-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathneat_linux.c
285 lines (240 loc) · 9.59 KB
/
neat_linux.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <libmnl/libmnl.h>
#include <linux/rtnetlink.h>
#include <linux/if_addr.h>
#include "neat.h"
#include "neat_internal.h"
#include "neat_core.h"
#include "neat_addr.h"
#include "neat_linux.h"
#include "neat_linux_internal.h"
#include "neat_stat.h"
//In order to build a list of available source addresses, we need to start by
//requesting all available addresses. That is the work of this function
static ssize_t
neat_linux_request_addrs(struct mnl_socket *mnl_sock)
{
uint8_t snd_buf[MNL_SOCKET_BUFFER_SIZE];
struct nlmsghdr *nl_hdr = mnl_nlmsg_put_header(snd_buf);
nl_hdr->nlmsg_type = RTM_GETADDR;
nl_hdr->nlmsg_pid = getpid();
nl_hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
struct rtgenmsg* rt_msg = (struct rtgenmsg*)
mnl_nlmsg_put_extra_header(nl_hdr, sizeof(struct rtgenmsg));
rt_msg->rtgen_family = AF_UNSPEC;
//We should probably have used libuv send function, but right here it does
//not really matter
return mnl_socket_sendto(mnl_sock, snd_buf, nl_hdr->nlmsg_len);
}
//Helper function for parsing netfilter attributes
static int
neat_linux_parse_nlattr(const struct nlattr *attr, void *data)
{
struct nlattr_storage *storage = (struct nlattr_storage*) data;
int32_t type = mnl_attr_get_type(attr);
if (mnl_attr_type_valid(attr, storage->limit) < 0)
return MNL_CB_OK;
storage->tb[type] = attr;
return MNL_CB_OK;
}
//Function which parses the netlink message (*ADDR) we have received and extract
//relevant information, which is parsed to OS-independent
//neat_addr_update_src_list
static neat_error_code
nt_linux_handle_addr(struct neat_ctx *ctx, struct nlmsghdr *nl_hdr)
{
struct ifaddrmsg *ifm = (struct ifaddrmsg*) mnl_nlmsg_get_payload(nl_hdr);
const struct nlattr *attr_table[IFA_MAX+1];
//IFA_MAX is the largest index I can store in my array. Since arrays are
//zero-indexed, this is IFA_MAX and not IFA_MAX + 1. However, array has to
//be of size IFA_MAX + 1. DOH!
struct nlattr_storage tb_storage = {attr_table, IFA_MAX};
struct sockaddr_storage src_addr;
struct sockaddr_in *src_addr4;
struct sockaddr_in6 *src_addr6;
struct ifa_cacheinfo *ci;
uint32_t ifa_pref = 0, ifa_valid = 0;
if (ifm->ifa_scope == RT_SCOPE_LINK)
return NEAT_ERROR_OK;
memset(attr_table, 0, sizeof(attr_table));
memset(&src_addr, 0, sizeof(src_addr));
if (mnl_attr_parse(nl_hdr, sizeof(struct ifaddrmsg),
neat_linux_parse_nlattr, &tb_storage) != MNL_CB_OK) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to parse nlattr for msg of type %d",
__func__, nl_hdr->nlmsg_type);
return NEAT_ERROR_OK;
}
//v4 and v6 has to be handled differently, both due to address size and
//available information
if (ifm->ifa_family == AF_INET) {
src_addr4 = (struct sockaddr_in*) &src_addr;
src_addr4->sin_family = AF_INET;
src_addr4->sin_addr.s_addr = mnl_attr_get_u32(attr_table[IFA_LOCAL]);
} else {
src_addr6 = (struct sockaddr_in6*) &src_addr;
src_addr6->sin6_family = AF_INET6;
memcpy(&src_addr6->sin6_addr, mnl_attr_get_payload(attr_table[IFA_ADDRESS]), sizeof(struct in6_addr));
ci = (struct ifa_cacheinfo*) mnl_attr_get_payload(attr_table[IFA_CACHEINFO]);
ifa_pref = ci->ifa_prefered;
ifa_valid = ci->ifa_valid;
}
//TODO: Should this function be a callback instead? Will we have multiple
//addresses handlers/types of context?
