From 0705824a170b358c2748c74def40b87cb283db15 Mon Sep 17 00:00:00 2001 From: Felix Zakirov Date: Tue, 8 Oct 2024 21:19:48 -0400 Subject: [PATCH] Updated post-error behavior measures --- .../behavior_analysis.py | 34 ++++++++++++------- .../behavior_processing_batch.sub | 0 .../check_subject_csv.py | 0 3 files changed, 22 insertions(+), 12 deletions(-) rename code/{preprocessing-behavior => behavior}/behavior_analysis.py (90%) rename code/{preprocessing-behavior => behavior}/behavior_processing_batch.sub (100%) rename code/{preprocessing-behavior => behavior}/check_subject_csv.py (100%) diff --git a/code/preprocessing-behavior/behavior_analysis.py b/code/behavior/behavior_analysis.py similarity index 90% rename from code/preprocessing-behavior/behavior_analysis.py rename to code/behavior/behavior_analysis.py index 470a391..b0a8e54 100644 --- a/code/preprocessing-behavior/behavior_analysis.py +++ b/code/behavior/behavior_analysis.py @@ -223,43 +223,53 @@ def convert_to_list_resp(series): processing_log["rt_err"+prefix].append(np.round(condition_data[(condition_data["congruent"] == 0) & (condition_data["accuracy"] == 0)]["rt"].mean() * 1000, 3)) processing_log["pes"+prefix].append(np.round( np.log( - condition_data[(condition_data["accuracy"] == 1) & (condition_data["pre_accuracy"] == 0)].rt + condition_data[(condition_data["accuracy"] == 1) & (condition_data["pre_accuracy"] == 0) &\ + (condition_data["pre_congruent"] == 0)].rt ).mean()\ - np.log( - condition_data[(condition_data["accuracy"] == 1) & (condition_data["pre_accuracy"] == 1)].rt + condition_data[(condition_data["accuracy"] == 1) & (condition_data["pre_accuracy"] == 1) &\ + (condition_data["pre_congruent"] == 0)].rt ).mean(), 5 )) processing_log["pea"+prefix].append(np.round( - condition_data[condition_data["pre_accuracy"] == 0].accuracy.mean()\ - - condition_data[condition_data["pre_accuracy"] == 1].accuracy.mean(), 5 + condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["pre_congruent"] == 0)].accuracy.mean()\ + - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["pre_congruent"] == 0)].accuracy.mean(), 5 )) processing_log["peri_acc"+prefix].append(np.round( ( - condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 0)]["accuracy"].mean()\ - - condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 1)]["accuracy"].mean() + condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 0) &\ + (condition_data["pre_congruent"] == 0)]["accuracy"].mean()\ + - condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 1) &\ + (condition_data["pre_congruent"] == 0)]["accuracy"].mean() )\ - ( - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 0)]["accuracy"].mean()\ - - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 1)]["accuracy"].mean() + condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 0) &\ + (condition_data["pre_congruent"] == 0)]["accuracy"].mean()\ + - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 1) &\ + (condition_data["pre_congruent"] == 0)]["accuracy"].mean() ), 5 )) processing_log["peri_rt"+prefix].append(np.round( ( np.log( - condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 0)]["rt"] + condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 0) &\ + (condition_data["pre_congruent"] == 0)]["rt"] ).mean()\ - np.log( - condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 1)]["rt"] + condition_data[(condition_data["pre_accuracy"] == 0) & (condition_data["congruent"] == 1) &\ + (condition_data["pre_congruent"] == 0)]["rt"] ).mean() )\ - ( np.log( - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 0)]["rt"] + condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 0) &\ + (condition_data["pre_congruent"] == 0)]["rt"] ).mean()\ - np.log( - condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 1)]["rt"] + condition_data[(condition_data["pre_accuracy"] == 1) & (condition_data["congruent"] == 1) &\ + (condition_data["pre_congruent"] == 0)]["rt"] ).mean() ), 5 )) diff --git a/code/preprocessing-behavior/behavior_processing_batch.sub b/code/behavior/behavior_processing_batch.sub similarity index 100% rename from code/preprocessing-behavior/behavior_processing_batch.sub rename to code/behavior/behavior_processing_batch.sub diff --git a/code/preprocessing-behavior/check_subject_csv.py b/code/behavior/check_subject_csv.py similarity index 100% rename from code/preprocessing-behavior/check_subject_csv.py rename to code/behavior/check_subject_csv.py