay8Pffhd7aljWNzCCJzLIEu3jmQZjV/Tl5tKAoCjUvqjdSBxLV8AT9WPpwkQIv6Ii6/v12RF9UYvSENwSL6xpCUZiT4ld4afsFK2UEbBo34uTJgEARjzwAKZNm4Yvv/wSzz77rGkWFREwKMLnCiT4LJCTk4NRo0Zh//79GD16NGrUqKF7rFChp8ZM+IkSZ3l5zkycUeLHteJlXBSKXog9rXN5/AK7i9wpfSm7ax2wij6tAXK3B8CDgp1HMxy2t+UCb91mwo+3S7Sa5im3284qnlZFn+tRPq+wswUD73LBRlE/VrGnhFd4aXWMdsSbF9E+G/V9fM89+Nezz2Lx4sXYtGkTPvzwQzRo0EBgAwki+iH3hpNvv/0WXbt2RUFBAYYPH+6M2OPdDFW5q7TZZutW2uGEGFOW7WexZxEr0T2/iD0lZrdIxHw/eUE5pzfg1tqAnXAOLZvh2WzdTreQnx/ph9vpEgsK2PSB0bNi9Rm1+ny5ugCm1QEx0SFMt94pynesFbGnxKy9LA+L1d/r9rvXZl3zr70Ww4cPR35+Prp164Zvv/1WUMMIz6GN112BInwcvPHGG7jqqqvQtWtXdOrUSXe+ni2hZxV541S7q1nptSE/335ulvyCdDpaqIVVp8TCebxiz0nBJvI85YCyqFU8lf6SqEFn5e4mvOIuYAPfjuOkP2gU+RNVr1yHiC5HK9rH006rkTc3I32Bi/IZoRcBFLEZqLocEQ+xsoO1MvpltTMRkebJM+m5Xj3L+9a8Mno0roqPx+bNm3HGGWfgpZdewsUXX2ypLIKINUjwMVBWVoZbbrkFc+fONZyv55nQUyK/KJzOnWIh6KtouiD27OBFRFDp44hczE5GlACyE8VzU4S5tTiMk3vracHbnSj9W1GrbyrbIGoxFrkctxdVsSP6eOcRhhGPRJTwnZSUVL45pp+RDcKJB9zuBGgZL+foGV0XkR2VzU1KQ6EQunTpglq1amHy5Mn4/vvv8dhjjyE+3r13LyGYUEj8M8mwB3asQfvwmZCfn4+xY8fihx9+wIABAzT3g5k7YkTkB6zelUihp4WZ6LNSv5k3xiLy7HhdVtc7t+ItuST4eAWYMrrG20eKEntKRC1kp4T3d2kNiNt5f4h69wRltU+tLstq9ySyW7OasGDWBqtdkLJcN7oxNVrdmNlvtVIXt+AD2DoX9YPlRc6quiOz8rCzRAlFdGJWyrFzrtxh+TntAMDkjz8GAOTl5WHVqlXo0qUL3n33XdpvLWBU7MM3eTLSBS/Ek3/iBDLmzqV9+BSQ4DNgz549GDp0KIqKitC/f38kaQyVVhF7Wqi9KaeFnhItj8lO/VoPDm8kT6SnxPpbXBB8bs3bM/KR9N7TTgg9NUbCz8pUFzOfgyXryQ1fKSiijhf50eKNDjrRvfEIP9b6ebohvTK9EH1WznNF9FnpZLxOU9DC7MG3khLqZWdmdJ5R5xUQ0VdcXIzVq1cjJSUFS5cuRXZ2tsctI1ipEHxTpjgj+ObMIcGngASfDhs2bMCIESPQsGFDnHrqqYhTdX5MQk+NVQ9Kea4VMjPFpmymp9tL17Sz7J0Vz8Wn0T3RYk+LuDh3xJ4SpfCzu6aBls/BO71FpJ8UreJOC6MuQ68Lc2MsS0/8Wa3bqDtyQjwq8bPocyzKZ+d4u+fxdmjqTsDu/D91eVbm6tnt0Hg7MR8LP1n0hcNhfPXVVzhw4AA++eQT9OzZ0+OWESxUCL5p05wRfM8/T4JPgX+fZA9ZsGAB+vXrhzZt2qB3795ixR5Q3uGydrp2V9IKh8UtSyi3RcRyiqx1BWQVTz+KPfkcK5eQdWVCLeSxALtiD6g0X57VHUVx6FDlo8rzyEYDZvaivi6HD7uXuKBlB3bq1rJ13mfG6rNSVORuYIyHEiQ6X4nLe6NyI/odpCzLamdmpS25udY7MR+/f2VfLC4uDr1790abNm3Qt29fLFy40OOWEYT/oEVbFEiShEceeQT3338/+vXrh6ZNm0Z8b1voqVF2viLTPrXOV2+gbrUcp/DTS8XhVE63xJ66HtZ1BewOYotcvE6EwGNdoyGWBJ0TKMeV9LYG1cLqoy/bhqjBW7sLsvDu2af83W5stG51wRhfYmcPPquIWt0TsN+xsSzOInL/GR8vJzx3xAhM/vhjhEIhdOrUCTVq1MAll1yCX375BbfddpvuauqEj6CN112BBN8/lJWV4dprr8V///tfjBgxAnVUAky42FMje5s8nhJvfTyiz0kBZrVst9I5fYYIsadGT/zZ8Wm0zrXqJ2hFcOz031rnk8DTRsSjr/Y19bo1EXWZbbbOix3xZbYaqMhu1YqA4z2nBIl8qZ0pKS5vAvgPLAJQpGCzg4jUBxkt4efURqMitm9wCFn0AUCzZs2QlpaGhx9+GHv37sUzzzxDK3gSBEjwAQCKiopw4YUX4osvvsDIkSMjNlN3XOipkTtrp4bIjUQfbw6T1eFs3nPdxGfRPSfEnppwuNIXsvouN/KlePwEo4FvEYPMvCLPxwPbgUIr+id6TEmk8JOfOxHRPtbfaUVoRlXUTiSijcuJjUdFEg6Xl+1GpoxPO0Wl6KtTpw5GjBiBd955BwcOHMD8+fORQg+Kf6EInyvEvODLy8vDyJEj8fvvv2PEiBERnQK32BPZ2bIIPzu5ULLoc+oF4acUTR442s06x0Xud5wWeyLWMeAdxOUZNNfzE3iym6z4Gk4NeBPWkO9HXJy4qJwS0cLPiuiLiys/l9fHdEP0OR7l8yvKjsOL95NTYk9Zrvwbnf59dqN9LCNvdepwj9ApRV96ejpGjBiBlStXYtCgQViyZAkyMjKstJYgooKYXqVz//79GDRoEIqLi9GvXz8kJpY78K5H9cxQiz5Rddn1iNRROp52WYnw8XpPqal8beIsn2dRA94tqrwQe1rovc/tZEfl55ePN9iZxmLmZ4gWeW4MFopMMbW60bpbfrDW9XRqITVR5bIIMa3f5deFhXmOd3yLBi9TH8yMXkR0zwmxx1KmGw+0D3PlJ2/YUPH/JSUlFds2rFixAllZWR62jFBSsUrnDTc4s0rnU0/RKp0KYjbC99tvv6Fv377IyMjAwIEDK1binNurV9UOy8h7cqNDlb1Xq7sQO0VBgb/nyDl4b0SLPaCyuW6sbM4q2LQGckVMhRGxZoHaz/BjJM8r34e1XqvC0A564lnpv4p8P4sq1yj6ZjQgYCXt0m/pnVET5dNCffNEvzecmDvIKiDj4px7Dyo7XAvROCeZ26tXhehLTEzEmWeeiXXr1qFXr15Yu3Ytmjdv7nELCcJ9YlLwbd++Hf369UPDhg3Rq1cvhEKhcqGnh1ZHZmdxFV7kF1J+vnhPiEY+yuHwlJxcrtxPYk9JOGx/oFv0IHdenn8yh33k63Bh1G4nujjWSKkT4i8uzv70YeXcPp6or/yc8ggyp1fujKn5fzwdpcjUT/XkaBHl8ZYhqm6jETUfdoBK0RcXF4fTTz8dX3/9NXr37o01a9agbdu2HreQqIDm8LlCzF2RzZs34/TTT0fjxo3ZxJ4eubmVf06h9RDk54v1nJ2aV2AX9T58vC8rn3gyPH6Glawmt/YL85PYUz4CbvXp8jXW2n/Oh76OEJRdnBvdnR529oSUUUeo7ZZn9Xnw6zxeFrgGunzS/9pG1GItMvI73UrHpRSPVs7nPU+54aUf0yc4CYVCOOWUU9CoUSOcdtpp2LJli9dNImSUz4XIP0Yefvhh9OzZEzVq1EC9evVwzjnnYMeOHRHHFBUVYdq0aahduzbS0tIwduxYHDx4UPSVcJSYEnzffvstzjjjDLRs2RI9evSwLvbUiPaGWIzVL0JNxAuRRdw5OdTtUHTPabGnhEUXW3FyCwvt3WKR4xN6ZTkl+tRCJ1qFHS+5uZW+IE9qrt37ZEWoGXWldoWfnc3WWYmLczbq78UOCkKwI5zcgmWCNEv79QzVjvDTQ+vBzsvz93U2QO3fhUIh9OjRAy1btkSfPn2wceNGj1pG+Ik1a9Zg2rRp+Oqrr7B8+XKUlJRgyJAhOHbsWMUxN9xwAz766CMsWLAAa9aswR9//IExY8Z42Gp+YmbRlvXr12PIkCHo1KkTOnXqJEboGREXxz/nzkqnKirfyU45vGIsLs7aAiw88JQfMMHHI8CKiqxn8tgVeqJwa22CKBjEdg2jrkqr27PqL5qdZ5SeyVOnnTRPq+dqdTtGbXZyURbWY7nm8TmpPHk2GrVSPuD+aIBWJ8Y72dpKnbzLJAcQ5SIuMlu2bMGWLVuwbNky9O7d24NWERWLttx2mzOLtjz6qKVFW/7880/Uq1cPa9asQd++fXH06FHUrVsX8+fPx7hx4wCUTw076aSTsH79epx66qlC2+4UwRy24WTjxo0YMmQIunTp4rzYU466sQ6B2xmpFDEhXJ7c4hQWw+yuEMViT4b3stuJ6tmN6MlmKJfDszYBL3l53qYqRivKIIGd4IDd4AcPdqJ9Vs8tKir/Y+0a/RCNcyytU3QKqJfvHKuGpG4rTzlWfmdeXnkHy3Oe397fjGj5fJ06dUKXLl0wZMgQivRFMfn5+RF/J06cMD3n6NGjAIBa/0xk37hxI0pKSjBo0KCKY9q1a4fs7GysX7/emYY7QDCfXg42b96MgQMHolOnTujQoYNzYs+ow9UTfnZz8eVzRb1grKJWB14LPI/nj/hF7KnLZrklVoWe7PSKuN12zNkMdcZSQP0XT7HiVzqd/qm0Pzv31K7wcxqn+hY/iElfYedm2u1U4uKsd8QsD4DWw8gr+gLYcWr5fh06dECnTp0wcOBAmtPnJaGQ+Pl7oRAAoEmTJsjIyKj4e/jhhw2bEg6Hcf311+P0009Hx44dAQA5OTlISkpCpip9pX79+sjJyXHkkjhBVK/SuX37dvTv3x9t27bFussvd64i1s5P7mStLn9nVA/r8nMiyuAtNwpgHdn2q9hTI98uZYaOHbGnLps380dEGXrn2d0CgrCOultQ3gu9jHc7EUHZjux2Y1ZXyLTShfLWxbO6phMrcQZuiwbRC6+w1KXVwbIiYmVP9bmsmUY8dVntpFlxaHN2NZ06dUJpaSn69++PL7/8Eu3atbNVHuEv9u7dG5HSmWySOjpt2jRs3boVX3zxhdNNc52oFXy//vor+vXrh+bNm2PD5MnOVGI1Oid3vqxz/FjrMfI2olyQVeBlGhEHXoo9JXayeY3OY/UFRJShhlfgOe23sODEgjBO7LEnshvREn+i0j+tCD91GcotGHiwUreToo+nTIC1HYw3KjXVXcHlJVq/U2lUVjtEEeKRFd66rHSeIvPnOTvOuS1aYPJvv1X5vFu3bigrK0O/fv2wbt06tGzZUlQLCRaciBr/U156ejrzHL5rrrkGixcvxueff47GjRtXfN6gQQMUFxcjLy8vIsp38OBBNGjQQGiznSQqBd8ff/yBvn37omHDhujevTsmb9ggPpWT1zi1jjcTflYeAKXos3s+AUB8dM8vYg9wNn3NyHdgrZfHn1CmaXot4IByv8bLdrD6VU5tKcrT/eTlAQn/vI14148yS1oA7C3uYiXal5DAL8qc2nePT8ixUYZ4xKOM7WBWQ/DLg1tUVGmMpaXiyjUTUyyrehqdr0Y5ATohge+38NwLvXbpjbyxlu2QPeiJvu7du1eIvg0bNiArK0t43YQ/kSQJ1157LRYtWoTVq1ejefPmEd93794diYmJWLlyJcaOHQsA2LFjB/bs2ROoBX+ibpXOvLw89O7dG/JGm6F/8ni1qBCB6o7JKPImQujpYXeYW1mnF8vO8Z5n5A2prwGr5yT4OCcWauE9jvWd54bYsyoQ5d9g93w1RtE8Xl/Bqm9hJKy88l9FrMOg7gadXNshQWfo0Uz88daj7qJ4zmcRTFq/w8kFiXlW+hTdhTILPlEdo/Jh8mLUzEgwWY1i2ukY9ToXs5WueEUsz4hbejp7igVruQ51olqiT5KkilS+9evXIyMjw5G6iXIqVum8+26kC05ZyC8qQsaDDzKt0jl16lTMnz8fH3zwAdq2bVvxeUZGBqpVqwYAmDJlCj7++GPMmzcP6enpuPbaawEA69atE9puJ4kqwVdUVISBAwfi4MGDGDhwIOIY3uZz27QxPkDp9Ti9mpWdoXat+twWfVYFH8u18rngc0rsaWF3xXEvFqWQz7Xz7uaZjqI+R8Sxyno99lVM4Qmq8JQpOgtdRk/wyWi9r+2Mi4nehcas/U6KPrsC0c5xTKLPiYnNPALLiTQJtWiyk7ZaWGgvkih3MjzLI4sQfXodschO10qZjGgJvvKqwli5ciUaNmyIlStXIsXjReCimQrBd++9zgi+++9nEnx6gaHXXnsNEydOBFCuL2666Sa89dZbOHHiBIYOHYrZs2cHKqUzagRfWVkZzjnnHHz//fcYOnQoEkzewKZCT4nSs2DxeER4O6weiVldrCJMXY6V/B9ewcdahxPz8hiO8zKV0wm/B7C++TogbgqJE5E0PaxG+cxEpRM+jUhECz6j4+xEAgFzsaQmPd2e2JPrs5PimJrK324/iL7AR/lknBJ8VpYrtSPY1G2zWk5BgbVzrQg/ryJ4Loq+kpISLFu2DCeffDIWLVqE+Ph44XUT/hF8sUJUrOQhSRKuvvpqfP311zjzzDOdE3uA8friViae6rXVbLROxCRXo3X6gzjRXrQ3I5Cgiz2Az9yMlrfnKUe5Hx+vg81Tl3rvOFHlxgLK68ZrY1buaWGh9Wizsj47+00WFzs/v9aJrEUnBqd8j5MPq3zhExL4jVnrpvGWo+xorbSB5RxlJ8y7N6AXx3Ewt0ULzc8TExNx5pln4quvvsKUKVMQJXER/yJ6SwYnFoGJAqLiijz88MNYsGABBg8ebBp+ZxZ7Zgaj3lnYitBj6Wh526VGb9UvJx4GNzaicgkntmEQWZ7TYk/PGWYxHZ4FXfTQ23RdpOjTEnix9I5wys9S+odG41ZW7qXyHJ4984y6Wx7hpy7HiugzesbVvorfhVcZfB75kC+gW46gbCBmxm1mOCxl6Bm/VeGnxOgB5ik/wKIvJSUFgwcPxjvvvINHHnlEeL0E4TaBd2/eeustPPDAAzjzzDORZpJSyCX2WElIMPds1MfzdMZyuXZeVModiXnKYPFmlC84Kx5cgHFz3p4S3gwlXqeRpXwtU+LdtFrLFFkeJatmxhvFCypeiVajZAX1fbUr9pSY2R1rXUZ2byYYeVE+k2Zds+h+wZMon9/mQWkJQNEdpZ7R8BiMXhksHa0V0VdYyOfLsBAA0adHWloazjzzTNx///14++23Xas35qAInysE2kP/4osvcNlll6F///6oY7DplGNCT43cUWrlC9vxcOQXhJWFVJRliFqXOyjC7v77I//NcX9Z4nvKY/6++1HNY7wWezIsq4xbdVztrDcQF2dt+gnrKuM86xgo2+ThquFRjXw/EhL4Fk5h6XK0tmCwmmUnd5W8YpG1i42LK08LFb2BOms3L3IfP64tGvyK2kEU+WArjchqZ6nswHlG1Vi3l7C6hQPrsSI61UOHqh4riLk6azNMzstDnTp10L9/f0yaNAmNGzdGnz59hNVLEG4SEM+9Kjt37sTIkSPRs2dPZGdn6x7nmthTohR+ooeyWUSfaEHmN4GnTq9guXcOj/bUePC2yA/+eWnVUHz0562zNM91Wuwp0fM9rIg95fQVdXksKP0W3m2ijM6xIvLcZurUyH+zON+JKDE/SOPGz3qhRpXPRA+m83QR8rHK+2Qk/ni7n4KC8nPsLFJcXGxtfMxMcKmvJ4/wEi369FD624WFbHXGg8GZ13Lk/ToKbyb+7Ez+tNLZAZFz9ax0lkDkeSz51iz1sB4rX1M9QffHH9rH6xEOO24/FUIwMxNzw2GMGj4cG777Dq1bt3a03pjDiYicX/sWD/GZJ8/GX3/9hcGDB6Nly5Y46aSTdI+bm5ZW2YkYbaLplFcjvxRYh7JZh7H1PBmWeQOsnoBclvyCcpvHH49sRxRQ97FbIj/458W39/onTM91YqE52USt+B566w2wlGU09YS3LbJJs4g8nvLtRO/+WcUZgD8y2W65+u/IDzQM5InX67rSFpY1qpTdpZ3xMpZN143O543ayai7WbPXi8homxlWxJwwUlKq2p76IUtKqnqMG46b2cRKJVY7BmWnyRv1U3eaVkfZEhLKyyouZj9edLRvz57K4wPE5K5d8XNeHoYMHIhvN21C7dq1vW4SQXARuG0ZiouLK/baGzBggO7+GXPN3vJZWWKjeizH6gk/Kx2f/Pt4zzXyXvTKcmKjJ7lcWdjxtEeJD6J7VWBxCEyOUYpAp1YVt7IiOGtbtMpizURi9S9kkcDr87Aeb3SLzj+fzdRFLhxrNcJn55inFjYxPVRE16hFUpJ1saaFWVlG57qxS40XW42KtGEv7NP149THsnYmLB2nXlksHSdrO5RlsYo+3jqUx+3erX9cAN/vYUnCue+/j9xatfDZ2rVITGRb3I3QpmJbhpkzndmW4c47aVsGBYESfJIk4corr8SSJUswfPhw3YfNVOwBVTuvZs20j3PCm5GNz84IF+sOyFoovRfWNogQfc88w16vyAnhARR8ACJsdMfU/zM9XNQy7nrvdd4sJrkcK4u36rVBL5LHI/p4Bd/552t/H8sOtVIIsj6qvGJPichMdq2yRHWDWuV4tI2o62UJs0/W47wQhkbHiu44Af7O04po5BF+LJ3n9u3l/2V5qAIo+o4VF+OU+fPRe+RIvPjKK7pBB8KcCsH3yCPOCL7bbyfBpyBQMfVnnnkG77zzDkaNGiVW7AGRI1HNmjk3bA2Ue621avGdo67Lar6SsgwnUYo7p+r32YsAgLjJ/iobbTv73xH/VgtAkXt2qbOFrE5XsbPKnzo7iGXlThGZRyNGlP9X1PpG0coN4/ZGGMazy9oaHm9H7AGR/qodwaYsKy3N2qIuWrZhVI7oeXrhMFt2vpuposxopXU6ibI/dvpdIGJxFmU5VjpedefNIhiTkvhSPJXlA5UCz0tcmM8nUz0pCR+PGYPub7yBTl274rrrrnOlXoKwS2AE36efforbbrsNw4YNM91+wTa//FL5/+3aGR/L6zHI3gyPYBMhkJRliFyxU2b27Kr1mLXDzjFBRoAobDv73xUv3R+uep7pHF7/gTfjR4ndBVmAcr+Qpw1W6pEFHqGC0zG/dsiOiH+bCUA9tMSeGnXXabW7KC62tjiLcm4fa912RF9QVoItQSJblE8ULDaamlp5w9QX0sp2DDwTpAHrwk9us/xA8HbG8lw9Vnjr2bq1sh49SkvNHxCWY1wUc6xkp6fjw3POwZm33IK2bdti6NChXjcp2IRC4u8xRV6rEIiUzl9//RXdunVDjx49DFdHshzdYz1GKf6sCj0trC7CYna+WRm8no7yeFngsdYl+hg/RvcAR9I5eY7RE3+8Yk/reDsLsrCer1WGyIyjvn3ZHG+WRyOqUzpZjzMzrH/KmLOuC1OVLIJPidxV8IwBatXB2xXK9fKex3qvw2HzY920UdbjmAWfmymbLJ2fcoN2u/Xp1Stivh9LZ6jVCfMKT716Nm2K/HeMv/Pf2LYN16xeje83b0YLnQ3cCX0qUjoffRTp1aqJLfv4cWTcdhuldCrwveArLCxEz549kZCQgFNPPVX3OMfFnpKOHc2PkWH1YOxsHmX1fB5vZd4882PcjO75sPP3WuypkcWfCLFnVjXPYLLb00z69o38Nwk+9wWfEj3xxyP29LoJs9eAWR1W5uixnKdE736ruwayUw8EnxKtPTR4cHKitF6HKGLETV2HWuSpifH3/rQVK7CmoAAbvv8eqTQXgIsKwTdrljOC75ZbSPAp8HXunCRJuOKKK5Cfn28YMndV7JWWVnaAXbvqH8c7VC131FYXY7EiEs1SO198sfL/zX6Pm2mYyg49N9f8GKexOh/TSUpL0WX25Ip/rp841/QUVl9DmTppZUEWK+fzTDNRCzxe6J3tLFNO+yHi33PWdREi9gDjTHmWOoy2YjCqlydLXtYNKSnBSdf0BJaUTd60Tp5y7Nwc3onSLOcoUadgsnSkvGmmGzZE1mUVUamdWvjg/f/UgAE44+23ceVll+HNt96iRVwI3+JrwTd79mwsXrwYo0ePRnx8vNfNqdpRagk/K52jsqNj3VxdXZ+oTaOUIk9dhx2sjPL5oDNnIjfX2DnwgSDsPa9c/OkJPzfn9wHlvhXvgLOR6Dv55PL/urVIhe8WwwgwU07+uuL/X9l6iuGxrD6hUvhZ6b6U3SJrnayiT+4qgib2hC4C4/biLSJQ7hFo9A7i6Uxl47J6LZKS+DtvM+H3xRd85YkSdFrHaPkAPnv/Jx09ikV9+6LbBx9gzpw5mDp1qtdNCh608bor+Dalc8OGDejbty+GDBmChg0b6h43V+0BajnXIqJ7LGX06mV+jBI7m0YZeTE8ou/NN82PERHd0zsmL6/y/0WmawQhndMpW2U8Zv3EuZYWglOfwyP+1APRVtY0kOuTRZ4SM4fUzTQ51uN8OTeK9Tir6XIm32sJPysBAPnaWonayt2eFZGjVZ+VlE235vGJao9MINOPWcrR+175vuHtVNVl8nSo6rqsCMfSUnOR56QPAFT6AXXq6A/0KvFhaueaAwcwfPlyrF67Fr14fcEYpSKl84knnEnpvOkmSulU4EvBl5+fj44dOyIrKwtduuhP9q8i9rRgudEiHGhlW/r0MT7W6mIsrEPVZl7Aq6+yl8lSJ0sOv1LYaSFSyAV5sRYR9spizwp7XXnxa+bHw9yPMXocRU4tMZpC67Tgk28hq4AItOBT3nC9Z8pJJ/ofXtl6ii2xp4Tlvul1ebzCLzXV+JEXZRt6v0lZt9sLvLi+J59btspyjKhVP838G6Pfw9OGZcvY3vOiRJ8IX8CnA7+P/PAD5uzbh607dqBGjRqu1h1EKgTfU085I/huuIEEnwJfpnROmTIFcXFx6Ny5s+4xTGIPqNq5qOfIiRZ7QOVomVr48Xotcnonb06SVm6RUuTJOCX21NfczX33vEBkbpaZvYpAZa9nvjkJgLHwY/GVtFb2Zp1aYvaItWjh/tw6u7c1qtI+tS6GS8/j5S1WVfz/f/YMYDpH79qbZb4bdXk8KY3hsLspm27VFYi0Tr2LwTKXT3T9Rs+I2W9XGqOyU2X5DfJNMqpj2bLI8p2cq6d8r4nYhsGHWzUAwK2dO+OT/fsx5cor8ebbb3vdnOBAKZ2u4DvB99Zbb+GDDz7AOeecY3/yq1bHr3aozVIn7WygKgu//v2tnZ+SUl5/aam1uXlOdzhyx200Yuf2nnp+fcitRgB57dUGWsLPin9UWsrvx2lNK+Fd5VqUIxq0uVWe4daFUjjqE7LLxZ+e8GO1AbXwY/V1lQuuaMFzSUSJJ1G3QaSYE7onn6iFWVgulAgRqrX3n933ktX9+LSEn1Lo8cAjCs2ieCLwoTCMC4Uwv18/dFy0CG+//TbGjx/vWt0EYYavBN/vv/+Oq666CqeffjqqV6+uexxTdI91+Xtlx2QlmmLWluLi8g52yBC28oyGpllF3+uv24/eGX0vXzM3I3d+FXJuY9deGTjz1YsAAB+N/y/3ubKfY8dvou2MCDNk4QdUij8rYqWwsLyr4w1uKMWR3quGp8smAoSVzk0d9bPSOSo3Y7ci/BYuNDZ0u1E+Vr/A7c3WXRZ9japXx6t9+mDi5Zejd+/eaNq0qWt1BxaK8LmCb+bwhcNh9OnTB3///TdOO+003eOYUznNBJ9R5E52pHlTOVm+1xN+rN6Kngfx+uuR/xYp+PRG6/y4oaofF2thPc7OHn2sNgtw2y2L8LM7naRePfsLVLi535jbi2V4PofPyfoE7ff3v/zh5uUoUHeBvOJMxOboZLOIaZtlfl/plcXqDy1cWPn/fvAN3N53zwPn/4ovvsBPNWpg7VdfIY7EhyYVc/iefdaZOXzXXktz+BT4xgpnz56NHTt2oGfPnvYLs5vjkpcHHD7sTFqCOp0iJYVvaFrd8b/+unixV1hY/tvlPy3cFHus+LVTdWNDdrP7JWNhkGLU2xdh1NsXaR5eWMi2xZUe9eqV/xGEXS5I/wQXpH/CdKxWF8hiy4D78/MI+G9CrMj8cTODMjJKs/D0woWRYk8ULO8aI+xMlbGCBw/s06ecgj07dmDOnDmu1x045Aif6D8iAl+kdO7evRu33norBg4ciMTERN3jhKZysiJ3aur0OSvRPRlZ9I0ezd4OJWqBZxd1xy1i3z2RGD24vNs6WMWh9ElHcCjtUxZ9csSPZ36feiqJWuSJWH6etQ12jyEEI3jxDqXoU0f97Gy+Hgsiz7fz+GIBrfl+rJ2seo6fkcgzS93U+175XjF7kKxupK5GxDw9Xh8hM9O6mFW8b9MSEzHv9NMx+qabMHLkSDRr1sxamQQhCM8FnyRJmDhxIlq0aIFGjRrpHsecyikCLUEo0olWdsrjxrGfN3++uHQMO6NzTkf31G3zQ8qG1vXS8gD9JgxFi7/iYox6/Tz8b9wCS6dTNI9wE1n8/S9/uK3Fjp0Se0JXvQwqIgU/y+ItLPWJOMasLXrn2zG2pCRg3jyxg7ZOLcBiVxRa8ROslGvj3DOrV8e/srIw6eKL8dnatfYXIoxWaA6fK3gu+F5++WX88MMPOOecc4wPZHFcRUf39Dh0yLgdPOJUHonTE37z57OXZUZ+vnkH60Z0T76XfhByolG/LJQ26bQYNLPtvLxy27TaDoVdX7DwPABgFn7RlEIvciGOmHf2XeKCpEUAgEU4l+u8wkLv75EoUShyERlPhKpT2zhEE/Pmlf/XahRP5vBhY1+BZYEXFkHHckxubmAXcAGAxzt3xkkrVuDll1/GlVde6WrdBKHE00VbDh48iFatWqFPnz7Izs7WPW6uLLCMcGuDdaCqoONJ9zT6Tin6tISelehefn7l/7OMponaXBWI6g1WAYiZm5eZKW6gwsoiQ4JsV0/4yeZkd0N0vyx+ERcndmELoRtZA2IXwJCPM7JPUfWxLJJhpx2q73mEX6zZrkj7BjzYhJ3FbnnLsluGQNvVRBZ6Spz2F6zu06t3jJG/INIP8MBX+PjAAVz4/ffY+dtvqF+/vuv1+5WKRVvmznVm0ZbJk2nRFgWeRvhuuOEGZGVlGYo9ZtzYsBrQdnqV8/zspJ6KiuYpO20eRCzJDMTGYi2icrzy8qqW5WZaqCDbvWBhZZqnqCCx18Fdr+v3DXoXwu1Jbcp22Kz7XFiL+LHipe3YrTvw0Tu5LDfslrXdAm23ClpiD+DbZkHLZzCLvtmN8onejJ0VD6J8Ixo2xIDff8eN112H//7vf67WHQhCIfH3hNJnq+CZ4FuzZg0WLVqEMWPGGB7HFN0TtWG13XTPvLzyMvRGE+yIQbOOtajI+MUjYgK12xutB93jtvpid2vwQl2nke0yEGShJ9cZdJNzFfW8CzcFoFyvz4Qf2a7DiBCGehfMLftV265XqarFxe7W65fN2HmOE8iznTuj3aJFWLNmDfr16+dq3QQBeCT4iouLceWVV6Jr165IMxBiTGKPFRGLV5gJNlkw5ufzO85WxKByVM6ut+23jdaJSmQxJqNlv6KWuZZtysUUCLc3pybzcwitC+u0Ey3XybJYh8NNsApvRM1OfSKjd4FfcEYttLQEoAgxplcG64200wa9KJzcz9v1G8yifH7djN0DmqSmYka7drhq4kRs3bnTcEX6mIMWbXEFT67I008/jfz8fHTs2NF+YVbmP2ntWSZ6X5j8/EhBJjK6py5bxLw7Jcrr48aonB2CnM7JWhaL/YpGoP3adQpFOZW0NY8H0AUXAsvWUn5dz6QEHji2IjoN1g7Da9U7cSLf8Tz9uhW/yMn3k6g9bXmOE8j1rVsjdOQInnrqKdfrJgjX38YHDx7Efffdh549eyLOoDMVGt0zgnWTdasdo9pxtopcjoiy1Li50Tor5CiyIWrDdaftN8bw2geMOvwyauARbgcvPRGPAb9Hhrixso8ZTvXlxcXm7yFRC+ax4tNNMxPj4vBCly64f/p0HHLLxw0CtPG6K7h+Re6++25kZWUhKyvLfmFObLKu1WnZ3QOwuNi4s9Urn0XkWUnJUJbrtjMfKw+hFy8cJ0dWAy783E4bJaIHu+LHr5E3EQReGLKUxdJ5+FmsHj5s3HfbHQx0+73gdoaNYPrXq4cBtWvj7ttvd71uIrZxdQ7fli1b8Prrr+Pcc40nyLsW3QP0OzPl6oVWy9CCZX6fyLl5ctTNTqcsMnLHglIUiliqWRSsWyiwIqosLfsTveG6jAdz/MwQ5Wv52Wcj/IvI/e2ilRIksm8tIopY2rdv4kTt1TpFizG98kTtuWd3M3Ylyjl/Rn5ErVquT115smNHdHrjDVx3441ipjYFHZrD5wquefKSJOG6667DSSedhIyMDPsFurXJ+uHDlf8vyslVOs3K0TUnOmezzlNU52plnqAefn1QtbZQUCN6RU0RNqxc9MUJGwaw6F9sG7ATBOEtvl5sJZpFmtlvM1t4iOfaqH0Juxux5+a6P/BrBKuYY/ElRG7szkjrsjJc3bAh/j1lClauXetq3UTs4toTvGzZMnzzzTcYp9xcXIO5O3dW/VDtRHuVn60V3bCy2bWyPKPveTdOVXfyXnfQ6o7Yr0JOJPJv1rJRN/fXU6K0UdEROisr0nIQCyZDMBIX59u5OXbxtQjzI07s22eEqFVgnbThiROBZ54RWybPILSo6JxeOVb8CR+v7Dm9RQu0+OorLFu2DEOGDPG6Od5CET5XcEURSJKEW2+9FR07dkRycjJ/AeoHXe4wjRxoJycJi3Ka7c4NVLbFKVg68IICZ9ughZ8fZr0XupYdeyUClXZjZsdmdmpgg1bXKvDz7SU4EbllgkP7/p2LRcI3YRdtwyypo7TtgoeI2ITdw+1FKrCTtmkGaxlurw7ugTCsmZiIO5o0wW3XX4/B27YhRBuFEw7jioV/9NFH2L17Nzp06GB4nGZ0zwintw8wE4S5ufYmQxthFN0rKCh/sdgVe1Y6b/WCL6IFp589fSfm76lt2IttMMzs2CW0FtcStZm7KMgB9hE+XY3Nh01yFF9nYPrtgVV3aLw2bOf3mPkjXr0HtHwKkdsv+JhpTZpg765dWLx4sddN8RZapdMVHL8i4XAYt912Gzp06IAEEeF+o4dcdphZOi6RSwBbET5WxGBBAXs0TcS1Finu6OFjJ0h2bBPqmwkhxMV5msJOdmwO8358fhNpMk6vzCMbkB07vu46/nN4/AozWN5H8nvNrfeNj/flqx4fj7uzs3H7jTciHAUC1jIk+FzB8Svy7rvv4sCBAzjppJMMj+OO7rFgR6xYcaSV9YhI1wQqO2PRaZNaLxX19fJ6DqAesfYgu72Nhgv1JCT417wIBzC72aKcfNmwXDIu1qpEvQ5E4euoHCtub88AuGPHKSnO2bHSEK34FXamwTjxXokCkXR1o0bI3b8f7733ntdNIaIcR9+KkiTh3nvvRceOHZ2P7rEcI3c2IkbqjDq+/Pzy79PSrJVdXGzsIYhYeVNUxytSfEWDkHPjBaS+d06NPCvrMXBkFl29lKk4NwUeiUkfor4pIqPTRvUJqEc9n80t+yI79iF27TgpiW8EQFlfaan9BWuMRJ6oeXpm8xBZ6hE5r461LA/m8qXEx+Oe7Gzce9ttGDt2bGzO5aNFW1zB0SuybNky7N+/H23btjU8zpHonhFmERNRjojeCJpeZ+9EJE8JbbZuHb+OJJaWOm/LpaWWbdONgIuyDoocBgi3bpqgOoyKEREx86MdUySQATdvGksdemmd0epf+PXdzMGkrCzk7N+P5cuXe90UIopxtHeaOXMm2rZt6150jwUtB5hnxUK9Moy+lztZrYgfbwfMcy31Ol6WMvzgbUQrTr6geG3ZDB5bVuCG38OK3xZ+iSpELo+vjmSIbovye47y3bJlUatierG6JmudnmzALhKW6FxaWqQdOhHJ5n1WlH6G2Z57ZtE35fdOi7sYifJVi4/HdY0a4eEZM2JziwaK8LmCY6+y77//Hl9//TUuuOACw+OERvdEONJyOiYgfn+xgoJKR1lP6NnxTgsK3DVyJ9M5fbBqpGdbJgBstmz2omexZavOiI7w43GOeZ1SrbL9ur4DYRO74o+1fIOynQ46WsHMV48aWAcS3N6PzwpaKaBmwpFn8MLIlp2I6LH4GSwpm6L27bODH/wMAMjMxDWNG+PRdeuwadMmdO3a1esWEVGIY0/bo48+ijZt2iBFhEfmZsjeyU2qgfIVqkTixR54PChfDEadqx9HY3i2SEhP93dqiejIn8w/9ueEGPNLWpsI9Myb3ewZDiwq0i/Qz7ZphmwE8m8QKQA1nGWnbI5sueJIexUB0WPPTtgyUJ7WOXOmuLKBSF/Dbxuaq9sTQF+jDoBJNWvikfvvx9uxtoALRfhcwZFX0KFDh/Dee+9hzJgxhsfN/fZb7S+sOKQiIiJ6KDsPswUynFyIQO7Q7Yg8J9M5tTrZWHnojPYOEh0ptguPPTMg0pH1yim2Ik6NTNt3Zq9skFnj/O5MOxH9S0hw5GXoZ5GnTsO0L+RchNeenYre2cWpSLaZ4bGmdfphQFlPXKr9DV8aKh/X16+Pjh9+iD///BN169b1ujlElOHI62jevHlo1KgRMjIyrBWgfpBlB8QPjjPjHCZLmG227hfvIT8/KjpX14hVe2ZEz6z9kLqmbltMmL38I7VujNMraxqhlQbndOqnBfzSTWthxZ69mBMoFNH2zDKPz4rAVLePJ61TNCL8DVFpnaz+ht+ijhZok5KCU9LSMG/ePNxyyy1eN8c9QiHx9y4WVzs1QfjTIUkSnn/+ebRs2VJMgcrRZr2NwJ1c0EUPK/vj8W7GxFuH6AdG63o7kfMe8E6aCxZ7FoXT9gzgo9u/5GxUJX5J2dRaHdEvbQOAeJR53YRK/HyxbLZjFD7ysnpheHWLWLVHGeKdbQgP6guUlubejTQb0bJ74+69l+94p/b85cENf8PnGQzTatfGnKeegiRJXjfFPWjjdVcQ3qutXr0aubm5aNasmeFxuumcvGil0mlFTkSM/up1FHIHKWIY1KvOVlmvqAeFHjh+tAYx3I4EOhj189oh9rp+JYGOmmjhl4igi1E/HntyYsEVvfoDH5UDvFm4RYlf7BlgWmTIMlZ9DrsRNbnezExzYRcF0TtWzs3MxNR9+7BmzRr079/f6+YQUYTwJ2j27Nlo2bIl4uM9HMVzeoRID6ujY4WF5d6A0bkiPFVlGcrRPCfEHmEd9cCClj274Xjk5QkZgPAqCOTHIFTM4fVNcKher+yJ7NkGItR2NNmzWf8uag9XGT2fg2dxNDN8Hr1jITkuDhNr1sTs2bO9bop7+CDC9/nnn2PUqFHIyspCKBTC+++/H/G9JEm499570bBhQ1SrVg2DBg3Czz//LPAiOI9Q7/7YsWNYvHgxWrVqJaZAUQ+v3LE53bnJaNWlTucsLKz8E4GRcas7WrtOPInCqrj5osnPF3MvWdtsoa6kJPf9IXKGA4JXNyohwZbT73aTvdYWhAFKO9K7USJCrEZlyCmovDYt0u8wQqTPIRqfC8MJtWtj8fvv49ixY143JWY4duwYunTpgueff17z+8ceewzPPPMMXnjhBXz99deoXr06hg4diiI/Lgalg9BXyOLFi5Geno5atWoZHicsnRPgf3DVHQ9r2ppZPUZ74CjrcKujJWIHqzZtpy6dOtxcaEUWlX4j8Kl0biPfRNl4eOc686I0Uoa6lM0ysm8RaZThsPkzFDN78QUZVptmWQCGBT2bvvde4P77y//fCd9DnWrppO8RQ2mdnatVQ6OkJCxZsgTnn3++181xHh9syzB8+HAMHz5c8ztJkvD000/j7rvvxtlnnw0AeP3111G/fn28//77GD9+vO3muoHQK/zmm2+iSZMmCAVpdRw3RqAKCoxH1cy8VrPv/TySZkaMdOCu4pZNK8pPSnLeCZXrcKMuwkPcvNEGdcSCTTutrQOJEyM2Xtq00xE9s/cNS/aUzyNubhMKhXBRRgbefOUVr5sSePLz8yP+Tpw4wV3Grl27kJOTg0GDBlV8lpGRgVNOOQXr168X2VxHETY+np+fj6VLl+Lcc88VU6AXm60rOyyRURI/TLRmCYWIFF9OCzkrczP9sA2C2zhl0/+g57uY+TQsPhWJOgJApCGI3qxaVYfTJhdUm2aNXrIeV4Z4ttVn/bp/nl1ctGlDzLZF0Pvez/P+WSOBViOGdtaF4PBBxtesiYc/+wz5+flIj3bfxcEIX5MmTSI+nj59OmbMmMFVVE5ODgCgfv36EZ/Xr1+/4rsgIEzwLVmyBHXq1EFmZqbhca6nc1oVjsoOTcDm1LYxEnh+63CN8HKzVFEL+FjtfL0exXRY/InAjymahM/w4d57RpBNu0DQhaGRTZv9NlFpoWYELXtIC683a+fwQdoBaJOQgI8//jgwKYN+ZO/evRGCOTk52cPWeIuwV9H777+Phg0bmh+oNvggjFyYOcpOOR1yGoafBJ3Z4jCxgFanzbI1iJuY2WRBQWWbfbjpOgtuR0tSUvQ1u/Kx8OxxZa1Y6zivByOs4lPxFy0iL9B2rWXTIsURS1lW6lMbj5d2XVhofv3dnFtnVJfS/0hPd3eFdocYWa0aPnr33egXfA5G+NLT021HSBs0aAAAOHjwYITOOXjwILp27WqrbDcR8loqLS3FJ598goEDB/KfbPZQ+i0SITpKou7c3VjUxSoFBf4Sn35By7Ewsmsju/HC8XY58peS4p5DLEIU+sLpdRqtH8biQPuJhITKfEIPoj1u2rVdYtamtT732q7NInh27frJJ4Ebb2Q/Xu2DiBB0ZqmjrPWw+iBRIPYAYHj16hi3dCnC4TDiovZBhS8WbTGiefPmaNCgAVauXFkh8PLz8/H1119jypQpwupxGiGvJ3nSYt26dQ2Pm/vZZ/yFa0WN0tLEddJ2Rs9EbbhuJPJEGC2vF+JWpC6aOzAj9K6vqBVj7aBsm4ldL33sB+Zi/bxyZUJC7JoiF3oXKSHBV9E1AJEG56D487Ndl5YGd86gq2jZdWpqeWQuFuy6tNR/q/e45YP4fOXP06pVQ1FODn744Qd069bN6+ZENQUFBfjll18q/r1r1y5s2rQJtWrVQnZ2Nq6//no8+OCDaN26NZo3b4577rkHWVlZOOecc7xrNCdCBN+HH36Ixo0buzcCoUxHk9FylkU4xmZlhMORgk0930/vhSGf4+WQsJ8nXscirHYtApZnw8iuGfCbMxyU6Esg0bu4fnCY1YZo07klu44hgmLXVm06iH6Iz0WaSBJDIZxZrRqWLFkS3YLPBxG+b7/9FgMGDKj4943/RMUnTJiAefPm4dZbb8WxY8dw1VVXIS8vD3369MGnn36KFL+9EAwQ8pR/9NFHaNy4sYiirKM1IuTFYityB6pVtxPpmqxGHSvz66INr+xaLQiN7FqB3PfZjSzY7UPl+skZ9hi9G+BVRCElpbLP5IyQpKTYt2u7e/WRXfsEt+3aLIqenl5Zt5ldu7Efnx7kh3Azslo1vDR/Pu6++26vmxLV9O/fH5Ik6X4fCoVw//334355X8sAYvu1kZOTg59//hmnnHKKiPaIxc0NqdXInaoXI4HqDl3UyEmMjKr5Hr00ZzfQcRa8HOSitLUAonXTRDjLPOmlDOlxsWDXvt/InXXhEz+s1Kl3Id0c4NCy6yefBK6+2r02yPD6IjEUvWNlWPXqmLJ9O/Ly8kxXwQ8sPojwxQK2Bd+KFSvQsGFD07Cmpfl7eljdjkHtKHsdijUbpmU1WD8v9EK4gwe27cXjo/SnfO2kEvyob6gHTrKXbwT554vYPi0IMO/FJxqRK3WyDDA4NbjBgqhOmlWIBdEX8bnIbJKYiFbVqmHFihUYN26c180hAoztV8Ynn3xiuliLb1F3Tup0NbtzAJ3ergEw76h83JERDmJm2wGBRF0Mo3XzvY7gCMLIrv0acWNNR/Vr+32F32zb6ggCjy9CWOas5GQsXrw4egVfKCTefkIhseVFAbYEnyRJWL58OXr16iWqPd6idpLN3m5uLeesN2oW5FRNejm4i80FWNxC1BxAHsg5DRAOr77ZD2uwBv2Elwt4Y9uEDdza0FyuS4mfBzb8EMXzeVRONCOqV8dFH3wASZIQIiFDWMSW4NuxYwfy8vJQv359Ue3xF145yX7ccN1teCd3s14rpUgXMe/N6z2ctDBrU2Fh5DEeCkCvs6qJAKM2Hp85yWTbhGWs2LZTApXVH4lmEWZlsRmBPslpKSnI/eMP7Ny5E23btuVvi9+hOXyuYEvwrVq1CllZWUgwSQVwff6eE+WIFn/Ka+aHETMzeB+eIPwmuyuGiV4oxSvxKNi2jSIYsh8T9PlHdnDsPaQs2I8DEU4jG5ecSu+yACTbJtt2DLdt26n3N4sodEo4BtgnSQFwWmIiVq1aRYKPp0wiAluvpqVLl7LN32N50ERGGZx+Ici/Jxy23m6za+JXYw1Cp+kWrIIx1mxbRbRFOkStteQoRo1gUSRerC4sOkLhwubrZNseQLZtzbbnzQMmTjQ+xuj97tcIXoz4JAOTkrDsgw9wtRerrRJRgWXBJ0kS1qxZg759+4ppidFD60XKGcuG64B+dET9UlF3yn7sOAHn5wvGIn6zbVYsRv7MnGA/R0CMopN+brdwWH+sV/vp8aI0yoQEy05icXH5lmdBhGz7H0TbNs9WIE5gx7bJLwkMA5KS8H9r10bnPD6K8LmC5W5+27ZtKCwsdGeFTuXDrhZifnKYle1MSvJ+TomRwdM8QX8QRNtOTcWal3+O+NpPTTVCy+mlRTRsYLbcpF9RGiyDgxwE+9a7FVFh36yiijWSZnU7BRknbFtUFNDMtr32S/SIthU/WSOicXFMmTu9kpJQmJeHH3/8ER06dBDQQCLWsCz4PvvsM2RlZSE+Pt7wuLmLF1utoipaD4VWh2aWjubGHACnO9Vo3ROHqETv/tnNI7Nr//+0y69OsNJPi6nIhd9Q3gh1f+UnMajhIPvVtoHKyxoNtu3ZXnx2UYtBpX371bYB5/0SUfv1+TV91EOSQiGckpyMVatWRZ/gowifK1h+ZSxbtgz16tUT2RYxaKVayvj5LW4Xv47aEWIJh31h2354lKIichGr6N08r53l1FT4wLTJtv2Claibl7btdXqpFuSbCGNIfDyWvv8+rrnmGq+bQgQQS4IvHA5j7dq1GDhwoOj2OAvvPntOYXez9KIid0cv/D5S4vf2uYGWCLRq3z5cBS/aFscgdNC60THgMHpt31b33XarvKhA7ybz2LddQffhh8Do0dbPN8Nt3yTGGJCcjMfWrUM4HEZcNF1nivC5gqUuefPmzSguLkadOnVEt8ddtDralBT2BVusfs9DDDg7ruFDIeMoevbtc1JTzZ1FciYDhh1HVWmzKSnl5QQ4XT0Aj6AuxcUUfRSOetEVwL/2rUy19INv4vfUT8Hz+LonJqKkuBhbtmxBly5dBDSQiCUsuU1ffPEFsrKyTEcYhM7fc4uiosgHz823s9fpTET046V9a+CH1FAigGgZjg+dZLJvogKeQQ+v7NtIoJB/4jmJoRB6pqTgiy++iC7BRxE+V7Ak+L788ktkZmYKbooJXkVn1KNYIh1kqx0oGTIhCiftWwOW6B1BWEJ2kmWn2gMByGLfotIdKW0yCjEShW7bNwk8X3JGKIQvv/wS06ZN87op4iDB5wqWXhfr16/HSSedJLot9vFi9U2e/Ba5A/WLIfqlHUaITBvxcy6VX9JN7di3BlYiHOTEEkJwIUpCETwCgDeLpYi2b1H+iag0S7+nawKe+CenJCXhzVWrxNVLxAzcrlVubi5+//139OvXz/zgoiJ/O9kiUI+CKR1krREyv3dgdvBDTr8RTrQvlu1bg7Q0/5i434Uj+3ViPJBxHkhMk5oaeY0KCrhOd8u+oyF655l9i9yLL2jIIlC+Tkb2HWsRvCjxT3qFw9iVk4MjR46gZs2aDjfKJSjC5wrcr5RvvvkGtWvXRgqro2tmxMoO3A/DpXYdJr93Kjzw/JZYfbhYrpFsU3bt2w/OvMpJSEvzqB0ewOqAe/oosFTOoySizSFWozRgDeeY7Lsqntk3j0Bj/TGxZN9ApY1Hi9iLQR+lblwcspOTsWHDBgwdOtTr5hABglvwbdq0CbVr1zY9bu7ChfytYUlHiPaIiltES4cfJKLIvqPFEU5JiRo/wBlYHGc/rdpnh3+MOkpMGwDZtyks9p2QUDnY5gcbtxOZTEsDPvsM6NNHbJucgHwUXbrGxeGHH36IHsEXConvqEIhseVFAdyCb+PGjUhPT3eiLWyYdbi0ZnQ51FkGE7JvYQREO0cPZhe8tNQfDnOUkJIS/LTPwGFk47IIC7qNuzV3zm0fJQhzAhnpDuC7777zuhlEwLAU4WvevLkTbRGDXicSjY4yibrYw+ieR6ON60BiLqCY3TjOOXXRTKzYuIQQQpC8boY4jG5cOOzL7UMchfwU4XSOj8db69Z53Qxx0Bw+V+ASfMXFxfjtt9/QvXt3p9rjHEF1lNXtJiMOFm7Ou/PBYIdo8/TDtF7CRYxueJQ6yk7beBQFNoJPXFx02nisLVDnMZ3j4/Hr/v0oLi5Gkp/9V8JXcAm+HTt2ICEhATVq1HCqPd6g7KxkB93th4hGwQinUNuWVzZugNIHojQ1QhP1PmQyvE6yB6uZqn18snFCE1E27iTkq3hOs7g4JIZC2LlzJzp27Oh1c+xDET5X4Hrt7Ny5E3Xq1EFI1GRIP6w6qIcT0RLZAKnDJLxC+cxp2aHDItBP2zYQUYJaTbEsSe8gFJUuJxq2lvANXtg4+Sm+JS4UQovERBJ8ZmUSEXB1xz///DPSGJbns7RCpx9gEaBGTrL6/Ghf8pmIPhhE4E+f/2laTLSs4kkEGD0jFOQkk40TEXixr5+RjfMMqJOvEjjahEL4+eefvW4GESC4BN+PP/6I6tWrO9WW4EIjYUQ0Y2LfSp/DbFCNBt0Iz0lLq+oMm4hAHhsP6pw51ogcRe4CAIuNk8gLNO0lCT/++KPXzRADRfhcgavb/umnn5CRkeFUW4igQg9WTEGRDSLqUBg1mTcRlSg77k2bgGhIBeQlqKMxGrSJj8eyjRu9bgYRILgE3++//47evXs71RYi6MRSpNNHC54QzkMRjdihCfZiL5p43QzCDbxIwxSBBwsPRRVR4Ku0CIexd9cur5shBorwuQKzG1NaWoq//vqLaQ6f7YeJvCv3CeJLz0vIxmMK2S80u22evmNYK2e1PeoTYhIW8/DMzlkrTkpiE0Rk48GE7hsah0I4dPw4ysrKEB8f73VzCIHk5eVh0aJFWLt2LX7//XcUFhaibt266NatG4YOHYrTTjvNUrnMXufBgwchSRJS3ViCjPdhJue5KmaChEY/vIVs3BPsbGYdc7fAbhS7qEhMOwgu7Nh4zL0WEhLs/WiycfuwDJ7GnGGa0zAUQpkk4eDBg8jKyvK6OfagCB8A4I8//sC9996L//73v8jKykKvXr3QtWtXVKtWDbm5uVi1ahUef/xxNG3aFNOnT8cFF1zAVT6zC7Nv3z6kpaUhzo8XkTXaEg1peFGQikBYoLSUbcQ6GmycEbOxJz92VTGFWnmY2a+f9hrzEUZ2TjbuMbw2Dni2XYjrkK/iKEmhEGonJGDfvn3BF3wEAKBbt26YMGECNm7ciPbt22sec/z4cbz//vt4+umnsXfvXtx8883M5TMLvv379wd/w3WWDsjLYXxKUyDs4ncbZ4AliYAc3SgkNZXNYc7PN/4+APObyMYtEoB7awrLzQ+H/S8MyV/xnKy4OOzfv9/rZtiHInwAyndCqF27tuEx1apVw4UXXogLL7wQf/31F1f5XBG+atWqmR43d/58rgb4DrNOzKqzTJ0j4RecsnEGaIVPwjYsRmQmCh2G7Jywjdd2Tj6L72mMct888JDgAwBTsWf3eGbPbu/evUhOTuYqPCqhTpCIdmzYeHq6wHYQhFXMDDEvz3LR4TCQmWn5dCLWERmlNLLzcNhYEJIvE3iahsPYu3ev180gHOA///kP6tSpg5EjRwIAbr31Vrz44oto37493nrrLTRt2pS7TGbB9/vvv9Om69FCAEc+CP9Aoo4IPCZGHBQTj6JtxQgnoM46qmkcF4fNv//udTPsEwqJ78hCIbHluczMmTMxZ84cAMD69evx/PPP46mnnsLixYtxww034L333uMuk1nw7dmzhwQfQXhF0OetEARBEGxEw1xFwnEahUL4ePt2r5tBOMDevXvRqlUrAMD777+PsWPH4qqrrsLpp5+O/v37WyqTWVLn5OS4syUDQRAEQRAEQRC6NAqFcODgQa+bYR95Dp/ovwCTlpZWsSjLsmXLMHjwYABASkoKjh8/bqlM5gjf0aNHkWJngx+CIAiCIAgVEkIIQfK6GQQRKGqFQjjq99VcCUsMHjwYV1xxBbp164adO3dixIgRAIBt27ahWbNmlspkEnySJCE/Px9JMbTHF+Egfpws7vOtCgiCIAif46dUTD+1Jcj40V/5h8y4OOQfPw5JkhAK8pw1WqWzCs8//zzuvvtu7N27F++++27FipwbN27EhRdeaKlMJi+3oKAA4XCYbZVOJx8Ocsqto+z46SVQFT916mTngSU+TkJZOIT4OA+iFawvuLg4f9k7EVh8a+f0jgs+5LOYUrOsDKXhMI4dO4Y02gsmKnj11VcxevRo1KlTB88991yV7++77z7LZTN5lnl5eQiFQt5H+EQ7KX4eAaAOLnaJJTsXTLUU79PCPHGCefF6UKGoyNv6A44f7NzX+GUOj5/t/I8/gKwsceWRz+I6Gf/8Ny8vL9iCjyJ8Fbz55puYOnUqTj75ZJx99tk4++yz0a5dOyFlM731jxw5gmrVqgU7ZKyF3Q7KyKCo8yP8gpN2bpMaaeS4xiSi54P7fB4L2XmMEiQ7V78nKCXU98SHQqgRH48jR46gcePGXjfHOiT4Kvjss89w5MgRLFmyBB9++CEeeugh1K9fH6NHj8bZZ5+NPn36IM7ib2MWfLRgiwbUGRKxgIGdZ6STI0v4ALuj20YbVIPsnPAJou3cyIch/yYQpMfF4ciRI143gxBIzZo1cfHFF+Piiy9GcXExPvvsM3z44Ye46KKLcPz4cYwYMQKjR4/G8OHDubbLY07pJMFHEARAzi8Rhag2qM6gFSOJaIQ2Yo86MkMh5OXled0Me1CET5ekpCQMGzYMw4YNw+zZs/Htt9/iww8/xAMPPICffvoJ99xzD3NZzBE+pgVbCIIgCIIgCIJwnMxQiCJ8MUSPHj3Qo0cP3H///SgpKeE6l1nwJSYmWmocQRAEQRAEQRBiqSlJwRd8FOGrgiRJWLhwIVatWoVDhw4hrEixDoVCePfdd7l1GZPgO378OOLj4/laSxAEQRAEQRCEI1RHuY9ORBfXX3895s6diwEDBqB+/fpCFs1kEnwlJSXRt0InQRAEQRAEQQSUREniTu3zHT6J8D3//POYNWsWcnJy0KVLFzz77LPo1auX2HYx8sYbb+C9997DiBEjhJXJdEVYjWnu66/bagxBEARBEARBEOYkRYPg8wH/+9//cOONN2L69On47rvv0KVLFwwdOhSHDh3ypD0ZGRlo0aKF0DKZBF9xcbHlfR8IgiAIgiAIghBLMsp99EAjR/hE/3Hw5JNP4sorr8SkSZPQvn17vPDCC0hNTcWrr77q0I82ZsaMGbjvvvuEpusypXSWlZUJq5AgCIIgCIIgCHskSRJKS0u9boZvyVftPZmcnFxl14Hi4mJs3LgRd9xxR8VncXFxGDRoENavX+9KO9Wcf/75eOutt1CvXj00a9asygIt3333HXeZTIKPFmwhCKICo02qRWQCsJQh6hhWWMviqZPxWAls86dZ90kWfRwrLOWJOsZuGRk4anwA2bnwMsnO+Y+xW0aG/SoIjykOhVAjgcmV9y0SQszPP0+ZANCkSZOIz6dPn44ZM2ZEfHb48GGUlZWhfv36EZ/Xr18f27dvF9ouViZMmICNGzfi4osvdnfRlqSkpIglQQmCIAiCIAiC8I4TAGonJXndDFuEw84NvOzduxfp6ekVnwdlT/ElS5Zg6dKl6NOnj7AymYbeWPd6mHzppbYaQxAEQRAEAr+PFIDo+A0E4WOKQyHaJ9uA9PT0iD8twVenTh3Ex8fj4MGDEZ8fPHgQDRo0cKupETRp0iRCqIqAWfBJkiS0YoIgCIIgCIIgrFESBYJPjvCJ/mMlKSkJ3bt3x8qVKxVtCmPlypXo3bu3A7/YnCeeeAK33nordu/eLaxMppTOatWq0cItBEEQBEEQBOETjqHcRyfsceONN2LChAno0aMHevXqhaeffhrHjh3DpEmTPGnPxRdfjMLCQrRs2RKpqalVRH1ubi53mUyCr2bNmrTPB0EQBEEQBEH4hCOhEGrWrOl1M2zh5Bw+Vi644AL8+eefuPfee5GTk4OuXbvi008/rbKQi1s8/fTTwstkFnwnTpwQXjlBEARBEARBEPzkSVLgBZ9fuOaaa3DNNdd43QwA5at0ioZJ8GVmZqKoqEh45YHGbDI6rWpKRAu08AJBEET0oe7byW8JHHmShMzMTK+bYQs/RPj8wLFjx1C9enXHjmfy5GrWrBl9gi8uzt6f0+WTk02IwAk7zM+v/COIKCHCrJX/cMLOqX8nPMLQrMlnCRz54TBF+KKEVq1a4ZFHHsGBAwd0j5EkCcuXL8fw4cPxzDPPcJXPnNJ5/PhxSJIkZPM/S+htLFlaGr0djejfFcQhj1hDz879eu/UXoOZzaq/T0sT2x4iZikoqPx/s8eF+3EiOyd8AI+Nsx4jFPJZXKVMkvB3WVngBR9F+MpZvXo17rzzTsyYMQNdunRBjx49kJWVhZSUFBw5cgQ//vgj1q9fj4SEBNxxxx2YPHkyV/nMKZ2SJKG4uNh800I9h9UpEhKCeWe9QO6MvRbIpaXe1q+H27ZLRHowMiz3Qc+GU1PttYdwhcJC7c9ZunK/dh+GqO3cjo0DZOcBwc923qQdeyqYZ5DPok9CAo5KEnDiBKV06pQZNNq2bYt3330Xe/bswYIFC7B27VqsW7cOx48fR506ddCtWze89NJLGD58OOLj47nLZ/Jw09LSEBcXhxMnTgRml3rCx5CwIpxC6WHZdaqVsNqs8jivnRQNwmF234X1ONYXqx99psBCdm4I2TkhFJ/6LEckCQlxcVzzuAj/k52djZtuugk33XST0HKZrDgUCiE9PR3FxcVCKycIgvCUcNg5h9XMQxRcbxBHNIkowMjwHHi2/GznfhJ7fr5OhBjyJAnp1ap5N9VKEBThcwfm3jgjIyP6Fm4hCIIgCMJTJATbYSUIL8iVJGTQ/GCCEeY4dYMGDVCol5BOEARBEARBEIQr7JckNPRoY3CRUITPHZgjfNnZ2Th27JiTbSEIQg8fzpMhCIIgxOOn1FDCv+yXJDRu187rZhABgTnC17RpU2zbts3JtvgfuxN3/dKLOzlviQg+Pp2gThCECnpWCauY2Y5f/BVCl33hMJo2bep1M2wjSeIjcpIktjy32Lp1Kzp27OhI2cxviyZNmuDEiROONMI3OP3ypA6W8AN27VxrKwWZ9HR7ZROESxiZMWDwZVwc7atHWMbNVDNjGzeB/BXf83tcHIY3aeJ1MwiBdO7cGT179sQVV1yB8ePHo0aNGsLKZg7zNG7cGMePHzc9bvK//mWrQY6RlGT+5zUJCeZ/BGGEmY07bUMFBcZ/BOESjpoi2TjhAzztbslf8Zx9KPfNg448h0/0XxBZs2YNOnTogJtuugkNGzbEhAkTsHbtWiFlMz+RjRo1wt9//y2kUqHEWqfCKkxpC43oIlrsnGXhJ4oSEgaYmZDngYeCAvPnlWzcEp7fW5dg6SYDcS3IX3GUP8JhNGrUyOtm2IYWbankjDPOwBlnnIFnn30W77zzDubNm4d+/fqhVatWuPzyyzFhwgQ0aNDAUtnMXmTjxo1RUFCAcDiMOCfnf0WLY+s1vBHLQLw9ogiyc31YvJ2EBCAlxfm2EK4SMwtBk40HCpHOY8zYOI+faCXDKsZ9lmJJwl+lpVER4SOqUr16dUyaNAmTJk3CL7/8gtdeew3PP/887rnnHgwbNgwffvghd5nMXmf9+vURCoVQWFiINLP5C6wPb1AleDRiR4DIHXssjdKRjXuP2b6gapsm59lV1Lcnxv0za/DaOEB27jLKW0Q27iJWfZYo8VcOSBLiQyHUp20ZdMuMFlq1aoU777wTTZs2xR133IElS5ZYKof5iUlISEDt2rVRUFBgLviI2MQP8yAJQg8955nHblkWMoiS6C2r8xpwvyn60LJzkTYeAIqK2H5GaSmbnZONRyEB91f2lZSgXrVqiI+P97ophIN8/vnnePXVV/Huu+8iLi4O559/Pi6//HJLZXH17E2bNsXff/9tOX+UIAgikMhCjsU7ZE1lYhyCDIPthc46oklRCGNOwk9eN8FbosDGAbafEdRnIajtJsTxWziMJs2be90MIVCEL5I//vgD8+bNw7x58/DLL7/gtNNOwzPPPIPzzz8f1atXt1wul+A76aSTaC8+NcpRIi0Li4Wemfb1i24CPhJKEARBVHJSn9pVQ6Cx4KtEkZ+ys6wM7bp397oZhGCGDx+OFStWoE6dOrj00ktx2WWXoW3btkLK5hJ87du3x4YNG4RUHEisOL7KTjVKcseJKIbFxpXrffOmd0dRyiMRPUQuYa9az57XxoNq36ztpgGgQGK6TQP5KoHix1AIvdq397oZQqAIXyWJiYlYuHAhzjrrLOHpulxvptatW6OAYXOXyePGYe7ChZYb5RlxceVWYvWFJp9vhl751LkSbmHHaRsxAvj44/L/V/cHstOQmmq9fIJwkMJCzmAG2TjBgJ8CZPn5ggoiX8W37JQkXNS6tdfNIARjZfVNVrgEX5s2bXD48GFIkoRQKGS/dlaB5CTqDs3J9pilPlLnSjiBmzYuo7X2ODnIhMs4ugQ+2bgxQY10BgxPtnnQ8lXIT3GNsCTht5IStGnTxuumCIEifO7A1SO3bdsWpaWl+Pvvv5EepI1jg56Com4/pVsQaoJg47JnonYEyUkmbKJ0es0iLY5GYgoLtYUO2TjBiJ598ti4J+j5KQD5KoLZHQ6jRJJI8JmUSUTCJfiSkpLQokUL5Obm+lPwBcHpFYnR76UO1h+IjmL73catzNFTD1HLv5H2EyNUFBUFtGvz0sb93mfEEGZCLbD2rUadyUQRQaFsLitDy0aNkETPNsEBd85F165dsWvXLjRr1syB5phg9nIkSV+JWUdAna0/MbLxWLNvo02naS/QqMRsn/Gog2wcZYxbMkQDMWffRrCIFfJTNNlcVoYup53mdTOEQRE+d+AWfN27d8cPP/wgviVmKS9098SSlGS+RDG9ncRiZONk33yYOQI08ulbyIdjhGw8kATevv20dQFLBJzVT/HT77LJRgCnn3yy180gAoalCN9ff/1letzkceMwd/FiS40KLElJ5Z2P/CIOes8vd7asHWWsCcRYSzkMkoNZXGwuooP0ewKCUZfny3lHQYZs3BUKCthe6W7Zt916eo5uGD0+ClD+HmbxUaLIP9kUDmNqly5eN0MYkiR+zFuSxJYXDXALvp49e+Kvv/5CUVERUqLR4eWZc6X1Mk1JqTxf/X00dK5GiLYH0R100O3V7VVtjZzFwsLgL0TB+zzG2KqDrJcnmrq18ql2/8y3C7p9A3w3x+f27YSgijUbr7KiZzT4KKwD0k69/0X5KampTO/3P8vKsOfECfTq1UtMvUTMwN3D16pVC02bNsWhQ4eQnZ3tRJv8i9xhWHW65c6VVtlkg7WDZu3wKW3SGF77VnsPfnOQRW/yzupxeuQ4s942irRVYrikvZf27UVkLkrsm9X/jtbXr/I2cm/ZoJ7qEa0XSSRmfopg/2RDSQmaN2iAmjVrspUbAGgOnztY6rl79+6NnTt3+k/wiY6AOB0R8nrlKrN9AQn38GJPStH2LXsXdlcgLC6mVDTCEWytgijKvomowy+DKMJX+bQSARTlU5BvosnXxcU4dehQr5tBBBBLgu/000/Hhg0bRLfFGDccYrsRPBGoR9i0hitJqBFWcNu+1bZLDjLhMo5O27Fq36IGM3yegknwwyvWXJ+WxuKfEI6yVpIw7vTTvW6GUCjC5w6WVEOfPn3wxx9/IGxyRSefdZalRrlCSkrVPz8SlHYS/sKPdlNUVPWPIAThuXl53gDCz9iNvLliXrwDyX58z0QxJZKEb4qK0KdPH6+bIhRZ8In+IyKxNETYuXNnJCUl4fDhw6hXr57oNjmDcv6FmSWYRRPtfm8XrVWpyLkwx4u0STdQzy0K0m+0GiWhtM9AISrlLT+/0kQC0eVFW5Q76O0PEL60bxZBqGUjTv0Yv2c6CZ6/t7GkBEnJyejUqZONRhGxiiXBFxcXhzPOOAN//PGHPwWf3xaPUGOWkmklZVPvRSyio/V7Cqnf2ycSN2zbS2GsZa8k7GIeZXTEl44wK361b9Ft8MNvCgg8tm134KTf+Ib2CrCK2j8J9EPsHatOnMDpvXsjLsr8HUrpdAfLkwCGDBmCp556SmRb+NFzfr2+06mplT2zlx1bXJz+NeJevotwFb/aNuD+gIpeLhQ5lVFHTC4KqPWjybZ9gUh7dMO2TevwQ3ic/BLLLCsrw9hzzvG6GURAsSz4Bg4ciFtuuQVlZWWIj4/XPW7yWWfZ24DdiXQ1JyIYeh2YcmRLZCdrN6qlbK+6HOp03YMn1VgUVuzfj1FzEoKBxdfCrqjI+9TFGLHtMuj7DkHG1/YNOOeX2I08ye8ZrXJi3C8pliR8VVSE5wYM8LopwqEInztYFnwdOnRAamoq/vzzTzRo0MBeK1JTg7mRM297lZ2sG28Eq6JQ63cpy4nxjpeLoNm0EqO2X3EF8Nxzlf/22kFWYvRs0cqGriInOvjdAa7i8yo/CLJtR4m9s9qPm3vwKdMrRZTnVNDNtFy3/RKrGPklfvRJBM/f+7q4GNWrVUP79u1tNIqIZSy/DUKhEPr164f9+/ebCz4Wp9dvjrFeFIQ1IpOQYJxwr/69fuyw9GC9V0H6TVZIS4uuYSQ70UalV2EWhRC9IToPWs+k3JYomxfhBuGwf/Yg44HLueaxbS/Rs+1YmuMsEFbb9qNGsiQeExIi+2W/v7+VNh0DPsmq4mL0PeMMhEIhr5siHIrwuYMtr2vo0KF47LHHRLVFHKJTNt0Qo1oCMOgvaaPrZvbbCgrEtkWLtDTn6xBNEGzbr9ERM8yuq/x90J9LBrxY1tppx1k2S9v1yAWRbQeSWLXtoVc35ytU+W6IBn8E8LdPYuKPfHbkCMaffbazbSCiGluCb8CAAfj3v/9tPo9v4EDM/ewzO1VVIsrhNSsnNdXZt4JZlCM11V/pCm6PEgdRjNnFrdUxnbZt5ZYJ0bYsPcDuPOvhwnNk1IRYGvl0feP1oKdQkm37loICD9dcUfojgHWfhMU+vBCWLHV66JMUhcNYf+IE5kbh/D2AInxuYevt1LZtW2RmZiInJweNGjUS1SZv8FtKqZIgp39GO37c20/dJj/ZtjI6EnTn2CoO2YvfzNALSks9XIBQudgL2XYQig0cRrbtamqpOvoHREcE0KesKypCzRo10KZNG6+b4ggk+NzB1lspFAph+PDh+OGHH4In+NLS7E8+8crZV6+waVcAejHHg+aVOIcI23YDdRu9cpL9sCojYQnRZj4US8UU5BfbJizj9VZxQejCAVRdWdONAekY8x2WHjuGQWedFZXz9wj3sP0WOuuss7B0qaCXpJNYCcfbFXRmC7eIQiuCI3e6JKyin2hJf1Uve+fnBTIITwiME6yGx7b9avesgyI0eMKNG1PWDRE5IEEZScL5pLgYtw0f7nUzHEOSxMdOJElsedGA7ad88ODB+PPPP1FQUIA0A8fT9Xl86enmxzglyJQdnrp8ZednNo/PjlhTtkGuw/O3CiEELwWem+mhtCF1zOP6CohuDTSofxhvnVHwHHi1B58fNlP3ZGVPrTRMVkTt+ZuQ4D8/xOcD4n+WlmJbYSEGDRrkdVOIgGNb8GVmZqJr167Yt28f2rVrJ6JN/PglwsGz/YQXo15a14mn86Voofto3TO304j17Fr2Wtx0PpWeUlwcpcpFEV7vZVZRf6zZtc/FI+s99ToFUw+v9U1xMTDq9g6RH9oRf1aRbdrIDyH/ogorCwvRrmlT1K9f3+umOAbN4XMHIW+Vc845B6+//ro7gk/uLPx0N61EPeRzEhLsdbh2RZh8PZVleP2GikX8Ztfp6ezRb6WzKsp5ZI20GO2rR/gWv6RmGopMJ+yatRyy60DilF2biVm1HXMNnqSm2vdD7Ao18kN0+ej4cYy4+GKvm0FEAULeICNHjsTMmTMRDocRJ3KExm7kTsSiKnplKNtm1MuzpI36IeddKRyNrjvl49vDL9FoFru2guxpeBl9Uz5vyv6IHGZPKC31j8Cz7EN6EfVTQ3btK/xk10JSRL2I+hmh9y7yQ9tcokyS8Mnx4/gwyvffowifOwh5U3Tt2hXVqlXDwYMH0bBhQ93jqszjS0/XPpDlTolaIZNnHp9bzrroDU/N5gryYHQNeL2paE0RtWPXLIheHdaqXd99N/Dgg/rfK58rPziles+5H9oWBfjF+dVCWNv8ZtOA/o+jxVMsU1BQeXuj3q617Nhv4k+JSB/E5/7HhqIiSAkJOPXUU71uChEFCHljxcXFYdiwYfjpp58MBR8AfWc4skD/yPO0NO83YA/KoivKjtioI83Pd74tThE0MaeH03atxitHmSU11Gio3i9OvQ/Qu0R+dYgdb5cfxZ8asmtTvLZr3ugcb7uqzN/jRfnOs+qDsNibCPGllRqqJkD+x+JjxzB06FAkRPnzGrQI30MPPYQlS5Zg06ZNSEpKQl5eXpVj9uzZgylTpmDVqlVIS0vDhAkT8PDDD3t6L4XVPGrUKKxevVpUcd7CG/Fwa/sFZbu8En8ionLKF4jVsqx02iyDDdGClk36JZ1UKbDsdH5u7J+nvIalpfr1+Xyk2Aytl6NfhZwRnrVZrlhkNoWTsIjVgNs0UNWuRS7swiLURNTnp9RRTR/ETTsRUVeA/I8P9+7Fneedx19XwAia4CsuLsZ5552H3r1745VXXqnyfVlZGUaOHIkGDRpg3bp1OHDgAC699FIkJiZi5syZzjXMBGFvppEjR2LChAnIy8tDZmam7nGTe/TA3G+/FVMpSzSENWJi5Az7KeIoo26v39IunCaI4s1tO/KLwDMiCFESFpT3lfUeq4+z4HyIqDbo+MYZlolGm9b6txYpKZ7YtV9X6LSK0oTMfptnv11+v8Sa7wG44n/8dPw4dpaUYOTIkY7XFc3kq8R5cnIykpOTbZV53333AQDmzZun+f2yZcvw448/YsWKFahfvz66du2KBx54ALfddhtmzJiBJI/mggsbmklPT8fQoUPx22+/iSnQjVGjtLTyPwOBKqSOzMzy1Ez5z6l6lH9qWLwikZ5gtHmVQcHIBtysw4qXIg9l+86Ddwl5mFP1p/NxzD5iSjPxvakEqrEG2ImkaxhuSTieya6jTcjp4aiZGPkeZgMSLAMWZr6H27D6jj6PYL+dm4uhAwciPYiD25wY9QV2/gCgSZMmyMjIqPh7+OGHHf8969evR6dOnSK20hg6dCjy8/Oxbds2x+vXQ+jw48UXX4zrrrsO3bp1QygUElm0GNzsjIzqUu/FZ5YGZCVNSF2/X+f/RevCLW7htU07lcJWWkorERIVKDMmna3DINVYRPqw36J/tLBLFdwSme7ZtAI39gFWp326NX8vipAkCfPz8/HQ5Zd73ZTAs3fv3gjRbDe6x0JOTk6VfRPlf+fk5Dhevx5Cn7KzzjoL+fn5yM3NNTxuco8e4io16yjkGy1iiwcjlJuKstbldNRPid9G4QhrpKeX/7l5H83qciN6EaRISayEJRzEzdutWYeVinnFk9aPZHGOfb5ROqGN1u0Wsp2CQT3nzuypfZAov8PMLxLpd8SQKNx8/Dj+iKF0TicjfOnp6RF/eoLv9ttvRygUMvzbvn27i1dFPEKHGKtXr46zzjoLP//8M2rXrm2/QCtznrTC35mZ5i9vuwuvpKUZn5+UZNy7212QhTdSptX5stZLUbmqODU/z8l0DqM2y/bB80y4Gb1QD4/7IVpCWMZtHc9cl5v2JUfLyaZ9j5lQKy0VM+5jVobt7SPkft6tDCC/ZB753H/5z19/YeTZZ6N69epeNyVmuOmmmzBx4kTDY1q0aMFUVoMGDbBhw4aIzw4ePFjxnVcIf6NMnToVo0ePRo8ePRAfHy+6+EhkZ9jLySyioizK5eO1xJ+I1DmzMuR6lccEaAnjqIDVpp1aGVaUPcsevFtOq9a1IIfZl3gZoLVct6iVZXnrVEL2bAsnA++BtGllpFhL+ImwN7My0tKqHmPH5/C5kGPhRDiMeUeO4L2pU71uimv4YZXOunXrom7dukLq7t27Nx566CEcOnQI9erVAwAsX74c6enpaN++vZA6rCD8DdK/f3/UqlULu3fvRsuWLXWP416t026kQ4SDLEdE9JxiJ5xwt0fg1Ghdd9YOmSKBxvhlMraTqaFezlmS6/ZrCpwb20r4hEA6xGYF8tqzXTvksecosCtWgeZFBnVU2bMS5bvA7MI69W7Xei/6dQ0CB1iUl4fM2rXRr18/r5tC6LBnzx7k5uZiz549KCsrw6ZNmwAArVq1QlpaGoYMGYL27dvjkksuwWOPPYacnBzcfffdmDZtmitzCPUQ7oGFQiFMmzYNc+bMMRR8umg97KK2XjDDTLClp9vrbc3SOo1Qj4RpdYBuCaz0dP16rIzORbMwtGLPonDangHg8ceBm29mO9ZvC1YEhESUoASJXjcjUFgx63OxyHolZM/MItPPtuymeORxBSzZs978PVa8HmxWojc4asXf8Lmv8fxff2HKXXf5c+FDh/BDhI+He++9F//5z38q/t2tWzcAwKpVq9C/f3/Ex8dj8eLFmDJlCnr37o3q1atjwoQJuP/++51rFAOOvKUmTpyIu+++G0ePHkVGRobxwX6JcujhZvuUaZ1meL0Ju55IU18v5THRmh7qh9RiVvzyvJWWVl4vvRcwz/NARD1mDnI47PHG62b2HFSiIFooEpYFLkUIR7PXumvi1KqvwTIIYnegxGgT9QD6GzuLivB1QQHeM5lLFm1Iknj3SZLElqdk3rx5unvwyTRt2hQff/yxc42wgCOCr169ehgzZgx+/PFH9O7dW/e4yT16YO7OnWIqZYny8aRc6jnGZmUYfZ+WVum1WBFpenOilB2y2duIZV6VU3OvjMSGHztr5f6MQRBzejgl8kSlgiqvrVfOcgylV0YTvnwsgyL8Ysjeg7JwrlB7NorQmQ2k6b3/vYj6WX2O9N57fvM1FH7G0z/9hDGjRwubS0YQShzLQ7n99ttx6qmnolu3bkix+2JxagVENXIH4eRiGHJap1MRutRUfy26YjVdk7Wz9hNu2SkLbtiyGVZElB/EX0BJSQmOY2sHvzxippAtEww4Yc/nPjOg8h9OiDTlYKjXPgZgb7N1LV/Dg+f1cHExXjt4EF9Nn+563V4TtJTOoOKYVXft2hWnnHIKfvzxR8PjJrdpI65Sq8JC/nMClv1nlMeI3pjHyd8n8oliLStWnmIWW1aPwlq51zyRXNF7/5lFo1nudSwoHAKAM06Ba4hquBt7tvoALxZscbMrKSoytmezrtFSW51anEvrveNGOmeU8dy+fTi1Vy906dLF66YQUYqjT9ydd96J8847D507d0aC3Ydb5MIsdl+aLGmdVqKayg5ZT/jZSbdUCwGjt4qbS+rHGiIjgU7PybNqy36isDBmHGW38ZPedsRJdhNRz5kXz2sULNjCglvz9xxDOa1ED7P3vtH38vsoIUFM5E9kpM1OFNBhjpeV4Zn9+/H2nDmu1+0HKMLnDo5a9pAhQ9CoUSPs2LHD8DihUT49eKIfdoQOSx1m+fNJSZXRFKdG5RISIq+Jk8IhGp48v6Rk8d4zp22ZIIjoHVAI+mAPfC7AHCAinVMLp30LGbf8C7+8m23w2h9/oEGjRhg8eLDXTSGiGEeflFAohPvvvx9bt25FqYi5RCwPtnyMUWfjxIaiIjs19QicunM2u5ZWr7WVDtqLtE4/I/rl49ZLU6tOVl54wbm2EIQfiALhQ/gDuwJUqIBV+xZObraufI+x1BND0b379+zB/Y8+GlNbMSiRI3yi/4hIHLfusWPHomHDhvjpp58Mj7Md5cvMrPwT4Rizdnx6zrETy8mLHJljEYWpqd4IDjOi+UkWbces+O0eEzFF1Edh/CYY/dYeC/hx/p6IcljSRi2j55ew+hWipnmI8iuiILo3d/9+1G7UCGPGjPG6KUSU4/gkrbi4ODz66KO45JJLcNJJJ4mby6dcJUoNy/YLPFs0aOHlJuxy/TJaufJubq3AsvpXNG+uboeg23FQUA8SkC06TjSPy3hGgO2Ydf6e38S/fMn91i4tTNM5zZDf71bn31ldrMWqX8GCj6N7x8rK8OCePXjtnXcQF6BnWTQ0h88dXFmVY9SoUWjevDm2bdtmuALR5DZtqu7Lp+UQu3UntZxp9UpURs4yi6hLT9fuXM02nVZ+byb+9BAlCtPS9MvJy+Mry8/C0M5iK17asRqtFGe7otEqZnuWObU/ntVrT/v1aeL1y9Xr+j3be88PAtDHzwOvSHPajszaY1a/6e/R8ycAtrUDlOXIeLHtQkKC9jtT6U/41U/g4Lm9e5HdogXOOussr5viKST43MEVwRcKhfDoo49i7NixaNeuHZKTk/UPNop48CA6OiI61U0ur7jY/qiaVrmAmNwQu6JQeT/VHTSvGFTiV2Eo/14/9jZWbVhv4IKlPDOBJH/vhz3LtO6ZH23MQ9SXyOudM0Q9ZudikZiCnBR+LMIqKUmcHftYyNnFih2bYdXOlXULeVZE+hPK8kT4E3YHmPX8CTu+hLosl8gtKcHDe/bgnY8+itm5e4S7uLbu/pAhQ9CrVy9s2rQJp5xyiu5xk+vVw9xDh4wLc2uD68xM4PBhY8eWN8pnVJZ6VI0nyqeF3zdh1xP3IjtykWRm+lPIGSFfY5H7Ozo9z88P4k8maPdbIH796X5tVwS8Nuy0uArERWOHVRiJGpAQPWjhyGbr886O/MAp4adXnqgpJFbKCZIv8U9b79+0CT169cKQIUO8bY8PoAifO7gm+EKhEJ555hl0794d7dq1Q0ZGhr0CWUSf1VQ1ZedRp444Z1lvcRej6InIN41WmoaotE6n5gwaRXy9FgNuYMWGRUXJ1RgJvfnzgX/9S3yd1GsT/xBYU/Bbw328hUQQ5slZxe4+kZavTXq6+clm6Z7Kd7vX6Z6AtXc/iyh0iZ1//40Xdu/Gt4sEZRYQBAOuWnrHjh1x6aWXYuPGjYbHTa5Xz6UWobIjU66OaLUMI6xGRVJS7K1kpScWlCtkmTkAbi/qweogeeFIebFUtBlqGxaN31fv9NMSe0TsEcWpj6LwYsN1R1e79BlVontqnOrDebZZEHUMKz4eEL5p61Zceskl6Nixo9dN8QW0LYM7uBbhk3nwwQfRokUL/PHHH8jKyrJXmN0on+wcHz5sXIbVFTWVHazR+azla6VUmKV1spCUFFmGk6kPfp17Jxo30o6V4s4JUS7KQXArBdsIWmwlprHV5cgDYlZt2McRNdt48Ey5vR2DFymfQtFajEXpQ/BE9/RQDzQ66UP4cdCVg9WHDmH1X3/h10cecb1uIrZx3drr16+P6dOn45tvvkHY4AXqWJRPK5JXp475ebwpD05GRETvmaYWm8prJF8nFkEhUnR4LRD8itVItNf2GxdX+RcL+NoDDB5WozWyyQmJ9nhpv24Lq4ALOb9hNZ1TNjnh10Zk/671blG/pyi6BwAoCYdx9Q8/4J777kM9NzPZfA5F+NzBk6fi+uuvR3p6OrZu3Wq/MJYHu04dcydZ5IaiWtiJwhlF/9LTy1/ORi9ou0JMLQCdmiNmhWhP68zMZLNfERgJPTv2q/Z2eB3nWMrNIoTgqDbz68CFTyPY0Z7O6YRQ5TEx03ROPdLTxUT3zBDpN7BcFB/vu/f0zz9DqlkTN9xwg+t1E4TrKZ0AkJSUhJdeegnDhg1DixYtkJaWpnkc04qdWjjlGBulXtpdDdHuRuzqtEzeydS8qaF6e+SwLN4SK2mdVrBqu3b20nNiJU8WZBugdEvCJrLputqtiKrMTdsXmV4a8GfWrVRNVvGpZ062xKvZO93uAiwsPoPSH9BL/WQRlgH3GfYWFmLG9u34ZMUKJCa6PwjiZ2iVTnfwRPABQL9+/XDuuefi22+/Rf/+/XWPYxJ9tWqJWbHT6RURjUSd1gqH8+ZV/j/vFg3qjlzEKppmZWilb0TjXnussMxd83KrB1EDI+PGlf9Xtm3eaKByOJt6aYIT2XSsdBWyyf4P5wIALkiysGoe2a5rRFvap5yuaec1t2jiBwAsRPrU/bTobRxYUPsMbu2n54Ffce3mzTjn3HPRt29f1+smCMBDwQcATz31FFq1aoU9e/YgOzub7SSv0wll0abXDiuROr3l7CdOLP+vUvhZgXUzdhELwKjRu055eeI6XS+EIe9CJF7brRJRtisLPTVWhR8QeR+9TNcl590UL8di7NatZ+b/KxYg/IBg227A5++xRMRE2a6Vdjv13Cya+EGk6LP6LmfdaJ03usdyjN67SaQI9aDjWnLgAFbl5mLnM8+4XncQkCTxXaYkiS0vGvBU8NWvXx9PPvkkbr31VjRo0ABJOh3I5Hr1MNfMERW1L5/ZMZmZ9lMv5fNZ9y1TCj87G7EDkR2qldE0lkghyzGZmfodr182SLWC+oXF0os5uaekjOi0TT2xp8SO8AP4HFjRaaF6thmDQtBPQXanhJ4aZuGnZ3NyQ1NT3bEZZaqm1kXyyG69mL+nxE6apAgRKpeh1w6zOnjTOS1H+7Sw6yuIxGjgWMZPHZWCoyUluHLTJjz+9NOoX7++183xJZTS6Q4hSfJWB0uShAEDBuDw4cM4/fTTdY8zFXwyLHfZzHFWf6/V2Zi1x+j74mL7m1TPn6/9uZlzrfe9suMUMZFbZE6+0XFyu53s7PVeNiL3CxRht+pjRNstAIwebd4GI/SupZlYY1ka36wMFkHIOseJpSxWAcpwHKvjLHJeEstxohxno2NYVtk0q8OOv3pB5lL9L1ntFtC3XbfsVqA9spZFdmuvDjvz986df57+l3b9BCeie3oE3E+4cu1a/FqnDlauXYtQKORc/QEkPz8fGRkZmDPnKKpVE7sy+PHj+ZgyJQNHjx5Fup/3EXYRTyN8ABAKhTBv3jy0b98ezZo1Q6NGjTSPm5yUxC767CJHU5xKw7viish/8/Tq8jWQIywLF1b93koUUP1bjdokKsonIhVT2W6/p3W6hRN2O2SI9XOVzqioqB/gz2tPCEHUoyzilfGfnKEAgAkNDIQfC1oR64AvfCICt/fVc1LsKe3WqtjTGpyw0l0uvWIBAGDoywbCjxf53SJiGVQ3t2GQ2+2yj7Bi/37M370bPy5dSmLPAIrwuYPngg8AmjVrhsceewzTp0/H2WefrbuCEZPo88tm7FrfX3qp9rGyQ2zWiWrVp0ytU4s/O/gpnSPoi7e4Ac9+iTyohZ7spbA6qnqRB7XwM0vJLCysWhav+GNJ+9Sqh3AU0StsanWTqanWfFSlUy5c+PkRgQLU63ROtxB1O41eszzT69XdVxXhZzW6p/xeeYxWw0WJuQBvw1BQUoJJX36Jx554Ak2bNnW1boLQwvOUTplwOIw+ffrg77//xmmnnaZ7nLDUTpa0TTPnmTU9Tk/o6aHlmfAMVS9cKKZT14NnKWVRKRs+7dQ9Teu0YrMAm92yRvSMHEQe4ZSUxJceZ9YWq+lzLPWwlkMpnablsG4qzRItYe0iRUV4JjRYSjZrANmseR28Y6lGr2UWExj68nn+8A1YBaEo38CDQZYrvvgCP9WogbVffYU4Pw/yeIic0vnss86kdF57LaV0KvFFhA8A4uLi8NZbb6Fjx47IyspCs2bNNI8TltrJkrZptlAGS5RPXnCFJ29FHfHj/b3jxlXWt2wZ37ksiF5KOci4mdaZmenM1iJK+vThG53VippZiZAVF1fWK2J0mFI/fYkTfk9pKV8XaRTt4+mmKyJ+zdawn2SEls2yLPoicv4eCwLLCkI6pxWbNapn9+7K/+e9lFqRPp7udukVC5CSAvR78SLtA+yKwcxMd7dY8KmQWrR7Nxbs2YMtP/1EYo/wDb4RfADQtGlTvPjii7jyyitRt25dVK9eXfM4y6mdViMiRuiJPlnoycg9O6/wkx1hnnwkZR3KSI1S/Fmd66eF3ibsrLCkbMZiWqebWzn06VP5/7x7NirTPK2mQyrPk59JJ9KC/DrvMopxSuTZQT2mZlV4lJYCr/zSDwBweSuV8LOTGkw26xlm9mrVVpRCzw7yq9mKecluyJqr/gtAJfxEbMnkx03WXfYb9h87hsu++AJzX3uNfbuxGIfm8LmDrwQfAFx44YVYvHgxvvjiCwwZMsTeRNc6dex7BrwRE7XQU8Mq/NQiknWenxF64s8qRsJA2dm7GQn0qzBkcdpY7NVuBE+NUugp4RV9aWnl/+Xdy9HIa1H+Tpa2sG7NoLYPejMIw4lHT9nl6Zm+1Tl6qalAbi7/eVrtkIUfoCH+tOAJ77hhsz6dvycy5VON+rKKiDgq7dBM5FnZTcbqOIJWPWuu+q9+tE+NXUGozAwS4Qv4MAIYliT8a80ajDz7bIwfP97VugnCDN/M4VPy999/o0OHDsjKykKXLl10j6sS5atVq+pBvEvZWz2muNhc7Gmh9YZhyU8SkZMks3q1/ncill82+55nE3YfdvIA+OfoadkqIMYWWcro1cv8GBmz+yeLPTVmtmPFczHLxRexxL3Lc52CPB9KxDFm3/Puucwq/NTdbEEB23k84y2Xd/5G/0s3bdFlu2exV7/ZoahjfvzRvAw1dqaCmnWzrF1Vv3mTjA9wersmnq0TfDqn/5EffsAL+/djy/btqFGjhqt1BxF5Dt9TTzkzh++GG2gOnxLfRfgAoEaNGli4cCH69u2LevXqoWHDhprHTU5Kwlw9Z1NGxGbrZtjZZkEd8WOdjKJ8A9jJSyotjYzyfPFF5Pe8ERu9Oow6evWcQBkrQ++Av6J8SmHnViTJyJ67duUvT+/+mT17RlswWBF7qan8UT8isFjtks2ifXpdrGzOesLPSnvmfNsTADClh4HwswPrgi4BjWKLnOMnAr32bN4c+W/erkkv0sfSTeq9onkjh99MfQ0A0HO2hvBzY29e5fw/JVb9AJd9gDUHDuD+H37A6rVrSexxQimd7uBbj6lXr1544okncMcdd2D06NH68/kKCtwRferv1SJPiZX0y5QU/tUHlPVZOU/r96pT/NQCUK8cJ5xvvSiYsiO3+jIQBY+gs7tlCM8xSrREHq+QV86rS0nhu99q4WdV7Om1SW4XC1ZyqLRwOS00ESWuLHMv2kfiddi1zNpKuqbWOaxdZFpaVdFnRewp65OFH8Ah/kQutGK2iJFP0zmNkH+SG5uoq1ELPDVWXonKrom3i1R251ZupbI+WfgB/4g/EXP77KD2A9SdlJYP4JbY+6dt+//+G+etWoXHn3oKvXiyZwjCRXwr+ABg6tSpWLduHdasWYOhQ4ciPj7e2wYlJPClbbIKP6U3YUUsyp6FUviy5ieZoRSAGzZYL0fUZu1q9EQh4J8on1eYRfOsbIJuxzEsLjaPCmrB4v3Iz1BBgbU6eFHv16dnaz5aLVRuit8eCxYxZaVbTE21PlVINiEr55sJy4qoX58t/IWLQMsAWOxUYKSQZc01dbO8hvf1Z+V1lpBgXV9ZGXM161oron4vT7ZXsZNbOGn5AC4aTnFZGcZ8+CGGjB6NKVOmuFZvNEERPnfw5Rw+JYWFhejZsycSEhJw6qmn6h5nGuUD7M2Puvrqqp/xDl9reStmbbKyGbsaLfHHO2StVc+mTZH/FrH3jtv784jEib32eI9p167y/3k8ADMvQ+v5srKoC+/5vEPdWser7UDUXCWX9z4rg/mAl8hIhojIid73yseAN3rHerzyEbEy/mXlfJ5EC/UjfG1/lQAkOzXFyeieXnILjyBj6eK0uka7616Z1cvbrcq3vtNzGsIvxt/701aswOfHjmHD99+jWrVqrtYddOQ5fLNmOTOH75ZbaA6fEl9H+AAgNTUVH374Ibp164batWujdevWmsc5ktqpJfKU8G61oM4zcmpoW416cooIsQdUjSBt3WpcjlNRPr/AkrLpRFqnUuQp4bmWetE+o2eKdfsEvTLMUjJFiD0g8nr7KWQQQxiZPG/KptnxWo+OVpom7/mAfhm8GfVadTy7ulPF/1cRf1q4KfYYYRF7foZlBgMPdqY/21nzSq9rtir0ZLZcM7fi/zs9N9ndd7UPxd4b27bhzR078P3mzST2bEARPncIhGfdsmVLLFiwAGeffTbS09NRv359zeOEiL5rrqn8f1Yhl5LCJ/pKS61NSpGxuiG7fG1KS8WlfCrp2DHy2m7fLr4OmVjeu69Zs/L/srxseQW07GnwpEUaCT/WctRliBJ7atRvlmi0D5cw6vLkS8z60rUr+ljGsMxEn9UyRIg9Nc+u7lRx3A1n/cxXgRO4vNm6W4u1fPpp5f87pV2UXTBPt6on+ni6RmXddsWeGln8paQArZ+epn2Qk6mcVo4RyPr9+zF5+XIs+vBDtGjRwtW6CcIKgRB8ADB06FA8+uijuOeeezBq1CikiZynoxR5SngieKzHym9xO5E7+Vw7C7U4Md9PjTrytH179Ef5WLCykbIs8pSwXieejczl1Acr90BZj9Xns7TUObEHVPVi1PeBBCAA/m5Jz5x5x8J4RR/vlg16kTqepAe5DFH795nx1OLIrBZfCEAN3I7u8aZzKsWdHXjXu0pLs/46U9Zldf893jmBPNpePvbn65+v+KxC/Lkp9lxmT34+Rr3/Ph6ZNQtDhw71ujmBR5LER+T8PVnNG3w/h0+JJEm48sorsWTJEgwfPhyJidqrgZlG+a6/vvL/RW4GZHS83bl6RmXxCDazdtgZvubxZuRj9XamDXBOv5C5fFlZ7O3m8Sb0jtXLcbfiqcjPn6hVBIzKET1szVNujM+NYu2yeLpOK/PzrGa729n7WVk/q+i00j0aIXchN52/V/sA1mdDkI2Ksk/W44zu+8KFlf/P2g35acqzuiyRC7LolWVF6LEc1+Txf+sfEMDoXkFxMU6dPx+9R47Ei6+8glAo5Frd0YY8h++RR44iJUXsPLuionzcfjvN4VMSKMEHACUlJRgwYAAOHjyIAQMG6D5sEaJPKfC04PFIeI/lHdLlWdFTC7s5S+qynBZ8euzeHciXAQB+wZeVpX0MT7utij7WjpC1fDuejpmDaneeH49H46bgYzzOb4KP5zgRos+oy+AVfXYWdDFqh574Ey32AONu5qbz98bEgIRS2OnhhOAD+KY789bhZDeqVZZTYk+PJo//O5Dv97Ak4Zz338eR2rXx2eef6wYdCDZkwTdzpjOC7847SfApCZzgA4C//voLJ598MmrXro2ePXvqHjf37rv5ChYt/OQ3spUhaCsreioRsZEU7zC2W17NH39E/ttnLwUA2u2uVy/y36LbzeOxpKdbWzNcD7veDm+kLiHB2+ieUXnKexYQwac2V5ErefKWqS6XtatgaYteWSyij6d7k7tL3m5XhNgzOu6Wy/6K/MDF6B5g3T7nzav6mZsJEFrIgo83e91ONyq6C+WdmimwOwMQ2ebaM2+K/NKH7/WbV6/Gu3/8gW83bULt2rVdrTsakQXfgw86I/juvpsEn5JACj4A2LlzJ3r27InOnTujffv2use5LvqM3sR2hJ8VwQZYX5nT7BwtAej2MLbZMYcOVf6/0y8Gs81htWBtkyjRp9XpWckVUp9j1+OxuxE7y28QHd1jLZNFFDKWZVXwWRVzokUfT9dqZV0ro7awdjd6ws9q98kzx9Bpscd63G3XHIv8wEHbnD276meiu0XRgk/ZjYroPgG+LlR09wmYX0snIoBWAtDVZ9wS+YGLgu+F77/HnV99ha83btRdLZ7ggwSfuwRW8AHAF198gcGDB6N///7Izs7WPY5b9AH8wo9nxqmV+Xp2tmVQbkpt5TwzrAxne+HduL1Or19En1lnZ3VySXq6vReulSgdYHyO1m9xQuyxlitwSLwE5ulDIsWc21E+rS7BrujzYpxM7zwj8cdTD3WJfMf5bYqzfJ6ddeesdp2A+XlWti3lOY6lDazlsRwTjzLzgwDgzjsj/jlZMcl3z549WL16NVasWIHTTz+drTzCFFnw3X+/M4Lv3ntJ8CkJ9FKIffr0wauvvorLLrsMI0aMQJ06dTSPm/zggwA4hR/r8nLhcHluB49AZF2hU+kFaG3LwIKyDJ6VOXk8EOXKjgD/0nmxDOvWETxbTJSWApmZfMfzpoPaRbZF3q0zzDwFs739RCFwmXq/wtoF8qyuqS7TrJvhXblTPicctrf4cFqatUVdjH6P/Niou0evxB5RFaW9sXRzVhYztrvAuNwF8tbNs3NNXJx3UT2e8kQxeepU3e8OHz6M1atX47XXXiOxRwQa/613y8mFF16Ie+65BytXrkSByRteFn7MpKTo9zzq/byMjtWDZedUvfNYek6jMtLS7L959OpKT4/88wt+mMfn5HGZmZV/POUC5fePxfNU308rO6aq7Y61DN4h7dJS56J7PiUIOjQlhd3cAL7bojQlq92bXAZv98X6e5Rdo5diz4/RPSfguS/yf0W/tuTXrdImeaPHWq99ljJY3QUlSUmVz4GZnXgl9oRG93QoKCjAihUrcO+992L8+PG2yiL0UdqayD8iksALPgC44447cN5552H58uUoMhmS5hZ9QGXPwmJJvMLPai+udy4vIt5EZvhVALqB016aWuRZLVdG796b3TvWHtbICxfdS4sc0HCSIKg0E5zWymbl65kOjwnolcHSbfF2mXJdZo+v8njWckUeF82Iei3ZGVcVIdiMBk+srGul1R1pPRs8ro6fxZ5edK+oqAjLly/HBRdcgNtvv52tYQThYwI9h09JWVkZzj33XHz33XcYMmQI03K53HP7eHOLePfuA+ylQ4qYvCLDm89kxeNhqY/HM/HjpBUZURNTlJ4hz5C5leH1hARrnpBeXVYEmFyWFUXBU19KCvs1Ej2phfE4ljl8gPhFWZzYRw+wlnKpLp/ncTaqj6ccOymZPHXJXaLoLpC3TFGInpvHO62Zpyuzs4CxlW7O7o4z6nKcWsBYhqf8IIq9kpISLFu2DCeffDIWLVqE+Hi2VWgJPuQ5fPfe68wcvvvvpzl8SqIiwgcA8fHxeOedd5CdnY01a9YgzPBG44728UbUeIbA5GE6O1E7+Vw7Yk+dz+TWg6Ic6mYZ8raKV3lFrBhF8OxcE14PLzPTfk6cjJ304XDYebGnrItyQSwhIrOXBXl+nqj6rJSjTMd0SuwB5Y9gejr7Y+9nsec26m7T6ddYaqq4WRJ2XICkJPNN4dVEm9hjRU/shcNhrF69Gk2bNsU777xDYo+IGgK9aIualJQUfPzxx+jduze+/PJL9OnTR3djdgCYqxZ8rEPZrIuuVDZMv3yzXAzeqGI4zLc4CwvKt6Xd7RgAdo9Dby6aldUUvIZlcRL11g4sZQLsIpalDWrvkrcO9bl2PSAr5/Oeo5fDpMTvAwUOol5oxSyjnScimJbG30VZOUd9rl3RI6djAuzdEW+dyuO1RJ+yXr+LPSeidjJOjQ2aoTWd2Wo3UVpqT5TqzQoxilQ6KfTc3shdiZ15e5Ik4csvv6zwJVOiIN0+CDgxzhoLA1u8RJXgA4DMzEysXLkSvXr1woYNG9CrVy+EQqGq4k4LI2GmBe8SckpviHfFApZ6jCaxsHhILE+ImfhzA6M3fG6ua83gRvYIeIUda7msxwJVj2eZRMTrzShX4tSqk/V8PyD/hihY2EWGR5w5+fJ0W/TJt9DK+VrXgUX42RF7emg9sn7u/uyi/r1OjsHorYDpxGIuMla6SZZFi+3uVMNSj17ZenYs/0avxJ5WdE+SJGzYsAH5+fnYsGEDMjIy2ColbBMkwbd792488MAD+Oyzz5CTk4OsrCxcfPHFuOuuu5CkCK9v3rwZ06ZNwzfffIO6devi2muvxa233upMoxiJOsEHAFlZWVizZg1OO+00bNy4ERs//ZSvAB5PyGq0j9fbMKvHzLpFR/2AyrdfOOyfqBurmDp8WHzdOtuCuAKvIJOP5xkeZ/VI9IQaj0djVeyJiO4FHN4oGwt2tl5wCl7Rp+4i7Z6vRk/4OSH29NDr/nJzgzPi7VXETg8ekcfaDZutXWVWBo8AU0b7nBR6AHv5sl9sZJO8otDuvL2NGzfiwIEDWLduHbKystgqJWKO7du3IxwOY+7cuWjVqhW2bt2KK6+8EseOHcPjjz8OoHxu4pAhQzBo0CC88MIL2LJlCy677DJkZmbiqquu8qztUbNoixbbt2/H6aefjpYtW6Jbt25sUT41Tq1YIGNVfCnrsvomV9ZtxxvQOtft4W6iHBZvw+rCLyz18AgukYu7AJXeCc9v8nJTds5jWRdtAbxfkIW3bMB6V2h2Hkv3IWpBFyVWom1ed3VBGgfj7bp4jufZxpSnLrvdo9UEA6vzZVlxIoWT59hElDAdN/maazQ///777/Hrr7/iyy+/RLt27VibR9hEXrTl9tudWbTlkUfcWbRl1qxZmDNnDn777TcAwJw5c3DXXXchJyenIup3++234/3338f27dsdbYsRURnhk2nXrh1Wr16NPn36ICEhAZPvvptf9DkZ7QP4Ui616rK7u7CM1fRMPQ9FPUzrlwhgtKM3PGy2bQOvd6M+z+oiKeq67Yo9ZbnqstVEYXSPF97uzcqYlhHKW2W1fL1IHY94ElGG+jzlI8fS/Xkt9gBvkxS8RKt7tDMnT4md9arsLFJstX4nV/j0UuzpsXnzZuzcuRNr164lsReF5Kt82+TkZCQnJwut4+jRo6ilSK9Yv349+vbtG5HiOXToUDz66KM4cuQIatasKbR+VqJ+JYJOnTrhs88+w5YtW7Bt2zZM5t2KARCzt54ZVpf40tpHjxd5cQ3Rm7ErUS6ZJnoOGxGJerUHlhwpO56tXZuRE/hFiD29sv3gTdvErmPjNnpdptEtERHBsHq7ld2fHZPRm+cncrtMwj5OLggtatVOOyt2Wqk/msWeVnRv27Zt2Lp1Kz777DN06tSJuSxCLJIU+V4Q8SfnLjZp0gQZGRkVfw8//LDQtv/yyy949tlnMXny5IrPcnJyUL9+/Yjj5H/n5OQIrZ+HqI7wyXTv3h3Lli3DkCFDEA6HK0Sf8Gif+q1tZTKL1Yif1XONFnqx2g6WOikC6Ax2xDTvkLaoNAm3tv5Q2npaGp+XHUWLtdjB6jpVvJfaaqQPsL+WlJ1yeBdbycsjsecWbswNVA88WI0Q2hGKVs6VBRZrm3mTI5zYdsGu2NuyZQu2bNmC5cuX4+STT2avmAgUe/fujUjp1Ivu3X777Xj00UcNy/rpp58iosD79+/HsGH/396dR1dRHX4A/yZAEiMSgoABJBAoBApCMLhEZFE2C9JFkeoP5cfhsCO1v+JhEauxR624USkKAbUuWFoKlCpIy6KgQESgBAQJIEYCAQIISVgkIcn7/YETJi9vmeXeOzMv38856Snmzcx9LzP33e/cO/fegwceeABjxowRU2CJakXgA4CMjAxs2LABd999N8rLy9GtWzfrQzyBq0Eu3Le12Zk/NaqDn5V9iWyphJt3nIIT2WNqZIinyIBmd1921ujTv8cIa3WbudckY5IVux+tneGjDRqImUBYOzWN7Mvq6aOv9iJ5hk0niAh4RgKQ3QlYjO5L1rb+ISvciHine/UA+2Fv586d2L9/PzZs2ID09HTjByYpZM7S2aBBA0PP8E2ZMgUjR44M+Zo2bdpU/f9jx47hrrvuwh133IEFCxZUe11SUhIKCwur/Tft30lJSQZKL0etCXzAlZ6+TZs2oU+fPqioqEB6erq10AdcqZ3M3uoGnAl+wbY3+5BLqH3JUNvmHTeqcWP5ASVQS0V0T5wTYS+YQC0bq59xhD8bGCiMhWrUWl1CwQ2hT9sXEHx/oi5F//s2rOqMc2JmT5FPP7gh6AXiH/68HvZ8Ph927NiBw4cPY9OmTRzGSVWaNGmCJk2aGHptQUEB7rrrLqSnp+Mvf/kLov2+ADMyMjBz5kxcvnwZ9epdmWxt7dq1SE1Ndez5PSDCZ+kMZv/+/ejduzeSkpKq1ukDLAzx1FhplZgNflrNa3fWBFEzc2pkjXsyK1JbR8FmUVDZI9WokfjjORX27Ix3csHrZczUafa1Vl4PiJmQ2AqRy4X670vVZRgdLWcGTS+yM6DB7qTEVsOV6AmJ7Wxv5X6UW57tsxv2tm7disLCQmzcuBGpqanGD0xSaLN0TplSjNhYsTeUS0tL8Mor4mfpLCgoQJ8+fdCqVSu8++67qFOnTtXvtN674uJipKamYsCAAZg2bRr27NmDUaNGYfbs2Y4uy1Crevg0qampyM7ORs+ePbF582bccccdiI6Ott7bZ+VWtNFxVP4tCiszgeqJetBF438hObUYu38rQP8N64WWktnp8aKj5bc2ZU2uY7fy9V/Q3ctc0htodlinqrX2RJDR26dytLlWlQWqIrxQtVnllrm9RLQV9QMmRPQMWr3fVVvCnr/Kykps2bIFxcXFyM7ORkpKiuV9kXheWnh97dq1+Oabb/DNN9/gxhtvrPY7rf8sISEBa9aswaRJk5Ceno7GjRvjqaeecjTsAbW0h09z7Ngx9O3bF2VlZejdu3dV16vlnj5AbG+fkTNWxDzpskKa7DFQoVi9lSu6BSV7nnMZn2Wolpad42njruzsI9yi7la2DcVuC8noM74Gyejh0y4V2evsAeZ6+fwvYbsjyUVVc/7lkjm4wC3VmCz66tFNXwsy5pESsc9g4Svc+3Jb0DP7erNhT9+7d/nyZWzYsAFxcXFYt24dF1V3Ea2H7//+T04P3+zZatbh84paHfgAoKioCIMHD8bhw4fRt29fxOlqIceCn5VvPlELZMnsodP27aZv9kgg6yEikccLttCVGUYDW7iZZ80w24qx2koy+FkYDXzR0eYDmYqR6UDo4BbusrUa+vT7tdo7F65sooOfqirMDfe4VA6NDURme1Bm0PPn//6sDiCIlLB36dIlrFu3DikpKVi1ahUSEhJM7Yvk0gLfY4/JCXyvvcbAp1frAx9wpVJ46KGHsGnTJvTv3x/XXXdd1e+Uhj6ttrZzK9sLwS86Ws0zd7Up9AHWWk12JoAxOwe9nf0A9hZ3j4SHXQBUoE74F+nIDn1Wh3Xqqzizl6mdXkKN2dBnpowiqjZWXXLoP1e3hzzA2tBN7T2qqL6sHEdV2CspKcG6devQs2dPLF68WPhi22QfA59aDHw/qqiowOTJk/HBBx+gX79+aOx3m1Jq8Av27e6G4AeID3/B3q9Xb5G7iZGWk/8teLutrWDbm506L1Q5RExjZ/Z9MvBJOYbV4+iFqxqNXvrhgp/dKsRKlcZqSw5tAIOsY4lsU9qZgNh/LUBZx5M9l5WdsHf69GmsW7cODz/8MP785z/XmEWR3EELfJMnywl8f/4zA58er4If1alTB6+//jpmzJiBjz/+GIcPH672e22xdkvi42vWqNHRV3+CqV/fekNXO6aIqesbNLj6Y1eo99uoUfUfMi/Y59u48dWfQNvY+UIMtK2VedKDlUPUnOVGrjmSRv/xy5qd0OyfN9Rpavc0iY4OfdnJOCZdperrRNRXo92v7EDNBSNVXqSFve+++w4ff/wxZsyYgblz5zLsEf2IPXwBLF26FI888gi6deuGzp07Vy3boLHV22dnajsrPX76yk7E+nl2H4axU/nydrlxlZXOPEzTsKG4W+iVlermLfcvs0vHQ8nu4QPE9fIZufTsVkna9iIuc606ExH0wgn03FxtraoAMVWGzEeQ/YnqMKhf3355zFaR2vFUBD0r21gNez6fD3v27MHOnTuxaNEi3H///eYOTMppPXyTJsnp4Xv9dfbw6dXKZRnCGTp0KJKTkzFo0CCcO3cOt99+e7W7RFpvn+UF2wFrLTGzi7D7tyDsLOIeiP72uIp5yoMFGK9MSSebiKGa2jljdlv9uSBiyQh9BV1ebm0fZlpCEdraVr18gtmP0eqi7JqGDcWNOG/Y8Er57VRlRt+//lI9fTpiTz+pVA8C0VdxIkKjVj1ZrS7trAmoIrhZ2cZq2KusrMQXX3yBEydO4LPPPsMtt9xi7sBEtQB7+ELIz8/HwIEDcenSJfTp0wcxMTE1XmOrtw+Q1+NntAUhYgYEf6FaTKKHDgajhcBIbkkZ6cGz0zIRMSmLleOHuhtnNPzZ6RkM1koJ915c2MMHyOvl87+0VA5eqOt3q9Ju6AtUTcic2CXcdrXpHla4yypYNSe7agNCV29Wjx+qapK1uozG6qydsodwAtbDXllZWdWyC//5z3+QnJxs/uDkCK2Hb8IEOT188+axh0+PgS+MkpISDB06FDk5ObjrrrvQMMg3gKuCn9WWh4gA6c+/1aQq8IXbzkstKhFr+YmeidPMM3pmjm2mYg4V/lS1ivTvLYIDn9FLT2bo8w95gZgNfkbel8yJXYxu66Xqyiz9JWSmqpMV+IxWbWaOb6Y6CrZfJ4KemSVF7RzLatgrKirCJ598gm7dumHZsmXVZlgn99MC37hxcgJfVhYDnx4DnwEVFRWYOnUq5s+fj969e6Nly5YBX2c79AH2WkyiZuYM1PIS9ZCMWwJfOCpbWLIXZ9eIaCFZmYzF6PGtVsr+wc8Lt8Atbqcq8FmthmQEPiNBT89I6LNSJQQKfk5UZ3peDIKiJgkWGfisVmvhymCnKtLv2+mwF45WVpVhLz8/Hxs3bsTEiRMxa9Ys1Kljvm4kZzHwqcXAZ8KiRYswZswYdO3aFV26dKkxmYvGkeAnenIW/b5EDou0M+mLysBnlZVjqVqEys6xtAdmrD5PF64MIheusvN5qgx8Fo9VG0Kf2ZDnL1Tos1sdiJjcxauLqoejcp4ou4HPzr2rcOWwO9eUtg8nqjJVk7nUQYXpbcZNnAifz4fdu3dj165dePPNNzF8+HDzBydX0ALf2LHFiIkRG8rKykqwYAEDnx4Dn0nbt2/Hvffei4YNG6JHjx6oG6JloiT4hWs5iAh/deuKmRkhXFndMHbKLrcHPrPHCzQzgojQpy+HrFWKVay7Z2fbCA18VrfVLh1ZS4iKqgK0Kt/qsqGqHyt2e5WkMvCJnngFuFJ9FRWJCXmaQPuSOaQSsL4chMqwV15ejs2bN6O4uBgrV65Eenq6+YOTazDwqRXBM1rI0b17d+Tk5KBBgwZYvXo1zp07F/S1ttbu08TFBa5RjS44ZWctP+Bq60bkWnzBNGxY/ceL7MyMqUq4cyfc4lV169rvgtEfR4RArRVV6+7ZCYoupuJtBfoTiVg6VNOggdhTQH/aW1njjWFP7bFUfaWI2Lf2VW11jclgTQUjvBD2zp07h9WrV6NBgwbYuXMnw14EqayU80PVsYfPotLSUkyePBl//etf0atXr6DP9WmE9fbZbTGY6fETPUuC3bLb6WVkSyv0Ma0GLyu9faFaR1b2Z6W1ImLdPbvburyHz852obY1emnY7enzr77sLLdg5v5GsJ4/L1RBgHcCX6BtzQYvq8cPdt/TSvVl9X6svuxeCHqA9bB35MgRfPbZZxg+fDjmzJmD2NhYawUgV9F6+EaPltPD9+ab7OHTY+Cz6d1338X48eNx0003IS0tLehzfRpLwU/k/Od6ocKflR4cmQ/OAIHLZHRcFVtbNekfuLE7TNPo9kZbZEb3J6I7KD7e3vv3QOADnA19di4/s8EvVNVlNvTZ6cjWqiYnVobxQvVj93ginsOTMYGwipVjgOrVh5XP0Qthb+yECdi5cyf27NmDrKwsjBgxwtrByZW0wDdqlJzA9/bbDHx6DHwC7Nq1C0OGDEG9evXQs2dPQ3efwgY/FfOga/yDn4jhev7hT1bgC4S32AMLN6OCiGfzgu3DasssVJlEjf3z34+Zz8GBnkEvBD7tUhX1PJ6R/ZiptowEPxHVoH4fKidQcVvVI+J4/oMQRD9KHIioiYP1RDzrF6rqkLFcaLhjhmIl6AHA/44ahc8//xwVFRX48MMP0bVrV2sFINdi4FOLgU+Qs2fP4qGHHsK2bdvQp08fNDYwXVmN0GcnkIgKfiJaOf5KStQGvkDOnKl9t9qtTJknI/SJenhGv19ZYc/IsfVqQeALt224y1Jm6LNbXQUKfqKqwHD7kRUAvRL2Qh3T6AhzN08aLHK1GI3ZKsP/vXkl7N0/bBg+/fRT3HbbbVi8eHHQ9Y/J27TAN3KknMD3zjsMfHoMfAJVVlbi+eefx7PPPovu3bvjpz/9adghnsCPwU9UGLHTqtOXQeRUefqWj6oHacxuL/P2u4oWWNOm1rcNRERLqlEjoKzM/n781a8vZr92QqP2+dTCwGflMhQd+kTel9JXSaJ79cwQUQV5Kexpx7Uzb5PIwCe6TWh3hRg9Jx4xtru9lbDn8/lwZ+/e2LFjB5588kk88cQTiHbiRi0poQW+ESPkBL733mPg02Pgk2Djxo0YNmwYEhIS0KNHD8TExBjaLuv558UVwkzrLlyFKnr2BD0zAdCrrTE7X1j6FoN/qDOzrRVWW1P+LTiRoc//NrmdfdvtJQzWEjLyudlohVkNfIDxaiHQZWJ3EIGI0BcTI3aZUf1+rS6zoGe3igpUVZw8aX1bo2QHvmCDDVQ9OhyM1nEkanioxu4KMRqnwprdba2EveLiYnS/7TaUlJTgH//4B3r16mW9AOQJDHxqMfBJcurUKTz44IPIyclB79690aRJE8PbKg1+ZloJVlpsZltAoQKgk4EPsN8L68TtdxEtOaOtoXC36u0Gv3BjoszsX8SQUKstovJyxwOflctAxKhxK1VIoPtlokJfsHtxVsKfjLAXjj4McvR4eKInCNYLV6WY+ZydDHp2t7cS9rZv346BgwahW7duWLx4san2EnmXFvgeflhO4Fu0iIFPj4FPosrKSrzwwgv4wx/+gPT0dHTq1MnQEE+N1OBnN7wYbbnZaQX5hz+nAx/g3OLvbg19VsZjWQl+Zh+ACXUMJ8OexsZ5aCfw2W3Uqgp9BgdFWA5+RvdvJPiJqJacupcEOFe1qAh8Zh/9UrEqTKjPTMTal0716k2cOM70Nj6fD19//TW2b9+Op59+GtOmTeMQzlqEgU8tBj4FNm3ahAceeADXXnstevTogTiTtarQ4AeIf64qWAtO9AQwIm7rezXwAfaDm8jgJ2LBdCPnoYiZDvyPU4sDH2CvoS0z8BkNYf7MVAtWjxEs+DHsWScr8Nmd38NIuURUISLW0dNzslfPSti7dOkSNm/ejAsXLmDp0qXo0aOH9QKQJ2mB73/+R07g++tfGfj0GPgUOXPmDEaOHImNGzeiZ8+eaNGihel92A5+/q0TkROzBNqn6MDn31qz+tANQ581+nFbIm8aBNuXiLDnfxw3hD3As4EPEBv6rAawQEIFP5HH0aqd2hz2RGwvKvCJnsBRxUow+n3Z/RycHv5pJewdPXoUmzZtQu/evfHOO++gkYgbiOQ5DHxqMfAp5PP5sHDhQjz22GPo0KED0tPTUaeO+cabqeBnpFUiI/jJmJ3RSKtNxRgsJ1tpgNqWWqiHc0T/jfX7Ex32gJqtNavlr+WBD7AX+rTLWEa14x/6RAa9QPt0ai4nEdt7NfDJnBNKI2MFGL1g+1S1BKiIfVgJehUVFdixYwdyc3MxZ84cjB492tRjLhRZtMD34INyAt/f/sbAp8fA54Dc3FwMHToUZ86cQc+ePS2vMRM0+NkJNKKm0vMnYjimqPFYXr81D8htrZmdgUFki0u7FkSnAaOtNiPvxcHhnBqnQ5/RwBfukpUZ+kSHvXD7MxP+Irn6MMrIOWik48fNK7/omQ2OMpb+FLUPK2GvqKgIn3/+ORo1aoSlS5eiQ4cO9gpBnsfApxYDn0NKS0sxdepULFiwAN27d0fHjh0t3+mqCn6ih1CKmlLPn5XwJ7r1VlJib3sRD5Y73WrT9mFlij1/dltHwW56iEgEdm7R+78vh3v3NE4HPiBw6LNymYoMffo/tZ0lP/1ZeV/BAqDTYQ9wb+CzOrJPRDgLNKjA6eU+NSKW/RSxPWA+7Pl8Puzbtw/bt2/H2LFj8eKLLyI2NtZ+QcjztMA3bJicwLdkCQOfnuCEQEbFxsbitddew7333ouHH34YBQUF6NGjB+INfjtkzZkT+gUiHrTRymK0RWa0VeT/zSpjYa1wwoWccLfrKyvFtLzsiI62tzi7RkTrX/vbW2khherh1l8PVpKB3daW/pyOiRG/YJfHibgPY7aaCbUPPe20shP87Lw/fRVz+rQ77hEBzi2y7s8Nj22FGzlup1oTORQ0UDnNVkVO9OpdvHgRW7Zswfnz5/Hhhx+if//+9gpBEcnnE18vsSurJgY+h/Xv3x+5ubkYN24c/vnPf+KOO+5ASkpK1e/DBrtgtNpdZPADxE+xB1T/NnMi/AUSKhDaeXBHT0RoDBT6zC7QXreuuCBjpoVkdiiz2fAn4+GbUL1zHgqDZv/kgd626GFv8fHmQp/RP6+V4Cd6QEFSUvDfGV1YXQRRgwKMCHdPTeS5ExNjfH9WHg82un/RVU6okBasKvK/rp3o1QOAb7/9FtnZ2Rg0aBCysrKQmJhovyBEZBkDnwskJiZiyZIlWLx4McaNG4ejR48ie8MGJCQk2N+5yOAHBL4dL7J15Mbw50/fkrEyPE/fwgsV+swEN7stOe19qAh+IqbVC9ctJLrlZeQc93gYtHIqm2loGxEu9Nn5sxoNfqLDXrjPNdhl7h8EnR5QEIiI0eCyiZr/KdS5rjLohaOdb6Ke8DAb9srKyrB161YUFBTgzTffxIMPPiimIBSxKivF9/C5ZSSDmzDwuchDDz2EXr164eGHH0ZKhw5YsmgR+vXtK2bnMoKfzOn2gOrf1PHxYh/KcVKgFp6Mnj4rZAY/0fOnA4F7/WT07Nmlfa5W/s4m/q5mdi+qQagi9In8kwYLfqqDXjj6asLM3zVYj2Gg08jsYADAE/cupEzyC1Q/190U8vyJuLatLreQnZ2NtLQ0rF271tLyU0QkBwOfy7Ro0QLr16/H/Pnz8fOhQ9GmTRts+fRTcQ+d6r9VrIY//5aR3eeswtH27x8Y3BAAy8vFfLvKGt5plahhnv4P6oi64RBIfDx8cdcAAKIu/SBuvzLm9jcjwHkhorNH5OkiI/TJJmtCWEDs/Flmq4VAIU7U39nNYa9pU3n3HvX0X0Miznm3BT3AWq/etm3bkJeXh5deegkTJkzgcgtkGHv41GDgc6Ho6GhMnDgRgwYNwogRI9A6NRUZGRlYtXy52AOZ7fUz0vAVHf5CtfwC9Ri5IQQ6SWsdOtnbF2o2BtE9zT/Sgl6wf1sOgE6HvVrmmriaT9r/cElOw1E7FfUNbiPLeIbjZNirLYINFjD7HKhRwb6G7EzqEglBD7jaq9e5c2esXLkSrVu3FlMYIhKKgc/FWrdujQ0bNiArKwtTpkxB5/R03HLLLfjL/PliDxSuEW610Su75y8QJ0Kgm3r5NKp7+8xOuScw+PmHu3CvEdr7Z4YLW+9O9/IFCniBXiMy9IVqaOtPY7PhT/SqOKJOl0i4021mNLio0Geml9lM8BMZ9AB39Oq98sorGDduHHv1yBL28KnBwOdy0dHRmDBhAn72s59hxIgRWLFiBU6cOIHk5GTrM3gG498IF9m7YSX8iRrX5cahoMG4OfQB1YOfiHnVbQwxNhL0jGwXNACyd8+0cKHPSMALtZ2d4Ge2oW0m/NWGsKdyOKfdx32thj6Rq7jIWMJTT+Q5ZzbsHT58GFu3bkWXLl3Yq0fkEVx43UN8Ph8WLlyIxx9/HM2aNcOtt96K+Ph4ccEv0DeIyAdzAlE1y6K/QN++dsdzuXUsl6BWX2nc1VljY2MkVhsGgp/VsGdE1KUfUBp9DWLrVojdscC/qQ9i76SLvhuqrzashrxQzAQ/0Q1t4GpV4dagp3Fz4NPOERlzOWmcWr1FU1Z2ZQIZkZ+dk0Hv4sWL+PLLL3H8+HG88sorGD16NHv1yDJt4fUhQ4pRr57YxdEvXy7BRx9x4XU9Bj4POnHiBB599FGsXr0a6enp6NChA6KioswHP7PfHLLDH3DlG1rFjA1mW4FGwqCbW38mW376cBeM1NAHBAx+MoOeJtBpLiT8RXjgq1NeWv0/SO4hDRX6ZIQ8f1FlV99v8aVY2/tzc9gD7IeWQAMCZM7hpAkU+lR8xYQ7/c1+nqK/XsyEPZ/Ph9zcXGzfvh2DBg3C3LlzkRRqcUkiAxj41GLg87BVq1ZhzJgxqFu3LjIyMtDwx1ulAYOf6G8LieFPykyL/kS3CD16y99IsAtHevADgEuXHAt74RgKgxKe33Mq9NUIdqEoGBarD36qg144RoNgpIQ9s6O8VQY+N4S8cAJ9zk4GPQA4e/YssrOzUVFRgYULF2Lw4MFiC0S1lhb4Bg+WE/hWrWLg02Pg87jz589j5syZmD9/Pjp37oy0tDTU/fEbImvOHPHfFoEICn/hGvRCA6CklmFpmblGeOyl4vAvMtgavBB9naHXyTolZAS/4pKan6esulv0PYxqQdCDgc9UsAtFxbOQJSXwNbB/8yIUM0EvHH0QlDGXj8zAJ+LRXY3swKcfTixrtldZp7eR88Ls39lM2Lt8+TJ27dqFPXv2YPz48XjuuedQX9YCh1QraYHvZz+TE/hWr2bg02PgixA7duzA2LFjkZeXh/T0dKSkpFSNrc964w01hbDYYrbTc2M5BErsCjAb+owQ/fyMzPsAIoJfoKAXiKh6XOZoZbOfdZ1oY5+f0cAXVWliOKqsmTlEt4pLSoL+SnTwExn0ajDxeZ+rvNbQ64yEgIQ4c+/JF2N/yGowIkOfkedFRQU/J4OeWePHmxu+mZeXh+3bt6Nt27ZYsGABbr75ZvGFolqPgU8tBr4IUllZiXfeeQePP/44EhIScOutt1YN8wQUBj/AcAta9DA9wwGwlgc+jZuCn9GQF4zVOl32o6myPuM6EDypDCB/KkY7reQQIS8YO+FPatAD5HzWkk42twY+OxMCWQl+MjurZa3aYibsFRUV4csvv0RxcTFefvlljBw5EtEuXE6GIoMW+AYOlBP4/vMfBj49Br4IdPbsWcycORNvvfUWOnXqhLS0NNSrV6/aa5wOfyqexwKCBEDJD/rICHyAN0MfED742Q16wRip470a9gBJgQ9wV+izEPKCMRP+3NKrZ4oHw57GSOiTMdsrED74yR6R7Iagd/nyZeTk5GDv3r0YPXo0nnvuuWo3i4lkYOBTi4Evgu3atQvjxo3Dvn37kJaWhvbt29e4W6c0+AFAWZmysBdMFOSf8l4LfYD64Ccr6AUSqL5XMemsJwMf4FzoExjwggkV/DzZq6eJsMAnK+AF4x/8akPQq6ysxIEDB5CTk4OOHTsiKysLXbt2lVMwIj9a4OvfX07gW7uWgU+PgS/C+Xw+LF26FFOmTEFpaSluvvlmtGzZMuDaObLCX2l5naC/c2Jt62BtyoQG4i4FWYEPkN8Wl9FuPH26+r+dfva/vFx+GWQHaE8HPuDqxa8g5AWjhT/pQQ/wZNgD1AU+1QHP3w+XonBN9JXzoKKunPcse3Sk0bDn8/lw5MgR/Pe//0VcXBxefvllDB06lGvqkVIMfGox8NUSZWVleOONN/D0008jMTER6enpaNy4ccDX2g1+oQJeOLIDoNW2pZUwWFtDn3+4C0V18Av1uYkui6cDHyDnJDt/vuZ/UzGTcCCByhKkTrTFzRerAaIDX1RJiJmJVTfMDHbz2w2Abgl6AHD69Gns2LEDRUVFeOaZZzBhwgTEOHHnlWo9LfD161eMunXFXvvl5SVYt46BT4+Br5YpKirCs88+i7lz5yIlJQXdunXDddcFn87fSPizE/DCEfk9JKsjIVgYlBn4ADWdMEbakmYCXigyw5+dz8pKuVRkGOmBD7D+wQUKU+GoCn5my2YnBHo87AHWAl/IUBeO7MaZgLHcRgOgm4LeuXPnsHPnTuTl5WHy5MmYOXMmn9MjRzHwqcXAV0vl5+dj+vTpWLp0Kdq3b48uXboYDn4yA144VgOgE6PGVCwCrTr0iQp34YgKfzI/n1BlrDWBz0qwC0fGhyejnKGCoFvuxtgULuzZCnahiGygqXhYF9VDoJuCXklJCXbv3o2DBw9i6NCheOGFF5CcnCyxdETGaIHv7rvlBL5PPmHg02Pgq+Vyc3ORmZmJ5cuXo127dujSpUvYi2POnCxFpQvPSAB08BEhYe1MEW3LEyfslUFFgA3ESvhT0d4OJj5e3bOpykKfjMAUjt1A40SZGzdWd/IpCnzSQl04bl1nJRgbfw9ftPGbqEbDXklJCb766iscOHAA999/PzIzM5Gammq1iETCaYGvTx85gW/DBgY+PQY+AgDs378fmZmZWLZsGdq3b4+bbrrJ0EXipvAH1GxoOxn2ALVtTpELGIfiVPADwoc/J4MecCXsiWIkNBoKfCIawBcv2t+HVWYa0k6EPI2ICzApydjrwn0mIrvinZxhyQ1rq4SiaBiyL7qOqaCn9egx6JGbMfCpxcBH1eiDX7t27dCpUyckJiYa2tZt4Q9QF4KCUd3+VPl+nQx+QM12aCSFPaOuQYB1JmVyY/BzMuQB6isZ1Ree01PqOrWmSjCKJxkaN3GiodedPXsWe/furRq6mZmZifbt20suHZF1WuDr1UtO4PvsMzmB7+c//zlycnJw8uRJJCYmol+/fpg1axaaN29e9Zrdu3dj0qRJ2LZtG5o0aYLJkydj6tSpQsthFgMfBXTgwAE8++yz+Nvf/obk5GR07NgRzZo1MzVtsxMB0Gjbz63zQ4jgRMh1Ivzpe2+bNlV/fD0nwh7gQOADnA19wNWLt7YFPcCZC80Nge/MGWfL4sBMskaCns/nw/Hjx7Fv3z7k5+fjwQcfxJNPPsmgR57g1cA3e/ZsZGRkoFmzZigoKMDjjz8OANiyZQuAK++rffv26NevH2bMmIGvvvoKo0aNwp/+9CeMHTtWaFnMYOCjkI4fP47XXnsNb7zxBho0aIAOHTogJSWlxgLu4cgMf6LbfSK/251qkzrVsymrPWp1aK6KIOhU2AMcCnyA2tB38mT416gcshNpF1c4qkKWlS56mWVzaLkQI0GvsrISeXl5yM3NRUlJCSZNmoTf/OY3aNasmYISEomhBb4775QT+DZtUjOk88MPP8Qvf/lLlJaWol69epg3bx5mzpyJEydOVC15Mn36dKxYsQK5ublSyxIKAx8Zcv78ebz11lt46aWX8MMPP6BDhw5ITU1FvXr1LO3PbgD0yhwSXn+kyCq7bVOZz16KDIFOhj3AwcAHyAl9RsKdETK+4L18QdkhOlTJGnstopxOrQkJY0Hv8uXL2L9/P3Jzc3HNNddg6tSpGDVqFOo73QtLZIGKwHfkyJFqgS82NhaxseLWFj1z5gwmTJiAgoICbNq0CQAwYsQIlJSUYMWKFVWv+/TTT3H33XfjzJkzhh+TEo2Bj0wpLy/H8uXL8dxzz+HgwYNo164dOnbsiISEBMv7NBr+nB7BFYpbHy8CnH+O0Uhb1enJdQDzQdDpsAc4HPg0VoOfqHBnlNUQ6IULSCarYcLJh2qNltnBgKcxEvSKi4uxb9++qu/cmTNn4r777kNdF5SfyCot8N1xh5zAt2VLzXbp008/jczMTNv7nzZtGubOnYuLFy/i9ttvx8qVK3H99dcDAAYMGICUlBRkZV1t23799dfo1KkTvv76a3Ts2NH28a1g4CNLfD4fvvjiC7z66qtYsWIFkpOT0b59e7Rs2dLUc37+/MOfGwKTHU63FTVuKIe+3eqGgGdEsBDohrAHuCTwAaFDn+pgZ1SoAOiGCwZwPuxpggUop2dKMkpffheEJKPP5x05cgQHDhxAfn4+7rvvPvz2t7/F7bffbus7lsgtVAQ+oz1806dPx6xZs0Luc9++fejQoQMA4PTp0zhz5gwOHz6MZ555BgkJCVi5ciWioqIY+ChyHT9+HFlZWXj99dfh8/nQrl07pKamCuk2f/559838aYTMNq7THRUi3lvDhvb3oZq+zG4pv2sCHwB8953TJbBP1QKKRrgl7LlpdiSr7N6hEXReGAl6paWl2L9/Pw4ePIioqChMmjQJ48ePR5LRJTuIPEILfLffLifwffGF8Wf4Tp06he+//z7ka9q0aVP1TJ7e0aNH0bJlS2zZsgUZGRkc0kmR7/Lly1i+fDleffVV7Nq1C23btkX79u3RpEkT4Xck3RoE3dqZoVdU5HQJanJLgPKnolx2j2E79Mk6Idx4ovmTUUYRocjND8EC7g1+bul61/zYOAwX9Hw+H06dOoUDBw7g0KFDSEtLw+9+9zv86le/svycPJHbaYHv1lvlBL4vv1QzaUt+fj5atWqFTz/9FH369KmatKWwsLDq+n3iiSewfPlyTtpCkScnJwfz5s3DokWL0KBBA7Rt2xY/+clPhD4sG4iTQdALYU/jhba4EyHQrcEzlGY47nQRwnPDCeeGMhjhpZPQyeDntnAXwLjf/jbk70tLS3Hw4EF8++23OHfuHIYPH46JEyeia9euagpI5CAvBr6tW7di27ZtuPPOO5GYmIhDhw7h97//PQoLC7F3717ExsaiuLgYqampGDBgAKZNm4Y9e/Zg1KhRmD17NpdloMh14cIFLFmyBHPnzsWePXvQtm1btGvXDjfccIPS5xBkBkEvBT09r7R/9WS0hb3Uvg7EE4HPn4qTjye4OjKDnweCnb9QQc/n86GwsBAHDx7EoUOH0LlzZzz66KMYNmwYrr32WnWFJHKYFvi6d5cT+LZvFx/4vvrqKzz22GPYtWsXLly4gGbNmuGee+7Bk08+iRYtWlS9Tr/weuPGjTF58mRMmzZNWDmsYOAjZXbv3o358+fj/fffR3x8PFJSUtCuXTvEO/iFbicIejXo+fNiu1hjtX3s1XZ1IJ4MfHqiTsDaeCK7kdXw58FgpxeuN+/ixYs4ePAg8vLycPHiRYwYMQLjx4/HTTfdpKaARC7jxcDnZQx8pNzFixexbNkyLFy4ENnZ2UhOTkZKSgpatWrlmmmmQwXBSAl6el5uK/sL1naOpDa1nucDnz8jJ2NtOGG9zu1T3AoSKuiVl5fj8OHDyMvLQ35+PjIyMjBmzBjcf//9jt7oJHIDLfClpxejTh2xoayiogQ7djDw6THwkaPy8/Px3nvvYeHChTh9+jTatGmDtm3bomnTpq6cejoz052TxUSy7dvt76N7d/v7cKuIC3x6WrCLpICnF6lhD7D/3lz82YQbsnny5El88803yMvLQ5MmTTB69GiMGDECycnJ6gpJ5HIMfGox8JEr+Hw+ZGdn4+2338bf//53xMXFoWXLlmjbti0aNWrkdPGkirQQKSKguZ2bAqQrA5/bToLGjZ0uQU1uCzRuK49Igt5bqKB35swZHDp0CPn5+SgtLcWvf/1rjBo1ChkZGa68eUnkNC3wdesmJ/Dt3MnAp8fAR65z6dIlrF69Gu+//z4+/vhjNGzYsCr8JSQkOF08T7EbJt3Wbo9kdkKkrdDHP7I1dkIkHz51vx8/61Ahr7i4GIcOHcKRI0dQVFSEwYMH45FHHsE999yDOLeso0jkUgx8ajHwkaudP38eH330Ed577z2sX78eTZo0QYsWLdC6dWs0bNiQd04ddO+9kdUz6WVD8JHTRSCNm7p/a7njaIbMzHHC9ufz+VBUVITvvvsOBQUFOHXqFPr27YsRI0ZgyJAhqF+/vrBjEUU6LfB17Son8O3axcCnx8BHnnH27Fn861//wpIlS7B+/XokJCSgefPmaNWqlfJlHkg+BkrjGPhMYigzbFxmptNFcJS2jMLhw4dx7NgxFBcXo2/fvhg2bBh+8YtfIDEx0ekiEnmSFvhuuklO4PvqKwY+PQY+8qQLFy5g7dq1WLp0KT766Epjt3nz5khKSsKNN97IGdAorEgKlBEX+CIskNX20OQ1Fy9exNGjR1FYWIiCggIAwJAhQzB06FD079+f6+URCcDApxYDH3leeXk5Nm/ejH//+99YtWoV9u7di6ZNm+KGG27Atdde65qlHqh26dr1f5UdKw05yo5VpXVrZYcqQkP861/vKjse1U7FxcUoLCzEyZMn0alTJwwePBj33HMPevTowe8RIsG0wNepk5zAt3cvA58eAx9FnO+//x7r16/HJ598gtzcXFRWVjpdJCLBolBRUX0Icz2UV/u3r06d6v/W/S8R1dSmTRsMGjQIffv2xfXXX+90cYgiGgOfWgx8RERERESkjBb4OnaUE/j27WPg04t2ugBEREREREQkBwelExERERGRcpWVgOhJ1vkkT03s4SMiIiIiIopQ7OEjIiIiIiLl2MOnBgMfEREREREpx8CnBod0EhERERERRSj28BERERERkXI+n/geOS44VxN7+IiIiIiIiCIUe/iIiIiIiEg5Gc/b8Rm+mtjDR0REREREFKHYw0dERERERMqxh08N9vARERERERFFKPbwERERERGRcuzhU4OBj4iIiIiIlGPgU4NDOomIiIiIiCIUe/iIiIiIiEg59vCpwR4+IiIiIiKiCMUePiIiIiIiUo49fGqwh4+IiIiIiChCsYePiIiIiIiUYw+fGuzhIyIiIiIiilDs4SMiIiIiIuXYw6cGAx8RERERESnn84kPaD6f2P1FAg7pJCIiIiIiilDs4SMiIiIiIuUqK4GoKLH7ZA9fTezhIyIiIiIiilDs4SMiIiIiIuXYw6cGe/iIiIiIiIgiFHv4iIiIiIhIOfbwqcEePiIiIiIiogjFHj4iIiIiIlKOPXxqMPAREREREZFyDHxqcEgnERERERFRhGIPHxERERERKccePjXYw0dERERERBSh2MNHRERERETKsYdPDfbwERERERERRSgGPiIiIiIiUq6yUs6PbKWlpUhLS0NUVBRycnKq/W737t3o2bMn4uLi0LJlS7z44ovyCxQGAx8REREREZFBU6dORfPmzWv895KSEgwYMACtWrXCjh078NJLLyEzMxMLFixwoJRX8Rk+IiIiIiJSzufz3jN3q1evxpo1a7Bs2TKsXr262u8++OADlJWV4e2330ZMTAw6deqEnJwcvPrqqxg7dqxDJWbgIyIiIiIiR5RI22dJSfV9x8bGIjY21taeCwsLMWbMGKxYsQLx8fE1fp+dnY1evXohJiam6r8NHDgQs2bNwtmzZ5GYmGjr+FZxSCcRERERESkTExODpKQkAC0BJAj+aYn69eujZcuWSEhIqPr54x//aKvMPp8PI0eOxPjx49G9e/eArzlx4gRuuOGGav9N+/eJEydsHd8O9vAREREREZEycXFxyMvLQ1lZmZT9+3w+RPmt9xCsd2/69OmYNWtWyP3t27cPa9aswblz5zBjxgxh5VSFgY+IiIiIiJSKi4tDXFyc08XAlClTMHLkyJCvadOmDT755BNkZ2fXCI7du3fH8OHD8e677yIpKQmFhYXVfq/9+0qPpjOifD6vPSpJRERERESkTn5+frXnAo8dO4aBAwdi6dKluO2223DjjTdi3rx5mDlzJgoLC1GvXj0AwBNPPIHly5cjNzfXqaIz8BEREREREZnx3XffISUlBTt37kRaWhoAoLi4GKmpqRgwYACmTZuGPXv2YNSoUZg9ezZn6SQiIiIiIvKyhIQErFmzBpMmTUJ6ejoaN26Mp556ytGwB7CHj4iIiIiIKGJxWQYiIiIiIqIIxcBHREREREQUoRj4iIiIiIiIIhQDHxERERERUYRi4CMiIiIiIopQDHxEREREREQRioGPiIiIiIgoQjHwERERERERRSgGPiIiIiIiogjFwEdERERERBShGPiIiIiIiIgi1P8DkQvxiZPVPwkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1105,6 +1004,13 @@ " lon_gather, lat_gather, v_cgrid_gather, plot_dict, \"\", show=True\n", " )" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1123,7 +1029,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, "vscode": { "interpreter": { diff --git a/examples/notebooks/stencil_definition.ipynb b/examples/notebooks/stencil_definition.ipynb index f65ed20a..68e6b714 100644 --- a/examples/notebooks/stencil_definition.ipynb +++ b/examples/notebooks/stencil_definition.ipynb @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "5e09b7ff-ead1-40da-a79f-9929fd7c9e93", "metadata": {}, "outputs": [], @@ -48,24 +48,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "c9d04aed-9513-447a-bae8-3c9719a60d9a", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from gt4py.cartesian.gtscript import PARALLEL, computation\n", "from ndsl.dsl.typing import FloatField\n", @@ -95,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "108a7b90-178d-461c-b313-cf0f1dcb4b94", "metadata": { "tags": [] @@ -148,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "51a5b99a-3cfc-437d-bf10-a1203499f28c", "metadata": {}, "outputs": [], @@ -186,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "c27da0c5-bf57-4196-83be-65b32cfccbf9", "metadata": {}, "outputs": [], @@ -196,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "b545d4e6-a98f-440f-ab46-be2f9c182c31", "metadata": {}, "outputs": [], @@ -212,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "e993525f-fe88-42e0-823a-9712539621a5", "metadata": {}, "outputs": [], @@ -223,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "a8ddf9b5", "metadata": {}, "outputs": [ @@ -236,7 +222,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAGzCAYAAABdO3+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4KklEQVR4nO3df1zV9d3/8edR4YAKxwD5lUj4I/EXdl3+INKMxERqTpOaWtvUmc6FXVPXLLby11qUu1auXYhtc5AVpbbU5a50aopzE690c9ZWTLkoMQWXuwDFQMb5fP9wnG8nUD6Hc4DjOY/77fa+jfP+/Hqfz06e13m9f3wshmEYAgAAfqlLZzcAAAB0HgIBAAD8GIEAAAB+jEAAAAA/RiAAAIAfIxAAAMCPEQgAAODHCAQAAPBjBAIAAPgxAgG0u48++kgWi0UFBQUuH7t//35ZLBbt37+/1X1TU1OVmprq8jXgzJV7DuD6RyAAtxUUFMhisbRYHn/88c5uXrt6+umntW3bNlP7njlzRitXrtSxY8fatU2+5K677pLFYtGiRYuc6svLy7Vq1SqNGTNGN9xwgyIiIpSamqo9e/aYPrfdbteaNWuUkJCgoKAgJSUl6bXXXvP0WwC8XrfObgB8x+rVq5WQkOBUN2zYMMXHx+uzzz5TQEBAJ7Ws/Tz99NO67777NG3atFb3PXPmjFatWqWbbrpJt9xyS7u37Xr35ptv6tChQy1u2759u5599llNmzZNs2fP1j//+U9t3LhRd911l375y19q7ty5rZ7/+9//vp555hnNnz9fo0eP1vbt2/XAAw/IYrFo5syZnn47gNciEIDHZGRkaNSoUS1uCwoK6uDW4HpWV1en73znO3rssce0fPnyZtvvvPNOnTp1ShEREY66hQsX6pZbbtHy5ctbDQQ++eQT/fjHP1ZWVpb+67/+S5L00EMP6Y477tB3v/td3X///eratatn3xTgpegaQLu72hiBDz/8UPfdd5/CwsIUFBSkUaNG6de//rWpc/7sZz9T//79FRwcrDFjxuh3v/ud6fbs3r1b48aNU69evdSzZ08NGjRI3/ve95z2qa+v14oVKzRgwABZrVbFxcVp2bJlqq+vd+xjsVhUW1url156ydEVMmfOnBavuX//fo0ePVqSNHfuXMf+n78nW7Zs0ciRIxUcHKyIiAh99atf1SeffHLN93LkyBFZLBa99NJLzbbt2rVLFotFO3bskCR9/PHHevjhhzVo0CAFBwcrPDxc999/vz766KNW79lNN93U4ntraVyGmXvXmjVr1shut+vRRx9tcfvQoUOdggBJslqtuvvuu3X69GlduHDhmuffvn27Ghoa9PDDDzvqLBaLvvWtb+n06dNXzUQAvoiMADymurpan376qVPdF/+xbvKXv/xFY8eO1Y033qjHH39cPXr00ObNmzVt2jT96le/0r333nvV62zYsEHf/OY3ddttt2nx4sX63//9X335y19WWFiY4uLirtnGv/zlL/rSl76kpKQkrV69WlarVSdPntTvf/97xz52u11f/vKXdfDgQS1YsECDBw/We++9p+eff15/+9vfHGMCXn75ZT300EMaM2aMFixYIEnq379/i9cdPHiwVq9ereXLl2vBggW6/fbbJUm33XabpCvjLObOnavRo0crJydHlZWV+slPfqLf//73+tOf/qRevXq1eN5Ro0apX79+2rx5s2bPnu20bdOmTbrhhhuUnp4uSXr33Xf1hz/8QTNnzlSfPn300UcfKS8vT6mpqfrrX/+q7t27X/PemWH23l3LqVOn9Mwzz+iXv/ylgoODXbp+RUWFunfv3up7+dOf/qQePXpo8ODBTvVjxoxxbB83bpxL1wauWwbgpvz8fENSi8UwDKOsrMyQZOTn5zuOSUtLM4YPH27U1dU56ux2u3HbbbcZAwcOdNTt27fPkGTs27fPMAzDuHz5shEZGWnccsstRn19vWO/n/3sZ4Yk44477rhmW59//nlDkvH3v//9qvu8/PLLRpcuXYzf/e53TvXr1683JBm///3vHXU9evQwZs+efc1rNnn33Xeb3YfPv6dhw4YZn332maN+x44dhiRj+fLl1zxvdna2ERAQYPzjH/9w1NXX1xu9evUyvvGNbzjqLl261OzYQ4cOGZKMjRs3Ouq+eM8NwzDi4+NbfJ933HGH0z135d5dzX333WfcdtttjteSjKysrFaPO3HihBEUFGR87Wtfa3Xfe+65x+jXr1+z+traWkOS8fjjj7d6DsBX0DUAj8nNzdXu3budSkv+8Y9/6J133tFXvvIVXbhwQZ9++qk+/fRTnT9/Xunp6Tpx4sRVU+JHjhzRuXPntHDhQgUGBjrq58yZI5vN1mobm35Zb9++XXa7vcV9tmzZosGDBysxMdHRtk8//VQTJkyQJO3bt6/V67ii6T09/PDDTmMp7rnnHiUmJuo3v/nNNY+fMWOGGhoa9Oabbzrqfvvb36qqqkozZsxw1H3+13VDQ4POnz+vAQMGqFevXvrjH//okffi7r3bt2+ffvWrX2nt2rUuXffSpUu6//77FRwcrGeeeabV/T/77DNZrdZm9U33/7PPPnPp+sD1jK4BeMyYMWOuOljw806ePCnDMPTkk0/qySefbHGfc+fO6cYbb2xW//HHH0uSBg4c6FQfEBCgfv36tXrtGTNm6Be/+IUeeughPf7440pLS9P06dN13333qUuXK3HxiRMn9MEHH6h3795XbZsnNb2nQYMGNduWmJiogwcPXvP4ESNGKDExUZs2bdK8efMkXekWiIiIcHwBS1e+3HJycpSfn69PPvlEhmE4tlVXV3virbh17/75z3/qP/7jP/S1r33NMZ7CjMbGRs2cOVN//etf9fbbbys2NrbVY4KDg1scs1BXV+fYDvgLAgF0uKZf4o8++qij//qLBgwY0C7XDg4O1oEDB7Rv3z795je/0c6dO7Vp0yZNmDBBv/3tb9W1a1fZ7XYNHz5czz33XIvnaG0cQmeYMWOGfvjDH+rTTz9VSEiIfv3rX2vWrFnq1u3//yf+yCOPKD8/X4sXL1ZKSopsNptjqtzVsiNNLBZLi/WNjY1Oo+vduXcbN25USUmJXnzxxWYDGC9cuKCPPvpIkZGRzfr/58+frx07dujVV191CnyuJSYmRvv27ZNhGE7v7ezZs5JkKpgAfAWBADpc0y/3gIAATZw40aVj4+PjJV355fn5f/QbGhpUVlamESNGtHqOLl26KC0tTWlpaXruuef09NNP6/vf/7727duniRMnqn///vrzn/+stLS0q34BNmltu5l9m95TSUlJsy+ykpISx/ZrmTFjhlatWqVf/epXioqKUk1NTbO58G+88YZmz56tH//4x466uro6VVVVtXr+G264ocX9Pv74Y6dMjCv37otOnTqlhoYGjR07ttm2jRs3auPGjdq6davTmg3f/e53lZ+fr7Vr12rWrFmmr3XLLbfoF7/4hT744AMNGTLEUX/48GHHdsBfMEYAHS4yMlKpqal68cUXHb/APu/vf//7VY8dNWqUevfurfXr1+vy5cuO+oKCAlNfaP/4xz+a1TX9o9+UKv7KV76iTz75RD//+c+b7fvZZ5+ptrbW8bpHjx6mrtu0r6Rm+48aNUqRkZFav369U7r67bff1gcffKB77rmn1XMPHjxYw4cP16ZNm7Rp0ybFxMRo/PjxTvt07drVqTtAkn7605+qsbGx1fP3799fxcXFTvd8x44dKi8vd9rPlXv3RTNnztTWrVubFUm6++67tXXrViUnJzv2/9GPfqT//M//1Pe+9z19+9vfvup5q6ur9eGHHzp1f0ydOlUBAQFat26do84wDK1fv1433nijYzYH4A/ICKBT5Obmaty4cRo+fLjmz5+vfv36qbKyUocOHdLp06f15z//ucXjAgIC9NRTT+mb3/ymJkyYoBkzZqisrEz5+fmmxgisXr1aBw4c0D333KP4+HidO3dO69atU58+fRzTxb72ta9p8+bNWrhwofbt26exY8eqsbFRH374oTZv3qxdu3Y5xkKMHDlSe/bs0XPPPafY2FglJCQ4fVl9Xv/+/dWrVy+tX79eISEh6tGjh5KTk5WQkKBnn31Wc+fO1R133KFZs2Y5pg/edNNNWrJkial7OmPGDC1fvlxBQUGaN2+eY8xDky996Ut6+eWXZbPZNGTIEB06dEh79uxReHh4q+d+6KGH9MYbb2jy5Mn6yle+otLSUr3yyivNpku6cu++KDExUYmJiS1uS0hIcMoEbN26VcuWLdPAgQM1ePBgvfLKK07733XXXYqKinLsO3fuXOXn5zvWQujTp48WL16sH/3oR2poaNDo0aO1bds2/e53v9Orr77KYkLwL506ZwE+oWn64Lvvvtvi9pamDxqGYZSWlhpf//rXjejoaCMgIMC48cYbjS996UvGG2+84dinpalshmEY69atMxISEgyr1WqMGjXKOHDgQLOpbC3Zu3evMXXqVCM2NtYIDAw0YmNjjVmzZhl/+9vfnPa7fPmy8eyzzxpDhw41rFarccMNNxgjR440Vq1aZVRXVzv2+/DDD43x48cbwcHBhqRWpxJu377dGDJkiNGtW7dm92TTpk3Gv/3bvxlWq9UICwszHnzwQeP06dPXPN/nnThxwjFt8+DBg822/9///Z8xd+5cIyIiwujZs6eRnp5ufPjhh82mBl7tnv/4xz82brzxRsNqtRpjx441jhw50uI9N3vvzFIL0wdXrFhx1SmrX2x70+fzi5+/xsZG4+mnnzbi4+ONwMBAY+jQocYrr7zicvuA653FML6QKwQAAH6DMQIAAPgxAgEAAPwYgQAAAH6MQAAAAD9GIAAAgB8jEAAAwI953YJCdrtdZ86cUUhIiMtLlAIA/IthGLpw4YJiY2ObLaLlSXV1dU4ra7ZVYGCg01NGvYHXBQJnzpzxyoe6AAC8V3l5ufr06dMu566rq1NCfE9VnGt9Oe7WREdHq6yszKuCAa8LBEJCQiRJ43S3uimgk1sDAPBm/1SDDuq/Hd8d7eHy5cuqONeosqPxCg1pe9ah5oJdCSM/1uXLlwkErqWpO6CbAtTNQiAAALiGf62N2xFdyaEhXdwKBLyV1wUCAAB4o0bDrkY3FuVvNOyea4wHEQgAAGCCXYbsansk4M6x7YlAAAAAE+yyy53f9O4d3X58r7MDAACYRkYAAAATGg1DjUbb0/vuHNueCAQAADDBV8cI0DUAAIAfcykQyMnJ0ejRoxUSEqLIyEhNmzZNJSUlTvukpqbKYrE4lYULF3q00QAAdDS7DDW6UXwiI1BUVKSsrCwVFxdr9+7damho0KRJk1RbW+u03/z583X27FlHWbNmjUcbDQBAR2vqGnCneCOXxgjs3LnT6XVBQYEiIyN19OhRjR8/3lHfvXt3RUdHe6aFAACg3bg1RqC6ulqSFBYW5lT/6quvKiIiQsOGDVN2drYuXbp01XPU19erpqbGqQAA4G2aZg24U9zxzDPPyGKxaPHixY66uro6ZWVlKTw8XD179lRmZqYqKytdOm+bAwG73a7Fixdr7NixGjZsmKP+gQce0CuvvKJ9+/YpOztbL7/8sr761a9e9Tw5OTmy2WyOwpMHAQDeyO6B0lbvvvuuXnzxRSUlJTnVL1myRG+99Za2bNmioqIinTlzRtOnT3fp3G2ePpiVlaX3339fBw8edKpfsGCB4+/hw4crJiZGaWlpKi0tVf/+/ZudJzs7W0uXLnW8rqmpIRgAAOBfLl68qAcffFA///nP9dRTTznqq6urtWHDBhUWFmrChAmSpPz8fA0ePFjFxcW69dZbTZ2/TRmBRYsWaceOHdq3b1+rz39OTk6WJJ08ebLF7VarVaGhoU4FAABv486MgaYiqVl3eH19/TWvm5WVpXvuuUcTJ050qj969KgaGhqc6hMTE9W3b18dOnTI9PtyKRAwDEOLFi3S1q1b9c477yghIaHVY44dOyZJiomJceVSAAB4lUbD/SJJcXFxTl3iOTk5V73m66+/rj/+8Y8t7lNRUaHAwED16tXLqT4qKkoVFRWm35dLXQNZWVkqLCzU9u3bFRIS4riQzWZTcHCwSktLVVhYqLvvvlvh4eE6fvy4lixZovHjxzfr1wAA4Hribj9/07Hl5eVO2W+r1dri/uXl5fr2t7+t3bt3KygoyI0rX5tLGYG8vDxVV1crNTVVMTExjrJp0yZJUmBgoPbs2aNJkyYpMTFR3/nOd5SZmam33nqrXRoPAMD15ovd4VcLBI4ePapz587p3//939WtWzd169ZNRUVFeuGFF9StWzdFRUXp8uXLqqqqcjqusrLSpSn8LmUEjFamPsTFxamoqMiVUwIAcF2wy6JGWdw63hVpaWl67733nOrmzp2rxMREPfbYY4qLi1NAQID27t2rzMxMSVJJSYlOnTqllJQU09fhoUMAAJhgN64Ud453RUhIiNP0fEnq0aOHwsPDHfXz5s3T0qVLFRYWptDQUD3yyCNKSUkxPWNAIhAAAOC69fzzz6tLly7KzMxUfX290tPTtW7dOpfOQSAAAIAJjW52DbhzbJP9+/c7vQ4KClJubq5yc3PbfE4CAQAATPCGQKA9uPWsAQAAcH0jIwAAgAl2wyK74casATeObU8EAgAAmEDXAAAA8DlkBAAAMKFRXdToxu/nRg+2xZMIBAAAMMFwc4yAwRgBAACuX4wRAAAAPoeMAAAAJjQaXdRouDFGwI3nFLQnAgEAAEywyyK7G4l0u7wzEqBrAAAAP0ZGAAAAE3x1sCCBAAAAJrg/RoCuAQAA4GXICAAAYMKVwYJuPHSIrgEAAK5fdjeXGGbWAAAA8DpkBDxo15k/d3YTAKDN0mNHdHYTvJqvDhYkEAAAwAS7uvjkgkIEAgAAmNBoWNToxhME3Tm2PTFGAAAAP0ZGAAAAExrdnDXQSNcAAADXL7vRRXY3BgvavXSwIF0DAAD4MTICAACYQNcAAAB+zC73Rv7bPdcUj6JrAAAAP0ZGAAAAE9xfUMg7f3sTCAAAYIL7Swx7ZyDgna0CAAAdgowAAAAm2GWRXe4MFvTOJYYJBAAAMIGuAQAA/FjTOgLuFFfk5eUpKSlJoaGhCg0NVUpKit5++23H9tTUVFksFqeycOFCl98XGQEAALxQnz599Mwzz2jgwIEyDEMvvfSSpk6dqj/96U8aOnSoJGn+/PlavXq145ju3bu7fB0CAQAATLAbFtndWVDIxWOnTJni9PqHP/yh8vLyVFxc7AgEunfvrujo6Da3SaJrAAAAU+xudgs0rSNQU1PjVOrr61u9dmNjo15//XXV1tYqJSXFUf/qq68qIiJCw4YNU3Z2ti5duuTy+yIjAABAB4qLi3N6vWLFCq1cubLFfd977z2lpKSorq5OPXv21NatWzVkyBBJ0gMPPKD4+HjFxsbq+PHjeuyxx1RSUqI333zTpfYQCAAAYIL7jyG+cmx5eblCQ0Md9Var9arHDBo0SMeOHVN1dbXeeOMNzZ49W0VFRRoyZIgWLFjg2G/48OGKiYlRWlqaSktL1b9/f9PtIhAAAMCERlnU6MZaAE3HNs0CMCMwMFADBgyQJI0cOVLvvvuufvKTn+jFF19stm9ycrIk6eTJky4FAowRAADgOmG32686puDYsWOSpJiYGJfOSUYAAAATPNU1YFZ2drYyMjLUt29fXbhwQYWFhdq/f7927dql0tJSFRYW6u6771Z4eLiOHz+uJUuWaPz48UpKSnLpOgQCAACY0Ci52TXgmnPnzunrX/+6zp49K5vNpqSkJO3atUt33XWXysvLtWfPHq1du1a1tbWKi4tTZmamnnjiCZfbRSAAAIAX2rBhw1W3xcXFqaioyCPXIRAAAMCEju4a6CgEAgAAmOCrDx0iEAAAwATDzccQG176GGLvDE8AAECHICMAAIAJdA0AAODHOvrpgx3FO8MTAADQIcgIAABgQtPjhN053hsRCAAAYAJdAwAAwOeQEQAAwAS7usjuxu9nd45tTwQCAACY0GhY1OhGet+dY9uTd4YnAACgQ7gUCOTk5Gj06NEKCQlRZGSkpk2bppKSEqd96urqlJWVpfDwcPXs2VOZmZmqrKz0aKMBAOhoTYMF3SneyKVAoKioSFlZWSouLtbu3bvV0NCgSZMmqba21rHPkiVL9NZbb2nLli0qKirSmTNnNH36dI83HACAjmT86+mDbS2GL6wsuHPnTqfXBQUFioyM1NGjRzV+/HhVV1drw4YNKiws1IQJEyRJ+fn5Gjx4sIqLi3Xrrbd6ruUAAHSgRlnU6MaDg9w5tj25FZ5UV1dLksLCwiRJR48eVUNDgyZOnOjYJzExUX379tWhQ4daPEd9fb1qamqcCgAA6BhtDgTsdrsWL16ssWPHatiwYZKkiooKBQYGqlevXk77RkVFqaKiosXz5OTkyGazOUpcXFxbmwQAQLuxG+6OE+jsd9CyNgcCWVlZev/99/X666+71YDs7GxVV1c7Snl5uVvnAwCgPbgzPqCpeKM2rSOwaNEi7dixQwcOHFCfPn0c9dHR0bp8+bKqqqqcsgKVlZWKjo5u8VxWq1VWq7UtzQAAAG5yKTwxDEOLFi3S1q1b9c477yghIcFp+8iRIxUQEKC9e/c66kpKSnTq1CmlpKR4psUAAHQCuyxuF2/kUkYgKytLhYWF2r59u0JCQhz9/jabTcHBwbLZbJo3b56WLl2qsLAwhYaG6pFHHlFKSgozBgAA1zVfXVnQpUAgLy9PkpSamupUn5+frzlz5kiSnn/+eXXp0kWZmZmqr69Xenq61q1b55HGAgAAz3IpEDCM1oc8BgUFKTc3V7m5uW1uFAAA3sbdAX8+NVgQAAB/Y5d7ywR76xgB7wxPAABAhyAjAACACYabI/8NL80IEAgAAGCCu08Q9NanDxIIAABggq8OFvTOVgEAgA5BRgAAABPoGgAAwI+5u0ww0wcBAIDXIRAAAMCEpq4Bd4or8vLylJSUpNDQUIWGhiolJUVvv/22Y3tdXZ2ysrIUHh6unj17KjMzU5WVlS6/LwIBAABM6OhAoE+fPnrmmWd09OhRHTlyRBMmTNDUqVP1l7/8RZK0ZMkSvfXWW9qyZYuKiop05swZTZ8+3eX3xRgBAAC80JQpU5xe//CHP1ReXp6Ki4vVp08fbdiwQYWFhZowYYKkKw8AHDx4sIqLi1164i+BAAAAJnhq1kBNTY1TvdVqldVqveaxjY2N2rJli2pra5WSkqKjR4+qoaFBEydOdOyTmJiovn376tChQy4FAnQNAABggqe6BuLi4mSz2RwlJyfnqtd877331LNnT1mtVi1cuFBbt27VkCFDVFFRocDAQPXq1ctp/6ioKFVUVLj0vsgIAADQgcrLyxUaGup4fa1swKBBg3Ts2DFVV1frjTfe0OzZs1VUVOTR9hAIAABggiH31gIw/vW/TbMAzAgMDNSAAQMkSSNHjtS7776rn/zkJ5oxY4YuX76sqqoqp6xAZWWloqOjXWoXXQMAAJjQ0bMGWmyD3a76+nqNHDlSAQEB2rt3r2NbSUmJTp06pZSUFJfOSUYAAAATOnqJ4ezsbGVkZKhv3766cOGCCgsLtX//fu3atUs2m03z5s3T0qVLFRYWptDQUD3yyCNKSUlxaaCgRCAAAIBXOnfunL7+9a/r7NmzstlsSkpK0q5du3TXXXdJkp5//nl16dJFmZmZqq+vV3p6utatW+fydQgEAAAwoaMzAhs2bLjm9qCgIOXm5io3N7fNbZIIBAAAMMVXnz7IYEEAAPwYGQEAAEwwDIsMN37Vu3NseyIQAADABLssbq0j4M6x7YmuAQAA/BgZAQAATPDVwYIEAgAAmOCrYwToGgAAwI+REQAAwAS6BgAA8GO+2jVAIAAAgAmGmxkBbw0EGCMAAIAfIyMAAIAJhiTDcO94b0QgAACACXZZZGFlQQAA4EvICAAAYAKzBgAA8GN2wyKLD64jQNcAAAB+jIwAAAAmGIabswa8dNoAgQAAACb46hgBugYAAPBjZAQAADDBVzMCBAIAAJjgq7MGCAQAADDBVwcLMkYAAAA/RkYAAAATrmQE3Bkj4MHGeBCBAAAAJvjqYEG6BgAA8GNkBAAAMMH4V3HneG9EIAAAgAl0DQAAAJ9DRgAAADN8tG+AQAAAADPc7BoQXQMAAFy/mlYWdKe4IicnR6NHj1ZISIgiIyM1bdo0lZSUOO2Tmpoqi8XiVBYuXOjSdQgEAADwQkVFRcrKylJxcbF2796thoYGTZo0SbW1tU77zZ8/X2fPnnWUNWvWuHQdugYAADCho2cN7Ny50+l1QUGBIiMjdfToUY0fP95R3717d0VHR7e5XWQEAAAww7C4XyTV1NQ4lfr6elOXr66uliSFhYU51b/66quKiIjQsGHDlJ2drUuXLrn0tsgIAADQgeLi4pxer1ixQitXrrzmMXa7XYsXL9bYsWM1bNgwR/0DDzyg+Ph4xcbG6vjx43rsscdUUlKiN99803R7CAQAADDBU48hLi8vV2hoqKPearW2emxWVpbef/99HTx40Kl+wYIFjr+HDx+umJgYpaWlqbS0VP379zfVLgIBAADM8NA6AqGhoU6BQGsWLVqkHTt26MCBA+rTp881901OTpYknTx50nQg4PIYgQMHDmjKlCmKjY2VxWLRtm3bnLbPmTOn2VSGyZMnu3oZAAD8mmEYWrRokbZu3ap33nlHCQkJrR5z7NgxSVJMTIzp67icEaitrdWIESP0jW98Q9OnT29xn8mTJys/P9/x2kzaAwAAb9bRswaysrJUWFio7du3KyQkRBUVFZIkm82m4OBglZaWqrCwUHfffbfCw8N1/PhxLVmyROPHj1dSUpLp67gcCGRkZCgjI+Oa+1itVremMgAA4JU6cJngvLw8SVcWDfq8/Px8zZkzR4GBgdqzZ4/Wrl2r2tpaxcXFKTMzU0888YRL12mXMQL79+9XZGSkbrjhBk2YMEFPPfWUwsPDW9y3vr7eaepETU1NezQJAIDritHKyMS4uDgVFRW5fR2PryMwefJkbdy4UXv37tWzzz6roqIiZWRkqLGxscX9c3JyZLPZHOWL0yoAAPAGTV0D7hRv5PGMwMyZMx1/Dx8+XElJSerfv7/279+vtLS0ZvtnZ2dr6dKljtc1NTUEAwAA7+OjTx9s95UF+/Xrp4iICJ08ebLF7Var1TGVwtUpFQAAdByLB4r3afdA4PTp0zp//rxLUxkAAEDHcLlr4OLFi06/7svKynTs2DGFhYUpLCxMq1atUmZmpqKjo1VaWqply5ZpwIABSk9P92jDAQDoUD7aNeByIHDkyBHdeeedjtdN/fuzZ89WXl6ejh8/rpdeeklVVVWKjY3VpEmT9IMf/IC1BAAA1zcCgStSU1OvOaVh165dbjUIAAB0HJ41AACAGZ97lHCbj/dCBAIAAJjgqacPept2nzUAAAC8FxkBAADMYLAgAAB+zEfHCNA1AACAHyMjAACACRbjSnHneG9EIAAAgBmMEQAAwI8xRgAAAPgaMgIAAJhB1wAAAH7MRwMBugYAAPBjZAQAADDDRzMCBAIAAJjBrAEAAOBryAgAAGACKwsCAODPfHSMAF0DAAD4MQIBAAD8GF0DAACYYJGbYwQ81hLPIhAAAMAMpg8CAABfQ0YAAAAzfHTWAIEAAABm+GggQNcAAAB+jEAAAAATmlYWdKe4IicnR6NHj1ZISIgiIyM1bdo0lZSUOO1TV1enrKwshYeHq2fPnsrMzFRlZaVL1yEQAADADMMDxQVFRUXKyspScXGxdu/erYaGBk2aNEm1tbWOfZYsWaK33npLW7ZsUVFRkc6cOaPp06e7dB3GCAAA4IV27tzp9LqgoECRkZE6evSoxo8fr+rqam3YsEGFhYWaMGGCJCk/P1+DBw9WcXGxbr31VlPXISMAAIAZHsoI1NTUOJX6+npTl6+urpYkhYWFSZKOHj2qhoYGTZw40bFPYmKi+vbtq0OHDpl+WwQCAACY4KkxAnFxcbLZbI6Sk5PT6rXtdrsWL16ssWPHatiwYZKkiooKBQYGqlevXk77RkVFqaKiwvT7omsAAIAOVF5ertDQUMdrq9Xa6jFZWVl6//33dfDgQY+3h0AAAAAzPLTEcGhoqFMg0JpFixZpx44dOnDggPr06eOoj46O1uXLl1VVVeWUFaisrFR0dLTp89M1AACAGR08a8AwDC1atEhbt27VO++8o4SEBKftI0eOVEBAgPbu3euoKykp0alTp5SSkmL6OmQEAAAwoS1rAXzxeFdkZWWpsLBQ27dvV0hIiKPf32azKTg4WDabTfPmzdPSpUsVFham0NBQPfLII0pJSTE9Y0AiEAAAwCvl5eVJklJTU53q8/PzNWfOHEnS888/ry5duigzM1P19fVKT0/XunXrXLoOgQAAAGZ08LMGDKP1A4KCgpSbm6vc3Nw2NopAAAAAc9zsGuChQwAAwOuQEQAAwAwffQwxgQAAAGb4aCBA1wAAAH6MjAAAACZ09DoCHYWMAAAAfoxAAAAAP0bXAAAAZvjoYEECAQAATPDVMQIEAgAAmOWlX+buYIwAAAB+jIwAAABmMEYAAAD/5atjBOgaAADAj5ERAADADLoGAADwX3QNAAAAn0NGAAAAM+gaAADAj/loIEDXAAAAfoyMAAAAJvjqYEECAQAAzKBr4IoDBw5oypQpio2NlcVi0bZt25y2G4ah5cuXKyYmRsHBwZo4caJOnDjhqfYCANA5DA8UL+RyIFBbW6sRI0YoNze3xe1r1qzRCy+8oPXr1+vw4cPq0aOH0tPTVVdX53ZjAQCAZ7ncNZCRkaGMjIwWtxmGobVr1+qJJ57Q1KlTJUkbN25UVFSUtm3bppkzZ7rXWgAAOomvjhHw6KyBsrIyVVRUaOLEiY46m82m5ORkHTp0qMVj6uvrVVNT41QAAPA6dA20rqKiQpIUFRXlVB8VFeXY9kU5OTmy2WyOEhcX58kmAQCAa+j0dQSys7NVXV3tKOXl5Z3dJAAAmmnqGnCneCOPTh+Mjo6WJFVWViomJsZRX1lZqVtuuaXFY6xWq6xWqyebAQCA5zF9sHUJCQmKjo7W3r17HXU1NTU6fPiwUlJSPHkpAADgAS5nBC5evKiTJ086XpeVlenYsWMKCwtT3759tXjxYj311FMaOHCgEhIS9OSTTyo2NlbTpk3zZLsBAOhYPpoRcDkQOHLkiO68807H66VLl0qSZs+erYKCAi1btky1tbVasGCBqqqqNG7cOO3cuVNBQUGeazUAAB3M8q/izvHeyOWugdTUVBmG0awUFBRIkiwWi1avXq2KigrV1dVpz549uvnmmz3dbgAAfF5rq/nOmTNHFovFqUyePNmla3T6rAEAAK4LnbCOQGur+UrS5MmTdfbsWUd57bXXXLoGDx0CAMCEzlhZ8Fqr+TaxWq2OWXttQUYAAAAzPJQR+OJquvX19W41a//+/YqMjNSgQYP0rW99S+fPn3fpeAIBAAA6UFxcnNOKujk5OW0+1+TJk7Vx40bt3btXzz77rIqKipSRkaHGxkbT56BrAAAAszwwBbC8vFyhoaGO1+4sqvf5h/kNHz5cSUlJ6t+/v/bv36+0tDRT5yAjAACACZ5aYjg0NNSpeHJ13X79+ikiIsJpvZ/WEAgAAOAjTp8+rfPnzzst898augYAADCjE1YWvNZqvmFhYVq1apUyMzMVHR2t0tJSLVu2TAMGDFB6errpaxAIAABgQmdMH7zWar55eXk6fvy4XnrpJVVVVSk2NlaTJk3SD37wA5e6GwgEAADwUk2r+V7Nrl273L4GgQAAAGbw0CEAAPxXZ3QNdARmDQAA4MfICAAAYAZdAwAA+DECAQAA/BdjBAAAgM8hIwAAgBl0DQAA4L8shiHLNRb3MXO8N6JrAAAAP0ZGAAAAM+gaAADAfzFrAAAA+BwyAgAAmEHXAAAA/ouuAQAA4HPICAAAYAZdAwAA+C9f7RogEAAAwAwfzQgwRgAAAD9GRgAAAJO8Nb3vDgIBAADMMIwrxZ3jvRBdAwAA+DEyAgAAmMCsAQAA/BmzBgAAgK8hIwAAgAkW+5XizvHeiEAAAAAz6BoAAAC+howAAAAmMGsAAAB/5qMLChEIAABggq9mBBgjAACAHyMQAADADMMDxUUHDhzQlClTFBsbK4vFom3btjk3yTC0fPlyxcTEKDg4WBMnTtSJEydcugaBAAAAJjR1DbhTXFVbW6sRI0YoNze3xe1r1qzRCy+8oPXr1+vw4cPq0aOH0tPTVVdXZ/oajBEAAMBLZWRkKCMjo8VthmFo7dq1euKJJzR16lRJ0saNGxUVFaVt27Zp5syZpq5BRgAAADOaZg24UyTV1NQ4lfr6+jY1p6ysTBUVFZo4caKjzmazKTk5WYcOHTJ9HgIBAABM8FTXQFxcnGw2m6Pk5OS0qT0VFRWSpKioKKf6qKgoxzYz6BoAAKADlZeXKzQ01PHaarV2YmvICAAAYI6HZg2EhoY6lbYGAtHR0ZKkyspKp/rKykrHNjMIBAAAMKEzZg1cS0JCgqKjo7V3715HXU1NjQ4fPqyUlBTT56FrAAAAL3Xx4kWdPHnS8bqsrEzHjh1TWFiY+vbtq8WLF+upp57SwIEDlZCQoCeffFKxsbGaNm2a6WsQCAAAYIbduFLcOd5FR44c0Z133ul4vXTpUknS7NmzVVBQoGXLlqm2tlYLFixQVVWVxo0bp507dyooKMj0NQgEAAAwo42rAzod76LU1FQZ13hYkcVi0erVq7V69eo2N4tAAAAAEyxy86FDHmuJZzFYEAAAP0ZGAAAAMz63OmCbj/dCBAIAAJjg7hRAT08f9BS6BgAA8GNkBAAAMKMTZg10BI9nBFauXCmLxeJUEhMTPX0ZAAA6lMUw3C7eqF0yAkOHDtWePXv+/0W6kXgAAMAbtcs3dLdu3Vx64AEAAF7P/q/izvFeqF0GC544cUKxsbHq16+fHnzwQZ06deqq+9bX16umpsapAADgbXy1a8DjgUBycrIKCgq0c+dO5eXlqaysTLfffrsuXLjQ4v45OTmy2WyOEhcX5+kmAQCAq/B4IJCRkaH7779fSUlJSk9P13//93+rqqpKmzdvbnH/7OxsVVdXO0p5ebmnmwQAgPsMDxQv1O6j+Hr16qWbb77Z6TGKn2e1WmW1Wtu7GQAAuMdHVxZs9wWFLl68qNLSUsXExLT3pQAAaDdNKwu6U7yRxwOBRx99VEVFRfroo4/0hz/8Qffee6+6du2qWbNmefpSAADATR7vGjh9+rRmzZql8+fPq3fv3ho3bpyKi4vVu3dvT18KAICO46NdAx4PBF5//XVPnxIAgE5nsV8p7hzvjXjoEAAAfoy1fwEAMIOuAQAA/BhPHwQAAL6GjAAAACa4+7wAb33WAIEAAABm+OgYAboGAADwY2QEAAAww5DkzloA3pkQIBAAAMAMxggAAODPDLk5RsBjLfEoxggAAODHyAgAAGCGj84aIBAAAMAMuySLm8d7IboGAADwY2QEAAAwgVkDAAD4Mx8dI0DXAAAAXmjlypWyWCxOJTEx0ePXISMAAIAZnZARGDp0qPbs2eN43a2b57+2CQQAADCjEwKBbt26KTo6uu3XNIGuAQAAOlBNTY1Tqa+vv+q+J06cUGxsrPr166cHH3xQp06d8nh7CAQAADDD7oEiKS4uTjabzVFycnJavFxycrIKCgq0c+dO5eXlqaysTLfffrsuXLjg0bdF1wAAACZ4avpgeXm5QkNDHfVWq7XF/TMyMhx/JyUlKTk5WfHx8dq8ebPmzZvX5nZ8EYGAB6XHjujsJgAA2ouHxgiEhoY6BQJm9erVSzfffLNOnjzZ9ja0gK4BAACuAxcvXlRpaaliYmI8el4CAQAAzLAb7hcXPProoyoqKtJHH32kP/zhD7r33nvVtWtXzZo1y6Nvi64BAADM6ODpg6dPn9asWbN0/vx59e7dW+PGjVNxcbF69+7d9ja0gEAAAAAv9Prrr3fIdQgEAAAwxc2MgLzzWQMEAgAAmMFDhwAAgK8hIwAAgBl2Q26l912cNdBRCAQAADDDsF8p7hzvhegaAADAj5ERAADADB8dLEggAACAGYwRAADAj/loRoAxAgAA+DEyAgAAmGHIzYyAx1riUQQCAACYQdcAAADwNWQEAAAww26X5MaiQHbvXFCIQAAAADPoGgAAAL6GjAAAAGb4aEaAQAAAADN8dGVBugYAAPBjZAQAADDBMOwy3HiUsDvHticCAQAAzDAM99L7jBEAAOA6Zrg5RsBLAwHGCAAA4MfICAAAYIbdLlnc6OdnjAAAANcxugYAAICvISMAAIAJht0uw42uAaYPAgBwPaNrAAAA+BoyAgAAmGE3JIvvZQQIBAAAMMMwJLkzfdA7AwG6BgAA8GNkBAAAMMGwGzLc6Bow/C0jkJubq5tuuklBQUFKTk7W//zP/7TXpQAAaH+G3f3SBu39fdougcCmTZu0dOlSrVixQn/84x81YsQIpaen69y5c+1xOQAA2p1hN9wuruqI79N2CQSee+45zZ8/X3PnztWQIUO0fv16de/eXb/85S/b43IAAPikjvg+9fgYgcuXL+vo0aPKzs521HXp0kUTJ07UoUOHmu1fX1+v+vp6x+vq6mpJ0j/V4Na6DQAA3/dPNUjqmP73fxr1bj04qKmtNTU1TvVWq1VWq7XZ/q5+n7aVxwOBTz/9VI2NjYqKinKqj4qK0ocffths/5ycHK1atapZ/UH9t6ebBgDwURcuXJDNZmuXcwcGBio6OloHK9z/XurZs6fi4uKc6lasWKGVK1c229fV79O26vRZA9nZ2Vq6dKnjdVVVleLj43Xq1Kl2+z/V19TU1CguLk7l5eUKDQ3t7OZ4Pe6Xa7hfruOeucad+2UYhi5cuKDY2Nh2ap0UFBSksrIyXb582e1zGYYhi8XiVNdSNqAjeTwQiIiIUNeuXVVZWelUX1lZqejo6Gb7Xy0lYrPZ+A/IRaGhodwzF3C/XMP9ch33zDVtvV8d8aMxKChIQUFB7X6dz3P1+7StPD5YMDAwUCNHjtTevXsddXa7XXv37lVKSoqnLwcAgE/qqO/TdukaWLp0qWbPnq1Ro0ZpzJgxWrt2rWprazV37tz2uBwAAD6pI75P2yUQmDFjhv7+979r+fLlqqio0C233KKdO3c2G/DQEqvVqhUrVnR6n8n1hHvmGu6Xa7hfruOeuYb7dXXufJ+aZTG8dc1DAADQ7njoEAAAfoxAAAAAP0YgAACAHyMQAADAjxEIAADgx7wuEGjv5y77ipUrV8pisTiVxMTEzm6WVzlw4ICmTJmi2NhYWSwWbdu2zWm7YRhavny5YmJiFBwcrIkTJ+rEiROd01gv0Nr9mjNnTrPP3OTJkzunsV4gJydHo0ePVkhIiCIjIzVt2jSVlJQ47VNXV6esrCyFh4erZ8+eyszMbLZKnL8wc79SU1ObfcYWLlzYSS32H14VCHTEc5d9ydChQ3X27FlHOXjwYGc3yavU1tZqxIgRys3NbXH7mjVr9MILL2j9+vU6fPiwevToofT0dNXV1XVwS71Da/dLkiZPnuz0mXvttdc6sIXepaioSFlZWSouLtbu3bvV0NCgSZMmqba21rHPkiVL9NZbb2nLli0qKirSmTNnNH369E5sdecxc78kaf78+U6fsTVr1nRSi/2I4UXGjBljZGVlOV43NjYasbGxRk5OTie2yjutWLHCGDFiRGc347ohydi6davjtd1uN6Kjo40f/ehHjrqqqirDarUar732Wie00Lt88X4ZhmHMnj3bmDp1aqe053pw7tw5Q5JRVFRkGMaVz1NAQICxZcsWxz4ffPCBIck4dOhQZzXTa3zxfhmGYdxxxx3Gt7/97c5rlJ/ymoxA03OXJ06c6Khrj+cu+5ITJ04oNjZW/fr104MPPqhTp051dpOuG2VlZaqoqHD6vNlsNiUnJ/N5u4b9+/crMjJSgwYN0re+9S2dP3++s5vkNaqrqyVJYWFhkqSjR4+qoaHB6TOWmJiovn378hlT8/vV5NVXX1VERISGDRum7OxsXbp0qTOa51c6/THETTrqucu+Ijk5WQUFBRo0aJDOnj2rVatW6fbbb9f777+vkJCQzm6e16uoqJCkFj9vTdvgbPLkyZo+fboSEhJUWlqq733ve8rIyNChQ4fUtWvXzm5ep7Lb7Vq8eLHGjh2rYcOGSbryGQsMDFSvXr2c9uUz1vL9kqQHHnhA8fHxio2N1fHjx/XYY4+ppKREb775Zie21vd5TSAA12RkZDj+TkpKUnJysuLj47V582bNmzevE1sGXzVz5kzH38OHD1dSUpL69++v/fv3Ky0trRNb1vmysrL0/vvvM07HpKvdrwULFjj+Hj58uGJiYpSWlqbS0lL179+/o5vpN7yma6Cjnrvsq3r16qWbb75ZJ0+e7OymXBeaPlN83tquX79+ioiI8PvP3KJFi7Rjxw7t27dPffr0cdRHR0fr8uXLqqqqctrf3z9jV7tfLUlOTpYkv/+MtTevCQQ66rnLvurixYsqLS1VTExMZzflupCQkKDo6Ginz1tNTY0OHz7M582k06dP6/z58377mTMMQ4sWLdLWrVv1zjvvKCEhwWn7yJEjFRAQ4PQZKykp0alTp/zyM9ba/WrJsWPHJMlvP2Mdxau6Bjriucu+4tFHH9WUKVMUHx+vM2fOaMWKFeratatmzZrV2U3zGhcvXnT6JVFWVqZjx44pLCxMffv21eLFi/XUU09p4MCBSkhI0JNPPqnY2FhNmzat8xrdia51v8LCwrRq1SplZmYqOjpapaWlWrZsmQYMGKD09PRObHXnycrKUmFhobZv366QkBBHv7/NZlNwcLBsNpvmzZunpUuXKiwsTKGhoXrkkUeUkpKiW2+9tZNb3/Fau1+lpaUqLCzU3XffrfDwcB0/flxLlizR+PHjlZSU1Mmt93GdPW3hi376058affv2NQIDA40xY8YYxcXFnd0krzRjxgwjJibGCAwMNG688UZjxowZxsmTJzu7WV5l3759hqRmZfbs2YZhXJlC+OSTTxpRUVGG1Wo10tLSjJKSks5tdCe61v26dOmSMWnSJKN3795GQECAER8fb8yfP9+oqKjo7GZ3mpbulSQjPz/fsc9nn31mPPzww8YNN9xgdO/e3bj33nuNs2fPdl6jO1Fr9+vUqVPG+PHjjbCwMMNqtRoDBgwwvvvd7xrV1dWd23A/YDEMw+jIwAMAAHgPrxkjAAAAOh6BAAAAfoxAAAAAP0YgAACAHyMQAADAjxEIAADgxwgEAADwYwQCAAD4MQIBAAD8GIEAAAB+jEAAAAA/9v8Aor55y9Pt/D0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAGzCAYAAABdO3+BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4KklEQVR4nO3df1zV9d3/8edR4YAKxwD5lUj4I/EXdl3+INKMxERqTpOaWtvUmc6FXVPXLLby11qUu1auXYhtc5AVpbbU5a50aopzE690c9ZWTLkoMQWXuwDFQMb5fP9wnG8nUD6Hc4DjOY/77fa+jfP+/Hqfz06e13m9f3wshmEYAgAAfqlLZzcAAAB0HgIBAAD8GIEAAAB+jEAAAAA/RiAAAIAfIxAAAMCPEQgAAODHCAQAAPBjBAIAAPgxAgG0u48++kgWi0UFBQUuH7t//35ZLBbt37+/1X1TU1OVmprq8jXgzJV7DuD6RyAAtxUUFMhisbRYHn/88c5uXrt6+umntW3bNlP7njlzRitXrtSxY8fatU2+5K677pLFYtGiRYuc6svLy7Vq1SqNGTNGN9xwgyIiIpSamqo9e/aYPrfdbteaNWuUkJCgoKAgJSUl6bXXXvP0WwC8XrfObgB8x+rVq5WQkOBUN2zYMMXHx+uzzz5TQEBAJ7Ws/Tz99NO67777NG3atFb3PXPmjFatWqWbbrpJt9xyS7u37Xr35ptv6tChQy1u2759u5599llNmzZNs2fP1j//+U9t3LhRd911l375y19q7ty5rZ7/+9//vp555hnNnz9fo0eP1vbt2/XAAw/IYrFo5syZnn47gNciEIDHZGRkaNSoUS1uCwoK6uDW4HpWV1en73znO3rssce0fPnyZtvvvPNOnTp1ShEREY66hQsX6pZbbtHy5ctbDQQ++eQT/fjHP1ZWVpb+67/+S5L00EMP6Y477tB3v/td3X///eratatn3xTgpegaQLu72hiBDz/8UPfdd5/CwsIUFBSkUaNG6de//rWpc/7sZz9T//79FRwcrDFjxuh3v/ud6fbs3r1b48aNU69evdSzZ08NGjRI3/ve95z2qa+v14oVKzRgwABZrVbFxcVp2bJlqq+vd+xjsVhUW1url156ydEVMmfOnBavuX//fo0ePVqSNHfuXMf+n78nW7Zs0ciRIxUcHKyIiAh99atf1SeffHLN93LkyBFZLBa99NJLzbbt2rVLFotFO3bskCR9/PHHevjhhzVo0CAFBwcrPDxc999/vz766KNW79lNN93U4ntraVyGmXvXmjVr1shut+vRRx9tcfvQoUOdggBJslqtuvvuu3X69GlduHDhmuffvn27Ghoa9PDDDzvqLBaLvvWtb+n06dNXzUQAvoiMADymurpan376qVPdF/+xbvKXv/xFY8eO1Y033qjHH39cPXr00ObNmzVt2jT96le/0r333nvV62zYsEHf/OY3ddttt2nx4sX63//9X335y19WWFiY4uLirtnGv/zlL/rSl76kpKQkrV69WlarVSdPntTvf/97xz52u11f/vKXdfDgQS1YsECDBw/We++9p+eff15/+9vfHGMCXn75ZT300EMaM2aMFixYIEnq379/i9cdPHiwVq9ereXLl2vBggW6/fbbJUm33XabpCvjLObOnavRo0crJydHlZWV+slPfqLf//73+tOf/qRevXq1eN5Ro0apX79+2rx5s2bPnu20bdOmTbrhhhuUnp4uSXr33Xf1hz/8QTNnzlSfPn300UcfKS8vT6mpqfrrX/+q7t27X/PemWH23l3LqVOn9Mwzz+iXv/ylgoODXbp+RUWFunfv3up7+dOf/qQePXpo8ODBTvVjxoxxbB83bpxL1wauWwbgpvz8fENSi8UwDKOsrMyQZOTn5zuOSUtLM4YPH27U1dU56ux2u3HbbbcZAwcOdNTt27fPkGTs27fPMAzDuHz5shEZGWnccsstRn19vWO/n/3sZ4Yk44477rhmW59//nlDkvH3v//9qvu8/PLLRpcuXYzf/e53TvXr1683JBm///3vHXU9evQwZs+efc1rNnn33Xeb3YfPv6dhw4YZn332maN+x44dhiRj+fLl1zxvdna2ERAQYPzjH/9w1NXX1xu9evUyvvGNbzjqLl261OzYQ4cOGZKMjRs3Ouq+eM8NwzDi4+NbfJ933HGH0z135d5dzX333WfcdtttjteSjKysrFaPO3HihBEUFGR87Wtfa3Xfe+65x+jXr1+z+traWkOS8fjjj7d6DsBX0DUAj8nNzdXu3budSkv+8Y9/6J133tFXvvIVXbhwQZ9++qk+/fRTnT9/Xunp6Tpx4sRVU+JHjhzRuXPntHDhQgUGBjrq58yZI5vN1mobm35Zb9++XXa7vcV9tmzZosGDBysxMdHRtk8//VQTJkyQJO3bt6/V67ii6T09/PDDTmMp7rnnHiUmJuo3v/nNNY+fMWOGGhoa9Oabbzrqfvvb36qqqkozZsxw1H3+13VDQ4POnz+vAQMGqFevXvrjH//okffi7r3bt2+ffvWrX2nt2rUuXffSpUu6//77FRwcrGeeeabV/T/77DNZrdZm9U33/7PPPnPp+sD1jK4BeMyYMWOuOljw806ePCnDMPTkk0/qySefbHGfc+fO6cYbb2xW//HHH0uSBg4c6FQfEBCgfv36tXrtGTNm6Be/+IUeeughPf7440pLS9P06dN13333qUuXK3HxiRMn9MEHH6h3795XbZsnNb2nQYMGNduWmJiogwcPXvP4ESNGKDExUZs2bdK8efMkXekWiIiIcHwBS1e+3HJycpSfn69PPvlEhmE4tlVXV3virbh17/75z3/qP/7jP/S1r33NMZ7CjMbGRs2cOVN//etf9fbbbys2NrbVY4KDg1scs1BXV+fYDvgLAgF0uKZf4o8++qij//qLBgwY0C7XDg4O1oEDB7Rv3z795je/0c6dO7Vp0yZNmDBBv/3tb9W1a1fZ7XYNHz5czz33XIvnaG0cQmeYMWOGfvjDH+rTTz9VSEiIfv3rX2vWrFnq1u3//yf+yCOPKD8/X4sXL1ZKSopsNptjqtzVsiNNLBZLi/WNjY1Oo+vduXcbN25USUmJXnzxxWYDGC9cuKCPPvpIkZGRzfr/58+frx07dujVV191CnyuJSYmRvv27ZNhGE7v7ezZs5JkKpgAfAWBADpc0y/3gIAATZw40aVj4+PjJV355fn5f/QbGhpUVlamESNGtHqOLl26KC0tTWlpaXruuef09NNP6/vf/7727duniRMnqn///vrzn/+stLS0q34BNmltu5l9m95TSUlJsy+ykpISx/ZrmTFjhlatWqVf/epXioqKUk1NTbO58G+88YZmz56tH//4x466uro6VVVVtXr+G264ocX9Pv74Y6dMjCv37otOnTqlhoYGjR07ttm2jRs3auPGjdq6davTmg3f/e53lZ+fr7Vr12rWrFmmr3XLLbfoF7/4hT744AMNGTLEUX/48GHHdsBfMEYAHS4yMlKpqal68cUXHb/APu/vf//7VY8dNWqUevfurfXr1+vy5cuO+oKCAlNfaP/4xz+a1TX9o9+UKv7KV76iTz75RD//+c+b7fvZZ5+ptrbW8bpHjx6mrtu0r6Rm+48aNUqRkZFav369U7r67bff1gcffKB77rmn1XMPHjxYw4cP16ZNm7Rp0ybFxMRo/PjxTvt07drVqTtAkn7605+qsbGx1fP3799fxcXFTvd8x44dKi8vd9rPlXv3RTNnztTWrVubFUm6++67tXXrViUnJzv2/9GPfqT//M//1Pe+9z19+9vfvup5q6ur9eGHHzp1f0ydOlUBAQFat26do84wDK1fv1433nijYzYH4A/ICKBT5Obmaty4cRo+fLjmz5+vfv36qbKyUocOHdLp06f15z//ucXjAgIC9NRTT+mb3/ymJkyYoBkzZqisrEz5+fmmxgisXr1aBw4c0D333KP4+HidO3dO69atU58+fRzTxb72ta9p8+bNWrhwofbt26exY8eqsbFRH374oTZv3qxdu3Y5xkKMHDlSe/bs0XPPPafY2FglJCQ4fVl9Xv/+/dWrVy+tX79eISEh6tGjh5KTk5WQkKBnn31Wc+fO1R133KFZs2Y5pg/edNNNWrJkial7OmPGDC1fvlxBQUGaN2+eY8xDky996Ut6+eWXZbPZNGTIEB06dEh79uxReHh4q+d+6KGH9MYbb2jy5Mn6yle+otLSUr3yyivNpku6cu++KDExUYmJiS1uS0hIcMoEbN26VcuWLdPAgQM1ePBgvfLKK07733XXXYqKinLsO3fuXOXn5zvWQujTp48WL16sH/3oR2poaNDo0aO1bds2/e53v9Orr77KYkLwL506ZwE+oWn64Lvvvtvi9pamDxqGYZSWlhpf//rXjejoaCMgIMC48cYbjS996UvGG2+84dinpalshmEY69atMxISEgyr1WqMGjXKOHDgQLOpbC3Zu3evMXXqVCM2NtYIDAw0YmNjjVmzZhl/+9vfnPa7fPmy8eyzzxpDhw41rFarccMNNxgjR440Vq1aZVRXVzv2+/DDD43x48cbwcHBhqRWpxJu377dGDJkiNGtW7dm92TTpk3Gv/3bvxlWq9UICwszHnzwQeP06dPXPN/nnThxwjFt8+DBg822/9///Z8xd+5cIyIiwujZs6eRnp5ufPjhh82mBl7tnv/4xz82brzxRsNqtRpjx441jhw50uI9N3vvzFIL0wdXrFhx1SmrX2x70+fzi5+/xsZG4+mnnzbi4+ONwMBAY+jQocYrr7zicvuA653FML6QKwQAAH6DMQIAAPgxAgEAAPwYgQAAAH6MQAAAAD9GIAAAgB8jEAAAwI953YJCdrtdZ86cUUhIiMtLlAIA/IthGLpw4YJiY2ObLaLlSXV1dU4ra7ZVYGCg01NGvYHXBQJnzpzxyoe6AAC8V3l5ufr06dMu566rq1NCfE9VnGt9Oe7WREdHq6yszKuCAa8LBEJCQiRJ43S3uimgk1sDAPBm/1SDDuq/Hd8d7eHy5cuqONeosqPxCg1pe9ah5oJdCSM/1uXLlwkErqWpO6CbAtTNQiAAALiGf62N2xFdyaEhXdwKBLyV1wUCAAB4o0bDrkY3FuVvNOyea4wHEQgAAGCCXYbsansk4M6x7YlAAAAAE+yyy53f9O4d3X58r7MDAACYRkYAAAATGg1DjUbb0/vuHNueCAQAADDBV8cI0DUAAIAfcykQyMnJ0ejRoxUSEqLIyEhNmzZNJSUlTvukpqbKYrE4lYULF3q00QAAdDS7DDW6UXwiI1BUVKSsrCwVFxdr9+7damho0KRJk1RbW+u03/z583X27FlHWbNmjUcbDQBAR2vqGnCneCOXxgjs3LnT6XVBQYEiIyN19OhRjR8/3lHfvXt3RUdHe6aFAACg3bg1RqC6ulqSFBYW5lT/6quvKiIiQsOGDVN2drYuXbp01XPU19erpqbGqQAA4G2aZg24U9zxzDPPyGKxaPHixY66uro6ZWVlKTw8XD179lRmZqYqKytdOm+bAwG73a7Fixdr7NixGjZsmKP+gQce0CuvvKJ9+/YpOztbL7/8sr761a9e9Tw5OTmy2WyOwpMHAQDeyO6B0lbvvvuuXnzxRSUlJTnVL1myRG+99Za2bNmioqIinTlzRtOnT3fp3G2ePpiVlaX3339fBw8edKpfsGCB4+/hw4crJiZGaWlpKi0tVf/+/ZudJzs7W0uXLnW8rqmpIRgAAOBfLl68qAcffFA///nP9dRTTznqq6urtWHDBhUWFmrChAmSpPz8fA0ePFjFxcW69dZbTZ2/TRmBRYsWaceOHdq3b1+rz39OTk6WJJ08ebLF7VarVaGhoU4FAABv486MgaYiqVl3eH19/TWvm5WVpXvuuUcTJ050qj969KgaGhqc6hMTE9W3b18dOnTI9PtyKRAwDEOLFi3S1q1b9c477yghIaHVY44dOyZJiomJceVSAAB4lUbD/SJJcXFxTl3iOTk5V73m66+/rj/+8Y8t7lNRUaHAwED16tXLqT4qKkoVFRWm35dLXQNZWVkqLCzU9u3bFRIS4riQzWZTcHCwSktLVVhYqLvvvlvh4eE6fvy4lixZovHjxzfr1wAA4Hribj9/07Hl5eVO2W+r1dri/uXl5fr2t7+t3bt3KygoyI0rX5tLGYG8vDxVV1crNTVVMTExjrJp0yZJUmBgoPbs2aNJkyYpMTFR3/nOd5SZmam33nqrXRoPAMD15ovd4VcLBI4ePapz587p3//939WtWzd169ZNRUVFeuGFF9StWzdFRUXp8uXLqqqqcjqusrLSpSn8LmUEjFamPsTFxamoqMiVUwIAcF2wy6JGWdw63hVpaWl67733nOrmzp2rxMREPfbYY4qLi1NAQID27t2rzMxMSVJJSYlOnTqllJQU09fhoUMAAJhgN64Ud453RUhIiNP0fEnq0aOHwsPDHfXz5s3T0qVLFRYWptDQUD3yyCNKSUkxPWNAIhAAAOC69fzzz6tLly7KzMxUfX290tPTtW7dOpfOQSAAAIAJjW52DbhzbJP9+/c7vQ4KClJubq5yc3PbfE4CAQAATPCGQKA9uPWsAQAAcH0jIwAAgAl2wyK74casATeObU8EAgAAmEDXAAAA8DlkBAAAMKFRXdToxu/nRg+2xZMIBAAAMMFwc4yAwRgBAACuX4wRAAAAPoeMAAAAJjQaXdRouDFGwI3nFLQnAgEAAEywyyK7G4l0u7wzEqBrAAAAP0ZGAAAAE3x1sCCBAAAAJrg/RoCuAQAA4GXICAAAYMKVwYJuPHSIrgEAAK5fdjeXGGbWAAAA8DpkBDxo15k/d3YTAKDN0mNHdHYTvJqvDhYkEAAAwAS7uvjkgkIEAgAAmNBoWNToxhME3Tm2PTFGAAAAP0ZGAAAAExrdnDXQSNcAAADXL7vRRXY3BgvavXSwIF0DAAD4MTICAACYQNcAAAB+zC73Rv7bPdcUj6JrAAAAP0ZGAAAAE9xfUMg7f3sTCAAAYIL7Swx7ZyDgna0CAAAdgowAAAAm2GWRXe4MFvTOJYYJBAAAMIGuAQAA/FjTOgLuFFfk5eUpKSlJoaGhCg0NVUpKit5++23H9tTUVFksFqeycOFCl98XGQEAALxQnz599Mwzz2jgwIEyDEMvvfSSpk6dqj/96U8aOnSoJGn+/PlavXq145ju3bu7fB0CAQAATLAbFtndWVDIxWOnTJni9PqHP/yh8vLyVFxc7AgEunfvrujo6Da3SaJrAAAAU+xudgs0rSNQU1PjVOrr61u9dmNjo15//XXV1tYqJSXFUf/qq68qIiJCw4YNU3Z2ti5duuTy+yIjAABAB4qLi3N6vWLFCq1cubLFfd977z2lpKSorq5OPXv21NatWzVkyBBJ0gMPPKD4+HjFxsbq+PHjeuyxx1RSUqI333zTpfYQCAAAYIL7jyG+cmx5eblCQ0Md9Var9arHDBo0SMeOHVN1dbXeeOMNzZ49W0VFRRoyZIgWLFjg2G/48OGKiYlRWlqaSktL1b9/f9PtIhAAAMCERlnU6MZaAE3HNs0CMCMwMFADBgyQJI0cOVLvvvuufvKTn+jFF19stm9ycrIk6eTJky4FAowRAADgOmG32686puDYsWOSpJiYGJfOSUYAAAATPNU1YFZ2drYyMjLUt29fXbhwQYWFhdq/f7927dql0tJSFRYW6u6771Z4eLiOHz+uJUuWaPz48UpKSnLpOgQCAACY0Ci52TXgmnPnzunrX/+6zp49K5vNpqSkJO3atUt33XWXysvLtWfPHq1du1a1tbWKi4tTZmamnnjiCZfbRSAAAIAX2rBhw1W3xcXFqaioyCPXIRAAAMCEju4a6CgEAgAAmOCrDx0iEAAAwATDzccQG176GGLvDE8AAECHICMAAIAJdA0AAODHOvrpgx3FO8MTAADQIcgIAABgQtPjhN053hsRCAAAYAJdAwAAwOeQEQAAwAS7usjuxu9nd45tTwQCAACY0GhY1OhGet+dY9uTd4YnAACgQ7gUCOTk5Gj06NEKCQlRZGSkpk2bppKSEqd96urqlJWVpfDwcPXs2VOZmZmqrKz0aKMBAOhoTYMF3SneyKVAoKioSFlZWSouLtbu3bvV0NCgSZMmqba21rHPkiVL9NZbb2nLli0qKirSmTNnNH36dI83HACAjmT86+mDbS2GL6wsuHPnTqfXBQUFioyM1NGjRzV+/HhVV1drw4YNKiws1IQJEyRJ+fn5Gjx4sIqLi3Xrrbd6ruUAAHSgRlnU6MaDg9w5tj25FZ5UV1dLksLCwiRJR48eVUNDgyZOnOjYJzExUX379tWhQ4daPEd9fb1qamqcCgAA6BhtDgTsdrsWL16ssWPHatiwYZKkiooKBQYGqlevXk77RkVFqaKiosXz5OTkyGazOUpcXFxbmwQAQLuxG+6OE+jsd9CyNgcCWVlZev/99/X666+71YDs7GxVV1c7Snl5uVvnAwCgPbgzPqCpeKM2rSOwaNEi7dixQwcOHFCfPn0c9dHR0bp8+bKqqqqcsgKVlZWKjo5u8VxWq1VWq7UtzQAAAG5yKTwxDEOLFi3S1q1b9c477yghIcFp+8iRIxUQEKC9e/c66kpKSnTq1CmlpKR4psUAAHQCuyxuF2/kUkYgKytLhYWF2r59u0JCQhz9/jabTcHBwbLZbJo3b56WLl2qsLAwhYaG6pFHHlFKSgozBgAA1zVfXVnQpUAgLy9PkpSamupUn5+frzlz5kiSnn/+eXXp0kWZmZmqr69Xenq61q1b55HGAgAAz3IpEDCM1oc8BgUFKTc3V7m5uW1uFAAA3sbdAX8+NVgQAAB/Y5d7ywR76xgB7wxPAABAhyAjAACACYabI/8NL80IEAgAAGCCu08Q9NanDxIIAABggq8OFvTOVgEAgA5BRgAAABPoGgAAwI+5u0ww0wcBAIDXIRAAAMCEpq4Bd4or8vLylJSUpNDQUIWGhiolJUVvv/22Y3tdXZ2ysrIUHh6unj17KjMzU5WVlS6/LwIBAABM6OhAoE+fPnrmmWd09OhRHTlyRBMmTNDUqVP1l7/8RZK0ZMkSvfXWW9qyZYuKiop05swZTZ8+3eX3xRgBAAC80JQpU5xe//CHP1ReXp6Ki4vVp08fbdiwQYWFhZowYYKkKw8AHDx4sIqLi1164i+BAAAAJnhq1kBNTY1TvdVqldVqveaxjY2N2rJli2pra5WSkqKjR4+qoaFBEydOdOyTmJiovn376tChQy4FAnQNAABggqe6BuLi4mSz2RwlJyfnqtd877331LNnT1mtVi1cuFBbt27VkCFDVFFRocDAQPXq1ctp/6ioKFVUVLj0vsgIAADQgcrLyxUaGup4fa1swKBBg3Ts2DFVV1frjTfe0OzZs1VUVOTR9hAIAABggiH31gIw/vW/TbMAzAgMDNSAAQMkSSNHjtS7776rn/zkJ5oxY4YuX76sqqoqp6xAZWWloqOjXWoXXQMAAJjQ0bMGWmyD3a76+nqNHDlSAQEB2rt3r2NbSUmJTp06pZSUFJfOSUYAAAATOnqJ4ezsbGVkZKhv3766cOGCCgsLtX//fu3atUs2m03z5s3T0qVLFRYWptDQUD3yyCNKSUlxaaCgRCAAAIBXOnfunL7+9a/r7NmzstlsSkpK0q5du3TXXXdJkp5//nl16dJFmZmZqq+vV3p6utatW+fydQgEAAAwoaMzAhs2bLjm9qCgIOXm5io3N7fNbZIIBAAAMMVXnz7IYEEAAPwYGQEAAEwwDIsMN37Vu3NseyIQAADABLssbq0j4M6x7YmuAQAA/BgZAQAATPDVwYIEAgAAmOCrYwToGgAAwI+REQAAwAS6BgAA8GO+2jVAIAAAgAmGmxkBbw0EGCMAAIAfIyMAAIAJhiTDcO94b0QgAACACXZZZGFlQQAA4EvICAAAYAKzBgAA8GN2wyKLD64jQNcAAAB+jIwAAAAmGIabswa8dNoAgQAAACb46hgBugYAAPBjZAQAADDBVzMCBAIAAJjgq7MGCAQAADDBVwcLMkYAAAA/RkYAAAATrmQE3Bkj4MHGeBCBAAAAJvjqYEG6BgAA8GNkBAAAMMH4V3HneG9EIAAAgAl0DQAAAJ9DRgAAADN8tG+AQAAAADPc7BoQXQMAAFy/mlYWdKe4IicnR6NHj1ZISIgiIyM1bdo0lZSUOO2Tmpoqi8XiVBYuXOjSdQgEAADwQkVFRcrKylJxcbF2796thoYGTZo0SbW1tU77zZ8/X2fPnnWUNWvWuHQdugYAADCho2cN7Ny50+l1QUGBIiMjdfToUY0fP95R3717d0VHR7e5XWQEAAAww7C4XyTV1NQ4lfr6elOXr66uliSFhYU51b/66quKiIjQsGHDlJ2drUuXLrn0tsgIAADQgeLi4pxer1ixQitXrrzmMXa7XYsXL9bYsWM1bNgwR/0DDzyg+Ph4xcbG6vjx43rsscdUUlKiN99803R7CAQAADDBU48hLi8vV2hoqKPearW2emxWVpbef/99HTx40Kl+wYIFjr+HDx+umJgYpaWlqbS0VP379zfVLgIBAADM8NA6AqGhoU6BQGsWLVqkHTt26MCBA+rTp881901OTpYknTx50nQg4PIYgQMHDmjKlCmKjY2VxWLRtm3bnLbPmTOn2VSGyZMnu3oZAAD8mmEYWrRokbZu3ap33nlHCQkJrR5z7NgxSVJMTIzp67icEaitrdWIESP0jW98Q9OnT29xn8mTJys/P9/x2kzaAwAAb9bRswaysrJUWFio7du3KyQkRBUVFZIkm82m4OBglZaWqrCwUHfffbfCw8N1/PhxLVmyROPHj1dSUpLp67gcCGRkZCgjI+Oa+1itVremMgAA4JU6cJngvLw8SVcWDfq8/Px8zZkzR4GBgdqzZ4/Wrl2r2tpaxcXFKTMzU0888YRL12mXMQL79+9XZGSkbrjhBk2YMEFPPfWUwsPDW9y3vr7eaepETU1NezQJAIDritHKyMS4uDgVFRW5fR2PryMwefJkbdy4UXv37tWzzz6roqIiZWRkqLGxscX9c3JyZLPZHOWL0yoAAPAGTV0D7hRv5PGMwMyZMx1/Dx8+XElJSerfv7/279+vtLS0ZvtnZ2dr6dKljtc1NTUEAwAA7+OjTx9s95UF+/Xrp4iICJ08ebLF7Var1TGVwtUpFQAAdByLB4r3afdA4PTp0zp//rxLUxkAAEDHcLlr4OLFi06/7svKynTs2DGFhYUpLCxMq1atUmZmpqKjo1VaWqply5ZpwIABSk9P92jDAQDoUD7aNeByIHDkyBHdeeedjtdN/fuzZ89WXl6ejh8/rpdeeklVVVWKjY3VpEmT9IMf/IC1BAAA1zcCgStSU1OvOaVh165dbjUIAAB0HJ41AACAGZ97lHCbj/dCBAIAAJjgqacPept2nzUAAAC8FxkBAADMYLAgAAB+zEfHCNA1AACAHyMjAACACRbjSnHneG9EIAAAgBmMEQAAwI8xRgAAAPgaMgIAAJhB1wAAAH7MRwMBugYAAPBjZAQAADDDRzMCBAIAAJjBrAEAAOBryAgAAGACKwsCAODPfHSMAF0DAAD4MQIBAAD8GF0DAACYYJGbYwQ81hLPIhAAAMAMpg8CAABfQ0YAAAAzfHTWAIEAAABm+GggQNcAAAB+jEAAAAATmlYWdKe4IicnR6NHj1ZISIgiIyM1bdo0lZSUOO1TV1enrKwshYeHq2fPnsrMzFRlZaVL1yEQAADADMMDxQVFRUXKyspScXGxdu/erYaGBk2aNEm1tbWOfZYsWaK33npLW7ZsUVFRkc6cOaPp06e7dB3GCAAA4IV27tzp9LqgoECRkZE6evSoxo8fr+rqam3YsEGFhYWaMGGCJCk/P1+DBw9WcXGxbr31VlPXISMAAIAZHsoI1NTUOJX6+npTl6+urpYkhYWFSZKOHj2qhoYGTZw40bFPYmKi+vbtq0OHDpl+WwQCAACY4KkxAnFxcbLZbI6Sk5PT6rXtdrsWL16ssWPHatiwYZKkiooKBQYGqlevXk77RkVFqaKiwvT7omsAAIAOVF5ertDQUMdrq9Xa6jFZWVl6//33dfDgQY+3h0AAAAAzPLTEcGhoqFMg0JpFixZpx44dOnDggPr06eOoj46O1uXLl1VVVeWUFaisrFR0dLTp89M1AACAGR08a8AwDC1atEhbt27VO++8o4SEBKftI0eOVEBAgPbu3euoKykp0alTp5SSkmL6OmQEAAAwoS1rAXzxeFdkZWWpsLBQ27dvV0hIiKPf32azKTg4WDabTfPmzdPSpUsVFham0NBQPfLII0pJSTE9Y0AiEAAAwCvl5eVJklJTU53q8/PzNWfOHEnS888/ry5duigzM1P19fVKT0/XunXrXLoOgQAAAGZ08LMGDKP1A4KCgpSbm6vc3Nw2NopAAAAAc9zsGuChQwAAwOuQEQAAwAwffQwxgQAAAGb4aCBA1wAAAH6MjAAAACZ09DoCHYWMAAAAfoxAAAAAP0bXAAAAZvjoYEECAQAATPDVMQIEAgAAmOWlX+buYIwAAAB+jIwAAABmMEYAAAD/5atjBOgaAADAj5ERAADADLoGAADwX3QNAAAAn0NGAAAAM+gaAADAj/loIEDXAAAAfoyMAAAAJvjqYEECAQAAzKBr4IoDBw5oypQpio2NlcVi0bZt25y2G4ah5cuXKyYmRsHBwZo4caJOnDjhqfYCANA5DA8UL+RyIFBbW6sRI0YoNze3xe1r1qzRCy+8oPXr1+vw4cPq0aOH0tPTVVdX53ZjAQCAZ7ncNZCRkaGMjIwWtxmGobVr1+qJJ57Q1KlTJUkbN25UVFSUtm3bppkzZ7rXWgAAOomvjhHw6KyBsrIyVVRUaOLEiY46m82m5ORkHTp0qMVj6uvrVVNT41QAAPA6dA20rqKiQpIUFRXlVB8VFeXY9kU5OTmy2WyOEhcX58kmAQCAa+j0dQSys7NVXV3tKOXl5Z3dJAAAmmnqGnCneCOPTh+Mjo6WJFVWViomJsZRX1lZqVtuuaXFY6xWq6xWqyebAQCA5zF9sHUJCQmKjo7W3r17HXU1NTU6fPiwUlJSPHkpAADgAS5nBC5evKiTJ086XpeVlenYsWMKCwtT3759tXjxYj311FMaOHCgEhIS9OSTTyo2NlbTpk3zZLsBAOhYPpoRcDkQOHLkiO68807H66VLl0qSZs+erYKCAi1btky1tbVasGCBqqqqNG7cOO3cuVNBQUGeazUAAB3M8q/izvHeyOWugdTUVBmG0awUFBRIkiwWi1avXq2KigrV1dVpz549uvnmmz3dbgAAfF5rq/nOmTNHFovFqUyePNmla3T6rAEAAK4LnbCOQGur+UrS5MmTdfbsWUd57bXXXLoGDx0CAMCEzlhZ8Fqr+TaxWq2OWXttQUYAAAAzPJQR+OJquvX19W41a//+/YqMjNSgQYP0rW99S+fPn3fpeAIBAAA6UFxcnNOKujk5OW0+1+TJk7Vx40bt3btXzz77rIqKipSRkaHGxkbT56BrAAAAszwwBbC8vFyhoaGO1+4sqvf5h/kNHz5cSUlJ6t+/v/bv36+0tDRT5yAjAACACZ5aYjg0NNSpeHJ13X79+ikiIsJpvZ/WEAgAAOAjTp8+rfPnzzst898augYAADCjE1YWvNZqvmFhYVq1apUyMzMVHR2t0tJSLVu2TAMGDFB6errpaxAIAABgQmdMH7zWar55eXk6fvy4XnrpJVVVVSk2NlaTJk3SD37wA5e6GwgEAADwUk2r+V7Nrl273L4GgQAAAGbw0CEAAPxXZ3QNdARmDQAA4MfICAAAYAZdAwAA+DECAQAA/BdjBAAAgM8hIwAAgBl0DQAA4L8shiHLNRb3MXO8N6JrAAAAP0ZGAAAAM+gaAADAfzFrAAAA+BwyAgAAmEHXAAAA/ouuAQAA4HPICAAAYAZdAwAA+C9f7RogEAAAwAwfzQgwRgAAAD9GRgAAAJO8Nb3vDgIBAADMMIwrxZ3jvRBdAwAA+DEyAgAAmMCsAQAA/BmzBgAAgK8hIwAAgAkW+5XizvHeiEAAAAAz6BoAAAC+howAAAAmMGsAAAB/5qMLChEIAABggq9mBBgjAACAHyMQAADADMMDxUUHDhzQlClTFBsbK4vFom3btjk3yTC0fPlyxcTEKDg4WBMnTtSJEydcugaBAAAAJjR1DbhTXFVbW6sRI0YoNze3xe1r1qzRCy+8oPXr1+vw4cPq0aOH0tPTVVdXZ/oajBEAAMBLZWRkKCMjo8VthmFo7dq1euKJJzR16lRJ0saNGxUVFaVt27Zp5syZpq5BRgAAADOaZg24UyTV1NQ4lfr6+jY1p6ysTBUVFZo4caKjzmazKTk5WYcOHTJ9HgIBAABM8FTXQFxcnGw2m6Pk5OS0qT0VFRWSpKioKKf6qKgoxzYz6BoAAKADlZeXKzQ01PHaarV2YmvICAAAYI6HZg2EhoY6lbYGAtHR0ZKkyspKp/rKykrHNjMIBAAAMKEzZg1cS0JCgqKjo7V3715HXU1NjQ4fPqyUlBTT56FrAAAAL3Xx4kWdPHnS8bqsrEzHjh1TWFiY+vbtq8WLF+upp57SwIEDlZCQoCeffFKxsbGaNm2a6WsQCAAAYIbduFLcOd5FR44c0Z133ul4vXTpUknS7NmzVVBQoGXLlqm2tlYLFixQVVWVxo0bp507dyooKMj0NQgEAAAwo42rAzod76LU1FQZ13hYkcVi0erVq7V69eo2N4tAAAAAEyxy86FDHmuJZzFYEAAAP0ZGAAAAMz63OmCbj/dCBAIAAJjg7hRAT08f9BS6BgAA8GNkBAAAMKMTZg10BI9nBFauXCmLxeJUEhMTPX0ZAAA6lMUw3C7eqF0yAkOHDtWePXv+/0W6kXgAAMAbtcs3dLdu3Vx64AEAAF7P/q/izvFeqF0GC544cUKxsbHq16+fHnzwQZ06deqq+9bX16umpsapAADgbXy1a8DjgUBycrIKCgq0c+dO5eXlqaysTLfffrsuXLjQ4v45OTmy2WyOEhcX5+kmAQCAq/B4IJCRkaH7779fSUlJSk9P13//93+rqqpKmzdvbnH/7OxsVVdXO0p5ebmnmwQAgPsMDxQv1O6j+Hr16qWbb77Z6TGKn2e1WmW1Wtu7GQAAuMdHVxZs9wWFLl68qNLSUsXExLT3pQAAaDdNKwu6U7yRxwOBRx99VEVFRfroo4/0hz/8Qffee6+6du2qWbNmefpSAADATR7vGjh9+rRmzZql8+fPq3fv3ho3bpyKi4vVu3dvT18KAICO46NdAx4PBF5//XVPnxIAgE5nsV8p7hzvjXjoEAAAfoy1fwEAMIOuAQAA/BhPHwQAAL6GjAAAACa4+7wAb33WAIEAAABm+OgYAboGAADwY2QEAAAww5DkzloA3pkQIBAAAMAMxggAAODPDLk5RsBjLfEoxggAAODHyAgAAGCGj84aIBAAAMAMuySLm8d7IboGAADwY2QEAAAwgVkDAAD4Mx8dI0DXAAAAXmjlypWyWCxOJTEx0ePXISMAAIAZnZARGDp0qPbs2eN43a2b57+2CQQAADCjEwKBbt26KTo6uu3XNIGuAQAAOlBNTY1Tqa+vv+q+J06cUGxsrPr166cHH3xQp06d8nh7CAQAADDD7oEiKS4uTjabzVFycnJavFxycrIKCgq0c+dO5eXlqaysTLfffrsuXLjg0bdF1wAAACZ4avpgeXm5QkNDHfVWq7XF/TMyMhx/JyUlKTk5WfHx8dq8ebPmzZvX5nZ8EYGAB6XHjujsJgAA2ouHxgiEhoY6BQJm9erVSzfffLNOnjzZ9ja0gK4BAACuAxcvXlRpaaliYmI8el4CAQAAzLAb7hcXPProoyoqKtJHH32kP/zhD7r33nvVtWtXzZo1y6Nvi64BAADM6ODpg6dPn9asWbN0/vx59e7dW+PGjVNxcbF69+7d9ja0gEAAAAAv9Prrr3fIdQgEAAAwxc2MgLzzWQMEAgAAmMFDhwAAgK8hIwAAgBl2Q26l912cNdBRCAQAADDDsF8p7hzvhegaAADAj5ERAADADB8dLEggAACAGYwRAADAj/loRoAxAgAA+DEyAgAAmGHIzYyAx1riUQQCAACYQdcAAADwNWQEAAAww26X5MaiQHbvXFCIQAAAADPoGgAAAL6GjAAAAGb4aEaAQAAAADN8dGVBugYAAPBjZAQAADDBMOwy3HiUsDvHticCAQAAzDAM99L7jBEAAOA6Zrg5RsBLAwHGCAAA4MfICAAAYIbdLlnc6OdnjAAAANcxugYAAICvISMAAIAJht0uw42uAaYPAgBwPaNrAAAA+BoyAgAAmGE3JIvvZQQIBAAAMMMwJLkzfdA7AwG6BgAA8GNkBAAAMMGwGzLc6Bow/C0jkJubq5tuuklBQUFKTk7W//zP/7TXpQAAaH+G3f3SBu39fdougcCmTZu0dOlSrVixQn/84x81YsQIpaen69y5c+1xOQAA2p1hN9wuruqI79N2CQSee+45zZ8/X3PnztWQIUO0fv16de/eXb/85S/b43IAAPikjvg+9fgYgcuXL+vo0aPKzs521HXp0kUTJ07UoUOHmu1fX1+v+vp6x+vq6mpJ0j/V4Na6DQAA3/dPNUjqmP73fxr1bj04qKmtNTU1TvVWq1VWq7XZ/q5+n7aVxwOBTz/9VI2NjYqKinKqj4qK0ocffths/5ycHK1atapZ/UH9t6ebBgDwURcuXJDNZmuXcwcGBio6OloHK9z/XurZs6fi4uKc6lasWKGVK1c229fV79O26vRZA9nZ2Vq6dKnjdVVVleLj43Xq1Kl2+z/V19TU1CguLk7l5eUKDQ3t7OZ4Pe6Xa7hfruOeucad+2UYhi5cuKDY2Nh2ap0UFBSksrIyXb582e1zGYYhi8XiVNdSNqAjeTwQiIiIUNeuXVVZWelUX1lZqejo6Gb7Xy0lYrPZ+A/IRaGhodwzF3C/XMP9ch33zDVtvV8d8aMxKChIQUFB7X6dz3P1+7StPD5YMDAwUCNHjtTevXsddXa7XXv37lVKSoqnLwcAgE/qqO/TdukaWLp0qWbPnq1Ro0ZpzJgxWrt2rWprazV37tz2uBwAAD6pI75P2yUQmDFjhv7+979r+fLlqqio0C233KKdO3c2G/DQEqvVqhUrVnR6n8n1hHvmGu6Xa7hfruOeuYb7dXXufJ+aZTG8dc1DAADQ7njoEAAAfoxAAAAAP0YgAACAHyMQAADAjxEIAADgx7wuEGjv5y77ipUrV8pisTiVxMTEzm6WVzlw4ICmTJmi2NhYWSwWbdu2zWm7YRhavny5YmJiFBwcrIkTJ+rEiROd01gv0Nr9mjNnTrPP3OTJkzunsV4gJydHo0ePVkhIiCIjIzVt2jSVlJQ47VNXV6esrCyFh4erZ8+eyszMbLZKnL8wc79SU1ObfcYWLlzYSS32H14VCHTEc5d9ydChQ3X27FlHOXjwYGc3yavU1tZqxIgRys3NbXH7mjVr9MILL2j9+vU6fPiwevToofT0dNXV1XVwS71Da/dLkiZPnuz0mXvttdc6sIXepaioSFlZWSouLtbu3bvV0NCgSZMmqba21rHPkiVL9NZbb2nLli0qKirSmTNnNH369E5sdecxc78kaf78+U6fsTVr1nRSi/2I4UXGjBljZGVlOV43NjYasbGxRk5OTie2yjutWLHCGDFiRGc347ohydi6davjtd1uN6Kjo40f/ehHjrqqqirDarUar732Wie00Lt88X4ZhmHMnj3bmDp1aqe053pw7tw5Q5JRVFRkGMaVz1NAQICxZcsWxz4ffPCBIck4dOhQZzXTa3zxfhmGYdxxxx3Gt7/97c5rlJ/ymoxA03OXJ06c6Khrj+cu+5ITJ04oNjZW/fr104MPPqhTp051dpOuG2VlZaqoqHD6vNlsNiUnJ/N5u4b9+/crMjJSgwYN0re+9S2dP3++s5vkNaqrqyVJYWFhkqSjR4+qoaHB6TOWmJiovn378hlT8/vV5NVXX1VERISGDRum7OxsXbp0qTOa51c6/THETTrqucu+Ijk5WQUFBRo0aJDOnj2rVatW6fbbb9f777+vkJCQzm6e16uoqJCkFj9vTdvgbPLkyZo+fboSEhJUWlqq733ve8rIyNChQ4fUtWvXzm5ep7Lb7Vq8eLHGjh2rYcOGSbryGQsMDFSvXr2c9uUz1vL9kqQHHnhA8fHxio2N1fHjx/XYY4+ppKREb775Zie21vd5TSAA12RkZDj+TkpKUnJysuLj47V582bNmzevE1sGXzVz5kzH38OHD1dSUpL69++v/fv3Ky0trRNb1vmysrL0/vvvM07HpKvdrwULFjj+Hj58uGJiYpSWlqbS0lL179+/o5vpN7yma6Cjnrvsq3r16qWbb75ZJ0+e7OymXBeaPlN83tquX79+ioiI8PvP3KJFi7Rjxw7t27dPffr0cdRHR0fr8uXLqqqqctrf3z9jV7tfLUlOTpYkv/+MtTevCQQ66rnLvurixYsqLS1VTExMZzflupCQkKDo6Ginz1tNTY0OHz7M582k06dP6/z58377mTMMQ4sWLdLWrVv1zjvvKCEhwWn7yJEjFRAQ4PQZKykp0alTp/zyM9ba/WrJsWPHJMlvP2Mdxau6Bjriucu+4tFHH9WUKVMUHx+vM2fOaMWKFeratatmzZrV2U3zGhcvXnT6JVFWVqZjx44pLCxMffv21eLFi/XUU09p4MCBSkhI0JNPPqnY2FhNmzat8xrdia51v8LCwrRq1SplZmYqOjpapaWlWrZsmQYMGKD09PRObHXnycrKUmFhobZv366QkBBHv7/NZlNwcLBsNpvmzZunpUuXKiwsTKGhoXrkkUeUkpKiW2+9tZNb3/Fau1+lpaUqLCzU3XffrfDwcB0/flxLlizR+PHjlZSU1Mmt93GdPW3hi376058affv2NQIDA40xY8YYxcXFnd0krzRjxgwjJibGCAwMNG688UZjxowZxsmTJzu7WV5l3759hqRmZfbs2YZhXJlC+OSTTxpRUVGG1Wo10tLSjJKSks5tdCe61v26dOmSMWnSJKN3795GQECAER8fb8yfP9+oqKjo7GZ3mpbulSQjPz/fsc9nn31mPPzww8YNN9xgdO/e3bj33nuNs2fPdl6jO1Fr9+vUqVPG+PHjjbCwMMNqtRoDBgwwvvvd7xrV1dWd23A/YDEMw+jIwAMAAHgPrxkjAAAAOh6BAAAAfoxAAAAAP0YgAACAHyMQAADAjxEIAADgxwgEAADwYwQCAAD4MQIBAAD8GIEAAAB+jEAAAAA/9v8Aor55y9Pt/D0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -277,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "id": "a45c6f83", "metadata": {}, "outputs": [ @@ -286,7 +272,7 @@ "output_type": "stream", "text": [ "Starting 6 engines with \n", - "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.04engine/s]\n", + "100%|███████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.09engine/s]\n", "%autopx enabled\n" ] } @@ -339,186 +325,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "id": "d35b55bb", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:01\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 1 - }, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[output:4]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 4 - }, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[output:3]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 3 - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:02\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 5 - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:02\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 2 - }, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[output:0]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { - "text/html": [ - "\n", - "\n" - ], "text/plain": [ - "" - ] - }, - "metadata": { - "engine": 0 - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "%px: 0%| | 0/6 [00:05" ] @@ -695,7 +502,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:05<00:00, 1.10tasks/s]\n" + "%px: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 11.28tasks/s]\n" ] } ], @@ -706,7 +513,7 @@ "from units_config import units\n", "\n", "fvf_prep = FiniteVolumeFluxPrep(\n", - " stencil_factory, grid_data\n", + " stencil_factory, grid_data, grid_type=0\n", ")\n", "\n", "crx = domain_configuration[\"quantity_factory\"].zeros(\n", @@ -774,7 +581,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 21, "id": "4869723d", "metadata": {}, "outputs": [], @@ -822,7 +629,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 23, "id": "4446b419", "metadata": {}, "outputs": [ @@ -830,7 +637,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:09<00:00, 1.58s/tasks]\n" + "%px: 100%|███████████████████████████████████████████████████| 6/6 [00:20<00:00, 3.38s/tasks]\n" ] } ], @@ -882,785 +689,15 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 24, "id": "8043021f", "metadata": { - "collapsed": true, "jupyter": { "outputs_hidden": true }, "tags": [] }, - "outputs": [ - { - "data": { - "text/plain": [ - "[stderr:0] [4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:1] [4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:3] [4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:2] [4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:5] [4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:4] [4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "tracer_initial = cp.deepcopy(tracers)\n", "mfxd_initial = cp.deepcopy(mfxd)\n", @@ -1685,7 +722,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 25, "id": "f1e2588c", "metadata": {}, "outputs": [ @@ -1700,7 +737,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqNUlEQVR4nO3deXxU1f3/8fckkAlbEmNIQjDsKiBbDZIvKIKaEpCi1A3UryBVqErcqK1alUXUuCJWEapVaKlURAu2yheKKLhFEYSfWgGRsikkbE0CARLInN8fmAlDFmbuzNxMbl7Px+M+NHfOvffcGTLvzGfOPddljDECAAAAAAAA0OBF1XUHAAAAAAAAAEQGioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioVAmAwcOFADBw6s624AAByiPuRKQUGBrrrqKp1++ulyuVyaPn16XXcJAGo0efJkuVwun3Xt2rXTjTfe6LNu06ZNGjRokOLj4+VyubRo0SJJ0hdffKF+/fqpWbNmcrlcWrdunT0dr+dqej4BRA6KhTX49NNPNXnyZBUWFtZ1VxCkF198UXPmzAnLvr/99ltNnjxZW7duDcv+w2nnzp2aPHmy33/UhOt34h//+IfOPfdcxcbGqk2bNpo0aZKOHTsW0mMAkYBccQ5ypWZ33323li5dqvvvv19z587V4MGDtXjxYk2ePNnWfmzcuFF33323+vXrp9jYWLlcrlqf03BmUV2cP4DQGj16tL7++ms9+uijmjt3rnr37q2jR4/q6quv1v79+/Xss89q7ty5atu2bV13tV6o7vmcN2+e7V8wrVq1SrfddpsyMjLUuHHjKoXjk73yyivq0qWLYmNjdeaZZ+r5558PWV/q4vyBWhlU66mnnjKSzJYtW+q6KwjSOeecYwYMGBCWfS9YsMBIMh988EGVx0pLS01paWlYjhsKX3zxhZFkZs+e7Vf7cPxOLF682LhcLnPRRReZl156ydx+++0mKirK3HLLLSE7BhApyBXnIFdqlpKSYq6//nqfdePHjzd2/8k5e/ZsExUVZbp162Z69epV6+9euLOoLs4fgH8mTZpU5ffzyJEjpqyszPvzoUOHjCTzwAMP+LRbv369kWRefvllW/rqFDU9n0OHDjVt27a1tS+TJk0yjRs3NhkZGeass86q9b161qxZRpK58sorzUsvvWRuuOEGI8k8/vjjIelLXZw/UJtG9pcnncfj8aisrEyxsbF13RWvkpISNWvWrK67Ue+E8nmLiYkJyX6c7J577lGPHj30r3/9S40aHX87iouL02OPPaY777xTnTt3ruMeAnWDXHGOhpYru3fvVkJCQtiPY4zRkSNH1KRJk2ofv+yyy1RYWKgWLVro6aefrnUUPVkE4ERut9vn5z179khSlfe23bt3V7s+GA0ha2t6PsPhVH9P3Xrrrbr33nvVpEkT5eTk6Lvvvqu23eHDh/XAAw9o6NChevPNNyVJY8eOlcfj0dSpUzVu3DiddtppYTsPoE7UdbUyElV8w3TyUvGNtCQzfvx489e//tV07drVNGrUyCxcuNAYc3zkSN++fU1iYqKJjY015557rlmwYEG1x5k7d64577zzTJMmTUxCQoLp37+/Wbp0qU+bxYsXmwsuuMA0bdrUNG/e3Fx66aXmm2++8WkzevRo06xZM/P999+bIUOGmObNm5vLL7+81nP84YcfzK9+9SvTqlUrExMTY9q1a2duueUWnxELmzdvNldddZU57bTTTJMmTUxmZqZ55513fPbzwQcfGElm/vz55pFHHjGtW7c2brfbXHzxxWbTpk1VjvvZZ5+ZIUOGmISEBNO0aVPTvXt3M336dJ8269evN1deeaU57bTTjNvtNhkZGebtt9/2aTN79mwjyXz88cfm7rvvNklJSaZp06Zm+PDhZvfu3d52bdu2rfI6VowGqdjHihUrzK233mpatmxpEhISjDHGbN261dx6663mrLPOMrGxsSYxMdFcddVVPqMSKrY/eakYDTJgwIAqI08KCgrMr371K5OcnGzcbrfp0aOHmTNnjk+bLVu2GEnmqaeeMn/84x9Nhw4dTExMjOndu7dZtWpVzS/qT/bt22d+85vfmG7duplmzZqZFi1amMGDB5t169ZVed1OXmoaZXiq3wkr/v3vfxtJZsaMGT7rf/zxRyPJTJ061fK+gUhDrhxHrjg3V2rq++jRo6tdX6G8vNw8++yzpmvXrsbtdpvk5GQzbtw4s3//fp8+tG3b1gwdOtQsWbLEZGRkGLfbbZ599tlT9t2Y2kf1BptFZWVlZvLkyaZTp07G7XabxMREc/7555t//etfxhgT8vNfunSp6dmzp3G73aZLly7mrbfeCqg/QEP20Ucfmd69exu32206dOhgZs2aVe3IwrZt25rRo0cbY6rP74rHa8oCYwLLneoyw5jA8vqHH34wl19+uWnWrJlJSkoyv/nNb8yxY8d82paXl5vp06ebbt26GbfbbZKSkkx2drb54osvfNrNnTvXnHvuuSY2NtacdtppZsSIEWb79u2nfH79ybmans8BAwZUu77CkSNHzMSJE03Hjh1NTEyMOeOMM8xvf/tbc+TIEZ8+1Pb31KnUNgr83XffNZLMu+++67P+008/NZLM3Llza913cXGxufPOO03btm1NTEyMadmypcnKyjJr1qwxxpiwnP9ZZ51l3G63Offcc83KlSsD6g9gDCMLq3XFFVfou+++09/+9jc9++yzSkpKkiS1bNnS2+b999/XG2+8oZycHCUlJaldu3aSpOeee06XXXaZrr/+epWVlen111/X1VdfrXfeeUdDhw71bj9lyhRNnjxZ/fr108MPP6yYmBh9/vnnev/99zVo0CBJ0ty5czV69GhlZ2friSee0KFDhzRz5kxdcMEFWrt2rfeYknTs2DFlZ2frggsu0NNPP62mTZvWeH47d+5Unz59VFhYqHHjxqlz58768ccf9eabb+rQoUOKiYlRQUGB+vXrp0OHDumOO+7Q6aefrj//+c+67LLL9Oabb+qXv/ylzz4ff/xxRUVF6Z577lFRUZGefPJJXX/99fr888+9bZYtW6Zf/OIXatWqle68806lpqZq/fr1euedd3TnnXdKkv7973/r/PPPV+vWrXXfffepWbNmeuONNzR8+HC99dZbVY57++2367TTTtOkSZO0detWTZ8+XTk5OZo/f74kafr06br99tvVvHlzPfDAA5KklJQUn33cdtttatmypSZOnKiSkhJJxycr/vTTTzVy5EidccYZ2rp1q2bOnKmBAwfq22+/VdOmTXXhhRfqjjvu0B/+8Af9/ve/V5cuXSTJ+9+THT58WAMHDtT333+vnJwctW/fXgsWLNCNN96owsJC73NQYd68eTpw4IB+/etfy+Vy6cknn9QVV1yh//znP2rcuHGNr+9//vMfLVq0SFdffbXat2+vgoIC/fGPf9SAAQP07bffKi0tTV26dNHDDz+siRMnaty4cerfv78kqV+/ftXu81S/E0VFRTp69GiNfaoQGxur5s2bS5LWrl0rSerdu7dPm7S0NJ1xxhnexwEnIFfIFafnyoUXXqi5c+fqhhtu0M9//nONGjVKktSxY0ft3LlTy5Yt09y5c6vs+9e//rXmzJmjMWPG6I477tCWLVv0wgsvaO3atfrkk098+rVx40Zde+21+vWvf62xY8fq7LPPrrHP/go2iyZPnqzc3FzdfPPN6tOnj4qLi7V69Wp9+eWX+vnPf65f//rXITv/TZs2acSIEbrllls0evRozZ49W1dffbWWLFmin//85371B2iovv76aw0aNEgtW7bU5MmTdezYMU2aNKnK+/fJrrjiCiUkJOjuu+/Wtddeq0svvVTNmzdXSkqKWrdurccee0x33HGHzjvvPO++As2d6jIjkLwuLy9Xdna2MjMz9fTTT+u9997TM888o44dO+rWW2/1trvppps0Z84cDRkyRDfffLOOHTumjz76SJ999pn3PfDRRx/VQw89pGuuuUY333yz9uzZo+eff14XXnih1q5dW+toQH9yrqbns1mzZioqKtIPP/ygZ599VpK8nxk8Ho8uu+wyffzxxxo3bpy6dOmir7/+Ws8++6y+++67KjdHqenvqWDUlBUZGRmKiorS2rVr9b//+781bn/LLbfozTffVE5Ojrp27ap9+/bp448/1vr163XuuefqgQceCNn5r1y5UvPnz9cdd9wht9utF198UYMHD9aqVavUrVs3v/oDSGJkYU1q+xZakomKijL//ve/qzx26NAhn5/LyspMt27dzMUXX+xdt2nTJhMVFWV++ctfmvLycp/2Ho/HGGPMgQMHTEJCghk7dqzP4/n5+SY+Pt5nfcU3W/fdd59f5zZq1CgTFRVV5VukE49/1113GUnmo48+8j524MAB0759e9OuXTtvvytGgHTp0sVn9Mhzzz1nJJmvv/7aGGPMsWPHTPv27U3btm3Nf//732qPaYwxl1xyienevbvPtyQej8f069fPnHnmmd51Fd/EZWVl+Wx/9913m+joaFNYWOhdV9PcUhX7uOCCC6p883by62iMMXl5eUaS+ctf/uJdV9vcUiePAJk+fbqRZP76179615WVlZm+ffua5s2bm+LiYmNM5QiQ008/3Wdkwdtvv20kmX/+859VjnWiI0eOVPl3tWXLFuN2u83DDz/sXRfKOQur+zasuqXiW9oT91fdN5XnnXee+Z//+R+/+gXUF+QKuXIyp+WKMZWjGk5U02iNjz76yEgyr732ms/6JUuWVFlfMaJzyZIltfa1OrX97gWbRT179jRDhw6ttU0oz//EkYRFRUWmVatW5mc/+1lA/QEaouHDh5vY2Fizbds277pvv/3WREdH1zqy0Bjf0dknqsirk0f7B5o7J2eGlbw++b34Zz/7mcnIyPD+/P777xtJ5o477qjy3FRk3tatW010dLR59NFHfR7/+uuvTaNGjaqsP5m/OVfT81nTnH1z5841UVFRPn8/GFM5h+Ann3ziXVfb31OnUtvIwvHjx5vo6OhqH2vZsqUZOXJkrfuOj4+vko0nC9X5SzKrV6/2rtu2bZuJjY01v/zlLwPqD8DdkC0aMGCAunbtWmX9iXPn/Pe//1VRUZH69++vL7/80rt+0aJF8ng8mjhxoqKifF+CijswLVu2TIWFhbr22mu1d+9e7xIdHa3MzEx98MEHVY594jdHNfF4PFq0aJGGDRtW5ZuRE4+/ePFi9enTRxdccIH3sebNm2vcuHHaunWrvv32W5/txowZ4zOXUsVItf/85z+Sjn8bs2XLFt11111VvpGqOOb+/fv1/vvv65prrtGBAwe857xv3z5lZ2dr06ZN+vHHH322HTdunM9dq/r376/y8nJt27btlM9FhbFjxyo6Otpn3Ymv49GjR7Vv3z516tRJCQkJPq9lIBYvXqzU1FRde+213nWNGzfWHXfcoYMHD2rlypU+7UeMGOEz98XJz2lN3G63999VeXm59u3bp+bNm+vss8+23PdTeeaZZ7Rs2bJTLr/73e+82xw+fNjb35PFxsZ6HwcaCnKFXAlUfc+VBQsWKD4+Xj//+c99/k1mZGSoefPmVf5Ntm/fXtnZ2ZaPV51gsyghIUH//ve/tWnTpoCPHej5p6Wl+YxIiouL06hRo7R27Vrl5+cH3R/AqcrLy7V06VINHz5cbdq08a7v0qVLyN9TrOTOyZlhJa9vueUWn5/79+/v897+1ltvyeVyadKkSVW2rci8v//97/J4PLrmmmt8jpuamqozzzyz2uOeKBw5Jx1/r+zSpYs6d+7s06+LL75Ykqr0q6a/p4Jx+PDhGucN9jcrPv/8c+3cuTPgYwd6/n379lVGRob35zZt2ujyyy/X0qVLVV5eHnR/0HBwGbJF7du3r3b9O++8o0ceeUTr1q1TaWmpd/2JHzw2b96sqKioWt/EKv7Iq3gTOFlcXJzPz40aNdIZZ5xxyn7v2bNHxcXF3iHINdm2bZsyMzOrrK+4FGrbtm0++zgxeCV5P4z897//lXT8nCXVetzvv/9exhg99NBDeuihh6pts3v3brVu3drv4/qjutfy8OHDys3N1ezZs/Xjjz/KGON9rKioyO99n2jbtm0688wzq3yQP/E5PZHVc/N4PHruuef04osvasuWLd5QkKTTTz/dUt9P5cRA8lfFHxQn/p5UqG3SesCpyBVyJVD1PVc2bdqkoqIiJScnV/t4xc0DKtT0OxKMYLPo4Ycf1uWXX66zzjpL3bp10+DBg3XDDTeoR48epzx2oOffqVMnn997STrrrLMkSVu3blVqampQ/QGcas+ePTp8+LDOPPPMKo+dffbZWrx4cciOZSV3Tn5vCzSvY2NjfaY1kY6/v5/43r5582alpaUpMTGxxr5v2rRJxphqnydJtU5XIYUn5yr6tX79+irnWMGurCgrK6v2MX+y4sknn9To0aOVnp6ujIwMXXrppRo1apQ6dOhwymMHev7VvX5nnXWWDh06pD179ig1NTWo/qDhoFhoUXVvCB999JEuu+wyXXjhhXrxxRfVqlUrNW7cWLNnz9a8efMC2r/H45F0fL6K1NTUKo9X3K2vwonf+teFk0dQVDgxJE6l4pzvueeeGr/l69SpU8iPW91refvtt2v27Nm666671LdvX8XHx8vlcmnkyJHefoab1XN77LHH9NBDD+lXv/qVpk6dqsTEREVFRemuu+4KW9/3799fY4CeqEmTJoqPj5cktWrVSpK0a9cupaen+7TbtWuX+vTpE/qOAhGMXPFFroRepOWKx+NRcnKyXnvttWofP/mDUTi+RAo2iy688EJt3rxZb7/9tv71r3/pT3/6k5599lnNmjVLN998c63bBnr+/gimPwCCZyV3Tn5vCzSva3pvD5TH45HL5dL//d//VbvPijn0ahKunPN4POrevbumTZtW7eMnv3eHKyvKy8u1e/duny94ysrKtG/fPqWlpdW6/TXXXKP+/ftr4cKF+te//qWnnnpKTzzxhP7+979ryJAhtW4b6Pn7I5j+oOGgWFiDk7+59cdbb72l2NhYLV261OdyltmzZ/u069ixozwej7799lv16tWr2n117NhRkpScnKysrKyA+1KTli1bKi4uTt98802t7dq2bauNGzdWWb9hwwbv44GoOJ9vvvmmxvOp+CajcePGIT1nK6/lm2++qdGjR+uZZ57xrjty5IgKCwst77tt27b66quv5PF4fD6AW31Oa/Lmm2/qoosu0iuvvOKzvrCw0HtTBSnw56W29ldccUWVy92qM3r0aM2ZM0eSvP/2V69e7fNhbOfOnfrhhx80bty4gPoHRDpyhVxxeq7UpKZz6tixo9577z2df/75dTaaPBRZlJiYqDFjxmjMmDE6ePCgLrzwQk2ePNlbnAvV+VeMWDpxf999950k+Uzgf6r+AA1Ny5Yt1aRJk2ovz68ul4IRitwJR1537NhRS5cu1f79+2scXdixY0cZY9S+fXvvqOVA+JtzNantvfL//b//p0suucRS/obCiVlx6aWXetevXr1aHo+nxr+9TtSqVSvddtttuu2227R7926de+65evTRR73FuVCdf3X/zr/77js1bdrU50uoU/UHYM7CGjRr1kyS/H5zk45/q+NyuXwuz9m6dWuVOxQNHz5cUVFRevjhh6t8y1Lx7X52drbi4uL02GOPVXuX2T179vjdrxNFRUVp+PDh+uc//6nVq1dXebzi+JdeeqlWrVqlvLw872MlJSV66aWX1K5du4DngTj33HPVvn17TZ8+vcpzWnHM5ORkDRw4UH/84x+1a9euKvuwes7NmjUL6HWUjr+WJ4+0eP75531e24p9S/79O7n00kuVn5/vvaOmdPxuo88//7yaN2+uAQMGBNTHmlTX9wULFlSZHyXQf+O1tbcyZ+E555yjzp0766WXXvJ5XmfOnCmXy6WrrrrKr34B9QW5Qq44PVdqUtM5XXPNNSovL9fUqVOrbHPs2LGAn2Mrgs2iffv2+fzcvHlzderUyeey5lCd/86dO7Vw4ULvz8XFxfrLX/6iXr16eUcf+dMfoKGJjo5Wdna2Fi1apO3bt3vXr1+/XkuXLg3psUKRO+HI6yuvvFLGGE2ZMqXKYxXv71dccYWio6M1ZcqUKu/5xpgq7y8n8zfnalJxR+STXXPNNfrxxx/18ssvV3ns8OHD3jtIh9PFF1+sxMREzZw502f9zJkz1bRpUw0dOrTGbcvLy6ucV3JystLS0qpkRSjOPy8vz2eOyB07dujtt9/WoEGDFB0d7Xd/AEYW1qBiDrYHHnhAI0eOVOPGjTVs2DDvH3zVGTp0qKZNm6bBgwfruuuu0+7duzVjxgx16tRJX331lbddp06d9MADD2jq1Knq37+/rrjiCrndbn3xxRdKS0tTbm6u4uLiNHPmTN1www0699xzNXLkSLVs2VLbt2/Xu+++q/PPP18vvPCCpXN77LHH9K9//UsDBgzw3n59165dWrBggT7++GMlJCTovvvu09/+9jcNGTJEd9xxhxITE/XnP/9ZW7Zs0VtvvRXwpWlRUVGaOXOmhg0bpl69emnMmDFq1aqVNmzYoH//+9/eoJ4xY4YuuOACde/eXWPHjlWHDh1UUFCgvLw8/fDDD/p//+//BXy+GRkZmjlzph555BF16tRJycnJNc4BUuEXv/iF5s6dq/j4eHXt2lV5eXl67733qszN1KtXL0VHR+uJJ55QUVGR3G63Lr744mrnHxo3bpz++Mc/6sYbb9SaNWvUrl07vfnmm/rkk080ffp0tWjRIuBzq6nvDz/8sMaMGaN+/frp66+/1muvvVZlDoqOHTsqISFBs2bNUosWLdSsWTNlZmbWOM9Hbb8TVuYslKSnnnpKl112mQYNGqSRI0fqm2++0QsvvKCbb77ZO+cW4BTkCrni9FypScW//TvuuEPZ2dmKjo7WyJEjNWDAAP36179Wbm6u1q1bp0GDBqlx48batGmTFixYoOeee87yF0dFRUV6/vnnJUmffPKJJOmFF15QQkKCEhISlJOT420bTBZ17dpVAwcOVEZGhhITE7V69Wq9+eabPvsP1fmfddZZuummm/TFF18oJSVFr776qgoKCnxGGvvTH6AhmjJlipYsWaL+/fvrtttu836xcs455/jkaSgEmzvhyOuLLrpIN9xwg/7whz9o06ZNGjx4sDwejz766CNddNFFysnJUceOHfXII4/o/vvv19atWzV8+HC1aNFCW7Zs0cKFCzVu3Djdc889NR7D35yrSUZGhubPn68JEybovPPOU/PmzTVs2DDdcMMNeuONN3TLLbfogw8+0Pnnn6/y8nJt2LBBb7zxhpYuXVrtDdb8sW3bNs2dO1eSvF94PvLII5KOj86/4YYbJB2/tHnq1KkaP368rr76amVnZ+ujjz7SX//6Vz366KO1zgV54MABnXHGGbrqqqvUs2dPNW/eXO+9956++OILn1GYoTr/bt26KTs7W3fccYfcbrdefPFFSfIWiv3tD1D9vcFhjDFm6tSppnXr1iYqKspIMlu2bDHGHL8leU23Gn/llVfMmWeeadxut+ncubOZPXu2mTRpUrW3YX/11VfNz372M+N2u81pp51mBgwYYJYtW+bT5oMPPjDZ2dkmPj7exMbGmo4dO5obb7zR53boo0ePNs2aNQvo3LZt22ZGjRplWrZsadxut+nQoYMZP368KS0t9bbZvHmzueqqq0xCQoKJjY01ffr0Me+8806V/kkyCxYs8Fm/ZcsWI8nMnj3bZ/3HH39sfv7zn5sWLVqYZs2amR49epjnn3/ep83mzZvNqFGjTGpqqmncuLFp3bq1+cUvfmHefPNNb5vZs2cbSeaLL76otj8ffPCBd11+fr4ZOnSoadGihZFkBgwYUOs+jDHmv//9rxkzZoxJSkoyzZs3N9nZ2WbDhg2mbdu2ZvTo0T5tX375ZdOhQwcTHR3tc+wBAwZ4j1WhoKDAu9+YmBjTvXv3Ks9RxXP31FNPVemXJDNp0qQq60905MgR85vf/Ma0atXKNGnSxJx//vkmLy+v2v68/fbbpmvXrqZRo0bVvl4nq+l3IhgLFy40vXr1Mm6325xxxhnmwQcfNGVlZUHvF4hE5Aq54vRcqe7f8rFjx8ztt99uWrZsaVwuV5V/uy+99JLJyMgwTZo0MS1atDDdu3c3v/vd78zOnTu9bdq2bWuGDh1aaz+rO+fqlrZt21ZpbzWLHnnkEdOnTx+TkJBgmjRpYjp37mweffRRn21Def5Lly41PXr08L4fnPx74k9/gIZq5cqVJiMjw8TExJgOHTqYWbNmVZunJ78v1/QeWlNeGRNc7py4f6t5Xd15HTt2zDz11FOmc+fOJiYmxrRs2dIMGTLErFmzxqfdW2+9ZS644ALTrFkz06xZM9O5c2czfvx4s3Hjxmr7WcHfnKvp+Tx48KC57rrrTEJCQpX36rKyMvPEE0+Yc845x/s3TkZGhpkyZYopKirytqvt76nqVLyG1S0n55sxx9+vzz77bBMTE2M6duxonn32WePxeGo9Rmlpqfntb39revbs6f1bpWfPnubFF18M2/n/9a9/9f7t+LOf/cznbxh/+wO4jAlgxm4AAAAAtmrXrp26deumd955p667AgCIUC6XS+PHj7d8pQhwIuYsBAAAAAAAACCJYiEAAAAAAACAn1AsBAAAAAAAACCJYiEAOM6HH36oYcOGKS0tTS6XS4sWLTrlNitWrNC5554rt9utTp06ac6cOWHvJwDAP1u3bm3Q8xWSawBwasYY5itEyFAsBACHKSkpUc+ePTVjxgy/2m/ZskVDhw7VRRddpHXr1umuu+7SzTffrKVLl4a5pwAAnBq5BgCAvbgbMgA4mMvl0sKFCzV8+PAa29x7771699139c0333jXjRw5UoWFhVqyZIkNvQQAwD/kGgAA4deorjtwMo/Ho507d6pFixZyuVx13R0ADZgxRgcOHFBaWpqiooIbiH3kyBGVlZUF1ZeT3xPdbrfcbndQ/ZKkvLw8ZWVl+azLzs7WXXfdFfS+Qa4BiByRkmvhzDSJXAs3cg1AJAhlpknB5VpMTIxiY2OD7kMkibhi4c6dO5Wenl7X3QAArx07duiMM86wvP2RI0fUvm1z5e8ut7yP5s2b6+DBgz7rJk2apMmTJ1veZ4X8/HylpKT4rEtJSVFxcbEOHz6sJk2aBH2MhoxcAxBp6jrXwplpErkWbuQagEgSbKZJP+VakybKt7h9amqqtmzZ4qiCYcQVC1u0aCFJukCXqpEa13FvADRkx3RUH2ux933JqrKyMuXvLteWNW0V1yLwb72KD3jUPmObduzYobi4OO/6UI3AQHiRawAiRSTkGplW/1X8+9mxfbvPawgAdiouLlZ6mzZBZ5r0U65J2uFyKdB3tWJJ6fn5Kisro1gYThVD2RupsRq5+FAFoA79NKNrqC6xiWsRZalY6N0+Li4sf5SnpqaqoKDAZ11BQYHi4uIYfREC5BqAiBFBuRauTJPItXCr+PcTztcQAPwVyukQ4iTFBbo/h94GJOKKhQDgVOXGo3ILWVJuPKHvzAn69u2rxYsX+6xbtmyZ+vbtG9bjAgDqNyu5Fu5Mk8g1AIBFUVGSlWJhufXppiJV8LNAAgD84pGxvATi4MGDWrdundatWydJ2rJli9atW6ft27dLku6//36NGjXK2/6WW27Rf/7zH/3ud7/Thg0b9OKLL+qNN97Q3XffHbJzBwA4jx2ZJpFrAACbREVZWxyIkYUAYBOPPLIyniLQrVavXq2LLrrI+/OECRMkSaNHj9acOXO0a9cu7wcsSWrfvr3effdd3X333Xruued0xhln6E9/+pOys7Mt9BYA0FBYyTUrSUiuAQBsYXVkoQNRLAQAm5Qbo3ILYRLoNgMHDpSpZZs5c+ZUu83atWsD7RoAoAGzkmtWcpBcAwDYgmKhF8VCALCJ1cuvrGwDAEC4Wck1Mg0AELEoFno58+JqAAAAAAAAAAFjZCEA2MQjo3JGFgIAHMJKrpFpAICIxchCL4qFAGATLkMGADgJlyEDAByFYqEXxUIAsIldNzgBAMAOdt3gBAAAW1As9KJYCAA28fy0WNkOAIBIYyXXyDQAQMRyuY4XDAPhcWaycYMTAAAAAAAAAJIYWQgAtim3eIMTK9sAABBuVnKNTAMARKyoqMBHFjoUxUIAsEm5Ob5Y2Q4AgEhjJdfINABAxKJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKVyBXh3rZ+2AwAg0ljJNTINABCxKBZ6USwEAJt4zPHFynYAAEQaK7lGpgEAIhbFQq+AnoXc3Fydd955atGihZKTkzV8+HBt3LjRp83AgQPlcrl8lltuuSWknQYAIBTINQCAU5BpAIBQCahYuHLlSo0fP16fffaZli1bpqNHj2rQoEEqKSnxaTd27Fjt2rXLuzz55JMh7TQA1EflP12uZWVBeJBrAGAdmRZZyDQACFLFyMJAFwcK6DLkJUuW+Pw8Z84cJScna82aNbrwwgu965s2barU1NTQ9BAAHMLqhyQ+WIUPuQYA1lnJNTItfMg0AAiSg4t/gQrqWSgqKpIkJSYm+qx/7bXXlJSUpG7duun+++/XoUOHatxHaWmpiouLfRYAcCKPcVleYA9yDQD8R6ZFtlBkmkSuAWhAGFnoZfkGJx6PR3fddZfOP/98devWzbv+uuuuU9u2bZWWlqavvvpK9957rzZu3Ki///3v1e4nNzdXU6ZMsdoNAKg3GFkY2cg1AAgMIwsjV6gyTSLXADQgLlfgxT/jzDt3uYyxdma33nqr/u///k8ff/yxzjjjjBrbvf/++7rkkkv0/fffq2PHjlUeLy0tVWlpqffn4uJipaena6AuVyNXYytdA4CQOGaOaoXeVlFRkeLi4izvp7i4WPHx8Xr/m3Q1bxH4N08HD3h0cbcdQfcDtSPXADhdJOQamWaPUGWaVHOuFRUW8hoCqDPFxcWKT0gISZ5U5FrRmWcqLjo6sG3LyxW/aZPjcs3SyMKcnBy98847+vDDD2sNH0nKzMyUpBoDyO12y+12W+kGAAAhQa4BAJwilJkmkWsA0BAFVCw0xuj222/XwoULtWLFCrVv3/6U26xbt06S1KpVK0sdBACnMBbnajLM7xQ25BoAWGcl18i08CHTACBIVuYgdOhlyAE9C+PHj9df//pXzZs3Ty1atFB+fr7y8/N1+PBhSdLmzZs1depUrVmzRlu3btU//vEPjRo1ShdeeKF69OgRlhMAgPqiYm4nKwvCg1wDAOvItMhCpgFAkGy8wcmMGTPUrl07xcbGKjMzU6tWrfJru9dff10ul0vDhw+3dFx/BTSycObMmZKkgQMH+qyfPXu2brzxRsXExOi9997T9OnTVVJSovT0dF155ZV68MEHQ9ZhAKivyk2Uyk3gYVLuzC+rIgK5BgDWWck1Mi18yDQACJJNIwvnz5+vCRMmaNasWcrMzNT06dOVnZ2tjRs3Kjk5ucbttm7dqnvuuUf9+/cP+JiBCvgy5Nqkp6dr5cqVQXUIAJzKI5c8gQ3o/mk7PlmFC7kGANZZyTUyLXzINAAIkk3FwmnTpmns2LEaM2aMJGnWrFl699139eqrr+q+++6rdpvy8nJdf/31mjJlij766CMVFhYGfNxAWBsvCQAIGJchAwCchEwDADhKEJchFxcX+ywn3kX+RGVlZVqzZo2ysrJOOGyUsrKylJeXV2PXHn74YSUnJ+umm24K7TnXgGIhAAAAAAAAYFF6erri4+O9S25ubrXt9u7dq/LycqWkpPisT0lJUX5+frXbfPzxx3rllVf08ssvh7zfNQnoMmQAgHXW5yzkki0AQOSxNmchmQYAiFBBXIa8Y8cOxcXFeVe73e6QdOnAgQO64YYb9PLLLyspKSkk+/QHxUIAsMnxuZ0Cv/zKyjYAAISblVwj0wAAESuIYmFcXJxPsbAmSUlJio6OVkFBgc/6goICpaamVmm/efNmbd26VcOGDfOu83g8kqRGjRpp48aN6tixY2B99gPFQgCwiUdRKucGJwAAh7CSa2QaACBiuVyBFwt/Ktz5KyYmRhkZGVq+fLmGDx/+0y48Wr58uXJycqq079y5s77++mufdQ8++KAOHDig5557Tunp6YH1108UCwHAJlyGDABwEi5DBhBqJoDRxy6+fAiLBv0aWBlZGGh7SRMmTNDo0aPVu3dv9enTR9OnT1dJSYn37sijRo1S69atlZubq9jYWHXr1s1n+4SEBEmqsj6UKBYCgE08ipKHkYUAAIewkmtkGgAgYtlULBwxYoT27NmjiRMnKj8/X7169dKSJUu8Nz3Zvn27oizsN5QoFgIAAAAAAAA2ycnJqfayY0lasWJFrdvOmTMn9B06CcVCALBJuXGp3AQ+sbuVbQAACDcruUamAQAilk0jC+sDioUAYJNyizc4KeeSLQBABLKSa2QaACBiUSz0olgIADbxmCh5LNzgxMNk8ACACGQl18g0AEDEoljoRbEQAGzCyEIAgJMwshAA4CgUC70oFgKATTyyNleTJ/RdAQAgaFZyjUwDAEQsioVezjwrAAAAAAAAAAFjZCEA2MSjKHksfEdjZRsAAMLNSq6RaQCAiMXIQi+KhQBgk3ITpXILNzixsg0AAOFmJdfINABAxHK5Ai/+uQKfZqo+oFgIADbxyCWPrMxZ6MwAAgDUb1ZyjUwDGh7D7z3qC0YWelEsBACbMLIQAOAkjCwEADgKxUIvioUAYJNyRancwlxNVrYBACDcrOQamQYAiFgUC72ceVYAAAAAAAAAAsbIQgCwice45DEW5iy0sA0AAOFmJdfINABAxGJkoRfFQgCwicfiZcgeBoEDACKQlVwj0wAAEYtioRfFQgCwicdEyWNhYncr2wAAEG5Wco1MAwBELIqFXhQLAcAm5XKpXIFffmVlGwAAws1KrpFpAICIRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAAAAAAAAABIyRhQBgk3JZu/yqPPRdAQAgaFZyjUwDAEQslyvwkYIuZ06vwchCALBJxeVaVpZAzZgxQ+3atVNsbKwyMzO1atWqWttPnz5dZ599tpo0aaL09HTdfffdOnLkiNVTBQA0AHZlmkSuAQ2FS8bvBeHRoF+DisuQA10ciJGFAGCTchOlcgsfkgLdZv78+ZowYYJmzZqlzMxMTZ8+XdnZ2dq4caOSk5OrtJ83b57uu+8+vfrqq+rXr5++++473XjjjXK5XJo2bVrA/QUANAxWcs1KDpJrAABbMGehlzPPCgAikJFLHguLCfASr2nTpmns2LEaM2aMunbtqlmzZqlp06Z69dVXq23/6aef6vzzz9d1112ndu3aadCgQbr22mtPOWoDANCwWcm1QDNNItcAADZhZKGXM88KACJQxQgMK4u/ysrKtGbNGmVlZXnXRUVFKSsrS3l5edVu069fP61Zs8b7Ieo///mPFi9erEsvvTS4EwYAOFq4M00i1wAANqJY6MVlyABQTxQXF/v87Ha75Xa7fdbt3btX5eXlSklJ8VmfkpKiDRs2VLvf6667Tnv37tUFF1wgY4yOHTumW265Rb///e9DewIAAPzEn0yTyDUAAOqCM0ugABCBPMZleZGk9PR0xcfHe5fc3NyQ9GvFihV67LHH9OKLL+rLL7/U3//+d7377ruaOnVqSPYPAHCmSMw0iVwDAFjEyEIvRhYCgE3KFaVyC9/RVGyzY8cOxcXFeddXNwIjKSlJ0dHRKigo8FlfUFCg1NTUavf/0EMP6YYbbtDNN98sSerevbtKSko0btw4PfDAA4pyaAACAIJjJdcCyTSJXAMA2IgbnHg586wAIAIFO7IwLi7OZ6nug1VMTIwyMjK0fPnyyuN6PFq+fLn69u1bbb8OHTpU5YNTdHS0JMkYE6rTBwA4TLgzTSLXAAA2YmShFyMLAcAmHkXJY+E7mkC3mTBhgkaPHq3evXurT58+mj59ukpKSjRmzBhJ0qhRo9S6dWvvJV/Dhg3TtGnT9LOf/UyZmZn6/vvv9dBDD2nYsGHeD1cAAJzMSq5ZyUFyDQBgC0YWelEsBACblBuXyn8aURHodoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3WfExYMPPiiXy6UHH3xQP/74o1q2bKlhw4bp0UcfDbivAICGw0quWclBcg0AYAuXK/DinyvwXKsPKBYCgAPl5OQoJyen2sdWrFjh83OjRo00adIkTZo0yYaeAQAQOHINAAD7UCwEAJucOFdToNsBABBprOQamQYAiFhchuxFsRAAbGJMlDwm8DAxFrYBACDcrOQamQYAiFgUC70oFgKATcrlUrkszFloYRsAAMLNSq6RaQCAiEWx0ItiIQDYxGOsXX7lMWHoDAAAQbKSa2QaACBiUSz0olgIADbxWLwM2co2AACEm5VcI9MAABGLYqGXM88KAAAAAAAAQMAYWQgANvHIJY+FuZqsbAMAQLhZyTUyDQAQsRhZ6EWxEABsUm5cKrcwZ6GVbQAACDcruUamAQAiFsVCr4DOKjc3V+edd55atGih5ORkDR8+XBs3bvRpc+TIEY0fP16nn366mjdvriuvvFIFBQUh7TQA1EcVcztZWRAe5BoAWEemRRYyDQCCVFEsDHRxoIDOauXKlRo/frw+++wzLVu2TEePHtWgQYNUUlLibXP33Xfrn//8pxYsWKCVK1dq586duuKKK0LecQCobzxyyWMsLFyyFTbkGgBYZynXyLSwIdMAIEguV+CFQpczcy2gy5CXLFni8/OcOXOUnJysNWvW6MILL1RRUZFeeeUVzZs3TxdffLEkafbs2erSpYs+++wz/c///E/oeg4A9YyxOGeh4YNV2JBrAGCdlVwj08KHTAOAIHEZsldQZ1VUVCRJSkxMlCStWbNGR48eVVZWlrdN586d1aZNG+Xl5VW7j9LSUhUXF/ssAADUBXINAOAUocg0iVwDgIbIcrHQ4/Horrvu0vnnn69u3bpJkvLz8xUTE6OEhASftikpKcrPz692P7m5uYqPj/cu6enpVrsEABHN0iXIPy0IP3INAAJDpkWuUGWaRK4BaECYs9DL8lmNHz9e33zzjV5//fWgOnD//ferqKjIu+zYsSOo/QFApOIGJ5GNXAOAwJBpkStUmSaRawAaEIqFXgHNWVghJydH77zzjj788EOdccYZ3vWpqakqKytTYWGhzzdWBQUFSk1NrXZfbrdbbrfbSjcAoF6xOqKCURjhR64BQOCs5BqZFn6hzDSJXAPQgDBnoVdAZ2WMUU5OjhYuXKj3339f7du393k8IyNDjRs31vLly73rNm7cqO3bt6tv376h6TEA1FOenyaCt7IgPMg1ALCOTIssZBoABImRhV4BjSwcP3685s2bp7ffflstWrTwzm0RHx+vJk2aKD4+XjfddJMmTJigxMRExcXF6fbbb1ffvn25uxaABo+RhZGHXAMA6xhZGFnINAAIEiMLvQIqFs6cOVOSNHDgQJ/1s2fP1o033ihJevbZZxUVFaUrr7xSpaWlys7O1osvvhiSzgIAEErkGgDAKcg0AECoBFQsNMacsk1sbKxmzJihGTNmWO4UADgRIwsjD7kGANYxsjCykGkAECRGFnpZusEJACBwFAsBAE5CsRAA4CgUC72ceVYAEIEqPlRZWQAAiDRkGgDAUVyuwG9u4rKWazNmzFC7du0UGxurzMxMrVq1qsa2L7/8svr376/TTjtNp512mrKysmptHwoUCwHAJkbW7hx56ouKAACwn5VcI9MAABHLprshz58/XxMmTNCkSZP05ZdfqmfPnsrOztbu3burbb9ixQpde+21+uCDD5SXl6f09HQNGjRIP/74Y7BnXCOKhQAAAAAAAIANpk2bprFjx2rMmDHq2rWrZs2apaZNm+rVV1+ttv1rr72m2267Tb169VLnzp31pz/9SR6PR8uXLw9bHykWAoBNuAwZAOAkZBoAwFFsGFlYVlamNWvWKCsr64TDRikrK0t5eXl+7ePQoUM6evSoEhMTAzp2ILjBCQDYhBucAACchBucAAAcJYgbnBQXF/usdrvdcrvdVZrv3btX5eXlSklJ8VmfkpKiDRs2+HXIe++9V2lpaT4Fx1BjZCEA2ISRhQAAJyHTAACOEsTIwvT0dMXHx3uX3NzcsHTx8ccf1+uvv66FCxcqNjY2LMeQGFkIALZhZCEAwEkYWQgAcJQgRhbu2LFDcXFx3tXVjSqUpKSkJEVHR6ugoMBnfUFBgVJTU2s91NNPP63HH39c7733nnr06BFYPwPEyEIAsIkxLssLAACRhkwDADhKECML4+LifJaaioUxMTHKyMjwuTlJxc1K+vbtW2PXnnzySU2dOlVLlixR7969Q3ve1WBkIQAAAAAAAGCDCRMmaPTo0erdu7f69Omj6dOnq6SkRGPGjJEkjRo1Sq1bt/ZeyvzEE09o4sSJmjdvntq1a6f8/HxJUvPmzdW8efOw9JFiIQDYxCOXPLJwGbKFbQAACDcruUamAQAiVhCXIQdixIgR2rNnjyZOnKj8/Hz16tVLS5Ys8d70ZPv27Yo6Yb8zZ85UWVmZrrrqKp/9TJo0SZMnTw74+P6gWAgANmHOQgCAkzBnIQDAUWwqFkpSTk6OcnJyqn1sxYoVPj9v3brV0jGCQbEQAGxida4m5ncCAEQiK7lGpgEAIpbLFXjxz+XMXKNYCAA2YWQhAMBJGFkIAHAUG0cWRjqKhQBgE0YWAgCchJGFAABHoVjo5cyzAgAAAAAAABAwRhYCgE2MxcuQGYUBAIhEVnKNTAOAyGYCuGu9SyaMPakDjCz0olgIADYxkoyFPHVYBAMAHMJKrpFpAICIRbHQi2IhANjEI5dcAXxTd+J2AABEGiu5RqYBACIWxUIvioUAYBNucAIAcBJucAIAcBSKhV4UCwHAJh7jksvChyQr8xwCABBuVnKNTAMARCyKhV7OPCsAAAAAAAAAAWNkIQDYxBiLNzhhNngAQASykmtkGgAgYjGy0ItiIQDYhDkLAQBOwpyFAABHoVjoRbEQAGxCsRAA4CQUCwEAjuJyBV78czkz1ygWAoBNuMEJAMBJuMEJAMBRGFnoRbEQAGzCnIUAACdhzkIAgKNQLPSiWIgGJ6pJE/8aBjCc2JSW+t+2vNzvtgAA1MbVqLHfbaOaxPrdNpCsIgMBAKFy9Jj/n8EaRwWQKUeO+NcuJsb/fTZyZjnFJb7VAcVCALDN8REYVuYsDENnAAAIkpVcI9MAABGLkYVeFAsBwCbc4AQA4CTc4AQA4CgUC70oFgKATcxPi5XtAACINFZyjUwDAEQsioVeFAsBwCaMLAQAOAkjCwEAjkKx0MuZZwUAkcgEsQRoxowZateunWJjY5WZmalVq1bV2r6wsFDjx49Xq1at5Ha7ddZZZ2nx4sWBHxgA0HDYlGkSuQYAsEFFsTDQxYEYWQgADjN//nxNmDBBs2bNUmZmpqZPn67s7Gxt3LhRycnJVdqXlZXp5z//uZKTk/Xmm2+qdevW2rZtmxISEuzvPAAAJyHXAACwF8VCALCLxcuQFeA206ZN09ixYzVmzBhJ0qxZs/Tuu+/q1Vdf1X333Vel/auvvqr9+/fr008/VePGjSVJ7dq1C7yfAICGxUquWchBcg0AYAsuQ/Zy5lkBQAQyxvoiScXFxT5LaWlplWOUlZVpzZo1ysrK8q6LiopSVlaW8vLyqu3XP/7xD/Xt21fjx49XSkqKunXrpscee0zl5eVheR4AAM4Q7kyTyDUAgI1crsAvQXY5cy5eioUAYJOKieCtLJKUnp6u+Ph475Kbm1vlGHv37lV5eblSUlJ81qekpCg/P7/afv3nP//Rm2++qfLyci1evFgPPfSQnnnmGT3yyCOhfxIAAI4R7kyTyDUAgI2Ys9CLy5ABwC7GZenyq4ptduzYobi4OO9qt9sdkm55PB4lJyfrpZdeUnR0tDIyMvTjjz/qqaee0qRJk0JyDACAA1nJtTBnmkSuAQAs4jJkL4qFAGCTEy+/CnQ7SYqLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq92mVatWaty4saKjo73runTpovz8fJWVlSkmJibwTgMAHM9KrgWSaRK5BgCwEcVCL4qFiFhRgfwhd04nv5se6HjqP0wlydPY/8M333HE77aNvtnqd9vywkL/OwFIiomJUUZGhpYvX67hw4dLOj7CYvny5crJyal2m/PPP1/z5s2Tx+NR1E9h991336lVq1Z8oALqQKPkln63PdKjrd9tD7b2P9galfpfAYrbWOx3W9eGLX618xypfv66ahmP/21R75BrQGQ6cND/UcU//OD/fps29b9t2yT/P4Npwwb/2/rrrLP8bxvIiTm0+IT6hX+FAGAXE8QSgAkTJujll1/Wn//8Z61fv1633nqrSkpKvHeRHDVqlO6//35v+1tvvVX79+/XnXfeqe+++07vvvuuHnvsMY0fPz648wUAOJsNmSaRawAAmzBnoRcjCwHAJidO7B7odoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3TvSQjo+yfzSpUt19913q0ePHmrdurXuvPNO3XvvvQH3FQDQcFjJNSs5SK4BAGzBZcheFAsBwE4WRlRYkZOTU+PlWStWrKiyrm/fvvrss8/C3CsAgOOQawAAp6BY6EWxEABsYtfIQgAA7GDXyEIAAGxBsdCLYiEA2MXiXE12jdoAACAgVnKNTAMARCqKhV7OPCsAAAAAAAAAAQu4WPjhhx9q2LBhSktLk8vl0qJFi3wev/HGG+VyuXyWwYMHh6q/AFCPuYJYEA5kGgAEg0yLNOQaAATB5Qr8TsguZ+ZawMXCkpIS9ezZUzNmzKixzeDBg7Vr1y7v8re//S2oTgKAI5ggFoQFmQYAQSDTIg65BgBBCLRQaOWy5Xoi4DkLhwwZoiFDhtTaxu12KzU11XKnAMCRmLMw4pBpABAE5iyMOOQaAASBOQu9wnJWK1asUHJyss4++2zdeuut2rdvX41tS0tLVVxc7LMAgCMZl/UFdSaQTJPINQANCJlWL5FrAFADRhZ6hfxuyIMHD9YVV1yh9u3ba/Pmzfr973+vIUOGKC8vT9HR0VXa5+bmasqUKaHuBhzA1bmj3223XZrgd9vGff7rV7tG0R6/97l93el+t23jau9326i8b/xua44d9bst6oYxxxcr26FuBJppErmGmkU1bepXu5I+/ufE9qv8z6rEpP1+ty0sifW77cHPE/xue8b+JP8a7qm9eHEiz+EjfreV8f/5wqlZyTUyrW6RaziVo8f8K+h/+63/+9ywwf+2/fr531Z+5qokaedO/9rl5/u/z+bN/W8byGjeQPbr0EJVnWFkoVfIi4UjR470/n/37t3Vo0cPdezYUStWrNAll1xSpf3999+vCRMmeH8uLi5Wenp6qLsFAEDAAs00iVwDAEQucg0A4I+wl0A7dOigpKQkff/999U+7na7FRcX57MAgCNxg5N671SZJpFrABoQMq3eI9cA4ARchuwV8pGFJ/vhhx+0b98+tWrVKtyHAoDIZnWuJuZ3ihhkGgCcwEqukWkRhVwDgBNwGbJXwMXCgwcP+nzztGXLFq1bt06JiYlKTEzUlClTdOWVVyo1NVWbN2/W7373O3Xq1EnZ2dkh7TgA1Dcuc3yxsh3Cg0wDAOus5BqZFl7kGgAEgWKhV8DFwtWrV+uiiy7y/lwxf8Xo0aM1c+ZMffXVV/rzn/+swsJCpaWladCgQZo6darcbnfoeg0A9ZHVy6/4YBU2ZBoABMFKrpFpYUWuAUAQKBZ6BVwsHDhwoEwttzFbunRpUB0CAMfiMuSIQ6YBQBC4DDnikGsAEASXK/Din8uZuebMEigAAAAAAACAgIX9BicAgJ9wGTIAwEm4DBkA4CRchuxFsRAA7EKxEADgJBQLAQBOQrHQi2IhANiFYiEAwEkoFgIAnIRioRfFQgCwCzc4AQA4CTc4AQA4CcVCL4qFsJWrUWO/2x7sGOd326jeRX63fbnHXL/aNXaV+73PX7v+1++2xRuT/G6b+FVTv9uWF/n/HKBuuMzxxcp2AOq/qMTT/Gq3/2z//zz7de9lfrfNav6t322/PNzW77aPFQ/1u215SoJf7aKKDvi9T1dpqd9tjf/RDj9YyTUyDYhshw75127rVv/3GUjbbt38b2vk/5cPrv37/Wv4ww/+d2DvXv/bJiT437ap/58B/S1UBfRcNeQh4BQLvZx5VgAAAAAAAEAEmjFjhtq1a6fY2FhlZmZq1apVtbZfsGCBOnfurNjYWHXv3l2LFy8Oa/8oFgKAXUwQCwAAkYZMAwA4ScXIwkCXAM2fP18TJkzQpEmT9OWXX6pnz57Kzs7W7t27q23/6aef6tprr9VNN92ktWvXavjw4Ro+fLi++eabYM+4RhQLAQAAAAAA0LDZVCycNm2axo4dqzFjxqhr166aNWuWmjZtqldffbXa9s8995wGDx6s3/72t+rSpYumTp2qc889Vy+88EKwZ1wjioUAYBOXKud3Cmip644DAFANS7lW150GAKAmQRQLi4uLfZbSGuZULisr05o1a5SVlXXCYaOUlZWlvLy8arfJy8vzaS9J2dnZNbYPBYqFAGCXirtGWlkAAIg0ZBoAwEGMXJYWSUpPT1d8fLx3yc3NrfYYe/fuVXl5uVJSUnzWp6SkKD8/v9pt8vPzA2ofCtwNGQDsYnWuJuZ3AgBEIiu5RqYBACKUx3N8CXQbSdqxY4fi4uK8691udwh7Zj+KhQAAAAAAAIBFcXFxPsXCmiQlJSk6OloFBQU+6wsKCpSamlrtNqmpqQG1DwUuQwYAu3A3ZACAk5BpAAAHqRhZGOgSiJiYGGVkZGj58uUnHNej5cuXq2/fvtVu07dvX5/2krRs2bIa24cCIwsBwCYVk7tb2Q4AgEhjJdfINABApArmMuRATJgwQaNHj1bv3r3Vp08fTZ8+XSUlJRozZowkadSoUWrdurV33sM777xTAwYM0DPPPKOhQ4fq9ddf1+rVq/XSSy8FfnA/USwEALswZyEAwEmYsxAA4CB2FQtHjBihPXv2aOLEicrPz1evXr20ZMkS701Mtm/frqioyguB+/Xrp3nz5unBBx/U73//e5155platGiRunXrFvjB/USxEADsQrEQAOAkFAsBAA5iV7FQknJycpSTk1PtYytWrKiy7uqrr9bVV19t7WAWUCwEAJtwGTIAwEm4DBkA4CR2FgsjHTc4AQAAAAAAACCJkYUAYB/jOr5Y2Q4AgEhjJdfINABAhGJkYSWKhQBgF+YsBAA4CXMWAgAchGJhJYqFAGAT5iwEADgJcxYCAJzEmMCLf8ahuUaxEADswshCAICTMLIQAOAgjCysxA1OAAAAAAAAAEhiZCEA2MfiZciMwgAARCQruUamAQAiFCMLK1EsBAC7cBkyAMBJuAwZAOAgFAsrUSwEALtQLAQAOAnFQgCAg1AsrESxELYyx4763bb55mK/2+5bfZrfbcdG3eBXu0bR/v/WH1x3ut9t22w97HdbT8khv9si8nE3ZKBh8+z/r1/tEje29nuff1w9wO+2C5LO9bvtgZJYv9vGrW/sd9vogny/2nnKyvzep/HwJllXuBsy4DxNm/rXrl07//d55Ij/bePi/G/rCuTbh8RE/9oFkD9KSvK/baz/uaqo0N9aIqDnqgGjWFiJYiEAAAAAAAAaNIqFlbgbMgAAAAAAAABJjCwEAPswZyEAwEmYsxAA4CCMLKxEsRAAbMKchQAAJ2HOQgCAk1AsrESxEADsxIckAICTkGsAAIcwJvDin3FoDlIsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKzE3ZABAAAAAAAASGJkIQDYh8uQAQBOwmXIAAAHYWRhJUYWAoBNKi7XsrIEasaMGWrXrp1iY2OVmZmpVatW+bXd66+/LpfLpeHDhwd+UABAg2JXpknkGgAg/CqKhYEuTkSxEADsYoJYAjB//nxNmDBBkyZN0pdffqmePXsqOztbu3fvrnW7rVu36p577lH//v0DOyAAoGGyIdMkcg0AYA+KhZW4DBkRy2zY7HfbNtGd/G57YGO8X+08jf3epdrsOOR320bfbPW7bfmxo/53ApHPpsuQp02bprFjx2rMmDGSpFmzZundd9/Vq6++qvvuu6/abcrLy3X99ddrypQp+uijj1RYWGihowBq4znkX1Y0W7XF7322P9LW77YHWyf63Tap1P83nriNhX639eze61+7I6V+71PGoX+l1wc2XYZMrgH2adzIv1/Srl1dfu8zLs7/48fE+N9WfuaqJCktLbTtAm3btKn/baMY01VXuAy5Ev8KAcAmwV6GXFxc7LOUllb9MF1WVqY1a9YoKyvLuy4qKkpZWVnKy8ursW8PP/ywkpOTddNNN4X8vAEAzhTuTJPINQCAfRhZWIliIQDUE+np6YqPj/cuubm5Vdrs3btX5eXlSklJ8VmfkpKi/Pz8avf78ccf65VXXtHLL78cln4DAHAyfzJNItcAAKgLXIYMAHYJ8jLkHTt2KO6E6zjcbnfQXTpw4IBuuOEGvfzyy0pKSgp6fwCABiSIy5DDkWkSuQYAsI7LkCtRLAQAuwRZLIyLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq7TfvHmztm7dqmHDhnnXeX5KvEaNGmnjxo3q2LGjhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcPcBkyANgk2DkL/RETE6OMjAwtX77cu87j8Wj58uXq27dvlfadO3fW119/rXXr1nmXyy67TBdddJHWrVun9PT0UJw6AMCBwp1pErkGALAPcxZWYmQhANjFprshT5gwQaNHj1bv3r3Vp08fTZ8+XSUlJd67SI4aNUqtW7dWbm6uYmNj1a1bN5/tExISJKnKegAAfNh0N2RyDQBgBy5DrhTwyMIPP/xQw4YNU1pamlwulxYtWuTzuDFGEydOVKtWrdSkSRNlZWVp06ZNoeovANRbdowslKQRI0bo6aef1sSJE9WrVy+tW7dOS5Ys8U4Ov337du3atSsMZ1j/kGkAYJ0dmSaRa4Eg1wDAOkYWVgq4WFhSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDkSdGcBAP7JycnRtm3bVFpaqs8//1yZmZnex1asWKE5c+bUuO2cOXOqfLhwKjINAOoHcs0/5BoAIBQCvgx5yJAhGjJkSLWPGWM0ffp0Pfjgg7r88sslSX/5y1+UkpKiRYsWaeTIkcH1FgDqM5suQ4b/yDQACIJNlyHDf+QaAFjHZciVQnqDky1btig/P19ZWVnedfHx8crMzFReXl6125SWlqq4uNhnAQBHMkEssJ2VTJPINQANCJlWr5BrAFA7LkOuFNIbnOTn50uSd/6QCikpKd7HTpabm6spU6aEshtwCE9Zmf+N137rd9MWG5r419Dl8nufprTU77bl5eV+t4WzuH5arGwH+1nJNIlcQ/CO7d7jd9vGKwr9bnt6k1i/25oAsiqQDAxkv4h8VnKNTKs75BpCqUVz/yv/nTv7/5t/7FgAnYjyP9fUubN/7WJi/N9nI+4X6zSMLKwU0pGFVtx///0qKiryLjt27KjrLgFAeDCysEEg1wA0GGRag0CuAWgoGFlYKaSl8NTUVElSQUGBWrVq5V1fUFCgXr16VbuN2+2W2+0OZTcAICJZvQuklW0QPCuZJpFrABoOK7lGptUdcg0AasfIwkohHVnYvn17paamavny5d51xcXF+vzzz9W3b99QHgoAgLAi0wAATkKuAQD8FfDIwoMHD+r777/3/rxlyxatW7dOiYmJatOmje666y498sgjOvPMM9W+fXs99NBDSktL0/Dhw0PZbwCof7gbcsQh0wAgCNwNOeKQawBgnTGBjxQ0Ds21gIuFq1ev1kUXXeT9ecKECZKk0aNHa86cOfrd736nkpISjRs3ToWFhbrgggu0ZMkSxcYGMPkoADiVQ8OkviLTACBI5FpEIdcAwDouQ64UcLFw4MCBMrWUTl0ulx5++GE9/PDDQXUMAJyGOQsjD5kGANYxZ2HkIdcAwDqKhZW41zcA2IXLkAEATsJlyAAAB6FYWIliIQDYhJGFAAAnYWQhAMBJKBZWCundkAEAAAAAAADUX4wsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKxEsRANjufw4bruAhoqRhYCCDFz7KjfbcsP+N8W8AsjCwGEWONGgbxJBDCrWtOmAfeloTJy+d3W5bA3dYqFlSgWAoBdKBYCAJyEYiEAwEEoFlaiWAgANuEyZACAk3AZMgDASSgWVuJuyAAAAAAAAAAkMbIQAOzDZcgAACfhMmQAgIMYE/hIQePQXGNkIQDYxGWM5QUAgEhDpgEAnKTiMuRAl3DZv3+/rr/+esXFxSkhIUE33XSTDh48WGv722+/XWeffbaaNGmiNm3a6I477lBRUVHAx2ZkIQDYhZGFAAAnYWQhAMBBIm3Owuuvv167du3SsmXLdPToUY0ZM0bjxo3TvHnzqm2/c+dO7dy5U08//bS6du2qbdu26ZZbbtHOnTv15ptvBnRsioUAYBNucAIAcBJucAIAcJJIKhauX79eS5Ys0RdffKHevXtLkp5//nldeumlevrpp5WWllZlm27duumtt97y/tyxY0c9+uij+t///V8dO3ZMjRr5XwLkMmQAsIsJYgEAINKQaQAAB4mky5Dz8vKUkJDgLRRKUlZWlqKiovT555/7vZ+ioiLFxcUFVCiUGFkIAAAAAAAAWFZcXOzzs9vtltvttry//Px8JScn+6xr1KiREhMTlZ+f79c+9u7dq6lTp2rcuHEBH5+RhQBgk4rLtawsAABEGjINAOAkwYwsTE9PV3x8vHfJzc2t9hj33XefXC5XrcuGDRuCPpfi4mINHTpUXbt21eTJkwPenpGFAGAXbnACAHASbnACAI7jasBv1MHMWbhjxw7FxcV519c0qvA3v/mNbrzxxlr32aFDB6Wmpmr37t0+648dO6b9+/crNTW11u0PHDigwYMHq0WLFlq4cKEaN2586hM5CcVCALAJNzgBADgJNzgBADhJMMXCuLg4n2JhTVq2bKmWLVuesl3fvn1VWFioNWvWKCMjQ5L0/vvvy+PxKDMzs8btiouLlZ2dLbfbrX/84x+KjY3170ROwmXIAGAXbnACAHASMg0A4CCRdIOTLl26aPDgwRo7dqxWrVqlTz75RDk5ORo5cqT3Tsg//vijOnfurFWrVkk6XigcNGiQSkpK9Morr6i4uFj5+fnKz89XeXl5QMdnZCEA2IgRFQAAJyHXAABOYUzgxT8Txhx87bXXlJOTo0suuURRUVG68sor9Yc//MH7+NGjR7Vx40YdOnRIkvTll19675TcqVMnn31t2bJF7dq18/vYFAsBAAAAAACACJKYmKh58+bV+Hi7du1kTqhWDhw40OfnYFAsBAC7GGPtq6dwfl0FAIBVVnKNTAMARKhg5ix0GoqFAGATbnACAHASbnACAHASioWVKBYCgF2sTuzOBysAQCSykmtkGgAgQlEsrESxEABs4vIcX6xsBwBApLGSa2QaACBSUSysRLEQAOzCyEIAgJMwshAA4CAUCytF1XUHAAAAAAAAAEQGRhYCgE24wQkAwEm4wQkAwEkYWViJYiEA2MWY44uV7QAAiDRWco1MAwBEKIqFlSgWAoBNGFkIAHASRhYCAJyEYmElioUAYBducAIAcBJucAIAcBBjAi/+OXXAPMVCALAJIwsBAE7CyEIAgJMwsrASd0MGAAAAAAAAIImRhQBgH25wAgBwEm5wAgBwEEYWVqJYCAA24TJkAICTcBkyAMBJKBZWolgIAHbhBicAACfhBicAAAehWFiJYiEA2ISRhQAAJ2FkIQDASSgWVqJYCAB28Zjji5XtAACINFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA+zBnIQDASZizEADgIIwsrESxEABs4pLFOQtD3hMAAIJnJdfINABApKJYWInLkAHALsZYXwI0Y8YMtWvXTrGxscrMzNSqVatqbPvyyy+rf//+Ou2003TaaacpKyur1vYAAEiyLdMkcg0AEH7GVBYM/V0sxlrEo1gIADapuGuklSUQ8+fP14QJEzRp0iR9+eWX6tmzp7Kzs7V79+5q269YsULXXnutPvjgA+Xl5Sk9PV2DBg3Sjz/+GIKzBgA4lR2ZJpFrAAB7BFootDISsb6gWAgADjNt2jSNHTtWY8aMUdeuXTVr1iw1bdpUr776arXtX3vtNd12223q1auXOnfurD/96U/yeDxavny5zT0HAKAqcg0AAHtRLAQAu5ggFj+VlZVpzZo1ysrK8q6LiopSVlaW8vLy/NrHoUOHdPToUSUmJvp/YABAwxPmTJPINQCAfRhZWIkbnACATVzGyGVhUouKbYqLi33Wu91uud1un3V79+5VeXm5UlJSfNanpKRow4YNfh3v3nvvVVpams8HMwAATmYl1wLJNIlcAwDYhxucVAr5yMLJkyfL5XL5LJ07dw71YQCg/vEEsUhKT09XfHy8d8nNzQ15Fx9//HG9/vrrWrhwoWJjY0O+//qIXAOAGkR4pknk2snINACoGSMLK4VlZOE555yj9957r/IgjRjACADBjizcsWOH4uLivOurG4GRlJSk6OhoFRQU+KwvKChQampqrcd5+umn9fjjj+u9995Tjx49Au6nk5FrAFBVMCML/ck0iVwLBzINAKrHyMJKYUmGRo0anTK8AaDBsTBXk3c7SXFxcT4frKoTExOjjIwMLV++XMOHD5ck76TuOTk5NW735JNP6tFHH9XSpUvVu3dvC510NnINAKphJdcCyDSJXAsHMg0AqkexsFJYbnCyadMmpaWlqUOHDrr++uu1ffv2GtuWlpaquLjYZwEAWDdhwgS9/PLL+vOf/6z169fr1ltvVUlJicaMGSNJGjVqlO6//35v+yeeeEIPPfSQXn31VbVr1075+fnKz8/XwYMH6+oUIg65BgB1h1wLrUAyTSLXAKAhCnmxMDMzU3PmzNGSJUs0c+ZMbdmyRf3799eBAweqbZ+bm+szX0l6enqouwQAkcEY60sARowYoaeffloTJ05Ur169tG7dOi1ZssQ7Ofz27du1a9cub/uZM2eqrKxMV111lVq1auVdnn766ZCefn1FrgFADWzINIlcC6VAM00i1wA0HMxZWMlljIXEDkBhYaHatm2radOm6aabbqryeGlpqUpLS70/FxcXKz09XQN1uRq5GoezawBQq2PmqFbobRUVFfl1qVRNiouLFR8frwH9HlKjRoFPrn7s2BGt/HRq0P1AaJBrAOqrSMg1Mi2ynCrTpJpzraiwkNcQfjFy+d3WZWnOHjRExcXFik9ICEmeVOTaNdcUKSYmsH2VlRXrjTfiHZdrYZ/NNiEhQWeddZa+//77ah93u901TmgMAI5icUSFpW0QNuQaAPzESq6RaRHlVJkmkWsAGg5jAh8p6NRYC8uchSc6ePCgNm/erFatWoX7UAAQ0Vwe6wsiB7kGAMeRafUfmQYAlbgMuVLIi4X33HOPVq5cqa1bt+rTTz/VL3/5S0VHR+vaa68N9aEAoH6xac5ChBa5BgA1INPqHTINAGpGsbBSyC9D/uGHH3Tttddq3759atmypS644AJ99tlnatmyZagPBQBA2JFrAACnINMAAP4IebHw9ddfD/UuAcAZzE+Lle1QZ8g1AKiBlVwj0+oUmQYANbMyUpCRhQCAoLiMkcvC5VdWtgEAINys5BqZBgCIVBQLK1EsBAC7cDdkAICTcDdkAICDUCysRLEQAOxiJFkJEz5XAQAikZVcI9MAABGKYmElioUAYBMuQwYAOAmXIQMAnIRiYaWouu4AAAAAAAAAgMjAyEIAsIuRxTkLQ94TAACCZyXXyDQAtTBy+d3WxRtKWDTk14CRhZUoFgKAXbjBCQDASbjBCQDAQYwJvPjn1FijWAgAdvFIAXxR57sdAACRxkqukWkAgAjFyMJKFAsBwCbc4AQA4CTc4AQA4CQUCytRLAQAu3AZMgDASbgMGQDgIBQLK3E3ZAAAAAAAAACSGFkIAPZhZCEAwEkYWQgAcBBGFlaiWAgAdqFYCABwEoqFAAAHoVhYiWIhANiFuyEDAJyEuyEDAByEYmElioUAYBPuhgwAcBLuhgwAcBKKhZW4wQkA2KXici0rCwAAkYZMAwA4SEWxMNAlXPbv36/rr79ecXFxSkhI0E033aSDBw/6ta0xRkOGDJHL5dKiRYsCPjbFQgAAAAAAEBYuGb8XAJWuv/56/fvf/9ayZcv0zjvv6MMPP9S4ceP82nb69OlyuazMgXUclyEDgF08RnJZ+CPIwx9OAIAIZCXXyDQAQIQyJvCRguEaML9+/XotWbJEX3zxhXr37i1Jev7553XppZfq6aefVlpaWo3brlu3Ts8884xWr16tVq1aWTo+IwsBwC5chgwAcBIyDQDgIMFchlxcXOyzlJaWBtWXvLw8JSQkeAuFkpSVlaWoqCh9/vnnNW536NAhXXfddZoxY4ZSU1MtH59iIQDYxuqHKj5YAQAiEZkGAHCOYIqF6enpio+P9y65ublB9SU/P1/Jyck+6xo1aqTExETl5+fXuN3dd9+tfv366fLLLw/q+FyGDAB2sTqiglEYAIBIZCXXyDQAQITyeKRAp/mrKBbu2LFDcXFx3vVut7va9vfdd5+eeOKJWve5fv36wDrxk3/84x96//33tXbtWkvbn4hiIQDYxWNxRAXzOwEAIpGVXCPTAAARKphiYVxcnE+xsCa/+c1vdOONN9bapkOHDkpNTdXu3bt91h87dkz79++v8fLi999/X5s3b1ZCQoLP+iuvvFL9+/fXihUrTtm/ChQLAQAAAAAAgDBr2bKlWrZsecp2ffv2VWFhodasWaOMjAxJx4uBHo9HmZmZ1W5z33336eabb/ZZ1717dz377LMaNmxYQP2kWAgAdjGe44uV7QAAiDRWco1MAwBEqGBGFoZaly5dNHjwYI0dO1azZs3S0aNHlZOTo5EjR3rvhPzjjz/qkksu0V/+8hf16dNHqamp1Y46bNOmjdq3bx/Q8SkWAoBdmLMQAOAkzFkIAHCQSCoWStJrr72mnJwcXXLJJYqKitKVV16pP/zhD97Hjx49qo0bN+rQoUMhPzbFQgCwC3MWAgCchDkLAQAOEmnFwsTERM2bN6/Gx9u1aydzii/hTvV4TSgWAoBdGFkIAHASRhYCABwk0oqFdYliIQDYxchisTDkPQEAIHhWco1MA1ALF28Sda4hvwbGBF78c+p3YFF13QEAAAAAAAAAkYGRhQBgFy5DBgA4CZchAwAcxMolxVyGDAAIjscjiQQCADiElVwj0wAAEYpiYSWKhQBgF0YWAgCchJGFAAAHoVhYiWIhANiFYiEAwEkoFgIAHIRiYSWKhQBgF4+RpdtAevhgBQCIQFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA2xjjkTGBf/VkZRsAAMLNSq6RaQCASMXIwkoUCwHALsZYu/yK+Z0AAJHISq6RaQCACEWxsBLFQgCwi7E4ZyEfrAAAkchKrpFpAIAIRbGwEsVCALCLxyO5LKQJl2wBACKRlVwj0wAAEcqYwIt/Tv0OjGIhANiFkYUAACdhZCEAwEE8HsnlCmwbp8Yad0MGAAAAAAAAIImRhQBgG+PxyFi4DJk7RwIAIpGVXCPTAACRipGFlSgWAoBduAwZAOAkXIYMAHAQioWVKBYCgF08RnJRLAQAOISVXCPTAAARimJhJYqFAGAXYyRZuRuyQxMIAFC/Wck1Mg0AEKEoFlaiWAgANjEeI2NhZKFxagIBAOo1K7lGpgEAIhXFwkphuxvyjBkz1K5dO8XGxiozM1OrVq0K16EAACcJ9D14wYIF6ty5s2JjY9W9e3ctXrzYpp7WD2QaANQtci20yDUAQG3CUiycP3++JkyYoEmTJunLL79Uz549lZ2drd27d4fjcABQPxiP9SUAgb4Hf/rpp7r22mt10003ae3atRo+fLiGDx+ub775JhRnXe+RaQBQAxsyTSLXQo1cA4DqeTzWFidymTBcC5CZmanzzjtPL7zwgiTJ4/EoPT1dt99+u+67775aty0uLlZ8fLwG6nI1cjUOddcAwG/HzFGt0NsqKipSXFyc5f1439dcv7T0vnbMHNUKs9DvfgT6HjxixAiVlJTonXfe8a77n//5H/Xq1UuzZs0KuL9OE0ymSeQagMgRCbkWaKZJ5FqohSrXigoLg/p3BADBKC4uVnxCQtCZ5t1XfLxcriK5XIHty5hiGRMfkn5EkpDPWVhWVqY1a9bo/vvv966LiopSVlaW8vLyqrQvLS1VaWmp9+eioiJJ0jEdlRx67TeA+uGYjkoK3fxKx0yppREVFf0oLi72We92u+V2u33WBfoeLEl5eXmaMGGCz7rs7GwtWrQo4L46jZXnk1wDEKkiIdcCyTSJXAu1UObaya8hANip4j0olOPfjhf+Au5JyI4fSUJeLNy7d6/Ky8uVkpLisz4lJUUbNmyo0j43N1dTpkypsv5jMa8IgMhw4MABxcfHW94+JiZGqamp+jjf+vta8+bNlZ6e7rNu0qRJmjx5ss+6QN+DJSk/P7/a9vn5+Zb76xRWnk9yDUCkq+tc8zfTJHIt1EKZa+lt2oSljwAQiGAzTarMtfz89FM3rkZqaqpiYmKC6kOkqfO7Id9///0+3/wVFhaqbdu22r59e9AveCQpLi5Wenq6duzY4aihqZxX/cJ5BcYYowMHDigtLS2o/cTGxmrLli0qKysLqi+uk27NVd0IDNQ9cq1+47zqF84rMJGSa2Ra/UKu1W+cV/3CefkvVJkmBZ9rMTExio2NDbofkSTkxcKkpCRFR0eroKDAZ31BQYFSU1OrtK/pkoP4+HhH/XJUiIuL47zqEc6rfgnHeYXqj+DY2FhbAiTQ92Dp+DdhgbRvSKw8n+SaM3Be9Qvn5T9yrWEj106N95P6hfOqX0J9XqH8wsKuXKsvQn435JiYGGVkZGj58uXedR6PR8uXL1ffvn1DfTgAwAmsvAf37dvXp70kLVu2jPdskWkAUNfItdAi1wAA/gjLZcgTJkzQ6NGj1bt3b/Xp00fTp09XSUmJxowZE47DAQBOcKr34FGjRql169bKzc2VJN15550aMGCAnnnmGQ0dOlSvv/66Vq9erZdeeqkuTyNikGkAULfItdAi1wAApxKWYuGIESO0Z88eTZw4Ufn5+erVq5eWLFlSZSLd6rjdbk2aNMlx85ZwXvUL51W/OPW8rDrVe/D27dsVFVU5sLxfv36aN2+eHnzwQf3+97/XmWeeqUWLFqlbt251dQoRJZhMk5z775Pzql84r/rFqedlFbkWWuRa9Tiv+oXzql+cel5O5jKhvM80AAAAAAAAgHor5HMWAgAAAAAAAKifKBYCAAAAAAAAkESxEAAAAAAAAMBPKBYCAAAAAAAAkBSBxcIZM2aoXbt2io2NVWZmplatWlXXXQrK5MmT5XK5fJbOnTvXdbcC9uGHH2rYsGFKS0uTy+XSokWLfB43xmjixIlq1aqVmjRpoqysLG3atKluOhuAU53XjTfeWOX1Gzx4cN10NgC5ubk677zz1KJFCyUnJ2v48OHauHGjT5sjR45o/PjxOv3009W8eXNdeeWVKigoqKMe+8ef8xo4cGCV1+yWW26pox6joXNapknkWqRzYq6RaWQaIofTco1Mi2xOzDSJXCPX6oeIKhbOnz9fEyZM0KRJk/Tll1+qZ8+eys7O1u7du+u6a0E555xztGvXLu/y8ccf13WXAlZSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDlic08Dc6rzkqTBgwf7vH5/+9vfbOyhNStXrtT48eP12WefadmyZTp69KgGDRqkkpISb5u7775b//znP7VgwQKtXLlSO3fu1BVXXFGHvT41f85LksaOHevzmj355JN11GM0ZE7NNIlci2ROzDUyjUxDZHBqrpFpkcuJmSaRa+RaPWEiSJ8+fcz48eO9P5eXl5u0tDSTm5tbh70KzqRJk0zPnj3ruhshJcksXLjQ+7PH4zGpqanmqaee8q4rLCw0brfb/O1vf6uDHlpz8nkZY8zo0aPN5ZdfXif9CaXdu3cbSWblypXGmOOvT+PGjc2CBQu8bdavX28kmby8vLrqZsBOPi9jjBkwYIC58847665TwE+cmGnGkGvkWt0j04C64cRcI9PItEhAriESRczIwrKyMq1Zs0ZZWVnedVFRUcrKylJeXl4d9ix4mzZtUlpamjp06KDrr79e27dvr+suhdSWLVuUn5/v89rFx8crMzOz3r92krRixQolJyfr7LPP1q233qp9+/bVdZcCVlRUJElKTEyUJK1Zs0ZHjx71ec06d+6sNm3a1KvX7OTzqvDaa68pKSlJ3bp10/33369Dhw7VRffQgDk50yRyrb6r77lGppFpsJ+Tc41Mq9/qe6ZJ5Bq5Fpka1XUHKuzdu1fl5eVKSUnxWZ+SkqINGzbUUa+Cl5mZqTlz5ujss8/Wrl27NGXKFPXv31/ffPONWrRoUdfdC4n8/HxJqva1q3isvho8eLCuuOIKtW/fXps3b9bvf/97DRkyRHl5eYqOjq7r7vnF4/Horrvu0vnnn69u3bpJOv6axcTEKCEhwadtfXrNqjsvSbruuuvUtm1bpaWl6auvvtK9996rjRs36u9//3sd9hYNjVMzTSLX6st7ZE3qe66RaWQa6oZTc41Mqx/vkTWp75kmkWvkWuSKmGKhUw0ZMsT7/z169FBmZqbatm2rN954QzfddFMd9gz+GDlypPf/u3fvrh49eqhjx45asWKFLrnkkjrsmf/Gjx+vb775pl7Ov1Kbms5r3Lhx3v/v3r27WrVqpUsuuUSbN29Wx44d7e4m4DjkWv1W33ONTCPTgFAi0+q3+p5pErlGrkWuiLkMOSkpSdHR0VXu8FNQUKDU1NQ66lXoJSQk6KyzztL3339f110JmYrXx+mvnSR16NBBSUlJ9eb1y8nJ0TvvvKMPPvhAZ5xxhnd9amqqysrKVFhY6NO+vrxmNZ1XdTIzMyWp3rxmcIaGkmkSuVbf1adcI9PINNSdhpJrZFr9Vp8yTSLXJHItkkVMsTAmJkYZGRlavny5d53H49Hy5cvVt2/fOuxZaB08eFCbN29Wq1at6rorIdO+fXulpqb6vHbFxcX6/PPPHfXaSdIPP/ygffv2RfzrZ4xRTk6OFi5cqPfff1/t27f3eTwjI0ONGzf2ec02btyo7du3R/Rrdqrzqs66deskKeJfMzhLQ8k0iVyr7+pDrpFplcg01JWGkmtkWv1WHzJNItdORK5FsLq8u8rJXn/9deN2u82cOXPMt99+a8aNG2cSEhJMfn5+XXfNst/85jdmxYoVZsuWLeaTTz4xWVlZJikpyezevbuuuxaQAwcOmLVr15q1a9caSWbatGlm7dq1Ztu2bcYYYx5//HGTkJBg3n77bfPVV1+Zyy+/3LRv394cPny4jnteu9rO68CBA+aee+4xeXl5ZsuWLea9994z5557rjnzzDPNkSNH6rrrtbr11ltNfHy8WbFihdm1a5d3OXTokLfNLbfcYtq0aWPef/99s3r1atO3b1/Tt2/fOuz1qZ3qvL7//nvz8MMPm9WrV5stW7aYt99+23To0MFceOGFddxzNEROzDRjyDVyzX5kGpmGyODEXCPTyLS6QK6Ra/VBRBULjTHm+eefN23atDExMTGmT58+5rPPPqvrLgVlxIgRplWrViYmJsa0bt3ajBgxwnz//fd13a2AffDBB0ZSlWX06NHGGGM8Ho956KGHTEpKinG73eaSSy4xGzdurNtO+6G28zp06JAZNGiQadmypWncuLFp27atGTt2bL34g6i6c5JkZs+e7W1z+PBhc9ttt5nTTjvNNG3a1Pzyl780u3btqrtO++FU57V9+3Zz4YUXmsTERON2u02nTp3Mb3/7W1NUVFS3HUeD5bRMM4Zci3ROzDUyjUxD5HBarpFpkc2JmWYMuUau1Q8uY4yxPi4RAAAAAAAAgFNEzJyFAAAAAAAAAOoWxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkqT/D95FLoBGPoWwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqNUlEQVR4nO3deXxU1f3/8fckkAlbEmNIQjDsKiBbDZIvKIKaEpCi1A3UryBVqErcqK1alUXUuCJWEapVaKlURAu2yheKKLhFEYSfWgGRsikkbE0CARLInN8fmAlDFmbuzNxMbl7Px+M+NHfOvffcGTLvzGfOPddljDECAAAAAAAA0OBF1XUHAAAAAAAAAEQGioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioVAmAwcOFADBw6s624AAByiPuRKQUGBrrrqKp1++ulyuVyaPn16XXcJAGo0efJkuVwun3Xt2rXTjTfe6LNu06ZNGjRokOLj4+VyubRo0SJJ0hdffKF+/fqpWbNmcrlcWrdunT0dr+dqej4BRA6KhTX49NNPNXnyZBUWFtZ1VxCkF198UXPmzAnLvr/99ltNnjxZW7duDcv+w2nnzp2aPHmy33/UhOt34h//+IfOPfdcxcbGqk2bNpo0aZKOHTsW0mMAkYBccQ5ypWZ33323li5dqvvvv19z587V4MGDtXjxYk2ePNnWfmzcuFF33323+vXrp9jYWLlcrlqf03BmUV2cP4DQGj16tL7++ms9+uijmjt3rnr37q2jR4/q6quv1v79+/Xss89q7ty5atu2bV13tV6o7vmcN2+e7V8wrVq1SrfddpsyMjLUuHHjKoXjk73yyivq0qWLYmNjdeaZZ+r5558PWV/q4vyBWhlU66mnnjKSzJYtW+q6KwjSOeecYwYMGBCWfS9YsMBIMh988EGVx0pLS01paWlYjhsKX3zxhZFkZs+e7Vf7cPxOLF682LhcLnPRRReZl156ydx+++0mKirK3HLLLSE7BhApyBXnIFdqlpKSYq6//nqfdePHjzd2/8k5e/ZsExUVZbp162Z69epV6+9euLOoLs4fgH8mTZpU5ffzyJEjpqyszPvzoUOHjCTzwAMP+LRbv369kWRefvllW/rqFDU9n0OHDjVt27a1tS+TJk0yjRs3NhkZGeass86q9b161qxZRpK58sorzUsvvWRuuOEGI8k8/vjjIelLXZw/UJtG9pcnncfj8aisrEyxsbF13RWvkpISNWvWrK67Ue+E8nmLiYkJyX6c7J577lGPHj30r3/9S40aHX87iouL02OPPaY777xTnTt3ruMeAnWDXHGOhpYru3fvVkJCQtiPY4zRkSNH1KRJk2ofv+yyy1RYWKgWLVro6aefrnUUPVkE4ERut9vn5z179khSlfe23bt3V7s+GA0ha2t6PsPhVH9P3Xrrrbr33nvVpEkT5eTk6Lvvvqu23eHDh/XAAw9o6NChevPNNyVJY8eOlcfj0dSpUzVu3DiddtppYTsPoE7UdbUyElV8w3TyUvGNtCQzfvx489e//tV07drVNGrUyCxcuNAYc3zkSN++fU1iYqKJjY015557rlmwYEG1x5k7d64577zzTJMmTUxCQoLp37+/Wbp0qU+bxYsXmwsuuMA0bdrUNG/e3Fx66aXmm2++8WkzevRo06xZM/P999+bIUOGmObNm5vLL7+81nP84YcfzK9+9SvTqlUrExMTY9q1a2duueUWnxELmzdvNldddZU57bTTTJMmTUxmZqZ55513fPbzwQcfGElm/vz55pFHHjGtW7c2brfbXHzxxWbTpk1VjvvZZ5+ZIUOGmISEBNO0aVPTvXt3M336dJ8269evN1deeaU57bTTjNvtNhkZGebtt9/2aTN79mwjyXz88cfm7rvvNklJSaZp06Zm+PDhZvfu3d52bdu2rfI6VowGqdjHihUrzK233mpatmxpEhISjDHGbN261dx6663mrLPOMrGxsSYxMdFcddVVPqMSKrY/eakYDTJgwIAqI08KCgrMr371K5OcnGzcbrfp0aOHmTNnjk+bLVu2GEnmqaeeMn/84x9Nhw4dTExMjOndu7dZtWpVzS/qT/bt22d+85vfmG7duplmzZqZFi1amMGDB5t169ZVed1OXmoaZXiq3wkr/v3vfxtJZsaMGT7rf/zxRyPJTJ061fK+gUhDrhxHrjg3V2rq++jRo6tdX6G8vNw8++yzpmvXrsbtdpvk5GQzbtw4s3//fp8+tG3b1gwdOtQsWbLEZGRkGLfbbZ599tlT9t2Y2kf1BptFZWVlZvLkyaZTp07G7XabxMREc/7555t//etfxhgT8vNfunSp6dmzp3G73aZLly7mrbfeCqg/QEP20Ucfmd69exu32206dOhgZs2aVe3IwrZt25rRo0cbY6rP74rHa8oCYwLLneoyw5jA8vqHH34wl19+uWnWrJlJSkoyv/nNb8yxY8d82paXl5vp06ebbt26GbfbbZKSkkx2drb54osvfNrNnTvXnHvuuSY2NtacdtppZsSIEWb79u2nfH79ybmans8BAwZUu77CkSNHzMSJE03Hjh1NTEyMOeOMM8xvf/tbc+TIEZ8+1Pb31KnUNgr83XffNZLMu+++67P+008/NZLM3Llza913cXGxufPOO03btm1NTEyMadmypcnKyjJr1qwxxpiwnP9ZZ51l3G63Offcc83KlSsD6g9gDCMLq3XFFVfou+++09/+9jc9++yzSkpKkiS1bNnS2+b999/XG2+8oZycHCUlJaldu3aSpOeee06XXXaZrr/+epWVlen111/X1VdfrXfeeUdDhw71bj9lyhRNnjxZ/fr108MPP6yYmBh9/vnnev/99zVo0CBJ0ty5czV69GhlZ2friSee0KFDhzRz5kxdcMEFWrt2rfeYknTs2DFlZ2frggsu0NNPP62mTZvWeH47d+5Unz59VFhYqHHjxqlz58768ccf9eabb+rQoUOKiYlRQUGB+vXrp0OHDumOO+7Q6aefrj//+c+67LLL9Oabb+qXv/ylzz4ff/xxRUVF6Z577lFRUZGefPJJXX/99fr888+9bZYtW6Zf/OIXatWqle68806lpqZq/fr1euedd3TnnXdKkv7973/r/PPPV+vWrXXfffepWbNmeuONNzR8+HC99dZbVY57++2367TTTtOkSZO0detWTZ8+XTk5OZo/f74kafr06br99tvVvHlzPfDAA5KklJQUn33cdtttatmypSZOnKiSkhJJxycr/vTTTzVy5EidccYZ2rp1q2bOnKmBAwfq22+/VdOmTXXhhRfqjjvu0B/+8Af9/ve/V5cuXSTJ+9+THT58WAMHDtT333+vnJwctW/fXgsWLNCNN96owsJC73NQYd68eTpw4IB+/etfy+Vy6cknn9QVV1yh//znP2rcuHGNr+9//vMfLVq0SFdffbXat2+vgoIC/fGPf9SAAQP07bffKi0tTV26dNHDDz+siRMnaty4cerfv78kqV+/ftXu81S/E0VFRTp69GiNfaoQGxur5s2bS5LWrl0rSerdu7dPm7S0NJ1xxhnexwEnIFfIFafnyoUXXqi5c+fqhhtu0M9//nONGjVKktSxY0ft3LlTy5Yt09y5c6vs+9e//rXmzJmjMWPG6I477tCWLVv0wgsvaO3atfrkk098+rVx40Zde+21+vWvf62xY8fq7LPPrrHP/go2iyZPnqzc3FzdfPPN6tOnj4qLi7V69Wp9+eWX+vnPf65f//rXITv/TZs2acSIEbrllls0evRozZ49W1dffbWWLFmin//85371B2iovv76aw0aNEgtW7bU5MmTdezYMU2aNKnK+/fJrrjiCiUkJOjuu+/Wtddeq0svvVTNmzdXSkqKWrdurccee0x33HGHzjvvPO++As2d6jIjkLwuLy9Xdna2MjMz9fTTT+u9997TM888o44dO+rWW2/1trvppps0Z84cDRkyRDfffLOOHTumjz76SJ999pn3PfDRRx/VQw89pGuuuUY333yz9uzZo+eff14XXnih1q5dW+toQH9yrqbns1mzZioqKtIPP/ygZ599VpK8nxk8Ho8uu+wyffzxxxo3bpy6dOmir7/+Ws8++6y+++67KjdHqenvqWDUlBUZGRmKiorS2rVr9b//+781bn/LLbfozTffVE5Ojrp27ap9+/bp448/1vr163XuuefqgQceCNn5r1y5UvPnz9cdd9wht9utF198UYMHD9aqVavUrVs3v/oDSGJkYU1q+xZakomKijL//ve/qzx26NAhn5/LyspMt27dzMUXX+xdt2nTJhMVFWV++ctfmvLycp/2Ho/HGGPMgQMHTEJCghk7dqzP4/n5+SY+Pt5nfcU3W/fdd59f5zZq1CgTFRVV5VukE49/1113GUnmo48+8j524MAB0759e9OuXTtvvytGgHTp0sVn9Mhzzz1nJJmvv/7aGGPMsWPHTPv27U3btm3Nf//732qPaYwxl1xyienevbvPtyQej8f069fPnHnmmd51Fd/EZWVl+Wx/9913m+joaFNYWOhdV9PcUhX7uOCCC6p883by62iMMXl5eUaS+ctf/uJdV9vcUiePAJk+fbqRZP76179615WVlZm+ffua5s2bm+LiYmNM5QiQ008/3Wdkwdtvv20kmX/+859VjnWiI0eOVPl3tWXLFuN2u83DDz/sXRfKOQur+zasuqXiW9oT91fdN5XnnXee+Z//+R+/+gXUF+QKuXIyp+WKMZWjGk5U02iNjz76yEgyr732ms/6JUuWVFlfMaJzyZIltfa1OrX97gWbRT179jRDhw6ttU0oz//EkYRFRUWmVatW5mc/+1lA/QEaouHDh5vY2Fizbds277pvv/3WREdH1zqy0Bjf0dknqsirk0f7B5o7J2eGlbw++b34Zz/7mcnIyPD+/P777xtJ5o477qjy3FRk3tatW010dLR59NFHfR7/+uuvTaNGjaqsP5m/OVfT81nTnH1z5841UVFRPn8/GFM5h+Ann3ziXVfb31OnUtvIwvHjx5vo6OhqH2vZsqUZOXJkrfuOj4+vko0nC9X5SzKrV6/2rtu2bZuJjY01v/zlLwPqD8DdkC0aMGCAunbtWmX9iXPn/Pe//1VRUZH69++vL7/80rt+0aJF8ng8mjhxoqKifF+CijswLVu2TIWFhbr22mu1d+9e7xIdHa3MzEx98MEHVY594jdHNfF4PFq0aJGGDRtW5ZuRE4+/ePFi9enTRxdccIH3sebNm2vcuHHaunWrvv32W5/txowZ4zOXUsVItf/85z+Sjn8bs2XLFt11111VvpGqOOb+/fv1/vvv65prrtGBAwe857xv3z5lZ2dr06ZN+vHHH322HTdunM9dq/r376/y8nJt27btlM9FhbFjxyo6Otpn3Ymv49GjR7Vv3z516tRJCQkJPq9lIBYvXqzU1FRde+213nWNGzfWHXfcoYMHD2rlypU+7UeMGOEz98XJz2lN3G63999VeXm59u3bp+bNm+vss8+23PdTeeaZZ7Rs2bJTLr/73e+82xw+fNjb35PFxsZ6HwcaCnKFXAlUfc+VBQsWKD4+Xj//+c99/k1mZGSoefPmVf5Ntm/fXtnZ2ZaPV51gsyghIUH//ve/tWnTpoCPHej5p6Wl+YxIiouL06hRo7R27Vrl5+cH3R/AqcrLy7V06VINHz5cbdq08a7v0qVLyN9TrOTOyZlhJa9vueUWn5/79+/v897+1ltvyeVyadKkSVW2rci8v//97/J4PLrmmmt8jpuamqozzzyz2uOeKBw5Jx1/r+zSpYs6d+7s06+LL75Ykqr0q6a/p4Jx+PDhGucN9jcrPv/8c+3cuTPgYwd6/n379lVGRob35zZt2ujyyy/X0qVLVV5eHnR/0HBwGbJF7du3r3b9O++8o0ceeUTr1q1TaWmpd/2JHzw2b96sqKioWt/EKv7Iq3gTOFlcXJzPz40aNdIZZ5xxyn7v2bNHxcXF3iHINdm2bZsyMzOrrK+4FGrbtm0++zgxeCV5P4z897//lXT8nCXVetzvv/9exhg99NBDeuihh6pts3v3brVu3drv4/qjutfy8OHDys3N1ezZs/Xjjz/KGON9rKioyO99n2jbtm0688wzq3yQP/E5PZHVc/N4PHruuef04osvasuWLd5QkKTTTz/dUt9P5cRA8lfFHxQn/p5UqG3SesCpyBVyJVD1PVc2bdqkoqIiJScnV/t4xc0DKtT0OxKMYLPo4Ycf1uWXX66zzjpL3bp10+DBg3XDDTeoR48epzx2oOffqVMnn997STrrrLMkSVu3blVqampQ/QGcas+ePTp8+LDOPPPMKo+dffbZWrx4cciOZSV3Tn5vCzSvY2NjfaY1kY6/v5/43r5582alpaUpMTGxxr5v2rRJxphqnydJtU5XIYUn5yr6tX79+irnWMGurCgrK6v2MX+y4sknn9To0aOVnp6ujIwMXXrppRo1apQ6dOhwymMHev7VvX5nnXWWDh06pD179ig1NTWo/qDhoFhoUXVvCB999JEuu+wyXXjhhXrxxRfVqlUrNW7cWLNnz9a8efMC2r/H45F0fL6K1NTUKo9X3K2vwonf+teFk0dQVDgxJE6l4pzvueeeGr/l69SpU8iPW91refvtt2v27Nm666671LdvX8XHx8vlcmnkyJHefoab1XN77LHH9NBDD+lXv/qVpk6dqsTEREVFRemuu+4KW9/3799fY4CeqEmTJoqPj5cktWrVSpK0a9cupaen+7TbtWuX+vTpE/qOAhGMXPFFroRepOWKx+NRcnKyXnvttWofP/mDUTi+RAo2iy688EJt3rxZb7/9tv71r3/pT3/6k5599lnNmjVLN998c63bBnr+/gimPwCCZyV3Tn5vCzSva3pvD5TH45HL5dL//d//VbvPijn0ahKunPN4POrevbumTZtW7eMnv3eHKyvKy8u1e/duny94ysrKtG/fPqWlpdW6/TXXXKP+/ftr4cKF+te//qWnnnpKTzzxhP7+979ryJAhtW4b6Pn7I5j+oOGgWFiDk7+59cdbb72l2NhYLV261OdyltmzZ/u069ixozwej7799lv16tWr2n117NhRkpScnKysrKyA+1KTli1bKi4uTt98802t7dq2bauNGzdWWb9hwwbv44GoOJ9vvvmmxvOp+CajcePGIT1nK6/lm2++qdGjR+uZZ57xrjty5IgKCwst77tt27b66quv5PF4fD6AW31Oa/Lmm2/qoosu0iuvvOKzvrCw0HtTBSnw56W29ldccUWVy92qM3r0aM2ZM0eSvP/2V69e7fNhbOfOnfrhhx80bty4gPoHRDpyhVxxeq7UpKZz6tixo9577z2df/75dTaaPBRZlJiYqDFjxmjMmDE6ePCgLrzwQk2ePNlbnAvV+VeMWDpxf999950k+Uzgf6r+AA1Ny5Yt1aRJk2ovz68ul4IRitwJR1537NhRS5cu1f79+2scXdixY0cZY9S+fXvvqOVA+JtzNantvfL//b//p0suucRS/obCiVlx6aWXetevXr1aHo+nxr+9TtSqVSvddtttuu2227R7926de+65evTRR73FuVCdf3X/zr/77js1bdrU50uoU/UHYM7CGjRr1kyS/H5zk45/q+NyuXwuz9m6dWuVOxQNHz5cUVFRevjhh6t8y1Lx7X52drbi4uL02GOPVXuX2T179vjdrxNFRUVp+PDh+uc//6nVq1dXebzi+JdeeqlWrVqlvLw872MlJSV66aWX1K5du4DngTj33HPVvn17TZ8+vcpzWnHM5ORkDRw4UH/84x+1a9euKvuwes7NmjUL6HWUjr+WJ4+0eP75531e24p9S/79O7n00kuVn5/vvaOmdPxuo88//7yaN2+uAQMGBNTHmlTX9wULFlSZHyXQf+O1tbcyZ+E555yjzp0766WXXvJ5XmfOnCmXy6WrrrrKr34B9QW5Qq44PVdqUtM5XXPNNSovL9fUqVOrbHPs2LGAn2Mrgs2iffv2+fzcvHlzderUyeey5lCd/86dO7Vw4ULvz8XFxfrLX/6iXr16eUcf+dMfoKGJjo5Wdna2Fi1apO3bt3vXr1+/XkuXLg3psUKRO+HI6yuvvFLGGE2ZMqXKYxXv71dccYWio6M1ZcqUKu/5xpgq7y8n8zfnalJxR+STXXPNNfrxxx/18ssvV3ns8OHD3jtIh9PFF1+sxMREzZw502f9zJkz1bRpUw0dOrTGbcvLy6ucV3JystLS0qpkRSjOPy8vz2eOyB07dujtt9/WoEGDFB0d7Xd/AEYW1qBiDrYHHnhAI0eOVOPGjTVs2DDvH3zVGTp0qKZNm6bBgwfruuuu0+7duzVjxgx16tRJX331lbddp06d9MADD2jq1Knq37+/rrjiCrndbn3xxRdKS0tTbm6u4uLiNHPmTN1www0699xzNXLkSLVs2VLbt2/Xu+++q/PPP18vvPCCpXN77LHH9K9//UsDBgzw3n59165dWrBggT7++GMlJCTovvvu09/+9jcNGTJEd9xxhxITE/XnP/9ZW7Zs0VtvvRXwpWlRUVGaOXOmhg0bpl69emnMmDFq1aqVNmzYoH//+9/eoJ4xY4YuuOACde/eXWPHjlWHDh1UUFCgvLw8/fDDD/p//+//BXy+GRkZmjlzph555BF16tRJycnJNc4BUuEXv/iF5s6dq/j4eHXt2lV5eXl67733qszN1KtXL0VHR+uJJ55QUVGR3G63Lr744mrnHxo3bpz++Mc/6sYbb9SaNWvUrl07vfnmm/rkk080ffp0tWjRIuBzq6nvDz/8sMaMGaN+/frp66+/1muvvVZlDoqOHTsqISFBs2bNUosWLdSsWTNlZmbWOM9Hbb8TVuYslKSnnnpKl112mQYNGqSRI0fqm2++0QsvvKCbb77ZO+cW4BTkCrni9FypScW//TvuuEPZ2dmKjo7WyJEjNWDAAP36179Wbm6u1q1bp0GDBqlx48batGmTFixYoOeee87yF0dFRUV6/vnnJUmffPKJJOmFF15QQkKCEhISlJOT420bTBZ17dpVAwcOVEZGhhITE7V69Wq9+eabPvsP1fmfddZZuummm/TFF18oJSVFr776qgoKCnxGGvvTH6AhmjJlipYsWaL+/fvrtttu836xcs455/jkaSgEmzvhyOuLLrpIN9xwg/7whz9o06ZNGjx4sDwejz766CNddNFFysnJUceOHfXII4/o/vvv19atWzV8+HC1aNFCW7Zs0cKFCzVu3Djdc889NR7D35yrSUZGhubPn68JEybovPPOU/PmzTVs2DDdcMMNeuONN3TLLbfogw8+0Pnnn6/y8nJt2LBBb7zxhpYuXVrtDdb8sW3bNs2dO1eSvF94PvLII5KOj86/4YYbJB2/tHnq1KkaP368rr76amVnZ+ujjz7SX//6Vz366KO1zgV54MABnXHGGbrqqqvUs2dPNW/eXO+9956++OILn1GYoTr/bt26KTs7W3fccYfcbrdefPFFSfIWiv3tD1D9vcFhjDFm6tSppnXr1iYqKspIMlu2bDHGHL8leU23Gn/llVfMmWeeadxut+ncubOZPXu2mTRpUrW3YX/11VfNz372M+N2u81pp51mBgwYYJYtW+bT5oMPPjDZ2dkmPj7exMbGmo4dO5obb7zR53boo0ePNs2aNQvo3LZt22ZGjRplWrZsadxut+nQoYMZP368KS0t9bbZvHmzueqqq0xCQoKJjY01ffr0Me+8806V/kkyCxYs8Fm/ZcsWI8nMnj3bZ/3HH39sfv7zn5sWLVqYZs2amR49epjnn3/ep83mzZvNqFGjTGpqqmncuLFp3bq1+cUvfmHefPNNb5vZs2cbSeaLL76otj8ffPCBd11+fr4ZOnSoadGihZFkBgwYUOs+jDHmv//9rxkzZoxJSkoyzZs3N9nZ2WbDhg2mbdu2ZvTo0T5tX375ZdOhQwcTHR3tc+wBAwZ4j1WhoKDAu9+YmBjTvXv3Ks9RxXP31FNPVemXJDNp0qQq60905MgR85vf/Ma0atXKNGnSxJx//vkmLy+v2v68/fbbpmvXrqZRo0bVvl4nq+l3IhgLFy40vXr1Mm6325xxxhnmwQcfNGVlZUHvF4hE5Aq54vRcqe7f8rFjx8ztt99uWrZsaVwuV5V/uy+99JLJyMgwTZo0MS1atDDdu3c3v/vd78zOnTu9bdq2bWuGDh1aaz+rO+fqlrZt21ZpbzWLHnnkEdOnTx+TkJBgmjRpYjp37mweffRRn21Def5Lly41PXr08L4fnPx74k9/gIZq5cqVJiMjw8TExJgOHTqYWbNmVZunJ78v1/QeWlNeGRNc7py4f6t5Xd15HTt2zDz11FOmc+fOJiYmxrRs2dIMGTLErFmzxqfdW2+9ZS644ALTrFkz06xZM9O5c2czfvx4s3Hjxmr7WcHfnKvp+Tx48KC57rrrTEJCQpX36rKyMvPEE0+Yc845x/s3TkZGhpkyZYopKirytqvt76nqVLyG1S0n55sxx9+vzz77bBMTE2M6duxonn32WePxeGo9Rmlpqfntb39revbs6f1bpWfPnubFF18M2/n/9a9/9f7t+LOf/cznbxh/+wO4jAlgxm4AAAAAtmrXrp26deumd955p667AgCIUC6XS+PHj7d8pQhwIuYsBAAAAAAAACCJYiEAAAAAAACAn1AsBAAAAAAAACCJYiEAOM6HH36oYcOGKS0tTS6XS4sWLTrlNitWrNC5554rt9utTp06ac6cOWHvJwDAP1u3bm3Q8xWSawBwasYY5itEyFAsBACHKSkpUc+ePTVjxgy/2m/ZskVDhw7VRRddpHXr1umuu+7SzTffrKVLl4a5pwAAnBq5BgCAvbgbMgA4mMvl0sKFCzV8+PAa29x7771699139c0333jXjRw5UoWFhVqyZIkNvQQAwD/kGgAA4deorjtwMo/Ho507d6pFixZyuVx13R0ADZgxRgcOHFBaWpqiooIbiH3kyBGVlZUF1ZeT3xPdbrfcbndQ/ZKkvLw8ZWVl+azLzs7WXXfdFfS+Qa4BiByRkmvhzDSJXAs3cg1AJAhlpknB5VpMTIxiY2OD7kMkibhi4c6dO5Wenl7X3QAArx07duiMM86wvP2RI0fUvm1z5e8ut7yP5s2b6+DBgz7rJk2apMmTJ1veZ4X8/HylpKT4rEtJSVFxcbEOHz6sJk2aBH2MhoxcAxBp6jrXwplpErkWbuQagEgSbKZJP+VakybKt7h9amqqtmzZ4qiCYcQVC1u0aCFJukCXqpEa13FvADRkx3RUH2ux933JqrKyMuXvLteWNW0V1yLwb72KD3jUPmObduzYobi4OO/6UI3AQHiRawAiRSTkGplW/1X8+9mxfbvPawgAdiouLlZ6mzZBZ5r0U65J2uFyKdB3tWJJ6fn5Kisro1gYThVD2RupsRq5+FAFoA79NKNrqC6xiWsRZalY6N0+Li4sf5SnpqaqoKDAZ11BQYHi4uIYfREC5BqAiBFBuRauTJPItXCr+PcTztcQAPwVyukQ4iTFBbo/h94GJOKKhQDgVOXGo3ILWVJuPKHvzAn69u2rxYsX+6xbtmyZ+vbtG9bjAgDqNyu5Fu5Mk8g1AIBFUVGSlWJhufXppiJV8LNAAgD84pGxvATi4MGDWrdundatWydJ2rJli9atW6ft27dLku6//36NGjXK2/6WW27Rf/7zH/3ud7/Thg0b9OKLL+qNN97Q3XffHbJzBwA4jx2ZJpFrAACbREVZWxyIkYUAYBOPPLIyniLQrVavXq2LLrrI+/OECRMkSaNHj9acOXO0a9cu7wcsSWrfvr3effdd3X333Xruued0xhln6E9/+pOys7Mt9BYA0FBYyTUrSUiuAQBsYXVkoQNRLAQAm5Qbo3ILYRLoNgMHDpSpZZs5c+ZUu83atWsD7RoAoAGzkmtWcpBcAwDYgmKhF8VCALCJ1cuvrGwDAEC4Wck1Mg0AELEoFno58+JqAAAAAAAAAAFjZCEA2MQjo3JGFgIAHMJKrpFpAICIxchCL4qFAGATLkMGADgJlyEDAByFYqEXxUIAsIldNzgBAMAOdt3gBAAAW1As9KJYCAA28fy0WNkOAIBIYyXXyDQAQMRyuY4XDAPhcWaycYMTAAAAAAAAAJIYWQgAtim3eIMTK9sAABBuVnKNTAMARKyoqMBHFjoUxUIAsEm5Ob5Y2Q4AgEhjJdfINABAxKJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKVyBXh3rZ+2AwAg0ljJNTINABCxKBZ6USwEAJt4zPHFynYAAEQaK7lGpgEAIhbFQq+AnoXc3Fydd955atGihZKTkzV8+HBt3LjRp83AgQPlcrl8lltuuSWknQYAIBTINQCAU5BpAIBQCahYuHLlSo0fP16fffaZli1bpqNHj2rQoEEqKSnxaTd27Fjt2rXLuzz55JMh7TQA1EflP12uZWVBeJBrAGAdmRZZyDQACFLFyMJAFwcK6DLkJUuW+Pw8Z84cJScna82aNbrwwgu965s2barU1NTQ9BAAHMLqhyQ+WIUPuQYA1lnJNTItfMg0AAiSg4t/gQrqWSgqKpIkJSYm+qx/7bXXlJSUpG7duun+++/XoUOHatxHaWmpiouLfRYAcCKPcVleYA9yDQD8R6ZFtlBkmkSuAWhAGFnoZfkGJx6PR3fddZfOP/98devWzbv+uuuuU9u2bZWWlqavvvpK9957rzZu3Ki///3v1e4nNzdXU6ZMsdoNAKg3GFkY2cg1AAgMIwsjV6gyTSLXADQgLlfgxT/jzDt3uYyxdma33nqr/u///k8ff/yxzjjjjBrbvf/++7rkkkv0/fffq2PHjlUeLy0tVWlpqffn4uJipaena6AuVyNXYytdA4CQOGaOaoXeVlFRkeLi4izvp7i4WPHx8Xr/m3Q1bxH4N08HD3h0cbcdQfcDtSPXADhdJOQamWaPUGWaVHOuFRUW8hoCqDPFxcWKT0gISZ5U5FrRmWcqLjo6sG3LyxW/aZPjcs3SyMKcnBy98847+vDDD2sNH0nKzMyUpBoDyO12y+12W+kGAAAhQa4BAJwilJkmkWsA0BAFVCw0xuj222/XwoULtWLFCrVv3/6U26xbt06S1KpVK0sdBACnMBbnajLM7xQ25BoAWGcl18i08CHTACBIVuYgdOhlyAE9C+PHj9df//pXzZs3Ty1atFB+fr7y8/N1+PBhSdLmzZs1depUrVmzRlu3btU//vEPjRo1ShdeeKF69OgRlhMAgPqiYm4nKwvCg1wDAOvItMhCpgFAkGy8wcmMGTPUrl07xcbGKjMzU6tWrfJru9dff10ul0vDhw+3dFx/BTSycObMmZKkgQMH+qyfPXu2brzxRsXExOi9997T9OnTVVJSovT0dF155ZV68MEHQ9ZhAKivyk2Uyk3gYVLuzC+rIgK5BgDWWck1Mi18yDQACJJNIwvnz5+vCRMmaNasWcrMzNT06dOVnZ2tjRs3Kjk5ucbttm7dqnvuuUf9+/cP+JiBCvgy5Nqkp6dr5cqVQXUIAJzKI5c8gQ3o/mk7PlmFC7kGANZZyTUyLXzINAAIkk3FwmnTpmns2LEaM2aMJGnWrFl699139eqrr+q+++6rdpvy8nJdf/31mjJlij766CMVFhYGfNxAWBsvCQAIGJchAwCchEwDADhKEJchFxcX+ywn3kX+RGVlZVqzZo2ysrJOOGyUsrKylJeXV2PXHn74YSUnJ+umm24K7TnXgGIhAAAAAAAAYFF6erri4+O9S25ubrXt9u7dq/LycqWkpPisT0lJUX5+frXbfPzxx3rllVf08ssvh7zfNQnoMmQAgHXW5yzkki0AQOSxNmchmQYAiFBBXIa8Y8cOxcXFeVe73e6QdOnAgQO64YYb9PLLLyspKSkk+/QHxUIAsMnxuZ0Cv/zKyjYAAISblVwj0wAAESuIYmFcXJxPsbAmSUlJio6OVkFBgc/6goICpaamVmm/efNmbd26VcOGDfOu83g8kqRGjRpp48aN6tixY2B99gPFQgCwiUdRKucGJwAAh7CSa2QaACBiuVyBFwt/Ktz5KyYmRhkZGVq+fLmGDx/+0y48Wr58uXJycqq079y5s77++mufdQ8++KAOHDig5557Tunp6YH1108UCwHAJlyGDABwEi5DBhBqJoDRxy6+fAiLBv0aWBlZGGh7SRMmTNDo0aPVu3dv9enTR9OnT1dJSYn37sijRo1S69atlZubq9jYWHXr1s1n+4SEBEmqsj6UKBYCgE08ipKHkYUAAIewkmtkGgAgYtlULBwxYoT27NmjiRMnKj8/X7169dKSJUu8Nz3Zvn27oizsN5QoFgIAAAAAAAA2ycnJqfayY0lasWJFrdvOmTMn9B06CcVCALBJuXGp3AQ+sbuVbQAACDcruUamAQAilk0jC+sDioUAYJNyizc4KeeSLQBABLKSa2QaACBiUSz0olgIADbxmCh5LNzgxMNk8ACACGQl18g0AEDEoljoRbEQAGzCyEIAgJMwshAA4CgUC70oFgKATTyyNleTJ/RdAQAgaFZyjUwDAEQsioVezjwrAAAAAAAAAAFjZCEA2MSjKHksfEdjZRsAAMLNSq6RaQCAiMXIQi+KhQBgk3ITpXILNzixsg0AAOFmJdfINABAxHK5Ai/+uQKfZqo+oFgIADbxyCWPrMxZ6MwAAgDUb1ZyjUwDGh7D7z3qC0YWelEsBACbMLIQAOAkjCwEADgKxUIvioUAYJNyRancwlxNVrYBACDcrOQamQYAiFgUC72ceVYAAAAAAAAAAsbIQgCwice45DEW5iy0sA0AAOFmJdfINABAxGJkoRfFQgCwicfiZcgeBoEDACKQlVwj0wAAEYtioRfFQgCwicdEyWNhYncr2wAAEG5Wco1MAwBELIqFXhQLAcAm5XKpXIFffmVlGwAAws1KrpFpAICIRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAAAAAAAAABIyRhQBgk3JZu/yqPPRdAQAgaFZyjUwDAEQslyvwkYIuZ06vwchCALBJxeVaVpZAzZgxQ+3atVNsbKwyMzO1atWqWttPnz5dZ599tpo0aaL09HTdfffdOnLkiNVTBQA0AHZlmkSuAQ2FS8bvBeHRoF+DisuQA10ciJGFAGCTchOlcgsfkgLdZv78+ZowYYJmzZqlzMxMTZ8+XdnZ2dq4caOSk5OrtJ83b57uu+8+vfrqq+rXr5++++473XjjjXK5XJo2bVrA/QUANAxWcs1KDpJrAABbMGehlzPPCgAikJFLHguLCfASr2nTpmns2LEaM2aMunbtqlmzZqlp06Z69dVXq23/6aef6vzzz9d1112ndu3aadCgQbr22mtPOWoDANCwWcm1QDNNItcAADZhZKGXM88KACJQxQgMK4u/ysrKtGbNGmVlZXnXRUVFKSsrS3l5edVu069fP61Zs8b7Ieo///mPFi9erEsvvTS4EwYAOFq4M00i1wAANqJY6MVlyABQTxQXF/v87Ha75Xa7fdbt3btX5eXlSklJ8VmfkpKiDRs2VLvf6667Tnv37tUFF1wgY4yOHTumW265Rb///e9DewIAAPzEn0yTyDUAAOqCM0ugABCBPMZleZGk9PR0xcfHe5fc3NyQ9GvFihV67LHH9OKLL+rLL7/U3//+d7377ruaOnVqSPYPAHCmSMw0iVwDAFjEyEIvRhYCgE3KFaVyC9/RVGyzY8cOxcXFeddXNwIjKSlJ0dHRKigo8FlfUFCg1NTUavf/0EMP6YYbbtDNN98sSerevbtKSko0btw4PfDAA4pyaAACAIJjJdcCyTSJXAMA2IgbnHg586wAIAIFO7IwLi7OZ6nug1VMTIwyMjK0fPnyyuN6PFq+fLn69u1bbb8OHTpU5YNTdHS0JMkYE6rTBwA4TLgzTSLXAAA2YmShFyMLAcAmHkXJY+E7mkC3mTBhgkaPHq3evXurT58+mj59ukpKSjRmzBhJ0qhRo9S6dWvvJV/Dhg3TtGnT9LOf/UyZmZn6/vvv9dBDD2nYsGHeD1cAAJzMSq5ZyUFyDQBgC0YWelEsBACblBuXyn8aURHodoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3WfExYMPPiiXy6UHH3xQP/74o1q2bKlhw4bp0UcfDbivAICGw0quWclBcg0AYAuXK/DinyvwXKsPKBYCgAPl5OQoJyen2sdWrFjh83OjRo00adIkTZo0yYaeAQAQOHINAAD7UCwEAJucOFdToNsBABBprOQamQYAiFhchuxFsRAAbGJMlDwm8DAxFrYBACDcrOQamQYAiFgUC70oFgKATcrlUrkszFloYRsAAMLNSq6RaQCAiEWx0ItiIQDYxGOsXX7lMWHoDAAAQbKSa2QaACBiUSz0olgIADbxWLwM2co2AACEm5VcI9MAABGLYqGXM88KAAAAAAAAQMAYWQgANvHIJY+FuZqsbAMAQLhZyTUyDQAQsRhZ6EWxEABsUm5cKrcwZ6GVbQAACDcruUamAQAiFsVCr4DOKjc3V+edd55atGih5ORkDR8+XBs3bvRpc+TIEY0fP16nn366mjdvriuvvFIFBQUh7TQA1EcVcztZWRAe5BoAWEemRRYyDQCCVFEsDHRxoIDOauXKlRo/frw+++wzLVu2TEePHtWgQYNUUlLibXP33Xfrn//8pxYsWKCVK1dq586duuKKK0LecQCobzxyyWMsLFyyFTbkGgBYZynXyLSwIdMAIEguV+CFQpczcy2gy5CXLFni8/OcOXOUnJysNWvW6MILL1RRUZFeeeUVzZs3TxdffLEkafbs2erSpYs+++wz/c///E/oeg4A9YyxOGeh4YNV2JBrAGCdlVwj08KHTAOAIHEZsldQZ1VUVCRJSkxMlCStWbNGR48eVVZWlrdN586d1aZNG+Xl5VW7j9LSUhUXF/ssAADUBXINAOAUocg0iVwDgIbIcrHQ4/Horrvu0vnnn69u3bpJkvLz8xUTE6OEhASftikpKcrPz692P7m5uYqPj/cu6enpVrsEABHN0iXIPy0IP3INAAJDpkWuUGWaRK4BaECYs9DL8lmNHz9e33zzjV5//fWgOnD//ferqKjIu+zYsSOo/QFApOIGJ5GNXAOAwJBpkStUmSaRawAaEIqFXgHNWVghJydH77zzjj788EOdccYZ3vWpqakqKytTYWGhzzdWBQUFSk1NrXZfbrdbbrfbSjcAoF6xOqKCURjhR64BQOCs5BqZFn6hzDSJXAPQgDBnoVdAZ2WMUU5OjhYuXKj3339f7du393k8IyNDjRs31vLly73rNm7cqO3bt6tv376h6TEA1FOenyaCt7IgPMg1ALCOTIssZBoABImRhV4BjSwcP3685s2bp7ffflstWrTwzm0RHx+vJk2aKD4+XjfddJMmTJigxMRExcXF6fbbb1ffvn25uxaABo+RhZGHXAMA6xhZGFnINAAIEiMLvQIqFs6cOVOSNHDgQJ/1s2fP1o033ihJevbZZxUVFaUrr7xSpaWlys7O1osvvhiSzgIAEErkGgDAKcg0AECoBFQsNMacsk1sbKxmzJihGTNmWO4UADgRIwsjD7kGANYxsjCykGkAECRGFnpZusEJACBwFAsBAE5CsRAA4CgUC72ceVYAEIEqPlRZWQAAiDRkGgDAUVyuwG9u4rKWazNmzFC7du0UGxurzMxMrVq1qsa2L7/8svr376/TTjtNp512mrKysmptHwoUCwHAJkbW7hx56ouKAACwn5VcI9MAABHLprshz58/XxMmTNCkSZP05ZdfqmfPnsrOztbu3burbb9ixQpde+21+uCDD5SXl6f09HQNGjRIP/74Y7BnXCOKhQAAAAAAAIANpk2bprFjx2rMmDHq2rWrZs2apaZNm+rVV1+ttv1rr72m2267Tb169VLnzp31pz/9SR6PR8uXLw9bHykWAoBNuAwZAOAkZBoAwFFsGFlYVlamNWvWKCsr64TDRikrK0t5eXl+7ePQoUM6evSoEhMTAzp2ILjBCQDYhBucAACchBucAAAcJYgbnBQXF/usdrvdcrvdVZrv3btX5eXlSklJ8VmfkpKiDRs2+HXIe++9V2lpaT4Fx1BjZCEA2ISRhQAAJyHTAACOEsTIwvT0dMXHx3uX3NzcsHTx8ccf1+uvv66FCxcqNjY2LMeQGFkIALZhZCEAwEkYWQgAcJQgRhbu2LFDcXFx3tXVjSqUpKSkJEVHR6ugoMBnfUFBgVJTU2s91NNPP63HH39c7733nnr06BFYPwPEyEIAsIkxLssLAACRhkwDADhKECML4+LifJaaioUxMTHKyMjwuTlJxc1K+vbtW2PXnnzySU2dOlVLlixR7969Q3ve1WBkIQAAAAAAAGCDCRMmaPTo0erdu7f69Omj6dOnq6SkRGPGjJEkjRo1Sq1bt/ZeyvzEE09o4sSJmjdvntq1a6f8/HxJUvPmzdW8efOw9JFiIQDYxCOXPLJwGbKFbQAACDcruUamAQAiVhCXIQdixIgR2rNnjyZOnKj8/Hz16tVLS5Ys8d70ZPv27Yo6Yb8zZ85UWVmZrrrqKp/9TJo0SZMnTw74+P6gWAgANmHOQgCAkzBnIQDAUWwqFkpSTk6OcnJyqn1sxYoVPj9v3brV0jGCQbEQAGxida4m5ncCAEQiK7lGpgEAIpbLFXjxz+XMXKNYCAA2YWQhAMBJGFkIAHAUG0cWRjqKhQBgE0YWAgCchJGFAABHoVjo5cyzAgAAAAAAABAwRhYCgE2MxcuQGYUBAIhEVnKNTAOAyGYCuGu9SyaMPakDjCz0olgIADYxkoyFPHVYBAMAHMJKrpFpAICIRbHQi2IhANjEI5dcAXxTd+J2AABEGiu5RqYBACIWxUIvioUAYBNucAIAcBJucAIAcBSKhV4UCwHAJh7jksvChyQr8xwCABBuVnKNTAMARCyKhV7OPCsAAAAAAAAAAWNkIQDYxBiLNzhhNngAQASykmtkGgAgYjGy0ItiIQDYhDkLAQBOwpyFAABHoVjoRbEQAGxCsRAA4CQUCwEAjuJyBV78czkz1ygWAoBNuMEJAMBJuMEJAMBRGFnoRbEQAGzCnIUAACdhzkIAgKNQLPSiWIgGJ6pJE/8aBjCc2JSW+t+2vNzvtgAA1MbVqLHfbaOaxPrdNpCsIgMBAKFy9Jj/n8EaRwWQKUeO+NcuJsb/fTZyZjnFJb7VAcVCALDN8REYVuYsDENnAAAIkpVcI9MAABGLkYVeFAsBwCbc4AQA4CTc4AQA4CgUC70oFgKATcxPi5XtAACINFZyjUwDAEQsioVeFAsBwCaMLAQAOAkjCwEAjkKx0MuZZwUAkcgEsQRoxowZateunWJjY5WZmalVq1bV2r6wsFDjx49Xq1at5Ha7ddZZZ2nx4sWBHxgA0HDYlGkSuQYAsEFFsTDQxYEYWQgADjN//nxNmDBBs2bNUmZmpqZPn67s7Gxt3LhRycnJVdqXlZXp5z//uZKTk/Xmm2+qdevW2rZtmxISEuzvPAAAJyHXAACwF8VCALCLxcuQFeA206ZN09ixYzVmzBhJ0qxZs/Tuu+/q1Vdf1X333Vel/auvvqr9+/fr008/VePGjSVJ7dq1C7yfAICGxUquWchBcg0AYAsuQ/Zy5lkBQAQyxvoiScXFxT5LaWlplWOUlZVpzZo1ysrK8q6LiopSVlaW8vLyqu3XP/7xD/Xt21fjx49XSkqKunXrpscee0zl5eVheR4AAM4Q7kyTyDUAgI1crsAvQXY5cy5eioUAYJOKieCtLJKUnp6u+Ph475Kbm1vlGHv37lV5eblSUlJ81qekpCg/P7/afv3nP//Rm2++qfLyci1evFgPPfSQnnnmGT3yyCOhfxIAAI4R7kyTyDUAgI2Ys9CLy5ABwC7GZenyq4ptduzYobi4OO9qt9sdkm55PB4lJyfrpZdeUnR0tDIyMvTjjz/qqaee0qRJk0JyDACAA1nJtTBnmkSuAQAs4jJkL4qFAGCTEy+/CnQ7SYqLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq92mVatWaty4saKjo73runTpovz8fJWVlSkmJibwTgMAHM9KrgWSaRK5BgCwEcVCL4qFiFhRgfwhd04nv5se6HjqP0wlydPY/8M333HE77aNvtnqd9vywkL/OwFIiomJUUZGhpYvX67hw4dLOj7CYvny5crJyal2m/PPP1/z5s2Tx+NR1E9h991336lVq1Z8oALqQKPkln63PdKjrd9tD7b2P9galfpfAYrbWOx3W9eGLX618xypfv66ahmP/21R75BrQGQ6cND/UcU//OD/fps29b9t2yT/P4Npwwb/2/rrrLP8bxvIiTm0+IT6hX+FAGAXE8QSgAkTJujll1/Wn//8Z61fv1633nqrSkpKvHeRHDVqlO6//35v+1tvvVX79+/XnXfeqe+++07vvvuuHnvsMY0fPz648wUAOJsNmSaRawAAmzBnoRcjCwHAJidO7B7odoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3TvSQjo+yfzSpUt19913q0ePHmrdurXuvPNO3XvvvQH3FQDQcFjJNSs5SK4BAGzBZcheFAsBwE4WRlRYkZOTU+PlWStWrKiyrm/fvvrss8/C3CsAgOOQawAAp6BY6EWxEABsYtfIQgAA7GDXyEIAAGxBsdCLYiEA2MXiXE12jdoAACAgVnKNTAMARCqKhV7OPCsAAAAAAAAAAQu4WPjhhx9q2LBhSktLk8vl0qJFi3wev/HGG+VyuXyWwYMHh6q/AFCPuYJYEA5kGgAEg0yLNOQaAATB5Qr8TsguZ+ZawMXCkpIS9ezZUzNmzKixzeDBg7Vr1y7v8re//S2oTgKAI5ggFoQFmQYAQSDTIg65BgBBCLRQaOWy5Xoi4DkLhwwZoiFDhtTaxu12KzU11XKnAMCRmLMw4pBpABAE5iyMOOQaAASBOQu9wnJWK1asUHJyss4++2zdeuut2rdvX41tS0tLVVxc7LMAgCMZl/UFdSaQTJPINQANCJlWL5FrAFADRhZ6hfxuyIMHD9YVV1yh9u3ba/Pmzfr973+vIUOGKC8vT9HR0VXa5+bmasqUKaHuBhzA1bmj3223XZrgd9vGff7rV7tG0R6/97l93el+t23jau9326i8b/xua44d9bst6oYxxxcr26FuBJppErmGmkU1bepXu5I+/ufE9qv8z6rEpP1+ty0sifW77cHPE/xue8b+JP8a7qm9eHEiz+EjfreV8f/5wqlZyTUyrW6RaziVo8f8K+h/+63/+9ywwf+2/fr531Z+5qokaedO/9rl5/u/z+bN/W8byGjeQPbr0EJVnWFkoVfIi4UjR470/n/37t3Vo0cPdezYUStWrNAll1xSpf3999+vCRMmeH8uLi5Wenp6qLsFAEDAAs00iVwDAEQucg0A4I+wl0A7dOigpKQkff/999U+7na7FRcX57MAgCNxg5N671SZJpFrABoQMq3eI9cA4ARchuwV8pGFJ/vhhx+0b98+tWrVKtyHAoDIZnWuJuZ3ihhkGgCcwEqukWkRhVwDgBNwGbJXwMXCgwcP+nzztGXLFq1bt06JiYlKTEzUlClTdOWVVyo1NVWbN2/W7373O3Xq1EnZ2dkh7TgA1Dcuc3yxsh3Cg0wDAOus5BqZFl7kGgAEgWKhV8DFwtWrV+uiiy7y/lwxf8Xo0aM1c+ZMffXVV/rzn/+swsJCpaWladCgQZo6darcbnfoeg0A9ZHVy6/4YBU2ZBoABMFKrpFpYUWuAUAQKBZ6BVwsHDhwoEwttzFbunRpUB0CAMfiMuSIQ6YBQBC4DDnikGsAEASXK/Din8uZuebMEigAAAAAAACAgIX9BicAgJ9wGTIAwEm4DBkA4CRchuxFsRAA7EKxEADgJBQLAQBOQrHQi2IhANiFYiEAwEkoFgIAnIRioRfFQgCwCzc4AQA4CTc4AQA4CcVCL4qFsJWrUWO/2x7sGOd326jeRX63fbnHXL/aNXaV+73PX7v+1++2xRuT/G6b+FVTv9uWF/n/HKBuuMzxxcp2AOq/qMTT/Gq3/2z//zz7de9lfrfNav6t322/PNzW77aPFQ/1u215SoJf7aKKDvi9T1dpqd9tjf/RDj9YyTUyDYhshw75127rVv/3GUjbbt38b2vk/5cPrv37/Wv4ww/+d2DvXv/bJiT437ap/58B/S1UBfRcNeQh4BQLvZx5VgAAAAAAAEAEmjFjhtq1a6fY2FhlZmZq1apVtbZfsGCBOnfurNjYWHXv3l2LFy8Oa/8oFgKAXUwQCwAAkYZMAwA4ScXIwkCXAM2fP18TJkzQpEmT9OWXX6pnz57Kzs7W7t27q23/6aef6tprr9VNN92ktWvXavjw4Ro+fLi++eabYM+4RhQLAQAAAAAA0LDZVCycNm2axo4dqzFjxqhr166aNWuWmjZtqldffbXa9s8995wGDx6s3/72t+rSpYumTp2qc889Vy+88EKwZ1wjioUAYBOXKud3Cmip644DAFANS7lW150GAKAmQRQLi4uLfZbSGuZULisr05o1a5SVlXXCYaOUlZWlvLy8arfJy8vzaS9J2dnZNbYPBYqFAGCXirtGWlkAAIg0ZBoAwEGMXJYWSUpPT1d8fLx3yc3NrfYYe/fuVXl5uVJSUnzWp6SkKD8/v9pt8vPzA2ofCtwNGQDsYnWuJuZ3AgBEIiu5RqYBACKUx3N8CXQbSdqxY4fi4uK8691udwh7Zj+KhQAAAAAAAIBFcXFxPsXCmiQlJSk6OloFBQU+6wsKCpSamlrtNqmpqQG1DwUuQwYAu3A3ZACAk5BpAAAHqRhZGOgSiJiYGGVkZGj58uUnHNej5cuXq2/fvtVu07dvX5/2krRs2bIa24cCIwsBwCYVk7tb2Q4AgEhjJdfINABApArmMuRATJgwQaNHj1bv3r3Vp08fTZ8+XSUlJRozZowkadSoUWrdurV33sM777xTAwYM0DPPPKOhQ4fq9ddf1+rVq/XSSy8FfnA/USwEALswZyEAwEmYsxAA4CB2FQtHjBihPXv2aOLEicrPz1evXr20ZMkS701Mtm/frqioyguB+/Xrp3nz5unBBx/U73//e5155platGiRunXrFvjB/USxEADsQrEQAOAkFAsBAA5iV7FQknJycpSTk1PtYytWrKiy7uqrr9bVV19t7WAWUCwEAJtwGTIAwEm4DBkA4CR2FgsjHTc4AQAAAAAAACCJkYUAYB/jOr5Y2Q4AgEhjJdfINABAhGJkYSWKhQBgF+YsBAA4CXMWAgAchGJhJYqFAGAT5iwEADgJcxYCAJzEmMCLf8ahuUaxEADswshCAICTMLIQAOAgjCysxA1OAAAAAAAAAEhiZCEA2MfiZciMwgAARCQruUamAQAiFCMLK1EsBAC7cBkyAMBJuAwZAOAgFAsrUSwEALtQLAQAOAnFQgCAg1AsrESxELYyx4763bb55mK/2+5bfZrfbcdG3eBXu0bR/v/WH1x3ut9t22w97HdbT8khv9si8nE3ZKBh8+z/r1/tEje29nuff1w9wO+2C5LO9bvtgZJYv9vGrW/sd9vogny/2nnKyvzep/HwJllXuBsy4DxNm/rXrl07//d55Ij/bePi/G/rCuTbh8RE/9oFkD9KSvK/baz/uaqo0N9aIqDnqgGjWFiJYiEAAAAAAAAaNIqFlbgbMgAAAAAAAABJjCwEAPswZyEAwEmYsxAA4CCMLKxEsRAAbMKchQAAJ2HOQgCAk1AsrESxEADsxIckAICTkGsAAIcwJvDin3FoDlIsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKzE3ZABAAAAAAAASGJkIQDYh8uQAQBOwmXIAAAHYWRhJUYWAoBNKi7XsrIEasaMGWrXrp1iY2OVmZmpVatW+bXd66+/LpfLpeHDhwd+UABAg2JXpknkGgAg/CqKhYEuTkSxEADsYoJYAjB//nxNmDBBkyZN0pdffqmePXsqOztbu3fvrnW7rVu36p577lH//v0DOyAAoGGyIdMkcg0AYA+KhZW4DBkRy2zY7HfbNtGd/G57YGO8X+08jf3epdrsOOR320bfbPW7bfmxo/53ApHPpsuQp02bprFjx2rMmDGSpFmzZundd9/Vq6++qvvuu6/abcrLy3X99ddrypQp+uijj1RYWGihowBq4znkX1Y0W7XF7322P9LW77YHWyf63Tap1P83nriNhX639eze61+7I6V+71PGoX+l1wc2XYZMrgH2adzIv1/Srl1dfu8zLs7/48fE+N9WfuaqJCktLbTtAm3btKn/baMY01VXuAy5Ev8KAcAmwV6GXFxc7LOUllb9MF1WVqY1a9YoKyvLuy4qKkpZWVnKy8ursW8PP/ywkpOTddNNN4X8vAEAzhTuTJPINQCAfRhZWIliIQDUE+np6YqPj/cuubm5Vdrs3btX5eXlSklJ8VmfkpKi/Pz8avf78ccf65VXXtHLL78cln4DAHAyfzJNItcAAKgLXIYMAHYJ8jLkHTt2KO6E6zjcbnfQXTpw4IBuuOEGvfzyy0pKSgp6fwCABiSIy5DDkWkSuQYAsI7LkCtRLAQAuwRZLIyLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq7TfvHmztm7dqmHDhnnXeX5KvEaNGmnjxo3q2LGjhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcPcBkyANgk2DkL/RETE6OMjAwtX77cu87j8Wj58uXq27dvlfadO3fW119/rXXr1nmXyy67TBdddJHWrVun9PT0UJw6AMCBwp1pErkGALAPcxZWYmQhANjFprshT5gwQaNHj1bv3r3Vp08fTZ8+XSUlJd67SI4aNUqtW7dWbm6uYmNj1a1bN5/tExISJKnKegAAfNh0N2RyDQBgBy5DrhTwyMIPP/xQw4YNU1pamlwulxYtWuTzuDFGEydOVKtWrdSkSRNlZWVp06ZNoeovANRbdowslKQRI0bo6aef1sSJE9WrVy+tW7dOS5Ys8U4Ov337du3atSsMZ1j/kGkAYJ0dmSaRa4Eg1wDAOkYWVgq4WFhSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDkSdGcBAP7JycnRtm3bVFpaqs8//1yZmZnex1asWKE5c+bUuO2cOXOqfLhwKjINAOoHcs0/5BoAIBQCvgx5yJAhGjJkSLWPGWM0ffp0Pfjgg7r88sslSX/5y1+UkpKiRYsWaeTIkcH1FgDqM5suQ4b/yDQACIJNlyHDf+QaAFjHZciVQnqDky1btig/P19ZWVnedfHx8crMzFReXl6125SWlqq4uNhnAQBHMkEssJ2VTJPINQANCJlWr5BrAFA7LkOuFNIbnOTn50uSd/6QCikpKd7HTpabm6spU6aEshtwCE9Zmf+N137rd9MWG5r419Dl8nufprTU77bl5eV+t4WzuH5arGwH+1nJNIlcQ/CO7d7jd9vGKwr9bnt6k1i/25oAsiqQDAxkv4h8VnKNTKs75BpCqUVz/yv/nTv7/5t/7FgAnYjyP9fUubN/7WJi/N9nI+4X6zSMLKwU0pGFVtx///0qKiryLjt27KjrLgFAeDCysEEg1wA0GGRag0CuAWgoGFlYKaSl8NTUVElSQUGBWrVq5V1fUFCgXr16VbuN2+2W2+0OZTcAICJZvQuklW0QPCuZJpFrABoOK7lGptUdcg0AasfIwkohHVnYvn17paamavny5d51xcXF+vzzz9W3b99QHgoAgLAi0wAATkKuAQD8FfDIwoMHD+r777/3/rxlyxatW7dOiYmJatOmje666y498sgjOvPMM9W+fXs99NBDSktL0/Dhw0PZbwCof7gbcsQh0wAgCNwNOeKQawBgnTGBjxQ0Ds21gIuFq1ev1kUXXeT9ecKECZKk0aNHa86cOfrd736nkpISjRs3ToWFhbrgggu0ZMkSxcYGMPkoADiVQ8OkviLTACBI5FpEIdcAwDouQ64UcLFw4MCBMrWUTl0ulx5++GE9/PDDQXUMAJyGOQsjD5kGANYxZ2HkIdcAwDqKhZW41zcA2IXLkAEATsJlyAAAB6FYWIliIQDYhJGFAAAnYWQhAMBJKBZWCundkAEAAAAAAADUX4wsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKxEsRANjufw4bruAhoqRhYCCDFz7KjfbcsP+N8W8AsjCwGEWONGgbxJBDCrWtOmAfeloTJy+d3W5bA3dYqFlSgWAoBdKBYCAJyEYiEAwEEoFlaiWAgANuEyZACAk3AZMgDASSgWVuJuyAAAAAAAAAAkMbIQAOzDZcgAACfhMmQAgIMYE/hIQePQXGNkIQDYxGWM5QUAgEhDpgEAnKTiMuRAl3DZv3+/rr/+esXFxSkhIUE33XSTDh48WGv722+/XWeffbaaNGmiNm3a6I477lBRUVHAx2ZkIQDYhZGFAAAnYWQhAMBBIm3Owuuvv167du3SsmXLdPToUY0ZM0bjxo3TvHnzqm2/c+dO7dy5U08//bS6du2qbdu26ZZbbtHOnTv15ptvBnRsioUAYBNucAIAcBJucAIAcJJIKhauX79eS5Ys0RdffKHevXtLkp5//nldeumlevrpp5WWllZlm27duumtt97y/tyxY0c9+uij+t///V8dO3ZMjRr5XwLkMmQAsIsJYgEAINKQaQAAB4mky5Dz8vKUkJDgLRRKUlZWlqKiovT555/7vZ+ioiLFxcUFVCiUGFkIAAAAAAAAWFZcXOzzs9vtltvttry//Px8JScn+6xr1KiREhMTlZ+f79c+9u7dq6lTp2rcuHEBH5+RhQBgk4rLtawsAABEGjINAOAkwYwsTE9PV3x8vHfJzc2t9hj33XefXC5XrcuGDRuCPpfi4mINHTpUXbt21eTJkwPenpGFAGAXbnACAHASbnACAI7jasBv1MHMWbhjxw7FxcV519c0qvA3v/mNbrzxxlr32aFDB6Wmpmr37t0+648dO6b9+/crNTW11u0PHDigwYMHq0WLFlq4cKEaN2586hM5CcVCALAJNzgBADgJNzgBADhJMMXCuLg4n2JhTVq2bKmWLVuesl3fvn1VWFioNWvWKCMjQ5L0/vvvy+PxKDMzs8btiouLlZ2dLbfbrX/84x+KjY3170ROwmXIAGAXbnACAHASMg0A4CCRdIOTLl26aPDgwRo7dqxWrVqlTz75RDk5ORo5cqT3Tsg//vijOnfurFWrVkk6XigcNGiQSkpK9Morr6i4uFj5+fnKz89XeXl5QMdnZCEA2IgRFQAAJyHXAABOYUzgxT8Txhx87bXXlJOTo0suuURRUVG68sor9Yc//MH7+NGjR7Vx40YdOnRIkvTll19675TcqVMnn31t2bJF7dq18/vYFAsBAAAAAACACJKYmKh58+bV+Hi7du1kTqhWDhw40OfnYFAsBAC7GGPtq6dwfl0FAIBVVnKNTAMARKhg5ix0GoqFAGATbnACAHASbnACAHASioWVKBYCgF2sTuzOBysAQCSykmtkGgAgQlEsrESxEABs4vIcX6xsBwBApLGSa2QaACBSUSysRLEQAOzCyEIAgJMwshAA4CAUCytF1XUHAAAAAAAAAEQGRhYCgE24wQkAwEm4wQkAwEkYWViJYiEA2MWY44uV7QAAiDRWco1MAwBEKIqFlSgWAoBNGFkIAHASRhYCAJyEYmElioUAYBducAIAcBJucAIAcBBjAi/+OXXAPMVCALAJIwsBAE7CyEIAgJMwsrASd0MGAAAAAAAAIImRhQBgH25wAgBwEm5wAgBwEEYWVqJYCAA24TJkAICTcBkyAMBJKBZWolgIAHbhBicAACfhBicAAAehWFiJYiEA2ISRhQAAJ2FkIQDASSgWVqJYCAB28Zjji5XtAACINFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA+zBnIQDASZizEADgIIwsrESxEABs4pLFOQtD3hMAAIJnJdfINABApKJYWInLkAHALsZYXwI0Y8YMtWvXTrGxscrMzNSqVatqbPvyyy+rf//+Ou2003TaaacpKyur1vYAAEiyLdMkcg0AEH7GVBYM/V0sxlrEo1gIADapuGuklSUQ8+fP14QJEzRp0iR9+eWX6tmzp7Kzs7V79+5q269YsULXXnutPvjgA+Xl5Sk9PV2DBg3Sjz/+GIKzBgA4lR2ZJpFrAAB7BFootDISsb6gWAgADjNt2jSNHTtWY8aMUdeuXTVr1iw1bdpUr776arXtX3vtNd12223q1auXOnfurD/96U/yeDxavny5zT0HAKAqcg0AAHtRLAQAu5ggFj+VlZVpzZo1ysrK8q6LiopSVlaW8vLy/NrHoUOHdPToUSUmJvp/YABAwxPmTJPINQCAfRhZWIkbnACATVzGyGVhUouKbYqLi33Wu91uud1un3V79+5VeXm5UlJSfNanpKRow4YNfh3v3nvvVVpams8HMwAATmYl1wLJNIlcAwDYhxucVAr5yMLJkyfL5XL5LJ07dw71YQCg/vEEsUhKT09XfHy8d8nNzQ15Fx9//HG9/vrrWrhwoWJjY0O+//qIXAOAGkR4pknk2snINACoGSMLK4VlZOE555yj9957r/IgjRjACADBjizcsWOH4uLivOurG4GRlJSk6OhoFRQU+KwvKChQampqrcd5+umn9fjjj+u9995Tjx49Au6nk5FrAFBVMCML/ck0iVwLBzINAKrHyMJKYUmGRo0anTK8AaDBsTBXk3c7SXFxcT4frKoTExOjjIwMLV++XMOHD5ck76TuOTk5NW735JNP6tFHH9XSpUvVu3dvC510NnINAKphJdcCyDSJXAsHMg0AqkexsFJYbnCyadMmpaWlqUOHDrr++uu1ffv2GtuWlpaquLjYZwEAWDdhwgS9/PLL+vOf/6z169fr1ltvVUlJicaMGSNJGjVqlO6//35v+yeeeEIPPfSQXn31VbVr1075+fnKz8/XwYMH6+oUIg65BgB1h1wLrUAyTSLXAKAhCnmxMDMzU3PmzNGSJUs0c+ZMbdmyRf3799eBAweqbZ+bm+szX0l6enqouwQAkcEY60sARowYoaeffloTJ05Ur169tG7dOi1ZssQ7Ofz27du1a9cub/uZM2eqrKxMV111lVq1auVdnn766ZCefn1FrgFADWzINIlcC6VAM00i1wA0HMxZWMlljIXEDkBhYaHatm2radOm6aabbqryeGlpqUpLS70/FxcXKz09XQN1uRq5GoezawBQq2PmqFbobRUVFfl1qVRNiouLFR8frwH9HlKjRoFPrn7s2BGt/HRq0P1AaJBrAOqrSMg1Mi2ynCrTpJpzraiwkNcQfjFy+d3WZWnOHjRExcXFik9ICEmeVOTaNdcUKSYmsH2VlRXrjTfiHZdrYZ/NNiEhQWeddZa+//77ah93u901TmgMAI5icUSFpW0QNuQaAPzESq6RaRHlVJkmkWsAGg5jAh8p6NRYC8uchSc6ePCgNm/erFatWoX7UAAQ0Vwe6wsiB7kGAMeRafUfmQYAlbgMuVLIi4X33HOPVq5cqa1bt+rTTz/VL3/5S0VHR+vaa68N9aEAoH6xac5ChBa5BgA1INPqHTINAGpGsbBSyC9D/uGHH3Tttddq3759atmypS644AJ99tlnatmyZagPBQBA2JFrAACnINMAAP4IebHw9ddfD/UuAcAZzE+Lle1QZ8g1AKiBlVwj0+oUmQYANbMyUpCRhQCAoLiMkcvC5VdWtgEAINys5BqZBgCIVBQLK1EsBAC7cDdkAICTcDdkAICDUCysRLEQAOxiJFkJEz5XAQAikZVcI9MAABGKYmElioUAYBMuQwYAOAmXIQMAnIRiYaWouu4AAAAAAAAAgMjAyEIAsIuRxTkLQ94TAACCZyXXyDQAtTBy+d3WxRtKWDTk14CRhZUoFgKAXbjBCQDASbjBCQDAQYwJvPjn1FijWAgAdvFIAXxR57sdAACRxkqukWkAgAjFyMJKFAsBwCbc4AQA4CTc4AQA4CQUCytRLAQAu3AZMgDASbgMGQDgIBQLK3E3ZAAAAAAAAACSGFkIAPZhZCEAwEkYWQgAcBBGFlaiWAgAdqFYCABwEoqFAAAHoVhYiWIhANiFuyEDAJyEuyEDAByEYmElioUAYBPuhgwAcBLuhgwAcBKKhZW4wQkA2KXici0rCwAAkYZMAwA4SEWxMNAlXPbv36/rr79ecXFxSkhI0E033aSDBw/6ta0xRkOGDJHL5dKiRYsCPjbFQgAAAAAAEBYuGb8XAJWuv/56/fvf/9ayZcv0zjvv6MMPP9S4ceP82nb69OlyuazMgXUclyEDgF08RnJZ+CPIwx9OAIAIZCXXyDQAQIQyJvCRguEaML9+/XotWbJEX3zxhXr37i1Jev7553XppZfq6aefVlpaWo3brlu3Ts8884xWr16tVq1aWTo+IwsBwC5chgwAcBIyDQDgIMFchlxcXOyzlJaWBtWXvLw8JSQkeAuFkpSVlaWoqCh9/vnnNW536NAhXXfddZoxY4ZSU1MtH59iIQDYxuqHKj5YAQAiEZkGAHCOYIqF6enpio+P9y65ublB9SU/P1/Jyck+6xo1aqTExETl5+fXuN3dd9+tfv366fLLLw/q+FyGDAB2sTqiglEYAIBIZCXXyDQAQITyeKRAp/mrKBbu2LFDcXFx3vVut7va9vfdd5+eeOKJWve5fv36wDrxk3/84x96//33tXbtWkvbn4hiIQDYxWNxRAXzOwEAIpGVXCPTAAARKphiYVxcnE+xsCa/+c1vdOONN9bapkOHDkpNTdXu3bt91h87dkz79++v8fLi999/X5s3b1ZCQoLP+iuvvFL9+/fXihUrTtm/ChQLAQAAAAAAgDBr2bKlWrZsecp2ffv2VWFhodasWaOMjAxJx4uBHo9HmZmZ1W5z33336eabb/ZZ1717dz377LMaNmxYQP2kWAgAdjGe44uV7QAAiDRWco1MAwBEqGBGFoZaly5dNHjwYI0dO1azZs3S0aNHlZOTo5EjR3rvhPzjjz/qkksu0V/+8hf16dNHqamp1Y46bNOmjdq3bx/Q8SkWAoBdmLMQAOAkzFkIAHCQSCoWStJrr72mnJwcXXLJJYqKitKVV16pP/zhD97Hjx49qo0bN+rQoUMhPzbFQgCwC3MWAgCchDkLAQAOEmnFwsTERM2bN6/Gx9u1aydzii/hTvV4TSgWAoBdGFkIAHASRhYCABwk0oqFdYliIQDYxchisTDkPQEAIHhWco1MA1ALF28Sda4hvwbGBF78c+p3YFF13QEAAAAAAAAAkYGRhQBgFy5DBgA4CZchAwAcxMolxVyGDAAIjscjiQQCADiElVwj0wAAEYpiYSWKhQBgF0YWAgCchJGFAAAHoVhYiWIhANiFYiEAwEkoFgIAHIRiYSWKhQBgF4+RpdtAevhgBQCIQFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA2xjjkTGBf/VkZRsAAMLNSq6RaQCASMXIwkoUCwHALsZYu/yK+Z0AAJHISq6RaQCACEWxsBLFQgCwi7E4ZyEfrAAAkchKrpFpAIAIRbGwEsVCALCLxyO5LKQJl2wBACKRlVwj0wAAEcqYwIt/Tv0OjGIhANiFkYUAACdhZCEAwEE8HsnlCmwbp8Yad0MGAAAAAAAAIImRhQBgG+PxyFi4DJk7RwIAIpGVXCPTAACRipGFlSgWAoBduAwZAOAkXIYMAHAQioWVKBYCgF08RnJRLAQAOISVXCPTAAARimJhJYqFAGAXYyRZuRuyQxMIAFC/Wck1Mg0AEKEoFlaiWAgANjEeI2NhZKFxagIBAOo1K7lGpgEAIhXFwkphuxvyjBkz1K5dO8XGxiozM1OrVq0K16EAACcJ9D14wYIF6ty5s2JjY9W9e3ctXrzYpp7WD2QaANQtci20yDUAQG3CUiycP3++JkyYoEmTJunLL79Uz549lZ2drd27d4fjcABQPxiP9SUAgb4Hf/rpp7r22mt10003ae3atRo+fLiGDx+ub775JhRnXe+RaQBQAxsyTSLXQo1cA4DqeTzWFidymTBcC5CZmanzzjtPL7zwgiTJ4/EoPT1dt99+u+67775aty0uLlZ8fLwG6nI1cjUOddcAwG/HzFGt0NsqKipSXFyc5f1439dcv7T0vnbMHNUKs9DvfgT6HjxixAiVlJTonXfe8a77n//5H/Xq1UuzZs0KuL9OE0ymSeQagMgRCbkWaKZJ5FqohSrXigoLg/p3BADBKC4uVnxCQtCZ5t1XfLxcriK5XIHty5hiGRMfkn5EkpDPWVhWVqY1a9bo/vvv966LiopSVlaW8vLyqrQvLS1VaWmp9+eioiJJ0jEdlRx67TeA+uGYjkoK3fxKx0yppREVFf0oLi72We92u+V2u33WBfoeLEl5eXmaMGGCz7rs7GwtWrQo4L46jZXnk1wDEKkiIdcCyTSJXAu1UObaya8hANip4j0olOPfjhf+Au5JyI4fSUJeLNy7d6/Ky8uVkpLisz4lJUUbNmyo0j43N1dTpkypsv5jMa8IgMhw4MABxcfHW94+JiZGqamp+jjf+vta8+bNlZ6e7rNu0qRJmjx5ss+6QN+DJSk/P7/a9vn5+Zb76xRWnk9yDUCkq+tc8zfTJHIt1EKZa+lt2oSljwAQiGAzTarMtfz89FM3rkZqaqpiYmKC6kOkqfO7Id9///0+3/wVFhaqbdu22r59e9AveCQpLi5Wenq6duzY4aihqZxX/cJ5BcYYowMHDigtLS2o/cTGxmrLli0qKysLqi+uk27NVd0IDNQ9cq1+47zqF84rMJGSa2Ra/UKu1W+cV/3CefkvVJkmBZ9rMTExio2NDbofkSTkxcKkpCRFR0eroKDAZ31BQYFSU1OrtK/pkoP4+HhH/XJUiIuL47zqEc6rfgnHeYXqj+DY2FhbAiTQ92Dp+DdhgbRvSKw8n+SaM3Be9Qvn5T9yrWEj106N95P6hfOqX0J9XqH8wsKuXKsvQn435JiYGGVkZGj58uXedR6PR8uXL1ffvn1DfTgAwAmsvAf37dvXp70kLVu2jPdskWkAUNfItdAi1wAA/gjLZcgTJkzQ6NGj1bt3b/Xp00fTp09XSUmJxowZE47DAQBOcKr34FGjRql169bKzc2VJN15550aMGCAnnnmGQ0dOlSvv/66Vq9erZdeeqkuTyNikGkAULfItdAi1wAApxKWYuGIESO0Z88eTZw4Ufn5+erVq5eWLFlSZSLd6rjdbk2aNMlx85ZwXvUL51W/OPW8rDrVe/D27dsVFVU5sLxfv36aN2+eHnzwQf3+97/XmWeeqUWLFqlbt251dQoRJZhMk5z775Pzql84r/rFqedlFbkWWuRa9Tiv+oXzql+cel5O5jKhvM80AAAAAAAAgHor5HMWAgAAAAAAAKifKBYCAAAAAAAAkESxEAAAAAAAAMBPKBYCAAAAAAAAkBSBxcIZM2aoXbt2io2NVWZmplatWlXXXQrK5MmT5XK5fJbOnTvXdbcC9uGHH2rYsGFKS0uTy+XSokWLfB43xmjixIlq1aqVmjRpoqysLG3atKluOhuAU53XjTfeWOX1Gzx4cN10NgC5ubk677zz1KJFCyUnJ2v48OHauHGjT5sjR45o/PjxOv3009W8eXNdeeWVKigoqKMe+8ef8xo4cGCV1+yWW26pox6joXNapknkWqRzYq6RaWQaIofTco1Mi2xOzDSJXCPX6oeIKhbOnz9fEyZM0KRJk/Tll1+qZ8+eys7O1u7du+u6a0E555xztGvXLu/y8ccf13WXAlZSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDlic08Dc6rzkqTBgwf7vH5/+9vfbOyhNStXrtT48eP12WefadmyZTp69KgGDRqkkpISb5u7775b//znP7VgwQKtXLlSO3fu1BVXXFGHvT41f85LksaOHevzmj355JN11GM0ZE7NNIlci2ROzDUyjUxDZHBqrpFpkcuJmSaRa+RaPWEiSJ8+fcz48eO9P5eXl5u0tDSTm5tbh70KzqRJk0zPnj3ruhshJcksXLjQ+7PH4zGpqanmqaee8q4rLCw0brfb/O1vf6uDHlpz8nkZY8zo0aPN5ZdfXif9CaXdu3cbSWblypXGmOOvT+PGjc2CBQu8bdavX28kmby8vLrqZsBOPi9jjBkwYIC58847665TwE+cmGnGkGvkWt0j04C64cRcI9PItEhAriESRczIwrKyMq1Zs0ZZWVnedVFRUcrKylJeXl4d9ix4mzZtUlpamjp06KDrr79e27dvr+suhdSWLVuUn5/v89rFx8crMzOz3r92krRixQolJyfr7LPP1q233qp9+/bVdZcCVlRUJElKTEyUJK1Zs0ZHjx71ec06d+6sNm3a1KvX7OTzqvDaa68pKSlJ3bp10/33369Dhw7VRffQgDk50yRyrb6r77lGppFpsJ+Tc41Mq9/qe6ZJ5Bq5Fpka1XUHKuzdu1fl5eVKSUnxWZ+SkqINGzbUUa+Cl5mZqTlz5ujss8/Wrl27NGXKFPXv31/ffPONWrRoUdfdC4n8/HxJqva1q3isvho8eLCuuOIKtW/fXps3b9bvf/97DRkyRHl5eYqOjq7r7vnF4/Horrvu0vnnn69u3bpJOv6axcTEKCEhwadtfXrNqjsvSbruuuvUtm1bpaWl6auvvtK9996rjRs36u9//3sd9hYNjVMzTSLX6st7ZE3qe66RaWQa6oZTc41Mqx/vkTWp75kmkWvkWuSKmGKhUw0ZMsT7/z169FBmZqbatm2rN954QzfddFMd9gz+GDlypPf/u3fvrh49eqhjx45asWKFLrnkkjrsmf/Gjx+vb775pl7Ov1Kbms5r3Lhx3v/v3r27WrVqpUsuuUSbN29Wx44d7e4m4DjkWv1W33ONTCPTgFAi0+q3+p5pErlGrkWuiLkMOSkpSdHR0VXu8FNQUKDU1NQ66lXoJSQk6KyzztL3339f110JmYrXx+mvnSR16NBBSUlJ9eb1y8nJ0TvvvKMPPvhAZ5xxhnd9amqqysrKVFhY6NO+vrxmNZ1XdTIzMyWp3rxmcIaGkmkSuVbf1adcI9PINNSdhpJrZFr9Vp8yTSLXJHItkkVMsTAmJkYZGRlavny5d53H49Hy5cvVt2/fOuxZaB08eFCbN29Wq1at6rorIdO+fXulpqb6vHbFxcX6/PPPHfXaSdIPP/ygffv2RfzrZ4xRTk6OFi5cqPfff1/t27f3eTwjI0ONGzf2ec02btyo7du3R/Rrdqrzqs66deskKeJfMzhLQ8k0iVyr7+pDrpFplcg01JWGkmtkWv1WHzJNItdORK5FsLq8u8rJXn/9deN2u82cOXPMt99+a8aNG2cSEhJMfn5+XXfNst/85jdmxYoVZsuWLeaTTz4xWVlZJikpyezevbuuuxaQAwcOmLVr15q1a9caSWbatGlm7dq1Ztu2bcYYYx5//HGTkJBg3n77bfPVV1+Zyy+/3LRv394cPny4jnteu9rO68CBA+aee+4xeXl5ZsuWLea9994z5557rjnzzDPNkSNH6rrrtbr11ltNfHy8WbFihdm1a5d3OXTokLfNLbfcYtq0aWPef/99s3r1atO3b1/Tt2/fOuz1qZ3qvL7//nvz8MMPm9WrV5stW7aYt99+23To0MFceOGFddxzNEROzDRjyDVyzX5kGpmGyODEXCPTyLS6QK6Ra/VBRBULjTHm+eefN23atDExMTGmT58+5rPPPqvrLgVlxIgRplWrViYmJsa0bt3ajBgxwnz//fd13a2AffDBB0ZSlWX06NHGGGM8Ho956KGHTEpKinG73eaSSy4xGzdurNtO+6G28zp06JAZNGiQadmypWncuLFp27atGTt2bL34g6i6c5JkZs+e7W1z+PBhc9ttt5nTTjvNNG3a1Pzyl780u3btqrtO++FU57V9+3Zz4YUXmsTERON2u02nTp3Mb3/7W1NUVFS3HUeD5bRMM4Zci3ROzDUyjUxD5HBarpFpkc2JmWYMuUau1Q8uY4yxPi4RAAAAAAAAgFNEzJyFAAAAAAAAAOoWxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkqT/D95FLoBGPoWwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1755,10 +792,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 26, "id": "5d38b817", "metadata": { - "collapsed": true, "jupyter": { "outputs_hidden": true }, @@ -1766,796 +802,263 @@ }, "outputs": [ { - "data": { - "text/plain": [ - "[stderr:5] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", - " np.sum(p * q, axis=-1)\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01394] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:2] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", - " np.sum(p * q, axis=-1)\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01391] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "%px: 0%| | 0/6 [00:12 23\u001b[0m tracer_advection_data, tracer_advection \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprepare_everything_for_advection\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 24\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\n", + "\u001b[1;32m 25\u001b[0m \u001b[43m)\u001b[49m\n", + "\u001b[1;32m 27\u001b[0m tracer_advection_data_initial \u001b[38;5;241m=\u001b[39m cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data)\n", + "\u001b[1;32m 29\u001b[0m tracer_state \u001b[38;5;241m=\u001b[39m [cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data_initial[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m])]\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:987\u001b[0m, in \u001b[0;36mprepare_everything_for_advection\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep)\u001b[0m\n", + "\u001b[1;32m 962\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 963\u001b[0m \u001b[38;5;124;03mUse: tracer_advection_data, tracer_advection =\u001b[39;00m\n", + "\u001b[1;32m 964\u001b[0m \u001b[38;5;124;03m prepare_everything_for_advection(stencil_configuration, initial_state,\u001b[39;00m\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 982\u001b[0m \n", + "\u001b[1;32m 983\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 985\u001b[0m tracers \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n", + "\u001b[0;32m--> 987\u001b[0m flux_prep \u001b[38;5;241m=\u001b[39m \u001b[43mrun_finite_volume_fluxprep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 988\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 989\u001b[0m \u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 990\u001b[0m \u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 991\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 992\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 994\u001b[0m tracer_advection \u001b[38;5;241m=\u001b[39m build_tracer_advection(stencil_configuration, tracers)\n", + "\u001b[1;32m 996\u001b[0m tracer_advection_data \u001b[38;5;241m=\u001b[39m {\n", + "\u001b[1;32m 997\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m: tracers,\n", + "\u001b[1;32m 998\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 1002\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m: flux_prep[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 1003\u001b[0m }\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:877\u001b[0m, in \u001b[0;36mrun_finite_volume_fluxprep\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep, density)\u001b[0m\n", + "\u001b[1;32m 872\u001b[0m vc_contra \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 873\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInY, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 874\u001b[0m )\n", + "\u001b[1;32m 876\u001b[0m \u001b[38;5;66;03m# intialize and run\u001b[39;00m\n", + "\u001b[0;32m--> 877\u001b[0m fvf_prep \u001b[38;5;241m=\u001b[39m \u001b[43mFiniteVolumeFluxPrep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstencil_factory\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrid_data\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n", + "\u001b[1;32m 879\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 881\u001b[0m fvf_prep(\n", + "\u001b[1;32m 882\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mu_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 883\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 890\u001b[0m timestep,\n", + "\u001b[1;32m 891\u001b[0m ) \u001b[38;5;66;03m# this will modify empty quantities, but not change uc, vc\u001b[39;00m\n", + "\u001b[1;32m 893\u001b[0m mfxd \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 894\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInX, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 895\u001b[0m )\n", + "\n", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'grid_type'\n" ] }, { "data": { "text/plain": [ - "[stderr:1] [4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01390] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:3] [4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01392] Read -1, expected 37920, errno = 1\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:4] [4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01393] Read -1, expected 37920, errno = 1\n" + "[stderr:2] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", + " np.sum(p * q, axis=-1)\n" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "%px: 0%| | 0/6 [00:12 23\u001b[0m tracer_advection_data, tracer_advection \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprepare_everything_for_advection\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 24\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\n", + "\u001b[1;32m 25\u001b[0m \u001b[43m)\u001b[49m\n", + "\u001b[1;32m 27\u001b[0m tracer_advection_data_initial \u001b[38;5;241m=\u001b[39m cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data)\n", + "\u001b[1;32m 29\u001b[0m tracer_state \u001b[38;5;241m=\u001b[39m [cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data_initial[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m])]\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:987\u001b[0m, in \u001b[0;36mprepare_everything_for_advection\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep)\u001b[0m\n", + "\u001b[1;32m 962\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 963\u001b[0m \u001b[38;5;124;03mUse: tracer_advection_data, tracer_advection =\u001b[39;00m\n", + "\u001b[1;32m 964\u001b[0m \u001b[38;5;124;03m prepare_everything_for_advection(stencil_configuration, initial_state,\u001b[39;00m\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 982\u001b[0m \n", + "\u001b[1;32m 983\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 985\u001b[0m tracers \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n", + "\u001b[0;32m--> 987\u001b[0m flux_prep \u001b[38;5;241m=\u001b[39m \u001b[43mrun_finite_volume_fluxprep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 988\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 989\u001b[0m \u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 990\u001b[0m \u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 991\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 992\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 994\u001b[0m tracer_advection \u001b[38;5;241m=\u001b[39m build_tracer_advection(stencil_configuration, tracers)\n", + "\u001b[1;32m 996\u001b[0m tracer_advection_data \u001b[38;5;241m=\u001b[39m {\n", + "\u001b[1;32m 997\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m: tracers,\n", + "\u001b[1;32m 998\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 1002\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m: flux_prep[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 1003\u001b[0m }\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:877\u001b[0m, in \u001b[0;36mrun_finite_volume_fluxprep\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep, density)\u001b[0m\n", + "\u001b[1;32m 872\u001b[0m vc_contra \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 873\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInY, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 874\u001b[0m )\n", + "\u001b[1;32m 876\u001b[0m \u001b[38;5;66;03m# intialize and run\u001b[39;00m\n", + "\u001b[0;32m--> 877\u001b[0m fvf_prep \u001b[38;5;241m=\u001b[39m \u001b[43mFiniteVolumeFluxPrep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstencil_factory\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrid_data\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n", + "\u001b[1;32m 879\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 881\u001b[0m fvf_prep(\n", + "\u001b[1;32m 882\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mu_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 883\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 890\u001b[0m timestep,\n", + "\u001b[1;32m 891\u001b[0m ) \u001b[38;5;66;03m# this will modify empty quantities, but not change uc, vc\u001b[39;00m\n", + "\u001b[1;32m 893\u001b[0m mfxd \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 894\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInX, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 895\u001b[0m )\n", + "\n", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'grid_type'\n" ] }, { "data": { "text/plain": [ - "[stderr:0] [4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n", - "[4d6ab76db141:01389] Read -1, expected 37920, errno = 1\n" + "[stderr:5] /pace/NDSL/ndsl/grid/gnomonic.py:681: RuntimeWarning: invalid value encountered in true_divide\n", + " np.sum(p * q, axis=-1)\n" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:14<00:00, 2.34s/tasks]\n" + "[0:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [15], line 23\u001b[0m\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[1;32m 21\u001b[0m stencil_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantity_factory\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantity_factory\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[0;32m---> 23\u001b[0m tracer_advection_data, tracer_advection \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprepare_everything_for_advection\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 24\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\n", + "\u001b[1;32m 25\u001b[0m \u001b[43m)\u001b[49m\n", + "\u001b[1;32m 27\u001b[0m tracer_advection_data_initial \u001b[38;5;241m=\u001b[39m cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data)\n", + "\u001b[1;32m 29\u001b[0m tracer_state \u001b[38;5;241m=\u001b[39m [cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data_initial[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m])]\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:987\u001b[0m, in \u001b[0;36mprepare_everything_for_advection\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep)\u001b[0m\n", + "\u001b[1;32m 962\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 963\u001b[0m \u001b[38;5;124;03mUse: tracer_advection_data, tracer_advection =\u001b[39;00m\n", + "\u001b[1;32m 964\u001b[0m \u001b[38;5;124;03m prepare_everything_for_advection(stencil_configuration, initial_state,\u001b[39;00m\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 982\u001b[0m \n", + "\u001b[1;32m 983\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 985\u001b[0m tracers \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n", + "\u001b[0;32m--> 987\u001b[0m flux_prep \u001b[38;5;241m=\u001b[39m \u001b[43mrun_finite_volume_fluxprep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 988\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 989\u001b[0m \u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 990\u001b[0m \u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 991\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 992\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 994\u001b[0m tracer_advection \u001b[38;5;241m=\u001b[39m build_tracer_advection(stencil_configuration, tracers)\n", + "\u001b[1;32m 996\u001b[0m tracer_advection_data \u001b[38;5;241m=\u001b[39m {\n", + "\u001b[1;32m 997\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m: tracers,\n", + "\u001b[1;32m 998\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 1002\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m: flux_prep[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 1003\u001b[0m }\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:877\u001b[0m, in \u001b[0;36mrun_finite_volume_fluxprep\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep, density)\u001b[0m\n", + "\u001b[1;32m 872\u001b[0m vc_contra \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 873\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInY, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 874\u001b[0m )\n", + "\u001b[1;32m 876\u001b[0m \u001b[38;5;66;03m# intialize and run\u001b[39;00m\n", + "\u001b[0;32m--> 877\u001b[0m fvf_prep \u001b[38;5;241m=\u001b[39m \u001b[43mFiniteVolumeFluxPrep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstencil_factory\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrid_data\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n", + "\u001b[1;32m 879\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 881\u001b[0m fvf_prep(\n", + "\u001b[1;32m 882\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mu_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 883\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 890\u001b[0m timestep,\n", + "\u001b[1;32m 891\u001b[0m ) \u001b[38;5;66;03m# this will modify empty quantities, but not change uc, vc\u001b[39;00m\n", + "\u001b[1;32m 893\u001b[0m mfxd \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 894\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInX, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 895\u001b[0m )\n", + "\n", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'grid_type'\n", + "[2:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [15], line 23\u001b[0m\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[1;32m 21\u001b[0m stencil_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantity_factory\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantity_factory\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[0;32m---> 23\u001b[0m tracer_advection_data, tracer_advection \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprepare_everything_for_advection\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 24\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\n", + "\u001b[1;32m 25\u001b[0m \u001b[43m)\u001b[49m\n", + "\u001b[1;32m 27\u001b[0m tracer_advection_data_initial \u001b[38;5;241m=\u001b[39m cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data)\n", + "\u001b[1;32m 29\u001b[0m tracer_state \u001b[38;5;241m=\u001b[39m [cp\u001b[38;5;241m.\u001b[39mdeepcopy(tracer_advection_data_initial[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m])]\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:987\u001b[0m, in \u001b[0;36mprepare_everything_for_advection\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep)\u001b[0m\n", + "\u001b[1;32m 962\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 963\u001b[0m \u001b[38;5;124;03mUse: tracer_advection_data, tracer_advection =\u001b[39;00m\n", + "\u001b[1;32m 964\u001b[0m \u001b[38;5;124;03m prepare_everything_for_advection(stencil_configuration, initial_state,\u001b[39;00m\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 982\u001b[0m \n", + "\u001b[1;32m 983\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n", + "\u001b[1;32m 985\u001b[0m tracers \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracer\u001b[39m\u001b[38;5;124m\"\u001b[39m]}\n", + "\u001b[0;32m--> 987\u001b[0m flux_prep \u001b[38;5;241m=\u001b[39m \u001b[43mrun_finite_volume_fluxprep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 988\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 989\u001b[0m \u001b[43m \u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 990\u001b[0m \u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 991\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimestep\u001b[49m\u001b[43m,\u001b[49m\n", + "\u001b[1;32m 992\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 994\u001b[0m tracer_advection \u001b[38;5;241m=\u001b[39m build_tracer_advection(stencil_configuration, tracers)\n", + "\u001b[1;32m 996\u001b[0m tracer_advection_data \u001b[38;5;241m=\u001b[39m {\n", + "\u001b[1;32m 997\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtracers\u001b[39m\u001b[38;5;124m\"\u001b[39m: tracers,\n", + "\u001b[1;32m 998\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m: initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelp\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 1002\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m: flux_prep[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcry\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 1003\u001b[0m }\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:877\u001b[0m, in \u001b[0;36mrun_finite_volume_fluxprep\u001b[0;34m(stencil_configuration, initial_state, dimensions, timestep, density)\u001b[0m\n", + "\u001b[1;32m 872\u001b[0m vc_contra \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 873\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInY, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 874\u001b[0m )\n", + "\u001b[1;32m 876\u001b[0m \u001b[38;5;66;03m# intialize and run\u001b[39;00m\n", + "\u001b[0;32m--> 877\u001b[0m fvf_prep \u001b[38;5;241m=\u001b[39m \u001b[43mFiniteVolumeFluxPrep\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstencil_factory\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstencil_configuration\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgrid_data\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n", + "\u001b[1;32m 879\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 881\u001b[0m fvf_prep(\n", + "\u001b[1;32m 882\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mu_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 883\u001b[0m initial_state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mv_cgrid\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 890\u001b[0m timestep,\n", + "\u001b[1;32m 891\u001b[0m ) \u001b[38;5;66;03m# this will modify empty quantities, but not change uc, vc\u001b[39;00m\n", + "\u001b[1;32m 893\u001b[0m mfxd \u001b[38;5;241m=\u001b[39m init_quantity(\n", + "\u001b[1;32m 894\u001b[0m dimensions, VariableGrid\u001b[38;5;241m.\u001b[39mStaggeredInX, VariableDims\u001b[38;5;241m.\u001b[39mXYZ, units\u001b[38;5;241m=\u001b[39munits[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124marea\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "\u001b[1;32m 895\u001b[0m )\n", + "\n", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'grid_type'\n", + "[5:execute] TypeError: __init__() missing 1 required positional argument: 'grid_type'\n", + "[3:execute] TypeError: __init__() missing 1 required positional argument: 'grid_type'\n" + ] + }, + { + "ename": "AlreadyDisplayedError", + "evalue": "6 errors", + "output_type": "error", + "traceback": [ + "6 errors" ] } ], @@ -2601,7 +1104,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 27, "id": "fe879468", "metadata": {}, "outputs": [ @@ -2616,7 +1119,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqUElEQVR4nO3deXgUVd728bsTSIctiRGSEAy7Csg2BskDiqBGAjIo4wbqI8goDErc0Bl3FlHjirggjI7ADCMjggPOKA8MouAWRRBeN0BENoWEbZJAgATS5/0D06HJQnd1p9KpfD/XVZem+lTVqe7Qd/rXp065jDFGAAAAAAAAAOq8iJruAAAAAAAAAIDwQLEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQqCb9+vVTv379arobAACHqA25kpubq6uvvlqnn366XC6Xpk6dWtNdAoBKTZw4US6Xy2dd69atddNNN/ms27Rpk/r376/Y2Fi5XC4tWrRIkvTll1+qd+/eatSokVwul9atW2dPx2u5yp5PAOGDYmElPvvsM02cOFF5eXk13RUE6ZVXXtHs2bOrZd/ff/+9Jk6cqK1bt1bL/qvTzp07NXHiRL//qKmufxP/+te/dO655yo6OlotW7bUhAkTdOzYsZAeAwgH5IpzkCuVu/vuu7V06VI98MADmjNnjgYMGKDFixdr4sSJtvZj48aNuvvuu9W7d29FR0fL5XJV+ZxWZxbVxPkDCK0RI0bom2++0eOPP645c+aoR48eOnr0qK655hrt379fzz//vObMmaNWrVrVdFdrhYqez7lz59r+BdOqVat02223KTU1VfXr1y9XOD7Z66+/ro4dOyo6OlpnnnmmXnrppZD1pSbOH6iSQYWeeeYZI8ls2bKlpruCIJ1zzjmmb9++1bLv+fPnG0nmww8/LPdYUVGRKSoqqpbjhsKXX35pJJlZs2b51b46/k0sXrzYuFwuc9FFF5lXX33V3H777SYiIsKMGTMmZMcAwgW54hzkSuUSExPNDTfc4LNu7Nixxu4/OWfNmmUiIiJM586dTffu3av8t1fdWVQT5w/APxMmTCj37/PIkSOmuLjY+/OhQ4eMJPPQQw/5tFu/fr2RZF577TVb+uoUlT2fgwYNMq1atbK1LxMmTDD169c3qamp5qyzzqryvXrGjBlGkrnqqqvMq6++am688UYjyTz55JMh6UtNnD9QlXr2lyedx+PxqLi4WNHR0TXdFa/CwkI1atSoprtR64TyeYuKigrJfpzs3nvvVdeuXfWf//xH9eodfzuKiYnRE088oTvvvFMdOnSo4R4CNYNccY66liu7d+9WXFxctR/HGKMjR46oQYMGFT5++eWXKy8vT02aNNGzzz5b5Sh6sgjAidxut8/Pe/bskaRy7227d++ucH0w6kLWVvZ8VodT/T1166236r777lODBg2UmZmpH374ocJ2hw8f1kMPPaRBgwZpwYIFkqRRo0bJ4/Fo8uTJGj16tE477bRqOw+gRtR0tTIclX7DdPJS+o20JDN27Fjz97//3XTq1MnUq1fPLFy40BhzfORIr169THx8vImOjjbnnnuumT9/foXHmTNnjjnvvPNMgwYNTFxcnOnTp49ZunSpT5vFixebCy64wDRs2NA0btzYXHbZZebbb7/1aTNixAjTqFEj8+OPP5qBAweaxo0bmyuuuKLKc/z555/N73//e9O8eXMTFRVlWrdubcaMGeMzYmHz5s3m6quvNqeddppp0KCBSUtLM++++67Pfj788EMjycybN8889thjpkWLFsbtdpuLL77YbNq0qdxxP//8czNw4EATFxdnGjZsaLp06WKmTp3q02b9+vXmqquuMqeddppxu90mNTXVvPPOOz5tZs2aZSSZTz75xNx9992madOmpmHDhmbIkCFm9+7d3natWrUq9zqWjgYp3ceKFSvMrbfeapo1a2bi4uKMMcZs3brV3Hrrreass84y0dHRJj4+3lx99dU+oxJKtz95KR0N0rdv33IjT3Jzc83vf/97k5CQYNxut+natauZPXu2T5stW7YYSeaZZ54xf/7zn03btm1NVFSU6dGjh1m1alXlL+qv9u3bZ+655x7TuXNn06hRI9OkSRMzYMAAs27dunKv28lLZaMMT/VvworvvvvOSDLTpk3zWf/LL78YSWby5MmW9w2EG3LlOHLFublSWd9HjBhR4fpSJSUl5vnnnzedOnUybrfbJCQkmNGjR5v9+/f79KFVq1Zm0KBBZsmSJSY1NdW43W7z/PPPn7LvxlQ9qjfYLCouLjYTJ0407du3N26328THx5vzzz/f/Oc//zHGmJCf/9KlS023bt2M2+02HTt2NG+//XZA/QHqso8//tj06NHDuN1u07ZtWzNjxowKRxa2atXKjBgxwhhTcX6XPl5ZFhgTWO5UlBnGBJbXP//8s7niiitMo0aNTNOmTc0999xjjh075tO2pKTETJ061XTu3Nm43W7TtGlTk5GRYb788kufdnPmzDHnnnuuiY6ONqeddpoZOnSo2b59+ymfX39yrrLns2/fvhWuL3XkyBEzfvx4065dOxMVFWXOOOMM88c//tEcOXLEpw9V/T11KlWNAn/vvfeMJPPee+/5rP/ss8+MJDNnzpwq911QUGDuvPNO06pVKxMVFWWaNWtm0tPTzZo1a4wxplrO/6yzzjJut9uce+65ZuXKlQH1BzCGkYUVuvLKK/XDDz/oH//4h55//nk1bdpUktSsWTNvmw8++EBvvfWWMjMz1bRpU7Vu3VqS9MILL+jyyy/XDTfcoOLiYr355pu65ppr9O6772rQoEHe7SdNmqSJEyeqd+/eevTRRxUVFaUvvvhCH3zwgfr37y9JmjNnjkaMGKGMjAw99dRTOnTokKZPn64LLrhAa9eu9R5Tko4dO6aMjAxdcMEFevbZZ9WwYcNKz2/nzp3q2bOn8vLyNHr0aHXo0EG//PKLFixYoEOHDikqKkq5ubnq3bu3Dh06pDvuuEOnn366/vrXv+ryyy/XggUL9Lvf/c5nn08++aQiIiJ07733Kj8/X08//bRuuOEGffHFF942y5Yt029/+1s1b95cd955p5KSkrR+/Xq9++67uvPOOyVJ3333nc4//3y1aNFC999/vxo1aqS33npLQ4YM0dtvv13uuLfffrtOO+00TZgwQVu3btXUqVOVmZmpefPmSZKmTp2q22+/XY0bN9ZDDz0kSUpMTPTZx2233aZmzZpp/PjxKiwslHR8suLPPvtMw4YN0xlnnKGtW7dq+vTp6tevn77//ns1bNhQF154oe644w69+OKLevDBB9WxY0dJ8v73ZIcPH1a/fv30448/KjMzU23atNH8+fN10003KS8vz/sclJo7d64OHDigP/zhD3K5XHr66ad15ZVX6qefflL9+vUrfX1/+uknLVq0SNdcc43atGmj3Nxc/fnPf1bfvn31/fffKzk5WR07dtSjjz6q8ePHa/To0erTp48kqXfv3hXu81T/JvLz83X06NFK+1QqOjpajRs3liStXbtWktSjRw+fNsnJyTrjjDO8jwNOQK6QK07PlQsvvFBz5szRjTfeqEsvvVTDhw+XJLVr1047d+7UsmXLNGfOnHL7/sMf/qDZs2dr5MiRuuOOO7Rlyxa9/PLLWrt2rT799FOffm3cuFHXXXed/vCHP2jUqFE6++yzK+2zv4LNookTJyorK0u33HKLevbsqYKCAq1evVpfffWVLr30Uv3hD38I2flv2rRJQ4cO1ZgxYzRixAjNmjVL11xzjZYsWaJLL73Ur/4AddU333yj/v37q1mzZpo4caKOHTumCRMmlHv/PtmVV16puLg43X333bruuut02WWXqXHjxkpMTFSLFi30xBNP6I477tB5553n3VeguVNRZgSS1yUlJcrIyFBaWpqeffZZvf/++3ruuefUrl073Xrrrd52N998s2bPnq2BAwfqlltu0bFjx/Txxx/r888/974HPv7443rkkUd07bXX6pZbbtGePXv00ksv6cILL9TatWurHA3oT85V9nw2atRI+fn5+vnnn/X8889Lkvczg8fj0eWXX65PPvlEo0ePVseOHfXNN9/o+eef1w8//FDu5iiV/T0VjMqyIjU1VREREVq7dq3+93//t9Ltx4wZowULFigzM1OdOnXSvn379Mknn2j9+vU699xz9dBDD4Xs/FeuXKl58+bpjjvukNvt1iuvvKIBAwZo1apV6ty5s1/9ASQxsrAyVX0LLclERESY7777rtxjhw4d8vm5uLjYdO7c2Vx88cXedZs2bTIRERHmd7/7nSkpKfFp7/F4jDHGHDhwwMTFxZlRo0b5PJ6Tk2NiY2N91pd+s3X//ff7dW7Dhw83ERER5b5FOvH4d911l5FkPv74Y+9jBw4cMG3atDGtW7f29rt0BEjHjh19Ro+88MILRpL55ptvjDHGHDt2zLRp08a0atXK/Pe//63wmMYYc8kll5guXbr4fEvi8XhM7969zZlnnuldV/pNXHp6us/2d999t4mMjDR5eXnedZXNLVW6jwsuuKDcN28nv47GGJOdnW0kmb/97W/edVXNLXXyCJCpU6caSebvf/+7d11xcbHp1auXady4sSkoKDDGlI0AOf30031GFrzzzjtGkvn3v/9d7lgnOnLkSLnfqy1bthi3220effRR77pQzllY0bdhFS2l39KeuL+Kvqk877zzzP/8z//41S+gtiBXyJWTOS1XjCkb1XCiykZrfPzxx0aSeeONN3zWL1mypNz60hGdS5YsqbKvFanq316wWdStWzczaNCgKtuE8vxPHEmYn59vmjdvbn7zm98E1B+gLhoyZIiJjo4227Zt8677/vvvTWRkZJUjC43xHZ19otK8Onm0f6C5c3JmWMnrk9+Lf/Ob35jU1FTvzx988IGRZO64445yz01p5m3dutVERkaaxx9/3Ofxb775xtSrV6/c+pP5m3OVPZ+Vzdk3Z84cExER4fP3gzFlcwh++umn3nVV/T11KlWNLBw7dqyJjIys8LFmzZqZYcOGVbnv2NjYctl4slCdvySzevVq77pt27aZ6Oho87vf/S6g/gDcDdmivn37qlOnTuXWnzh3zn//+1/l5+erT58++uqrr7zrFy1aJI/Ho/HjxysiwvclKL0D07Jly5SXl6frrrtOe/fu9S6RkZFKS0vThx9+WO7YJ35zVBmPx6NFixZp8ODB5b4ZOfH4ixcvVs+ePXXBBRd4H2vcuLFGjx6trVu36vvvv/fZbuTIkT5zKZWOVPvpp58kHf82ZsuWLbrrrrvKfSNVesz9+/frgw8+0LXXXqsDBw54z3nfvn3KyMjQpk2b9Msvv/hsO3r0aJ+7VvXp00clJSXatm3bKZ+LUqNGjVJkZKTPuhNfx6NHj2rfvn1q37694uLifF7LQCxevFhJSUm67rrrvOvq16+vO+64QwcPHtTKlSt92g8dOtRn7ouTn9PKuN1u7+9VSUmJ9u3bp8aNG+vss8+23PdTee6557Rs2bJTLn/605+82xw+fNjb35NFR0d7HwfqCnKFXAlUbc+V+fPnKzY2VpdeeqnP72RqaqoaN25c7neyTZs2ysjIsHy8igSbRXFxcfruu++0adOmgI8d6PknJyf7jEiKiYnR8OHDtXbtWuXk5ATdH8CpSkpKtHTpUg0ZMkQtW7b0ru/YsWPI31Os5M7JmWElr8eMGePzc58+fXze299++225XC5NmDCh3LalmffPf/5THo9H1157rc9xk5KSdOaZZ1Z43BNVR85Jx98rO3bsqA4dOvj06+KLL5akcv2q7O+pYBw+fLjSeYP9zYovvvhCO3fuDPjYgZ5/r169lJqa6v25ZcuWuuKKK7R06VKVlJQE3R/UHVyGbFGbNm0qXP/uu+/qscce07p161RUVORdf+IHj82bNysiIqLKN7HSP/JK3wROFhMT4/NzvXr1dMYZZ5yy33v27FFBQYF3CHJltm3bprS0tHLrSy+F2rZtm88+TgxeSd4PI//9738lHT9nSVUe98cff5QxRo888ogeeeSRCtvs3r1bLVq08Pu4/qjotTx8+LCysrI0a9Ys/fLLLzLGeB/Lz8/3e98n2rZtm84888xyH+RPfE5PZPXcPB6PXnjhBb3yyivasmWLNxQk6fTTT7fU91M5MZD8VfoHxYn/TkpVNWk94FTkCrkSqNqeK5s2bVJ+fr4SEhIqfLz05gGlKvs3Eoxgs+jRRx/VFVdcobPOOkudO3fWgAEDdOONN6pr166nPHag59++fXuff/eSdNZZZ0mStm7dqqSkpKD6AzjVnj17dPjwYZ155pnlHjv77LO1ePHikB3LSu6c/N4WaF5HR0f7TGsiHX9/P/G9ffPmzUpOTlZ8fHylfd+0aZOMMRU+T5KqnK5Cqp6cK+3X+vXry51jKbuyori4uMLH/MmKp59+WiNGjFBKSopSU1N12WWXafjw4Wrbtu0pjx3o+Vf0+p111lk6dOiQ9uzZo6SkpKD6g7qDYqFFFb0hfPzxx7r88st14YUX6pVXXlHz5s1Vv359zZo1S3Pnzg1o/x6PR9Lx+SqSkpLKPV56t75SJ37rXxNOHkFR6sSQOJXSc7733nsr/Zavffv2IT9uRa/l7bffrlmzZumuu+5Sr169FBsbK5fLpWHDhnn7Wd2sntsTTzyhRx55RL///e81efJkxcfHKyIiQnfddVe19X3//v2VBuiJGjRooNjYWElS8+bNJUm7du1SSkqKT7tdu3apZ8+eoe8oEMbIFV/kSuiFW654PB4lJCTojTfeqPDxkz8YVceXSMFm0YUXXqjNmzfrnXfe0X/+8x/95S9/0fPPP68ZM2bolltuqXLbQM/fH8H0B0DwrOTOye9tgeZ1Ze/tgfJ4PHK5XPq///u/CvdZOodeZaor5zwej7p06aIpU6ZU+PjJ793VlRUlJSXavXu3zxc8xcXF2rdvn5KTk6vc/tprr1WfPn20cOFC/ec//9Ezzzyjp556Sv/85z81cODAKrcN9Pz9EUx/UHdQLKzEyd/c+uPtt99WdHS0li5d6nM5y6xZs3zatWvXTh6PR99//726d+9e4b7atWsnSUpISFB6enrAfalMs2bNFBMTo2+//bbKdq1atdLGjRvLrd+wYYP38UCUns+3335b6fmUfpNRv379kJ6zlddywYIFGjFihJ577jnvuiNHjigvL8/yvlu1aqWvv/5aHo/H5wO41ee0MgsWLNBFF12k119/3Wd9Xl6e96YKUuDPS1Xtr7zyynKXu1VkxIgRmj17tiR5f/dXr17t82Fs586d+vnnnzV69OiA+geEO3KFXHF6rlSmsnNq166d3n//fZ1//vk1Npo8FFkUHx+vkSNHauTIkTp48KAuvPBCTZw40VucC9X5l45YOnF/P/zwgyT5TOB/qv4AdU2zZs3UoEGDCi/PryiXghGK3KmOvG7Xrp2WLl2q/fv3Vzq6sF27djLGqE2bNt5Ry4HwN+cqU9V75f/7f/9Pl1xyiaX8DYUTs+Kyyy7zrl+9erU8Hk+lf3udqHnz5rrtttt02223affu3Tr33HP1+OOPe4tzoTr/in7Pf/jhBzVs2NDnS6hT9QdgzsJKNGrUSJL8fnOTjn+r43K5fC7P2bp1a7k7FA0ZMkQRERF69NFHy33LUvrtfkZGhmJiYvTEE09UeJfZPXv2+N2vE0VERGjIkCH697//rdWrV5d7vPT4l112mVatWqXs7GzvY4WFhXr11VfVunXrgOeBOPfcc9WmTRtNnTq13HNaesyEhAT169dPf/7zn7Vr165y+7B6zo0aNQrodZSOv5Ynj7R46aWXfF7b0n1L/v2eXHbZZcrJyfHeUVM6frfRl156SY0bN1bfvn0D6mNlKur7/Pnzy82PEujveFXtrcxZeM4556hDhw569dVXfZ7X6dOny+Vy6eqrr/arX0BtQa6QK07PlcpUdk7XXnutSkpKNHny5HLbHDt2LODn2Ipgs2jfvn0+Pzdu3Fjt27f3uaw5VOe/c+dOLVy40PtzQUGB/va3v6l79+7e0Uf+9AeoayIjI5WRkaFFixZp+/bt3vXr16/X0qVLQ3qsUOROdeT1VVddJWOMJk2aVO6x0vf3K6+8UpGRkZo0aVK593xjTLn3l5P5m3OVKb0j8smuvfZa/fLLL3rttdfKPXb48GHvHaSr08UXX6z4+HhNnz7dZ/306dPVsGFDDRo0qNJtS0pKyp1XQkKCkpOTy2VFKM4/OzvbZ47IHTt26J133lH//v0VGRnpd38ARhZWonQOtoceekjDhg1T/fr1NXjwYO8ffBUZNGiQpkyZogEDBuj666/X7t27NW3aNLVv315ff/21t1379u310EMPafLkyerTp4+uvPJKud1uffnll0pOTlZWVpZiYmI0ffp03XjjjTr33HM1bNgwNWvWTNu3b9d7772n888/Xy+//LKlc3viiSf0n//8R3379vXefn3Xrl2aP3++PvnkE8XFxen+++/XP/7xDw0cOFB33HGH4uPj9de//lVbtmzR22+/HfClaREREZo+fboGDx6s7t27a+TIkWrevLk2bNig7777zhvU06ZN0wUXXKAuXbpo1KhRatu2rXJzc5Wdna2ff/5Z/+///b+Azzc1NVXTp0/XY489pvbt2yshIaHSOUBK/fa3v9WcOXMUGxurTp06KTs7W++//365uZm6d++uyMhIPfXUU8rPz5fb7dbFF19c4fxDo0eP1p///GfddNNNWrNmjVq3bq0FCxbo008/1dSpU9WkSZOAz62yvj/66KMaOXKkevfurW+++UZvvPFGuTko2rVrp7i4OM2YMUNNmjRRo0aNlJaWVuk8H1X9m7AyZ6EkPfPMM7r88svVv39/DRs2TN9++61efvll3XLLLd45twCnIFfIFafnSmVKf/fvuOMOZWRkKDIyUsOGDVPfvn31hz/8QVlZWVq3bp369++v+vXra9OmTZo/f75eeOEFy18c5efn66WXXpIkffrpp5Kkl19+WXFxcYqLi1NmZqa3bTBZ1KlTJ/Xr10+pqamKj4/X6tWrtWDBAp/9h+r8zzrrLN1888368ssvlZiYqJkzZyo3N9dnpLE//QHqokmTJmnJkiXq06ePbrvtNu8XK+ecc45PnoZCsLlTHXl90UUX6cYbb9SLL76oTZs2acCAAfJ4PPr444910UUXKTMzU+3atdNjjz2mBx54QFu3btWQIUPUpEkTbdmyRQsXLtTo0aN17733VnoMf3OuMqmpqZo3b57GjRun8847T40bN9bgwYN144036q233tKYMWP04Ycf6vzzz1dJSYk2bNigt956S0uXLq3wBmv+2LZtm+bMmSNJ3i88H3vsMUnHR+ffeOONko5f2jx58mSNHTtW11xzjTIyMvTxxx/r73//ux5//PEq54I8cOCAzjjjDF199dXq1q2bGjdurPfff19ffvmlzyjMUJ1/586dlZGRoTvuuENut1uvvPKKJHkLxf72B6j43uAwxhgzefJk06JFCxMREWEkmS1bthhjjt+SvLJbjb/++uvmzDPPNG6323To0MHMmjXLTJgwocLbsM+cOdP85je/MW6325x22mmmb9++ZtmyZT5tPvzwQ5ORkWFiY2NNdHS0adeunbnpppt8boc+YsQI06hRo4DObdu2bWb48OGmWbNmxu12m7Zt25qxY8eaoqIib5vNmzebq6++2sTFxZno6GjTs2dP8+6775brnyQzf/58n/VbtmwxksysWbN81n/yySfm0ksvNU2aNDGNGjUyXbt2NS+99JJPm82bN5vhw4ebpKQkU79+fdOiRQvz29/+1ixYsMDbZtasWUaS+fLLLyvsz4cffuhdl5OTYwYNGmSaNGliJJm+fftWuQ9jjPnvf/9rRo4caZo2bWoaN25sMjIyzIYNG0yrVq3MiBEjfNq+9tprpm3btiYyMtLn2H379vUeq1Rubq53v1FRUaZLly7lnqPS5+6ZZ54p1y9JZsKECeXWn+jIkSPmnnvuMc2bNzcNGjQw559/vsnOzq6wP++8847p1KmTqVevXoWv18kq+zcRjIULF5ru3bsbt9ttzjjjDPPwww+b4uLioPcLhCNyhVxxeq5U9Lt87Ngxc/vtt5tmzZoZl8tV7nf31VdfNampqaZBgwamSZMmpkuXLuZPf/qT2blzp7dNq1atzKBBg6rsZ0XnXNHSqlWrcu2tZtFjjz1mevbsaeLi4kyDBg1Mhw4dzOOPP+6zbSjPf+nSpaZr167e94OT/5340x+grlq5cqVJTU01UVFRpm3btmbGjBkV5unJ78uVvYdWllfGBJc7J+7fal5XdF7Hjh0zzzzzjOnQoYOJiooyzZo1MwMHDjRr1qzxaff222+bCy64wDRq1Mg0atTIdOjQwYwdO9Zs3Lixwn6W8jfnKns+Dx48aK6//noTFxdX7r26uLjYPPXUU+acc87x/o2TmppqJk2aZPLz873tqvp7qiKlr2FFy8n5Zszx9+uzzz7bREVFmXbt2pnnn3/eeDyeKo9RVFRk/vjHP5pu3bp5/1bp1q2beeWVV6rt/P/+9797/3b8zW9+4/M3jL/9AVzGBDBjNwAAAABbtW7dWp07d9a7775b010BAIQpl8ulsWPHWr5SBDgRcxYCAAAAAAAAkESxEAAAAAAAAMCvKBYCAAAAAAAAkESxEAAc56OPPtLgwYOVnJwsl8ulRYsWnXKbFStW6Nxzz5Xb7Vb79u01e/bsau8nAMA/W7durdPzFZJrAHBqxhjmK0TIUCwEAIcpLCxUt27dNG3aNL/ab9myRYMGDdJFF12kdevW6a677tItt9yipUuXVnNPAQA4NXINAAB7cTdkAHAwl8ulhQsXasiQIZW2ue+++/Tee+/p22+/9a4bNmyY8vLytGTJEht6CQCAf8g1AACqX72a7sDJPB6Pdu7cqSZNmsjlctV0dwDUYcYYHThwQMnJyYqICG4g9pEjR1RcXBxUX05+T3S73XK73UH1S5Kys7OVnp7usy4jI0N33XVX0PsGuQYgfIRLrlVnpknkWnUj1wCEg1BmmhRcrkVFRSk6OjroPoSTsCsW7ty5UykpKTXdDQDw2rFjh8444wzL2x85ckRtWjVWzu4Sy/to3LixDh486LNuwoQJmjhxouV9lsrJyVFiYqLPusTERBUUFOjw4cNq0KBB0Meoy8g1AOGmpnOtOjNNIteqG7kGIJwEm2nSr7nWoIFyLG6flJSkLVu2OKpgGHbFwiZNmkiSLtBlqqf6NdwbAHXZMR3VJ1rsfV+yqri4WDm7S7RlTSvFNAn8W6+CAx61Sd2mHTt2KCYmxrs+VCMwUL3INQDhIhxyjUyr/Up/f3Zs3+7zGgKAnQoKCpTSsmXQmSb9mmuSdrhcCvRdrUBSSk6OiouLKRZWp9Kh7PVUX/VcfKgCUIN+ndE1VJfYxDSJsFQs9G4fE1Mtf5QnJSUpNzfXZ11ubq5iYmIYfREC5BqAsBFGuVZdmSaRa9Wt9PenOl9DAPBXKKdDiJEUE+j+HHobkLArFgKAU5UYj0osZEmJ8YS+Myfo1auXFi9e7LNu2bJl6tWrV7UeFwBQu1nJterONIlcAwBYFBEhWSkWllifbipcBT8LJADALx4Zy0sgDh48qHXr1mndunWSpC1btmjdunXavn27JOmBBx7Q8OHDve3HjBmjn376SX/605+0YcMGvfLKK3rrrbd09913h+zcAQDOY0emSeQaAMAmERHWFgdiZCEA2MQjj6yMpwh0q9WrV+uiiy7y/jxu3DhJ0ogRIzR79mzt2rXL+wFLktq0aaP33ntPd999t1544QWdccYZ+stf/qKMjAwLvQUA1BVWcs1KEpJrAABbWB1Z6EAUCwHAJiXGqMRCmAS6Tb9+/WSq2Gb27NkVbrN27dpAuwYAqMOs5JqVHCTXAAC2oFjoRbEQAGxi9fIrK9sAAFDdrOQamQYACFsUC72ceXE1AAAAAAAAgIAxshAAbOKRUQkjCwEADmEl18g0AEDYYmShF8VCALAJlyEDAJyEy5ABAI5CsdCLYiEA2MSuG5wAAGAHu25wAgCALSgWelEsBACbeH5drGwHAEC4sZJrZBoAIGy5XMcLhoHwODPZuMEJAAAAAAAAAEmMLAQA25RYvMGJlW0AAKhuVnKNTAMAhK2IiMBHFjoUxUIAsEmJOb5Y2Q4AgHBjJdfINABA2KJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKUSBXh3rV+3AwAg3FjJNTINABC2KBZ6USwEAJt4zPHFynYAAIQbK7lGpgEAwhbFQq+AnoWsrCydd955atKkiRISEjRkyBBt3LjRp02/fv3kcrl8ljFjxoS00wAAhAK5BgBwCjINABAqARULV65cqbFjx+rzzz/XsmXLdPToUfXv31+FhYU+7UaNGqVdu3Z5l6effjqknQaA2qjk18u1rCyoHuQaAFhHpoUXMg0AglQ6sjDQxYECugx5yZIlPj/Pnj1bCQkJWrNmjS688ELv+oYNGyopKSk0PQQAh7D6IYkPVtWHXAMA66zkGplWfcg0AAiSg4t/gQrqWcjPz5ckxcfH+6x/44031LRpU3Xu3FkPPPCADh06VOk+ioqKVFBQ4LMAgBN5jMvyAnuQawDgPzItvIUi0yRyDUAdwshCL8s3OPF4PLrrrrt0/vnnq3Pnzt71119/vVq1aqXk5GR9/fXXuu+++7Rx40b985//rHA/WVlZmjRpktVuAECtwcjC8EauAUBgGFkYvkKVaRK5BqAOcbkCL/4ZZ965y2WMtTO79dZb9X//93/65JNPdMYZZ1Ta7oMPPtAll1yiH3/8Ue3atSv3eFFRkYqKirw/FxQUKCUlRf10heq56lvpGgCExDFzVCv0jvLz8xUTE2N5PwUFBYqNjdUH36aocZPAv3k6eMCjizvvCLofqBq5BsDpwiHXyDR7hCrTpMpzLT8vj9cQQI0pKChQbFxcSPKkNNfyzzxTMZGRgW1bUqLYTZscl2uWRhZmZmbq3Xff1UcffVRl+EhSWlqaJFUaQG63W26320o3AAAICXINAOAUocw0iVwDgLoooGKhMUa33367Fi5cqBUrVqhNmzan3GbdunWSpObNm1vqIAA4hbE4V5NhfqdqQ64BgHVWco1Mqz5kGgAEycochA69DDmgZ2Hs2LH6+9//rrlz56pJkybKyclRTk6ODh8+LEnavHmzJk+erDVr1mjr1q3617/+peHDh+vCCy9U165dq+UEAKC2KJ3bycqC6kGuAYB1ZFp4IdMAIEg23uBk2rRpat26taKjo5WWlqZVq1b5td2bb74pl8ulIUOGWDquvwIaWTh9+nRJUr9+/XzWz5o1SzfddJOioqL0/vvva+rUqSosLFRKSoquuuoqPfzwwyHrMADUViUmQiUm8DApceaXVWGBXAMA66zkGplWfcg0AAiSTSML582bp3HjxmnGjBlKS0vT1KlTlZGRoY0bNyohIaHS7bZu3ap7771Xffr0CfiYgQr4MuSqpKSkaOXKlUF1CACcyiOXPIEN6P51Oz5ZVRdyDQCss5JrZFr1IdMAIEg2FQunTJmiUaNGaeTIkZKkGTNm6L333tPMmTN1//33V7hNSUmJbrjhBk2aNEkff/yx8vLyAj5uIKyNlwQABIzLkAEATkKmAQAcJYjLkAsKCnyWE+8if6Li4mKtWbNG6enpJxw2Qunp6crOzq60a48++qgSEhJ08803h/acK0GxEAAAAAAAALAoJSVFsbGx3iUrK6vCdnv37lVJSYkSExN91icmJionJ6fCbT755BO9/vrreu2110Le78oEdBkyAMA663MWcskWACD8WJuzkEwDAISpIC5D3rFjh2JiYryr3W53SLp04MAB3XjjjXrttdfUtGnTkOzTHxQLAcAmx+d2CvzyKyvbAABQ3azkGpkGAAhbQRQLY2JifIqFlWnatKkiIyOVm5vrsz43N1dJSUnl2m/evFlbt27V4MGDves8Ho8kqV69etq4caPatWsXWJ/9QLEQAGziUYRKuMEJAMAhrOQamQYACFsuV+DFwl8Ld/6KiopSamqqli9friFDhvy6C4+WL1+uzMzMcu07dOigb775xmfdww8/rAMHDuiFF15QSkpKYP31E8VCALAJlyEDAJyEy5ABhJoJYPSxiy8fqkWdfg2sjCwMtL2kcePGacSIEerRo4d69uypqVOnqrCw0Ht35OHDh6tFixbKyspSdHS0Onfu7LN9XFycJJVbH0oUCwHAJh5FyMPIQgCAQ1jJNTINABC2bCoWDh06VHv27NH48eOVk5Oj7t27a8mSJd6bnmzfvl0RFvYbShQLAQAAAAAAAJtkZmZWeNmxJK1YsaLKbWfPnh36Dp2EYiEA2KTEuFRiAp/Y3co2AABUNyu5RqYBAMKWTSMLawOKhQBgkxKLNzgp4ZItAEAYspJrZBoAIGxRLPSiWAgANvGYCHks3ODEw2TwAIAwZCXXyDQAQNiiWOhFsRAAbMLIQgCAkzCyEADgKBQLvSgWAoBNPLI2V5Mn9F0BACBoVnKNTAMAhC2KhV7OPCsAAAAAAAAAAWNkIQDYxKMIeSx8R2NlGwAAqpuVXCPTAABhi5GFXhQLAcAmJSZCJRZucGJlGwAAqpuVXCPTAABhy+UKvPjnCnyaqdqAYiEA2MQjlzyyMmehMwMIAFC7Wck1Mg2oewz/7lFbMLLQi2IhANiEkYUAACdhZCEAwFEoFnpRLAQAm5QoQiUW5mqysg0AANXNSq6RaQCAsEWx0MuZZwUAAAAAAAAgYIwsBACbeIxLHmNhzkIL2wAAUN2s5BqZBgAIW4ws9KJYCAA28Vi8DNnDIHAAQBiykmtkGgAgbFEs9KJYCAA28ZgIeSxM7G5lGwAAqpuVXCPTAABhi2KhF8VCALBJiVwqUeCXX1nZBgCA6mYl18g0AEDYoljoRbEQAGzCyEIAgJMwshAA4CgUC72ceVYAAAAAAAAAAsbIQgCwSYmsXX5VEvquAAAQNCu5RqYBAMKWyxX4SEGXM6fXYGQhANik9HItK0ugpk2bptatWys6OlppaWlatWpVle2nTp2qs88+Ww0aNFBKSoruvvtuHTlyxOqpAgDqALsyTSLXAMAuLhm/F8cpvQw50MWBGFkIADYpMREqsfAhKdBt5s2bp3HjxmnGjBlKS0vT1KlTlZGRoY0bNyohIaFc+7lz5+r+++/XzJkz1bt3b/3www+66aab5HK5NGXKlID7CwCoG6zkmpUcJNcAALZgzkIvZ54VAIQhI5c8FhYT4CVeU6ZM0ahRozRy5Eh16tRJM2bMUMOGDTVz5swK23/22Wc6//zzdf3116t169bq37+/rrvuulOO2gAA1G1Wci3QTJPINQCATRhZ6OXMswKAMFQ6AsPK4q/i4mKtWbNG6enp3nURERFKT09XdnZ2hdv07t1ba9as8X6I+umnn7R48WJddtllwZ0wAMDRqjvTJHINAGAjioVeXIYMALVEQUGBz89ut1tut9tn3d69e1VSUqLExESf9YmJidqwYUOF+73++uu1d+9eXXDBBTLG6NixYxozZowefPDB0J4AAAC/8ifTJHINAICa4MwSKACEIY9xWV4kKSUlRbGxsd4lKysrJP1asWKFnnjiCb3yyiv66quv9M9//lPvvfeeJk+eHJL9AwCcKRwzTSLXAAAWMbLQi5GFAGCTEkWoxMJ3NKXb7NixQzExMd71FY3AaNq0qSIjI5Wbm+uzPjc3V0lJSRXu/5FHHtGNN96oW265RZLUpUsXFRYWavTo0XrooYcU4dAABAAEx0quBZJpErkGALARNzjxcuZZAUAYCnZkYUxMjM9S0QerqKgopaamavny5WXH9Xi0fPly9erVq8J+HTp0qNwHp8jISEmSMSZUpw8AcJjqzjSJXAMA2IiRhV6MLAQAm3gUIY+F72gC3WbcuHEaMWKEevTooZ49e2rq1KkqLCzUyJEjJUnDhw9XixYtvJd8DR48WFOmTNFvfvMbpaWl6ccff9QjjzyiwYMHez9cAQBwMiu5ZiUHyTUAgC0YWehFsRAAbFJiXCr5dURFoNsFYujQodqzZ4/Gjx+vnJwcde/eXUuWLPFODr99+3afERcPP/ywXC6XHn74Yf3yyy9q1qyZBg8erMcffzzgvgIA6g4ruWYlB8k1AIAtXK7Ai3+uwHOtNqBYCAAOlJmZqczMzAofW7Fihc/P9erV04QJEzRhwgQbegYAQODINQAA7EOxEABscuJcTYFuBwBAuLGSa2QaACBscRmyF8VCALCJMRHymMDDxFjYBgCA6mYl18g0AFVxiZsQoQZRLPSiWAgANimRSyWyMGehhW0AAKhuVnKNTAMAhC2KhV4UCwHAJh5j7fIrD1+wAgDCkJVcI9MAAGGLYqEXxUIAsInH4mXIVrYBAKC6Wck1Mg0AELYoFno586wAAAAAAAAABIyRhQBgE49c8liYq8nKNgAAVDcruUamAQDCFiMLvSgWAoBNSoxLJRbmLLSyDQAA1c1KrpFpAICwRbHQK6CzysrK0nnnnacmTZooISFBQ4YM0caNG33aHDlyRGPHjtXpp5+uxo0b66qrrlJubm5IOw0AtVHp3E5WFlQPcg0ArCPTwguZBgBBKi0WBro4UEBntXLlSo0dO1aff/65li1bpqNHj6p///4qLCz0trn77rv173//W/Pnz9fKlSu1c+dOXXnllSHvOADUNh655DEWFi7ZqjbkGgBYZynXyLRqQ6YBQJBcrsALhS5n5lpAlyEvWbLE5+fZs2crISFBa9as0YUXXqj8/Hy9/vrrmjt3ri6++GJJ0qxZs9SxY0d9/vnn+p//+Z/Q9RwAahljcc5CwwerakOuAYB1VnKNTKs+ZBoABInLkL2COqv8/HxJUnx8vCRpzZo1Onr0qNLT071tOnTooJYtWyo7O7vCfRQVFamgoMBnAQCgJpBrAACnCEWmSeQaANRFlouFHo9Hd911l84//3x17txZkpSTk6OoqCjFxcX5tE1MTFROTk6F+8nKylJsbKx3SUlJsdolAAhrli5B/nVB9SPXACAwZFr4ClWmSeQagDqEOQu9LJ/V2LFj9e233+rNN98MqgMPPPCA8vPzvcuOHTuC2h8AhCtucBLeyDUACAyZFr5ClWkSuQagDqFY6BXQnIWlMjMz9e677+qjjz7SGWec4V2flJSk4uJi5eXl+XxjlZubq6SkpAr35Xa75Xa7rXQDAGoVqyMqGIVR/cg1AAiclVwj06pfKDNNItcA1CHMWegV0FkZY5SZmamFCxfqgw8+UJs2bXweT01NVf369bV8+XLvuo0bN2r79u3q1atXaHoMALWU59eJ4K0sqB7kGgBYR6aFFzINAILEyEKvgEYWjh07VnPnztU777yjJk2aeOe2iI2NVYMGDRQbG6ubb75Z48aNU3x8vGJiYnT77berV69e3F0LQJ3HyMLwQ64BgHWMLAwvZBoABImRhV4BFQunT58uSerXr5/P+lmzZummm26SJD3//POKiIjQVVddpaKiImVkZOiVV14JSWcBAAglcg0A4BRkGgAgVAIqFhpjTtkmOjpa06ZN07Rp0yx3CgCciJGF4YdcAwDrGFkYXsg0AAgSIwu9LN3gBAAQOIqFAAAnoVgIAHAUioVezjwrAAhDpR+qrCwAAIQbMg0A4CguV+A3N3FZy7Vp06apdevWio6OVlpamlatWlVp29dee019+vTRaaedptNOO03p6elVtg8FioUAYBMja3eOPPVFRQAA2M9KrpFpAICwZdPdkOfNm6dx48ZpwoQJ+uqrr9StWzdlZGRo9+7dFbZfsWKFrrvuOn344YfKzs5WSkqK+vfvr19++SXYM64UxUIAAAAAAADABlOmTNGoUaM0cuRIderUSTNmzFDDhg01c+bMCtu/8cYbuu2229S9e3d16NBBf/nLX+TxeLR8+fJq6yPFQgCwCZchAwCchEwDADiKDSMLi4uLtWbNGqWnp59w2Ailp6crOzvbr30cOnRIR48eVXx8fEDHDgQ3OAEAm3CDEwCAk3CDEwCAowRxg5OCggKf1W63W263u1zzvXv3qqSkRImJiT7rExMTtWHDBr8Oed999yk5Odmn4BhqjCwEAJswshAA4CRkGgDAUYIYWZiSkqLY2FjvkpWVVS1dfPLJJ/Xmm29q4cKFio6OrpZjSIwsBADbMLIQAOAkjCwEADhKECMLd+zYoZiYGO/qikYVSlLTpk0VGRmp3Nxcn/W5ublKSkqq8lDPPvusnnzySb3//vvq2rVrYP0MECMLAcAmxrgsLwAAhBsyDQDgKEGMLIyJifFZKisWRkVFKTU11efmJKU3K+nVq1elXXv66ac1efJkLVmyRD169AjteVeAkYUAAAAAAACADcaNG6cRI0aoR48e6tmzp6ZOnarCwkKNHDlSkjR8+HC1aNHCeynzU089pfHjx2vu3Llq3bq1cnJyJEmNGzdW48aNq6WPFAsBwCYeueSRhcuQLWwDAEB1s5JrZBoAIGwFcRlyIIYOHao9e/Zo/PjxysnJUffu3bVkyRLvTU+2b9+uiBP2O336dBUXF+vqq6/22c+ECRM0ceLEgI/vD4qFAGAT5iwEADgJcxYCABzFpmKhJGVmZiozM7PCx1asWOHz89atWy0dIxgUCwHAJlbnamJ+JwBAOLKSa2QaACBsuVyBF/9czsw1ioUAYBNGFgIAnISRhQAAR7FxZGG4o1gIADZhZCEAwEkYWQgAcBSKhV7OPCsAAAAAAAAAAWNkIQDYxFi8DJlRGACAcGQl18g0AAhvJoC71rtkqrEnNYCRhV4UCwHAJkaSsZCnDotgAIBDWMk1Mg0AELYoFnpRLAQAm3jkkiuAb+pO3A4AgHBjJdfINABA2KJY6EWxEABswg1OAABOwg1OAACOQrHQi2IhANjEY1xyWfiQZGWeQwAAqpuVXCPTAABhi2KhlzPPCgAAAAAAAEDAGFkIADYxxuINTpgNHgAQhqzkGpkGAAhbjCz0olgIADZhzkIAgJMwZyEAwFEoFnpRLAQAm1AsBAA4CcVCAICjuFyBF/9czsw1ioUAYBNucAIAcBJucAIAcBRGFnpRLAQAmzBnIQDASZizEADgKBQLvSgWos6JaNDAv4YBDCc2RUX+ty0p8bstAABVcdWr73fbiAbRfrcNJKvIQABAqBw95v9nsPoRAWTKkSP+tYuK8n+f9ZxZTnHJ/291jPx/vQLZL2qeM3+7ASAMHR+BYWXOwmroDAAAQbKSa2QaACBsMbLQi2IhANiEG5wAAJyEG5wAAByFYqEXxUIAsIn5dbGyHQAA4cZKrpFpAICwRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAIByZIJYATZs2Ta1bt1Z0dLTS0tK0atWqKtvn5eVp7Nixat68udxut8466ywtXrw48AMDAOoOmzJNItcAADYoLRYGujgQIwsBwGHmzZuncePGacaMGUpLS9PUqVOVkZGhjRs3KiEhoVz74uJiXXrppUpISNCCBQvUokULbdu2TXFxcfZ3HgCAk5BrAADYi2IhANjF4mXICnCbKVOmaNSoURo5cqQkacaMGXrvvfc0c+ZM3X///eXaz5w5U/v379dnn32m+vXrS5Jat24deD8BAHWLlVyzkIPkGgDAFlyG7OXMswKAMGSM9UWSCgoKfJaioqJyxyguLtaaNWuUnp7uXRcREaH09HRlZ2dX2K9//etf6tWrl8aOHavExER17txZTzzxhEpKSqrleQAAOEN1Z5pErgEAbORyBX4JssuZc/FSLAQAm5ROBG9lkaSUlBTFxsZ6l6ysrHLH2Lt3r0pKSpSYmOizPjExUTk5ORX266efftKCBQtUUlKixYsX65FHHtFzzz2nxx57LPRPAgDAMao70yRyDQBgI+Ys9OIyZACwi3FZuvyqdJsdO3YoJibGu9rtdoekWx6PRwkJCXr11VcVGRmp1NRU/fLLL3rmmWc0YcKEkBwDAOBAVnKtmjNNItcAABZxGbIXxUIAsMmJl18Fup0kxcTE+HywqkjTpk0VGRmp3Nxcn/W5ublKSkqqcJvmzZurfv36ioyM9K7r2LGjcnJyVFxcrKioqMA7DQBwPCu5FkimSeQaAMBGFAu9KBYibEUE8ofcOe39bnqg3an/MJUkT33/D994xxG/29b7dqvfbUvy8vzvBCApKipKqampWr58uYYMGSLp+AiL5cuXKzMzs8Jtzj//fM2dO1cej0cRv4bdDz/8oObNm/OBCqgB9RKa+d32SNdWfrc92ML/YKtX5H8FKGZjgd9tXRu2+NXOc6Ti+esqZDz+t0WtQ64B4enAQf9HFf/8s//7bdjQ/7atmvr/GUwbNvjXLpDCT3v/P4MGdGK1qPjkkoWREKgVas9vIQDUdiaIJQDjxo3Ta6+9pr/+9a9av369br31VhUWFnrvIjl8+HA98MAD3va33nqr9u/frzvvvFM//PCD3nvvPT3xxBMaO3ZscOcLAHA2GzJNItcAADZhzkIvRhYCgE1OnNg90O0CMXToUO3Zs0fjx49XTk6OunfvriVLlngnh9++fbt3pIV0fJL5pUuX6u6771bXrl3VokUL3XnnnbrvvvsC7isAoO6wkmtWcpBcAwDYgsuQvSgWAoCdbBqpn5mZWenlWStWrCi3rlevXvr888+ruVcAAMch1wAATkGx0ItiIQDYxK6RhQAA2MGukYUAANiCYqEXxUIAsIvFuZqYNxgAEJas5BqZBgAIVxQLvZx5VgAAAAAAAAACFnCx8KOPPtLgwYOVnJwsl8ulRYsW+Tx+0003yeVy+SwDBgwIVX8BoBZzBbGgOpBpABAMMi3ckGsAEASXK/A7IbucmWsBFwsLCwvVrVs3TZs2rdI2AwYM0K5du7zLP/7xj6A6CQCOYIJYUC3INAAIApkWdsg1AAhCoIVCK5ct1xIBz1k4cOBADRw4sMo2brdbSUlJljsFAI7EnIVhh0wDgCAwZ2HYIdcAIAjMWehVLWe1YsUKJSQk6Oyzz9att96qffv2Vdq2qKhIBQUFPgsAOJJxWV9QYwLJNIlcA1CHkGm1ErkGAJVgZKFXyO+GPGDAAF155ZVq06aNNm/erAcffFADBw5Udna2IiMjy7XPysrSpEmTQt0NOICrQzu/2267LM7vtvV7/tevdvUiPX7vc/u60/1u29LVxu+2Ednf+t3WHDvqd1vUDGOOL1a2Q80INNMkcg2Vi2jY0K92hT39z4ntV/ufVfFN9/vdNq8w2u+2Bz+P87vtGfub+tdwT9XFixN5Dh/xu62M/88XTs1KrpFpNYtcw6kcPeZfQf/77/3f54YN/rft3dv/tvIzVyVJO3f61y4nx/99Nm7sf9uEhOrZr0MLVTWGkYVeIS8WDhs2zPv/Xbp0UdeuXdWuXTutWLFCl1xySbn2DzzwgMaNG+f9uaCgQCkpKaHuFgAAAQs00yRyDQAQvsg1AIA/qr0E2rZtWzVt2lQ//vhjhY+73W7FxMT4LADgSNzgpNY7VaZJ5BqAOoRMq/XINQA4AZche4V8ZOHJfv75Z+3bt0/Nmzev7kMBQHizOlcT8zuFDTINAE5gJdfItLBCrgHACbgM2SvgYuHBgwd9vnnasmWL1q1bp/j4eMXHx2vSpEm66qqrlJSUpM2bN+tPf/qT2rdvr4yMjJB2HABqG5c5vljZDtWDTAMA66zkGplWvcg1AAgCxUKvgIuFq1ev1kUXXeT9uXT+ihEjRmj69On6+uuv9de//lV5eXlKTk5W//79NXnyZLnd7tD1GgBqI6uXX/HBqtqQaQAQBCu5RqZVK3INAIJAsdAr4GJhv379ZKq4jdnSpUuD6hAAOBaXIYcdMg0AgsBlyGGHXAOAILhcgRf/XM7MNWeWQAEAAAAAAAAErNpvcAIA+BWXIQMAnITLkAEATsJlyF4UCwHALhQLAQBOQrEQAOAkFAu9KBYCgF0oFgIAnIRiIQDASSgWelEsBAC7cIMTAICTcIMTAICTUCz0olgIW7nq1fe77cF2MX63jeiR73fb17rO8atdfVeJ3/v8g+t//W5bsLGp323jv27od9uSfP+fA9QMlzm+WNkOQO0XEX+aX+32n+3/n2d/6LHM77bpjb/3u+1Xh1v53faJgkF+ty35NM6vdhH5B/zep6uoyO+2xv9ohx+s5BqZBoS3Q4f8a7d1q//7DKRt587+tzXy/8sH1/79/jX8+Wf/O7B7t/9tY/z/bKuG/n8G9LdQFdBzVZeHgFMs9HLmWQEAAAAAAABhaNq0aWrdurWio6OVlpamVatWVdl+/vz56tChg6Kjo9WlSxctXry4WvtHsRAA7GKCWAAACDdkGgDASUpHFga6BGjevHkaN26cJkyYoK+++krdunVTRkaGdlcyWvWzzz7Tddddp5tvvllr167VkCFDNGTIEH377bfBnnGlKBYCAAAAAACgbrOpWDhlyhSNGjVKI0eOVKdOnTRjxgw1bNhQM2fOrLD9Cy+8oAEDBuiPf/yjOnbsqMmTJ+vcc8/Vyy+/HOwZV4piIQDYxKWy+Z0CWmq64wAAVMBSrtV0pwEAqEwQxcKCggKfpaiSOZWLi4u1Zs0apaenn3DYCKWnpys7O7vCbbKzs33aS1JGRkal7UOBYiEA2KX0rpFWFgAAwg2ZBgBwECOXpUWSUlJSFBsb612ysrIqPMbevXtVUlKixMREn/WJiYnKycmpcJucnJyA2ocCd0MGALtYnauJ+Z0AAOHISq6RaQCAMOXxHF8C3UaSduzYoZgT7nrtdrtD2DP7USwEAAAAAAAALIqJifEpFlamadOmioyMVG5urs/63NxcJSUlVbhNUlJSQO1DgcuQAcAu3A0ZAOAkZBoAwEFKRxYGugQiKipKqampWr58+QnH9Wj58uXq1atXhdv06tXLp70kLVu2rNL2ocDIQgCwSenk7la2AwAg3FjJNTINABCugrkMORDjxo3TiBEj1KNHD/Xs2VNTp05VYWGhRo4cKUkaPny4WrRo4Z338M4771Tfvn313HPPadCgQXrzzTe1evVqvfrqq4Ef3E8UCwHALsxZCABwEuYsBAA4iF3FwqFDh2rPnj0aP368cnJy1L17dy1ZssR7E5Pt27crIqLsQuDevXtr7ty5evjhh/Xggw/qzDPP1KJFi9S5c+fAD+4nioUAYBeKhQAAJ6FYCABwELuKhZKUmZmpzMzMCh9bsWJFuXXXXHONrrnmGmsHs4BiIQDYhMuQAQBOwmXIAAAnsbNYGO64wQkAAAAAAAAASYwsBAD7GNfxxcp2AACEGyu5RqYBAMIUIwvLUCwEALswZyEAwEmYsxAA4CAUC8tQLAQAmzBnIQDASZizEADgJMYEXvwzDs01ioUAYBdGFgIAnISRhQAAB2FkYRlucAIAAAAAAABAEiMLAcA+Fi9DZhQGACAsWck1Mg0AEKYYWViGYiEA2IXLkAEATsJlyAAAB6FYWIZiIQDYhWIhAMBJKBYCAByEYmEZioWwlTl21O+2jTcX+N123+rT/G47KuJGv9rVi/T/X/3Bdaf73bbl1sN+t/UUHvK7LcIfd0MG6jbP/v/61S5+Ywu/9/nn1X39bju/6bl+tz1QGO1325jv6/vdNjI3x692nuJiv/dpPLxJ1hTuhgw4T8OG/rVr3dr/fR454n/bmBj/27oC+fYhPt6/dgHkjxIS/G8b7X+uKiL0t5YI6LmqwygWlqFYCAAAAAAAgDqNYmEZ7oYMAAAAAAAAQBIjCwHAPsxZCABwEuYsBAA4CCMLy1AsBACbMGchAMBJmLMQAOAkFAvLUCwEADvxIQkA4CTkGgDAIYwJvPhnHJqDFAsBwC5chgwAcBIuQwYAOAgjC8tQLAQAm3AZMgDASbgMGQDgJBQLy3A3ZAAAAAAAAACSGFkIAPbhMmQAgJNwGTIAwEEYWViGkYUAYJPSy7WsLIGaNm2aWrdurejoaKWlpWnVqlV+bffmm2/K5XJpyJAhgR8UAFCn2JVpErkGAKh+pcXCQBcnolgIAHYxQSwBmDdvnsaNG6cJEyboq6++Urdu3ZSRkaHdu3dXud3WrVt17733qk+fPoEdEABQN9mQaRK5BgCwB8XCMlyGjLBlNmz2u23LyPZ+tz2wMdavdp76fu9SLXcc8rttvW+3+t225NhR/zuB8GfTZchTpkzRqFGjNHLkSEnSjBkz9N5772nmzJm6//77K9ympKREN9xwgyZNmqSPP/5YeXl5FjoKoCqeQ/5lRaNVW/zeZ5sjrfxue7BFvN9tmxb5/8YTszHP77ae3Xv9a3ekyO99yjj0r/TawKbLkMk1wD716/n3j7RTJ5ff+4yJ8f/4UVH+t5WfuSpJSk72r90ZZ/i/z6Qk/9s2bOh/2wjGdNUULkMuw28hANgk2MuQCwoKfJaiovIfpouLi7VmzRqlp6d710VERCg9PV3Z2dmV9u3RRx9VQkKCbr755pCfNwDAmao70yRyDQBgH0YWlqFYCAC1REpKimJjY71LVlZWuTZ79+5VSUmJEhMTfdYnJiYqJyenwv1+8sknev311/Xaa69VS78BADiZP5kmkWsAANQELkMGALsEeRnyjh07FHPCdRxutzvoLh04cEA33nijXnvtNTVt2jTo/QEA6pAgLkOujkyTyDUAgHVchlyGYiEA2CXIYmFMTIzPB6uKNG3aVJGRkcrNzfVZn5ubq6QK5lXZvHmztm7dqsGDB3vXeX5NvHr16mnjxo1q166dhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcLcBkyANgk2DkL/REVFaXU1FQtX77cu87j8Wj58uXq1atXufYdOnTQN998o3Xr1nmXyy+/XBdddJHWrVunlJSUUJw6AMCBqjvTJHINAGAf5iwsw8hCALCLTXdDHjdunEaMGKEePXqoZ8+emjp1qgoLC713kRw+fLhatGihrKwsRUdHq3Pnzj7bx8XFSVK59QAA+LDpbsjkGgDADlyGXCbgkYUfffSRBg8erOTkZLlcLi1atMjncWOMxo8fr+bNm6tBgwZKT0/Xpk2bQtVfAKi17BhZKElDhw7Vs88+q/Hjx6t79+5at26dlixZ4p0cfvv27dq1a1c1nGHtQ6YBgHV2ZJpErgWCXAMA6xhZWCbgYmFhYaG6deumadOmVfj4008/rRdffFEzZszQF198oUaNGikjI0NHjhwJurMAAP9kZmZq27ZtKioq0hdffKG0tDTvYytWrNDs2bMr3Xb27NnlPlw4FZkGALUDueYfcg0AEAoBX4Y8cOBADRw4sMLHjDGaOnWqHn74YV1xxRWSpL/97W9KTEzUokWLNGzYsOB6CwC1mU2XIcN/ZBoABMGmy5DhP3INAKzjMuQyIb3ByZYtW5STk6P09HTvutjYWKWlpSk7O7vCbYqKilRQUOCzAIAjmSAW2M5KpknkGoA6hEyrVcg1AKgalyGXCekNTnJyciTJO39IqcTERO9jJ8vKytKkSZNC2Q04hKe42P/Ga7/3u2mTDQ38a+hy+b1PU1Tkd9uSkhK/28JZXL8uVraD/axkmkSuIXjHdu/xu239FXl+tz29QbTfbU0AWRVIBgayX4Q/K7lGptUccg2h1KSx/5X/Dh38/5d/7FgAnYjwP9fUoYN/7aKi/N9nPe4XawJ4V3fVgm+LGFlYJqQjC6144IEHlJ+f71127NhR010CgOrByMI6gVwDUGeQaXUCuQagrmBkYZmQlsKTkpIkSbm5uWrevLl3fW5urrp3717hNm63W263O5TdAICwZPUukFa2QfCsZJpErgGoO6zkGplWc8g1AKgaIwvLhHRkYZs2bZSUlKTly5d71xUUFOiLL75Qr169QnkoAACqFZkGAHAScg0A4K+ARxYePHhQP/74o/fnLVu2aN26dYqPj1fLli1111136bHHHtOZZ56pNm3a6JFHHlFycrKGDBkSyn4DQO3D3ZDDDpkGAEHgbshhh1wDAOuMCXykoHForgVcLFy9erUuuugi78/jxo2TJI0YMUKzZ8/Wn/70JxUWFmr06NHKy8vTBRdcoCVLlig6OoDJRwHAqRwaJrUVmQYAQSLXwgq5BgDWcRlymYCLhf369ZOponTqcrn06KOP6tFHHw2qYwDgNMxZGH7INACwjjkLww+5BgDWUSwsw72+AcAuXIYMAHASLkMGADgIxcIyFAsBwCaMLAQAOAkjCwEATkKxsExI74YMAAAAAAAAoPZiZCEA2IXLkAEATsJlyAAAB2FkYRmKhQBgEy5DBgA4CZchAwCchGJhGYqFqHM8hw/XdBdQVzGyEECImWNH/W5bcsD/toBfGFkIIMTq1wvkTSKAWdUaNgy4L3WVkcvvti6HvalTLCxDsRAA7EKxEADgJBQLAQAOQrGwDMVCALAJlyEDAJyEy5ABAE5CsbAMd0MGAAAAAAAAIImRhQBgHy5DBgA4CZchAwAcxJjARwoah+YaIwsBwCYuYywvAACEGzINAOAkpZchB7pUl/379+uGG25QTEyM4uLidPPNN+vgwYNVtr/99tt19tlnq0GDBmrZsqXuuOMO5efnB3xsRhYCgF0YWQgAcBJGFgIAHCTc5iy84YYbtGvXLi1btkxHjx7VyJEjNXr0aM2dO7fC9jt37tTOnTv17LPPqlOnTtq2bZvGjBmjnTt3asGCBQEdm2IhANiEG5wAAJyEG5wAAJwknIqF69ev15IlS/Tll1+qR48ekqSXXnpJl112mZ599lklJyeX26Zz5856++23vT+3a9dOjz/+uP73f/9Xx44dU716/pcAuQwZAOxiglgAAAg3ZBoAwEHC6TLk7OxsxcXFeQuFkpSenq6IiAh98cUXfu8nPz9fMTExARUKJUYWAgAAAAAAAJYVFBT4/Ox2u+V2uy3vLycnRwkJCT7r6tWrp/j4eOXk5Pi1j71792ry5MkaPXp0wMdnZCEA2KT0ci0rCwAA4YZMAwA4STAjC1NSUhQbG+tdsrKyKjzG/fffL5fLVeWyYcOGoM+loKBAgwYNUqdOnTRx4sSAt2dkIQDYhRucAACchBucAIDjuOrwG3Uwcxbu2LFDMTEx3vWVjSq85557dNNNN1W5z7Zt2yopKUm7d+/2WX/s2DHt379fSUlJVW5/4MABDRgwQE2aNNHChQtVv379U5/ISSgWAoBNuMEJAMBJuMEJAMBJgikWxsTE+BQLK9OsWTM1a9bslO169eqlvLw8rVmzRqmpqZKkDz74QB6PR2lpaZVuV1BQoIyMDLndbv3rX/9SdHS0fydyEi5DBgC7cIMTAICTkGkAAAcJpxucdOzYUQMGDNCoUaO0atUqffrpp8rMzNSwYcO8d0L+5Zdf1KFDB61atUrS8UJh//79VVhYqNdff10FBQXKyclRTk6OSkpKAjo+IwsBwEaMqAAAOAm5BgBwCmMCL/6ZaszBN954Q5mZmbrkkksUERGhq666Si+++KL38aNHj2rjxo06dOiQJOmrr77y3im5ffv2PvvasmWLWrdu7fexKRYCAAAAAAAAYSQ+Pl5z586t9PHWrVvLnFCt7Nevn8/PwaBYCAB2McbaV0/V+XUVAABWWck1Mg0AEKaCmbPQaSgWAoBNuMEJAMBJuMEJAMBJKBaWoVgIAHaxOrE7H6wAAOHISq6RaQCAMEWxsAzFQgCwictzfLGyHQAA4cZKrpFpAIBwRbGwDMVCALALIwsBAE7CyEIAgINQLCwTUdMdAAAAAAAAABAeGFkIADbhBicAACfhBicAACdhZGEZioUAYBdjji9WtgMAINxYyTUyDQAQpigWlqFYCAA2YWQhAMBJGFkIAHASioVlKBYCgF24wQkAwEm4wQkAwEGMCbz459QB8xQLAcAmjCwEADgJIwsBAE7CyMIy3A0ZAAAAAAAAgCRGFgKAfbjBCQDASbjBCQDAQRhZWIZiIQDYhMuQAQBOwmXIAAAnoVhYhmIhANiFG5wAAJyEG5wAAByEYmEZioUAYBNGFgIAnISRhQAAJ6FYWIZiIQDYxWOOL1a2AwAg3FjJNTINABCmKBaW4W7IAAAAAAAAACQxshAA7MOchQAAJ2HOQgCAgzCysAzFQgCwiUsW5ywMeU8AAAielVwj0wAA4YpiYRkuQwYAuxhjfQnQtGnT1Lp1a0VHRystLU2rVq2qtO1rr72mPn366LTTTtNpp52m9PT0KtsDACDJtkyTyDUAQPUzpqxg6O9iMdbCHsVCALBJ6V0jrSyBmDdvnsaNG6cJEyboq6++Urdu3ZSRkaHdu3dX2H7FihW67rrr9OGHHyo7O1spKSnq37+/fvnllxCcNQDAqezINIlcAwDYI9BCoZWRiLUFxUIAcJgpU6Zo1KhRGjlypDp16qQZM2aoYcOGmjlzZoXt33jjDd12223q3r27OnTooL/85S/yeDxavny5zT0HAKA8cg0AAHtRLAQAu5ggFj8VFxdrzZo1Sk9P966LiIhQenq6srOz/drHoUOHdPToUcXHx/t/YABA3VPNmSaRawAA+zCysAw3OAEAm7iMkcvCpBal2xQUFPisd7vdcrvdPuv27t2rkpISJSYm+qxPTEzUhg0b/Drefffdp+TkZJ8PZgAAnMxKrgWSaRK5BgCwDzc4KRPykYUTJ06Uy+XyWTp06BDqwwBA7eMJYpGUkpKi2NhY75KVlRXyLj755JN68803tXDhQkVHR4d8/7URuQYAlQjzTJPItZORaQBQOUYWlqmWkYXnnHOO3n///bKD1GMAIwAEO7Jwx44diomJ8a6vaARG06ZNFRkZqdzcXJ/1ubm5SkpKqvI4zz77rJ588km9//776tq1a8D9dDJyDQDKC2ZkoT+ZJpFr1YFMA4CKMbKwTLUkQ7169U4Z3gBQ51iYq8m7naSYmBifD1YViYqKUmpqqpYvX64hQ4ZIkndS98zMzEq3e/rpp/X4449r6dKl6tGjh4VOOhu5BgAVsJJrAWSaRK5VBzINACpGsbBMtdzgZNOmTUpOTlbbtm11ww03aPv27ZW2LSoqUkFBgc8CALBu3Lhxeu211/TXv/5V69ev16233qrCwkKNHDlSkjR8+HA98MAD3vZPPfWUHnnkEc2cOVOtW7dWTk6OcnJydPDgwZo6hbBDrgFAzSHXQiuQTJPINQCoi0JeLExLS9Ps2bO1ZMkSTZ8+XVu2bFGfPn104MCBCttnZWX5zFeSkpIS6i4BQHgwxvoSgKFDh+rZZ5/V+PHj1b17d61bt05LlizxTg6/fft27dq1y9t++vTpKi4u1tVXX63mzZt7l2effTakp19bkWsAUAkbMk0i10Ip0EyTyDXYy8jl9wKEGnMWlnEZYyGxA5CXl6dWrVppypQpuvnmm8s9XlRUpKKiIu/PBQUFSklJUT9doXqu+tXZNQCo0jFzVCv0jvLz8/26VKoyBQUFio2NVd/ej6hevcAnVz927IhWfjY56H4gNMg1ALVVOOQamRZeTpVpUuW5lp+Xx2sIv1RXYc9laX4fOEVBQYFi4+JCkieluXbttfmKigpsX8XFBXrrrVjH5Vq1z2YbFxens846Sz/++GOFj7vd7konNAYAR7E4osLSNqg25BoA/MpKrpFpYeVUmSaRawDqDmMCHyno1FirljkLT3Tw4EFt3rxZzZs3r+5DAUBYc3msLwgf5BoAHEem1X5kGgCU4TLkMiEvFt57771auXKltm7dqs8++0y/+93vFBkZqeuuuy7UhwKA2sWmOQsRWuQaAFSCTKt1yDQAqBzFwjIhvwz5559/1nXXXad9+/apWbNmuuCCC/T555+rWbNmoT4UAADVjlwDADgFmQYA8EfIi4VvvvlmqHcJAM5gfl2sbIcaQ64BQCWs5BqZVqPINAConJWRgowsBAAExWWMXBYuv7KyDQAA1c1KrpFpAIBwRbGwDMVCALALd0MGADgJd0MGADgIxcIyFAsBwC5GkpUw4XMVACAcWck1Mg0AEKYoFpahWAgANuEyZACAk3AZMgDASSgWlomo6Q4AAAAAAAAACA+MLAQAuxhZnLMw5D0BACB4VnKNTAOAsGbk8ruty2Fv6owsLEOxEADswg1OAABOwg1OAAAOYkzgxT+nxhrFQgCwi0cK4Is63+0AAAg3VnKNTAMAhClGFpahWAgANuEGJwAAJ+EGJwAAJ6FYWIZiIQDYhcuQAQBOwmXIAAAHoVhYhrshAwAAAAAAAJDEyEIAsA8jCwEATsLIQgCAgzCysAzFQgCwC8VCAICTUCwEADgIxcIyFAsBwC7cDRkA4CTcDRkA4CAUC8tQLAQAm3A3ZACAk3A3ZACAk1AsLMMNTgDALqWXa1lZAAAIN2QaAMBBSouFgS7VZf/+/brhhhsUExOjuLg43XzzzTp48KBf2xpjNHDgQLlcLi1atCjgY1MsBAAAAAAA1cIl4/cCoMwNN9yg7777TsuWLdO7776rjz76SKNHj/Zr26lTp8rlsjIH1nFchgwAdvEYyWXhjyAPfzgBAMKQlVwj0wAAYcqYwEcKVteA+fXr12vJkiX68ssv1aNHD0nSSy+9pMsuu0zPPvuskpOTK9123bp1eu6557R69Wo1b97c0vEZWQgAduEyZACAk5BpAAAHCeYy5IKCAp+lqKgoqL5kZ2crLi7OWyiUpPT0dEVEROiLL76odLtDhw7p+uuv17Rp05SUlGT5+BQLAcA2Vj9U8cEKABCOyDQAgHMEUyxMSUlRbGysd8nKygqqLzk5OUpISPBZV69ePcXHxysnJ6fS7e6++2717t1bV1xxRVDH5zJkALCL1REVjMIAAIQjK7lGpgEAwpTHIwU6zV9psXDHjh2KiYnxrne73RW2v//++/XUU09Vuc/169cH1olf/etf/9IHH3ygtWvXWtr+RBQLAcAuHosjKpjfCQAQjqzkGpkGAAhTwRQLY2JifIqFlbnnnnt00003Vdmmbdu2SkpK0u7du33WHzt2TPv376/08uIPPvhAmzdvVlxcnM/6q666Sn369NGKFStO2b9SFAsBAAAAAACAatasWTM1a9bslO169eqlvLw8rVmzRqmpqZKOFwM9Ho/S0tIq3Ob+++/XLbfc4rOuS5cuev755zV48OCA+kmxEADsYjzHFyvbAQAQbqzkGpkGAAhTwYwsDLWOHTtqwIABGjVqlGbMmKGjR48qMzNTw4YN894J+ZdfftEll1yiv/3tb+rZs6eSkpIqHHXYsmVLtWnTJqDjUywEALswZyEAwEmYsxAA4CDhVCyUpDfeeEOZmZm65JJLFBERoauuukovvvii9/GjR49q48aNOnToUMiPTbEQAOzCnIUAACdhzkIAgIOEW7EwPj5ec+fOrfTx1q1by5ziS7hTPV4ZioUAYBdGFgIAnISRhQAABwm3YmFNolgIAHYxslgsDHlPAAAInpVcI9MAVMHFm0SNq8uvgTGBF/+c+h1YRE13AAAAAAAAAEB4YGQhANiFy5ABAE7CZcgAAAexckkxlyEDAILj8UgigQAADmEl18g0AECYolhYhmIhANiFkYUAACdhZCEAwEEoFpahWAgAdqFYCABwEoqFAAAHoVhYhmIhANjFY2TpNpAePlgBAMKQlVwj0wAAYYpiYRnuhgwAAAAAAABAEiMLAcA2xnhkTOBfPVnZBgCA6mYl18g0AEC4YmRhGYqFAGAXY6xdfsX8TgCAcGQl18g0AECYolhYhmIhANjFWJyzkA9WAIBwZCXXyDQAQJiiWFiGYiEA2MXjkVwW0oRLtgAA4chKrpFpAIAwZUzgxT+nfgdGsRAA7MLIQgCAkzCyEADgIB6P5HIFto1TY427IQMAAAAAAACQxMhCALCN8XhkLFyGzJ0jAQDhyEqukWkAgHDFyMIyFAsBwC5chgwAcBIuQwYAOAjFwjIUCwHALh4juSgWAgAcwkqukWkAgDBFsbAMxUIAsIsxkqzcDdmhCQQAqN2s5BqZBgAIUxQLy1AsBACbGI+RsTCy0Dg1gQAAtZqVXCPTAADhimJhmWq7G/K0adPUunVrRUdHKy0tTatWraquQwEAThLoe/D8+fPVoUMHRUdHq0uXLlq8eLFNPa0dyDQAqFnkWmiRawCAqlRLsXDevHkaN26cJkyYoK+++krdunVTRkaGdu/eXR2HA4DawXisLwEI9D34s88+03XXXaebb75Za9eu1ZAhQzRkyBB9++23oTjrWo9MA4BK2JBpErkWauQaAFTM47G2OJHLVMO1AGlpaTrvvPP08ssvS5I8Ho9SUlJ0++236/77769y24KCAsXGxqqfrlA9V/1Qdw0A/HbMHNUKvaP8/HzFxMRY3o/3fc31O0vva8fMUa0wC/3uR6DvwUOHDlVhYaHeffdd77r/+Z//Uffu3TVjxoyA++s0wWSaRK4BCB/hkGuBZppEroVaqHItPy8vqN8jAAhGQUGBYuPigs40775iY+Vy5cvlCmxfxhTImNiQ9COchHzOwuLiYq1Zs0YPPPCAd11ERITS09OVnZ1drn1RUZGKioq8P+fn50uSjumo5NBrvwHUDsd0VFLo5lc6Zoosjago7UdBQYHPerfbLbfb7bMu0PdgScrOzta4ceN81mVkZGjRokUB99VprDyf5BqAcBUOuRZIpknkWqiFMtdOfg0BwE6l70GhHP92vPAXcE9CdvxwEvJi4d69e1VSUqLExESf9YmJidqwYUO59llZWZo0aVK59Z+IeUUAhIcDBw4oNjbW8vZRUVFKSkrSJznW39caN26slJQUn3UTJkzQxIkTfdYF+h4sSTk5ORW2z8nJsdxfp7DyfJJrAMJdTeeav5kmkWuhFspcS2nZslr6CACBCDbTpLJcy8lJOXXjCiQlJSkqKiqoPoSbGr8b8gMPPODzzV9eXp5atWql7du3B/2Ch5OCggKlpKRox44djhqaynnVLpxXYIwxOnDggJKTk4PaT3R0tLZs2aLi4uKg+uI66dZcFY3AQM0j12o3zqt24bwCEy65RqbVLuRa7cZ51S6cl/9ClWlS8LkWFRWl6OjooPsRTkJeLGzatKkiIyOVm5vrsz43N1dJSUnl2ld2yUFsbKyj/nGUiomJ4bxqEc6rdqmO8wrVH8HR0dG2BEig78HS8W/CAmlfl1h5Psk1Z+C8ahfOy3/kWt1Grp0a7ye1C+dVu4T6vEL5hYVduVZbhPxuyFFRUUpNTdXy5cu96zwej5YvX65evXqF+nAAgBNYeQ/u1auXT3tJWrZsGe/ZItMAoKaRa6FFrgEA/FEtlyGPGzdOI0aMUI8ePdSzZ09NnTpVhYWFGjlyZHUcDgBwglO9Bw8fPlwtWrRQVlaWJOnOO+9U37599dxzz2nQoEF68803tXr1ar366qs1eRphg0wDgJpFroUWuQYAOJVqKRYOHTpUe/bs0fjx45WTk6Pu3btryZIl5SbSrYjb7daECRMcN28J51W7cF61i1PPy6pTvQdv375dERFlA8t79+6tuXPn6uGHH9aDDz6oM888U4sWLVLnzp1r6hTCSjCZJjn395Pzql04r9rFqedlFbkWWuRaxTiv2oXzql2cel5O5jKhvM80AAAAAAAAgFor5HMWAgAAAAAAAKidKBYCAAAAAAAAkESxEAAAAAAAAMCvKBYCAAAAAAAAkBSGxcJp06apdevWio6OVlpamlatWlXTXQrKxIkT5XK5fJYOHTrUdLcC9tFHH2nw4MFKTk6Wy+XSokWLfB43xmj8+PFq3ry5GjRooPT0dG3atKlmOhuAU53XTTfdVO71GzBgQM10NgBZWVk677zz1KRJEyUkJGjIkCHauHGjT5sjR45o7NixOv3009W4cWNdddVVys3NraEe+8ef8+rXr1+512zMmDE11GPUdU7LNIlcC3dOzDUyjUxD+HBarpFp4c2JmSaRa+Ra7RBWxcJ58+Zp3LhxmjBhgr766it169ZNGRkZ2r17d013LSjnnHOOdu3a5V0++eSTmu5SwAoLC9WtWzdNmzatwseffvppvfjii5oxY4a++OILNWrUSBkZGTpy5IjNPQ3Mqc5LkgYMGODz+v3jH/+wsYfWrFy5UmPHjtXnn3+uZcuW6ejRo+rfv78KCwu9be6++279+9//1vz587Vy5Urt3LlTV155ZQ32+tT8OS9JGjVqlM9r9vTTT9dQj1GXOTXTJHItnDkx18g0Mg3hwam5RqaFLydmmkSukWu1hAkjPXv2NGPHjvX+XFJSYpKTk01WVlYN9io4EyZMMN26davpboSUJLNw4ULvzx6PxyQlJZlnnnnGuy4vL8+43W7zj3/8owZ6aM3J52WMMSNGjDBXXHFFjfQnlHbv3m0kmZUrVxpjjr8+9evXN/Pnz/e2Wb9+vZFksrOza6qbATv5vIwxpm/fvubOO++suU4Bv3JiphlDrpFrNY9MA2qGE3ONTCPTwgG5hnAUNiMLi4uLtWbNGqWnp3vXRUREKD09XdnZ2TXYs+Bt2rRJycnJatu2rW644QZt3769prsUUlu2bFFOTo7PaxcbG6u0tLRa/9pJ0ooVK5SQkKCzzz5bt956q/bt21fTXQpYfn6+JCk+Pl6StGbNGh09etTnNevQoYNatmxZq16zk8+r1BtvvKGmTZuqc+fOeuCBB3To0KGa6B7qMCdnmkSu1Xa1PdfINDIN9nNyrpFptVttzzSJXCPXwlO9mu5Aqb1796qkpESJiYk+6xMTE7Vhw4Ya6lXw0tLSNHv2bJ199tnatWuXJk2apD59+ujbb79VkyZNarp7IZGTkyNJFb52pY/VVgMGDNCVV16pNm3aaPPmzXrwwQc1cOBAZWdnKzIysqa75xePx6O77rpL559/vjp37izp+GsWFRWluLg4n7a16TWr6Lwk6frrr1erVq2UnJysr7/+Wvfdd582btyof/7znzXYW9Q1Ts00iVyrLe+RlantuUamkWmoGU7NNTKtdrxHVqa2Z5pErpFr4StsioVONXDgQO//d+3aVWlpaWrVqpXeeust3XzzzTXYM/hj2LBh3v/v0qWLunbtqnbt2mnFihW65JJLarBn/hs7dqy+/fbbWjn/SlUqO6/Ro0d7/79Lly5q3ry5LrnkEm3evFnt2rWzu5uA45BrtVttzzUyjUwDQolMq91qe6ZJ5Bq5Fr7C5jLkpk2bKjIystwdfnJzc5WUlFRDvQq9uLg4nXXWWfrxxx9ruishU/r6OP21k6S2bduqadOmteb1y8zM1LvvvqsPP/xQZ5xxhnd9UlKSiouLlZeX59O+trxmlZ1XRdLS0iSp1rxmcIa6kmkSuVbb1aZcI9PINNScupJrZFrtVpsyTSLXJHItnIVNsTAqKkqpqalavny5d53H49Hy5cvVq1evGuxZaB08eFCbN29W8+bNa7orIdOmTRslJSX5vHYFBQX64osvHPXaSdLPP/+sffv2hf3rZ4xRZmamFi5cqA8++EBt2rTxeTw1NVX169f3ec02btyo7du3h/Vrdqrzqsi6deskKexfMzhLXck0iVyr7WpDrpFpZcg01JS6kmtkWu1WGzJNItdORK6FsZq8u8rJ3nzzTeN2u83s2bPN999/b0aPHm3i4uJMTk5OTXfNsnvuucesWLHCbNmyxXz66acmPT3dNG3a1OzevbumuxaQAwcOmLVr15q1a9caSWbKlClm7dq1Ztu2bcYYY5588kkTFxdn3nnnHfP111+bK664wrRp08YcPny4hntetarO68CBA+bee+812dnZZsuWLeb999835557rjnzzDPNkSNHarrrVbr11ltNbGysWbFihdm1a5d3OXTokLfNmDFjTMuWLc0HH3xgVq9ebXr16mV69epVg70+tVOd148//mgeffRRs3r1arNlyxbzzjvvmLZt25oLL7ywhnuOusiJmWYMuUau2Y9MI9MQHpyYa2QamVYTyDVyrTYIq2KhMca89NJLpmXLliYqKsr07NnTfP755zXdpaAMHTrUNG/e3ERFRZkWLVqYoUOHmh9//LGmuxWwDz/80Egqt4wYMcIYY4zH4zGPPPKISUxMNG6321xyySVm48aNNdtpP1R1XocOHTL9+/c3zZo1M/Xr1zetWrUyo0aNqhV/EFV0TpLMrFmzvG0OHz5sbrvtNnPaaaeZhg0bmt/97ndm165dNddpP5zqvLZv324uvPBCEx8fb9xut2nfvr354x//aPLz82u246iznJZpxpBr4c6JuUamkWkIH07LNTItvDkx04wh18i12sFljDHWxyUCAAAAAAAAcIqwmbMQAAAAAAAAQM2iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAkvT/AbXFMySuXKkSAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqNUlEQVR4nO3deXxU1f3/8fckkAlbEmNIQjDsKiBbDZIvKIKaEpCi1A3UryBVqErcqK1alUXUuCJWEapVaKlURAu2yheKKLhFEYSfWgGRsikkbE0CARLInN8fmAlDFmbuzNxMbl7Px+M+NHfOvffcGTLvzGfOPddljDECAAAAAAAA0OBF1XUHAAAAAAAAAEQGioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioVAmAwcOFADBw6s624AAByiPuRKQUGBrrrqKp1++ulyuVyaPn16XXcJAGo0efJkuVwun3Xt2rXTjTfe6LNu06ZNGjRokOLj4+VyubRo0SJJ0hdffKF+/fqpWbNmcrlcWrdunT0dr+dqej4BRA6KhTX49NNPNXnyZBUWFtZ1VxCkF198UXPmzAnLvr/99ltNnjxZW7duDcv+w2nnzp2aPHmy33/UhOt34h//+IfOPfdcxcbGqk2bNpo0aZKOHTsW0mMAkYBccQ5ypWZ33323li5dqvvvv19z587V4MGDtXjxYk2ePNnWfmzcuFF33323+vXrp9jYWLlcrlqf03BmUV2cP4DQGj16tL7++ms9+uijmjt3rnr37q2jR4/q6quv1v79+/Xss89q7ty5atu2bV13tV6o7vmcN2+e7V8wrVq1SrfddpsyMjLUuHHjKoXjk73yyivq0qWLYmNjdeaZZ+r5558PWV/q4vyBWhlU66mnnjKSzJYtW+q6KwjSOeecYwYMGBCWfS9YsMBIMh988EGVx0pLS01paWlYjhsKX3zxhZFkZs+e7Vf7cPxOLF682LhcLnPRRReZl156ydx+++0mKirK3HLLLSE7BhApyBXnIFdqlpKSYq6//nqfdePHjzd2/8k5e/ZsExUVZbp162Z69epV6+9euLOoLs4fgH8mTZpU5ffzyJEjpqyszPvzoUOHjCTzwAMP+LRbv369kWRefvllW/rqFDU9n0OHDjVt27a1tS+TJk0yjRs3NhkZGeass86q9b161qxZRpK58sorzUsvvWRuuOEGI8k8/vjjIelLXZw/UJtG9pcnncfj8aisrEyxsbF13RWvkpISNWvWrK67Ue+E8nmLiYkJyX6c7J577lGPHj30r3/9S40aHX87iouL02OPPaY777xTnTt3ruMeAnWDXHGOhpYru3fvVkJCQtiPY4zRkSNH1KRJk2ofv+yyy1RYWKgWLVro6aefrnUUPVkE4ERut9vn5z179khSlfe23bt3V7s+GA0ha2t6PsPhVH9P3Xrrrbr33nvVpEkT5eTk6Lvvvqu23eHDh/XAAw9o6NChevPNNyVJY8eOlcfj0dSpUzVu3DiddtppYTsPoE7UdbUyElV8w3TyUvGNtCQzfvx489e//tV07drVNGrUyCxcuNAYc3zkSN++fU1iYqKJjY015557rlmwYEG1x5k7d64577zzTJMmTUxCQoLp37+/Wbp0qU+bxYsXmwsuuMA0bdrUNG/e3Fx66aXmm2++8WkzevRo06xZM/P999+bIUOGmObNm5vLL7+81nP84YcfzK9+9SvTqlUrExMTY9q1a2duueUWnxELmzdvNldddZU57bTTTJMmTUxmZqZ55513fPbzwQcfGElm/vz55pFHHjGtW7c2brfbXHzxxWbTpk1VjvvZZ5+ZIUOGmISEBNO0aVPTvXt3M336dJ8269evN1deeaU57bTTjNvtNhkZGebtt9/2aTN79mwjyXz88cfm7rvvNklJSaZp06Zm+PDhZvfu3d52bdu2rfI6VowGqdjHihUrzK233mpatmxpEhISjDHGbN261dx6663mrLPOMrGxsSYxMdFcddVVPqMSKrY/eakYDTJgwIAqI08KCgrMr371K5OcnGzcbrfp0aOHmTNnjk+bLVu2GEnmqaeeMn/84x9Nhw4dTExMjOndu7dZtWpVzS/qT/bt22d+85vfmG7duplmzZqZFi1amMGDB5t169ZVed1OXmoaZXiq3wkr/v3vfxtJZsaMGT7rf/zxRyPJTJ061fK+gUhDrhxHrjg3V2rq++jRo6tdX6G8vNw8++yzpmvXrsbtdpvk5GQzbtw4s3//fp8+tG3b1gwdOtQsWbLEZGRkGLfbbZ599tlT9t2Y2kf1BptFZWVlZvLkyaZTp07G7XabxMREc/7555t//etfxhgT8vNfunSp6dmzp3G73aZLly7mrbfeCqg/QEP20Ucfmd69exu32206dOhgZs2aVe3IwrZt25rRo0cbY6rP74rHa8oCYwLLneoyw5jA8vqHH34wl19+uWnWrJlJSkoyv/nNb8yxY8d82paXl5vp06ebbt26GbfbbZKSkkx2drb54osvfNrNnTvXnHvuuSY2NtacdtppZsSIEWb79u2nfH79ybmans8BAwZUu77CkSNHzMSJE03Hjh1NTEyMOeOMM8xvf/tbc+TIEZ8+1Pb31KnUNgr83XffNZLMu+++67P+008/NZLM3Llza913cXGxufPOO03btm1NTEyMadmypcnKyjJr1qwxxpiwnP9ZZ51l3G63Offcc83KlSsD6g9gDCMLq3XFFVfou+++09/+9jc9++yzSkpKkiS1bNnS2+b999/XG2+8oZycHCUlJaldu3aSpOeee06XXXaZrr/+epWVlen111/X1VdfrXfeeUdDhw71bj9lyhRNnjxZ/fr108MPP6yYmBh9/vnnev/99zVo0CBJ0ty5czV69GhlZ2friSee0KFDhzRz5kxdcMEFWrt2rfeYknTs2DFlZ2frggsu0NNPP62mTZvWeH47d+5Unz59VFhYqHHjxqlz58768ccf9eabb+rQoUOKiYlRQUGB+vXrp0OHDumOO+7Q6aefrj//+c+67LLL9Oabb+qXv/ylzz4ff/xxRUVF6Z577lFRUZGefPJJXX/99fr888+9bZYtW6Zf/OIXatWqle68806lpqZq/fr1euedd3TnnXdKkv7973/r/PPPV+vWrXXfffepWbNmeuONNzR8+HC99dZbVY57++2367TTTtOkSZO0detWTZ8+XTk5OZo/f74kafr06br99tvVvHlzPfDAA5KklJQUn33cdtttatmypSZOnKiSkhJJxycr/vTTTzVy5EidccYZ2rp1q2bOnKmBAwfq22+/VdOmTXXhhRfqjjvu0B/+8Af9/ve/V5cuXSTJ+9+THT58WAMHDtT333+vnJwctW/fXgsWLNCNN96owsJC73NQYd68eTpw4IB+/etfy+Vy6cknn9QVV1yh//znP2rcuHGNr+9//vMfLVq0SFdffbXat2+vgoIC/fGPf9SAAQP07bffKi0tTV26dNHDDz+siRMnaty4cerfv78kqV+/ftXu81S/E0VFRTp69GiNfaoQGxur5s2bS5LWrl0rSerdu7dPm7S0NJ1xxhnexwEnIFfIFafnyoUXXqi5c+fqhhtu0M9//nONGjVKktSxY0ft3LlTy5Yt09y5c6vs+9e//rXmzJmjMWPG6I477tCWLVv0wgsvaO3atfrkk098+rVx40Zde+21+vWvf62xY8fq7LPPrrHP/go2iyZPnqzc3FzdfPPN6tOnj4qLi7V69Wp9+eWX+vnPf65f//rXITv/TZs2acSIEbrllls0evRozZ49W1dffbWWLFmin//85371B2iovv76aw0aNEgtW7bU5MmTdezYMU2aNKnK+/fJrrjiCiUkJOjuu+/Wtddeq0svvVTNmzdXSkqKWrdurccee0x33HGHzjvvPO++As2d6jIjkLwuLy9Xdna2MjMz9fTTT+u9997TM888o44dO+rWW2/1trvppps0Z84cDRkyRDfffLOOHTumjz76SJ999pn3PfDRRx/VQw89pGuuuUY333yz9uzZo+eff14XXnih1q5dW+toQH9yrqbns1mzZioqKtIPP/ygZ599VpK8nxk8Ho8uu+wyffzxxxo3bpy6dOmir7/+Ws8++6y+++67KjdHqenvqWDUlBUZGRmKiorS2rVr9b//+781bn/LLbfozTffVE5Ojrp27ap9+/bp448/1vr163XuuefqgQceCNn5r1y5UvPnz9cdd9wht9utF198UYMHD9aqVavUrVs3v/oDSGJkYU1q+xZakomKijL//ve/qzx26NAhn5/LyspMt27dzMUXX+xdt2nTJhMVFWV++ctfmvLycp/2Ho/HGGPMgQMHTEJCghk7dqzP4/n5+SY+Pt5nfcU3W/fdd59f5zZq1CgTFRVV5VukE49/1113GUnmo48+8j524MAB0759e9OuXTtvvytGgHTp0sVn9Mhzzz1nJJmvv/7aGGPMsWPHTPv27U3btm3Nf//732qPaYwxl1xyienevbvPtyQej8f069fPnHnmmd51Fd/EZWVl+Wx/9913m+joaFNYWOhdV9PcUhX7uOCCC6p883by62iMMXl5eUaS+ctf/uJdV9vcUiePAJk+fbqRZP76179615WVlZm+ffua5s2bm+LiYmNM5QiQ008/3Wdkwdtvv20kmX/+859VjnWiI0eOVPl3tWXLFuN2u83DDz/sXRfKOQur+zasuqXiW9oT91fdN5XnnXee+Z//+R+/+gXUF+QKuXIyp+WKMZWjGk5U02iNjz76yEgyr732ms/6JUuWVFlfMaJzyZIltfa1OrX97gWbRT179jRDhw6ttU0oz//EkYRFRUWmVatW5mc/+1lA/QEaouHDh5vY2Fizbds277pvv/3WREdH1zqy0Bjf0dknqsirk0f7B5o7J2eGlbw++b34Zz/7mcnIyPD+/P777xtJ5o477qjy3FRk3tatW010dLR59NFHfR7/+uuvTaNGjaqsP5m/OVfT81nTnH1z5841UVFRPn8/GFM5h+Ann3ziXVfb31OnUtvIwvHjx5vo6OhqH2vZsqUZOXJkrfuOj4+vko0nC9X5SzKrV6/2rtu2bZuJjY01v/zlLwPqD8DdkC0aMGCAunbtWmX9iXPn/Pe//1VRUZH69++vL7/80rt+0aJF8ng8mjhxoqKifF+CijswLVu2TIWFhbr22mu1d+9e7xIdHa3MzEx98MEHVY594jdHNfF4PFq0aJGGDRtW5ZuRE4+/ePFi9enTRxdccIH3sebNm2vcuHHaunWrvv32W5/txowZ4zOXUsVItf/85z+Sjn8bs2XLFt11111VvpGqOOb+/fv1/vvv65prrtGBAwe857xv3z5lZ2dr06ZN+vHHH322HTdunM9dq/r376/y8nJt27btlM9FhbFjxyo6Otpn3Ymv49GjR7Vv3z516tRJCQkJPq9lIBYvXqzU1FRde+213nWNGzfWHXfcoYMHD2rlypU+7UeMGOEz98XJz2lN3G63999VeXm59u3bp+bNm+vss8+23PdTeeaZZ7Rs2bJTLr/73e+82xw+fNjb35PFxsZ6HwcaCnKFXAlUfc+VBQsWKD4+Xj//+c99/k1mZGSoefPmVf5Ntm/fXtnZ2ZaPV51gsyghIUH//ve/tWnTpoCPHej5p6Wl+YxIiouL06hRo7R27Vrl5+cH3R/AqcrLy7V06VINHz5cbdq08a7v0qVLyN9TrOTOyZlhJa9vueUWn5/79+/v897+1ltvyeVyadKkSVW2rci8v//97/J4PLrmmmt8jpuamqozzzyz2uOeKBw5Jx1/r+zSpYs6d+7s06+LL75Ykqr0q6a/p4Jx+PDhGucN9jcrPv/8c+3cuTPgYwd6/n379lVGRob35zZt2ujyyy/X0qVLVV5eHnR/0HBwGbJF7du3r3b9O++8o0ceeUTr1q1TaWmpd/2JHzw2b96sqKioWt/EKv7Iq3gTOFlcXJzPz40aNdIZZ5xxyn7v2bNHxcXF3iHINdm2bZsyMzOrrK+4FGrbtm0++zgxeCV5P4z897//lXT8nCXVetzvv/9exhg99NBDeuihh6pts3v3brVu3drv4/qjutfy8OHDys3N1ezZs/Xjjz/KGON9rKioyO99n2jbtm0688wzq3yQP/E5PZHVc/N4PHruuef04osvasuWLd5QkKTTTz/dUt9P5cRA8lfFHxQn/p5UqG3SesCpyBVyJVD1PVc2bdqkoqIiJScnV/t4xc0DKtT0OxKMYLPo4Ycf1uWXX66zzjpL3bp10+DBg3XDDTeoR48epzx2oOffqVMnn997STrrrLMkSVu3blVqampQ/QGcas+ePTp8+LDOPPPMKo+dffbZWrx4cciOZSV3Tn5vCzSvY2NjfaY1kY6/v5/43r5582alpaUpMTGxxr5v2rRJxphqnydJtU5XIYUn5yr6tX79+irnWMGurCgrK6v2MX+y4sknn9To0aOVnp6ujIwMXXrppRo1apQ6dOhwymMHev7VvX5nnXWWDh06pD179ig1NTWo/qDhoFhoUXVvCB999JEuu+wyXXjhhXrxxRfVqlUrNW7cWLNnz9a8efMC2r/H45F0fL6K1NTUKo9X3K2vwonf+teFk0dQVDgxJE6l4pzvueeeGr/l69SpU8iPW91refvtt2v27Nm666671LdvX8XHx8vlcmnkyJHefoab1XN77LHH9NBDD+lXv/qVpk6dqsTEREVFRemuu+4KW9/3799fY4CeqEmTJoqPj5cktWrVSpK0a9cupaen+7TbtWuX+vTpE/qOAhGMXPFFroRepOWKx+NRcnKyXnvttWofP/mDUTi+RAo2iy688EJt3rxZb7/9tv71r3/pT3/6k5599lnNmjVLN998c63bBnr+/gimPwCCZyV3Tn5vCzSva3pvD5TH45HL5dL//d//VbvPijn0ahKunPN4POrevbumTZtW7eMnv3eHKyvKy8u1e/duny94ysrKtG/fPqWlpdW6/TXXXKP+/ftr4cKF+te//qWnnnpKTzzxhP7+979ryJAhtW4b6Pn7I5j+oOGgWFiDk7+59cdbb72l2NhYLV261OdyltmzZ/u069ixozwej7799lv16tWr2n117NhRkpScnKysrKyA+1KTli1bKi4uTt98802t7dq2bauNGzdWWb9hwwbv44GoOJ9vvvmmxvOp+CajcePGIT1nK6/lm2++qdGjR+uZZ57xrjty5IgKCwst77tt27b66quv5PF4fD6AW31Oa/Lmm2/qoosu0iuvvOKzvrCw0HtTBSnw56W29ldccUWVy92qM3r0aM2ZM0eSvP/2V69e7fNhbOfOnfrhhx80bty4gPoHRDpyhVxxeq7UpKZz6tixo9577z2df/75dTaaPBRZlJiYqDFjxmjMmDE6ePCgLrzwQk2ePNlbnAvV+VeMWDpxf999950k+Uzgf6r+AA1Ny5Yt1aRJk2ovz68ul4IRitwJR1537NhRS5cu1f79+2scXdixY0cZY9S+fXvvqOVA+JtzNantvfL//b//p0suucRS/obCiVlx6aWXetevXr1aHo+nxr+9TtSqVSvddtttuu2227R7926de+65evTRR73FuVCdf3X/zr/77js1bdrU50uoU/UHYM7CGjRr1kyS/H5zk45/q+NyuXwuz9m6dWuVOxQNHz5cUVFRevjhh6t8y1Lx7X52drbi4uL02GOPVXuX2T179vjdrxNFRUVp+PDh+uc//6nVq1dXebzi+JdeeqlWrVqlvLw872MlJSV66aWX1K5du4DngTj33HPVvn17TZ8+vcpzWnHM5ORkDRw4UH/84x+1a9euKvuwes7NmjUL6HWUjr+WJ4+0eP75531e24p9S/79O7n00kuVn5/vvaOmdPxuo88//7yaN2+uAQMGBNTHmlTX9wULFlSZHyXQf+O1tbcyZ+E555yjzp0766WXXvJ5XmfOnCmXy6WrrrrKr34B9QW5Qq44PVdqUtM5XXPNNSovL9fUqVOrbHPs2LGAn2Mrgs2iffv2+fzcvHlzderUyeey5lCd/86dO7Vw4ULvz8XFxfrLX/6iXr16eUcf+dMfoKGJjo5Wdna2Fi1apO3bt3vXr1+/XkuXLg3psUKRO+HI6yuvvFLGGE2ZMqXKYxXv71dccYWio6M1ZcqUKu/5xpgq7y8n8zfnalJxR+STXXPNNfrxxx/18ssvV3ns8OHD3jtIh9PFF1+sxMREzZw502f9zJkz1bRpUw0dOrTGbcvLy6ucV3JystLS0qpkRSjOPy8vz2eOyB07dujtt9/WoEGDFB0d7Xd/AEYW1qBiDrYHHnhAI0eOVOPGjTVs2DDvH3zVGTp0qKZNm6bBgwfruuuu0+7duzVjxgx16tRJX331lbddp06d9MADD2jq1Knq37+/rrjiCrndbn3xxRdKS0tTbm6u4uLiNHPmTN1www0699xzNXLkSLVs2VLbt2/Xu+++q/PPP18vvPCCpXN77LHH9K9//UsDBgzw3n59165dWrBggT7++GMlJCTovvvu09/+9jcNGTJEd9xxhxITE/XnP/9ZW7Zs0VtvvRXwpWlRUVGaOXOmhg0bpl69emnMmDFq1aqVNmzYoH//+9/eoJ4xY4YuuOACde/eXWPHjlWHDh1UUFCgvLw8/fDDD/p//+//BXy+GRkZmjlzph555BF16tRJycnJNc4BUuEXv/iF5s6dq/j4eHXt2lV5eXl67733qszN1KtXL0VHR+uJJ55QUVGR3G63Lr744mrnHxo3bpz++Mc/6sYbb9SaNWvUrl07vfnmm/rkk080ffp0tWjRIuBzq6nvDz/8sMaMGaN+/frp66+/1muvvVZlDoqOHTsqISFBs2bNUosWLdSsWTNlZmbWOM9Hbb8TVuYslKSnnnpKl112mQYNGqSRI0fqm2++0QsvvKCbb77ZO+cW4BTkCrni9FypScW//TvuuEPZ2dmKjo7WyJEjNWDAAP36179Wbm6u1q1bp0GDBqlx48batGmTFixYoOeee87yF0dFRUV6/vnnJUmffPKJJOmFF15QQkKCEhISlJOT420bTBZ17dpVAwcOVEZGhhITE7V69Wq9+eabPvsP1fmfddZZuummm/TFF18oJSVFr776qgoKCnxGGvvTH6AhmjJlipYsWaL+/fvrtttu836xcs455/jkaSgEmzvhyOuLLrpIN9xwg/7whz9o06ZNGjx4sDwejz766CNddNFFysnJUceOHfXII4/o/vvv19atWzV8+HC1aNFCW7Zs0cKFCzVu3Djdc889NR7D35yrSUZGhubPn68JEybovPPOU/PmzTVs2DDdcMMNeuONN3TLLbfogw8+0Pnnn6/y8nJt2LBBb7zxhpYuXVrtDdb8sW3bNs2dO1eSvF94PvLII5KOj86/4YYbJB2/tHnq1KkaP368rr76amVnZ+ujjz7SX//6Vz366KO1zgV54MABnXHGGbrqqqvUs2dPNW/eXO+9956++OILn1GYoTr/bt26KTs7W3fccYfcbrdefPFFSfIWiv3tD1D9vcFhjDFm6tSppnXr1iYqKspIMlu2bDHGHL8leU23Gn/llVfMmWeeadxut+ncubOZPXu2mTRpUrW3YX/11VfNz372M+N2u81pp51mBgwYYJYtW+bT5oMPPjDZ2dkmPj7exMbGmo4dO5obb7zR53boo0ePNs2aNQvo3LZt22ZGjRplWrZsadxut+nQoYMZP368KS0t9bbZvHmzueqqq0xCQoKJjY01ffr0Me+8806V/kkyCxYs8Fm/ZcsWI8nMnj3bZ/3HH39sfv7zn5sWLVqYZs2amR49epjnn3/ep83mzZvNqFGjTGpqqmncuLFp3bq1+cUvfmHefPNNb5vZs2cbSeaLL76otj8ffPCBd11+fr4ZOnSoadGihZFkBgwYUOs+jDHmv//9rxkzZoxJSkoyzZs3N9nZ2WbDhg2mbdu2ZvTo0T5tX375ZdOhQwcTHR3tc+wBAwZ4j1WhoKDAu9+YmBjTvXv3Ks9RxXP31FNPVemXJDNp0qQq60905MgR85vf/Ma0atXKNGnSxJx//vkmLy+v2v68/fbbpmvXrqZRo0bVvl4nq+l3IhgLFy40vXr1Mm6325xxxhnmwQcfNGVlZUHvF4hE5Aq54vRcqe7f8rFjx8ztt99uWrZsaVwuV5V/uy+99JLJyMgwTZo0MS1atDDdu3c3v/vd78zOnTu9bdq2bWuGDh1aaz+rO+fqlrZt21ZpbzWLHnnkEdOnTx+TkJBgmjRpYjp37mweffRRn21Def5Lly41PXr08L4fnPx74k9/gIZq5cqVJiMjw8TExJgOHTqYWbNmVZunJ78v1/QeWlNeGRNc7py4f6t5Xd15HTt2zDz11FOmc+fOJiYmxrRs2dIMGTLErFmzxqfdW2+9ZS644ALTrFkz06xZM9O5c2czfvx4s3Hjxmr7WcHfnKvp+Tx48KC57rrrTEJCQpX36rKyMvPEE0+Yc845x/s3TkZGhpkyZYopKirytqvt76nqVLyG1S0n55sxx9+vzz77bBMTE2M6duxonn32WePxeGo9Rmlpqfntb39revbs6f1bpWfPnubFF18M2/n/9a9/9f7t+LOf/cznbxh/+wO4jAlgxm4AAAAAtmrXrp26deumd955p667AgCIUC6XS+PHj7d8pQhwIuYsBAAAAAAAACCJYiEAAAAAAACAn1AsBAAAAAAAACCJYiEAOM6HH36oYcOGKS0tTS6XS4sWLTrlNitWrNC5554rt9utTp06ac6cOWHvJwDAP1u3bm3Q8xWSawBwasYY5itEyFAsBACHKSkpUc+ePTVjxgy/2m/ZskVDhw7VRRddpHXr1umuu+7SzTffrKVLl4a5pwAAnBq5BgCAvbgbMgA4mMvl0sKFCzV8+PAa29x7771699139c0333jXjRw5UoWFhVqyZIkNvQQAwD/kGgAA4deorjtwMo/Ho507d6pFixZyuVx13R0ADZgxRgcOHFBaWpqiooIbiH3kyBGVlZUF1ZeT3xPdbrfcbndQ/ZKkvLw8ZWVl+azLzs7WXXfdFfS+Qa4BiByRkmvhzDSJXAs3cg1AJAhlpknB5VpMTIxiY2OD7kMkibhi4c6dO5Wenl7X3QAArx07duiMM86wvP2RI0fUvm1z5e8ut7yP5s2b6+DBgz7rJk2apMmTJ1veZ4X8/HylpKT4rEtJSVFxcbEOHz6sJk2aBH2MhoxcAxBp6jrXwplpErkWbuQagEgSbKZJP+VakybKt7h9amqqtmzZ4qiCYcQVC1u0aCFJukCXqpEa13FvADRkx3RUH2ux933JqrKyMuXvLteWNW0V1yLwb72KD3jUPmObduzYobi4OO/6UI3AQHiRawAiRSTkGplW/1X8+9mxfbvPawgAdiouLlZ6mzZBZ5r0U65J2uFyKdB3tWJJ6fn5Kisro1gYThVD2RupsRq5+FAFoA79NKNrqC6xiWsRZalY6N0+Li4sf5SnpqaqoKDAZ11BQYHi4uIYfREC5BqAiBFBuRauTJPItXCr+PcTztcQAPwVyukQ4iTFBbo/h94GJOKKhQDgVOXGo3ILWVJuPKHvzAn69u2rxYsX+6xbtmyZ+vbtG9bjAgDqNyu5Fu5Mk8g1AIBFUVGSlWJhufXppiJV8LNAAgD84pGxvATi4MGDWrdundatWydJ2rJli9atW6ft27dLku6//36NGjXK2/6WW27Rf/7zH/3ud7/Thg0b9OKLL+qNN97Q3XffHbJzBwA4jx2ZJpFrAACbREVZWxyIkYUAYBOPPLIyniLQrVavXq2LLrrI+/OECRMkSaNHj9acOXO0a9cu7wcsSWrfvr3effdd3X333Xruued0xhln6E9/+pOys7Mt9BYA0FBYyTUrSUiuAQBsYXVkoQNRLAQAm5Qbo3ILYRLoNgMHDpSpZZs5c+ZUu83atWsD7RoAoAGzkmtWcpBcAwDYgmKhF8VCALCJ1cuvrGwDAEC4Wck1Mg0AELEoFno58+JqAAAAAAAAAAFjZCEA2MQjo3JGFgIAHMJKrpFpAICIxchCL4qFAGATLkMGADgJlyEDAByFYqEXxUIAsIldNzgBAMAOdt3gBAAAW1As9KJYCAA28fy0WNkOAIBIYyXXyDQAQMRyuY4XDAPhcWaycYMTAAAAAAAAAJIYWQgAtim3eIMTK9sAABBuVnKNTAMARKyoqMBHFjoUxUIAsEm5Ob5Y2Q4AgEhjJdfINABAxKJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKVyBXh3rZ+2AwAg0ljJNTINABCxKBZ6USwEAJt4zPHFynYAAEQaK7lGpgEAIhbFQq+AnoXc3Fydd955atGihZKTkzV8+HBt3LjRp83AgQPlcrl8lltuuSWknQYAIBTINQCAU5BpAIBQCahYuHLlSo0fP16fffaZli1bpqNHj2rQoEEqKSnxaTd27Fjt2rXLuzz55JMh7TQA1EflP12uZWVBeJBrAGAdmRZZyDQACFLFyMJAFwcK6DLkJUuW+Pw8Z84cJScna82aNbrwwgu965s2barU1NTQ9BAAHMLqhyQ+WIUPuQYA1lnJNTItfMg0AAiSg4t/gQrqWSgqKpIkJSYm+qx/7bXXlJSUpG7duun+++/XoUOHatxHaWmpiouLfRYAcCKPcVleYA9yDQD8R6ZFtlBkmkSuAWhAGFnoZfkGJx6PR3fddZfOP/98devWzbv+uuuuU9u2bZWWlqavvvpK9957rzZu3Ki///3v1e4nNzdXU6ZMsdoNAKg3GFkY2cg1AAgMIwsjV6gyTSLXADQgLlfgxT/jzDt3uYyxdma33nqr/u///k8ff/yxzjjjjBrbvf/++7rkkkv0/fffq2PHjlUeLy0tVWlpqffn4uJipaena6AuVyNXYytdA4CQOGaOaoXeVlFRkeLi4izvp7i4WPHx8Xr/m3Q1bxH4N08HD3h0cbcdQfcDtSPXADhdJOQamWaPUGWaVHOuFRUW8hoCqDPFxcWKT0gISZ5U5FrRmWcqLjo6sG3LyxW/aZPjcs3SyMKcnBy98847+vDDD2sNH0nKzMyUpBoDyO12y+12W+kGAAAhQa4BAJwilJkmkWsA0BAFVCw0xuj222/XwoULtWLFCrVv3/6U26xbt06S1KpVK0sdBACnMBbnajLM7xQ25BoAWGcl18i08CHTACBIVuYgdOhlyAE9C+PHj9df//pXzZs3Ty1atFB+fr7y8/N1+PBhSdLmzZs1depUrVmzRlu3btU//vEPjRo1ShdeeKF69OgRlhMAgPqiYm4nKwvCg1wDAOvItMhCpgFAkGy8wcmMGTPUrl07xcbGKjMzU6tWrfJru9dff10ul0vDhw+3dFx/BTSycObMmZKkgQMH+qyfPXu2brzxRsXExOi9997T9OnTVVJSovT0dF155ZV68MEHQ9ZhAKivyk2Uyk3gYVLuzC+rIgK5BgDWWck1Mi18yDQACJJNIwvnz5+vCRMmaNasWcrMzNT06dOVnZ2tjRs3Kjk5ucbttm7dqnvuuUf9+/cP+JiBCvgy5Nqkp6dr5cqVQXUIAJzKI5c8gQ3o/mk7PlmFC7kGANZZyTUyLXzINAAIkk3FwmnTpmns2LEaM2aMJGnWrFl699139eqrr+q+++6rdpvy8nJdf/31mjJlij766CMVFhYGfNxAWBsvCQAIGJchAwCchEwDADhKEJchFxcX+ywn3kX+RGVlZVqzZo2ysrJOOGyUsrKylJeXV2PXHn74YSUnJ+umm24K7TnXgGIhAAAAAAAAYFF6erri4+O9S25ubrXt9u7dq/LycqWkpPisT0lJUX5+frXbfPzxx3rllVf08ssvh7zfNQnoMmQAgHXW5yzkki0AQOSxNmchmQYAiFBBXIa8Y8cOxcXFeVe73e6QdOnAgQO64YYb9PLLLyspKSkk+/QHxUIAsMnxuZ0Cv/zKyjYAAISblVwj0wAAESuIYmFcXJxPsbAmSUlJio6OVkFBgc/6goICpaamVmm/efNmbd26VcOGDfOu83g8kqRGjRpp48aN6tixY2B99gPFQgCwiUdRKucGJwAAh7CSa2QaACBiuVyBFwt/Ktz5KyYmRhkZGVq+fLmGDx/+0y48Wr58uXJycqq079y5s77++mufdQ8++KAOHDig5557Tunp6YH1108UCwHAJlyGDABwEi5DBhBqJoDRxy6+fAiLBv0aWBlZGGh7SRMmTNDo0aPVu3dv9enTR9OnT1dJSYn37sijRo1S69atlZubq9jYWHXr1s1n+4SEBEmqsj6UKBYCgE08ipKHkYUAAIewkmtkGgAgYtlULBwxYoT27NmjiRMnKj8/X7169dKSJUu8Nz3Zvn27oizsN5QoFgIAAAAAAAA2ycnJqfayY0lasWJFrdvOmTMn9B06CcVCALBJuXGp3AQ+sbuVbQAACDcruUamAQAilk0jC+sDioUAYJNyizc4KeeSLQBABLKSa2QaACBiUSz0olgIADbxmCh5LNzgxMNk8ACACGQl18g0AEDEoljoRbEQAGzCyEIAgJMwshAA4CgUC70oFgKATTyyNleTJ/RdAQAgaFZyjUwDAEQsioVezjwrAAAAAAAAAAFjZCEA2MSjKHksfEdjZRsAAMLNSq6RaQCAiMXIQi+KhQBgk3ITpXILNzixsg0AAOFmJdfINABAxHK5Ai/+uQKfZqo+oFgIADbxyCWPrMxZ6MwAAgDUb1ZyjUwDGh7D7z3qC0YWelEsBACbMLIQAOAkjCwEADgKxUIvioUAYJNyRancwlxNVrYBACDcrOQamQYAiFgUC72ceVYAAAAAAAAAAsbIQgCwice45DEW5iy0sA0AAOFmJdfINABAxGJkoRfFQgCwicfiZcgeBoEDACKQlVwj0wAAEYtioRfFQgCwicdEyWNhYncr2wAAEG5Wco1MAwBELIqFXhQLAcAm5XKpXIFffmVlGwAAws1KrpFpAICIRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAAAAAAAAABIyRhQBgk3JZu/yqPPRdAQAgaFZyjUwDAEQslyvwkYIuZ06vwchCALBJxeVaVpZAzZgxQ+3atVNsbKwyMzO1atWqWttPnz5dZ599tpo0aaL09HTdfffdOnLkiNVTBQA0AHZlmkSuAQ2FS8bvBeHRoF+DisuQA10ciJGFAGCTchOlcgsfkgLdZv78+ZowYYJmzZqlzMxMTZ8+XdnZ2dq4caOSk5OrtJ83b57uu+8+vfrqq+rXr5++++473XjjjXK5XJo2bVrA/QUANAxWcs1KDpJrAABbMGehlzPPCgAikJFLHguLCfASr2nTpmns2LEaM2aMunbtqlmzZqlp06Z69dVXq23/6aef6vzzz9d1112ndu3aadCgQbr22mtPOWoDANCwWcm1QDNNItcAADZhZKGXM88KACJQxQgMK4u/ysrKtGbNGmVlZXnXRUVFKSsrS3l5edVu069fP61Zs8b7Ieo///mPFi9erEsvvTS4EwYAOFq4M00i1wAANqJY6MVlyABQTxQXF/v87Ha75Xa7fdbt3btX5eXlSklJ8VmfkpKiDRs2VLvf6667Tnv37tUFF1wgY4yOHTumW265Rb///e9DewIAAPzEn0yTyDUAAOqCM0ugABCBPMZleZGk9PR0xcfHe5fc3NyQ9GvFihV67LHH9OKLL+rLL7/U3//+d7377ruaOnVqSPYPAHCmSMw0iVwDAFjEyEIvRhYCgE3KFaVyC9/RVGyzY8cOxcXFeddXNwIjKSlJ0dHRKigo8FlfUFCg1NTUavf/0EMP6YYbbtDNN98sSerevbtKSko0btw4PfDAA4pyaAACAIJjJdcCyTSJXAMA2IgbnHg586wAIAIFO7IwLi7OZ6nug1VMTIwyMjK0fPnyyuN6PFq+fLn69u1bbb8OHTpU5YNTdHS0JMkYE6rTBwA4TLgzTSLXAAA2YmShFyMLAcAmHkXJY+E7mkC3mTBhgkaPHq3evXurT58+mj59ukpKSjRmzBhJ0qhRo9S6dWvvJV/Dhg3TtGnT9LOf/UyZmZn6/vvv9dBDD2nYsGHeD1cAAJzMSq5ZyUFyDQBgC0YWelEsBACblBuXyn8aURHodoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3WfExYMPPiiXy6UHH3xQP/74o1q2bKlhw4bp0UcfDbivAICGw0quWclBcg0AYAuXK/DinyvwXKsPKBYCgAPl5OQoJyen2sdWrFjh83OjRo00adIkTZo0yYaeAQAQOHINAAD7UCwEAJucOFdToNsBABBprOQamQYAiFhchuxFsRAAbGJMlDwm8DAxFrYBACDcrOQamQYAiFgUC70oFgKATcrlUrkszFloYRsAAMLNSq6RaQCAiEWx0ItiIQDYxGOsXX7lMWHoDAAAQbKSa2QaACBiUSz0olgIADbxWLwM2co2AACEm5VcI9MAABGLYqGXM88KAAAAAAAAQMAYWQgANvHIJY+FuZqsbAMAQLhZyTUyDQAQsRhZ6EWxEABsUm5cKrcwZ6GVbQAACDcruUamAQAiFsVCr4DOKjc3V+edd55atGih5ORkDR8+XBs3bvRpc+TIEY0fP16nn366mjdvriuvvFIFBQUh7TQA1EcVcztZWRAe5BoAWEemRRYyDQCCVFEsDHRxoIDOauXKlRo/frw+++wzLVu2TEePHtWgQYNUUlLibXP33Xfrn//8pxYsWKCVK1dq586duuKKK0LecQCobzxyyWMsLFyyFTbkGgBYZynXyLSwIdMAIEguV+CFQpczcy2gy5CXLFni8/OcOXOUnJysNWvW6MILL1RRUZFeeeUVzZs3TxdffLEkafbs2erSpYs+++wz/c///E/oeg4A9YyxOGeh4YNV2JBrAGCdlVwj08KHTAOAIHEZsldQZ1VUVCRJSkxMlCStWbNGR48eVVZWlrdN586d1aZNG+Xl5VW7j9LSUhUXF/ssAADUBXINAOAUocg0iVwDgIbIcrHQ4/Horrvu0vnnn69u3bpJkvLz8xUTE6OEhASftikpKcrPz692P7m5uYqPj/cu6enpVrsEABHN0iXIPy0IP3INAAJDpkWuUGWaRK4BaECYs9DL8lmNHz9e33zzjV5//fWgOnD//ferqKjIu+zYsSOo/QFApOIGJ5GNXAOAwJBpkStUmSaRawAaEIqFXgHNWVghJydH77zzjj788EOdccYZ3vWpqakqKytTYWGhzzdWBQUFSk1NrXZfbrdbbrfbSjcAoF6xOqKCURjhR64BQOCs5BqZFn6hzDSJXAPQgDBnoVdAZ2WMUU5OjhYuXKj3339f7du393k8IyNDjRs31vLly73rNm7cqO3bt6tv376h6TEA1FOenyaCt7IgPMg1ALCOTIssZBoABImRhV4BjSwcP3685s2bp7ffflstWrTwzm0RHx+vJk2aKD4+XjfddJMmTJigxMRExcXF6fbbb1ffvn25uxaABo+RhZGHXAMA6xhZGFnINAAIEiMLvQIqFs6cOVOSNHDgQJ/1s2fP1o033ihJevbZZxUVFaUrr7xSpaWlys7O1osvvhiSzgIAEErkGgDAKcg0AECoBFQsNMacsk1sbKxmzJihGTNmWO4UADgRIwsjD7kGANYxsjCykGkAECRGFnpZusEJACBwFAsBAE5CsRAA4CgUC72ceVYAEIEqPlRZWQAAiDRkGgDAUVyuwG9u4rKWazNmzFC7du0UGxurzMxMrVq1qsa2L7/8svr376/TTjtNp512mrKysmptHwoUCwHAJkbW7hx56ouKAACwn5VcI9MAABHLprshz58/XxMmTNCkSZP05ZdfqmfPnsrOztbu3burbb9ixQpde+21+uCDD5SXl6f09HQNGjRIP/74Y7BnXCOKhQAAAAAAAIANpk2bprFjx2rMmDHq2rWrZs2apaZNm+rVV1+ttv1rr72m2267Tb169VLnzp31pz/9SR6PR8uXLw9bHykWAoBNuAwZAOAkZBoAwFFsGFlYVlamNWvWKCsr64TDRikrK0t5eXl+7ePQoUM6evSoEhMTAzp2ILjBCQDYhBucAACchBucAAAcJYgbnBQXF/usdrvdcrvdVZrv3btX5eXlSklJ8VmfkpKiDRs2+HXIe++9V2lpaT4Fx1BjZCEA2ISRhQAAJyHTAACOEsTIwvT0dMXHx3uX3NzcsHTx8ccf1+uvv66FCxcqNjY2LMeQGFkIALZhZCEAwEkYWQgAcJQgRhbu2LFDcXFx3tXVjSqUpKSkJEVHR6ugoMBnfUFBgVJTU2s91NNPP63HH39c7733nnr06BFYPwPEyEIAsIkxLssLAACRhkwDADhKECML4+LifJaaioUxMTHKyMjwuTlJxc1K+vbtW2PXnnzySU2dOlVLlixR7969Q3ve1WBkIQAAAAAAAGCDCRMmaPTo0erdu7f69Omj6dOnq6SkRGPGjJEkjRo1Sq1bt/ZeyvzEE09o4sSJmjdvntq1a6f8/HxJUvPmzdW8efOw9JFiIQDYxCOXPLJwGbKFbQAACDcruUamAQAiVhCXIQdixIgR2rNnjyZOnKj8/Hz16tVLS5Ys8d70ZPv27Yo6Yb8zZ85UWVmZrrrqKp/9TJo0SZMnTw74+P6gWAgANmHOQgCAkzBnIQDAUWwqFkpSTk6OcnJyqn1sxYoVPj9v3brV0jGCQbEQAGxida4m5ncCAEQiK7lGpgEAIpbLFXjxz+XMXKNYCAA2YWQhAMBJGFkIAHAUG0cWRjqKhQBgE0YWAgCchJGFAABHoVjo5cyzAgAAAAAAABAwRhYCgE2MxcuQGYUBAIhEVnKNTAOAyGYCuGu9SyaMPakDjCz0olgIADYxkoyFPHVYBAMAHMJKrpFpAICIRbHQi2IhANjEI5dcAXxTd+J2AABEGiu5RqYBACIWxUIvioUAYBNucAIAcBJucAIAcBSKhV4UCwHAJh7jksvChyQr8xwCABBuVnKNTAMARCyKhV7OPCsAAAAAAAAAAWNkIQDYxBiLNzhhNngAQASykmtkGgAgYjGy0ItiIQDYhDkLAQBOwpyFAABHoVjoRbEQAGxCsRAA4CQUCwEAjuJyBV78czkz1ygWAoBNuMEJAMBJuMEJAMBRGFnoRbEQAGzCnIUAACdhzkIAgKNQLPSiWIgGJ6pJE/8aBjCc2JSW+t+2vNzvtgAA1MbVqLHfbaOaxPrdNpCsIgMBAKFy9Jj/n8EaRwWQKUeO+NcuJsb/fTZyZjnFJb7VAcVCALDN8REYVuYsDENnAAAIkpVcI9MAABGLkYVeFAsBwCbc4AQA4CTc4AQA4CgUC70oFgKATcxPi5XtAACINFZyjUwDAEQsioVeFAsBwCaMLAQAOAkjCwEAjkKx0MuZZwUAkcgEsQRoxowZateunWJjY5WZmalVq1bV2r6wsFDjx49Xq1at5Ha7ddZZZ2nx4sWBHxgA0HDYlGkSuQYAsEFFsTDQxYEYWQgADjN//nxNmDBBs2bNUmZmpqZPn67s7Gxt3LhRycnJVdqXlZXp5z//uZKTk/Xmm2+qdevW2rZtmxISEuzvPAAAJyHXAACwF8VCALCLxcuQFeA206ZN09ixYzVmzBhJ0qxZs/Tuu+/q1Vdf1X333Vel/auvvqr9+/fr008/VePGjSVJ7dq1C7yfAICGxUquWchBcg0AYAsuQ/Zy5lkBQAQyxvoiScXFxT5LaWlplWOUlZVpzZo1ysrK8q6LiopSVlaW8vLyqu3XP/7xD/Xt21fjx49XSkqKunXrpscee0zl5eVheR4AAM4Q7kyTyDUAgI1crsAvQXY5cy5eioUAYJOKieCtLJKUnp6u+Ph475Kbm1vlGHv37lV5eblSUlJ81qekpCg/P7/afv3nP//Rm2++qfLyci1evFgPPfSQnnnmGT3yyCOhfxIAAI4R7kyTyDUAgI2Ys9CLy5ABwC7GZenyq4ptduzYobi4OO9qt9sdkm55PB4lJyfrpZdeUnR0tDIyMvTjjz/qqaee0qRJk0JyDACAA1nJtTBnmkSuAQAs4jJkL4qFAGCTEy+/CnQ7SYqLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq92mVatWaty4saKjo73runTpovz8fJWVlSkmJibwTgMAHM9KrgWSaRK5BgCwEcVCL4qFiFhRgfwhd04nv5se6HjqP0wlydPY/8M333HE77aNvtnqd9vywkL/OwFIiomJUUZGhpYvX67hw4dLOj7CYvny5crJyal2m/PPP1/z5s2Tx+NR1E9h991336lVq1Z8oALqQKPkln63PdKjrd9tD7b2P9galfpfAYrbWOx3W9eGLX618xypfv66ahmP/21R75BrQGQ6cND/UcU//OD/fps29b9t2yT/P4Npwwb/2/rrrLP8bxvIiTm0+IT6hX+FAGAXE8QSgAkTJujll1/Wn//8Z61fv1633nqrSkpKvHeRHDVqlO6//35v+1tvvVX79+/XnXfeqe+++07vvvuuHnvsMY0fPz648wUAOJsNmSaRawAAmzBnoRcjCwHAJidO7B7odoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3TvSQjo+yfzSpUt19913q0ePHmrdurXuvPNO3XvvvQH3FQDQcFjJNSs5SK4BAGzBZcheFAsBwE4WRlRYkZOTU+PlWStWrKiyrm/fvvrss8/C3CsAgOOQawAAp6BY6EWxEABsYtfIQgAA7GDXyEIAAGxBsdCLYiEA2MXiXE12jdoAACAgVnKNTAMARCqKhV7OPCsAAAAAAAAAAQu4WPjhhx9q2LBhSktLk8vl0qJFi3wev/HGG+VyuXyWwYMHh6q/AFCPuYJYEA5kGgAEg0yLNOQaAATB5Qr8TsguZ+ZawMXCkpIS9ezZUzNmzKixzeDBg7Vr1y7v8re//S2oTgKAI5ggFoQFmQYAQSDTIg65BgBBCLRQaOWy5Xoi4DkLhwwZoiFDhtTaxu12KzU11XKnAMCRmLMw4pBpABAE5iyMOOQaAASBOQu9wnJWK1asUHJyss4++2zdeuut2rdvX41tS0tLVVxc7LMAgCMZl/UFdSaQTJPINQANCJlWL5FrAFADRhZ6hfxuyIMHD9YVV1yh9u3ba/Pmzfr973+vIUOGKC8vT9HR0VXa5+bmasqUKaHuBhzA1bmj3223XZrgd9vGff7rV7tG0R6/97l93el+t23jau9326i8b/xua44d9bst6oYxxxcr26FuBJppErmGmkU1bepXu5I+/ufE9qv8z6rEpP1+ty0sifW77cHPE/xue8b+JP8a7qm9eHEiz+EjfreV8f/5wqlZyTUyrW6RaziVo8f8K+h/+63/+9ywwf+2/fr531Z+5qokaedO/9rl5/u/z+bN/W8byGjeQPbr0EJVnWFkoVfIi4UjR470/n/37t3Vo0cPdezYUStWrNAll1xSpf3999+vCRMmeH8uLi5Wenp6qLsFAEDAAs00iVwDAEQucg0A4I+wl0A7dOigpKQkff/999U+7na7FRcX57MAgCNxg5N671SZJpFrABoQMq3eI9cA4ARchuwV8pGFJ/vhhx+0b98+tWrVKtyHAoDIZnWuJuZ3ihhkGgCcwEqukWkRhVwDgBNwGbJXwMXCgwcP+nzztGXLFq1bt06JiYlKTEzUlClTdOWVVyo1NVWbN2/W7373O3Xq1EnZ2dkh7TgA1Dcuc3yxsh3Cg0wDAOus5BqZFl7kGgAEgWKhV8DFwtWrV+uiiy7y/lwxf8Xo0aM1c+ZMffXVV/rzn/+swsJCpaWladCgQZo6darcbnfoeg0A9ZHVy6/4YBU2ZBoABMFKrpFpYUWuAUAQKBZ6BVwsHDhwoEwttzFbunRpUB0CAMfiMuSIQ6YBQBC4DDnikGsAEASXK/Din8uZuebMEigAAAAAAACAgIX9BicAgJ9wGTIAwEm4DBkA4CRchuxFsRAA7EKxEADgJBQLAQBOQrHQi2IhANiFYiEAwEkoFgIAnIRioRfFQgCwCzc4AQA4CTc4AQA4CcVCL4qFsJWrUWO/2x7sGOd326jeRX63fbnHXL/aNXaV+73PX7v+1++2xRuT/G6b+FVTv9uWF/n/HKBuuMzxxcp2AOq/qMTT/Gq3/2z//zz7de9lfrfNav6t322/PNzW77aPFQ/1u215SoJf7aKKDvi9T1dpqd9tjf/RDj9YyTUyDYhshw75127rVv/3GUjbbt38b2vk/5cPrv37/Wv4ww/+d2DvXv/bJiT437ap/58B/S1UBfRcNeQh4BQLvZx5VgAAAAAAAEAEmjFjhtq1a6fY2FhlZmZq1apVtbZfsGCBOnfurNjYWHXv3l2LFy8Oa/8oFgKAXUwQCwAAkYZMAwA4ScXIwkCXAM2fP18TJkzQpEmT9OWXX6pnz57Kzs7W7t27q23/6aef6tprr9VNN92ktWvXavjw4Ro+fLi++eabYM+4RhQLAQAAAAAA0LDZVCycNm2axo4dqzFjxqhr166aNWuWmjZtqldffbXa9s8995wGDx6s3/72t+rSpYumTp2qc889Vy+88EKwZ1wjioUAYBOXKud3Cmip644DAFANS7lW150GAKAmQRQLi4uLfZbSGuZULisr05o1a5SVlXXCYaOUlZWlvLy8arfJy8vzaS9J2dnZNbYPBYqFAGCXirtGWlkAAIg0ZBoAwEGMXJYWSUpPT1d8fLx3yc3NrfYYe/fuVXl5uVJSUnzWp6SkKD8/v9pt8vPzA2ofCtwNGQDsYnWuJuZ3AgBEIiu5RqYBACKUx3N8CXQbSdqxY4fi4uK8691udwh7Zj+KhQAAAAAAAIBFcXFxPsXCmiQlJSk6OloFBQU+6wsKCpSamlrtNqmpqQG1DwUuQwYAu3A3ZACAk5BpAAAHqRhZGOgSiJiYGGVkZGj58uUnHNej5cuXq2/fvtVu07dvX5/2krRs2bIa24cCIwsBwCYVk7tb2Q4AgEhjJdfINABApArmMuRATJgwQaNHj1bv3r3Vp08fTZ8+XSUlJRozZowkadSoUWrdurV33sM777xTAwYM0DPPPKOhQ4fq9ddf1+rVq/XSSy8FfnA/USwEALswZyEAwEmYsxAA4CB2FQtHjBihPXv2aOLEicrPz1evXr20ZMkS701Mtm/frqioyguB+/Xrp3nz5unBBx/U73//e5155platGiRunXrFvjB/USxEADsQrEQAOAkFAsBAA5iV7FQknJycpSTk1PtYytWrKiy7uqrr9bVV19t7WAWUCwEAJtwGTIAwEm4DBkA4CR2FgsjHTc4AQAAAAAAACCJkYUAYB/jOr5Y2Q4AgEhjJdfINABAhGJkYSWKhQBgF+YsBAA4CXMWAgAchGJhJYqFAGAT5iwEADgJcxYCAJzEmMCLf8ahuUaxEADswshCAICTMLIQAOAgjCysxA1OAAAAAAAAAEhiZCEA2MfiZciMwgAARCQruUamAQAiFCMLK1EsBAC7cBkyAMBJuAwZAOAgFAsrUSwEALtQLAQAOAnFQgCAg1AsrESxELYyx4763bb55mK/2+5bfZrfbcdG3eBXu0bR/v/WH1x3ut9t22w97HdbT8khv9si8nE3ZKBh8+z/r1/tEje29nuff1w9wO+2C5LO9bvtgZJYv9vGrW/sd9vogny/2nnKyvzep/HwJllXuBsy4DxNm/rXrl07//d55Ij/bePi/G/rCuTbh8RE/9oFkD9KSvK/baz/uaqo0N9aIqDnqgGjWFiJYiEAAAAAAAAaNIqFlbgbMgAAAAAAAABJjCwEAPswZyEAwEmYsxAA4CCMLKxEsRAAbMKchQAAJ2HOQgCAk1AsrESxEADsxIckAICTkGsAAIcwJvDin3FoDlIsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKzE3ZABAAAAAAAASGJkIQDYh8uQAQBOwmXIAAAHYWRhJUYWAoBNKi7XsrIEasaMGWrXrp1iY2OVmZmpVatW+bXd66+/LpfLpeHDhwd+UABAg2JXpknkGgAg/CqKhYEuTkSxEADsYoJYAjB//nxNmDBBkyZN0pdffqmePXsqOztbu3fvrnW7rVu36p577lH//v0DOyAAoGGyIdMkcg0AYA+KhZW4DBkRy2zY7HfbNtGd/G57YGO8X+08jf3epdrsOOR320bfbPW7bfmxo/53ApHPpsuQp02bprFjx2rMmDGSpFmzZundd9/Vq6++qvvuu6/abcrLy3X99ddrypQp+uijj1RYWGihowBq4znkX1Y0W7XF7322P9LW77YHWyf63Tap1P83nriNhX639eze61+7I6V+71PGoX+l1wc2XYZMrgH2adzIv1/Srl1dfu8zLs7/48fE+N9WfuaqJCktLbTtAm3btKn/baMY01VXuAy5Ev8KAcAmwV6GXFxc7LOUllb9MF1WVqY1a9YoKyvLuy4qKkpZWVnKy8ursW8PP/ywkpOTddNNN4X8vAEAzhTuTJPINQCAfRhZWIliIQDUE+np6YqPj/cuubm5Vdrs3btX5eXlSklJ8VmfkpKi/Pz8avf78ccf65VXXtHLL78cln4DAHAyfzJNItcAAKgLXIYMAHYJ8jLkHTt2KO6E6zjcbnfQXTpw4IBuuOEGvfzyy0pKSgp6fwCABiSIy5DDkWkSuQYAsI7LkCtRLAQAuwRZLIyLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq7TfvHmztm7dqmHDhnnXeX5KvEaNGmnjxo3q2LGjhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcPcBkyANgk2DkL/RETE6OMjAwtX77cu87j8Wj58uXq27dvlfadO3fW119/rXXr1nmXyy67TBdddJHWrVun9PT0UJw6AMCBwp1pErkGALAPcxZWYmQhANjFprshT5gwQaNHj1bv3r3Vp08fTZ8+XSUlJd67SI4aNUqtW7dWbm6uYmNj1a1bN5/tExISJKnKegAAfNh0N2RyDQBgBy5DrhTwyMIPP/xQw4YNU1pamlwulxYtWuTzuDFGEydOVKtWrdSkSRNlZWVp06ZNoeovANRbdowslKQRI0bo6aef1sSJE9WrVy+tW7dOS5Ys8U4Ov337du3atSsMZ1j/kGkAYJ0dmSaRa4Eg1wDAOkYWVgq4WFhSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDkSdGcBAP7JycnRtm3bVFpaqs8//1yZmZnex1asWKE5c+bUuO2cOXOqfLhwKjINAOoHcs0/5BoAIBQCvgx5yJAhGjJkSLWPGWM0ffp0Pfjgg7r88sslSX/5y1+UkpKiRYsWaeTIkcH1FgDqM5suQ4b/yDQACIJNlyHDf+QaAFjHZciVQnqDky1btig/P19ZWVnedfHx8crMzFReXl6125SWlqq4uNhnAQBHMkEssJ2VTJPINQANCJlWr5BrAFA7LkOuFNIbnOTn50uSd/6QCikpKd7HTpabm6spU6aEshtwCE9Zmf+N137rd9MWG5r419Dl8nufprTU77bl5eV+t4WzuH5arGwH+1nJNIlcQ/CO7d7jd9vGKwr9bnt6k1i/25oAsiqQDAxkv4h8VnKNTKs75BpCqUVz/yv/nTv7/5t/7FgAnYjyP9fUubN/7WJi/N9nI+4X6zSMLKwU0pGFVtx///0qKiryLjt27KjrLgFAeDCysEEg1wA0GGRag0CuAWgoGFlYKaSl8NTUVElSQUGBWrVq5V1fUFCgXr16VbuN2+2W2+0OZTcAICJZvQuklW0QPCuZJpFrABoOK7lGptUdcg0AasfIwkohHVnYvn17paamavny5d51xcXF+vzzz9W3b99QHgoAgLAi0wAATkKuAQD8FfDIwoMHD+r777/3/rxlyxatW7dOiYmJatOmje666y498sgjOvPMM9W+fXs99NBDSktL0/Dhw0PZbwCof7gbcsQh0wAgCNwNOeKQawBgnTGBjxQ0Ds21gIuFq1ev1kUXXeT9ecKECZKk0aNHa86cOfrd736nkpISjRs3ToWFhbrgggu0ZMkSxcYGMPkoADiVQ8OkviLTACBI5FpEIdcAwDouQ64UcLFw4MCBMrWUTl0ulx5++GE9/PDDQXUMAJyGOQsjD5kGANYxZ2HkIdcAwDqKhZW41zcA2IXLkAEATsJlyAAAB6FYWIliIQDYhJGFAAAnYWQhAMBJKBZWCundkAEAAAAAAADUX4wsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKxEsRANjufw4bruAhoqRhYCCDFz7KjfbcsP+N8W8AsjCwGEWONGgbxJBDCrWtOmAfeloTJy+d3W5bA3dYqFlSgWAoBdKBYCAJyEYiEAwEEoFlaiWAgANuEyZACAk3AZMgDASSgWVuJuyAAAAAAAAAAkMbIQAOzDZcgAACfhMmQAgIMYE/hIQePQXGNkIQDYxGWM5QUAgEhDpgEAnKTiMuRAl3DZv3+/rr/+esXFxSkhIUE33XSTDh48WGv722+/XWeffbaaNGmiNm3a6I477lBRUVHAx2ZkIQDYhZGFAAAnYWQhAMBBIm3Owuuvv167du3SsmXLdPToUY0ZM0bjxo3TvHnzqm2/c+dO7dy5U08//bS6du2qbdu26ZZbbtHOnTv15ptvBnRsioUAYBNucAIAcBJucAIAcJJIKhauX79eS5Ys0RdffKHevXtLkp5//nldeumlevrpp5WWllZlm27duumtt97y/tyxY0c9+uij+t///V8dO3ZMjRr5XwLkMmQAsIsJYgEAINKQaQAAB4mky5Dz8vKUkJDgLRRKUlZWlqKiovT555/7vZ+ioiLFxcUFVCiUGFkIAAAAAAAAWFZcXOzzs9vtltvttry//Px8JScn+6xr1KiREhMTlZ+f79c+9u7dq6lTp2rcuHEBH5+RhQBgk4rLtawsAABEGjINAOAkwYwsTE9PV3x8vHfJzc2t9hj33XefXC5XrcuGDRuCPpfi4mINHTpUXbt21eTJkwPenpGFAGAXbnACAHASbnACAI7jasBv1MHMWbhjxw7FxcV519c0qvA3v/mNbrzxxlr32aFDB6Wmpmr37t0+648dO6b9+/crNTW11u0PHDigwYMHq0WLFlq4cKEaN2586hM5CcVCALAJNzgBADgJNzgBADhJMMXCuLg4n2JhTVq2bKmWLVuesl3fvn1VWFioNWvWKCMjQ5L0/vvvy+PxKDMzs8btiouLlZ2dLbfbrX/84x+KjY3170ROwmXIAGAXbnACAHASMg0A4CCRdIOTLl26aPDgwRo7dqxWrVqlTz75RDk5ORo5cqT3Tsg//vijOnfurFWrVkk6XigcNGiQSkpK9Morr6i4uFj5+fnKz89XeXl5QMdnZCEA2IgRFQAAJyHXAABOYUzgxT8Txhx87bXXlJOTo0suuURRUVG68sor9Yc//MH7+NGjR7Vx40YdOnRIkvTll19675TcqVMnn31t2bJF7dq18/vYFAsBAAAAAACACJKYmKh58+bV+Hi7du1kTqhWDhw40OfnYFAsBAC7GGPtq6dwfl0FAIBVVnKNTAMARKhg5ix0GoqFAGATbnACAHASbnACAHASioWVKBYCgF2sTuzOBysAQCSykmtkGgAgQlEsrESxEABs4vIcX6xsBwBApLGSa2QaACBSUSysRLEQAOzCyEIAgJMwshAA4CAUCytF1XUHAAAAAAAAAEQGRhYCgE24wQkAwEm4wQkAwEkYWViJYiEA2MWY44uV7QAAiDRWco1MAwBEKIqFlSgWAoBNGFkIAHASRhYCAJyEYmElioUAYBducAIAcBJucAIAcBBjAi/+OXXAPMVCALAJIwsBAE7CyEIAgJMwsrASd0MGAAAAAAAAIImRhQBgH25wAgBwEm5wAgBwEEYWVqJYCAA24TJkAICTcBkyAMBJKBZWolgIAHbhBicAACfhBicAAAehWFiJYiEA2ISRhQAAJ2FkIQDASSgWVqJYCAB28Zjji5XtAACINFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA+zBnIQDASZizEADgIIwsrESxEABs4pLFOQtD3hMAAIJnJdfINABApKJYWInLkAHALsZYXwI0Y8YMtWvXTrGxscrMzNSqVatqbPvyyy+rf//+Ou2003TaaacpKyur1vYAAEiyLdMkcg0AEH7GVBYM/V0sxlrEo1gIADapuGuklSUQ8+fP14QJEzRp0iR9+eWX6tmzp7Kzs7V79+5q269YsULXXnutPvjgA+Xl5Sk9PV2DBg3Sjz/+GIKzBgA4lR2ZJpFrAAB7BFootDISsb6gWAgADjNt2jSNHTtWY8aMUdeuXTVr1iw1bdpUr776arXtX3vtNd12223q1auXOnfurD/96U/yeDxavny5zT0HAKAqcg0AAHtRLAQAu5ggFj+VlZVpzZo1ysrK8q6LiopSVlaW8vLy/NrHoUOHdPToUSUmJvp/YABAwxPmTJPINQCAfRhZWIkbnACATVzGyGVhUouKbYqLi33Wu91uud1un3V79+5VeXm5UlJSfNanpKRow4YNfh3v3nvvVVpams8HMwAATmYl1wLJNIlcAwDYhxucVAr5yMLJkyfL5XL5LJ07dw71YQCg/vEEsUhKT09XfHy8d8nNzQ15Fx9//HG9/vrrWrhwoWJjY0O+//qIXAOAGkR4pknk2snINACoGSMLK4VlZOE555yj9957r/IgjRjACADBjizcsWOH4uLivOurG4GRlJSk6OhoFRQU+KwvKChQampqrcd5+umn9fjjj+u9995Tjx49Au6nk5FrAFBVMCML/ck0iVwLBzINAKrHyMJKYUmGRo0anTK8AaDBsTBXk3c7SXFxcT4frKoTExOjjIwMLV++XMOHD5ck76TuOTk5NW735JNP6tFHH9XSpUvVu3dvC510NnINAKphJdcCyDSJXAsHMg0AqkexsFJYbnCyadMmpaWlqUOHDrr++uu1ffv2GtuWlpaquLjYZwEAWDdhwgS9/PLL+vOf/6z169fr1ltvVUlJicaMGSNJGjVqlO6//35v+yeeeEIPPfSQXn31VbVr1075+fnKz8/XwYMH6+oUIg65BgB1h1wLrUAyTSLXAKAhCnmxMDMzU3PmzNGSJUs0c+ZMbdmyRf3799eBAweqbZ+bm+szX0l6enqouwQAkcEY60sARowYoaeffloTJ05Ur169tG7dOi1ZssQ7Ofz27du1a9cub/uZM2eqrKxMV111lVq1auVdnn766ZCefn1FrgFADWzINIlcC6VAM00i1wA0HMxZWMlljIXEDkBhYaHatm2radOm6aabbqryeGlpqUpLS70/FxcXKz09XQN1uRq5GoezawBQq2PmqFbobRUVFfl1qVRNiouLFR8frwH9HlKjRoFPrn7s2BGt/HRq0P1AaJBrAOqrSMg1Mi2ynCrTpJpzraiwkNcQfjFy+d3WZWnOHjRExcXFik9ICEmeVOTaNdcUKSYmsH2VlRXrjTfiHZdrYZ/NNiEhQWeddZa+//77ah93u901TmgMAI5icUSFpW0QNuQaAPzESq6RaRHlVJkmkWsAGg5jAh8p6NRYC8uchSc6ePCgNm/erFatWoX7UAAQ0Vwe6wsiB7kGAMeRafUfmQYAlbgMuVLIi4X33HOPVq5cqa1bt+rTTz/VL3/5S0VHR+vaa68N9aEAoH6xac5ChBa5BgA1INPqHTINAGpGsbBSyC9D/uGHH3Tttddq3759atmypS644AJ99tlnatmyZagPBQBA2JFrAACnINMAAP4IebHw9ddfD/UuAcAZzE+Lle1QZ8g1AKiBlVwj0+oUmQYANbMyUpCRhQCAoLiMkcvC5VdWtgEAINys5BqZBgCIVBQLK1EsBAC7cDdkAICTcDdkAICDUCysRLEQAOxiJFkJEz5XAQAikZVcI9MAABGKYmElioUAYBMuQwYAOAmXIQMAnIRiYaWouu4AAAAAAAAAgMjAyEIAsIuRxTkLQ94TAACCZyXXyDQAtTBy+d3WxRtKWDTk14CRhZUoFgKAXbjBCQDASbjBCQDAQYwJvPjn1FijWAgAdvFIAXxR57sdAACRxkqukWkAgAjFyMJKFAsBwCbc4AQA4CTc4AQA4CQUCytRLAQAu3AZMgDASbgMGQDgIBQLK3E3ZAAAAAAAAACSGFkIAPZhZCEAwEkYWQgAcBBGFlaiWAgAdqFYCABwEoqFAAAHoVhYiWIhANiFuyEDAJyEuyEDAByEYmElioUAYBPuhgwAcBLuhgwAcBKKhZW4wQkA2KXici0rCwAAkYZMAwA4SEWxMNAlXPbv36/rr79ecXFxSkhI0E033aSDBw/6ta0xRkOGDJHL5dKiRYsCPjbFQgAAAAAAEBYuGb8XAJWuv/56/fvf/9ayZcv0zjvv6MMPP9S4ceP82nb69OlyuazMgXUclyEDgF08RnJZ+CPIwx9OAIAIZCXXyDQAQIQyJvCRguEaML9+/XotWbJEX3zxhXr37i1Jev7553XppZfq6aefVlpaWo3brlu3Ts8884xWr16tVq1aWTo+IwsBwC5chgwAcBIyDQDgIMFchlxcXOyzlJaWBtWXvLw8JSQkeAuFkpSVlaWoqCh9/vnnNW536NAhXXfddZoxY4ZSU1MtH59iIQDYxuqHKj5YAQAiEZkGAHCOYIqF6enpio+P9y65ublB9SU/P1/Jyck+6xo1aqTExETl5+fXuN3dd9+tfv366fLLLw/q+FyGDAB2sTqiglEYAIBIZCXXyDQAQITyeKRAp/mrKBbu2LFDcXFx3vVut7va9vfdd5+eeOKJWve5fv36wDrxk3/84x96//33tXbtWkvbn4hiIQDYxWNxRAXzOwEAIpGVXCPTAAARKphiYVxcnE+xsCa/+c1vdOONN9bapkOHDkpNTdXu3bt91h87dkz79++v8fLi999/X5s3b1ZCQoLP+iuvvFL9+/fXihUrTtm/ChQLAQAAAAAAgDBr2bKlWrZsecp2ffv2VWFhodasWaOMjAxJx4uBHo9HmZmZ1W5z33336eabb/ZZ1717dz377LMaNmxYQP2kWAgAdjGe44uV7QAAiDRWco1MAwBEqGBGFoZaly5dNHjwYI0dO1azZs3S0aNHlZOTo5EjR3rvhPzjjz/qkksu0V/+8hf16dNHqamp1Y46bNOmjdq3bx/Q8SkWAoBdmLMQAOAkzFkIAHCQSCoWStJrr72mnJwcXXLJJYqKitKVV16pP/zhD97Hjx49qo0bN+rQoUMhPzbFQgCwC3MWAgCchDkLAQAOEmnFwsTERM2bN6/Gx9u1aydzii/hTvV4TSgWAoBdGFkIAHASRhYCABwk0oqFdYliIQDYxchisTDkPQEAIHhWco1MA1ALF28Sda4hvwbGBF78c+p3YFF13QEAAAAAAAAAkYGRhQBgFy5DBgA4CZchAwAcxMolxVyGDAAIjscjiQQCADiElVwj0wAAEYpiYSWKhQBgF0YWAgCchJGFAAAHoVhYiWIhANiFYiEAwEkoFgIAHIRiYSWKhQBgF4+RpdtAevhgBQCIQFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA2xjjkTGBf/VkZRsAAMLNSq6RaQCASMXIwkoUCwHALsZYu/yK+Z0AAJHISq6RaQCACEWxsBLFQgCwi7E4ZyEfrAAAkchKrpFpAIAIRbGwEsVCALCLxyO5LKQJl2wBACKRlVwj0wAAEcqYwIt/Tv0OjGIhANiFkYUAACdhZCEAwEE8HsnlCmwbp8Yad0MGAAAAAAAAIImRhQBgG+PxyFi4DJk7RwIAIpGVXCPTAACRipGFlSgWAoBduAwZAOAkXIYMAHAQioWVKBYCgF08RnJRLAQAOISVXCPTAAARimJhJYqFAGAXYyRZuRuyQxMIAFC/Wck1Mg0AEKEoFlaiWAgANjEeI2NhZKFxagIBAOo1K7lGpgEAIhXFwkphuxvyjBkz1K5dO8XGxiozM1OrVq0K16EAACcJ9D14wYIF6ty5s2JjY9W9e3ctXrzYpp7WD2QaANQtci20yDUAQG3CUiycP3++JkyYoEmTJunLL79Uz549lZ2drd27d4fjcABQPxiP9SUAgb4Hf/rpp7r22mt10003ae3atRo+fLiGDx+ub775JhRnXe+RaQBQAxsyTSLXQo1cA4DqeTzWFidymTBcC5CZmanzzjtPL7zwgiTJ4/EoPT1dt99+u+67775aty0uLlZ8fLwG6nI1cjUOddcAwG/HzFGt0NsqKipSXFyc5f1439dcv7T0vnbMHNUKs9DvfgT6HjxixAiVlJTonXfe8a77n//5H/Xq1UuzZs0KuL9OE0ymSeQagMgRCbkWaKZJ5FqohSrXigoLg/p3BADBKC4uVnxCQtCZ5t1XfLxcriK5XIHty5hiGRMfkn5EkpDPWVhWVqY1a9bo/vvv966LiopSVlaW8vLyqrQvLS1VaWmp9+eioiJJ0jEdlRx67TeA+uGYjkoK3fxKx0yppREVFf0oLi72We92u+V2u33WBfoeLEl5eXmaMGGCz7rs7GwtWrQo4L46jZXnk1wDEKkiIdcCyTSJXAu1UObaya8hANip4j0olOPfjhf+Au5JyI4fSUJeLNy7d6/Ky8uVkpLisz4lJUUbNmyo0j43N1dTpkypsv5jMa8IgMhw4MABxcfHW94+JiZGqamp+jjf+vta8+bNlZ6e7rNu0qRJmjx5ss+6QN+DJSk/P7/a9vn5+Zb76xRWnk9yDUCkq+tc8zfTJHIt1EKZa+lt2oSljwAQiGAzTarMtfz89FM3rkZqaqpiYmKC6kOkqfO7Id9///0+3/wVFhaqbdu22r59e9AveCQpLi5Wenq6duzY4aihqZxX/cJ5BcYYowMHDigtLS2o/cTGxmrLli0qKysLqi+uk27NVd0IDNQ9cq1+47zqF84rMJGSa2Ra/UKu1W+cV/3CefkvVJkmBZ9rMTExio2NDbofkSTkxcKkpCRFR0eroKDAZ31BQYFSU1OrtK/pkoP4+HhH/XJUiIuL47zqEc6rfgnHeYXqj+DY2FhbAiTQ92Dp+DdhgbRvSKw8n+SaM3Be9Qvn5T9yrWEj106N95P6hfOqX0J9XqH8wsKuXKsvQn435JiYGGVkZGj58uXedR6PR8uXL1ffvn1DfTgAwAmsvAf37dvXp70kLVu2jPdskWkAUNfItdAi1wAA/gjLZcgTJkzQ6NGj1bt3b/Xp00fTp09XSUmJxowZE47DAQBOcKr34FGjRql169bKzc2VJN15550aMGCAnnnmGQ0dOlSvv/66Vq9erZdeeqkuTyNikGkAULfItdAi1wAApxKWYuGIESO0Z88eTZw4Ufn5+erVq5eWLFlSZSLd6rjdbk2aNMlx85ZwXvUL51W/OPW8rDrVe/D27dsVFVU5sLxfv36aN2+eHnzwQf3+97/XmWeeqUWLFqlbt251dQoRJZhMk5z775Pzql84r/rFqedlFbkWWuRa9Tiv+oXzql+cel5O5jKhvM80AAAAAAAAgHor5HMWAgAAAAAAAKifKBYCAAAAAAAAkESxEAAAAAAAAMBPKBYCAAAAAAAAkBSBxcIZM2aoXbt2io2NVWZmplatWlXXXQrK5MmT5XK5fJbOnTvXdbcC9uGHH2rYsGFKS0uTy+XSokWLfB43xmjixIlq1aqVmjRpoqysLG3atKluOhuAU53XjTfeWOX1Gzx4cN10NgC5ubk677zz1KJFCyUnJ2v48OHauHGjT5sjR45o/PjxOv3009W8eXNdeeWVKigoqKMe+8ef8xo4cGCV1+yWW26pox6joXNapknkWqRzYq6RaWQaIofTco1Mi2xOzDSJXCPX6oeIKhbOnz9fEyZM0KRJk/Tll1+qZ8+eys7O1u7du+u6a0E555xztGvXLu/y8ccf13WXAlZSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDlic08Dc6rzkqTBgwf7vH5/+9vfbOyhNStXrtT48eP12WefadmyZTp69KgGDRqkkpISb5u7775b//znP7VgwQKtXLlSO3fu1BVXXFGHvT41f85LksaOHevzmj355JN11GM0ZE7NNIlci2ROzDUyjUxDZHBqrpFpkcuJmSaRa+RaPWEiSJ8+fcz48eO9P5eXl5u0tDSTm5tbh70KzqRJk0zPnj3ruhshJcksXLjQ+7PH4zGpqanmqaee8q4rLCw0brfb/O1vf6uDHlpz8nkZY8zo0aPN5ZdfXif9CaXdu3cbSWblypXGmOOvT+PGjc2CBQu8bdavX28kmby8vLrqZsBOPi9jjBkwYIC58847665TwE+cmGnGkGvkWt0j04C64cRcI9PItEhAriESRczIwrKyMq1Zs0ZZWVnedVFRUcrKylJeXl4d9ix4mzZtUlpamjp06KDrr79e27dvr+suhdSWLVuUn5/v89rFx8crMzOz3r92krRixQolJyfr7LPP1q233qp9+/bVdZcCVlRUJElKTEyUJK1Zs0ZHjx71ec06d+6sNm3a1KvX7OTzqvDaa68pKSlJ3bp10/33369Dhw7VRffQgDk50yRyrb6r77lGppFpsJ+Tc41Mq9/qe6ZJ5Bq5Fpka1XUHKuzdu1fl5eVKSUnxWZ+SkqINGzbUUa+Cl5mZqTlz5ujss8/Wrl27NGXKFPXv31/ffPONWrRoUdfdC4n8/HxJqva1q3isvho8eLCuuOIKtW/fXps3b9bvf/97DRkyRHl5eYqOjq7r7vnF4/Horrvu0vnnn69u3bpJOv6axcTEKCEhwadtfXrNqjsvSbruuuvUtm1bpaWl6auvvtK9996rjRs36u9//3sd9hYNjVMzTSLX6st7ZE3qe66RaWQa6oZTc41Mqx/vkTWp75kmkWvkWuSKmGKhUw0ZMsT7/z169FBmZqbatm2rN954QzfddFMd9gz+GDlypPf/u3fvrh49eqhjx45asWKFLrnkkjrsmf/Gjx+vb775pl7Ov1Kbms5r3Lhx3v/v3r27WrVqpUsuuUSbN29Wx44d7e4m4DjkWv1W33ONTCPTgFAi0+q3+p5pErlGrkWuiLkMOSkpSdHR0VXu8FNQUKDU1NQ66lXoJSQk6KyzztL3339f110JmYrXx+mvnSR16NBBSUlJ9eb1y8nJ0TvvvKMPPvhAZ5xxhnd9amqqysrKVFhY6NO+vrxmNZ1XdTIzMyWp3rxmcIaGkmkSuVbf1adcI9PINNSdhpJrZFr9Vp8yTSLXJHItkkVMsTAmJkYZGRlavny5d53H49Hy5cvVt2/fOuxZaB08eFCbN29Wq1at6rorIdO+fXulpqb6vHbFxcX6/PPPHfXaSdIPP/ygffv2RfzrZ4xRTk6OFi5cqPfff1/t27f3eTwjI0ONGzf2ec02btyo7du3R/Rrdqrzqs66deskKeJfMzhLQ8k0iVyr7+pDrpFplcg01JWGkmtkWv1WHzJNItdORK5FsLq8u8rJXn/9deN2u82cOXPMt99+a8aNG2cSEhJMfn5+XXfNst/85jdmxYoVZsuWLeaTTz4xWVlZJikpyezevbuuuxaQAwcOmLVr15q1a9caSWbatGlm7dq1Ztu2bcYYYx5//HGTkJBg3n77bfPVV1+Zyy+/3LRv394cPny4jnteu9rO68CBA+aee+4xeXl5ZsuWLea9994z5557rjnzzDPNkSNH6rrrtbr11ltNfHy8WbFihdm1a5d3OXTokLfNLbfcYtq0aWPef/99s3r1atO3b1/Tt2/fOuz1qZ3qvL7//nvz8MMPm9WrV5stW7aYt99+23To0MFceOGFddxzNEROzDRjyDVyzX5kGpmGyODEXCPTyLS6QK6Ra/VBRBULjTHm+eefN23atDExMTGmT58+5rPPPqvrLgVlxIgRplWrViYmJsa0bt3ajBgxwnz//fd13a2AffDBB0ZSlWX06NHGGGM8Ho956KGHTEpKinG73eaSSy4xGzdurNtO+6G28zp06JAZNGiQadmypWncuLFp27atGTt2bL34g6i6c5JkZs+e7W1z+PBhc9ttt5nTTjvNNG3a1Pzyl780u3btqrtO++FU57V9+3Zz4YUXmsTERON2u02nTp3Mb3/7W1NUVFS3HUeD5bRMM4Zci3ROzDUyjUxD5HBarpFpkc2JmWYMuUau1Q8uY4yxPi4RAAAAAAAAgFNEzJyFAAAAAAAAAOoWxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkqT/D95FLoBGPoWwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2667,35 +1170,276 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 28, "id": "ced9db5c", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[stderr:2] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", - " np.sum(p * q, axis=-1)\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "[stderr:5] /usr/local/lib/python3.8/dist-packages/pace/util/grid/gnomonic.py:682: RuntimeWarning: invalid value encountered in true_divide\n", - " np.sum(p * q, axis=-1)\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "%px: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:46<00:00, 7.80s/tasks]\n" + "[0:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [17], line 14\u001b[0m\n", + "\u001b[1;32m 10\u001b[0m namelist_dict \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mstore_namelist_variables(\u001b[38;5;28mlocals\u001b[39m())\n", + "\u001b[1;32m 11\u001b[0m dimensions \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mdefine_dimensions(namelist_dict)\n", + "\u001b[0;32m---> 14\u001b[0m domain_configuration \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigure_domain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmpi_comm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msingle_layer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msingle_layer\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 16\u001b[0m initial_state \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mcreate_initial_state_advection(\n", + "\u001b[1;32m 17\u001b[0m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetric_terms\u001b[39m\u001b[38;5;124m\"\u001b[39m], dimensions, tracer_center, test_case\n", + "\u001b[1;32m 18\u001b[0m )\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:269\u001b[0m, in \u001b[0;36mconfigure_domain\u001b[0;34m(mpi_comm, dimensions, single_layer, backend)\u001b[0m\n", + "\u001b[1;32m 256\u001b[0m sizer \u001b[38;5;241m=\u001b[39m SubtileGridSizer\u001b[38;5;241m.\u001b[39mfrom_tile_params(\n", + "\u001b[1;32m 257\u001b[0m nx_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnx\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 258\u001b[0m ny_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mny\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 264\u001b[0m tile_rank\u001b[38;5;241m=\u001b[39mcommunicator\u001b[38;5;241m.\u001b[39mtile\u001b[38;5;241m.\u001b[39mrank,\n", + "\u001b[1;32m 265\u001b[0m )\n", + "\u001b[1;32m 267\u001b[0m quantity_factory \u001b[38;5;241m=\u001b[39m QuantityFactory\u001b[38;5;241m.\u001b[39mfrom_backend(sizer\u001b[38;5;241m=\u001b[39msizer, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[0;32m--> 269\u001b[0m metric_terms \u001b[38;5;241m=\u001b[39m \u001b[43mMetricTerms\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 270\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantity_factory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantity_factory\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcommunicator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommunicator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meta79.nc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n", + "\u001b[1;32m 271\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 273\u001b[0m \u001b[38;5;66;03m# workaround for single layer\u001b[39;00m\n", + "\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m single_layer:\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:304\u001b[0m, in \u001b[0;36mMetricTerms.