diff --git a/federated_cvdm_training_poc/partial_risk_prediction.py b/federated_cvdm_training_poc/partial_risk_prediction.py index 1e0f887..dd160b9 100644 --- a/federated_cvdm_training_poc/partial_risk_prediction.py +++ b/federated_cvdm_training_poc/partial_risk_prediction.py @@ -76,6 +76,7 @@ def partial_risk_prediction( ## Split the data into 80%/10%/10% for training/validation/test train_df, val_df, test_df = ci_split(df_imputed, n_fold = n_fold, fold_index = fold_index) + info("Vertical data split") ## Vertical data split: X (feature), e (FSTAT), y(LENFOL) y_col = [outcome_cols[0]] e_col = [outcome_cols[1]] @@ -83,6 +84,7 @@ def partial_risk_prediction( val_X, val_e, val_y = vertical_split(val_df, predictor_cols, y_col, e_col) test_X, test_e, test_y = vertical_split(test_df, predictor_cols, y_col, e_col) + info("Min-max normalization") ## Min-max normalization independently on each node train_X, X_min, X_max = normalize_train(train_X) # Normalize X val_X = normalize_test(val_X, X_min, X_max) # Nomralize val/test X based on min/max of train X @@ -104,7 +106,7 @@ def partial_risk_prediction( batchsize = 4096 - + train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batchsize) val_loader = torch.utils.data.DataLoader( @@ -112,6 +114,8 @@ def partial_risk_prediction( test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=test_dataset.__len__()) + + info("Create a neural network based on the configuration specified in the ini file") ## Create a neural network based on the configuration specified in the ini file model = DeepSurv(dl_config['network']).to(device)