-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathstylegan.py
218 lines (179 loc) · 7.36 KB
/
stylegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# [A Style-Based Generator Architecture for Generative Adversarial Networks](https://arxiv.org/pdf/1812.04948.pdf)
import tensorflow as tf
from tensorflow import keras
from visual import save_gan, cvt_gif
from utils import set_soft_gpu, save_weights
from mnist_ds import get_half_batch_ds
from gan_cnn import mnist_uni_disc_cnn
import time
import numpy as np
import tensorflow.keras.initializers as initer
class AdaNorm(keras.layers.Layer):
def __init__(self, axis=(1, 2), epsilon=1e-5):
super().__init__()
# NHWC
self.axis = axis
self.epsilon = epsilon
def call(self, x, **kwargs):
mean = tf.math.reduce_mean(x, axis=self.axis, keepdims=True)
diff = x - mean
variance = tf.reduce_mean(tf.math.square(diff), axis=self.axis, keepdims=True)
x_norm = diff * tf.math.rsqrt(variance + self.epsilon)
return x_norm
class AdaMod(keras.layers.Layer):
def __init__(self):
super().__init__()
self.y = None
def call(self, inputs, **kwargs):
x, w = inputs
y = self.y(w)
o = (y[:, 0] + 1) * x + y[:, 1]
return o
def build(self, input_shape):
x_shape, w_shape = input_shape
self.y = keras.Sequential([
keras.layers.Dense(x_shape[-1]*2, input_shape=w_shape[1:], name="y",
kernel_initializer=initer.RandomNormal(0, 1)), # this kernel is important
keras.layers.Reshape([2, 1, 1, -1])]) # [2, h, w, c]
class AddNoise(keras.layers.Layer):
def __init__(self):
super().__init__()
self.s = None
self.x_shape = None
def call(self, inputs, **kwargs):
x, noise = inputs
noise_ = noise[:, :self.x_shape[1], :self.x_shape[2], :]
return self.s * noise_ + x
def build(self, input_shape):
self.x_shape, _ = input_shape
self.s = self.add_weight(name="noise_scale", shape=[1, 1, self.x_shape[-1]], # [h, w, c]
initializer=initer.random_normal(0., 1.)) # large initial noise
class Map(keras.layers.Layer):
def __init__(self, size):
super().__init__()
self.size = size
self.f = None
def call(self, inputs, **kwargs):
w = self.f(inputs)
return w
def build(self, input_shape):
self.f = keras.Sequential([
keras.layers.Dense(self.size, input_shape=input_shape[1:]),
# keras.layers.LeakyReLU(0.2), # worse performance when using non-linearity in mapping
keras.layers.Dense(self.size),
])
class Style(keras.layers.Layer):
def __init__(self, filters, upsampling=True):
super().__init__()
self.filters = filters
self.upsampling = upsampling
self.ada_mod, self.ada_norm, self.add_noise, self.up, self.conv = None, None, None, None, None
def call(self, inputs, **kwargs):
x, w, noise = inputs
x = self.ada_mod((x, w))
if self.up is not None:
x = self.up(x)
x = self.conv(x)
x = self.ada_norm(x)
x = keras.layers.LeakyReLU()(x)
x = self.add_noise((x, noise))
return x
def build(self, input_shape):
self.ada_mod = AdaMod()
self.ada_norm = AdaNorm()
if self.upsampling:
self.up = keras.layers.UpSampling2D((2, 2), interpolation="bilinear")
self.add_noise = AddNoise()
self.conv = keras.layers.Conv2D(self.filters, 3, 1, "same")
class StyleGAN(keras.Model):
"""
重新定义generator,生成图片
"""
def __init__(self, latent_dim, img_shape):
super().__init__()
self.latent_dim = latent_dim
self.img_shape = img_shape
self.n_style = 3
self.g = self._get_generator()
self.d = self._get_discriminator()
self.opt = keras.optimizers.Adam(0.001, beta_1=0.)
