-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDMD1_SIADS.m
143 lines (117 loc) · 3.75 KB
/
DMD1_SIADS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
% This file is part of HODMD
%
% Copyright (c) 2017 S Le Clainche & J M Vega
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions
% are met:
% 1. Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
% FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
% OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
% HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
% LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
% OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
% SUCH DAMAGE.
%
% $FreeBSD$
function [Vreconst,deltas,omegas,amplitude] =DMD1(V,Time,varepsilon1,varepsilon)
%%%%%%%%%%%%%%%%%%%%%%%%% DMD-1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% This function solves the DMD-1 algorithm presented in %%%
%%% Le Clainche & Vega, SIAM J. on Appl. Dyn. Sys. 16(2):882-925, 2017 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% %% INPUT: %%
%%% V: snapshot matrix
%%% Time: vector time
%%% varepsilon1: first tolerance (SVD)
%%% varepsilon: second tolerance (DMD-d modes)
%%% %% OUTPUT: %%
%%% Vreconst: reconstruction of the snapshot matrix V
%%% deltas: growht rate of DMD modes
%%% omegas: frequency of DMD modes(angular frequency)
%%% amplitude: amplitude of DMD modes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[J,K]=size(V);
[U,Sigma,T]=svd(V,'econ');
sigmas=diag(Sigma);
Deltat=Time(2)-Time(1);
n=length(sigmas);
NormS=norm(sigmas,2);
kk=0;
for k=1:n
if norm(sigmas(k:n),2)/NormS>varepsilon1
kk=kk+1;
end
end
%% Spatial complexity: kk
('Spatial complexity')
kk
U=U(:,1:kk);
%% Create reduced snapshots matrix
hatT=Sigma(1:kk,1:kk)*T(:,1:kk)';
[N,K]=size(hatT);
[hatU1,hatSigma,hatU2]=svd(hatT(:,1:K-1),'econ');
%% Calculate Koopman operator
hatR=hatT(:,2:K)*hatU2*inv(hatSigma)*hatU1';
[Q,MM]=eig(hatR);
eigenvalues=diag(MM);
M=length(eigenvalues);
qq=log(eigenvalues);
deltas=real(qq)/Deltat;
omegas=imag(qq)/Deltat;
%% Calculate amplitudes
Mm=zeros(M*K,M);
Bb=zeros(M*K,1);
for k=1:K
Mm(1+(k-1)*M:k*M,:)=Q*(MM^(k-1));
Bb(1+(k-1)*M:k*M,1)=hatT(:,k);
end
[Ur,Sigmar,Vr]=svd(Mm,'econ');
a=Vr*(Sigmar\(Ur'*Bb));
u=zeros(M,M);
for m=1:M
u(:,m)=a(m)*Q(:,m);
end
amplitude=zeros(M,1);
for m=1:M
aca=U*u(:,m);
amplitude(m)=norm(aca(:),2)/sqrt(J);
end
UU=[u;deltas';omegas';amplitude']';
UU1=sortrows(UU,-(M+3));
UU=UU1';
u=UU(1:M,:);
deltas=UU(M+1,:);
omegas=UU(M+2,:);
amplitude=UU(M+3,:);
kk2=0;
for m=1:M
if amplitude(m)/amplitude(1)>varepsilon
kk2=kk2+1;
else
end
end
%% Spectral complexity: number of DMD modes.
('Spectral complexity')
kk2
u=u(:,1:kk2);
deltas=deltas(1:kk2);
omegas=omegas(1:kk2);
amplitude=amplitude(1:kk2);
('Mode number, delta, omega, amplitude')
DeltasOmegAmpl=[deltas',omegas',amplitude']
hatTreconst=zeros(N,K);
for k=1:K
hatTreconst(:,k)= ContReconst_SIADS(Time(k),Time(1),u,deltas,omegas);
end
Vreconst=U*hatTreconst;