diff --git a/docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f1_2.md b/docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f1_2.md index e7ccaf263..2c10e3291 100644 --- a/docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f1_2.md +++ b/docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f1_2.md @@ -7,12 +7,25 @@ tags: # 京都大学 情報学研究科 知能情報学専攻 2022年8月実施 情報学基礎 F1-2 ## **Author** -[Isidore](https://github.com/heacsing) +[Isidore](https://github.com/heacsing), 祭音Myyura ## **Description** -
- -
+### 設問1 +以下の関数の $x$ に関する $n$ 階導関数を求めよ。ただし $a$ は実数、かつ $a>0$、$a \neq 1$ である。 + +- (1) $\log_e x$ +- (2) $a^x$ +- (3) $x^2e^x$ +- (4) $\frac{1}{x^2-1}$ + +### 設問2 +$z = f(x,y)$, $x = e^u \cos v$, $y = e^u \sin v$ とする。$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2}$ を $x, y, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}$ で表せ。 + +### 設問3 +以下の積分を求めよ。計算過程を明示すること。 + +- (1) $\int^{\infty}_{-\infty} e^{-x^2} dx$ +- (2) $\int_0^{\infty} \int_0^{\infty} (ax^2 + by^2)e^{-(ax^2 + by^2)} dxdy$、但し、$a>0$ かつ $b>0$ とし、(1) の結果を用いてよい。 ## **Kai** ### 設問1 @@ -31,13 +44,19 @@ $$ #### (3) $$ -f^{(n)}(x) = (x^2+2x+2)e^x +\begin{aligned} +f^{(n)}(x) &= \sum_{k=0}^{n}\binom{n}{k}(x^{2})^{(k)}(e^{x})^{(n-k)} \\ +&= \sum_{k=0}^{2}\binom{n}{k}(x^{2})^{(k)}(e^{x})^{(n-k)} \\ +&= \binom{n}{0}(x^{2})^{(0)}(e^{x})^{(n)}+\binom{n}{1}(x^{2})^{(1)}(e^{x})^{(n-1)}+\binom{n}{2}(x^{2})^{(2)}(e^{x})^{(n-2)}\\ +&= x^{2}e^{x}+2nxe^{x}+n(n-1)e^{x} \\ +&= \left(x^{2}+2nx+n(n-1)\right)e^{x} +\end{aligned} $$ #### (4) $$ -f^{(n)}(x) = (-\frac{1}{2})^n(n-1)![\frac{1}{(x-1)^(n+1)}-\frac{1}{(x+!)^(n+1)}] +f^{(n)}(x) = \frac{n!}{2}(-1)^{n}\left\{(x-1)^{-n-1}-(x+1)^{-n-1}\right\} $$ ### 設問2 @@ -61,30 +80,26 @@ $$ $$ #### (2) - -Let the asked integral be denoted as $I$, we have +Let $u=\sqrt{a}x,v=\sqrt{b}y$. $$ -\begin{align} - I &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}ax^2e^{-(ax^2+by^2)}\mathrm{d}x\mathrm{d}y + \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}by^2e^{-(ax^2+by^2)}\mathrm{d}x\mathrm{d}y \\ - &= \int^{\infty}_{-\infty}e^{-by^2}\mathrm{d}y\int^{\infty}_{-\infty}ax^2e^{-ax^2}\mathrm{d}x + \int^{\infty}_{-\infty}e^{-ax^2}\mathrm{d}x\int^{\infty}_{-\infty}by^2e^{-by^2}\mathrm{d}y -\end{align} +\begin{aligned} +\int_{0}^{\infty}\int_{0}^{\infty}(ax^{2}+by^{2})e^{-(ax^{2}+by^{2})}dxdy +&= \frac{1}{\sqrt{ab}}\int_{0}^{\infty}\int_{0}^{\infty}(u^{2}+v^{2})e^{-(u^{2}+v^{2})}dudv\\ +&= \frac{2}{\sqrt{ab}}\int_{0}^{\infty}\int_{0}^{\infty}u^{2}e^{-(u^{2}+v^{2})}dudv\\ +&= \frac{2}{\sqrt{ab}}\int_{0}^{\infty}u^{2}e^{-u^{2}}du\int_{0}^{\infty}e^{-v^{2}}dv\\ +&= \frac{\sqrt{\pi}}{\sqrt{ab}}\int_{0}^{\infty}u^{2}e^{-u^{2}}du +\end{aligned} $$ -By (1) we have, - -$$ -\int^{\infty}_{-\infty}e^{-x^2}\mathrm{d}x = \sqrt{\pi} -$$ - -Perform the integration by parts ($e^{-x^2} = (x)'e^{-x^2}$) to the above integral, we have - $$ -\int^{\infty}_{-\infty}x^2e^{-x^2}\mathrm{d}x = \frac{\sqrt{\pi}}{2} +\begin{aligned} +\int_{0}^{\infty}u^{2}e^{-u^{2}}du &= \int_{0}^{\infty}u\cdot (ue^{-u^{2}})du\\ +&= \int_{0}^{\infty}u\cdot\left(\frac{e^{-u^{2}}}{-2}\right)^{\prime}du\\ +&= \left[\frac{ue^{-u^{2}}}{-2}\right]_{0}^{\infty}+\frac{1}{2}\int_{0}^{\infty}e^{-u^{2}}du\\ +&= \frac{1}{4}\int_{-\infty}^{\infty}e^{-u^{2}}du \\ +&= \frac{\sqrt{\pi}}{4} +\end{aligned} $$ -Insert the above 2 integrals, we have the answer: - -$$ -I = \frac{\pi}{\sqrt{ab}} -$$ +Hence the result is $\frac{\pi}{4\sqrt{ab}}$.