forked from davidiommi/3D-CycleGan-Pytorch-MedImaging
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
83 lines (61 loc) · 3.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import sys
from utils.NiftiDataset import *
import utils.NiftiDataset as NiftiDataset
from torch.utils.data import DataLoader
from options.train_options import TrainOptions
# from logger import *
import time
from models import create_model
from utils.visualizer import Visualizer
from test import inference
if __name__ == '__main__':
# ----- Loading the init options -----
opt = TrainOptions().parse()
# ----- Transformation and Augmentation process for the data -----
min_pixel = int(opt.min_pixel * ((opt.patch_size[0] * opt.patch_size[1] * opt.patch_size[2]) / 100))
trainTransforms = [
NiftiDataset.Resample(opt.new_resolution, opt.resample),
NiftiDataset.Augmentation(),
NiftiDataset.Padding((opt.patch_size[0], opt.patch_size[1], opt.patch_size[2])),
NiftiDataset.RandomCrop((opt.patch_size[0], opt.patch_size[1], opt.patch_size[2]), opt.drop_ratio, min_pixel),
]
train_set = NifitDataSet(opt.data_path, which_direction='AtoB', transforms=trainTransforms, shuffle_labels=True, train=True)
print('lenght train list:', len(train_set))
train_loader = DataLoader(train_set, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers, pin_memory=True) # Here are then fed to the network with a defined batch size
# -----------------------------------------------------
model = create_model(opt) # creation of the model
model.setup(opt)
if opt.epoch_count > 1:
model.load_networks(opt.epoch_count)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
for i, data in enumerate(train_loader):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.print_freq == 0:
losses = model.get_current_losses()
t = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t, t_data)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()