-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathSAVeTrEE.txt
705 lines (626 loc) · 28.7 KB
/
SAVeTrEE.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/*****************************SAVETREE 2.0*********************************** *
* Script: SAVETREE 2.0 *
* Authors v1.0: Joshua Verkerke, Anna McGarrigle, John Dilger *
* Authors v2.0: Heather Myers, Anna McGarrigle, Peter Norton, Andrea Ferrer *
* Date: November 18, 2017 *
* Project: Lassen Volcanic NP Disasters II, Fall 2017 *
* Contact: [email protected], *
* [email protected], *
* URL: *
* Description: A Google Earth Engine Tool developed for Lassen Volcanic *
* National Park in order to analyze the history of tree mortality in the *
* area to better plan for fire treatments in the future. SAVETREE performs *
* the following functions: *
* -Computes temporal trend as a linear regression analysis of a specified *
* spectral index over a specified time period for a specified area *
* using data from the Landsat series of satellites, you can add a *
* coefficient trend analysis layer or a bivariate map layer (California *
* water data is added automatically to mask areas of the *
* analysis to rule them out as significant). *
* -Allows the user to provide their own shapefile asset to perform the *
* SAVETREE analyses on * *
* -Adds FRAP historical fire data to mask the analysis in order to *
* identify the fires as mortality due to fire and not other sources of *
* mortality *
* -User can provide future FRAP datasets *
* -Exports analyses as TIFF files *
* -On-click, the SAVETREE analysis layers to see a graph of the linear *
* analysis of that particular pixel in the widget *
* *
* Usage: Requires access to Earth Engine Assets from the Library: *
* “users/savetree/” *
* *
* Parameters: *
* In: Year for Mortality Map, Duration for analysis, Spectral Index (SI) *
* for analysis, Area of Interest for analysis, Fire History Data Mask, *
* Date Range for Fire History Data, Export Option. *
* Optional: Your own area of interest asset, your own FRAP data set *
* Out: Display of trend results and bivariate plot. Optionally output to *
* Google Drive TIFF images for trends (Coefficients), and Bivariate plot.*
* *
********************************** WIDGET *********************************** *
* This section gets input from the user, and sets up other necessary global *
* variables including locations and color ramps for visualization. * *
**************************************************************************** */
///////////////////////////////////////////////////////////////////////////////
////////////////////////////////// STABLE INPUTS //////////////////////////////
///////////////////////////////////////////////////////////////////////////////
var aoi, // A variable to set the area of interest
allyr, // A series consisting of yr, areaOfInterest, and dur
SI, // The Spectral Index selected by the user (NDMI, NDVI, NDWI or NBR)
dur, // The duration input by the user (3-5 years or more suggested)
yr, // The end year input by the user (1984-2016)
coef, // The coefficient (slope) trend layer to be added to the map
bivariate, // The bivariate layer to be added to the map
combo, // Combines all of the constants for the bivariate
areaOfInterest; // The area of interest of the map, selected by the user in the area of interest dropdown
//AREAS OF INTEREST
var devt2 = ee.FeatureCollection("users/savetree/TERM2AOI"),//Asset for Case Study (The park + Badger Planning Area)
lvnp = ee.FeatureCollection("users/savetree/LVNP"),//Asset for Lassen Volcanic National Park
lnf = ee.FeatureCollection("users/savetree/LNF"),//Asset for Lassen National Forest
badger = ee.FeatureCollection("users/savetree/BADGER");//Asset for Badger Planning Area