self.loss_bool = keras.losses.BinaryCrossentropy(from_logits=True)
def call(self, inputs, training=None, mask=None):
if isinstance(inputs[0], np.ndarray):
inputs = (tf.convert_to_tensor(i) for i in inputs)
inputs = [tf.ones((len(inputs[0]), 1)), *inputs]
return self.g.call(inputs, training=training)
def _get_generator(self):
z = keras.Input((self.n_style, self.latent_dim,), name="z")
noise_ = keras.Input((self.img_shape[0], self.img_shape[1]), name="noise")
ones = keras.Input((1,), name="ones")
const = keras.Sequential([
keras.layers.Dense(7*7*128, use_bias=False, name="const"),
keras.layers.Reshape((7, 7, 128)),
], name="const")(ones)
w = Map(size=128)(z)
noise = tf.expand_dims(noise_, axis=-1)
x = AddNoise()((const, noise))
x = AdaNorm()(x)
x = Style(64, upsampling=False)((x, w[:, 0], noise)) # 7^2
x = Style(64)((x, w[:, 1], noise)) # 14^2
x = Style(64)((x, w[:, 2], noise)) # 28^2
o = keras.layers.Conv2D(self.img_shape[-1], 5, 1, "same", activation=keras.activations.tanh)(x)
g = keras.Model([ones, z, noise_], o, name="generator")
g.summary()
return g
def _get_discriminator(self):
model = keras.Sequential([
mnist_uni_disc_cnn(self.img_shape, use_bn=True),
keras.layers.Dense(1)
], name="discriminator")
model.summary()
return model
def train_d(self, img, label):
with tf.GradientTape() as tape:
pred = self.d.call(img, training=True)
loss = self.loss_bool(label, pred)
grads = tape.gradient(loss, self.d.trainable_variables)
self.opt.apply_gradients(zip(grads, self.d.trainable_variables))
return loss
def train_g(self, n):
available_z = [tf.random.normal((n, 1, self.latent_dim)) for _ in range(2)]
z = tf.concat([available_z[np.random.randint(0, len(available_z))] for _ in range(self.n_style)], axis=1)
noise = tf.random.normal((n, self.img_shape[0], self.img_shape[1]))
inputs = (z, noise)
with tf.GradientTape() as tape:
g_img = self.call(inputs, training=True)
pred = self.d.call(g_img, training=False)
loss = self.loss_bool(tf.ones_like(pred), pred)
grads = tape.gradient(loss, self.g.trainable_variables)
self.opt.apply_gradients(zip(grads, self.g.trainable_variables))
return loss, g_img
def step(self, img):
g_loss, g_img = self.train_g(len(img) * 2)
d_label = tf.concat((tf.ones((len(img), 1), tf.float32), tf.zeros((len(g_img) // 2, 1), tf.float32)), axis=0)
img = tf.concat((img, g_img[:len(g_img) // 2]), axis=0)
d_loss = self.train_d(img, d_label)
return d_loss, g_loss
def train(gan, ds, epoch):
t0 = time.time()
for ep in range(epoch):
for t, (img, _) in enumerate(ds):
d_loss, g_loss = gan.step(img)
if t % 400 == 0:
t1 = time.time()
print(
"ep={} | time={:.1f} | t={} | d_loss={:.2f} | g_loss={:.2f}".format(
ep, t1 - t0, t, d_loss.numpy(), g_loss.numpy(), ))
t0 = t1
save_gan(gan, ep)
save_weights(gan)
cvt_gif(gan)
if __name__ == "__main__":
LATENT_DIM = 100
IMG_SHAPE = (28, 28, 1)
BATCH_SIZE = 64
EPOCH = 20
set_soft_gpu(True)
d = get_half_batch_ds(BATCH_SIZE)
m = StyleGAN(LATENT_DIM, IMG_SHAPE)
train(m, d, EPOCH)