-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmatcher_test.py
260 lines (205 loc) · 11 KB
/
matcher_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
r""" Matcher testing code for one-shot segmentation """
import argparse
import os
import torch
import torch.nn.functional as F
import numpy as np
import sys
sys.path.append('./')
from matcher.common.logger import Logger, AverageMeter
from matcher.common.vis import Visualizer
from matcher.common.evaluation import Evaluator
from matcher.common import utils
from matcher.data.dataset import FSSDataset
from matcher.Matcher import build_matcher_oss
import cv2
import random
random.seed(0)
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from tqdm import tqdm
def test(matcher, obj_name, output_path, images_path, masks_path, args):
r""" Test Matcher """
print("\n------------> Segment " + obj_name)
# Path preparation
ref_image_path = os.path.join(images_path, obj_name, args.ref_idx + '.jpg')
ref_mask_path = os.path.join(masks_path, obj_name, args.ref_idx + '.png')
test_images_path = os.path.join(images_path, obj_name)
output_path = os.path.join(output_path, obj_name)
os.makedirs(output_path, exist_ok=True)
# Load images and masks
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
ref_image = torch.tensor(ref_image)
ref_image = ref_image.permute(2,0,1)
size = (518,518)
transform = transforms.Resize(size)
ref_image = transform(ref_image)
ref_mask = cv2.imread(ref_mask_path)
ref_mask = cv2.cvtColor(ref_mask, cv2.COLOR_BGR2RGB)
ref_mask = torch.tensor(ref_mask)
ref_mask = ref_mask.permute(2,0,1)
size = (518,518)
transform = transforms.Resize(size)
ref_mask = transform(ref_mask)
gt_mask = torch.tensor(ref_mask)[:, :, 0] > 0
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).cuda()
loop_over = len(os.listdir(test_images_path))
for test_idx in tqdm(range(loop_over//2)):
# ref_image = cv2.imread("/l/users/muhammad.siddiqui/Matcher/datasets/Lemons/00.jpg")
# ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
# ref_image = torch.tensor(ref_image)
# ref_image = ref_image.permute(2,0,1)
# size = (518,518)
# transform = transforms.Resize(size)
# ref_image = transform(ref_image)
# ref_mask = cv2.imread("/l/users/muhammad.siddiqui/Matcher/datasets/Lemons/00.png")
# ref_mask = cv2.cvtColor(ref_mask, cv2.COLOR_BGR2RGB)
# ref_mask = torch.tensor(ref_mask)
# ref_mask = ref_mask.permute(2,0,1)
# size = (518,518)
# transform = transforms.Resize(size)
# ref_mask = transform(ref_mask)
# gt_mask = torch.tensor(ref_mask)[:, :, 0] > 0
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1).cuda()
# Load test image
test_idx = '%02d' % test_idx
test_image_path = test_images_path + '/' + test_idx + '.jpg'
test_image = cv2.imread(test_image_path)
test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB)
original_image = test_image
# test_image = cv2.imread("/l/users/muhammad.siddiqui/Matcher/datasets/Lemons/01.jpg")
# test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB)
test_image = torch.tensor(test_image)
test_image = test_image.permute(2,0,1)
size = (518,518)
transform = transforms.Resize(size)
test_image = transform(test_image)
# test_mask = cv2.imread("/l/users/muhammad.siddiqui/Matcher/datasets/Lemons/01.jpg")
# test_mask = cv2.cvtColor(test_mask, cv2.COLOR_BGR2RGB)
# test_mask = torch.tensor(test_mask)
# test_mask = test_mask.permute(2,0,1)
# size = (518,518)
# transform = transforms.Resize(size)
# test_mask = transform(test_mask)
# 1. Matcher prepare references and target
matcher.set_reference(ref_image, ref_mask)
matcher.set_target(test_image)
# 2. Predict mask of target
pred_mask = matcher.predict().squeeze(0)
target_height, target_width, target_channels = original_image.shape[0], original_image.shape[1], original_image.shape[2]
# Resize the mask to original image size
pred_mask = pred_mask.unsqueeze(0)
pred_mask = F.interpolate(pred_mask.unsqueeze(0), size=(target_height, target_width), mode='bilinear', align_corners=False)
pred_mask = pred_mask.squeeze(0).permute(1, 2, 0) # permute to (H, W, C)
mask_show = pred_mask.cpu().detach().numpy()
# plt.figure(figsize=(10, 10))
# plt.imshow(mask_show)
# Normalize mask to be in range [0, 1]
mask_show = (mask_show - mask_show.min()) / (mask_show.max() - mask_show.min())
# Convert mask to 3 channels if it's single channel
if mask_show.shape[2] == 1:
mask_show = cv2.cvtColor(mask_show, cv2.COLOR_GRAY2RGB)
# Overlay mask on original image
alpha = 0.8 # Transparency factor
# Ensure mask_show is in the same dtype and range as original_image
mask_show = (mask_show * 255).astype(np.uint8)
mask_indices = mask_show[:, :, 0] > 0 # Create a boolean mask where mask_show is greater than zero
overlay_image = original_image.copy()
overlay_image[mask_indices] = cv2.addWeighted(original_image, 1 - alpha, mask_show, alpha, 0)[mask_indices]
# # Create the overlay
# overlay_image = cv2.addWeighted(original_image, 1 - alpha, mask_show, alpha, 0)
# Convert back to BGR for saving or displaying using OpenCV
overlay_image_bgr = cv2.cvtColor(overlay_image, cv2.COLOR_BGR2RGB)