//DEPENDENCIES
var lvnpCenter = ee.FeatureCollection("users/savetree/LVNPCENTER");//Makes 2012 work
//LAKES
var CA_lakes = ee.FeatureCollection("users/savetree/LAKES");//all of CA lakes
//FRAP FIRE HISTORY
var rx = ee.FeatureCollection('users/savetree/RX'),//FRAP prescription fire data 1900-2016
treatment = ee.FeatureCollection('users/savetree/FRAPTREATMENT'),//FRAP non-fire treatment data 1900-2016
frap = ee.FeatureCollection('users/savetree/PARKSFRAP');//FRAP wildfire data clipped to California parks and forests 1900-2016
////VIZ PARAMS
var FCIR = {"opacity":1,"bands":["NIR","RED","GREEN"],"min":0,"max":4000},
TCC = {"opacity":1,"bands":["RED","GREEN","BLUE"],"min":0,"max":4000},
COEF = {"opacity":1,"bands":["t"],"min":-90,"max":60,
"palette":["ff0000","1500cc","00ff00"]},
LGND = {"opacity":1,"min":-90,"max":60,
"palette":["ff0000","1500cc","00ff00"]},
BIV = {"min":1, "max":9, "palette": ['eff5f5', 'b0d5df', '64acbe',
'e4acac', 'ad9ea5', '627f8c', 'c85a5a', '985356', '574249']};
// SET OF USER INPUTS FOR AREA OF INTEREST
var LVNP = 'Lassen Volcanic National Park',
BADG = 'Badger Planning Area',
LNF = 'Lassen National Forest',
DEVT2 = 'DEVELOP T2 Study Area',
OWN = 'Your asset (below)';
///////////////////////////////////////////////////////////////
///////////////// CALCULATING MORTALITY ///////////////////////
///////////////////////////////////////////////////////////////
function setAreaOfInterest(){
aoi = selectAoi.getValue();
if (aoi == LVNP){
areaOfInterest = lvnp;
}//sets the area of interest to the Lassen Volcanic National Park
else if (aoi == BADG){
areaOfInterest = badger;
}//sets the area of interest to the Badger Planning Area
else if (aoi == LNF){
areaOfInterest = lnf;
}//sets the area of interest to the Lassen National Forest
else if (aoi == DEVT2){
areaOfInterest = devt2;
}//sets the area to the Study Area
else if (aoi == OWN){
var userInput = inputTextbox.getValue();
userInput = ee.String(userInput);
areaOfInterest = ee.FeatureCollection(userInput);
}//sets the area of interest to an asset input by the user
}//A function which sets the area of interest
//Create Image Collection from duration and SI inputs
function applyFilters() {
// Set area of interest
setAreaOfInterest();
// Set filter variables
yr = selectYr.getValue();
if (yr) yr = ee.Number.parse(yr);
dur = selectDur.getValue();
if (dur) dur = ee.Number.parse(dur).subtract(1);
SI = selectSI.getValue();
if (SI) SI = ee.String(SI);
// Convert input numeric year to Surface Reflectance growing season
// collection for a single year
var getICSR = function(year){
year = ee.Number(year);
var IC = ee.Algorithms.If(
year.eq(ee.Number(2012)),ee.ImageCollection('LANDSAT/LE07/C01/T1_SR'),
ee.Algorithms.If(year.gt(ee.Number(2012)),
ee.ImageCollection('LANDSAT/LC08/C01/T1_SR'),
ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')));
var ICfilter = ee.ImageCollection(IC).filter(ee.Filter.dayOfYear(135,258))
//15May->15Sep (Peak Green)
.filter(ee.Filter.calendarRange(year,year,'year'))
.filterBounds(areaOfInterest);
return ICfilter;
};
// Rename image bands to simplify processing
var bandRename = function(image){
var year = ee.Number.parse(ee.String(image.get('system:index')).slice(-8,-4));
var renameList = ee.Algorithms.If(year.gt(ee.Number(2012)),
['AEROSOL','BLUE','GREEN','RED','NIR','SWIR1','SWIR2','cfmask',
'cfmask_conf','SR_AEROSOL','PIXEL_QA','RADSAT_QA'],
['BLUE','GREEN','RED','NIR','SWIR1','THERMAL','SWIR2',
'sr_atmos_opacity','sr_cloud_qa', 'pixel_qa','radsat_qa']);
return image.rename(renameList);
};
//grab cloud band and add it to SR image to evaluate image quality
var cloudSR = function(image){
var time = image.get('system:time_start');
