diff --git a/vignettes/pisa2012.Rmd b/vignettes/pisa2012.Rmd index 07a0172..a82c4e0 100644 --- a/vignettes/pisa2012.Rmd +++ b/vignettes/pisa2012.Rmd @@ -76,7 +76,7 @@ It seems that there exist some differences among countries included in PISA. Let # Factor Merger ```{r} -pisaIdxSubset <- sample(1:nrow(pisa2012), size = 5000) +pisaIdxSubset <- sample(1:nrow(pisa2012), size = 500) pisaFM <- mergeFactors(pisa2012[pisaIdxSubset, 1:3], factor(pisa2012$CNT[pisaIdxSubset])) @@ -84,7 +84,7 @@ pisaFM plot(pisaFM, responsePanel = "profile") ``` It's faster to use 'hclust' method on a big dataset. -```{r} +```{r, eval = FALSE} pisaFMHClustMath <- mergeFactors(pisa2012[, 1:3], factor(pisa2012$CNT), method = "hclust", @@ -101,7 +101,7 @@ plot(pisaFMHClust) ``` Let's now have a try using European countries only. -```{r} +```{r, eval = FALSE} pisaEuropean <- filter(pisa2012, CNT %in% c("Austria", "Belgium", "Bulgaria", "Czech Republic", "Germany", "Denmark", @@ -124,7 +124,7 @@ plot(pisaFMHClustEurope) # Another factor - parent occupation -```{r} +```{r, eval = FALSE} which <- (ocod$code %>% substr(0,2)) %in% (table(ocod$code %>% substr(0,2)) %>% as.data.frame() %>% filter(Freq > 1000))$Var1