# Save or display the result
# vis_mask_output_path = os.path.join(output_path, f'vis_mask_{test_idx}.jpg')
# cv2.imwrite(vis_mask_output_path, overlay_image_bgr)
# cv2.imwrite("overlay_image.jpg", overlay_image_bgr)
# cv2.imshow("Overlay Image", overlay_image_bgr)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
mask_output_path = os.path.join(output_path, f'{test_idx}.png')
cv2.imwrite(mask_output_path, pred_mask.cpu().numpy().astype(np.uint8) * 255)
matcher.clear()
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Matcher Pytorch Implementation for One-shot Segmentation')
# Dataset parameters
parser.add_argument('--data', type=str, default='./data')
parser.add_argument('--datapath', type=str, default='datasets')
parser.add_argument('--benchmark', type=str, default='coco',
choices=['fss', 'coco', 'pascal', 'lvis', 'paco_part', 'pascal_part'])
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--fold', type=int, default=0)
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--img-size', type=int, default=518)
parser.add_argument('--use_original_imgsize', action='store_true')
parser.add_argument('--log-root', type=str, default='output/debug')
parser.add_argument('--visualize', type=int, default=0)
parser.add_argument('--ref_idx', type=str, default='00')
# DINOv2 and SAM parameters
parser.add_argument('--dinov2-size', type=str, default="vit_large")
parser.add_argument('--sam-size', type=str, default="vit_h")
parser.add_argument('--dinov2-weights', type=str, default="models/dinov2_vitl14_pretrain.pth")
parser.add_argument('--sam-weights', type=str, default="models/sam_vit_h_4b8939.pth")
parser.add_argument('--use_semantic_sam', action='store_true', help='use semantic-sam')
parser.add_argument('--semantic-sam-weights', type=str, default="models/swint_only_sam_many2many.pth")
parser.add_argument('--points_per_side', type=int, default=64)
parser.add_argument('--pred_iou_thresh', type=float, default=0.88)
parser.add_argument('--sel_stability_score_thresh', type=float, default=0.0)
parser.add_argument('--stability_score_thresh', type=float, default=0.95)
parser.add_argument('--iou_filter', type=float, default=0.0)
parser.add_argument('--box_nms_thresh', type=float, default=1.0)
parser.add_argument('--output_layer', type=int, default=3)
parser.add_argument('--dense_multimask_output', type=int, default=0)
parser.add_argument('--use_dense_mask', type=int, default=0)
parser.add_argument('--multimask_output', type=int, default=0)
# Matcher parameters
parser.add_argument('--num_centers', type=int, default=8, help='K centers for kmeans')
parser.add_argument('--use_box', action='store_true', help='use box as an extra prompt for sam')
parser.add_argument('--use_points_or_centers', action='store_true', help='points:T, center: F')
parser.add_argument('--sample-range', type=str, default="(4,6)", help='sample points number range')
parser.add_argument('--max_sample_iterations', type=int, default=30)
parser.add_argument('--alpha', type=float, default=1.)
parser.add_argument('--beta', type=float, default=0.)
parser.add_argument('--exp', type=float, default=0.)
parser.add_argument('--emd_filter', type=float, default=0.0, help='use emd_filter')
parser.add_argument('--purity_filter', type=float, default=0.0, help='use purity_filter')
parser.add_argument('--coverage_filter', type=float, default=0.0, help='use coverage_filter')
parser.add_argument('--use_score_filter', action='store_true')
parser.add_argument('--deep_score_norm_filter', type=float, default=0.1)
parser.add_argument('--deep_score_filter', type=float, default=0.33)
parser.add_argument('--topk_scores_threshold', type=float, default=0.7)
parser.add_argument('--num_merging_mask', type=int, default=10, help='topk masks for merging')
parser.add_argument('--outdir', type=str, default='Matcher')
args = parser.parse_args()
args.sample_range = eval(args.sample_range)
if not os.path.exists(args.log_root):
os.makedirs(args.log_root)
Logger.initialize(args, root=args.log_root)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.device = device
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
# Model initialization
if not args.use_semantic_sam:
matcher = build_matcher_oss(args)
else:
from matcher.Matcher_SemanticSAM import build_matcher_oss as build_matcher_semantic_sam_oss
matcher = build_matcher_semantic_sam_oss(args)
# Helper classes (for testing) initialization
Evaluator.initialize()
Visualizer.initialize(args.visualize)
# Dataset initialization
# FSSDataset.initialize(img_size=args.img_size, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
# dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
if not os.path.exists('./outputs/'):
os.mkdir('./outputs/')
images_path = args.data + '/Images/'
output_path = './outputs/' + args.outdir
masks_path = args.data + '/Images/'
# Test Matcher
with torch.no_grad():
for obj_name in os.listdir(images_path):
test(matcher, obj_name, output_path, images_path, masks_path, args=args)