var year = ee.Number.parse(ee.String(image.get('system:index')).slice(-8,-4));
var ICTOA = ee.ImageCollection(ee.Algorithms.If(year.eq(ee.Number(2012)),
ee.ImageCollection('LANDSAT/LE07/C01/T1_TOA'),
ee.Algorithms.If(year.gt(ee.Number(2012)),
ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA'),
ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA'))));
var TOAImg = ee.Image(ICTOA.filter(
ee.Filter.eq('system:time_start',time)).first());
var cloudband = ee.Algorithms.Landsat.simpleCloudScore(TOAImg)
.select('cloud');
return image.addBands(image.expression('5*(100-CLOUD)',
{'CLOUD':cloudband}).rename('CLEAR'));
};
// Remove high value artifacts over snow
var maskHi = function(image){
var newBand = image.expression('b("BLUE")+b("GREEN")+b("RED")');
var hiMask = newBand.lt(24000);
return image.updateMask(hiMask);
};
// Compute desired Spectral Indices
var indices = function(image) {
return image.addBands(image.normalizedDifference(['NIR', 'RED'])
.multiply(ee.Image.constant(1000)).rename('NDVI'))
.addBands(image.normalizedDifference(['NIR', 'SWIR1'])
.multiply(ee.Image.constant(1000)).rename('NDMI'))
.addBands(image.normalizedDifference(['GREEN', 'NIR'])
.multiply(ee.Image.constant(1000)).rename('NDWI'))
.addBands(image.normalizedDifference(['NIR', 'SWIR2'])
.multiply(ee.Image.constant(1000)).rename('NBR'));
};
var quality = function(image) {
return image.addBands(image.expression('b("CLEAR") + b("NDVI")')
.rename('QUAL'));
};
// Input list of year & bounding geometry, add SI bands and time series bands,
// then filter annual collection to a single "greenest pixel" composite
var cleanSR = function(year_geo){
year_geo = ee.List(year_geo);
var year = year_geo.get(0);
var geo = ee.FeatureCollection(year_geo.get(1)).geometry();
var IC = getICSR(year);
var collection = IC
.map(bandRename)
.map(cloudSR)
.map(maskHi)
.map(indices)
.map(quality)
.map(function(image){return image.clip(geo);});
var output = collection.qualityMosaic('QUAL')
.copyProperties(collection, ['title'])
.set({'year':year});
return ee.Image(output)
.addBands(ee.Image(ee.Number(year).subtract(1983)).rename('t').float())
.addBands(ee.Image.constant(1));
};
// Function to apply the cleanSR function to the time period to generate an
// ImageCollection
var series = function(year,geo, duration){
var yrlist = ee.List.sequence(year.subtract(duration),year);//.reverse();
var yrgeo = yrlist.zip(ee.List.repeat(geo,yrlist.length()));
var IClist = ee.ImageCollection.fromImages(yrgeo.map(cleanSR));
return IClist;
};
// Generate the time series ImageCollection
allyr = series(yr,areaOfInterest,dur);
// Display the Classified image, NDVI & NDMI Bivariate plot for the current
// year, the Coefficients(slope) layer of the time series
Map.centerObject(areaOfInterest);
}
// A function to specifically add the Coefficient layer to the map
function applyCoefficient(){
applyFilters();
// Generate the linear regression series as a new image, pulling from the
// ImageCollection
var indep = ee.List(['constant','t']);
var dep = ee.String(SI);
var trend = allyr.select(indep.add(dep))
.reduce(ee.Reducer.linearRegression(indep.length(),1));
coef = trend.select('coefficients')
.arrayProject([0])
.arrayFlatten([indep]);
coef = coef.addBands(coef.select('t').multiply(dur.add(1)).rename('change'));
Map.centerObject(areaOfInterest);
Map.addLayer(coef,COEF,'Coefficients '+yr.subtract(dur).getInfo()+'-'+
yr.getInfo()+','+SI.getInfo());
//Adds lakes to mask water error
var Lakes = (ee.Image().byte()).paint({
featureCollection: CA_lakes.filterBounds(areaOfInterest),
color: 'black',
});
Map.addLayer(Lakes, {}, 'Lakes mask');
}
// A function to specifically add the Bivariate layer to the map
function applyBivariate(){
applyFilters();
// Generate a Bivariate map for the final year in the series