return nt_addr_update_src_list(ctx, (struct sockaddr*) &src_addr, ifm->ifa_index,
nl_hdr->nlmsg_type == RTM_NEWADDR,
ifm->ifa_prefixlen, ifa_pref, ifa_valid);
}
//libuv datagram socket alloc function, un-interesting
static void
neat_linux_nl_alloc(uv_handle_t *handle, size_t suggested_size, uv_buf_t *buf)
{
struct neat_ctx *nc = handle->data;
memset(nc->mnl_rcv_buf, 0, MNL_SOCKET_BUFFER_SIZE);
buf->base = nc->mnl_rcv_buf;
buf->len = MNL_SOCKET_BUFFER_SIZE;
}
//libuv dgram socket callback. Only checks if message is of right type and then
//call function for parsing message
static void nt_linux_nl_recv(uv_udp_t *handle, ssize_t nread,
const uv_buf_t *buf, const struct sockaddr *addr, unsigned int flags)
{
struct neat_ctx *nc = (struct neat_ctx*) handle->data;
struct nlmsghdr *nl_hdr = (struct nlmsghdr*) buf->base;
//We don't need any check here, we don't read more than 8192 bytes in one go
int numbytes = (int) nread;
while (mnl_nlmsg_ok(nl_hdr, numbytes)) {
if (nl_hdr->nlmsg_type == RTM_NEWADDR ||
nl_hdr->nlmsg_type == RTM_DELADDR) {
nt_ctx_fail_on_error(nc, nt_linux_handle_addr(nc, nl_hdr));
} else if (nl_hdr->nlmsg_type == NLMSG_DONE) {
nc->src_addr_dump_done = 1;
}
nl_hdr = mnl_nlmsg_next(nl_hdr, &numbytes);
}
}
//Out cleanup callback, nothing interesting here
static void nt_linux_cleanup(struct neat_ctx *nc)
{
if (nc->mnl_sock)
mnl_socket_close(nc->mnl_sock);
free(nc->mnl_rcv_buf);
}
#ifdef MPTCP_SUPPORT
// Find out if MPTCP is supported and enabled on the machine
void linux_read_sys_mptcp_enabled(struct neat_ctx *ctx)
{
FILE *file = NULL;
char buff[4];
long value;
size_t len;
file = fopen("/proc/sys/net/mptcp/mptcp_enabled", "r");
if (!file) {
nt_log(ctx, NEAT_LOG_ERROR, "MPCP: Failed to open 'mptcp_enabled' file");
goto cleanup;
}
len = fread(buff, 1, sizeof(buff), file);
if (ferror(file) || !feof(file) || len <= 0) {
nt_log(ctx, NEAT_LOG_ERROR, "MPCP: Failed to read 'mptcp_enabled' file");
goto cleanup;
}
buff[len] = '\0';
value = strtol(buff, NULL, 0);
switch(value) {
case 0:
nt_log(ctx, NEAT_LOG_INFO, "MPCP: MPTCP_SYS_DISABLED");
ctx->sys_mptcp_enabled = MPTCP_SYS_DISABLED;
break;
case 1:
nt_log(ctx, NEAT_LOG_INFO, "MPCP: MPTCP_SYS_ENABLED");
ctx->sys_mptcp_enabled = MPTCP_SYS_ENABLED;
break;
case 2:
nt_log(ctx, NEAT_LOG_INFO, "MPCP: MPTCP_SYS_APP_CTRL");
ctx->sys_mptcp_enabled = MPTCP_SYS_APP_CTRL;
break;
default:
nt_log(ctx, NEAT_LOG_INFO, "MPCP: MPTCP_SYS_DISABLED");
ctx->sys_mptcp_enabled = MPTCP_SYS_DISABLED;
}
cleanup:
if (file) {
fclose(file);
}
}
#endif // MPTCP_SUPPORT
//Initialize the Linux-specific part of the context. All is related to
//libmnl/netfilter
struct neat_ctx *nt_linux_init_ctx(struct neat_ctx *ctx)
{
//TODO: Consider allocator function
