Skip to content

Latest commit

 

History

History
274 lines (166 loc) · 6.54 KB

DSAMathDocs.md

File metadata and controls

274 lines (166 loc) · 6.54 KB

Math for Data Structures and Algorithms

Revise the basics of the maths needed for working alongside with DSA.


Logarithms

$$ y = bx ;\\ log{_b}{y}=log{_b}{bx} ;\\ log{_b}{y}={x} $$

Rules:

$log{_a}{(x/y)} = log{_a}{x} - log{_a}{y} $

$log{_a}{(xy)} = log{_a}{x} + log{_a}{y} $

$log{_a}{(x^y)} = ylog{_a}{x}$

$log{_a}{(x)} = \frac{log{_b}{(x)}}{log{_b}{(a)}}$

$x^{log{_b}{(y)}} = y^{log{_b}{(x)}}$

$lg(x) = log{_2}{x}$

$ln(x) = log{_e}{x}$

$log^k(n) = (log(n))^k$

$lglg(n) = lg(lg(n))$


Floors & Ceilings

• Floors:

[𝑥] is the largest integer not greater than x.
For 𝑥 ∈ ℝ, 𝑥 − 1 < [𝑥] ≤ 𝑥.

• Ceilings:

[𝑥] is the smallest integer not less than x.
For 𝑥 ∈ ℝ, 𝑥 ≤ [𝑥] < 𝑥 + 1.

• Properties:

𝑥 − 1 < [𝑥] ≤ 𝑥 ≤ [𝑥] ≤ 𝑥 + 1.
∀n ∈ Z, [n/2] + [n\2] = n.
∀a,b ∈ Z+, [a/b] ≤ (a + (b-1))/b.

• Example:

x Floor Ceiling
-1.1 -2 -1
0 0 0
1.01 1 2
2.9 2 3
3 3 3

Arithmetic Sequences & Series

The Arithmetic Sequence is a sequence of numbers such that the difference between successive terms in the sequence is constant.

• The first n values of the arithmetic sequence are:
• 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, ... , 𝑎 + (𝑛 − 1)𝑑.
• 𝑎 – initial value
• 𝑑 – difference
• Example: 1, 4, 7, 10, 13, 16, 19, ... (difference of 3).

The Arithmetic Series is the sum of the terms in the Arithmetic Sequence.

$$ \displaystyle\sum_{i=0}^{n-1} (a+id)=\frac{(2a + (n-1)d)n}{2} $$

Let $𝑎{_1} = 𝑎$ 𝑎𝑛d $a{_n} = 𝑎 + (𝑛 − 1)𝑑$

$$ \displaystyle\sum_{i=0}^{n-1} (a+id)=\frac{(a{_1} + a{_n})n}{2} $$


Geometric Sequences & Series

The Geometric Sequence is a sequence of numbers where each successive term is found by multiplying the previous term by a fixed, non-zero, common ratio.

• The first n values of the geometric sequence are:
• 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, ... , 𝑎𝑟𝑛−1
• 𝑎 – initial value
• 𝑟 ≠ 0 – fixed multiplier
• Example: 1, 2, 4, 8, 16, 32, ... (common ratio of 2).

The Geometric Series is the sum of the terms in the Geometric Sequence.

$$ \displaystyle\sum_{i=0}^{n-1} (ar^i)=\frac{a(1 - r^n)}{1-r} $$

When −1 < 𝑟 < 1, the sum of the in infinite geometric progression converges to:

$$ \displaystyle\sum_{i=0}^{∞} (ar^i)=\frac{a}{1-r} $$


Harmonic Series

• The first n values are: 1, 1 2 , 1 3 , ... , 1 𝑛
• The sum of these values can be represented with:

$$ \displaystyle\H{n}=\sum{i=0}^{n}(\frac{1}{i}) $$

• The harmonic series does not converge, but satisfies the following property:
ln(𝑛 + 1) < 𝐻𝑛 ≤ 1 + ln(𝑛)

Limits

A limit is a way of determining trends for values that may or may not exist

The definition of a limit follows such that if $0&lt; |x-c| &lt; \delta$ then $|f(x) - 1| &lt; \varepsilon$

$$ \lim\limits_{x \to c}f(x) = l\\ $$

Rules:

$$ \lim\limits_{x \to c}b = b\\ \lim\limits_{x \to c}x = c\\ \lim\limits_{x \to c}x^n = c^n $$

