diff --git a/ush/glwu/lead_average.py b/ush/glwu/lead_average.py index eeafebbbcb..4d899bed7f 100755 --- a/ush/glwu/lead_average.py +++ b/ush/glwu/lead_average.py @@ -539,6 +539,7 @@ def plot_lead_average(df: pd.DataFrame, logger: logging.Logger, else: handles = [] labels = [] + n_mods = 0 for m in range(len(mod_setting_dicts)): if model_list[m] in model_colors.model_alias: model_plot_name = ( @@ -581,9 +582,10 @@ def plot_lead_average(df: pd.DataFrame, logger: logging.Logger, else: y_vals_metric_min = np.nanmin(y_vals_metric1) y_vals_metric_max = np.nanmax(y_vals_metric1) - if m == 0: + if n_mods == 0: y_mod_min = y_vals_metric_min y_mod_max = y_vals_metric_max + n_mods+=1 else: if math.isinf(y_mod_min): y_mod_min = y_vals_metric_min diff --git a/ush/glwu/time_series.py b/ush/glwu/time_series.py index 9ddece01ee..fc07bb4938 100755 --- a/ush/glwu/time_series.py +++ b/ush/glwu/time_series.py @@ -577,6 +577,7 @@ def plot_time_series(df: pd.DataFrame, logger: logging.Logger, handles = [] #labels = [] labels = [model_list[0].upper()] + n_mods = 0 for m in range(len(mod_setting_dicts)): if model_list[m] in model_colors.model_alias: model_plot_name = ( @@ -614,10 +615,12 @@ def plot_time_series(df: pd.DataFrame, logger: logging.Logger, else: y_vals_metric_min = np.nanmin(y_vals_metric1) y_vals_metric_max = np.nanmax(y_vals_metric1) - if m == 0: + + if n_mods == 0: y_mod_min = y_vals_metric_min y_mod_max = y_vals_metric_max counts = pivot_counts[str(model_list[m])].values + n_mods+=1 else: y_mod_min = np.nanmin([y_mod_min, y_vals_metric_min]) y_mod_max = np.nanmax([y_mod_max, y_vals_metric_max])