-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtotal_experiments.py
167 lines (139 loc) · 6.21 KB
/
total_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from total_tests import total_coloring_test
import networkx
import matplotlib.pyplot as plt
import random
# Runs experiments on randomly created graphs for various sizes
def graph_size_experiments(modes: [], sizes: []):
res = {mode: [] for mode in modes}
density = 0.6
for size in sizes:
seed = random.randint(1, 10000)
graph = networkx.erdos_renyi_graph(size, density, seed)
for mode in modes:
success, elapsed = total_coloring_test("Random graph on {} vertices".format(size), mode,
graph, None, False)
if not success:
return None
res[mode].append(elapsed)
return res
# Runs experiments on randomly created graphs for various densities
def graph_density_experiments(modes: [], densities: []):
res = {mode: [] for mode in modes}
graph_size = 25
for dens in densities:
seed = random.randint(1, 10000)
graph = networkx.erdos_renyi_graph(graph_size, dens, seed)
for mode in modes:
success, elapsed = total_coloring_test("Random graph of size {} with {} density".format(graph_size, dens), mode,
graph, None, False)
if not success:
return None
res[mode].append(elapsed)
return res
# Runs experiments on randomly created graphs and takes an average
def graph_average(modes: []):
res = {mode: [] for mode in modes}
graph_size = 8
dens = 0.75
runs = 10
for _ in range(runs):
seed = random.randint(1, 10000)
graph = networkx.erdos_renyi_graph(graph_size, dens, seed)
for mode in modes:
success, elapsed = total_coloring_test("Random graph of size {} with {} density".format(graph_size, dens), mode,
graph, None, False)
if not success:
return None
res[mode].append(elapsed)
for mode in modes:
print('Graphs size {}, density {}, mode {}: Average time {}s'.format(
graph_size, dens, mode, sum(res[mode]) / len(res[mode])))
# Runs experiments on star graphs
def star_graph_experiments(modes: [], sizes: []):
res = {mode: [] for mode in modes}
for size in sizes:
for mode in modes:
success, elapsed = total_coloring_test("Star graph on {} vertices".format(size), mode,
networkx.star_graph(size), size + 1, False)
if not success:
return None
res[mode].append(elapsed)
return res
# Runs experiments on complete graphs
def complete_graph_experiments(modes: [], sizes: [], expected: []):
res = {mode: [] for mode in modes}
for i in range(len(sizes)):
for mode in modes:
success, elapsed = total_coloring_test("Complete graph on {} vertices".format(sizes[i]), mode,
networkx.complete_graph(sizes[i]), expected[i], False)
if not success:
return None
res[mode].append(elapsed)
return res
# Runs experiments on bipartite graphs
def bipartite_graph_experiments(modes: [], sizes: [], expected: []):
res = {mode: [] for mode in modes}
for i in range(len(sizes)):
for mode in modes:
success, elapsed = total_coloring_test("Complete bipartite graph on {} vertices".format(sizes[i]), mode,
networkx.complete_multipartite_graph(sizes[i], sizes[i]), expected[i], False)
if not success:
return None
res[mode].append(elapsed)
return res
def handle_failure():
print("Experiments failed")
exit(1)
# Runs experiments which compare the time of CSP and SAT
def run_experiments():
modes = ["CSP", "SAT", "CSP_iterative", "SAT_iterative"]
experiment_results = []
# Specific graph structures
star_graph_sizes = [size for size in range(10, 100, 10)]
results = star_graph_experiments(modes, star_graph_sizes)
if results is None:
handle_failure()
experiment_results.append((star_graph_sizes, results, "star graphs"))
complete_graph_sizes = [size for size in range(1, 8, 1)]
total_expected = [1, 3, 3, 5, 5, 7, 7]
results = complete_graph_experiments(modes, complete_graph_sizes, total_expected)
if results is None:
handle_failure()
experiment_results.append((complete_graph_sizes, results, "complete graphs"))
complete_bipartite_graph_sizes = [size for size in range(2, 5, 1)]
complete_bipartite_expected = [4, 5, 6]
results = bipartite_graph_experiments(modes, complete_bipartite_graph_sizes, complete_bipartite_expected)
if results is None:
handle_failure()
experiment_results.append((complete_bipartite_graph_sizes, results, "complete bipartite graphs"))
# Randomly generated graphs, experiments based on size in nodes
random_graph_sizes = [size for size in range(5, 50, 5)]
results = graph_size_experiments(modes, random_graph_sizes)
if results is None:
handle_failure()
experiment_results.append((random_graph_sizes, results, "random graphs based on size"))
# Randomly generated graphs, experiments based on density
densities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
densities_results = graph_density_experiments(modes, densities)
if densities_results is None:
handle_failure()
# Plotting
for experiment_res in experiment_results:
input_sizes, output, experiment_name = experiment_res
for mode in results:
plt.plot(input_sizes, output[mode], label='{}'.format(mode))
plt.title(
'Comparison of ' + ','.join(modes) + ' for {}'.format(experiment_name))
plt.xlabel('Size of the graph in nodes')
plt.ylabel('Time in seconds')
plt.legend()
plt.show()
for mode in densities_results:
plt.plot(densities, densities_results[mode], label='{}'.format(mode))
plt.title(
'Comparison of ' + ','.join(modes) + ' for random graphs based on density')
plt.xlabel('Probability of edge creation')
plt.ylabel('Time in seconds')
plt.legend()
plt.show()
graph_average(modes)