var finalImg = ee.Image(allyr.filterMetadata('year','equals',yr).first())
.select(['NDMI','NDVI']);
var ndviBand = finalImg.select('NDVI');
var ndmiBand = finalImg.select('NDMI');
// Classify NDVI & NDMI combinations
var ndvi1 = ndviBand.lt(200);
var ndvi2 = ndviBand.gte(200).and(ndviBand.lt(450));
var ndvi3 = ndviBand.gte(450);
var ndmiA = ndmiBand.lt(-200);
var ndmiB = ndmiBand.gte(-200).and(ndmiBand.lt(50));
var ndmiC = ndmiBand.gte(50);
// Create binary layers for each of the 9 classes
var A1 = ndmiA.and(ndvi1);var A2 = ndmiA.and(ndvi2);var A3 = ndmiA.and(ndvi3);
var B1 = ndmiB.and(ndvi1);var B2 = ndmiB.and(ndvi2);var B3 = ndmiB.and(ndvi3);
var C1 = ndmiC.and(ndvi1);var C2 = ndmiC.and(ndvi2);var C3 = ndmiC.and(ndvi3);
// Create Class layers
A1 = ee.Image.constant(1).updateMask(A1).unmask();
A2 = ee.Image.constant(2).updateMask(A2).unmask();
A3 = ee.Image.constant(3).updateMask(A3).unmask();
B1 = ee.Image.constant(4).updateMask(B1).unmask();
B2 = ee.Image.constant(5).updateMask(B2).unmask();
B3 = ee.Image.constant(6).updateMask(B3).unmask();
C1 = ee.Image.constant(7).updateMask(C1).unmask();
C2 = ee.Image.constant(8).updateMask(C2).unmask();
C3 = ee.Image.constant(9).updateMask(C3).unmask();
// Combine into a single image
combo = A1.add(A2).add(A3).add(B1).add(B2).add(B3).add(C1).add(C2)
.add(C3).clip(areaOfInterest);
bivariate = combo.select('constant');
Map.centerObject(areaOfInterest);
Map.addLayer(bivariate, BIV, 'Bivariate'+yr.subtract(dur).getInfo()+'-'+
yr.getInfo()+','+SI.getInfo());
//Adds lakes to mask water error
var Lakes = (ee.Image().byte()).paint({
featureCollection: CA_lakes.filterBounds(areaOfInterest),
color: 'black',
});
Map.addLayer(Lakes, {}, 'Lakes mask');
}
///////////////////////////////////////////////////////////////
/////////////////////// FIRE HISTORY //////////////////////////
///////////////////////////////////////////////////////////////
// Extract fire history dataset input by user
function setFireHistoryData(){
setAreaOfInterest();//sets area of interest
var start = selectStartYear.getValue();//a user supplied start year
var end = selectEndYear.getValue();//a user supplied end year
var dateFilter = ee.Filter.rangeContains('YEAR_', start, end); //filter based on year inputs
var dataSelected = select_data.getValue();
var dataUsed;
if (dataSelected == RX){
dataUsed = rx.filter(dateFilter).filterBounds(areaOfInterest);
}//fire history data set to prescription fire treatments
else if (dataSelected == TREATMENT){
dataUsed = treatment.filter(dateFilter).filterBounds(areaOfInterest);
}//fire history data set to non-fire treatments
else if (dataSelected == FRAP) {
dataUsed = frap.filter(dateFilter).filterBounds(areaOfInterest);
}//fire history data set to wildfires
else if (dataSelected == MYFIREDATA){
var userInput = ownAssetInput.getValue(); //input data from the user, a "YEAR_" field
userInput = ee.String(userInput); //ensures the user input is a string
var userSuppliedFire = ee.FeatureCollection(userInput); //turns the input into a feature collection
if (userSuppliedFire.filter(dateFilter) === true){ //if input has a year attribute it will be filtered
dataUsed = userSuppliedFire.filter(dateFilter).filterBounds(areaOfInterest);
} else{
dataUsed = userSuppliedFire.filterBounds(areaOfInterest);
}
}
var empty = ee.Image().byte();
var outline = empty.paint({
featureCollection: dataUsed,
color: 1,
width: 1
});
Map.centerObject(areaOfInterest,10);
Map.addLayer(outline, {palette: 'white'}, dataSelected);//Add fires as white outlines
}//sets the fire history data to a set selected by the user
///////////////////////////////////////////////////////////////
////////////////////// OTHER METHODS //////////////////////////
