diff --git a/code/prepWordLevelErrors.R b/code/prepWordLevelErrors.R index 9319e09..e2e35d3 100644 --- a/code/prepWordLevelErrors.R +++ b/code/prepWordLevelErrors.R @@ -214,6 +214,7 @@ long_data_by_participant <- # rates of each error type for each person transpose(keep.names = "error_type", make.names = "participant_id") %>% as_tibble() # for printing/dev/interactive (this is what it was pre transpose) +# Now, by condition # join participant error data and counterbalance data preprocessed_data_by_condition <- preprocessed_data_with_pan_error_col %>% left_join(counterbalance_data, by = "participant_id") %>% @@ -226,22 +227,19 @@ preprocessed_data_by_condition <- preprocessed_data_with_pan_error_col %>% ) %>% select(colnames(preprocessed_data_with_pan_error_col), social) - # rates of each error type by condition- fixme per above rates_by_condition <- preprocessed_data_by_condition %>% - group_by(social) %>% - summarize(across(misproduction:correction, - \(x) length(which(x)) / n(), - .names = "{.col}_rate")) %>% - select(social, ends_with("_rate")) - -# "", sd -preprocessed_data_by_condition %>% # nb not working as intended: NAs still here - group_by(social) %>% - summarize(across(misproduction:correction, - \(x) sd(length(which(x)) / n(), na.rm = TRUE), - .names = "{.col}_sd")) + reframe( + across(misproduction:correction|any_error:any_error_except_omission, + \(.) mean(., na.rm = TRUE)), + .by = social) %>% + percentize_multiple(where(is.numeric)) %>% # include as %s + append_sd_as_last_row(where(is.numeric)) %>% # get our sd + select(-where(is.numeric), where(is.numeric)) %>% # %s first, for readability + transpose(keep.names = "error_type", make.names = "social") %>% + as_tibble() # for printing/dev/interactive (this is what it was pre transpose) +# todo rates_by_participant_and_condition <- preprocessed_data_by_condition %>% group_by(participant_id, social) %>% summarize(across(misproduction:correction, @@ -249,6 +247,7 @@ rates_by_participant_and_condition <- preprocessed_data_by_condition %>% .names = "{.col}_rate")) %>% select(social, participant_id, ends_with("_rate")) +# todo rates_by_passage_and_condition <- preprocessed_data_by_condition %>% group_by(passage, social) %>% summarize(across(misproduction:correction, @@ -257,3 +256,4 @@ rates_by_passage_and_condition <- preprocessed_data_by_condition %>% select(social, passage, ends_with("_rate")) +# todo write to csv