__init__\u001b[0;34m(self, quantity_factory, communicator, grid_type, dx_const, dy_const, deglat, extdgrid, eta_file)\u001b[0m\n", + "\u001b[1;32m 297\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 298\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area_c \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 299\u001b[0m (\n", + "\u001b[1;32m 300\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ks,\n", + "\u001b[1;32m 301\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ptop,\n", + "\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ak,\n", + "\u001b[1;32m 303\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bk,\n", + "\u001b[0;32m--> 304\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_set_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\u001b[43meta_file\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 305\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 306\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:2172\u001b[0m, in \u001b[0;36mMetricTerms._set_hybrid_pressure_coefficients\u001b[0;34m(self, eta_file)\u001b[0m\n", + "\u001b[1;32m 2162\u001b[0m ak \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2163\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPa\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2165\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2166\u001b[0m )\n", + "\u001b[1;32m 2167\u001b[0m bk \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2168\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2169\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2170\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2171\u001b[0m )\n", + "\u001b[0;32m-> 2172\u001b[0m pressure_coefficients \u001b[38;5;241m=\u001b[39m \u001b[43meta\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 2173\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_npz\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\n", + "\u001b[1;32m 2174\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 2175\u001b[0m ks \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mks\n", + "\u001b[1;32m 2176\u001b[0m ptop \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mptop\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/eta.py:60\u001b[0m, in \u001b[0;36mset_hybrid_pressure_coefficients\u001b[0;34m(km, eta_file)\u001b[0m\n", + "\u001b[1;32m 58\u001b[0m \u001b[38;5;66;03m# check size of ak and bk array is km+1\u001b[39;00m\n", + "\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ak\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of ak array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bk\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of bk array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\n", + "\u001b[0;31mValueError\u001b[0m: size of ak array is not equal to km=1\n", + "[4:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [17], line 14\u001b[0m\n", + "\u001b[1;32m 10\u001b[0m namelist_dict \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mstore_namelist_variables(\u001b[38;5;28mlocals\u001b[39m())\n", + "\u001b[1;32m 11\u001b[0m dimensions \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mdefine_dimensions(namelist_dict)\n", + "\u001b[0;32m---> 14\u001b[0m domain_configuration \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigure_domain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmpi_comm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msingle_layer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msingle_layer\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 16\u001b[0m initial_state \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mcreate_initial_state_advection(\n", + "\u001b[1;32m 17\u001b[0m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetric_terms\u001b[39m\u001b[38;5;124m\"\u001b[39m], dimensions, tracer_center, test_case\n", + "\u001b[1;32m 18\u001b[0m )\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:269\u001b[0m, in \u001b[0;36mconfigure_domain\u001b[0;34m(mpi_comm, dimensions, single_layer, backend)\u001b[0m\n", + "\u001b[1;32m 256\u001b[0m sizer \u001b[38;5;241m=\u001b[39m SubtileGridSizer\u001b[38;5;241m.\u001b[39mfrom_tile_params(\n", + "\u001b[1;32m 257\u001b[0m nx_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnx\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 258\u001b[0m ny_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mny\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 264\u001b[0m tile_rank\u001b[38;5;241m=\u001b[39mcommunicator\u001b[38;5;241m.\u001b[39mtile\u001b[38;5;241m.\u001b[39mrank,\n", + "\u001b[1;32m 265\u001b[0m )\n", + "\u001b[1;32m 267\u001b[0m quantity_factory \u001b[38;5;241m=\u001b[39m QuantityFactory\u001b[38;5;241m.\u001b[39mfrom_backend(sizer\u001b[38;5;241m=\u001b[39msizer, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[0;32m--> 269\u001b[0m metric_terms \u001b[38;5;241m=\u001b[39m \u001b[43mMetricTerms\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 270\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantity_factory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantity_factory\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcommunicator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommunicator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meta79.nc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n", + "\u001b[1;32m 271\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 273\u001b[0m \u001b[38;5;66;03m# workaround for single layer\u001b[39;00m\n", + "\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m single_layer:\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:304\u001b[0m, in \u001b[0;36mMetricTerms.__init__\u001b[0;34m(self, quantity_factory, communicator, grid_type, dx_const, dy_const, deglat, extdgrid, eta_file)\u001b[0m\n", + "\u001b[1;32m 297\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 298\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area_c \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 299\u001b[0m (\n", + "\u001b[1;32m 300\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ks,\n", + "\u001b[1;32m 301\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ptop,\n", + "\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ak,\n", + "\u001b[1;32m 303\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bk,\n", + "\u001b[0;32m--> 304\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_set_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\u001b[43meta_file\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 305\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 306\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:2172\u001b[0m, in \u001b[0;36mMetricTerms._set_hybrid_pressure_coefficients\u001b[0;34m(self, eta_file)\u001b[0m\n", + "\u001b[1;32m 2162\u001b[0m ak \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2163\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPa\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2165\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2166\u001b[0m )\n", + "\u001b[1;32m 2167\u001b[0m bk \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2168\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2169\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2170\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2171\u001b[0m )\n", + "\u001b[0;32m-> 2172\u001b[0m pressure_coefficients \u001b[38;5;241m=\u001b[39m \u001b[43meta\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 2173\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_npz\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\n", + "\u001b[1;32m 2174\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 2175\u001b[0m ks \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mks\n", + "\u001b[1;32m 2176\u001b[0m ptop \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mptop\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/eta.py:60\u001b[0m, in \u001b[0;36mset_hybrid_pressure_coefficients\u001b[0;34m(km, eta_file)\u001b[0m\n", + "\u001b[1;32m 58\u001b[0m \u001b[38;5;66;03m# check size of ak and bk array is km+1\u001b[39;00m\n", + "\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ak\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of ak array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bk\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of bk array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\n", + "\u001b[0;31mValueError\u001b[0m: size of ak array is not equal to km=1\n", + "[5:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [17], line 14\u001b[0m\n", + "\u001b[1;32m 10\u001b[0m namelist_dict \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mstore_namelist_variables(\u001b[38;5;28mlocals\u001b[39m())\n", + "\u001b[1;32m 11\u001b[0m dimensions \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mdefine_dimensions(namelist_dict)\n", + "\u001b[0;32m---> 14\u001b[0m domain_configuration \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigure_domain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmpi_comm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msingle_layer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msingle_layer\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 16\u001b[0m initial_state \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mcreate_initial_state_advection(\n", + "\u001b[1;32m 17\u001b[0m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetric_terms\u001b[39m\u001b[38;5;124m\"\u001b[39m], dimensions, tracer_center, test_case\n", + "\u001b[1;32m 18\u001b[0m )\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:269\u001b[0m, in \u001b[0;36mconfigure_domain\u001b[0;34m(mpi_comm, dimensions, single_layer, backend)\u001b[0m\n", + "\u001b[1;32m 256\u001b[0m sizer \u001b[38;5;241m=\u001b[39m SubtileGridSizer\u001b[38;5;241m.\u001b[39mfrom_tile_params(\n", + "\u001b[1;32m 257\u001b[0m nx_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnx\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 258\u001b[0m ny_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mny\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 264\u001b[0m tile_rank\u001b[38;5;241m=\u001b[39mcommunicator\u001b[38;5;241m.\u001b[39mtile\u001b[38;5;241m.\u001b[39mrank,\n", + "\u001b[1;32m 265\u001b[0m )\n", + "\u001b[1;32m 267\u001b[0m quantity_factory \u001b[38;5;241m=\u001b[39m QuantityFactory\u001b[38;5;241m.\u001b[39mfrom_backend(sizer\u001b[38;5;241m=\u001b[39msizer, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[0;32m--> 269\u001b[0m metric_terms \u001b[38;5;241m=\u001b[39m \u001b[43mMetricTerms\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 270\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantity_factory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantity_factory\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcommunicator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommunicator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meta79.nc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n", + "\u001b[1;32m 271\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 273\u001b[0m \u001b[38;5;66;03m# workaround for single layer\u001b[39;00m\n", + "\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m single_layer:\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:304\u001b[0m, in \u001b[0;36mMetricTerms.__init__\u001b[0;34m(self, quantity_factory, communicator, grid_type, dx_const, dy_const, deglat, extdgrid, eta_file)\u001b[0m\n", + "\u001b[1;32m 297\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 298\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area_c \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 299\u001b[0m (\n", + "\u001b[1;32m 300\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ks,\n", + "\u001b[1;32m 301\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ptop,\n", + "\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ak,\n", + "\u001b[1;32m 303\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bk,\n", + "\u001b[0;32m--> 304\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_set_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\u001b[43meta_file\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 305\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 306\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:2172\u001b[0m, in \u001b[0;36mMetricTerms._set_hybrid_pressure_coefficients\u001b[0;34m(self, eta_file)\u001b[0m\n", + "\u001b[1;32m 2162\u001b[0m ak \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2163\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPa\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2165\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2166\u001b[0m )\n", + "\u001b[1;32m 2167\u001b[0m bk \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2168\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2169\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2170\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2171\u001b[0m )\n", + "\u001b[0;32m-> 2172\u001b[0m pressure_coefficients \u001b[38;5;241m=\u001b[39m \u001b[43meta\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 2173\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_npz\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\n", + "\u001b[1;32m 2174\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 2175\u001b[0m ks \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mks\n", + "\u001b[1;32m 2176\u001b[0m ptop \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mptop\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/eta.py:60\u001b[0m, in \u001b[0;36mset_hybrid_pressure_coefficients\u001b[0;34m(km, eta_file)\u001b[0m\n", + "\u001b[1;32m 58\u001b[0m \u001b[38;5;66;03m# check size of ak and bk array is km+1\u001b[39;00m\n", + "\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ak\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of ak array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bk\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of bk array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\n", + "\u001b[0;31mValueError\u001b[0m: size of ak array is not equal to km=1\n", + "[3:execute]\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)\n", + "Cell \u001b[0;32mIn [17], line 14\u001b[0m\n", + "\u001b[1;32m 10\u001b[0m namelist_dict \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mstore_namelist_variables(\u001b[38;5;28mlocals\u001b[39m())\n", + "\u001b[1;32m 11\u001b[0m dimensions \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mdefine_dimensions(namelist_dict)\n", + "\u001b[0;32m---> 14\u001b[0m domain_configuration \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfigure_domain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmpi_comm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdimensions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msingle_layer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msingle_layer\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 16\u001b[0m initial_state \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mcreate_initial_state_advection(\n", + "\u001b[1;32m 17\u001b[0m domain_configuration[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetric_terms\u001b[39m\u001b[38;5;124m\"\u001b[39m], dimensions, tracer_center, test_case\n", + "\u001b[1;32m 18\u001b[0m )\n", + "\u001b[1;32m 20\u001b[0m stencil_configuration \u001b[38;5;241m=\u001b[39m func\u001b[38;5;241m.\u001b[39mconfigure_stencil(domain_configuration, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\n", + "File \u001b[0;32m/pace/examples/notebooks/functions.py:269\u001b[0m, in \u001b[0;36mconfigure_domain\u001b[0;34m(mpi_comm, dimensions, single_layer, backend)\u001b[0m\n", + "\u001b[1;32m 256\u001b[0m sizer \u001b[38;5;241m=\u001b[39m SubtileGridSizer\u001b[38;5;241m.\u001b[39mfrom_tile_params(\n", + "\u001b[1;32m 257\u001b[0m nx_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnx\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[1;32m 258\u001b[0m ny_tile\u001b[38;5;241m=\u001b[39mdimensions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mny\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n", + "\u001b[0;32m (...)\u001b[0m\n", + "\u001b[1;32m 264\u001b[0m tile_rank\u001b[38;5;241m=\u001b[39mcommunicator\u001b[38;5;241m.\u001b[39mtile\u001b[38;5;241m.\u001b[39mrank,\n", + "\u001b[1;32m 265\u001b[0m )\n", + "\u001b[1;32m 267\u001b[0m quantity_factory \u001b[38;5;241m=\u001b[39m QuantityFactory\u001b[38;5;241m.\u001b[39mfrom_backend(sizer\u001b[38;5;241m=\u001b[39msizer, backend\u001b[38;5;241m=\u001b[39mbackend)\n", + "\u001b[0;32m--> 269\u001b[0m metric_terms \u001b[38;5;241m=\u001b[39m \u001b[43mMetricTerms\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 270\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantity_factory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantity_factory\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcommunicator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommunicator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meta79.nc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n", + "\u001b[1;32m 271\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 273\u001b[0m \u001b[38;5;66;03m# workaround for single layer\u001b[39;00m\n", + "\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m single_layer:\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:304\u001b[0m, in \u001b[0;36mMetricTerms.__init__\u001b[0;34m(self, quantity_factory, communicator, grid_type, dx_const, dy_const, deglat, extdgrid, eta_file)\u001b[0m\n", + "\u001b[1;32m 297\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 298\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_area_c \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 299\u001b[0m (\n", + "\u001b[1;32m 300\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ks,\n", + "\u001b[1;32m 301\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ptop,\n", + "\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ak,\n", + "\u001b[1;32m 303\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_bk,\n", + "\u001b[0;32m--> 304\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_set_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\u001b[43meta_file\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 305\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[1;32m 306\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ec2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/generation.py:2172\u001b[0m, in \u001b[0;36mMetricTerms._set_hybrid_pressure_coefficients\u001b[0;34m(self, eta_file)\u001b[0m\n", + "\u001b[1;32m 2162\u001b[0m ak \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2163\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2164\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPa\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2165\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2166\u001b[0m )\n", + "\u001b[1;32m 2167\u001b[0m bk \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mquantity_factory\u001b[38;5;241m.\u001b[39mzeros(\n", + "\u001b[1;32m 2168\u001b[0m [Z_INTERFACE_DIM],\n", + "\u001b[1;32m 2169\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n", + "\u001b[1;32m 2170\u001b[0m dtype\u001b[38;5;241m=\u001b[39mFloat,\n", + "\u001b[1;32m 2171\u001b[0m )\n", + "\u001b[0;32m-> 2172\u001b[0m pressure_coefficients \u001b[38;5;241m=\u001b[39m \u001b[43meta\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_hybrid_pressure_coefficients\u001b[49m\u001b[43m(\u001b[49m\n", + "\u001b[1;32m 2173\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_npz\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meta_file\u001b[49m\n", + "\u001b[1;32m 2174\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[1;32m 2175\u001b[0m ks \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mks\n", + "\u001b[1;32m 2176\u001b[0m ptop \u001b[38;5;241m=\u001b[39m pressure_coefficients\u001b[38;5;241m.\u001b[39mptop\n", + "\n", + "File \u001b[0;32m/pace/NDSL/ndsl/grid/eta.py:60\u001b[0m, in \u001b[0;36mset_hybrid_pressure_coefficients\u001b[0;34m(km, eta_file)\u001b[0m\n", + "\u001b[1;32m 58\u001b[0m \u001b[38;5;66;03m# check size of ak and bk array is km+1\u001b[39;00m\n", + "\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ak\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of ak array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bk\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m!=\u001b[39m km:\n", + "\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msize of bk array is not equal to km=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkm\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "\n", + "\u001b[0;31mValueError\u001b[0m: size of ak array is not equal to km=1\n", + "[1:execute] ValueError: size of ak array is not equal to km=1\n", + "[2:execute] ValueError: size of ak array is not equal to km=1\n" + ] + }, + { + "ename": "AlreadyDisplayedError", + "evalue": "6 errors", + "output_type": "error", + "traceback": [ + "6 errors" ] } ], @@ -2741,7 +1485,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "id": "783a781e", "metadata": {}, "outputs": [ @@ -2756,7 +1500,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqUElEQVR4nO3deXgUVd728bsTSIctiRGSEAy7Csg2BskDiqBGAjIo4wbqI8goDErc0Bl3FlHjirggjI7ADCMjggPOKA8MouAWRRBeN0BENoWEbZJAgATS5/0D06HJQnd1p9KpfD/XVZem+lTVqe7Qd/rXp065jDFGAAAAAAAAAOq8iJruAAAAAAAAAIDwQLEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQAAAAAAAAgCSKhQAAAAAAAAB+RbEQqCb9+vVTv379arobAACHqA25kpubq6uvvlqnn366XC6Xpk6dWtNdAoBKTZw4US6Xy2dd69atddNNN/ms27Rpk/r376/Y2Fi5XC4tWrRIkvTll1+qd+/eatSokVwul9atW2dPx2u5yp5PAOGDYmElPvvsM02cOFF5eXk13RUE6ZVXXtHs2bOrZd/ff/+9Jk6cqK1bt1bL/qvTzp07NXHiRL//qKmufxP/+te/dO655yo6OlotW7bUhAkTdOzYsZAeAwgH5IpzkCuVu/vuu7V06VI98MADmjNnjgYMGKDFixdr4sSJtvZj48aNuvvuu9W7d29FR0fL5XJV+ZxWZxbVxPkDCK0RI0bom2++0eOPP645c+aoR48eOnr0qK655hrt379fzz//vObMmaNWrVrVdFdrhYqez7lz59r+BdOqVat02223KTU1VfXr1y9XOD7Z66+/ro4dOyo6OlpnnnmmXnrppZD1pSbOH6iSQYWeeeYZI8ls2bKlpruCIJ1zzjmmb9++1bLv+fPnG0nmww8/LPdYUVGRKSoqqpbjhsKXX35pJJlZs2b51b46/k0sXrzYuFwuc9FFF5lXX33V3H777SYiIsKMGTMmZMcAwgW54hzkSuUSExPNDTfc4LNu7Nixxu4/OWfNmmUiIiJM586dTffu3av8t1fdWVQT5w/APxMmTCj37/PIkSOmuLjY+/OhQ4eMJPPQQw/5tFu/fr2RZF577TVb+uoUlT2fgwYNMq1atbK1LxMmTDD169c3qamp5qyzzqryvXrGjBlGkrnqqqvMq6++am688UYjyTz55JMh6UtNnD9QlXr2lyedx+PxqLi4WNHR0TXdFa/CwkI1atSoprtR64TyeYuKigrJfpzs3nvvVdeuXfWf//xH9eodfzuKiYnRE088oTvvvFMdOnSo4R4CNYNccY66liu7d+9WXFxctR/HGKMjR46oQYMGFT5++eWXKy8vT02aNNGzzz5b5Sh6sgjAidxut8/Pe/bskaRy7227d++ucH0w6kLWVvZ8VodT/T1166236r777lODBg2UmZmpH374ocJ2hw8f1kMPPaRBgwZpwYIFkqRRo0bJ4/Fo8uTJGj16tE477bRqOw+gRtR0tTIclX7DdPJS+o20JDN27Fjz97//3XTq1MnUq1fPLFy40BhzfORIr169THx8vImOjjbnnnuumT9/foXHmTNnjjnvvPNMgwYNTFxcnOnTp49ZunSpT5vFixebCy64wDRs2NA0btzYXHbZZebbb7/1aTNixAjTqFEj8+OPP5qBAweaxo0bmyuuuKLKc/z555/N73//e9O8eXMTFRVlWrdubcaMGeMzYmHz5s3m6quvNqeddppp0KCBSUtLM++++67Pfj788EMjycybN8889thjpkWLFsbtdpuLL77YbNq0qdxxP//8czNw4EATFxdnGjZsaLp06WKmTp3q02b9+vXmqquuMqeddppxu90mNTXVvPPOOz5tZs2aZSSZTz75xNx9992madOmpmHDhmbIkCFm9+7d3natWrUq9zqWjgYp3ceKFSvMrbfeapo1a2bi4uKMMcZs3brV3Hrrreass84y0dHRJj4+3lx99dU+oxJKtz95KR0N0rdv33IjT3Jzc83vf/97k5CQYNxut+natauZPXu2T5stW7YYSeaZZ54xf/7zn03btm1NVFSU6dGjh1m1alXlL+qv9u3bZ+655x7TuXNn06hRI9OkSRMzYMAAs27dunKv28lLZaMMT/VvworvvvvOSDLTpk3zWf/LL78YSWby5MmW9w2EG3LlOHLFublSWd9HjBhR4fpSJSUl5vnnnzedOnUybrfbJCQkmNGjR5v9+/f79KFVq1Zm0KBBZsmSJSY1NdW43W7z/PPPn7LvxlQ9qjfYLCouLjYTJ0407du3N26328THx5vzzz/f/Oc//zHGmJCf/9KlS023bt2M2+02HTt2NG+//XZA/QHqso8//tj06NHDuN1u07ZtWzNjxowKRxa2atXKjBgxwhhTcX6XPl5ZFhgTWO5UlBnGBJbXP//8s7niiitMo0aNTNOmTc0999xjjh075tO2pKTETJ061XTu3Nm43W7TtGlTk5GRYb788kufdnPmzDHnnnuuiY6ONqeddpoZOnSo2b59+ymfX39yrrLns2/fvhWuL3XkyBEzfvx4065dOxMVFWXOOOMM88c//tEcOXLEpw9V/T11KlWNAn/vvfeMJPPee+/5rP/ss8+MJDNnzpwq911QUGDuvPNO06pVKxMVFWWaNWtm0tPTzZo1a4wxplrO/6yzzjJut9uce+65ZuXKlQH1BzCGkYUVuvLKK/XDDz/oH//4h55//nk1bdpUktSsWTNvmw8++EBvvfWWMjMz1bRpU7Vu3VqS9MILL+jyyy/XDTfcoOLiYr355pu65ppr9O6772rQoEHe7SdNmqSJEyeqd+/eevTRRxUVFaUvvvhCH3zwgfr37y9JmjNnjkaMGKGMjAw99dRTOnTokKZPn64LLrhAa9eu9R5Tko4dO6aMjAxdcMEFevbZZ9WwYcNKz2/nzp3q2bOn8vLyNHr0aHXo0EG//PKLFixYoEOHDikqKkq5ubnq3bu3Dh06pDvuuEOnn366/vrXv+ryyy/XggUL9Lvf/c5nn08++aQiIiJ07733Kj8/X08//bRuuOEGffHFF942y5Yt029/+1s1b95cd955p5KSkrR+/Xq9++67uvPOOyVJ3333nc4//3y1aNFC999/vxo1aqS33npLQ4YM0dtvv13uuLfffrtOO+00TZgwQVu3btXUqVOVmZmpefPmSZKmTp2q22+/XY0bN9ZDDz0kSUpMTPTZx2233aZmzZpp/PjxKiwslHR8suLPPvtMw4YN0xlnnKGtW7dq+vTp6tevn77//ns1bNhQF154oe644w69+OKLevDBB9WxY0dJ8v73ZIcPH1a/fv30448/KjMzU23atNH8+fN10003KS8vz/sclJo7d64OHDigP/zhD3K5XHr66ad15ZVX6qefflL9+vUrfX1/+uknLVq0SNdcc43atGmj3Nxc/fnPf1bfvn31/fffKzk5WR07dtSjjz6q8ePHa/To0erTp48kqXfv3hXu81T/JvLz83X06NFK+1QqOjpajRs3liStXbtWktSjRw+fNsnJyTrjjDO8jwNOQK6QK07PlQsvvFBz5szRjTfeqEsvvVTDhw+XJLVr1047d+7UsmXLNGfOnHL7/sMf/qDZs2dr5MiRuuOOO7Rlyxa9/PLLWrt2rT799FOffm3cuFHXXXed/vCHP2jUqFE6++yzK+2zv4LNookTJyorK0u33HKLevbsqYKCAq1evVpfffWVLr30Uv3hD38I2flv2rRJQ4cO1ZgxYzRixAjNmjVL11xzjZYsWaJLL73Ur/4AddU333yj/v37q1mzZpo4caKOHTumCRMmlHv/PtmVV16puLg43X333bruuut02WWXqXHjxkpMTFSLFi30xBNP6I477tB5553n3VeguVNRZgSS1yUlJcrIyFBaWpqeffZZvf/++3ruuefUrl073Xrrrd52N998s2bPnq2BAwfqlltu0bFjx/Txxx/r888/974HPv7443rkkUd07bXX6pZbbtGePXv00ksv6cILL9TatWurHA3oT85V9nw2atRI+fn5+vnnn/X8889Lkvczg8fj0eWXX65PPvlEo0ePVseOHfXNN9/o+eef1w8//FDu5iiV/T0VjMqyIjU1VREREVq7dq3+93//t9Ltx4wZowULFigzM1OdOnXSvn379Mknn2j9+vU699xz9dBDD4Xs/FeuXKl58+bpjjvukNvt1iuvvKIBAwZo1apV6ty5s1/9ASQxsrAyVX0LLclERESY7777rtxjhw4d8vm5uLjYdO7c2Vx88cXedZs2bTIRERHmd7/7nSkpKfFp7/F4jDHGHDhwwMTFxZlRo0b5PJ6Tk2NiY2N91pd+s3X//ff7dW7Dhw83ERER5b5FOvH4d911l5FkPv74Y+9jBw4cMG3atDGtW7f29rt0BEjHjh19Ro+88MILRpL55ptvjDHGHDt2zLRp08a0atXK/Pe//63wmMYYc8kll5guXbr4fEvi8XhM7969zZlnnuldV/pNXHp6us/2d999t4mMjDR5eXnedZXNLVW6jwsuuKDcN28nv47GGJOdnW0kmb/97W/edVXNLXXyCJCpU6caSebvf/+7d11xcbHp1auXady4sSkoKDDGlI0AOf30031GFrzzzjtGkvn3v/9d7lgnOnLkSLnfqy1bthi3220effRR77pQzllY0bdhFS2l39KeuL+Kvqk877zzzP/8z//41S+gtiBXyJWTOS1XjCkb1XCiykZrfPzxx0aSeeONN3zWL1mypNz60hGdS5YsqbKvFanq316wWdStWzczaNCgKtuE8vxPHEmYn59vmjdvbn7zm98E1B+gLhoyZIiJjo4227Zt8677/vvvTWRkZJUjC43xHZ19otK8Onm0f6C5c3JmWMnrk9+Lf/Ob35jU1FTvzx988IGRZO64445yz01p5m3dutVERkaaxx9/3Ofxb775xtSrV6/c+pP5m3OVPZ+Vzdk3Z84cExER4fP3gzFlcwh++umn3nVV/T11KlWNLBw7dqyJjIys8LFmzZqZYcOGVbnv2NjYctl4slCdvySzevVq77pt27aZ6Oho87vf/S6g/gDcDdmivn37qlOnTuXWnzh3zn//+1/l5+erT58++uqrr7zrFy1aJI/Ho/HjxysiwvclKL0D07Jly5SXl6frrrtOe/fu9S6RkZFKS0vThx9+WO7YJ35zVBmPx6NFixZp8ODB5b4ZOfH4ixcvVs+ePXXBBRd4H2vcuLFGjx6trVu36vvvv/fZbuTIkT5zKZWOVPvpp58kHf82ZsuWLbrrrrvKfSNVesz9+/frgw8+0LXXXqsDBw54z3nfvn3KyMjQpk2b9Msvv/hsO3r0aJ+7VvXp00clJSXatm3bKZ+LUqNGjVJkZKTPuhNfx6NHj2rfvn1q37694uLifF7LQCxevFhJSUm67rrrvOvq16+vO+64QwcPHtTKlSt92g8dOtRn7ouTn9PKuN1u7+9VSUmJ9u3bp8aNG+vss8+23PdTee6557Rs2bJTLn/605+82xw+fNjb35NFR0d7HwfqCnKFXAlUbc+V+fPnKzY2VpdeeqnP72RqaqoaN25c7neyTZs2ysjIsHy8igSbRXFxcfruu++0adOmgI8d6PknJyf7jEiKiYnR8OHDtXbtWuXk5ATdH8CpSkpKtHTpUg0ZMkQtW7b0ru/YsWPI31Os5M7JmWElr8eMGePzc58+fXze299++225XC5NmDCh3LalmffPf/5THo9H1157rc9xk5KSdOaZZ1Z43BNVR85Jx98rO3bsqA4dOvj06+KLL5akcv2q7O+pYBw+fLjSeYP9zYovvvhCO3fuDPjYgZ5/r169lJqa6v25ZcuWuuKKK7R06VKVlJQE3R/UHVyGbFGbNm0qXP/uu+/qscce07p161RUVORdf+IHj82bNysiIqLKN7HSP/JK3wROFhMT4/NzvXr1dMYZZ5yy33v27FFBQYF3CHJltm3bprS0tHLrSy+F2rZtm88+TgxeSd4PI//9738lHT9nSVUe98cff5QxRo888ogeeeSRCtvs3r1bLVq08Pu4/qjotTx8+LCysrI0a9Ys/fLLLzLGeB/Lz8/3e98n2rZtm84888xyH+RPfE5PZPXcPB6PXnjhBb3yyivasmWLNxQk6fTTT7fU91M5MZD8VfoHxYn/TkpVNWk94FTkCrkSqNqeK5s2bVJ+fr4SEhIqfLz05gGlKvs3Eoxgs+jRRx/VFVdcobPOOkudO3fWgAEDdOONN6pr166nPHag59++fXuff/eSdNZZZ0mStm7dqqSkpKD6AzjVnj17dPjwYZ155pnlHjv77LO1ePHikB3LSu6c/N4WaF5HR0f7TGsiHX9/P/G9ffPmzUpOTlZ8fHylfd+0aZOMMRU+T5KqnK5Cqp6cK+3X+vXry51jKbuyori4uMLH/MmKp59+WiNGjFBKSopSU1N12WWXafjw4Wrbtu0pjx3o+Vf0+p111lk6dOiQ9uzZo6SkpKD6g7qDYqFFFb0hfPzxx7r88st14YUX6pVXXlHz5s1Vv359zZo1S3Pnzg1o/x6PR9Lx+SqSkpLKPV56t75SJ37rXxNOHkFR6sSQOJXSc7733nsr/Zavffv2IT9uRa/l7bffrlmzZumuu+5Sr169FBsbK5fLpWHDhnn7Wd2sntsTTzyhRx55RL///e81efJkxcfHKyIiQnfddVe19X3//v2VBuiJGjRooNjYWElS8+bNJUm7du1SSkqKT7tdu3apZ8+eoe8oEMbIFV/kSuiFW654PB4lJCTojTfeqPDxkz8YVceXSMFm0YUXXqjNmzfrnXfe0X/+8x/95S9/0fPPP68ZM2bolltuqXLbQM/fH8H0B0DwrOTOye9tgeZ1Ze/tgfJ4PHK5XPq///u/CvdZOodeZaor5zwej7p06aIpU6ZU+PjJ793VlRUlJSXavXu3zxc8xcXF2rdvn5KTk6vc/tprr1WfPn20cOFC/ec//9Ezzzyjp556Sv/85z81cODAKrcN9Pz9EUx/UHdQLKzEyd/c+uPtt99WdHS0li5d6nM5y6xZs3zatWvXTh6PR99//726d+9e4b7atWsnSUpISFB6enrAfalMs2bNFBMTo2+//bbKdq1atdLGjRvLrd+wYYP38UCUns+3335b6fmUfpNRv379kJ6zlddywYIFGjFihJ577jnvuiNHjigvL8/yvlu1aqWvv/5aHo/H5wO41ee0MgsWLNBFF12k119/3Wd9Xl6e96YKUuDPS1Xtr7zyynKXu1VkxIgRmj17tiR5f/dXr17t82Fs586d+vnnnzV69OiA+geEO3KFXHF6rlSmsnNq166d3n//fZ1//vk1Npo8FFkUHx+vkSNHauTIkTp48KAuvPBCTZw40VucC9X5l45YOnF/P/zwgyT5TOB/qv4AdU2zZs3UoEGDCi/PryiXghGK3KmOvG7Xrp2WLl2q/fv3Vzq6sF27djLGqE2bNt5Ry4HwN+cqU9V75f/7f/9Pl1xyiaX8DYUTs+Kyyy7zrl+9erU8Hk+lf3udqHnz5rrtttt02223affu3Tr33HP1+OOPe4tzoTr/in7Pf/jhBzVs2NDnS6hT9QdgzsJKNGrUSJL8fnOTjn+r43K5fC7P2bp1a7k7FA0ZMkQRERF69NFHy33LUvrtfkZGhmJiYvTEE09UeJfZPXv2+N2vE0VERGjIkCH697//rdWrV5d7vPT4l112mVatWqXs7GzvY4WFhXr11VfVunXrgOeBOPfcc9WmTRtNnTq13HNaesyEhAT169dPf/7zn7Vr165y+7B6zo0aNQrodZSOv5Ynj7R46aWXfF7b0n1L/v2eXHbZZcrJyfHeUVM6frfRl156SY0bN1bfvn0D6mNlKur7/Pnzy82PEujveFXtrcxZeM4556hDhw569dVXfZ7X6dOny+Vy6eqrr/arX0BtQa6QK07PlcpUdk7XXnutSkpKNHny5HLbHDt2LODn2Ipgs2jfvn0+Pzdu3Fjt27f3uaw5VOe/c+dOLVy40PtzQUGB/va3v6l79+7e0Uf+9AeoayIjI5WRkaFFixZp+/bt3vXr16/X0qVLQ3qsUOROdeT1VVddJWOMJk2aVO6x0vf3K6+8UpGRkZo0aVK593xjTLn3l5P5m3OVKb0j8smuvfZa/fLLL3rttdfKPXb48GHvHaSr08UXX6z4+HhNnz7dZ/306dPVsGFDDRo0qNJtS0pKyp1XQkKCkpOTy2VFKM4/OzvbZ47IHTt26J133lH//v0VGRnpd38ARhZWonQOtoceekjDhg1T/fr1NXjwYO8ffBUZNGiQpkyZogEDBuj666/X7t27NW3aNLVv315ff/21t1379u310EMPafLkyerTp4+uvPJKud1uffnll0pOTlZWVpZiYmI0ffp03XjjjTr33HM1bNgwNWvWTNu3b9d7772n888/Xy+//LKlc3viiSf0n//8R3379vXefn3Xrl2aP3++PvnkE8XFxen+++/XP/7xDw0cOFB33HGH4uPj9de//lVbtmzR22+/HfClaREREZo+fboGDx6s7t27a+TIkWrevLk2bNig7777zhvU06ZN0wUXXKAuXbpo1KhRatu2rXJzc5Wdna2ff/5Z/+///b+Azzc1NVXTp0/XY489pvbt2yshIaHSOUBK/fa3v9WcOXMUGxurTp06KTs7W++//365uZm6d++uyMhIPfXUU8rPz5fb7dbFF19c4fxDo0eP1p///GfddNNNWrNmjVq3bq0FCxbo008/1dSpU9WkSZOAz62yvj/66KMaOXKkevfurW+++UZvvPFGuTko2rVrp7i4OM2YMUNNmjRRo0aNlJaWVuk8H1X9m7AyZ6EkPfPMM7r88svVv39/DRs2TN9++61efvll3XLLLd45twCnIFfIFafnSmVKf/fvuOMOZWRkKDIyUsOGDVPfvn31hz/8QVlZWVq3bp369++v+vXra9OmTZo/f75eeOEFy18c5efn66WXXpIkffrpp5Kkl19+WXFxcYqLi1NmZqa3bTBZ1KlTJ/Xr10+pqamKj4/X6tWrtWDBAp/9h+r8zzrrLN1888368ssvlZiYqJkzZyo3N9dnpLE//QHqokmTJmnJkiXq06ePbrvtNu8XK+ecc45PnoZCsLlTHXl90UUX6cYbb9SLL76oTZs2acCAAfJ4PPr444910UUXKTMzU+3atdNjjz2mBx54QFu3btWQIUPUpEkTbdmyRQsXLtTo0aN17733VnoMf3OuMqmpqZo3b57GjRun8847T40bN9bgwYN144036q233tKYMWP04Ycf6vzzz1dJSYk2bNigt956S0uXLq3wBmv+2LZtm+bMmSNJ3i88H3vsMUnHR+ffeOONko5f2jx58mSNHTtW11xzjTIyMvTxxx/r73//ux5//PEq54I8cOCAzjjjDF199dXq1q2bGjdurPfff19ffvmlzyjMUJ1/586dlZGRoTvuuENut1uvvPKKJHkLxf72B6j43uAwxhgzefJk06JFCxMREWEkmS1bthhjjt+SvLJbjb/++uvmzDPPNG6323To0MHMmjXLTJgwocLbsM+cOdP85je/MW6325x22mmmb9++ZtmyZT5tPvzwQ5ORkWFiY2NNdHS0adeunbnpppt8boc+YsQI06hRo4DObdu2bWb48OGmWbNmxu12m7Zt25qxY8eaoqIib5vNmzebq6++2sTFxZno6GjTs2dP8+6775brnyQzf/58n/VbtmwxksysWbN81n/yySfm0ksvNU2aNDGNGjUyXbt2NS+99JJPm82bN5vhw4ebpKQkU79+fdOiRQvz29/+1ixYsMDbZtasWUaS+fLLLyvsz4cffuhdl5OTYwYNGmSaNGliJJm+fftWuQ9jjPnvf/9rRo4caZo2bWoaN25sMjIyzIYNG0yrVq3MiBEjfNq+9tprpm3btiYyMtLn2H379vUeq1Rubq53v1FRUaZLly7lnqPS5+6ZZ54p1y9JZsKECeXWn+jIkSPmnnvuMc2bNzcNGjQw559/vsnOzq6wP++8847p1KmTqVevXoWv18kq+zcRjIULF5ru3bsbt9ttzjjjDPPwww+b4uLioPcLhCNyhVxxeq5U9Lt87Ngxc/vtt5tmzZoZl8tV7nf31VdfNampqaZBgwamSZMmpkuXLuZPf/qT2blzp7dNq1atzKBBg6rsZ0XnXNHSqlWrcu2tZtFjjz1mevbsaeLi4kyDBg1Mhw4dzOOPP+6zbSjPf+nSpaZr167e94OT/5340x+grlq5cqVJTU01UVFRpm3btmbGjBkV5unJ78uVvYdWllfGBJc7J+7fal5XdF7Hjh0zzzzzjOnQoYOJiooyzZo1MwMHDjRr1qzxaff222+bCy64wDRq1Mg0atTIdOjQwYwdO9Zs3Lixwn6W8jfnKns+Dx48aK6//noTFxdX7r26uLjYPPXUU+acc87x/o2TmppqJk2aZPLz873tqvp7qiKlr2FFy8n5Zszx9+uzzz7bREVFmXbt2pnnn3/eeDyeKo9RVFRk/vjHP5pu3bp5/1bp1q2beeWVV6rt/P/+9797/3b8zW9+4/M3jL/9AVzGBDBjNwAAAABbtW7dWp07d9a7775b010BAIQpl8ulsWPHWr5SBDgRcxYCAAAAAAAAkESxEAAAAAAAAMCvKBYCAAAAAAAAkESxEAAc56OPPtLgwYOVnJwsl8ulRYsWnXKbFStW6Nxzz5Xb7Vb79u01e/bsau8nAMA/W7durdPzFZJrAHBqxhjmK0TIUCwEAIcpLCxUt27dNG3aNL/ab9myRYMGDdJFF12kdevW6a677tItt9yipUuXVnNPAQA4NXINAAB7cTdkAHAwl8ulhQsXasiQIZW2ue+++/Tee+/p22+/9a4bNmyY8vLytGTJEht6CQCAf8g1AACqX72a7sDJPB6Pdu7cqSZNmsjlctV0dwDUYcYYHThwQMnJyYqICG4g9pEjR1RcXBxUX05+T3S73XK73UH1S5Kys7OVnp7usy4jI0N33XVX0PsGuQYgfIRLrlVnpknkWnUj1wCEg1BmmhRcrkVFRSk6OjroPoSTsCsW7ty5UykpKTXdDQDw2rFjh8444wzL2x85ckRtWjVWzu4Sy/to3LixDh486LNuwoQJmjhxouV9lsrJyVFiYqLPusTERBUUFOjw4cNq0KBB0Meoy8g1AOGmpnOtOjNNIteqG7kGIJwEm2nSr7nWoIFyLG6flJSkLVu2OKpgGHbFwiZNmkiSLtBlqqf6NdwbAHXZMR3VJ1rsfV+yqri4WDm7S7RlTSvFNAn8W6+CAx61Sd2mHTt2KCYmxrs+VCMwUL3INQDhIhxyjUyr/Up/f3Zs3+7zGgKAnQoKCpTSsmXQmSb9mmuSdrhcCvRdrUBSSk6OiouLKRZWp9Kh7PVUX/VcfKgCUIN+ndE1VJfYxDSJsFQs9G4fE1Mtf5QnJSUpNzfXZ11ubq5iYmIYfREC5BqAsBFGuVZdmSaRa9Wt9PenOl9DAPBXKKdDiJEUE+j+HHobkLArFgKAU5UYj0osZEmJ8YS+Myfo1auXFi9e7LNu2bJl6tWrV7UeFwBQu1nJterONIlcAwBYFBEhWSkWllifbipcBT8LJADALx4Zy0sgDh48qHXr1mndunWSpC1btmjdunXavn27JOmBBx7Q8OHDve3HjBmjn376SX/605+0YcMGvfLKK3rrrbd09913h+zcAQDOY0emSeQaAMAmERHWFgdiZCEA2MQjj6yMpwh0q9WrV+uiiy7y/jxu3DhJ0ogRIzR79mzt2rXL+wFLktq0aaP33ntPd999t1544QWdccYZ+stf/qKMjAwLvQUA1BVWcs1KEpJrAABbWB1Z6EAUCwHAJiXGqMRCmAS6Tb9+/WSq2Gb27NkVbrN27dpAuwYAqMOs5JqVHCTXAAC2oFjoRbEQAGxi9fIrK9sAAFDdrOQamQYACFsUC72ceXE1AAAAAAAAgIAxshAAbOKRUQkjCwEADmEl18g0AEDYYmShF8VCALAJlyEDAJyEy5ABAI5CsdCLYiEA2MSuG5wAAGAHu25wAgCALSgWelEsBACbeH5drGwHAEC4sZJrZBoAIGy5XMcLhoHwODPZuMEJAAAAAAAAAEmMLAQA25RYvMGJlW0AAKhuVnKNTAMAhK2IiMBHFjoUxUIAsEmJOb5Y2Q4AgHBjJdfINABA2KJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKUSBXh3rV+3AwAg3FjJNTINABC2KBZ6USwEAJt4zPHFynYAAIQbK7lGpgEAwhbFQq+AnoWsrCydd955atKkiRISEjRkyBBt3LjRp02/fv3kcrl8ljFjxoS00wAAhAK5BgBwCjINABAqARULV65cqbFjx+rzzz/XsmXLdPToUfXv31+FhYU+7UaNGqVdu3Z5l6effjqknQaA2qjk18u1rCyoHuQaAFhHpoUXMg0AglQ6sjDQxYECugx5yZIlPj/Pnj1bCQkJWrNmjS688ELv+oYNGyopKSk0PQQAh7D6IYkPVtWHXAMA66zkGplWfcg0AAiSg4t/gQrqWcjPz5ckxcfH+6x/44031LRpU3Xu3FkPPPCADh06VOk+ioqKVFBQ4LMAgBN5jMvyAnuQawDgPzItvIUi0yRyDUAdwshCL8s3OPF4PLrrrrt0/vnnq3Pnzt71119/vVq1aqXk5GR9/fXXuu+++7Rx40b985//rHA/WVlZmjRpktVuAECtwcjC8EauAUBgGFkYvkKVaRK5BqAOcbkCL/4ZZ965y2WMtTO79dZb9X//93/65JNPdMYZZ1Ta7oMPPtAll1yiH3/8Ue3atSv3eFFRkYqKirw/FxQUKCUlRf10heq56lvpGgCExDFzVCv0jvLz8xUTE2N5PwUFBYqNjdUH36aocZPAv3k6eMCjizvvCLofqBq5BsDpwiHXyDR7hCrTpMpzLT8vj9cQQI0pKChQbFxcSPKkNNfyzzxTMZGRgW1bUqLYTZscl2uWRhZmZmbq3Xff1UcffVRl+EhSWlqaJFUaQG63W26320o3AAAICXINAOAUocw0iVwDgLoooGKhMUa33367Fi5cqBUrVqhNmzan3GbdunWSpObNm1vqIAA4hbE4V5NhfqdqQ64BgHVWco1Mqz5kGgAEycochA69DDmgZ2Hs2LH6+9//rrlz56pJkybKyclRTk6ODh8+LEnavHmzJk+erDVr1mjr1q3617/+peHDh+vCCy9U165dq+UEAKC2KJ3bycqC6kGuAYB1ZFp4IdMAIEg23uBk2rRpat26taKjo5WWlqZVq1b5td2bb74pl8ulIUOGWDquvwIaWTh9+nRJUr9+/XzWz5o1SzfddJOioqL0/vvva+rUqSosLFRKSoquuuoqPfzwwyHrMADUViUmQiUm8DApceaXVWGBXAMA66zkGplWfcg0AAiSTSML582bp3HjxmnGjBlKS0vT1KlTlZGRoY0bNyohIaHS7bZu3ap7771Xffr0CfiYgQr4MuSqpKSkaOXKlUF1CACcyiOXPIEN6P51Oz5ZVRdyDQCss5JrZFr1IdMAIEg2FQunTJmiUaNGaeTIkZKkGTNm6L333tPMmTN1//33V7hNSUmJbrjhBk2aNEkff/yx8vLyAj5uIKyNlwQABIzLkAEATkKmAQAcJYjLkAsKCnyWE+8if6Li4mKtWbNG6enpJxw2Qunp6crOzq60a48++qgSEhJ08803h/acK0GxEAAAAAAAALAoJSVFsbGx3iUrK6vCdnv37lVJSYkSExN91icmJionJ6fCbT755BO9/vrreu2110Le78oEdBkyAMA663MWcskWACD8WJuzkEwDAISpIC5D3rFjh2JiYryr3W53SLp04MAB3XjjjXrttdfUtGnTkOzTHxQLAcAmx+d2CvzyKyvbAABQ3azkGpkGAAhbQRQLY2JifIqFlWnatKkiIyOVm5vrsz43N1dJSUnl2m/evFlbt27V4MGDves8Ho8kqV69etq4caPatWsXWJ/9QLEQAGziUYRKuMEJAMAhrOQamQYACFsuV+DFwl8Ld/6KiopSamqqli9friFDhvy6C4+WL1+uzMzMcu07dOigb775xmfdww8/rAMHDuiFF15QSkpKYP31E8VCALAJlyEDAJyEy5ABhJoJYPSxiy8fqkWdfg2sjCwMtL2kcePGacSIEerRo4d69uypqVOnqrCw0Ht35OHDh6tFixbKyspSdHS0Onfu7LN9XFycJJVbH0oUCwHAJh5FyMPIQgCAQ1jJNTINABC2bCoWDh06VHv27NH48eOVk5Oj7t27a8mSJd6bnmzfvl0RFvYbShQLAQAAAAAAAJtkZmZWeNmxJK1YsaLKbWfPnh36Dp2EYiEA2KTEuFRiAp/Y3co2AABUNyu5RqYBAMKWTSMLawOKhQBgkxKLNzgp4ZItAEAYspJrZBoAIGxRLPSiWAgANvGYCHks3ODEw2TwAIAwZCXXyDQAQNiiWOhFsRAAbMLIQgCAkzCyEADgKBQLvSgWAoBNPLI2V5Mn9F0BACBoVnKNTAMAhC2KhV7OPCsAAAAAAAAAAWNkIQDYxKMIeSx8R2NlGwAAqpuVXCPTAABhi5GFXhQLAcAmJSZCJRZucGJlGwAAqpuVXCPTAABhy+UKvPjnCnyaqdqAYiEA2MQjlzyyMmehMwMIAFC7Wck1Mg2oewz/7lFbMLLQi2IhANiEkYUAACdhZCEAwFEoFnpRLAQAm5QoQiUW5mqysg0AANXNSq6RaQCAsEWx0MuZZwUAAAAAAAAgYIwsBACbeIxLHmNhzkIL2wAAUN2s5BqZBgAIW4ws9KJYCAA28Vi8DNnDIHAAQBiykmtkGgAgbFEs9KJYCAA28ZgIeSxM7G5lGwAAqpuVXCPTAABhi2KhF8VCALBJiVwqUeCXX1nZBgCA6mYl18g0AEDYoljoRbEQAGzCyEIAgJMwshAA4CgUC72ceVYAAAAAAAAAAsbIQgCwSYmsXX5VEvquAAAQNCu5RqYBAMKWyxX4SEGXM6fXYGQhANik9HItK0ugpk2bptatWys6OlppaWlatWpVle2nTp2qs88+Ww0aNFBKSoruvvtuHTlyxOqpAgDqALsyTSLXAMAuLhm/F8cpvQw50MWBGFkIADYpMREqsfAhKdBt5s2bp3HjxmnGjBlKS0vT1KlTlZGRoY0bNyohIaFc+7lz5+r+++/XzJkz1bt3b/3www+66aab5HK5NGXKlID7CwCoG6zkmpUcJNcAALZgzkIvZ54VAIQhI5c8FhYT4CVeU6ZM0ahRozRy5Eh16tRJM2bMUMOGDTVz5swK23/22Wc6//zzdf3116t169bq37+/rrvuulOO2gAA1G1Wci3QTJPINQCATRhZ6OXMswKAMFQ6AsPK4q/i4mKtWbNG6enp3nURERFKT09XdnZ2hdv07t1ba9as8X6I+umnn7R48WJddtllwZ0wAMDRqjvTJHINAGAjioVeXIYMALVEQUGBz89ut1tut9tn3d69e1VSUqLExESf9YmJidqwYUOF+73++uu1d+9eXXDBBTLG6NixYxozZowefPDB0J4AAAC/8ifTJHINAICa4MwSKACEIY9xWV4kKSUlRbGxsd4lKysrJP1asWKFnnjiCb3yyiv66quv9M9//lPvvfeeJk+eHJL9AwCcKRwzTSLXAAAWMbLQi5GFAGCTEkWoxMJ3NKXb7NixQzExMd71FY3AaNq0qSIjI5Wbm+uzPjc3V0lJSRXu/5FHHtGNN96oW265RZLUpUsXFRYWavTo0XrooYcU4dAABAAEx0quBZJpErkGALARNzjxcuZZAUAYCnZkYUxMjM9S0QerqKgopaamavny5WXH9Xi0fPly9erVq8J+HTp0qNwHp8jISEmSMSZUpw8AcJjqzjSJXAMA2IiRhV6MLAQAm3gUIY+F72gC3WbcuHEaMWKEevTooZ49e2rq1KkqLCzUyJEjJUnDhw9XixYtvJd8DR48WFOmTNFvfvMbpaWl6ccff9QjjzyiwYMHez9cAQBwMiu5ZiUHyTUAgC0YWehFsRAAbFJiXCr5dURFoNsFYujQodqzZ4/Gjx+vnJwcde/eXUuWLPFODr99+3afERcPP/ywXC6XHn74Yf3yyy9q1qyZBg8erMcffzzgvgIA6g4ruWYlB8k1AIAtXK7Ai3+uwHOtNqBYCAAOlJmZqczMzAofW7Fihc/P9erV04QJEzRhwgQbegYAQODINQAA7EOxEABscuJcTYFuBwBAuLGSa2QaACBscRmyF8VCALCJMRHymMDDxFjYBgCA6mYl18g0AFVxiZsQoQZRLPSiWAgANimRSyWyMGehhW0AAKhuVnKNTAMAhC2KhV4UCwHAJh5j7fIrD1+wAgDCkJVcI9MAAGGLYqEXxUIAsInH4mXIVrYBAKC6Wck1Mg0AELYoFno586wAAAAAAAAABIyRhQBgE49c8liYq8nKNgAAVDcruUamAQDCFiMLvSgWAoBNSoxLJRbmLLSyDQAA1c1KrpFpAICwRbHQK6CzysrK0nnnnacmTZooISFBQ4YM0caNG33aHDlyRGPHjtXpp5+uxo0b66qrrlJubm5IOw0AtVHp3E5WFlQPcg0ArCPTwguZBgBBKi0WBro4UEBntXLlSo0dO1aff/65li1bpqNHj6p///4qLCz0trn77rv173//W/Pnz9fKlSu1c+dOXXnllSHvOADUNh655DEWFi7ZqjbkGgBYZynXyLRqQ6YBQJBcrsALhS5n5lpAlyEvWbLE5+fZs2crISFBa9as0YUXXqj8/Hy9/vrrmjt3ri6++GJJ0qxZs9SxY0d9/vnn+p//+Z/Q9RwAahljcc5CwwerakOuAYB1VnKNTKs+ZBoABInLkL2COqv8/HxJUnx8vCRpzZo1Onr0qNLT071tOnTooJYtWyo7O7vCfRQVFamgoMBnAQCgJpBrAACnCEWmSeQaANRFlouFHo9Hd911l84//3x17txZkpSTk6OoqCjFxcX5tE1MTFROTk6F+8nKylJsbKx3SUlJsdolAAhrli5B/nVB9SPXACAwZFr4ClWmSeQagDqEOQu9LJ/V2LFj9e233+rNN98MqgMPPPCA8vPzvcuOHTuC2h8AhCtucBLeyDUACAyZFr5ClWkSuQagDqFY6BXQnIWlMjMz9e677+qjjz7SGWec4V2flJSk4uJi5eXl+XxjlZubq6SkpAr35Xa75Xa7rXQDAGoVqyMqGIVR/cg1AAiclVwj06pfKDNNItcA1CHMWegV0FkZY5SZmamFCxfqgw8+UJs2bXweT01NVf369bV8+XLvuo0bN2r79u3q1atXaHoMALWU59eJ4K0sqB7kGgBYR6aFFzINAILEyEKvgEYWjh07VnPnztU777yjJk2aeOe2iI2NVYMGDRQbG6ubb75Z48aNU3x8vGJiYnT77berV69e3F0LQJ3HyMLwQ64BgHWMLAwvZBoABImRhV4BFQunT58uSerXr5/P+lmzZummm26SJD3//POKiIjQVVddpaKiImVkZOiVV14JSWcBAAglcg0A4BRkGgAgVAIqFhpjTtkmOjpa06ZN07Rp0yx3CgCciJGF4YdcAwDrGFkYXsg0AAgSIwu9LN3gBAAQOIqFAAAnoVgIAHAUioVezjwrAAhDpR+qrCwAAIQbMg0A4CguV+A3N3FZy7Vp06apdevWio6OVlpamlatWlVp29dee019+vTRaaedptNOO03p6elVtg8FioUAYBMja3eOPPVFRQAA2M9KrpFpAICwZdPdkOfNm6dx48ZpwoQJ+uqrr9StWzdlZGRo9+7dFbZfsWKFrrvuOn344YfKzs5WSkqK+vfvr19++SXYM64UxUIAAAAAAADABlOmTNGoUaM0cuRIderUSTNmzFDDhg01c+bMCtu/8cYbuu2229S9e3d16NBBf/nLX+TxeLR8+fJq6yPFQgCwCZchAwCchEwDADiKDSMLi4uLtWbNGqWnp59w2Ailp6crOzvbr30cOnRIR48eVXx8fEDHDgQ3OAEAm3CDEwCAk3CDEwCAowRxg5OCggKf1W63W263u1zzvXv3qqSkRImJiT7rExMTtWHDBr8Oed999yk5Odmn4BhqjCwEAJswshAA4CRkGgDAUYIYWZiSkqLY2FjvkpWVVS1dfPLJJ/Xmm29q4cKFio6OrpZjSIwsBADbMLIQAOAkjCwEADhKECMLd+zYoZiYGO/qikYVSlLTpk0VGRmp3Nxcn/W5ublKSkqq8lDPPvusnnzySb3//vvq2rVrYP0MECMLAcAmxrgsLwAAhBsyDQDgKEGMLIyJifFZKisWRkVFKTU11efmJKU3K+nVq1elXXv66ac1efJkLVmyRD169AjteVeAkYUAAAAAAACADcaNG6cRI0aoR48e6tmzp6ZOnarCwkKNHDlSkjR8+HC1aNHCeynzU089pfHjx2vu3Llq3bq1cnJyJEmNGzdW48aNq6WPFAsBwCYeueSRhcuQLWwDAEB1s5JrZBoAIGwFcRlyIIYOHao9e/Zo/PjxysnJUffu3bVkyRLvTU+2b9+uiBP2O336dBUXF+vqq6/22c+ECRM0ceLEgI/vD4qFAGAT5iwEADgJcxYCABzFpmKhJGVmZiozM7PCx1asWOHz89atWy0dIxgUCwHAJlbnamJ+JwBAOLKSa2QaACBsuVyBF/9czsw1ioUAYBNGFgIAnISRhQAAR7FxZGG4o1gIADZhZCEAwEkYWQgAcBSKhV7OPCsAAAAAAAAAAWNkIQDYxFi8DJlRGACAcGQl18g0AAhvJoC71rtkqrEnNYCRhV4UCwHAJkaSsZCnDotgAIBDWMk1Mg0AELYoFnpRLAQAm3jkkiuAb+pO3A4AgHBjJdfINABA2KJY6EWxEABswg1OAABOwg1OAACOQrHQi2IhANjEY1xyWfiQZGWeQwAAqpuVXCPTAABhi2KhlzPPCgAAAAAAAEDAGFkIADYxxuINTpgNHgAQhqzkGpkGAAhbjCz0olgIADZhzkIAgJMwZyEAwFEoFnpRLAQAm1AsBAA4CcVCAICjuFyBF/9czsw1ioUAYBNucAIAcBJucAIAcBRGFnpRLAQAmzBnIQDASZizEADgKBQLvSgWos6JaNDAv4YBDCc2RUX+ty0p8bstAABVcdWr73fbiAbRfrcNJKvIQABAqBw95v9nsPoRAWTKkSP+tYuK8n+f9ZxZTnHJ/291jPx/vQLZL2qeM3+7ASAMHR+BYWXOwmroDAAAQbKSa2QaACBsMbLQi2IhANiEG5wAAJyEG5wAAByFYqEXxUIAsIn5dbGyHQAA4cZKrpFpAICwRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAIByZIJYATZs2Ta1bt1Z0dLTS0tK0atWqKtvn5eVp7Nixat68udxut8466ywtXrw48AMDAOoOmzJNItcAADYoLRYGujgQIwsBwGHmzZuncePGacaMGUpLS9PUqVOVkZGhjRs3KiEhoVz74uJiXXrppUpISNCCBQvUokULbdu2TXFxcfZ3HgCAk5BrAADYi2IhANjF4mXICnCbKVOmaNSoURo5cqQkacaMGXrvvfc0c+ZM3X///eXaz5w5U/v379dnn32m+vXrS5Jat24deD8BAHWLlVyzkIPkGgDAFlyG7OXMswKAMGSM9UWSCgoKfJaioqJyxyguLtaaNWuUnp7uXRcREaH09HRlZ2dX2K9//etf6tWrl8aOHavExER17txZTzzxhEpKSqrleQAAOEN1Z5pErgEAbORyBX4JssuZc/FSLAQAm5ROBG9lkaSUlBTFxsZ6l6ysrHLH2Lt3r0pKSpSYmOizPjExUTk5ORX266efftKCBQtUUlKixYsX65FHHtFzzz2nxx57LPRPAgDAMao70yRyDQBgI+Ys9OIyZACwi3FZuvyqdJsdO3YoJibGu9rtdoekWx6PRwkJCXr11VcVGRmp1NRU/fLLL3rmmWc0YcKEkBwDAOBAVnKtmjNNItcAABZxGbIXxUIAsMmJl18Fup0kxcTE+HywqkjTpk0VGRmp3Nxcn/W5ublKSkqqcJvmzZurfv36ioyM9K7r2LGjcnJyVFxcrKioqMA7DQBwPCu5FkimSeQaAMBGFAu9KBYibEUE8ofcOe39bnqg3an/MJUkT33/D994xxG/29b7dqvfbUvy8vzvBCApKipKqampWr58uYYMGSLp+AiL5cuXKzMzs8Jtzj//fM2dO1cej0cRv4bdDz/8oObNm/OBCqgB9RKa+d32SNdWfrc92ML/YKtX5H8FKGZjgd9tXRu2+NXOc6Ti+esqZDz+t0WtQ64B4enAQf9HFf/8s//7bdjQ/7atmvr/GUwbNvjXLpDCT3v/P4MGdGK1qPjkkoWREKgVas9vIQDUdiaIJQDjxo3Ta6+9pr/+9a9av369br31VhUWFnrvIjl8+HA98MAD3va33nqr9u/frzvvvFM//PCD3nvvPT3xxBMaO3ZscOcLAHA2GzJNItcAADZhzkIvRhYCgE1OnNg90O0CMXToUO3Zs0fjx49XTk6OunfvriVLlngnh9++fbt3pIV0fJL5pUuX6u6771bXrl3VokUL3XnnnbrvvvsC7isAoO6wkmtWcpBcAwDYgsuQvSgWAoCdbBqpn5mZWenlWStWrCi3rlevXvr888+ruVcAAMch1wAATkGx0ItiIQDYxK6RhQAA2MGukYUAANiCYqEXxUIAsIvFuZqYNxgAEJas5BqZBgAIVxQLvZx5VgAAAAAAAAACFnCx8KOPPtLgwYOVnJwsl8ulRYsW+Tx+0003yeVy+SwDBgwIVX8BoBZzBbGgOpBpABAMMi3ckGsAEASXK/A7IbucmWsBFwsLCwvVrVs3TZs2rdI2AwYM0K5du7zLP/7xj6A6CQCOYIJYUC3INAAIApkWdsg1AAhCoIVCK5ct1xIBz1k4cOBADRw4sMo2brdbSUlJljsFAI7EnIVhh0wDgCAwZ2HYIdcAIAjMWehVLWe1YsUKJSQk6Oyzz9att96qffv2Vdq2qKhIBQUFPgsAOJJxWV9QYwLJNIlcA1CHkGm1ErkGAJVgZKFXyO+GPGDAAF155ZVq06aNNm/erAcffFADBw5Udna2IiMjy7XPysrSpEmTQt0NOICrQzu/2267LM7vtvV7/tevdvUiPX7vc/u60/1u29LVxu+2Ednf+t3WHDvqd1vUDGOOL1a2Q80INNMkcg2Vi2jY0K92hT39z4ntV/ufVfFN9/vdNq8w2u+2Bz+P87vtGfub+tdwT9XFixN5Dh/xu62M/88XTs1KrpFpNYtcw6kcPeZfQf/77/3f54YN/rft3dv/tvIzVyVJO3f61y4nx/99Nm7sf9uEhOrZr0MLVTWGkYVeIS8WDhs2zPv/Xbp0UdeuXdWuXTutWLFCl1xySbn2DzzwgMaNG+f9uaCgQCkpKaHuFgAAAQs00yRyDQAQvsg1AIA/qr0E2rZtWzVt2lQ//vhjhY+73W7FxMT4LADgSNzgpNY7VaZJ5BqAOoRMq/XINQA4AZche4V8ZOHJfv75Z+3bt0/Nmzev7kMBQHizOlcT8zuFDTINAE5gJdfItLBCrgHACbgM2SvgYuHBgwd9vnnasmWL1q1bp/j4eMXHx2vSpEm66qqrlJSUpM2bN+tPf/qT2rdvr4yMjJB2HABqG5c5vljZDtWDTAMA66zkGplWvcg1AAgCxUKvgIuFq1ev1kUXXeT9uXT+ihEjRmj69On6+uuv9de//lV5eXlKTk5W//79NXnyZLnd7tD1GgBqI6uXX/HBqtqQaQAQBCu5RqZVK3INAIJAsdAr4GJhv379ZKq4jdnSpUuD6hAAOBaXIYcdMg0AgsBlyGGHXAOAILhcgRf/XM7MNWeWQAEAAAAAAAAErNpvcAIA+BWXIQMAnITLkAEATsJlyF4UCwHALhQLAQBOQrEQAOAkFAu9KBYCgF0oFgIAnIRiIQDASSgWelEsBAC7cIMTAICTcIMTAICTUCz0olgIW7nq1fe77cF2MX63jeiR73fb17rO8atdfVeJ3/v8g+t//W5bsLGp323jv27od9uSfP+fA9QMlzm+WNkOQO0XEX+aX+32n+3/n2d/6LHM77bpjb/3u+1Xh1v53faJgkF+ty35NM6vdhH5B/zep6uoyO+2xv9ohx+s5BqZBoS3Q4f8a7d1q//7DKRt587+tzXy/8sH1/79/jX8+Wf/O7B7t/9tY/z/bKuG/n8G9LdQFdBzVZeHgFMs9HLmWQEAAAAAAABhaNq0aWrdurWio6OVlpamVatWVdl+/vz56tChg6Kjo9WlSxctXry4WvtHsRAA7GKCWAAACDdkGgDASUpHFga6BGjevHkaN26cJkyYoK+++krdunVTRkaGdlcyWvWzzz7Tddddp5tvvllr167VkCFDNGTIEH377bfBnnGlKBYCAAAAAACgbrOpWDhlyhSNGjVKI0eOVKdOnTRjxgw1bNhQM2fOrLD9Cy+8oAEDBuiPf/yjOnbsqMmTJ+vcc8/Vyy+/HOwZV4piIQDYxKWy+Z0CWmq64wAAVMBSrtV0pwEAqEwQxcKCggKfpaiSOZWLi4u1Zs0apaenn3DYCKWnpys7O7vCbbKzs33aS1JGRkal7UOBYiEA2KX0rpFWFgAAwg2ZBgBwECOXpUWSUlJSFBsb612ysrIqPMbevXtVUlKixMREn/WJiYnKycmpcJucnJyA2ocCd0MGALtYnauJ+Z0AAOHISq6RaQCAMOXxHF8C3UaSduzYoZgT7nrtdrtD2DP7USwEAAAAAAAALIqJifEpFlamadOmioyMVG5urs/63NxcJSUlVbhNUlJSQO1DgcuQAcAu3A0ZAOAkZBoAwEFKRxYGugQiKipKqampWr58+QnH9Wj58uXq1atXhdv06tXLp70kLVu2rNL2ocDIQgCwSenk7la2AwAg3FjJNTINABCugrkMORDjxo3TiBEj1KNHD/Xs2VNTp05VYWGhRo4cKUkaPny4WrRo4Z338M4771Tfvn313HPPadCgQXrzzTe1evVqvfrqq4Ef3E8UCwHALsxZCABwEuYsBAA4iF3FwqFDh2rPnj0aP368cnJy1L17dy1ZssR7E5Pt27crIqLsQuDevXtr7ty5evjhh/Xggw/qzDPP1KJFi9S5c+fAD+4nioUAYBeKhQAAJ6FYCABwELuKhZKUmZmpzMzMCh9bsWJFuXXXXHONrrnmGmsHs4BiIQDYhMuQAQBOwmXIAAAnsbNYGO64wQkAAAAAAAAASYwsBAD7GNfxxcp2AACEGyu5RqYBAMIUIwvLUCwEALswZyEAwEmYsxAA4CAUC8tQLAQAmzBnIQDASZizEADgJMYEXvwzDs01ioUAYBdGFgIAnISRhQAAB2FkYRlucAIAAAAAAABAEiMLAcA+Fi9DZhQGACAsWck1Mg0AEKYYWViGYiEA2IXLkAEATsJlyAAAB6FYWIZiIQDYhWIhAMBJKBYCAByEYmEZioWwlTl21O+2jTcX+N123+rT/G47KuJGv9rVi/T/X/3Bdaf73bbl1sN+t/UUHvK7LcIfd0MG6jbP/v/61S5+Ywu/9/nn1X39bju/6bl+tz1QGO1325jv6/vdNjI3x692nuJiv/dpPLxJ1hTuhgw4T8OG/rVr3dr/fR454n/bmBj/27oC+fYhPt6/dgHkjxIS/G8b7X+uKiL0t5YI6LmqwygWlqFYCAAAAAAAgDqNYmEZ7oYMAAAAAAAAQBIjCwHAPsxZCABwEuYsBAA4CCMLy1AsBACbMGchAMBJmLMQAOAkFAvLUCwEADvxIQkA4CTkGgDAIYwJvPhnHJqDFAsBwC5chgwAcBIuQwYAOAgjC8tQLAQAm3AZMgDASbgMGQDgJBQLy3A3ZAAAAAAAAACSGFkIAPbhMmQAgJNwGTIAwEEYWViGkYUAYJPSy7WsLIGaNm2aWrdurejoaKWlpWnVqlV+bffmm2/K5XJpyJAhgR8UAFCn2JVpErkGAKh+pcXCQBcnolgIAHYxQSwBmDdvnsaNG6cJEyboq6++Urdu3ZSRkaHdu3dXud3WrVt17733qk+fPoEdEABQN9mQaRK5BgCwB8XCMlyGjLBlNmz2u23LyPZ+tz2wMdavdp76fu9SLXcc8rttvW+3+t225NhR/zuB8GfTZchTpkzRqFGjNHLkSEnSjBkz9N5772nmzJm6//77K9ympKREN9xwgyZNmqSPP/5YeXl5FjoKoCqeQ/5lRaNVW/zeZ5sjrfxue7BFvN9tmxb5/8YTszHP77ae3Xv9a3ekyO99yjj0r/TawKbLkMk1wD716/n3j7RTJ5ff+4yJ8f/4UVH+t5WfuSpJSk72r90ZZ/i/z6Qk/9s2bOh/2wjGdNUULkMuw28hANgk2MuQCwoKfJaiovIfpouLi7VmzRqlp6d710VERCg9PV3Z2dmV9u3RRx9VQkKCbr755pCfNwDAmao70yRyDQBgH0YWlqFYCAC1REpKimJjY71LVlZWuTZ79+5VSUmJEhMTfdYnJiYqJyenwv1+8sknev311/Xaa69VS78BADiZP5kmkWsAANQELkMGALsEeRnyjh07FHPCdRxutzvoLh04cEA33nijXnvtNTVt2jTo/QEA6pAgLkOujkyTyDUAgHVchlyGYiEA2CXIYmFMTIzPB6uKNG3aVJGRkcrNzfVZn5ubq6QK5lXZvHmztm7dqsGDB3vXeX5NvHr16mnjxo1q166dhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcLcBkyANgk2DkL/REVFaXU1FQtX77cu87j8Wj58uXq1atXufYdOnTQN998o3Xr1nmXyy+/XBdddJHWrVunlJSUUJw6AMCBqjvTJHINAGAf5iwsw8hCALCLTXdDHjdunEaMGKEePXqoZ8+emjp1qgoLC713kRw+fLhatGihrKwsRUdHq3Pnzj7bx8XFSVK59QAA+LDpbsjkGgDADlyGXCbgkYUfffSRBg8erOTkZLlcLi1atMjncWOMxo8fr+bNm6tBgwZKT0/Xpk2bQtVfAKi17BhZKElDhw7Vs88+q/Hjx6t79+5at26dlixZ4p0cfvv27dq1a1c1nGHtQ6YBgHV2ZJpErgWCXAMA6xhZWCbgYmFhYaG6deumadOmVfj4008/rRdffFEzZszQF198oUaNGikjI0NHjhwJurMAAP9kZmZq27ZtKioq0hdffKG0tDTvYytWrNDs2bMr3Xb27NnlPlw4FZkGALUDueYfcg0AEAoBX4Y8cOBADRw4sMLHjDGaOnWqHn74YV1xxRWSpL/97W9KTEzUokWLNGzYsOB6CwC1mU2XIcN/ZBoABMGmy5DhP3INAKzjMuQyIb3ByZYtW5STk6P09HTvutjYWKWlpSk7O7vCbYqKilRQUOCzAIAjmSAW2M5KpknkGoA6hEyrVcg1AKgalyGXCekNTnJyciTJO39IqcTERO9jJ8vKytKkSZNC2Q04hKe42P/Ga7/3u2mTDQ38a+hy+b1PU1Tkd9uSkhK/28JZXL8uVraD/axkmkSuIXjHdu/xu239FXl+tz29QbTfbU0AWRVIBgayX4Q/K7lGptUccg2h1KSx/5X/Dh38/5d/7FgAnYjwP9fUoYN/7aKi/N9nPe4XawJ4V3fVgm+LGFlYJqQjC6144IEHlJ+f71127NhR010CgOrByMI6gVwDUGeQaXUCuQagrmBkYZmQlsKTkpIkSbm5uWrevLl3fW5urrp3717hNm63W263O5TdAICwZPUukFa2QfCsZJpErgGoO6zkGplWc8g1AKgaIwvLhHRkYZs2bZSUlKTly5d71xUUFOiLL75Qr169QnkoAACqFZkGAHAScg0A4K+ARxYePHhQP/74o/fnLVu2aN26dYqPj1fLli1111136bHHHtOZZ56pNm3a6JFHHlFycrKGDBkSyn4DQO3D3ZDDDpkGAEHgbshhh1wDAOuMCXykoHForgVcLFy9erUuuugi78/jxo2TJI0YMUKzZ8/Wn/70JxUWFmr06NHKy8vTBRdcoCVLlig6OoDJRwHAqRwaJrUVmQYAQSLXwgq5BgDWcRlymYCLhf369ZOponTqcrn06KOP6tFHHw2qYwDgNMxZGH7INACwjjkLww+5BgDWUSwsw72+AcAuXIYMAHASLkMGADgIxcIyFAsBwCaMLAQAOAkjCwEATkKxsExI74YMAAAAAAAAoPZiZCEA2IXLkAEATsJlyAAAB2FkYRmKhQBgEy5DBgA4CZchAwCchGJhGYqFqHM8hw/XdBdQVzGyEECImWNH/W5bcsD/toBfGFkIIMTq1wvkTSKAWdUaNgy4L3WVkcvvti6HvalTLCxDsRAA7EKxEADgJBQLAQAOQrGwDMVCALAJlyEDAJyEy5ABAE5CsbAMd0MGAAAAAAAAIImRhQBgHy5DBgA4CZchAwAcxJjARwoah+YaIwsBwCYuYywvAACEGzINAOAkpZchB7pUl/379+uGG25QTEyM4uLidPPNN+vgwYNVtr/99tt19tlnq0GDBmrZsqXuuOMO5efnB3xsRhYCgF0YWQgAcBJGFgIAHCTc5iy84YYbtGvXLi1btkxHjx7VyJEjNXr0aM2dO7fC9jt37tTOnTv17