///////////////////////////////////////////////////////////////
function reset(){
Map.clear();
}//resets the map, removing all layers
///////////////////////////////////////////////////////////////
/////////////////////// WIDGET PANEL //////////////////////////
///////////////////////////////////////////////////////////////
//Spacer object//
var spacer = ui.Label(' ');
/* Create UI Panels */
var panel = ui.Panel({style: {width:'300px'}});
ui.root.insert(0,panel);
/* Introduction */
var intro = ui.Label('SAVETREE',
{fontWeight: 'bold', fontSize: '24px', margin: '10px 5px'}
);
var subtitle = ui.Label('Compute temporal trend as a linear regression'+
' analysis of a specified spectral index over a specified time period'+
' for a specified area of interest using data from the Landsat series of satellites.'+
' Defaults to calculate NDMI ending in 2016 at a 5 year interval. Add fire history'+
' data to mask those areas of the analysis. Export your layers as TIFF files to analyze outside of Earth'+
' Engine. Lastly, click on an area of the new map layer to inspect the changes in the pixel that have occurred'+
' in the duration you have specified.');
panel.add(intro).add(subtitle);
//Select buttons for SI and AOI
var selectSI = ui.Select({
items:['NDMI','NDVI','NDWI','NBR'],
placeholder:'Select index',
value: 'NDMI'}); //defaults to NDMI
var selectAoi = ui.Select({
items:[LVNP,LNF,BADG,DEVT2,OWN],
placeholder:'Select area of interest',
value: 'Lassen Volcanic National Park',//Default
//onChange: addOwnAOI
});
// Prompt box to input your own asset
function addOwnAOI(aoi) {
if (areaOfInterest == OWN)
var ownasset_input = ui.Textbox({
style: {width:'250px'},
placeholder: 'users/your_username/asset_name'
});
SIAOIpanel.add(ui.Label('Input shapefile'))
.add(ownasset_input);
}
var selectSIAOI = ui.Label({value:'Select spectral index and area of interest',
style: {fontSize: '18px', fontWeight: 'bold'}});
var SIAOIpanel = ui.Panel();
SIAOIpanel.add(selectSIAOI)
.add(ui.Panel([selectSI, selectAoi], ui.Panel.Layout.flow('horizontal')));
panel.add(SIAOIpanel);
var step3 = ui.Label('Or use your own asset as the area of interest (see Readme for how to load assets)');
var inputTextbox = ui.Textbox({
style: {width:'250px'},
placeholder: 'users/your_username/asset_name',
onChange: function(input) {
var userInput = input;
}
});
panel.add(step3).add(inputTextbox);
//Select Year and Duration of Time Series //
var durpanel = ui.Panel([ui.Label({
value:'Select end year and duration of time series',
style:{fontSize: '18px', fontWeight: 'bold'}})]);
var textboxStyle = ui.Textbox({style: {width:'8px'}});
var selectYr = ui.Textbox({placeholder: 'Year', value: '2016',
style: {width: '100px'}}); //defaults to 2016
var selectDur = ui.Textbox({placeholder: 'Duration', value: '5',
style: {width: '100px'}}); //defaults to 5 yrs
panel.add(ui.Label());
var datasetRange_label = ui.Label('Since 1984 ',
{margin: '0 0 0 10px',fontSize: '12px',color: 'gray'});
var durRange_label = ui.Label('Recommend 3-5 years',
{margin: '0 0 0 18px',fontSize: '12px',color: 'gray'});
var durRange_subtext = ui.Panel([
datasetRange_label, durRange_label],
ui.Panel.Layout.flow('horizontal'));
var row2 = ui.Panel([selectYr, selectDur],
ui.Panel.Layout.flow('horizontal'));
durpanel.add(durRange_subtext).add(row2);
panel.add(durpanel);
//Add layers to map//
var addCoef = ui.Button('Add Coefficient Map', applyCoefficient);
var addBiv = ui.Button('Add Bivariate Map', applyBivariate);
panel.add(ui.Panel([addCoef, addBiv], ui.Panel.Layout.flow('horizontal')));
/////////////////////////////////////////////////////////////////////////////////////////
var resetButton = ui.Button('Reset Map', reset);
panel.add(resetButton);
