-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathtemporal_encoder_decoder.py
215 lines (179 loc) · 7.91 KB
/
temporal_encoder_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmseg.core import add_prefix
from mmseg.ops import resize
from mmseg.models import builder
from mmseg.models.builder import SEGMENTORS
from mmseg.models.segmentors.base import BaseSegmentor
from mmseg.models.segmentors.encoder_decoder import EncoderDecoder
@SEGMENTORS.register_module()
class TemporalEncoderDecoder(EncoderDecoder):
"""Encoder Decoder segmentors.
EncoderDecoder typically consists of backbone, neck, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
The backbone should return plain embeddings.
The neck can process these to make them suitable for the chosen heads.
The heads perform the final processing that will return the output.
"""
def __init__(self,
backbone,
decode_head,
neck=None,
auxiliary_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
init_cfg=None,
frozen_backbone=False):
super(EncoderDecoder, self).__init__(init_cfg)
if pretrained is not None:
assert backbone.get('pretrained') is None, \
'both backbone and segmentor set pretrained weight'
backbone.pretrained = pretrained
self.backbone = builder.build_backbone(backbone)
if frozen_backbone:
for param in self.backbone.parameters():
param.requires_grad = False
if neck is not None:
self.neck = builder.build_neck(neck)
self._init_decode_head(decode_head)
self._init_auxiliary_head(auxiliary_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
assert self.with_decode_head
def encode_decode(self, img, img_metas):
"""Encode images with backbone and decode into a semantic segmentation
map of the same size as input."""
x = self.extract_feat(img)
out = self._decode_head_forward_test(x, img_metas)
#### size calculated over last two dimensions ###
size = img.shape[-2:]
out = resize(
input=out,
size=size,
mode='bilinear',
align_corners=self.align_corners)
return out
def slide_inference(self, img, img_meta, rescale):
"""Inference by sliding-window with overlap.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
#### size and bactch size over last two dimensions ###
img_size = img.size()
batch_size = img_size[0]
h_img = img_size[-2]
w_img = img_size[-1]
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = img.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
if len(img_size) == 4:
crop_img = img[:, :, y1:y2, x1:x2]
elif len(img_size) == 5:
crop_img = img[:, :, :, y1:y2, x1:x2]
crop_seg_logit = self.encode_decode(crop_img, img_meta)
preds += F.pad(crop_seg_logit,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
if torch.onnx.is_in_onnx_export():
# cast count_mat to constant while exporting to ONNX
count_mat = torch.from_numpy(
count_mat.cpu().detach().numpy()).to(device=img.device)
preds = preds / count_mat
if rescale:
# remove padding area
#### size over last two dimensions ###
resize_shape = img_meta[0]['img_shape'][:2]
preds = preds[:, :, :resize_shape[0], :resize_shape[1]]
preds = resize(
preds,
size=img_meta[0]['ori_shape'][:2],
mode='bilinear',
align_corners=self.align_corners,
warning=False)
return preds
def whole_inference(self, img, img_meta, rescale):
"""Inference with full image."""
seg_logit = self.encode_decode(img, img_meta)
if rescale:
# support dynamic shape for onnx
if torch.onnx.is_in_onnx_export():
size = img.shape[-2:]
else:
# remove padding area
resize_shape = img_meta[0]['img_shape'][:2]
seg_logit = seg_logit[:, :, :resize_shape[0], :resize_shape[1]]
size = img_meta[0]['ori_shape'][:2]
seg_logit = resize(
seg_logit,
size=size,
mode='bilinear',
align_corners=self.align_corners,
warning=False)
return seg_logit
def inference(self, img, img_meta, rescale):
"""Inference with slide/whole style.
Args:
img (Tensor): The input image of shape (N, 3, H, W).
img_meta (dict): Image info dict where each dict has: 'img_shape',
'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:Collect`.
rescale (bool): Whether rescale back to original shape.
Returns:
Tensor: The output segmentation map.
"""
assert self.test_cfg.mode in ['slide', 'whole']
ori_shape = img_meta[0]['ori_shape']
assert all(_['ori_shape'] == ori_shape for _ in img_meta)
if self.test_cfg.mode == 'slide':
seg_logit = self.slide_inference(img, img_meta, rescale)
else:
seg_logit = self.whole_inference(img, img_meta, rescale)
if self.out_channels == 1:
output = F.sigmoid(seg_logit)
else:
output = F.softmax(seg_logit, dim=1)
flip = (
img_meta[0]["flip"] if "flip" in img_meta[0] else False
) ##### if flip key is not there d not apply it
if flip:
flip_direction = img_meta[0]["flip_direction"]
assert flip_direction in ["horizontal", "vertical"]
if flip_direction == "horizontal":
output = output.flip(dims=(3,))
elif flip_direction == "vertical":
output = output.flip(dims=(2,))
return output
def simple_test(self, img, img_meta, rescale=True):
"""Simple test with single image."""
seg_logit = self.inference(img, img_meta, rescale)
if self.out_channels == 1:
seg_pred = (seg_logit > self.decode_head.threshold).to(seg_logit).squeeze(1)
else:
seg_pred = seg_logit.argmax(dim=1)
if torch.onnx.is_in_onnx_export():
seg_pred = seg_pred.unsqueeze(0)
return seg_pred
seg_pred = seg_pred.cpu().numpy()
# unravel batch dim
seg_pred = list(seg_pred)
return seg_pred