LPPqlOnTtq2bZvGjBmjnTt3asGCBQEdm2IhANiEG5wAAJyEG5wAAJwknIqF69ev15IlS/Tll1+qR48ekqSXXnpJl112mZ599lklJyeX26Zz5856++23vT+3a9dOjz/+uP73f/9Xx44dU716/pcAuQwZAOxiglgAAAg3ZBoAwEHC6TLk7OxsxcXFeQuFkpSenq6IiAh98cUXfu8nPz9fMTExARUKJUYWAgAAAAAAAJYVFBT4/Ox2u+V2uy3vLycnRwkJCT7r6tWrp/j4eOXk5Pi1j71792ry5MkaPXp0wMdnZCEA2KT0ci0rCwAA4YZMAwA4STAjC1NSUhQbG+tdsrKyKjzG/fffL5fLVeWyYcOGoM+loKBAgwYNUqdOnTRx4sSAt2dkIQDYhRucAACchBucAIDjuOrwG3Uwcxbu2LFDMTEx3vWVjSq85557dNNNN1W5z7Zt2yopKUm7d+/2WX/s2DHt379fSUlJVW5/4MABDRgwQE2aNNHChQtVv379U5/ISSgWAoBNuMEJAMBJuMEJAMBJgikWxsTE+BQLK9OsWTM1a9bslO169eqlvLw8rVmzRqmpqZKkDz74QB6PR2lpaZVuV1BQoIyMDLndbv3rX/9SdHS0fydyEi5DBgC7cIMTAICTkGkAAAcJpxucdOzYUQMGDNCoUaO0atUqffrpp8rMzNSwYcO8d0L+5Zdf1KFDB61atUrS8UJh//79VVhYqNdff10FBQXKyclRTk6OSkpKAjo+IwsBwEaMqAAAOAm5BgBwCmMCL/6ZaszBN954Q5mZmbrkkksUERGhq666Si+++KL38aNHj2rjxo06dOiQJOmrr77y3im5ffv2PvvasmWLWrdu7fexKRYCAAAAAAAAYSQ+Pl5z586t9PHWrVvLnFCt7Nevn8/PwaBYCAB2McbaV0/V+XUVAABWWck1Mg0AEKaCmbPQaSgWAoBNuMEJAMBJuMEJAMBJKBaWoVgIAHaxOrE7H6wAAOHISq6RaQCAMEWxsAzFQgCwictzfLGyHQAA4cZKrpFpAIBwRbGwDMVCALALIwsBAE7CyEIAgINQLCwTUdMdAAAAAAAAABAeGFkIADbhBicAACfhBicAACdhZGEZioUAYBdjji9WtgMAINxYyTUyDQAQpigWlqFYCAA2YWQhAMBJGFkIAHASioVlKBYCgF24wQkAwEm4wQkAwEGMCbz459QB8xQLAcAmjCwEADgJIwsBAE7CyMIy3A0ZAAAAAAAAgCRGFgKAfbjBCQDASbjBCQDAQRhZWIZiIQDYhMuQAQBOwmXIAAAnoVhYhmIhANiFG5wAAJyEG5wAAByEYmEZioUAYBNGFgIAnISRhQAAJ6FYWIZiIQDYxWOOL1a2AwAg3FjJNTINABCmKBaW4W7IAAAAAAAAACQxshAA7MOchQAAJ2HOQgCAgzCysAzFQgCwiUsW5ywMeU8AAAielVwj0wAA4YpiYRkuQwYAuxhjfQnQtGnT1Lp1a0VHRystLU2rVq2qtO1rr72mPn366LTTTtNpp52m9PT0KtsDACDJtkyTyDUAQPUzpqxg6O9iMdbCHsVCALBJ6V0jrSyBmDdvnsaNG6cJEyboq6++Urdu3ZSRkaHdu3dX2H7FihW67rrr9OGHHyo7O1spKSnq37+/fvnllxCcNQDAqezINIlcAwDYI9BCoZWRiLUFxUIAcJgpU6Zo1KhRGjlypDp16qQZM2aoYcOGmjlzZoXt33jjDd12223q3r27OnTooL/85S/yeDxavny5zT0HAKA8cg0AAHtRLAQAu5ggFj8VFxdrzZo1Sk9P966LiIhQenq6srOz/drHoUOHdPToUcXHx/t/YABA3VPNmSaRawAA+zCysAw3OAEAm7iMkcvCpBal2xQUFPisd7vdcrvdPuv27t2rkpISJSYm+qxPTEzUhg0b/Drefffdp+TkZJ8PZgAAnMxKrgWSaRK5BgCwDzc4KRPykYUTJ06Uy+XyWTp06BDqwwBA7eMJYpGUkpKi2NhY75KVlRXyLj755JN68803tXDhQkVHR4d8/7URuQYAlQjzTJPItZORaQBQOUYWlqmWkYXnnHOO3n///bKD1GMAIwAEO7Jwx44diomJ8a6vaARG06ZNFRkZqdzcXJ/1ubm5SkpKqvI4zz77rJ588km9//776tq1a8D9dDJyDQDKC2ZkoT+ZJpFr1YFMA4CKMbKwTLUkQ7169U4Z3gBQ51iYq8m7naSYmBifD1YViYqKUmpqqpYvX64hQ4ZIkndS98zMzEq3e/rpp/X4449r6dKl6tGjh4VOOhu5BgAVsJJrAWSaRK5VBzINACpGsbBMtdzgZNOmTUpOTlbbtm11ww03aPv27ZW2LSoqUkFBgc8CALBu3Lhxeu211/TXv/5V69ev16233qrCwkKNHDlSkjR8+HA98MAD3vZPPfWUHnnkEc2cOVOtW7dWTk6OcnJydPDgwZo6hbBDrgFAzSHXQiuQTJPINQCoi0JeLExLS9Ps2bO1ZMkSTZ8+XVu2bFGfPn104MCBCttnZWX5zFeSkpIS6i4BQHgwxvoSgKFDh+rZZ5/V+PHj1b17d61bt05LlizxTg6/fft27dq1y9t++vTpKi4u1tVXX63mzZt7l2effTakp19bkWsAUAkbMk0i10Ip0EyTyDXYy8jl9wKEGnMWlnEZYyGxA5CXl6dWrVppypQpuvnmm8s9XlRUpKKiIu/PBQUFSklJUT9doXqu+tXZNQCo0jFzVCv0jvLz8/26VKoyBQUFio2NVd/ej6hevcAnVz927IhWfjY56H4gNMg1ALVVOOQamRZeTpVpUuW5lp+Xx2sIv1RXYc9laX4fOEVBQYFi4+JCkieluXbttfmKigpsX8XFBXrrrVjH5Vq1z2YbFxens846Sz/++GOFj7vd7konNAYAR7E4osLSNqg25BoA/MpKrpFpYeVUmSaRawDqDmMCHyno1FirljkLT3Tw4EFt3rxZzZs3r+5DAUBYc3msLwgf5BoAHEem1X5kGgCU4TLkMiEvFt57771auXKltm7dqs8++0y/+93vFBkZqeuuuy7UhwKA2sWmOQsRWuQaAFSCTKt1yDQAqBzFwjIhvwz5559/1nXXXad9+/apWbNmuuCCC/T555+rWbNmoT4UAADVjlwDADgFmQYA8EfIi4VvvvlmqHcJAM5gfl2sbIcaQ64BQCWs5BqZVqPINAConJWRgowsBAAExWWMXBYuv7KyDQAA1c1KrpFpAIBwRbGwDMVCALALd0MGADgJd0MGADgIxcIyFAsBwC5GkpUw4XMVACAcWck1Mg0AEKYoFpahWAgANuEyZACAk3AZMgDASSgWlomo6Q4AAAAAAAAACA+MLAQAuxhZnLMw5D0BACB4VnKNTAOAsGbk8ruty2Fv6owsLEOxEADswg1OAABOwg1OAAAOYkzgxT+nxhrFQgCwi0cK4Is63+0AAAg3VnKNTAMAhClGFpahWAgANuEGJwAAJ+EGJwAAJ6FYWIZiIQDYhcuQAQBOwmXIAAAHoVhYhrshAwAAAAAAAJDEyEIAsA8jCwEATsLIQgCAgzCysAzFQgCwC8VCAICTUCwEADgIxcIyFAsBwC7cDRkA4CTcDRkA4CAUC8tQLAQAm3A3ZACAk3A3ZACAk1AsLMMNTgDALqWXa1lZAAAIN2QaAMBBSouFgS7VZf/+/brhhhsUExOjuLg43XzzzTp48KBf2xpjNHDgQLlcLi1atCjgY1MsBAAAAAAA1cIl4/cCoMwNN9yg7777TsuWLdO7776rjz76SKNHj/Zr26lTp8rlsjIH1nFchgwAdvEYyWXhjyAPfzgBAMKQlVwj0wAAYcqYwEcKVteA+fXr12vJkiX68ssv1aNHD0nSSy+9pMsuu0zPPvuskpOTK9123bp1eu6557R69Wo1b97c0vEZWQgAduEyZACAk5BpAAAHCeYy5IKCAp+lqKgoqL5kZ2crLi7OWyiUpPT0dEVEROiLL76odLtDhw7p+uuv17Rp05SUlGT5+BQLAcA2Vj9U8cEKABCOyDQAgHMEUyxMSUlRbGysd8nKygqqLzk5OUpISPBZV69ePcXHxysnJ6fS7e6++2717t1bV1xxRVDH5zJkALCL1REVjMIAAIQjK7lGpgEAwpTHIwU6zV9psXDHjh2KiYnxrne73RW2v//++/XUU09Vuc/169cH1olf/etf/9IHH3ygtWvXWtr+RBQLAcAuHosjKpjfCQAQjqzkGpkGAAhTwRQLY2JifIqFlbnnnnt00003Vdmmbdu2SkpK0u7du33WHzt2TPv376/08uIPPvhAmzdvVlxcnM/6q666Sn369NGKFStO2b9SFAsBAAAAAACAatasWTM1a9bslO169eqlvLw8rVmzRqmpqZKOFwM9Ho/S0tIq3Ob+++/XLbfc4rOuS5cuev755zV48OCA+kmxEADsYjzHFyvbAQAQbqzkGpkGAAhTwYwsDLWOHTtqwIABGjVqlGbMmKGjR48qMzNTw4YN894J+ZdfftEll1yiv/3tb+rZs6eSkpIqHHXYsmVLtWnTJqDjUywEALswZyEAwEmYsxAA4CDhVCyUpDfeeEOZmZm65JJLFBERoauuukovvvii9/GjR49q48aNOnToUMiPTbEQAOzCnIUAACdhzkIAgIOEW7EwPj5ec+fOrfTx1q1by5ziS7hTPV4ZioUAYBdGFgIAnISRhQAABwm3YmFNolgIAHYxslgsDHlPAAAInpVcI9MAVMHFm0SNq8uvgTGBF/+c+h1YRE13AAAAAAAAAEB4YGQhANiFy5ABAE7CZcgAAAexckkxlyEDAILj8UgigQAADmEl18g0AECYolhYhmIhANiFkYUAACdhZCEAwEEoFpahWAgAdqFYCABwEoqFAAAHoVhYhmIhANjFY2TpNpAePlgBAMKQlVwj0wAAYYpiYRnuhgwAAAAAAABAEiMLAcA2xnhkTOBfPVnZBgCA6mYl18g0AEC4YmRhGYqFAGAXY6xdfsX8TgCAcGQl18g0AECYolhYhmIhANjFWJyzkA9WAIBwZCXXyDQAQJiiWFiGYiEA2MXjkVwW0oRLtgAA4chKrpFpAIAwZUzgxT+nfgdGsRAA7MLIQgCAkzCyEADgIB6P5HIFto1TY427IQMAAAAAAACQxMhCALCN8XhkLFyGzJ0jAQDhyEqukWkAgHDFyMIyFAsBwC5chgwAcBIuQwYAOAjFwjIUCwHALh4juSgWAgAcwkqukWkAgDBFsbAMxUIAsIsxkqzcDdmhCQQAqN2s5BqZBgAIUxQLy1AsBACbGI+RsTCy0Dg1gQAAtZqVXCPTAADhimJhmWq7G/K0adPUunVrRUdHKy0tTatWraquQwEAThLoe/D8+fPVoUMHRUdHq0uXLlq8eLFNPa0dyDQAqFnkWmiRawCAqlRLsXDevHkaN26cJkyYoK+++krdunVTRkaGdu/eXR2HA4DawXisLwEI9D34s88+03XXXaebb75Za9eu1ZAhQzRkyBB9++23oTjrWo9MA4BK2JBpErkWauQaAFTM47G2OJHLVMO1AGlpaTrvvPP08ssvS5I8Ho9SUlJ0++236/77769y24KCAsXGxqqfrlA9V/1Qdw0A/HbMHNUKvaP8/HzFxMRY3o/3fc31O0vva8fMUa0wC/3uR6DvwUOHDlVhYaHeffdd77r/+Z//Uffu3TVjxoyA++s0wWSaRK4BCB/hkGuBZppEroVaqHItPy8vqN8jAAhGQUGBYuPigs40775iY+Vy5cvlCmxfxhTImNiQ9COchHzOwuLiYq1Zs0YPPPCAd11ERITS09OVnZ1drn1RUZGKioq8P+fn50uSjumo5NBrvwHUDsd0VFLo5lc6Zoosjago7UdBQYHPerfbLbfb7bMu0PdgScrOzta4ceN81mVkZGjRokUB99VprDyf5BqAcBUOuRZIpknkWqiFMtdOfg0BwE6l70GhHP92vPAXcE9CdvxwEvJi4d69e1VSUqLExESf9YmJidqwYUO59llZWZo0aVK59Z+IeUUAhIcDBw4oNjbW8vZRUVFKSkrSJznW39caN26slJQUn3UTJkzQxIkTfdYF+h4sSTk5ORW2z8nJsdxfp7DyfJJrAMJdTeeav5kmkWuhFspcS2nZslr6CACBCDbTpLJcy8lJOXXjCiQlJSkqKiqoPoSbGr8b8gMPPODzzV9eXp5atWql7du3B/2Ch5OCggKlpKRox44djhqaynnVLpxXYIwxOnDggJKTk4PaT3R0tLZs2aLi4uKg+uI66dZcFY3AQM0j12o3zqt24bwCEy65RqbVLuRa7cZ51S6cl/9ClWlS8LkWFRWl6OjooPsRTkJeLGzatKkiIyOVm5vrsz43N1dJSUnl2ld2yUFsbKyj/nGUiomJ4bxqEc6rdqmO8wrVH8HR0dG2BEig78HS8W/CAmlfl1h5Psk1Z+C8ahfOy3/kWt1Grp0a7ye1C+dVu4T6vEL5hYVduVZbhPxuyFFRUUpNTdXy5cu96zwej5YvX65evXqF+nAAgBNYeQ/u1auXT3tJWrZsGe/ZItMAoKaRa6FFrgEA/FEtlyGPGzdOI0aMUI8ePdSzZ09NnTpVhYWFGjlyZHUcDgBwglO9Bw8fPlwtWrRQVlaWJOnOO+9U37599dxzz2nQoEF68803tXr1ar366qs1eRphg0wDgJpFroUWuQYAOJVqKRYOHTpUe/bs0fjx45WTk6Pu3btryZIl5SbSrYjb7daECRMcN28J51W7cF61i1PPy6pTvQdv375dERFlA8t79+6tuXPn6uGHH9aDDz6oM888U4sWLVLnzp1r6hTCSjCZJjn395Pzql04r9rFqedlFbkWWuRaxTiv2oXzql2cel5O5jKhvM80AAAAAAAAgFor5HMWAgAAAAAAAKidKBYCAAAAAAAAkESxEAAAAAAAAMCvKBYCAAAAAAAAkBSGxcJp06apdevWio6OVlpamlatWlXTXQrKxIkT5XK5fJYOHTrUdLcC9tFHH2nw4MFKTk6Wy+XSokWLfB43xmj8+PFq3ry5GjRooPT0dG3atKlmOhuAU53XTTfdVO71GzBgQM10NgBZWVk677zz1KRJEyUkJGjIkCHauHGjT5sjR45o7NixOv3009W4cWNdddVVys3NraEe+8ef8+rXr1+512zMmDE11GPUdU7LNIlcC3dOzDUyjUxD+HBarpFp4c2JmSaRa+Ra7RBWxcJ58+Zp3LhxmjBhgr766it169ZNGRkZ2r17d013LSjnnHOOdu3a5V0++eSTmu5SwAoLC9WtWzdNmzatwseffvppvfjii5oxY4a++OILNWrUSBkZGTpy5IjNPQ3Mqc5LkgYMGODz+v3jH/+wsYfWrFy5UmPHjtXnn3+uZcuW6ejRo+rfv78KCwu9be6++279+9//1vz587Vy5Urt3LlTV155ZQ32+tT8OS9JGjVqlM9r9vTTT9dQj1GXOTXTJHItnDkx18g0Mg3hwam5RqaFLydmmkSukWu1hAkjPXv2NGPHjvX+XFJSYpKTk01WVlYN9io4EyZMMN26davpboSUJLNw4ULvzx6PxyQlJZlnnnnGuy4vL8+43W7zj3/8owZ6aM3J52WMMSNGjDBXXHFFjfQnlHbv3m0kmZUrVxpjjr8+9evXN/Pnz/e2Wb9+vZFksrOza6qbATv5vIwxpm/fvubOO++suU4Bv3JiphlDrpFrNY9MA2qGE3ONTCPTwgG5hnAUNiMLi4uLtWbNGqWnp3vXRUREKD09XdnZ2TXYs+Bt2rRJycnJatu2rW644QZt3769prsUUlu2bFFOTo7PaxcbG6u0tLRa/9pJ0ooVK5SQkKCzzz5bt956q/bt21fTXQpYfn6+JCk+Pl6StGbNGh09etTnNevQoYNatmxZq16zk8+r1BtvvKGmTZuqc+fOeuCBB3To0KGa6B7qMCdnmkSu1Xa1PdfINDIN9nNyrpFptVttzzSJXCPXwlO9mu5Aqb1796qkpESJiYk+6xMTE7Vhw4Ya6lXw0tLSNHv2bJ199tnatWuXJk2apD59+ujbb79VkyZNarp7IZGTkyNJFb52pY/VVgMGDNCVV16pNm3aaPPmzXrwwQc1cOBAZWdnKzIysqa75xePx6O77rpL559/vjp37izp+GsWFRWluLg4n7a16TWr6Lwk6frrr1erVq2UnJysr7/+Wvfdd582btyof/7znzXYW9Q1Ts00iVyrLe+RlantuUamkWmoGU7NNTKtdrxHVqa2Z5pErpFr4StsioVONXDgQO//d+3aVWlpaWrVqpXeeust3XzzzTXYM/hj2LBh3v/v0qWLunbtqnbt2mnFihW65JJLarBn/hs7dqy+/fbbWjn/SlUqO6/Ro0d7/79Lly5q3ry5LrnkEm3evFnt2rWzu5uA45BrtVttzzUyjUwDQolMq91qe6ZJ5Bq5Fr7C5jLkpk2bKjIystwdfnJzc5WUlFRDvQq9uLg4nXXWWfrxxx9ruishU/r6OP21k6S2bduqadOmteb1y8zM1LvvvqsPP/xQZ5xxhnd9UlKSiouLlZeX59O+trxmlZ1XRdLS0iSp1rxmcIa6kmkSuVbb1aZcI9PINNScupJrZFrtVpsyTSLXJHItnIVNsTAqKkqpqalavny5d53H49Hy5cvVq1evGuxZaB08eFCbN29W8+bNa7orIdOmTRslJSX5vHYFBQX64osvHPXaSdLPP/+sffv2hf3rZ4xRZmamFi5cqA8++EBt2rTxeTw1NVX169f3ec02btyo7du3h/Vrdqrzqsi6deskKexfMzhLXck0iVyr7WpDrpFpZcg01JS6kmtkWu1WGzJNItdORK6FsZq8u8rJ3nzzTeN2u83s2bPN999/b0aPHm3i4uJMTk5OTXfNsnvuucesWLHCbNmyxXz66acmPT3dNG3a1OzevbumuxaQAwcOmLVr15q1a9caSWbKlClm7dq1Ztu2bcYYY5588kkTFxdn3nnnHfP111+bK664wrRp08YcPny4hntetarO68CBA+bee+812dnZZsuWLeb999835557rjnzzDPNkSNHarrrVbr11ltNbGysWbFihdm1a5d3OXTokLfNmDFjTMuWLc0HH3xgVq9ebXr16mV69epVg70+tVOd148//mgeffRRs3r1arNlyxbzzjvvmLZt25oLL7ywhnuOusiJmWYMuUau2Y9MI9MQHpyYa2QamVYTyDVyrTYIq2KhMca89NJLpmXLliYqKsr07NnTfP755zXdpaAMHTrUNG/e3ERFRZkWLVqYoUOHmh9//LGmuxWwDz/80Egqt4wYMcIYY4zH4zGPPPKISUxMNG6321xyySVm48aNNdtpP1R1XocOHTL9+/c3zZo1M/Xr1zetWrUyo0aNqhV/EFV0TpLMrFmzvG0OHz5sbrvtNnPaaaeZhg0bmt/97ndm165dNddpP5zqvLZv324uvPBCEx8fb9xut2nfvr354x//aPLz82u246iznJZpxpBr4c6JuUamkWkIH07LNTItvDkx04wh18i12sFljDHWxyUCAAAAAAAAcIqwmbMQAAAAAAAAQM2iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAEsVCAAAAAAAAAL+iWAgAAAAAAABAkvT/AbXFMySuXKkSAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAF2CAYAAADJMM7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqNUlEQVR4nO3deXxU1f3/8fckkAlbEmNIQjDsKiBbDZIvKIKaEpCi1A3UryBVqErcqK1alUXUuCJWEapVaKlURAu2yheKKLhFEYSfWgGRsikkbE0CARLInN8fmAlDFmbuzNxMbl7Px+M+NHfOvffcGTLvzGfOPddljDECAAAAAAAA0OBF1XUHAAAAAAAAAEQGioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioUAAAAAAAAAJFEsBAAAAAAAAPATioVAmAwcOFADBw6s624AAByiPuRKQUGBrrrqKp1++ulyuVyaPn16XXcJAGo0efJkuVwun3Xt2rXTjTfe6LNu06ZNGjRokOLj4+VyubRo0SJJ0hdffKF+/fqpWbNmcrlcWrdunT0dr+dqej4BRA6KhTX49NNPNXnyZBUWFtZ1VxCkF198UXPmzAnLvr/99ltNnjxZW7duDcv+w2nnzp2aPHmy33/UhOt34h//+IfOPfdcxcbGqk2bNpo0aZKOHTsW0mMAkYBccQ5ypWZ33323li5dqvvvv19z587V4MGDtXjxYk2ePNnWfmzcuFF33323+vXrp9jYWLlcrlqf03BmUV2cP4DQGj16tL7++ms9+uijmjt3rnr37q2jR4/q6quv1v79+/Xss89q7ty5atu2bV13tV6o7vmcN2+e7V8wrVq1SrfddpsyMjLUuHHjKoXjk73yyivq0qWLYmNjdeaZZ+r5558PWV/q4vyBWhlU66mnnjKSzJYtW+q6KwjSOeecYwYMGBCWfS9YsMBIMh988EGVx0pLS01paWlYjhsKX3zxhZFkZs+e7Vf7cPxOLF682LhcLnPRRReZl156ydx+++0mKirK3HLLLSE7BhApyBXnIFdqlpKSYq6//nqfdePHjzd2/8k5e/ZsExUVZbp162Z69epV6+9euLOoLs4fgH8mTZpU5ffzyJEjpqyszPvzoUOHjCTzwAMP+LRbv369kWRefvllW/rqFDU9n0OHDjVt27a1tS+TJk0yjRs3NhkZGeass86q9b161qxZRpK58sorzUsvvWRuuOEGI8k8/vjjIelLXZw/UJtG9pcnncfj8aisrEyxsbF13RWvkpISNWvWrK67Ue+E8nmLiYkJyX6c7J577lGPHj30r3/9S40aHX87iouL02OPPaY777xTnTt3ruMeAnWDXHGOhpYru3fvVkJCQtiPY4zRkSNH1KRJk2ofv+yyy1RYWKgWLVro6aefrnUUPVkE4ERut9vn5z179khSlfe23bt3V7s+GA0ha2t6PsPhVH9P3Xrrrbr33nvVpEkT5eTk6Lvvvqu23eHDh/XAAw9o6NChevPNNyVJY8eOlcfj0dSpUzVu3DiddtppYTsPoE7UdbUyElV8w3TyUvGNtCQzfvx489e//tV07drVNGrUyCxcuNAYc3zkSN++fU1iYqKJjY015557rlmwYEG1x5k7d64577zzTJMmTUxCQoLp37+/Wbp0qU+bxYsXmwsuuMA0bdrUNG/e3Fx66aXmm2++8WkzevRo06xZM/P999+bIUOGmObNm5vLL7+81nP84YcfzK9+9SvTqlUrExMTY9q1a2duueUWnxELmzdvNldddZU57bTTTJMmTUxmZqZ55513fPbzwQcfGElm/vz55pFHHjGtW7c2brfbXHzxxWbTpk1VjvvZZ5+ZIUOGmISEBNO0aVPTvXt3M336dJ8269evN1deeaU57bTTjNvtNhkZGebtt9/2aTN79mwjyXz88cfm7rvvNklJSaZp06Zm+PDhZvfu3d52bdu2rfI6VowGqdjHihUrzK233mpatmxpEhISjDHGbN261dx6663mrLPOMrGxsSYxMdFcddVVPqMSKrY/eakYDTJgwIAqI08KCgrMr371K5OcnGzcbrfp0aOHmTNnjk+bLVu2GEnmqaeeMn/84x9Nhw4dTExMjOndu7dZtWpVzS/qT/bt22d+85vfmG7duplmzZqZFi1amMGDB5t169ZVed1OXmoaZXiq3wkr/v3vfxtJZsaMGT7rf/zxRyPJTJ061fK+gUhDrhxHrjg3V2rq++jRo6tdX6G8vNw8++yzpmvXrsbtdpvk5GQzbtw4s3//fp8+tG3b1gwdOtQsWbLEZGRkGLfbbZ599tlT9t2Y2kf1BptFZWVlZvLkyaZTp07G7XabxMREc/7555t//etfxhgT8vNfunSp6dmzp3G73aZLly7mrbfeCqg/QEP20Ucfmd69exu32206dOhgZs2aVe3IwrZt25rRo0cbY6rP74rHa8oCYwLLneoyw5jA8vqHH34wl19+uWnWrJlJSkoyv/nNb8yxY8d82paXl5vp06ebbt26GbfbbZKSkkx2drb54osvfNrNnTvXnHvuuSY2NtacdtppZsSIEWb79u2nfH79ybmans8BAwZUu77CkSNHzMSJE03Hjh1NTEyMOeOMM8xvf/tbc+TIEZ8+1Pb31KnUNgr83XffNZLMu+++67P+008/NZLM3Llza913cXGxufPOO03btm1NTEyMadmypcnKyjJr1qwxxpiwnP9ZZ51l3G63Offcc83KlSsD6g9gDCMLq3XFFVfou+++09/+9jc9++yzSkpKkiS1bNnS2+b999/XG2+8oZycHCUlJaldu3aSpOeee06XXXaZrr/+epWVlen111/X1VdfrXfeeUdDhw71bj9lyhRNnjxZ/fr108MPP6yYmBh9/vnnev/99zVo0CBJ0ty5czV69GhlZ2friSee0KFDhzRz5kxdcMEFWrt2rfeYknTs2DFlZ2frggsu0NNPP62mTZvWeH47d+5Unz59VFhYqHHjxqlz58768ccf9eabb+rQoUOKiYlRQUGB+vXrp0OHDumOO+7Q6aefrj//+c+67LLL9Oabb+qXv/ylzz4ff/xxRUVF6Z577lFRUZGefPJJXX/99fr888+9bZYtW6Zf/OIXatWqle68806lpqZq/fr1euedd3TnnXdKkv7973/r/PPPV+vWrXXfffepWbNmeuONNzR8+HC99dZbVY57++2367TTTtOkSZO0detWTZ8+XTk5OZo/f74kafr06br99tvVvHlzPfDAA5KklJQUn33cdtttatmypSZOnKiSkhJJxycr/vTTTzVy5EidccYZ2rp1q2bOnKmBAwfq22+/VdOmTXXhhRfqjjvu0B/+8Af9/ve/V5cuXSTJ+9+THT58WAMHDtT333+vnJwctW/fXgsWLNCNN96owsJC73NQYd68eTpw4IB+/etfy+Vy6cknn9QVV1yh//znP2rcuHGNr+9//vMfLVq0SFdffbXat2+vgoIC/fGPf9SAAQP07bffKi0tTV26dNHDDz+siRMnaty4cerfv78kqV+/ftXu81S/E0VFRTp69GiNfaoQGxur5s2bS5LWrl0rSerdu7dPm7S0NJ1xxhnexwEnIFfIFafnyoUXXqi5c+fqhhtu0M9//nONGjVKktSxY0ft3LlTy5Yt09y5c6vs+9e//rXmzJmjMWPG6I477tCWLVv0wgsvaO3atfrkk098+rVx40Zde+21+vWvf62xY8fq7LPPrrHP/go2iyZPnqzc3FzdfPPN6tOnj4qLi7V69Wp9+eWX+vnPf65f//rXITv/TZs2acSIEbrllls0evRozZ49W1dffbWWLFmin//85371B2iovv76aw0aNEgtW7bU5MmTdezYMU2aNKnK+/fJrrjiCiUkJOjuu+/Wtddeq0svvVTNmzdXSkqKWrdurccee0x33HGHzjvvPO++As2d6jIjkLwuLy9Xdna2MjMz9fTTT+u9997TM888o44dO+rWW2/1trvppps0Z84cDRkyRDfffLOOHTumjz76SJ999pn3PfDRRx/VQw89pGuuuUY333yz9uzZo+eff14XXnih1q5dW+toQH9yrqbns1mzZioqKtIPP/ygZ599VpK8nxk8Ho8uu+wyffzxxxo3bpy6dOmir7/+Ws8++6y+++67KjdHqenvqWDUlBUZGRmKiorS2rVr9b//+781bn/LLbfozTffVE5Ojrp27ap9+/bp448/1vr163XuuefqgQceCNn5r1y5UvPnz9cdd9wht9utF198UYMHD9aqVavUrVs3v/oDSGJkYU1q+xZakomKijL//ve/qzx26NAhn5/LyspMt27dzMUXX+xdt2nTJhMVFWV++ctfmvLycp/2Ho/HGGPMgQMHTEJCghk7dqzP4/n5+SY+Pt5nfcU3W/fdd59f5zZq1CgTFRVV5VukE49/1113GUnmo48+8j524MAB0759e9OuXTtvvytGgHTp0sVn9Mhzzz1nJJmvv/7aGGPMsWPHTPv27U3btm3Nf//732qPaYwxl1xyienevbvPtyQej8f069fPnHnmmd51Fd/EZWVl+Wx/9913m+joaFNYWOhdV9PcUhX7uOCCC6p883by62iMMXl5eUaS+ctf/uJdV9vcUiePAJk+fbqRZP76179615WVlZm+ffua5s2bm+LiYmNM5QiQ008/3Wdkwdtvv20kmX/+859VjnWiI0eOVPl3tWXLFuN2u83DDz/sXRfKOQur+zasuqXiW9oT91fdN5XnnXee+Z//+R+/+gXUF+QKuXIyp+WKMZWjGk5U02iNjz76yEgyr732ms/6JUuWVFlfMaJzyZIltfa1OrX97gWbRT179jRDhw6ttU0oz//EkYRFRUWmVatW5mc/+1lA/QEaouHDh5vY2Fizbds277pvv/3WREdH1zqy0Bjf0dknqsirk0f7B5o7J2eGlbw++b34Zz/7mcnIyPD+/P777xtJ5o477qjy3FRk3tatW010dLR59NFHfR7/+uuvTaNGjaqsP5m/OVfT81nTnH1z5841UVFRPn8/GFM5h+Ann3ziXVfb31OnUtvIwvHjx5vo6OhqH2vZsqUZOXJkrfuOj4+vko0nC9X5SzKrV6/2rtu2bZuJjY01v/zlLwPqD8DdkC0aMGCAunbtWmX9iXPn/Pe//1VRUZH69++vL7/80rt+0aJF8ng8mjhxoqKifF+CijswLVu2TIWFhbr22mu1d+9e7xIdHa3MzEx98MEHVY594jdHNfF4PFq0aJGGDRtW5ZuRE4+/ePFi9enTRxdccIH3sebNm2vcuHHaunWrvv32W5/txowZ4zOXUsVItf/85z+Sjn8bs2XLFt11111VvpGqOOb+/fv1/vvv65prrtGBAwe857xv3z5lZ2dr06ZN+vHHH322HTdunM9dq/r376/y8nJt27btlM9FhbFjxyo6Otpn3Ymv49GjR7Vv3z516tRJCQkJPq9lIBYvXqzU1FRde+213nWNGzfWHXfcoYMHD2rlypU+7UeMGOEz98XJz2lN3G63999VeXm59u3bp+bNm+vss8+23PdTeeaZZ7Rs2bJTLr/73e+82xw+fNjb35PFxsZ6HwcaCnKFXAlUfc+VBQsWKD4+Xj//+c99/k1mZGSoefPmVf5Ntm/fXtnZ2ZaPV51gsyghIUH//ve/tWnTpoCPHej5p6Wl+YxIiouL06hRo7R27Vrl5+cH3R/AqcrLy7V06VINHz5cbdq08a7v0qVLyN9TrOTOyZlhJa9vueUWn5/79+/v897+1ltvyeVyadKkSVW2rci8v//97/J4PLrmmmt8jpuamqozzzyz2uOeKBw5Jx1/r+zSpYs6d+7s06+LL75Ykqr0q6a/p4Jx+PDhGucN9jcrPv/8c+3cuTPgYwd6/n379lVGRob35zZt2ujyyy/X0qVLVV5eHnR/0HBwGbJF7du3r3b9O++8o0ceeUTr1q1TaWmpd/2JHzw2b96sqKioWt/EKv7Iq3gTOFlcXJzPz40aNdIZZ5xxyn7v2bNHxcXF3iHINdm2bZsyMzOrrK+4FGrbtm0++zgxeCV5P4z897//lXT8nCXVetzvv/9exhg99NBDeuihh6pts3v3brVu3drv4/qjutfy8OHDys3N1ezZs/Xjjz/KGON9rKioyO99n2jbtm0688wzq3yQP/E5PZHVc/N4PHruuef04osvasuWLd5QkKTTTz/dUt9P5cRA8lfFHxQn/p5UqG3SesCpyBVyJVD1PVc2bdqkoqIiJScnV/t4xc0DKtT0OxKMYLPo4Ycf1uWXX66zzjpL3bp10+DBg3XDDTeoR48epzx2oOffqVMnn997STrrrLMkSVu3blVqampQ/QGcas+ePTp8+LDOPPPMKo+dffbZWrx4cciOZSV3Tn5vCzSvY2NjfaY1kY6/v5/43r5582alpaUpMTGxxr5v2rRJxphqnydJtU5XIYUn5yr6tX79+irnWMGurCgrK6v2MX+y4sknn9To0aOVnp6ujIwMXXrppRo1apQ6dOhwymMHev7VvX5nnXWWDh06pD179ig1NTWo/qDhoFhoUXVvCB999JEuu+wyXXjhhXrxxRfVqlUrNW7cWLNnz9a8efMC2r/H45F0fL6K1NTUKo9X3K2vwonf+teFk0dQVDgxJE6l4pzvueeeGr/l69SpU8iPW91refvtt2v27Nm666671LdvX8XHx8vlcmnkyJHefoab1XN77LHH9NBDD+lXv/qVpk6dqsTEREVFRemuu+4KW9/3799fY4CeqEmTJoqPj5cktWrVSpK0a9cupaen+7TbtWuX+vTpE/qOAhGMXPFFroRepOWKx+NRcnKyXnvttWofP/mDUTi+RAo2iy688EJt3rxZb7/9tv71r3/pT3/6k5599lnNmjVLN998c63bBnr+/gimPwCCZyV3Tn5vCzSva3pvD5TH45HL5dL//d//VbvPijn0ahKunPN4POrevbumTZtW7eMnv3eHKyvKy8u1e/duny94ysrKtG/fPqWlpdW6/TXXXKP+/ftr4cKF+te//qWnnnpKTzzxhP7+979ryJAhtW4b6Pn7I5j+oOGgWFiDk7+59cdbb72l2NhYLV261OdyltmzZ/u069ixozwej7799lv16tWr2n117NhRkpScnKysrKyA+1KTli1bKi4uTt98802t7dq2bauNGzdWWb9hwwbv44GoOJ9vvvmmxvOp+CajcePGIT1nK6/lm2++qdGjR+uZZ57xrjty5IgKCwst77tt27b66quv5PF4fD6AW31Oa/Lmm2/qoosu0iuvvOKzvrCw0HtTBSnw56W29ldccUWVy92qM3r0aM2ZM0eSvP/2V69e7fNhbOfOnfrhhx80bty4gPoHRDpyhVxxeq7UpKZz6tixo9577z2df/75dTaaPBRZlJiYqDFjxmjMmDE6ePCgLrzwQk2ePNlbnAvV+VeMWDpxf999950k+Uzgf6r+AA1Ny5Yt1aRJk2ovz68ul4IRitwJR1537NhRS5cu1f79+2scXdixY0cZY9S+fXvvqOVA+JtzNantvfL//b//p0suucRS/obCiVlx6aWXetevXr1aHo+nxr+9TtSqVSvddtttuu2227R7926de+65evTRR73FuVCdf3X/zr/77js1bdrU50uoU/UHYM7CGjRr1kyS/H5zk45/q+NyuXwuz9m6dWuVOxQNHz5cUVFRevjhh6t8y1Lx7X52drbi4uL02GOPVXuX2T179vjdrxNFRUVp+PDh+uc//6nVq1dXebzi+JdeeqlWrVqlvLw872MlJSV66aWX1K5du4DngTj33HPVvn17TZ8+vcpzWnHM5ORkDRw4UH/84x+1a9euKvuwes7NmjUL6HWUjr+WJ4+0eP75531e24p9S/79O7n00kuVn5/vvaOmdPxuo88//7yaN2+uAQMGBNTHmlTX9wULFlSZHyXQf+O1tbcyZ+E555yjzp0766WXXvJ5XmfOnCmXy6WrrrrKr34B9QW5Qq44PVdqUtM5XXPNNSovL9fUqVOrbHPs2LGAn2Mrgs2iffv2+fzcvHlzderUyeey5lCd/86dO7Vw4ULvz8XFxfrLX/6iXr16eUcf+dMfoKGJjo5Wdna2Fi1apO3bt3vXr1+/XkuXLg3psUKRO+HI6yuvvFLGGE2ZMqXKYxXv71dccYWio6M1ZcqUKu/5xpgq7y8n8zfnalJxR+STXXPNNfrxxx/18ssvV3ns8OHD3jtIh9PFF1+sxMREzZw502f9zJkz1bRpUw0dOrTGbcvLy6ucV3JystLS0qpkRSjOPy8vz2eOyB07dujtt9/WoEGDFB0d7Xd/AEYW1qBiDrYHHnhAI0eOVOPGjTVs2DDvH3zVGTp0qKZNm6bBgwfruuuu0+7duzVjxgx16tRJX331lbddp06d9MADD2jq1Knq37+/rrjiCrndbn3xxRdKS0tTbm6u4uLiNHPmTN1www0699xzNXLkSLVs2VLbt2/Xu+++q/PPP18vvPCCpXN77LHH9K9//UsDBgzw3n59165dWrBggT7++GMlJCTovvvu09/+9jcNGTJEd9xxhxITE/XnP/9ZW7Zs0VtvvRXwpWlRUVGaOXOmhg0bpl69emnMmDFq1aqVNmzYoH//+9/eoJ4xY4YuuOACde/eXWPHjlWHDh1UUFCgvLw8/fDDD/p//+//BXy+GRkZmjlzph555BF16tRJycnJNc4BUuEXv/iF5s6dq/j4eHXt2lV5eXl67733qszN1KtXL0VHR+uJJ55QUVGR3G63Lr744mrnHxo3bpz++Mc/6sYbb9SaNWvUrl07vfnmm/rkk080ffp0tWjRIuBzq6nvDz/8sMaMGaN+/frp66+/1muvvVZlDoqOHTsqISFBs2bNUosWLdSsWTNlZmbWOM9Hbb8TVuYslKSnnnpKl112mQYNGqSRI0fqm2++0QsvvKCbb77ZO+cW4BTkCrni9FypScW//TvuuEPZ2dmKjo7WyJEjNWDAAP36179Wbm6u1q1bp0GDBqlx48batGmTFixYoOeee87yF0dFRUV6/vnnJUmffPKJJOmFF15QQkKCEhISlJOT420bTBZ17dpVAwcOVEZGhhITE7V69Wq9+eabPvsP1fmfddZZuummm/TFF18oJSVFr776qgoKCnxGGvvTH6AhmjJlipYsWaL+/fvrtttu836xcs455/jkaSgEmzvhyOuLLrpIN9xwg/7whz9o06ZNGjx4sDwejz766CNddNFFysnJUceOHfXII4/o/vvv19atWzV8+HC1aNFCW7Zs0cKFCzVu3Djdc889NR7D35yrSUZGhubPn68JEybovPPOU/PmzTVs2DDdcMMNeuONN3TLLbfogw8+0Pnnn6/y8nJt2LBBb7zxhpYuXVrtDdb8sW3bNs2dO1eSvF94PvLII5KOj86/4YYbJB2/tHnq1KkaP368rr76amVnZ+ujjz7SX//6Vz366KO1zgV54MABnXHGGbrqqqvUs2dPNW/eXO+9956++OILn1GYoTr/bt26KTs7W3fccYfcbrdefPFFSfIWiv3tD1D9vcFhjDFm6tSppnXr1iYqKspIMlu2bDHGHL8leU23Gn/llVfMmWeeadxut+ncubOZPXu2mTRpUrW3YX/11VfNz372M+N2u81pp51mBgwYYJYtW+bT5oMPPjDZ2dkmPj7exMbGmo4dO5obb7zR53boo0ePNs2aNQvo3LZt22ZGjRplWrZsadxut+nQoYMZP368KS0t9bbZvHmzueqqq0xCQoKJjY01ffr0Me+8806V/kkyCxYs8Fm/ZcsWI8nMnj3bZ/3HH39sfv7zn5sWLVqYZs2amR49epjnn3/ep83mzZvNqFGjTGpqqmncuLFp3bq1+cUvfmHefPNNb5vZs2cbSeaLL76otj8ffPCBd11+fr4ZOnSoadGihZFkBgwYUOs+jDHmv//9rxkzZoxJSkoyzZs3N9nZ2WbDhg2mbdu2ZvTo0T5tX375ZdOhQwcTHR3tc+wBAwZ4j1WhoKDAu9+YmBjTvXv3Ks9RxXP31FNPVemXJDNp0qQq60905MgR85vf/Ma0atXKNGnSxJx//vkmLy+v2v68/fbbpmvXrqZRo0bVvl4nq+l3IhgLFy40vXr1Mm6325xxxhnmwQcfNGVlZUHvF4hE5Aq54vRcqe7f8rFjx8ztt99uWrZsaVwuV5V/uy+99JLJyMgwTZo0MS1atDDdu3c3v/vd78zOnTu9bdq2bWuGDh1aaz+rO+fqlrZt21ZpbzWLHnnkEdOnTx+TkJBgmjRpYjp37mweffRRn21Def5Lly41PXr08L4fnPx74k9/gIZq5cqVJiMjw8TExJgOHTqYWbNmVZunJ78v1/QeWlNeGRNc7py4f6t5Xd15HTt2zDz11FOmc+fOJiYmxrRs2dIMGTLErFmzxqfdW2+9ZS644ALTrFkz06xZM9O5c2czfvx4s3Hjxmr7WcHfnKvp+Tx48KC57rrrTEJCQpX36rKyMvPEE0+Yc845x/s3TkZGhpkyZYopKirytqvt76nqVLyG1S0n55sxx9+vzz77bBMTE2M6duxonn32WePxeGo9Rmlpqfntb39revbs6f1bpWfPnubFF18M2/n/9a9/9f7t+LOf/cznbxh/+wO4jAlgxm4AAAAAtmrXrp26deumd955p667AgCIUC6XS+PHj7d8pQhwIuYsBAAAAAAAACCJYiEAAAAAAACAn1AsBAAAAAAAACCJYiEAOM6HH36oYcOGKS0tTS6XS4sWLTrlNitWrNC5554rt9utTp06ac6cOWHvJwDAP1u3bm3Q8xWSawBwasYY5itEyFAsBACHKSkpUc+ePTVjxgy/2m/ZskVDhw7VRRddpHXr1umuu+7SzTffrKVLl4a5pwAAnBq5BgCAvbgbMgA4mMvl0sKFCzV8+PAa29x7771699139c0333jXjRw5UoWFhVqyZIkNvQQAwD/kGgAA4deorjtwMo/Ho507d6pFixZyuVx13R0ADZgxRgcOHFBaWpqiooIbiH3kyBGVlZUF1ZeT3xPdbrfcbndQ/ZKkvLw8ZWVl+azLzs7WXXfdFfS+Qa4BiByRkmvhzDSJXAs3cg1AJAhlpknB5VpMTIxiY2OD7kMkibhi4c6dO5Wenl7X3QAArx07duiMM86wvP2RI0fUvm1z5e8ut7yP5s2b6+DBgz7rJk2apMmTJ1veZ4X8/HylpKT4rEtJSVFxcbEOHz6sJk2aBH2MhoxcAxBp6jrXwplpErkWbuQagEgSbKZJP+VakybKt7h9amqqtmzZ4qiCYcQVC1u0aCFJukCXqpEa13FvADRkx3RUH2ux933JqrKyMuXvLteWNW0V1yLwb72KD3jUPmObduzYobi4OO/6UI3AQHiRawAiRSTkGplW/1X8+9mxfbvPawgAdiouLlZ6mzZBZ5r0U65J2uFyKdB3tWJJ6fn5Kisro1gYThVD2RupsRq5+FAFoA79NKNrqC6xiWsRZalY6N0+Li4sf5SnpqaqoKDAZ11BQYHi4uIYfREC5BqAiBFBuRauTJPItXCr+PcTztcQAPwVyukQ4iTFBbo/h94GJOKKhQDgVOXGo3ILWVJuPKHvzAn69u2rxYsX+6xbtmyZ+vbtG9bjAgDqNyu5Fu5Mk8g1AIBFUVGSlWJhufXppiJV8LNAAgD84pGxvATi4MGDWrdundatWydJ2rJli9atW6ft27dLku6//36NGjXK2/6WW27Rf/7zH/3ud7/Thg0b9OKLL+qNN97Q3XffHbJzBwA4jx2ZJpFrAACbREVZWxyIkYUAYBOPPLIyniLQrVavXq2LLrrI+/OECRMkSaNHj9acOXO0a9cu7wcsSWrfvr3effdd3X333Xruued0xhln6E9/+pOys7Mt9BYA0FBYyTUrSUiuAQBsYXVkoQNRLAQAm5Qbo3ILYRLoNgMHDpSpZZs5c+ZUu83atWsD7RoAoAGzkmtWcpBcAwDYgmKhF8VCALCJ1cuvrGwDAEC4Wck1Mg0AELEoFno58+JqAAAAAAAAAAFjZCEA2MQjo3JGFgIAHMJKrpFpAICIxchCL4qFAGATLkMGADgJlyEDAByFYqEXxUIAsIldNzgBAMAOdt3gBAAAW1As9KJYCAA28fy0WNkOAIBIYyXXyDQAQMRyuY4XDAPhcWaycYMTAAAAAAAAAJIYWQgAtim3eIMTK9sAABBuVnKNTAMARKyoqMBHFjoUxUIAsEm5Ob5Y2Q4AgEhjJdfINABAxKJY6EWxEABswpyFAAAnYc5CAICjUCz0olgIADbxyKVyBXh3rZ+2AwAg0ljJNTINABCxKBZ6USwEAJt4zPHFynYAAEQaK7lGpgEAIhbFQq+AnoXc3Fydd955atGihZKTkzV8+HBt3LjRp83AgQPlcrl8lltuuSWknQYAIBTINQCAU5BpAIBQCahYuHLlSo0fP16fffaZli1bpqNHj2rQoEEqKSnxaTd27Fjt2rXLuzz55JMh7TQA1EflP12uZWVBeJBrAGAdmRZZyDQACFLFyMJAFwcK6DLkJUuW+Pw8Z84cJScna82aNbrwwgu965s2barU1NTQ9BAAHMLqhyQ+WIUPuQYA1lnJNTItfMg0AAiSg4t/gQrqWSgqKpIkJSYm+qx/7bXXlJSUpG7duun+++/XoUOHatxHaWmpiouLfRYAcCKPcVleYA9yDQD8R6ZFtlBkmkSuAWhAGFnoZfkGJx6PR3fddZfOP/98devWzbv+uuuuU9u2bZWWlqavvvpK9957rzZu3Ki///3v1e4nNzdXU6ZMsdoNAKg3GFkY2cg1AAgMIwsjV6gyTSLXADQgLlfgxT/jzDt3uYyxdma33nqr/u///k8ff/yxzjjjjBrbvf/++7rkkkv0/fffq2PHjlUeLy0tVWlpqffn4uJipaena6AuVyNXYytdA4CQOGaOaoXeVlFRkeLi4izvp7i4WPHx8Xr/m3Q1bxH4N08HD3h0cbcdQfcDtSPXADhdJOQamWaPUGWaVHOuFRUW8hoCqDPFxcWKT0gISZ5U5FrRmWcqLjo6sG3LyxW/aZPjcs3SyMKcnBy98847+vDDD2sNH0nKzMyUpBoDyO12y+12W+kGAAAhQa4BAJwilJkmkWsA0BAFVCw0xuj222/XwoULtWLFCrVv3/6U26xbt06S1KpVK0sdBACnMBbnajLM7xQ25BoAWGcl18i08CHTACBIVuYgdOhlyAE9C+PHj9df//pXzZs3Ty1atFB+fr7y8/N1+PBhSdLmzZs1depUrVmzRlu3btU//vEPjRo1ShdeeKF69OgRlhMAgPqiYm4nKwvCg1wDAOvItMhCpgFAkGy8wcmMGTPUrl07xcbGKjMzU6tWrfJru9dff10ul0vDhw+3dFx/BTSycObMmZKkgQMH+qyfPXu2brzxRsXExOi9997T9OnTVVJSovT0dF155ZV68MEHQ9ZhAKivyk2Uyk3gYVLuzC+rIgK5BgDWWck1Mi18yDQACJJNIwvnz5+vCRMmaNasWcrMzNT06dOVnZ2tjRs3Kjk5ucbttm7dqnvuuUf9+/cP+JiBCvgy5Nqkp6dr5cqVQXUIAJzKI5c8gQ3o/mk7PlmFC7kGANZZyTUyLXzINAAIkk3FwmnTpmns2LEaM2aMJGnWrFl699139eqrr+q+++6rdpvy8nJdf/31mjJlij766CMVFhYGfNxAWBsvCQAIGJchAwCchEwDADhKEJchFxcX+ywn3kX+RGVlZVqzZo2ysrJOOGyUsrKylJeXV2PXHn74YSUnJ+umm24K7TnXgGIhAAAAAAAAYFF6erri4+O9S25ubrXt9u7dq/LycqWkpPisT0lJUX5+frXbfPzxx3rllVf08ssvh7zfNQnoMmQAgHXW5yzkki0AQOSxNmchmQYAiFBBXIa8Y8cOxcXFeVe73e6QdOnAgQO64YYb9PLLLyspKSkk+/QHxUIAsMnxuZ0Cv/zKyjYAAISblVwj0wAAESuIYmFcXJxPsbAmSUlJio6OVkFBgc/6goICpaamVmm/efNmbd26VcOGDfOu83g8kqRGjRpp48aN6tixY2B99gPFQgCwiUdRKucGJwAAh7CSa2QaACBiuVyBFwt/Ktz5KyYmRhkZGVq+fLmGDx/+0y48Wr58uXJycqq079y5s77++mufdQ8++KAOHDig5557Tunp6YH1108UCwHAJlyGDABwEi5DBhBqJoDRxy6+fAiLBv0aWBlZGGh7SRMmTNDo0aPVu3dv9enTR9OnT1dJSYn37sijRo1S69atlZubq9jYWHXr1s1n+4SEBEmqsj6UKBYCgE08ipKHkYUAAIewkmtkGgAgYtlULBwxYoT27NmjiRMnKj8/X7169dKSJUu8Nz3Zvn27oizsN5QoFgIAAAAAAAA2ycnJqfayY0lasWJFrdvOmTMn9B06CcVCALBJuXGp3AQ+sbuVbQAACDcruUamAQAilk0jC+sDioUAYJNyizc4KeeSLQBABLKSa2QaACBiUSz0olgIADbxmCh5LNzgxMNk8ACACGQl18g0AEDEoljoRbEQAGzCyEIAgJMwshAA4CgUC70oFgKATTyyNleTJ/RdAQAgaFZyjUwDAEQsioVezjwrAAAAAAAAAAFjZCEA2MSjKHksfEdjZRsAAMLNSq6RaQCAiMXIQi+KhQBgk3ITpXILNzixsg0AAOFmJdfINABAxHK5Ai/+uQKfZqo+oFgIADbxyCWPrMxZ6MwAAgDUb1ZyjUwDGh7D7z3qC0YWelEsBACbMLIQAOAkjCwEADgKxUIvioUAYJNyRancwlxNVrYBACDcrOQamQYAiFgUC72ceVYAAAAAAAAAAsbIQgCwice45DEW5iy0sA0AAOFmJdfINABAxGJkoRfFQgCwicfiZcgeBoEDACKQlVwj0wAAEYtioRfFQgCwicdEyWNhYncr2wAAEG5Wco1MAwBELIqFXhQLAcAm5XKpXIFffmVlGwAAws1KrpFpAICIRbHQi2IhANiEkYUAACdhZCEAwFEoFno586wAAAAAAAAABIyRhQBgk3JZu/yqPPRdAQAgaFZyjUwDAEQslyvwkYIuZ06vwchCALBJxeVaVpZAzZgxQ+3atVNsbKwyMzO1atWqWttPnz5dZ599tpo0aaL09HTdfffdOnLkiNVTBQA0AHZlmkSuAQ2FS8bvBeHRoF+DisuQA10ciJGFAGCTchOlcgsfkgLdZv78+ZowYYJmzZqlzMxMTZ8+XdnZ2dq4caOSk5OrtJ83b57uu+8+vfrqq+rXr5++++473XjjjXK5XJo2bVrA/QUANAxWcs1KDpJrAABbMGehlzPPCgAikJFLHguLCfASr2nTpmns2LEaM2aMunbtqlmzZqlp06Z69dVXq23/6aef6vzzz9d1112ndu3aadCgQbr22mtPOWoDANCwWcm1QDNNItcAADZhZKGXM88KACJQxQgMK4u/ysrKtGbNGmVlZXnXRUVFKSsrS3l5edVu069fP61Zs8b7Ieo///mPFi9erEsvvTS4EwYAOFq4M00i1wAANqJY6MVlyABQTxQXF/v87Ha75Xa7fdbt3btX5eXlSklJ8VmfkpKiDRs2VLvf6667Tnv37tUFF1wgY4yOHTumW265Rb///e9DewIAAPzEn0yTyDUAAOqCM0ugABCBPMZleZGk9PR0xcfHe5fc3NyQ9GvFihV67LHH9OKLL+rLL7/U3//+d7377ruaOnVqSPYPAHCmSMw0iVwDAFjEyEIvRhYCgE3KFaVyC9/RVGyzY8cOxcXFeddXNwIjKSlJ0dHRKigo8FlfUFCg1NTUavf/0EMP6YYbbtDNN98sSerevbtKSko0btw4PfDAA4pyaAACAIJjJdcCyTSJXAMA2IgbnHg586wAIAIFO7IwLi7OZ6nug1VMTIwyMjK0fPnyyuN6PFq+fLn69u1bbb8OHTpU5YNTdHS0JMkYE6rTBwA4TLgzTSLXAAA2YmShFyMLAcAmHkXJY+E7mkC3mTBhgkaPHq3evXurT58+mj59ukpKSjRmzBhJ0qhRo9S6dWvvJV/Dhg3TtGnT9LOf/UyZmZn6/vvv9dBDD2nYsGHeD1cAAJzMSq5ZyUFyDQBgC0YWelEsBACblBuXyn8aURHodoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3WfExYMPPiiXy6UHH3xQP/74o1q2bKlhw4bp0UcfDbivAICGw0quWclBcg0AYAuXK/DinyvwXKsPKBYCgAPl5OQoJyen2sdWrFjh83OjRo00adIkTZo0yYaeAQAQOHINAAD7UCwEAJucOFdToNsBABBprOQamQYAiFhchuxFsRAAbGJMlDwm8DAxFrYBACDcrOQamQYAiFgUC70oFgKATcrlUrkszFloYRsAAMLNSq6RaQCAiEWx0ItiIQDYxGOsXX7lMWHoDAAAQbKSa2QaACBiUSz0olgIADbxWLwM2co2AACEm5VcI9MAABGLYqGXM88KAAAAAAAAQMAYWQgANvHIJY+FuZqsbAMAQLhZyTUyDQAQsRhZ6EWxEABsUm5cKrcwZ6GVbQAACDcruUamAQAiFsVCr4DOKjc3V+edd55atGih5ORkDR8+XBs3bvRpc+TIEY0fP16nn366mjdvriuvvFIFBQUh7TQA1EcVcztZWRAe5BoAWEemRRYyDQCCVFEsDHRxoIDOauXKlRo/frw+++wzLVu2TEePHtWgQYNUUlLibXP33Xfrn//8pxYsWKCVK1dq586duuKKK0LecQCobzxyyWMsLFyyFTbkGgBYZynXyLSwIdMAIEguV+CFQpczcy2gy5CXLFni8/OcOXOUnJysNWvW6MILL1RRUZFeeeUVzZs3TxdffLEkafbs2erSpYs+++wz/c///E/oeg4A9YyxOGeh4YNV2JBrAGCdlVwj08KHTAOAIHEZsldQZ1VUVCRJSkxMlCStWbNGR48eVVZWlrdN586d1aZNG+Xl5VW7j9LSUhUXF/ssAADUBXINAOAUocg0iVwDgIbIcrHQ4/Horrvu0vnnn69u3bpJkvLz8xUTE6OEhASftikpKcrPz692P7m5uYqPj/cu6enpVrsEABHN0iXIPy0IP3INAAJDpkWuUGWaRK4BaECYs9DL8lmNHz9e33zzjV5//fWgOnD//ferqKjIu+zYsSOo/QFApOIGJ5GNXAOAwJBpkStUmSaRawAaEIqFXgHNWVghJydH77zzjj788EOdccYZ3vWpqakqKytTYWGhzzdWBQUFSk1NrXZfbrdbbrfbSjcAoF6xOqKCURjhR64BQOCs5BqZFn6hzDSJXAPQgDBnoVdAZ2WMUU5OjhYuXKj3339f7du393k8IyNDjRs31vLly73rNm7cqO3bt6tv376h6TEA1FOenyaCt7IgPMg1ALCOTIssZBoABImRhV4BjSwcP3685s2bp7ffflstWrTwzm0RHx+vJk2aKD4+XjfddJMmTJigxMRExcXF6fbbb1ffvn25uxaABo+RhZGHXAMA6xhZGFnINAAIEiMLvQIqFs6cOVOSNHDgQJ/1s2fP1o033ihJevbZZxUVFaUrr7xSpaWlys7O1osvvhiSzgIAEErkGgDAKcg0AECoBFQsNMacsk1sbKxmzJihGTNmWO4UADgRIwsjD7kGANYxsjCykGkAECRGFnpZusEJACBwFAsBAE5CsRAA4CgUC72ceVYAEIEqPlRZWQAAiDRkGgDAUVyuwG9u4rKWazNmzFC7du0UGxurzMxMrVq1qsa2L7/8svr376/TTjtNp512mrKysmptHwoUCwHAJkbW7hx56ouKAACwn5VcI9MAABHLprshz58/XxMmTNCkSZP05ZdfqmfPnsrOztbu3burbb9ixQpde+21+uCDD5SXl6f09HQNGjRIP/74Y7BnXCOKhQAAAAAAAIANpk2bprFjx2rMmDHq2rWrZs2apaZNm+rVV1+ttv1rr72m2267Tb169VLnzp31pz/9SR6PR8uXLw9bHykWAoBNuAwZAOAkZBoAwFFsGFlYVlamNWvWKCsr64TDRikrK0t5eXl+7ePQoUM6evSoEhMTAzp2ILjBCQDYhBucAACchBucAAAcJYgbnBQXF/usdrvdcrvdVZrv3btX5eXlSklJ8VmfkpKiDRs2+HXIe++9V2lpaT4Fx1BjZCEA2ISRhQAAJyHTAACOEsTIwvT0dMXHx3uX3NzcsHTx8ccf1+uvv66FCxcqNjY2LMeQGFkIALZhZCEAwEkYWQgAcJQgRhbu2LFDcXFx3tXVjSqUpKSkJEVHR6ugoMBnfUFBgVJTU2s91NNPP63HH39c7733nnr06BFYPwPEyEIAsIkxLssLAACRhkwDADhKECML4+LifJaaioUxMTHKyMjwuTlJxc1K+vbtW2PXnnzySU2dOlVLlixR7969Q3ve1WBkIQAAAAAAAGCDCRMmaPTo0erdu7f69Omj6dOnq6SkRGPGjJEkjRo1Sq1bt/ZeyvzEE09o4sSJmjdvntq1a6f8/HxJUvPmzdW8efOw9JFiIQDYxCOXPLJwGbKFbQAACDcruUamAQAiVhCXIQdixIgR2rNnjyZOnKj8/Hz16tVLS5Ys8d70ZPv27Yo6Yb8zZ85UWVmZrrrqKp/9TJo0SZMnTw74+P6gWAgANmHOQgCAkzBnIQDAUWwqFkpSTk6OcnJyqn1sxYoVPj9v3brV0jGCQbEQAGxida4m5ncCAEQiK7lGpgEAIpbLFXjxz+XMXKNYCAA2YWQhAMBJGFkIAHAUG0cWRjqKhQBgE0YWAgCchJGFAABHoVjo5cyzAgAAAAAAABAwRhYCgE2MxcuQGYUBAIhEVnKNTAOAyGYCuGu9SyaMPakDjCz0olgIADYxkoyFPHVYBAMAHMJKrpFpAICIRbHQi2IhANjEI5dcAXxTd+J2AABEGiu5RqYBACIWxUIvioUAYBNucAIAcBJucAIAcBSKhV4UCwHAJh7jksvChyQr8xwCABBuVnKNTAMARCyKhV7OPCsAAAAAAAAAAWNkIQDYxBiLNzhhNngAQASykmtkGgAgYjGy0ItiIQDYhDkLAQBOwpyFAABHoVjoRbEQAGxCsRAA4CQUCwEAjuJyBV78czkz1ygWAoBNuMEJAMBJuMEJAMBRGFnoRbEQAGzCnIUAACdhzkIAgKNQLPSiWIgGJ6pJE/8aBjCc2JSW+t+2vNzvtgAA1MbVqLHfbaOaxPrdNpCsIgMBAKFy9Jj/n8EaRwWQKUeO+NcuJsb/fTZyZjnFJb7VAcVCALDN8REYVuYsDENnAAAIkpVcI9MAABGLkYVeFAsBwCbc4AQA4CTc4AQA4CgUC70oFgKATcxPi5XtAACINFZyjUwDAEQsioVeFAsBwCaMLAQAOAkjCwEAjkKx0MuZZwUAkcgEsQRoxowZateunWJjY5WZmalVq1bV2r6wsFDjx49Xq1at5Ha7ddZZZ2nx4sWBHxgA0HDYlGkSuQYAsEFFsTDQxYEYWQgADjN//nxNmDBBs2bNUmZmpqZPn67s7Gxt3LhRycnJVdqXlZXp5z//uZKTk/Xmm2+qdevW2rZtmxISEuzvPAAAJyHXAACwF8VCALCLxcuQFeA206ZN09ixYzVmzBhJ0qxZs/Tuu+/q1Vdf1X333Vel/auvvqr9+/fr008/VePGjSVJ7dq1C7yfAICGxUquWchBcg0AYAsuQ/Zy5lkBQAQyxvoiScXFxT5LaWlplWOUlZVpzZo1ysrK8q6LiopSVlaW8vLyqu3XP/7xD/Xt21fjx49XSkqKunXrpscee0zl5eVheR4AAM4Q7kyTyDUAgI1crsAvQXY5cy5eioUAYJOKieCtLJKUnp6u+Ph475Kbm1vlGHv37lV5eblSUlJ81qekpCg/P7/afv3nP//Rm2++qfLyci1evFgPPfSQnnnmGT3yyCOhfxIAAI4R7kyTyDUAgI2Ys9CLy5ABwC7GZenyq4ptduzYobi4OO9qt9sdkm55PB4lJyfrpZdeUnR0tDIyMvTjjz/qqaee0qRJk0JyDACAA1nJtTBnmkSuAQAs4jJkL4qFAGCTEy+/CnQ7SYqLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq92mVatWaty4saKjo73runTpovz8fJWVlSkmJibwTgMAHM9KrgWSaRK5BgCwEcVCL4qFiFhRgfwhd04nv5se6HjqP0wlydPY/8M333HE77aNvtnqd9vywkL/OwFIiomJUUZGhpYvX67hw4dLOj7CYvny5crJyal2m/PPP1/z5s2Tx+NR1E9h991336lVq1Z8oALqQKPkln63PdKjrd9tD7b2P9galfpfAYrbWOx3W9eGLX618xypfv66ahmP/21R75BrQGQ6cND/UcU//OD/fps29b9t2yT/P4Npwwb/2/rrrLP8bxvIiTm0+IT6hX+FAGAXE8QSgAkTJujll1/Wn//8Z61fv1633nqrSkpKvHeRHDVqlO6//35v+1tvvVX79+/XnXfeqe+++07vvvuuHnvsMY0fPz648wUAOJsNmSaRawAAmzBnoRcjCwHAJidO7B7odoEYMWKE9uzZo4kTJyo/P1+9evXSkiVLvJPDb9++3TvSQjo+yfzSpUt19913q0ePHmrdurXuvPNO3XvvvQH3FQDQcFjJNSs5SK4BAGzBZcheFAsBwE4WRlRYkZOTU+PlWStWrKiyrm/fvvrss8/C3CsAgOOQawAAp6BY6EWxEABsYtfIQgAA7GDXyEIAAGxBsdCLYiEA2MXiXE12jdoAACAgVnKNTAMARCqKhV7OPCsAAAAAAAAAAQu4WPjhhx9q2LBhSktLk8vl0qJFi3wev/HGG+VyuXyWwYMHh6q/AFCPuYJYEA5kGgAEg0yLNOQaAATB5Qr8TsguZ+ZawMXCkpIS9ezZUzNmzKixzeDBg7Vr1y7v8re//S2oTgKAI5ggFoQFmQYAQSDTIg65BgBBCLRQaOWy5Xoi4DkLhwwZoiFDhtTaxu12KzU11XKnAMCRmLMw4pBpABAE5iyMOOQaAASBOQu9wnJWK1asUHJyss4++2zdeuut2rdvX41tS0tLVVxc7LMAgCMZl/UFdSaQTJPINQANCJlWL5FrAFADRhZ6hfxuyIMHD9YVV1yh9u3ba/Pmzfr973+vIUOGKC8vT9HR0VXa5+bmasqUKaHuBhzA1bmj3223XZrgd9vGff7rV7tG0R6/97l93el+t23jau9326i8b/xua44d9bst6oYxxxcr26FuBJppErmGmkU1bepXu5I+/ufE9qv8z6rEpP1+ty0sifW77cHPE/xue8b+JP8a7qm9eHEiz+EjfreV8f/5wqlZyTUyrW6RaziVo8f8K+h/+63/+9ywwf+2/fr531Z+5qokaedO/9rl5/u/z+bN/W8byGjeQPbr0EJVnWFkoVfIi4UjR470/n/37t3Vo0cPdezYUStWrNAll1xSpf3999+vCRMmeH8uLi5Wenp6qLsFAEDAAs00iVwDAEQucg0A4I+wl0A7dOigpKQkff/999U+7na7FRcX57MAgCNxg5N671SZJpFrABoQMq3eI9cA4ARchuwV8pGFJ/vhhx+0b98+tWrVKtyHAoDIZnWuJuZ3ihhkGgCcwEqukWkRhVwDgBNwGbJXwMXCgwcP+nzztGXLFq1bt06JiYlKTEzUlClTdOWVVyo1NVWbN2/W7373O3Xq1EnZ2dkh7TgA1Dcuc3yxsh3Cg0wDAOus5BqZFl7kGgAEgWKhV8DFwtWrV+uiiy7y/lwxf8Xo0aM1c+ZMffXVV/rzn/+swsJCpaWladCgQZo6darcbnfoeg0A9ZHVy6/4YBU2ZBoABMFKrpFpYUWuAUAQKBZ6BVwsHDhwoEwttzFbunRpUB0CAMfiMuSIQ6YBQBC4DDnikGsAEASXK/Din8uZuebMEigAAAAAAACAgIX9BicAgJ9wGTIAwEm4DBkA4CRchuxFsRAA7EKxEADgJBQLAQBOQrHQi2IhANiFYiEAwEkoFgIAnIRioRfFQgCwCzc4AQA4CTc4AQA4CcVCL4qFsJWrUWO/2x7sGOd326jeRX63fbnHXL/aNXaV+73PX7v+1++2xRuT/G6b+FVTv9uWF/n/HKBuuMzxxcp2AOq/qMTT/Gq3/2z//zz7de9lfrfNav6t322/PNzW77aPFQ/1u215SoJf7aKKDvi9T1dpqd9tjf/RDj9YyTUyDYhshw75127rVv/3GUjbbt38b2vk/5cPrv37/Wv4ww/+d2DvXv/bJiT437ap/58B/S1UBfRcNeQh4BQLvZx5VgAAAAAAAEAEmjFjhtq1a6fY2FhlZmZq1apVtbZfsGCBOnfurNjYWHXv3l2LFy8Oa/8oFgKAXUwQCwAAkYZMAwA4ScXIwkCXAM2fP18TJkzQpEmT9OWXX6pnz57Kzs7W7t27q23/6aef6tprr9VNN92ktWvXavjw4Ro+fLi++eabYM+4RhQLAQAAAAAA0LDZVCycNm2axo4dqzFjxqhr166aNWuWmjZtqldffbXa9s8995wGDx6s3/72t+rSpYumTp2qc889Vy+88EKwZ1wjioUAYBOXKud3Cmip644DAFANS7lW150GAKAmQRQLi4uLfZbSGuZULisr05o1a5SVlXXCYaOUlZWlvLy8arfJy8vzaS9J2dnZNbYPBYqFAGCXirtGWlkAAIg0ZBoAwEGMXJYWSUpPT1d8fLx3yc3NrfYYe/fuVXl5uVJSUnzWp6SkKD8/v9pt8vPzA2ofCtwNGQDsYnWuJuZ3AgBEIiu5RqYBACKUx3N8CXQbSdqxY4fi4uK8691udwh7Zj+KhQAAAAAAAIBFcXFxPsXCmiQlJSk6OloFBQU+6wsKCpSamlrtNqmpqQG1DwUuQwYAu3A3ZACAk5BpAAAHqRhZGOgSiJiYGGVkZGj58uUnHNej5cuXq2/fvtVu07dvX5/2krRs2bIa24cCIwsBwCYVk7tb2Q4AgEhjJdfINABApArmMuRATJgwQaNHj1bv3r3Vp08fTZ8+XSUlJRozZowkadSoUWrdurV33sM777xTAwYM0DPPPKOhQ4fq9ddf1+rVq/XSSy8FfnA/USwEALswZyEAwEmYsxAA4CB2FQtHjBihPXv2aOLEicrPz1evXr20ZMkS701Mtm/frqioyguB+/Xrp3nz5unBBx/U73//e5155platGiRunXrFvjB/USxEADsQrEQAOAkFAsBAA5iV7FQknJycpSTk1PtYytWrKiy7uqrr9bVV19t7WAWUCwEAJtwGTIAwEm4DBkA4CR2FgsjHTc4AQAAAAAAACCJkYUAYB/jOr5Y2Q4AgEhjJdfINABAhGJkYSWKhQBgF+YsBAA4CXMWAgAchGJhJYqFAGAT5iwEADgJcxYCAJzEmMCLf8ahuUaxEADswshCAICTMLIQAOAgjCysxA1OAAAAAAAAAEhiZCEA2MfiZciMwgAARCQruUamAQAiFCMLK1EsBAC7cBkyAMBJuAwZAOAgFAsrUSwEALtQLAQAOAnFQgCAg1AsrESxELYyx4763bb55mK/2+5bfZrfbcdG3eBXu0bR/v/WH1x3ut9t22w97HdbT8khv9si8nE3ZKBh8+z/r1/tEje29nuff1w9wO+2C5LO9bvtgZJYv9vGrW/sd9vogny/2nnKyvzep/HwJllXuBsy4DxNm/rXrl07//d55Ij/bePi/G/rCuTbh8RE/9oFkD9KSvK/baz/uaqo0N9aIqDnqgGjWFiJYiEAAAAAAAAaNIqFlbgbMgAAAAAAAABJjCwEAPswZyEAwEmYsxAA4CCMLKxEsRAAbMKchQAAJ2HOQgCAk1AsrESxEADsxIckAICTkGsAAIcwJvDin3FoDlIsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKzE3ZABAAAAAAAASGJkIQDYh8uQAQBOwmXIAAAHYWRhJUYWAoBNKi7XsrIEasaMGWrXrp1iY2OVmZmpVatW+bXd66+/LpfLpeHDhwd+UABAg2JXpknkGgAg/CqKhYEuTkSxEADsYoJYAjB//nxNmDBBkyZN0pdffqmePXsqOztbu3fvrnW7rVu36p577lH//v0DOyAAoGGyIdMkcg0AYA+KhZW4DBkRy2zY7HfbNtGd/G57YGO8X+08jf3epdrsOOR320bfbPW7bfmxo/53ApHPpsuQp02bprFjx2rMmDGSpFmzZundd9/Vq6++qvvuu6/abcrLy3X99ddrypQp+uijj1RYWGihowBq4znkX1Y0W7XF7322P9LW77YHWyf63Tap1P83nriNhX639eze61+7I6V+71PGoX+l1wc2XYZMrgH2adzIv1/Srl1dfu8zLs7/48fE+N9WfuaqJCktLbTtAm3btKn/baMY01VXuAy5Ev8KAcAmwV6GXFxc7LOUllb9MF1WVqY1a9YoKyvLuy4qKkpZWVnKy8ursW8PP/ywkpOTddNNN4X8vAEAzhTuTJPINQCAfRhZWIliIQDUE+np6YqPj/cuubm5Vdrs3btX5eXlSklJ8VmfkpKi/Pz8avf78ccf65VXXtHLL78cln4DAHAyfzJNItcAAKgLXIYMAHYJ8jLkHTt2KO6E6zjcbnfQXTpw4IBuuOEGvfzyy0pKSgp6fwCABiSIy5DDkWkSuQYAsI7LkCtRLAQAuwRZLIyLi/P5YFWdpKQkRUdHq6CgwGd9QUGBUlNTq7TfvHmztm7dqmHDhnnXeX5KvEaNGmnjxo3q2LGjhU4DABwviGKhP5kmkWsAAPsYE3jxz1j5fFcPcBkyANgk2DkL/RETE6OMjAwtX77cu87j8Wj58uXq27dvlfadO3fW119/rXXr1nmXyy67TBdddJHWrVun9PT0UJw6AMCBwp1pErkGALAPcxZWYmQhANjFprshT5gwQaNHj1bv3r3Vp08fTZ8+XSUlJd67SI4aNUqtW7dWbm6uYmNj1a1bN5/tExISJKnKegAAfNh0N2RyDQBgBy5DrhTwyMIPP/xQw4YNU1pamlwulxYtWuTzuDFGEydOVKtWrdSkSRNlZWVp06ZNoeovANRbdowslKQRI0bo6aef1sSJE9WrVy+tW7dOS5Ys8U4Ov337du3atSsMZ1j/kGkAYJ0dmSaRa4Eg1wDAOkYWVgq4WFhSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDkSdGcBAP7JycnRtm3bVFpaqs8//1yZmZnex1asWKE5c+bUuO2cOXOqfLhwKjINAOoHcs0/5BoAIBQCvgx5yJAhGjJkSLWPGWM0ffp0Pfjgg7r88sslSX/5y1+UkpKiRYsWaeTIkcH1FgDqM5suQ4b/yDQACIJNlyHDf+QaAFjHZciVQnqDky1btig/P19ZWVnedfHx8crMzFReXl6125SWlqq4uNhnAQBHMkEssJ2VTJPINQANCJlWr5BrAFA7LkOuFNIbnOTn50uSd/6QCikpKd7HTpabm6spU6aEshtwCE9Zmf+N137rd9MWG5r419Dl8nufprTU77bl5eV+t4WzuH5arGwH+1nJNIlcQ/CO7d7jd9vGKwr9bnt6k1i/25oAsiqQDAxkv4h8VnKNTKs75BpCqUVz/yv/nTv7/5t/7FgAnYjyP9fUubN/7WJi/N9nI+4X6zSMLKwU0pGFVtx///0qKiryLjt27KjrLgFAeDCysEEg1wA0GGRag0CuAWgoGFlYKaSl8NTUVElSQUGBWrVq5V1fUFCgXr16VbuN2+2W2+0OZTcAICJZvQuklW0QPCuZJpFrABoOK7lGptUdcg0AasfIwkohHVnYvn17paamavny5d51xcXF+vzzz9W3b99QHgoAgLAi0wAATkKuAQD8FfDIwoMHD+r777/3/rxlyxatW7dOiYmJatOmje666y498sgjOvPMM9W+fXs99NBDSktL0/Dhw0PZbwCof7gbcsQh0wAgCNwNOeKQawBgnTGBjxQ0Ds21gIuFq1ev1kUXXeT9ecKECZKk0aNHa86cOfrd736nkpISjRs3ToWFhbrgggu0ZMkSxcYGMPkoADiVQ8OkviLTACBI5FpEIdcAwDouQ64UcLFw4MCBMrWUTl0ulx5++GE9/PDDQXUMAJyGOQsjD5kGANYxZ2HkIdcAwDqKhZW41zcA2IXLkAEATsJlyAAAB6FYWIliIQDYhJGFAAAnYWQhAMBJKBZWCundkAEAAAAAAADUX4wsBAC7cBkyAMBJuAwZAOAgjCysRLEQAGzCZcgAACfhMmQAgJNQLKxEsRANjufw4bruAhoqRhYCCDFz7KjfbcsP+N8W8AsjCwGEWONGgbxJBDCrWtOmAfeloTJy+d3W5bA3dYqFlSgWAoBdKBYCAJyEYiEAwEEoFlaiWAgANuEyZACAk3AZMgDASSgWVuJuyAAAAAAAAAAkMbIQAOzDZcgAACfhMmQAgIMYE/hIQePQXGNkIQDYxGWM5QUAgEhDpgEAnKTiMuRAl3DZv3+/rr/+esXFxSkhIUE33XSTDh48WGv722+/XWeffbaaNGmiNm3a6I477lBRUVHAx2ZkIQDYhZGFAAAnYWQhAMBBIm3Owuuvv167du3SsmXLdPToUY0ZM0bjxo3TvHnzqm2/c+dO7dy5U08//bS6du2qbdu26ZZbbtHOnTv15ptvBnRsioUAYBNucAIAcBJucAIAcJJIKhauX79eS5Ys0RdffKHevXtLkp5//nldeumlevrpp5WWllZlm27duumtt97y/tyxY0c9+uij+t///V8dO3ZMjRr5XwLkMmQAsIsJYgEAINKQaQAAB4mky5Dz8vKUkJDgLRRKUlZWlqKiovT555/7vZ+ioiLFxcUFVCiUGFkIAAAAAAAAWFZcXOzzs9vtltvttry//Px8JScn+6xr1KiREhMTlZ+f79c+9u7dq6lTp2rcuHEBH5+RhQBgk4rLtawsAABEGjINAOAkwYwsTE9PV3x8vHfJzc2t9hj33XefXC5XrcuGDRuCPpfi4mINHTpUXbt21eTJkwPenpGFAGAXbnACAHASbnACAI7jasBv1MHMWbhjxw7FxcV519c0qvA3v/mNbrzxxlr32aFDB6Wmpmr37t0+648dO6b9+/crNTW11u0PHDigwYMHq0WLFlq4cKEaN2586hM5CcVCALAJNzgBADgJNzgBADhJMMXCuLg4n2JhTVq2bKmWLVuesl3fvn1VWFioNWvWKCMjQ5L0/vvvy+PxKDMzs8btiouLlZ2dLbfbrX/84x+KjY3170ROwmXIAGAXbnACAHASMg0A4CCRdIOTLl26aPDgwRo7dqxWrVqlTz75RDk5ORo5cqT3Tsg//vijOnfurFWrVkk6XigcNGiQSkpK9Morr6i4uFj5+fnKz89XeXl5QMdnZCEA2IgRFQAAJyHXAABOYUzgxT8Txhx87bXXlJOTo0suuURRUVG68sor9Yc//MH7+NGjR7Vx40YdOnRIkvTll19675TcqVMnn31t2bJF7dq18/vYFAsBAAAAAACACJKYmKh58+bV+Hi7du1kTqhWDhw40OfnYFAsBAC7GGPtq6dwfl0FAIBVVnKNTAMARKhg5ix0GoqFAGATbnACAHASbnACAHASioWVKBYCgF2sTuzOBysAQCSykmtkGgAgQlEsrESxEABs4vIcX6xsBwBApLGSa2QaACBSUSysRLEQAOzCyEIAgJMwshAA4CAUCytF1XUHAAAAAAAAAEQGRhYCgE24wQkAwEm4wQkAwEkYWViJYiEA2MWY44uV7QAAiDRWco1MAwBEKIqFlSgWAoBNGFkIAHASRhYCAJyEYmElioUAYBducAIAcBJucAIAcBBjAi/+OXXAPMVCALAJIwsBAE7CyEIAgJMwsrASd0MGAAAAAAAAIImRhQBgH25wAgBwEm5wAgBwEEYWVqJYCAA24TJkAICTcBkyAMBJKBZWolgIAHbhBicAACfhBicAAAehWFiJYiEA2ISRhQAAJ2FkIQDASSgWVqJYCAB28Zjji5XtAACINFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA+zBnIQDASZizEADgIIwsrESxEABs4pLFOQtD3hMAAIJnJdfINABApKJYWInLkAHALsZYXwI0Y8YMtWvXTrGxscrMzNSqVatqbPvyyy+rf//+Ou2003TaaacpKyur1vYAAEiyLdMkcg0AEH7GVBYM/V0sxlrEo1gIADapuGuklSUQ8+fP14QJEzRp0iR9+eWX6tmzp7Kzs7V79+5q269YsULXXnutPvjgA+Xl5Sk9PV2DBg3Sjz/+GIKzBgA4lR2ZJpFrAAB7BFootDISsb6gWAgADjNt2jSNHTtWY8aMUdeuXTVr1iw1bdpUr776arXtX3vtNd12223q1auXOnfurD/96U/yeDxavny5zT0HAKAqcg0AAHtRLAQAu5ggFj+VlZVpzZo1ysrK8q6LiopSVlaW8vLy/NrHoUOHdPToUSUmJvp/YABAwxPmTJPINQCAfRhZWIkbnACATVzGyGVhUouKbYqLi33Wu91uud1un3V79+5VeXm5UlJSfNanpKRow4YNfh3v3nvvVVpams8HMwAATmYl1wLJNIlcAwDYhxucVAr5yMLJkyfL5XL5LJ07dw71YQCg/vEEsUhKT09XfHy8d8nNzQ15Fx9//HG9/vrrWrhwoWJjY0O+//qIXAOAGkR4pknk2snINACoGSMLK4VlZOE555yj9957r/IgjRjACADBjizcsWOH4uLivOurG4GRlJSk6OhoFRQU+KwvKChQampqrcd5+umn9fjjj+u9995Tjx49Au6nk5FrAFBVMCML/ck0iVwLBzINAKrHyMJKYUmGRo0anTK8AaDBsTBXk3c7SXFxcT4frKoTExOjjIwMLV++XMOHD5ck76TuOTk5NW735JNP6tFHH9XSpUvVu3dvC510NnINAKphJdcCyDSJXAsHMg0AqkexsFJYbnCyadMmpaWlqUOHDrr++uu1ffv2GtuWlpaquLjYZwEAWDdhwgS9/PLL+vOf/6z169fr1ltvVUlJicaMGSNJGjVqlO6//35v+yeeeEIPPfSQXn31VbVr1075+fnKz8/XwYMH6+oUIg65BgB1h1wLrUAyTSLXAKAhCnmxMDMzU3PmzNGSJUs0c+ZMbdmyRf3799eBAweqbZ+bm+szX0l6enqouwQAkcEY60sARowYoaeffloTJ05Ur169tG7dOi1ZssQ7Ofz27du1a9cub/uZM2eqrKxMV111lVq1auVdnn766ZCefn1FrgFADWzINIlcC6VAM00i1wA0HMxZWMlljIXEDkBhYaHatm2radOm6aabbqryeGlpqUpLS70/FxcXKz09XQN1uRq5GoezawBQq2PmqFbobRUVFfl1qVRNiouLFR8frwH9HlKjRoFPrn7s2BGt/HRq0P1AaJBrAOqrSMg1Mi2ynCrTpJpzraiwkNcQfjFy+d3WZWnOHjRExcXFik9ICEmeVOTaNdcUKSYmsH2VlRXrjTfiHZdrYZ/NNiEhQWeddZa+//77ah93u901TmgMAI5icUSFpW0QNuQaAPzESq6RaRHlVJkmkWsAGg5jAh8p6NRYC8uchSc6ePCgNm/erFatWoX7UAAQ0Vwe6wsiB7kGAMeRafUfmQYAlbgMuVLIi4X33HOPVq5cqa1bt+rTTz/VL3/5S0VHR+vaa68N9aEAoH6xac5ChBa5BgA1INPqHTINAGpGsbBSyC9D/uGHH3Tttddq3759atmypS644AJ99tlnatmyZagPBQBA2JFrAACnINMAAP4IebHw9ddfD/UuAcAZzE+Lle1QZ8g1AKiBlVwj0+oUmQYANbMyUpCRhQCAoLiMkcvC5VdWtgEAINys5BqZBgCIVBQLK1EsBAC7cDdkAICTcDdkAICDUCysRLEQAOxiJFkJEz5XAQAikZVcI9MAABGKYmElioUAYBMuQwYAOAmXIQMAnIRiYaWouu4AAAAAAAAAgMjAyEIAsIuRxTkLQ94TAACCZyXXyDQAtTBy+d3WxRtKWDTk14CRhZUoFgKAXbjBCQDASbjBCQDAQYwJvPjn1FijWAgAdvFIAXxR57sdAACRxkqukWkAgAjFyMJKFAsBwCbc4AQA4CTc4AQA4CQUCytRLAQAu3AZMgDASbgMGQDgIBQLK3E3ZAAAAAAAAACSGFkIAPZhZCEAwEkYWQgAcBBGFlaiWAgAdqFYCABwEoqFAAAHoVhYiWIhANiFuyEDAJyEuyEDAByEYmElioUAYBPuhgwAcBLuhgwAcBKKhZW4wQkA2KXici0rCwAAkYZMAwA4SEWxMNAlXPbv36/rr79ecXFxSkhI0E033aSDBw/6ta0xRkOGDJHL5dKiRYsCPjbFQgAAAAAAEBYuGb8XAJWuv/56/fvf/9ayZcv0zjvv6MMPP9S4ceP82nb69OlyuazMgXUclyEDgF08RnJZ+CPIwx9OAIAIZCXXyDQAQIQyJvCRguEaML9+/XotWbJEX3zxhXr37i1Jev7553XppZfq6aefVlpaWo3brlu3Ts8884xWr16tVq1aWTo+IwsBwC5chgwAcBIyDQDgIMFchlxcXOyzlJaWBtWXvLw8JSQkeAuFkpSVlaWoqCh9/vnnNW536NAhXXfddZoxY4ZSU1MtH59iIQDYxuqHKj5YAQAiEZkGAHCOYIqF6enpio+P9y65ublB9SU/P1/Jyck+6xo1aqTExETl5+fXuN3dd9+tfv366fLLLw/q+FyGDAB2sTqiglEYAIBIZCXXyDQAQITyeKRAp/mrKBbu2LFDcXFx3vVut7va9vfdd5+eeOKJWve5fv36wDrxk3/84x96//33tXbtWkvbn4hiIQDYxWNxRAXzOwEAIpGVXCPTAAARKphiYVxcnE+xsCa/+c1vdOONN9bapkOHDkpNTdXu3bt91h87dkz79++v8fLi999/X5s3b1ZCQoLP+iuvvFL9+/fXihUrTtm/ChQLAQAAAAAAgDBr2bKlWrZsecp2ffv2VWFhodasWaOMjAxJx4uBHo9HmZmZ1W5z33336eabb/ZZ1717dz377LMaNmxYQP2kWAgAdjGe44uV7QAAiDRWco1MAwBEqGBGFoZaly5dNHjwYI0dO1azZs3S0aNHlZOTo5EjR3rvhPzjjz/qkksu0V/+8hf16dNHqamp1Y46bNOmjdq3bx/Q8SkWAoBdmLMQAOAkzFkIAHCQSCoWStJrr72mnJwcXXLJJYqKitKVV16pP/zhD97Hjx49qo0bN+rQoUMhPzbFQgCwC3MWAgCchDkLAQAOEmnFwsTERM2bN6/Gx9u1aydzii/hTvV4TSgWAoBdGFkIAHASRhYCABwk0oqFdYliIQDYxchisTDkPQEAIHhWco1MA1ALF28Sda4hvwbGBF78c+p3YFF13QEAAAAAAAAAkYGRhQBgFy5DBgA4CZchAwAcxMolxVyGDAAIjscjiQQCADiElVwj0wAAEYpiYSWKhQBgF0YWAgCchJGFAAAHoVhYiWIhANiFYiEAwEkoFgIAHIRiYSWKhQBgF4+RpdtAevhgBQCIQFZyjUwDAEQoioWVuBsyAAAAAAAAAEmMLAQA2xjjkTGBf/VkZRsAAMLNSq6RaQCASMXIwkoUCwHALsZYu/yK+Z0AAJHISq6RaQCACEWxsBLFQgCwi7E4ZyEfrAAAkchKrpFpAIAIRbGwEsVCALCLxyO5LKQJl2wBACKRlVwj0wAAEcqYwIt/Tv0OjGIhANiFkYUAACdhZCEAwEE8HsnlCmwbp8Yad0MGAAAAAAAAIImRhQBgG+PxyFi4DJk7RwIAIpGVXCPTAACRipGFlSgWAoBduAwZAOAkXIYMAHAQioWVKBYCgF08RnJRLAQAOISVXCPTAAARimJhJYqFAGAXYyRZuRuyQxMIAFC/Wck1Mg0AEKEoFlaiWAgANjEeI2NhZKFxagIBAOo1K7lGpgEAIhXFwkphuxvyjBkz1K5dO8XGxiozM1OrVq0K16EAACcJ9D14wYIF6ty5s2JjY9W9e3ctXrzYpp7WD2QaANQtci20yDUAQG3CUiycP3++JkyYoEmTJunLL79Uz549lZ2drd27d4fjcABQPxiP9SUAgb4Hf/rpp7r22mt10003ae3atRo+fLiGDx+ub775JhRnXe+RaQBQAxsyTSLXQo1cA4DqeTzWFidymTBcC5CZmanzzjtPL7zwgiTJ4/EoPT1dt99+u+67775aty0uLlZ8fLwG6nI1cjUOddcAwG/HzFGt0NsqKipSXFyc5f1439dcv7T0vnbMHNUKs9DvfgT6HjxixAiVlJTonXfe8a77n//5H/Xq1UuzZs0KuL9OE0ymSeQagMgRCbkWaKZJ5FqohSrXigoLg/p3BADBKC4uVnxCQtCZ5t1XfLxcriK5XIHty5hiGRMfkn5EkpDPWVhWVqY1a9bo/vvv966LiopSVlaW8vLyqrQvLS1VaWmp9+eioiJJ0jEdlRx67TeA+uGYjkoK3fxKx0yppREVFf0oLi72We92u+V2u33WBfoeLEl5eXmaMGGCz7rs7GwtWrQo4L46jZXnk1wDEKkiIdcCyTSJXAu1UObaya8hANip4j0olOPfjhf+Au5JyI4fSUJeLNy7d6/Ky8uVkpLisz4lJUUbNmyo0j43N1dTpkypsv5jMa8IgMhw4MABxcfHW94+JiZGqamp+jjf+vta8+bNlZ6e7rNu0qRJmjx5ss+6QN+DJSk/P7/a9vn5+Zb76xRWnk9yDUCkq+tc8zfTJHIt1EKZa+lt2oSljwAQiGAzTarMtfz89FM3rkZqaqpiYmKC6kOkqfO7Id9///0+3/wVFhaqbdu22r59e9AveCQpLi5Wenq6duzY4aihqZxX/cJ5BcYYowMHDigtLS2o/cTGxmrLli0qKysLqi+uk27NVd0IDNQ9cq1+47zqF84rMJGSa2Ra/UKu1W+cV/3CefkvVJkmBZ9rMTExio2NDbofkSTkxcKkpCRFR0eroKDAZ31BQYFSU1OrtK/pkoP4+HhH/XJUiIuL47zqEc6rfgnHeYXqj+DY2FhbAiTQ92Dp+DdhgbRvSKw8n+SaM3Be9Qvn5T9yrWEj106N95P6hfOqX0J9XqH8wsKuXKsvQn435JiYGGVkZGj58uXedR6PR8uXL1ffvn1DfTgAwAmsvAf37dvXp70kLVu2jPdskWkAUNfItdAi1wAA/gjLZcgTJkzQ6NGj1bt3b/Xp00fTp09XSUmJxowZE47DAQBOcKr34FGjRql169bKzc2VJN15550aMGCAnnnmGQ0dOlSvv/66Vq9erZdeeqkuTyNikGkAULfItdAi1wAApxKWYuGIESO0Z88eTZw4Ufn5+erVq5eWLFlSZSLd6rjdbk2aNMlx85ZwXvUL51W/OPW8rDrVe/D27dsVFVU5sLxfv36aN2+eHnzwQf3+97/XmWeeqUWLFqlbt251dQoRJZhMk5z775Pzql84r/rFqedlFbkWWuRa9Tiv+oXzql+cel5O5jKhvM80AAAAAAAAgHor5HMWAgAAAAAAAKifKBYCAAAAAAAAkESxEAAAAAAAAMBPKBYCAAAAAAAAkBSBxcIZM2aoXbt2io2NVWZmplatWlXXXQrK5MmT5XK5fJbOnTvXdbcC9uGHH2rYsGFKS0uTy+XSokWLfB43xmjixIlq1aqVmjRpoqysLG3atKluOhuAU53XjTfeWOX1Gzx4cN10NgC5ubk677zz1KJFCyUnJ2v48OHauHGjT5sjR45o/PjxOv3009W8eXNdeeWVKigoqKMe+8ef8xo4cGCV1+yWW26pox6joXNapknkWqRzYq6RaWQaIofTco1Mi2xOzDSJXCPX6oeIKhbOnz9fEyZM0KRJk/Tll1+qZ8+eys7O1u7du+u6a0E555xztGvXLu/y8ccf13WXAlZSUqKePXtqxowZ1T7+5JNP6g9/+INmzZqlzz//XM2aNVN2draOHDlic08Dc6rzkqTBgwf7vH5/+9vfbOyhNStXrtT48eP12WefadmyZTp69KgGDRqkkpISb5u7775b//znP7VgwQKtXLlSO3fu1BVXXFGHvT41f85LksaOHevzmj355JN11GM0ZE7NNIlci2ROzDUyjUxDZHBqrpFpkcuJmSaRa+RaPWEiSJ8+fcz48eO9P5eXl5u0tDSTm5tbh70KzqRJk0zPnj3ruhshJcksXLjQ+7PH4zGpqanmqaee8q4rLCw0brfb/O1vf6uDHlpz8nkZY8zo0aPN5ZdfXif9CaXdu3cbSWblypXGmOOvT+PGjc2CBQu8bdavX28kmby8vLrqZsBOPi9jjBkwYIC58847665TwE+cmGnGkGvkWt0j04C64cRcI9PItEhAriESRczIwrKyMq1Zs0ZZWVnedVFRUcrKylJeXl4d9ix4mzZtUlpamjp06KDrr79e27dvr+suhdSWLVuUn5/v89rFx8crMzOz3r92krRixQolJyfr7LPP1q233qp9+/bVdZcCVlRUJElKTEyUJK1Zs0ZHjx71ec06d+6sNm3a1KvX7OTzqvDaa68pKSlJ3bp10/33369Dhw7VRffQgDk50yRyrb6r77lGppFpsJ+Tc41Mq9/qe6ZJ5Bq5Fpka1XUHKuzdu1fl5eVKSUnxWZ+SkqINGzbUUa+Cl5mZqTlz5ujss8/Wrl27NGXKFPXv31/ffPONWrRoUdfdC4n8/HxJqva1q3isvho8eLCuuOIKtW/fXps3b9bvf/97DRkyRHl5eYqOjq7r7vnF4/Horrvu0vnnn69u3bpJOv6axcTEKCEhwadtfXrNqjsvSbruuuvUtm1bpaWl6auvvtK9996rjRs36u9//3sd9hYNjVMzTSLX6st7ZE3qe66RaWQa6oZTc41Mqx/vkTWp75kmkWvkWuSKmGKhUw0ZMsT7/z169FBmZqbatm2rN954QzfddFMd9gz+GDlypPf/u3fvrh49eqhjx45asWKFLrnkkjrsmf/Gjx+vb775pl7Ov1Kbms5r3Lhx3v/v3r27WrVqpUsuuUSbN29Wx44d7e4m4DjkWv1W33ONTCPTgFAi0+q3+p5pErlGrkWuiLkMOSkpSdHR0VXu8FNQUKDU1NQ66lXoJSQk6KyzztL3339f110JmYrXx+mvnSR16NBBSUlJ9eb1y8nJ0TvvvKMPPvhAZ5xxhnd9amqqysrKVFhY6NO+vrxmNZ1XdTIzMyWp3rxmcIaGkmkSuVbf1adcI9PINNSdhpJrZFr9Vp8yTSLXJHItkkVMsTAmJkYZGRlavny5d53H49Hy5cvVt2/fOuxZaB08eFCbN29Wq1at6rorIdO+fXulpqb6vHbFxcX6/PPPHfXaSdIPP/ygffv2RfzrZ4xRTk6OFi5cqPfff1/t27f3eTwjI0ONGzf2ec02btyo7du3R/Rrdqrzqs66deskKeJfMzhLQ8k0iVyr7+pDrpFplcg01JWGkmtkWv1WHzJNItdORK5FsLq8u8rJXn/9deN2u82cOXPMt99+a8aNG2cSEhJMfn5+XXfNst/85jdmxYoVZsuWLeaTTz4xWVlZJikpyezevbuuuxaQAwcOmLVr15q1a9caSWbatGlm7dq1Ztu2bcYYYx5//HGTkJBg3n77bfPVV1+Zyy+/3LRv394cPny4jnteu9rO68CBA+aee+4xeXl5ZsuWLea9994z5557rjnzzDPNkSNH6rrrtbr11ltNfHy8WbFihdm1a5d3OXTokLfNLbfcYtq0aWPef/99s3r1atO3b1/Tt2/fOuz1qZ3qvL7//nvz8MMPm9WrV5stW7aYt99+23To0MFceOGFddxzNEROzDRjyDVyzX5kGpmGyODEXCPTyLS6QK6Ra/VBRBULjTHm+eefN23atDExMTGmT58+5rPPPqvrLgVlxIgRplWrViYmJsa0bt3ajBgxwnz//fd13a2AffDBB0ZSlWX06NHGGGM8Ho956KGHTEpKinG73eaSSy4xGzdurNtO+6G28zp06JAZNGiQadmypWncuLFp27atGTt2bL34g6i6c5JkZs+e7W1z+PBhc9ttt5nTTjvNNG3a1Pzyl780u3btqrtO++FU57V9+3Zz4YUXmsTERON2u02nTp3Mb3/7W1NUVFS3HUeD5bRMM4Zci3ROzDUyjUxD5HBarpFpkc2JmWYMuUau1Q8uY4yxPi4RAAAAAAAAgFNEzJyFAAAAAAAAAOoWxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkigWAgAAAAAAAPgJxUIAAAAAAAAAkqT/D95FLoBGPoWwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2822,7 +1566,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, "vscode": { "interpreter": {