/////////////////////////////////////////////////////////////////////////////////////////
//Create coefficient legend
function makeLegend(vis) {
var lon = ee.Image.pixelLonLat().select('longitude');
var gradient = lon.multiply((vis.max-vis.min)/100.0).add(vis.min);
var legendImage = gradient.visualize(vis);
//Coefficient legend
var thumb = ui.Thumbnail({
image: legendImage,
params: {bbox:'0,0,100,8', dimensions:'300x15'},
style: {position: 'bottom-center'}
});
var text = ui.Panel({
widgets: [
ui.Label(String('Decline')),
ui.Label({style: {stretch: 'horizontal'}}),
ui.Label(String('Stable')),
ui.Label({style: {stretch: 'horizontal'}}),
ui.Label(String('Growth')),
],
layout: ui.Panel.Layout.flow('horizontal'),
style: {
padding: '0px',
stretch: 'horizontal',
fontSize: '12px',
color: 'gray',
textAlign: 'center'
}
});
return ui.Panel({style:{position: 'bottom-left'}})
.add(text).add(thumb);
}
panel.add(makeLegend(LGND));
//Create bivariate Legend
var viz = ['eff5f5', 'b0d5df', '64acbe', 'e4acac',
'ad9ea5', '627f8c', 'c85a5a', '985356', '574249'];
// Text in legend
var legendTitle = ui.Label('Bivariate Classification');
var green = ui.Label('Peak green',
{margin: '0 0 0 10px',fontSize: '12px',color: 'gray', padding: '10'});
var healthy = ui.Label('Max health',
{margin: '0 0 0 30px',fontSize: '12px',color: 'gray', padding: '10'});
var textTop = ui.Panel([green, healthy], ui.Panel.Layout.flow('horizontal'));
var wet = ui.Label('Peak moisture',
{margin: '5px 0 0 60px',fontSize: '12px',color: 'gray'});
var dry = ui.Label('O',
{margin: '5px 0 0 20px',fontSize: '12px',color: 'gray'});
var textBottom = ui.Panel([dry, wet],
ui.Panel.Layout.flow('horizontal'));
panel.add(textTop);
//Add 9 color boxes
var makeRow = function(color1, color2, color3) {
// Create the label that is actually the colored box.
var colorBox1 = ui.Label({
style: {
backgroundColor: '#' + color1,
padding: '10px',
margin: '0 0 0 40px'
}
});
var colorBox2 = ui.Label({
style: {
backgroundColor: '#' + color2,
padding: '10px',
margin: '0 0 0 0'
}
});
var colorBox3 = ui.Label({
style: {
backgroundColor: '#' + color3,
padding: '10px',
margin: '0 0 0 0'
}
});
return ui.Panel({
widgets: [colorBox1, colorBox2, colorBox3],
layout: ui.Panel.Layout.Flow('horizontal')
});
};
for (var i = 2; i > -1; i = i-1) {
panel.add(makeRow(viz[i], viz[i+3], viz[i+6]));
}
panel.add(textBottom);
//FIRE HISTORY//
var firehistoryintro = ui.Panel([
ui.Label({
value: 'Fire History',
style: {fontSize: '18px', fontWeight: 'bold'}
}),
ui.Label('Mask known mortality events with fire history layers')
]);
panel.add(spacer).add(firehistoryintro);
//Select start and end year for fire history//
var textboxStyle1 = ui.Textbox({style: {width:'8px'}});
var selectStartYear = ui.Textbox({placeholder: 'Start Year', value: '1900',
style: {width: '100px'}}); //defaults to 2016
var selectEndYear = ui.Textbox({placeholder: ' End Year', value: '2016',
style: {width: '100px'}}); //defaults to 5 yrs
var startRange_label = ui.Label('Start year',
{margin: '0 0 0 10px',fontSize: '12px',color: 'gray'});
var endRange_label = ui.Label('End year',
{margin: '0 0 0 65px',fontSize: '12px',color: 'gray'});
var startRange_subtext = ui.Panel([startRange_label, endRange_label],
ui.Panel.Layout.flow('horizontal'));
var nextRow = ui.Panel([selectStartYear, selectEndYear],
ui.Panel.Layout.flow('horizontal'));
panel.add(startRange_subtext).add(nextRow);
// Select fire history dataset to pull from//
var FRAP = 'FRAP statewide dataset';
var RX = 'Rx fire';
var TREATMENT = 'Other treatment';
var MYFIREDATA = 'Your Asset (below)'
// Point to dataset user has selected
var select_data = ui.Select({
items: [FRAP,RX,TREATMENT,MYFIREDATA],//option items for first selection
placeholder: 'Select',