Constants can be pulled out of limits when a ∈ ℝ and $\lim\limits_{x \to c}f(x) = l$

$$ \lim\limits_{x \to c}(a)(f(x)) = (a)(l) $$

The limit of a sum is the sum of the limits

$$ \lim\limits_{x \to c}(f(x) + g(x)) = limits_{x \to c}f(x) + limits_{x \to c}g(x) $$

The limit of a product is the product of the limits

$$ \lim\limits_{x \to c}(f(x) \times g(x)) = limits_{x \to c}f(x) \times limits_{x \to c}g(x) $$

The limit of a quotient is the quotient of the limits, when divisor is not 0 such that $\lim\limits_{x \to c}g(x) ≠ 0$.

$$ \lim\limits_{x \to c}(f(x) \div g(x)) = limits_{x \to c}f(x) \div limits_{x \to c}g(x) $$


Derivatives

Derivatives are a measure of how a function changes with respect to its input.

For a real-valued function of a single real variable, the derivative at a point is the slope of the tangent line to the graph of the function at that point.

Rules:

• When $p(x) = x^n$ and n ≠ 0, $p^`(x) = (n)(x^{n-1})$

• $(f(x)g(x))$ = $((f(x))(g\(x))) + ((f`(x))(g(x)))$

$(\frac{f}{g})$` $(x)$ = $\frac{((g(x))(f`(x)) - (g`(x))(f(x)))}{(g(x)^2)}$

$(\frac{d}{dx})(f(g(x)))$ = $f`(g(x)g`(x))$

$(\frac{d}{dx})(ln(x))$ = $\frac{1}{x}$

$(\frac{d}{dx})(e^{x})$ = $e^{x}$

$(\frac{d}{dx})(e^{f(x)})$ = $(e^{f(x)})(f`(x))$

$(\frac{d}{dx})p^{x}$ = $p^{x}(ln(p))$

$(\frac{d}{dx})(p^{g(x)})$ = $(p^{g(x)})(g`(x))(ln(p))$

$(\frac{d}{dx})(\log{_p}{(g(x))})$ = $\frac{g`(x)}{(g(x))ln(p)}$


L'Hopital's Rule

Assume 𝑓(𝑥) and 𝑔(𝑥) are both differentiable, with derivatives 𝑓′(𝑥) and 𝑔′(𝑥) respectively. Further, assume that 𝑐 ∈ ℝ.

$$ \lim\limits_{x \to c}\frac{f(x)}{g(x)} = \frac{0}{0}\ or \ \lim\limits_{x \to c}\frac{f(x)}{g(x)} = \frac{±\infty}{±\infty} \ and \ \lim\limits_{x \to c}\frac{f`(x)}{g`(x)} \ exists, \\ then \ \lim\limits_{x \to c}\frac{f(x)}{g(x)} = \lim\limits_{x \to c}\frac{f`(x)}{g`(x)} $$


Permutations

A K-Permutation is an ordered subsequence of k distinct elements of a set S.

• The number of k-permutations of a set 𝑆, with |𝑆| = 𝑛 is:
                n(n-1)(n-2)...(n-k+1) = n!/(n-k)!

• When S = {a,b,c}, the 2-permutations are {ab, ac, ba, bc, ca, cb}.

Example:

The number of 2-permutations of S(k=2) with |S| = n = 3 is: 3(3 − 1) = 3!/(3 − 2)! = 6/1 = 6.


Combinations

A K-Combination is an un-ordered subsequence of k distinct elements of a set S

• The number of k-combinations of a set 𝑆, with |𝑆| = 𝑛 is:
                n!/((n-k)!k!)

• When S = {a,b,c}, the 2-combinations are {ab, ac, bc}.

Example:

The number of 2-permutations of S(k=2) with |S| = n = 3 is: 3!/((3 − 2)!(2!)) = 6/2 = 3.

Binomial Coefficients:

• We use the notation (𝑛/𝑘) (read: n choose k) to denote the number of k-combinations.

Properties:

$\binom{n}{k}=(nC(n−k))$

$\binom{n}{k}=\binom{n-1}{k} + \binom{n-1}{k-1}$

$\binom{n}{k}&gt;=\binom{n}{k}^k$

$\binom{n}{k}&lt;=\binom{(n^k)}{k!}$

• Binomial Coefficients can be used in binomial expansion. Binomial expansion is given by:

$$ \displaystyle(x+a)^n = \sum_{k=0}^{n} \binom{n}{k}(x^k)(a^{(n-k)}) $$

• In particular, when x = a = 1, we have:

$$ \displaystyle(2)^n = \sum_{k=0}^{n}\binom{n}{k} $$