forked from snapapps/edgy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosmextractintersections.py
68 lines (52 loc) · 1.84 KB
/
osmextractintersections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""Extract a JSON-formatted NetworkX-compatible graph from OpenStreetMap XML.
Contains only sufficiently relevant roads. If an edge exists in the graph,
then those two roads intersect.
"""
import xml.etree.cElementTree as ET
import networkx as nx
import networkx.readwrite.json_graph
import sys
tree = ET.parse(sys.argv[1])
root = tree.getroot()
nodes = {}
ways = {}
for child in root:
if child.tag == 'node':
id_ = child.attrib['id']
tags = {node.attrib['k']: node.attrib['v'] for node in child
if node.tag == 'tag'}
nodes[id_] = ((float(child.attrib['lat']), float(child.attrib['lon'])), tags)
elif child.tag == 'way':
id_ = child.attrib['id']
waynodes = [node.attrib['ref'] for node in child if node.tag == 'nd']
tags = {node.attrib['k']: node.attrib['v'] for node in child
if node.tag == 'tag'}
if 'name' not in tags:
continue
ways[id_] = (waynodes, tags)
def is_relevant_highway(tags):
return 'highway' in tags and tags['highway'] in {'motorway', 'trunk', 'primary', 'secondary', 'tertiary'}
intersecting_ways = set()
for id_a, a in ways.items():
for id_b, b in ways.items():
if a is b:
continue
if not is_relevant_highway(a[1]) or not is_relevant_highway(b[1]):
continue
if any(i in a[0] for i in b[0]):
intersecting_ways.add(tuple(sorted((id_a, id_b))))
G = nx.Graph()
for a, b in intersecting_ways:
nodes_a = ways[a][0]
name_a = ways[a][1]['name']
nodes_b = ways[b][0]
name_b = ways[b][1]['name']
if name_a != name_b: # Guard against duplicates with different IDs.
G.add_edge(name_a, name_b)
# intersections = [x for x in nodes_a if x in nodes_b]
# latlons = [nodes[x][0] for x in intersections]
# print("%s/%s at %r" % (ways[a][1]['name'], ways[b][1]['name'], latlons))
Gp = G
# Gp = nx.line_graph(Gp)
# Gp = nx.relabel_nodes(Gp, lambda x: "%s/%s" % x)
nx.readwrite.json_graph.dump(Gp, sys.stdout)