value: 'FRAP statewide dataset',
});
// Add Widgets to panel
var firepanel = ui.Panel([select_data, (ui.Button('Add Fires to Map',setFireHistoryData))],
ui.Panel.Layout.flow('horizontal'));
panel.add(ui.Label('Select fire history dataset')).add(firepanel);
// Option to input own fire history asset or other layer to map
var ownAsset = ui.Label('Or display your own asset on map (see Readme)');
var ownAssetInput = ui.Textbox({
style: {width:'250px'},
placeholder: 'users/your_username/asset_name',
onChange: function(input) {
var userInput = input;
}
});
panel.add(ownAsset).add(ownAssetInput);
/* 6. Export image to drive */
//Create mini panel for export items
var exportintro = ui.Panel([
ui.Label('Export to Drive',{fontSize: '18px', fontWeight: 'bold'}),
ui.Label('To iniate export, click "Export to Drive" below, drag down code, click "Tasks", and "Run"',
{margin: '0 0 0 10px',fontSize: '12px',color: 'gray'}),
]);
panel.add(exportintro);
var exportButtonCoef = ui.Button('Export Coefficient Map', exportImages);
var exportButtonBiv = ui.Button('Export Bivariate Map', exportBiv);
panel.add(ui.Panel([exportButtonCoef, exportButtonBiv], ui.Panel.Layout.flow('horizontal')));
// A function to export Coefficient layer to drive
function exportImages(){
applyCoefficient();
Export.image.toDrive({
image: coef,
description: 'TimeSeriesFor'+ selectAoi.getValue().split(' ').join('') +yr.subtract(dur).getInfo()+
'-'+yr.getInfo(),
fileNamePrefix: yr.subtract(dur).getInfo()+'_'+yr.getInfo()+'_'
+SI.getInfo()+'_TREND',
folder: 'SAVETREE',
scale: 30,
region: areaOfInterest,
skipEmptyTiles: true,
crs: 'EPSG:3857'
});
}
//A function to export Bivariate layer to drive
function exportBiv(){
applyBivariate();
Export.image.toDrive({
image: bivariate.visualize(BIV),
description: 'BivariatePlotFor' + selectAoi.getValue().split(' ').join('') + yr.getInfo(),
fileNamePrefix: yr.getInfo()+'_NDMI_NDVI_Bivariate',
folder: 'SAVETREE',
scale: 30,
region: areaOfInterest,
skipEmptyTiles: true,
crs: 'EPSG:3857'
});
}
///////////////////////////////////////////////////////////////
/////////////////////MANUAL INSPECTOR TOOL/////////////////////
///////////////////////////////////////////////////////////////
/////MANUAL INSPECTOR TOOL/////
// Create an intro panel with labels.
var intro = ui.Panel([
ui.Label({
value: 'Change Inspector',
style: {fontSize: '18px', fontWeight: 'bold'}
}),
ui.Label('Click a point on the map to inspect.')
]);
panel.add(intro);
// Create panels to hold lon/lat values.
var lon = ui.Label();
var lat = ui.Label();
panel.add(ui.Panel([lon, lat], ui.Panel.Layout.flow('horizontal')));
// Register a callback on the default map to be invoked when the map is clicked.
Map.onClick(function(coords) {
// Update the lon/lat panel with values from the click event.
lon.setValue('lon: ' + coords.lon.toFixed(2));
lat.setValue('lat: ' + coords.lat.toFixed(2));
var longitude = ee.Algorithms.String(lon.setValue('lon: ' + coords.lon.toFixed(2)));
// Add a dot for the point clicked on.
var point = ee.Geometry.Point(coords.lon, coords.lat);
var dot = ui.Map.Layer(point, {color: 'FFFFFF'});
Map.layers().set(3, dot);
// Create a chart of the spectral index selected by user.
var indexChart = ui.Chart.image.seriesByRegion(allyr, point,
ee.Reducer.mean(), SI.getInfo(), 200, 'year');
indexChart.setOptions({
title: selectAoi.getValue()+ " " + SI.getInfo() + ' over ' + dur.getInfo() + ' years',
vAxis: {title: SI.getInfo()},//,minValue: -100, maxValue: 1000},
//this range is +/-1000 because indices are scaled above
hAxis: {title: 'Date', format: '', gridlines: {count: dur}},
lineWidth: 1,
pointSize: 3,
})
.setSeriesNames([SI.getInfo()]);
panel.add(indexChart);
});
Map.style().set('cursor', 'crosshair');