if ((ctx->mnl_rcv_buf = calloc(1, MNL_SOCKET_BUFFER_SIZE)) == NULL) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to allocate netlink buffer", __func__);
return NULL;
}
//Configure netlink and start requesting addresses
if ((ctx->mnl_sock = mnl_socket_open(NETLINK_ROUTE)) == NULL) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to allocate netlink socket", __func__);
return NULL;
}
if (mnl_socket_bind(ctx->mnl_sock, (1 << (RTNLGRP_IPV4_IFADDR - 1)) |
(1 << (RTNLGRP_IPV6_IFADDR - 1)), 0)) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to bind netlink socket", __func__);
return NULL;
}
//We need to build a list of all available source addresses as soon as
//possible. It is started here
if (neat_linux_request_addrs(ctx->mnl_sock) <= 0) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to request addresses", __func__);
return NULL;
}
//Add socket to event loop
if (uv_udp_init(ctx->loop, &(ctx->uv_nl_handle))) {
nt_log(ctx, NEAT_LOG_ERROR, "Failed to initialize uv UDP handle", __func__);
return NULL;
}
//TODO: We could use offsetof, but libuv has a pointer so ...
ctx->uv_nl_handle.data = ctx;
if (uv_udp_open(&(ctx->uv_nl_handle), mnl_socket_get_fd(ctx->mnl_sock))) {
nt_log(ctx, NEAT_LOG_ERROR, "Could not add netlink socket to uv", __func__);
return NULL;
}
if (uv_udp_recv_start(&(ctx->uv_nl_handle), neat_linux_nl_alloc,
nt_linux_nl_recv)) {
nt_log(ctx, NEAT_LOG_ERROR, "Could not start receiving netlink packets", __func__);
return NULL;
}
ctx->cleanup = nt_linux_cleanup;
#ifdef MPTCP_SUPPORT
linux_read_sys_mptcp_enabled(ctx);
#endif // MPTCP_SUPPORT
//Configure netlink socket, add to event loop and start dumping
return ctx;
}
/* Get the Linux TCP_INFO and copy the relevant fields into the neat-specific
* TCP_INFO struct. Return pointer to the struct with the copied data */
int linux_get_tcp_info(neat_flow *flow, struct neat_tcp_info *neat_tcp_info)
{
int tcp_info_length;
struct tcp_info tcpi;
nt_log(flow->ctx, NEAT_LOG_DEBUG, "%s", __func__);
tcp_info_length = sizeof(struct tcp_info);
if (getsockopt(flow->socket->fd, SOL_TCP, TCP_INFO, (void *)&tcpi,
(socklen_t *)&tcp_info_length ))
return RETVAL_FAILURE; /* failed! */
/* Copy relevant fields between structs */
neat_tcp_info->retransmits = tcpi.tcpi_retransmits;
neat_tcp_info->tcpi_pmtu = tcpi.tcpi_pmtu;
neat_tcp_info->tcpi_rcv_ssthresh = tcpi.tcpi_rcv_ssthresh;
neat_tcp_info->tcpi_rtt = tcpi.tcpi_rtt;
neat_tcp_info->tcpi_rttvar = tcpi.tcpi_rttvar;
neat_tcp_info->tcpi_snd_ssthresh = tcpi.tcpi_snd_ssthresh;
neat_tcp_info->tcpi_snd_cwnd = tcpi.tcpi_snd_cwnd;
neat_tcp_info->tcpi_advmss = tcpi.tcpi_advmss;
neat_tcp_info->tcpi_reordering = tcpi.tcpi_reordering;
neat_tcp_info->tcpi_total_retrans = tcpi.tcpi_total_retrans;
return RETVAL_SUCCESS;
}