-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathservice.py
168 lines (145 loc) · 5.96 KB
/
service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import logging
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, Any, Optional
import pandas as pd
from engine import RulesEngine, AbstractServiceProvider
from logging_config import IndentLogger
from utils import RuleResolver
logger = IndentLogger(logging.getLogger('service'))
@dataclass
class RuleResult:
"""Result from rule execution containing output values and metadata"""
output: Dict[str, Any]
requirements_met: bool
input: Dict[str, Any]
@classmethod
def from_engine_result(cls, result: Dict[str, Any]) -> 'RuleResult':
"""Create RuleResult from engine evaluation result"""
return cls(
output={
name: data.get('value')
for name, data in result.get('output', {}).items()
},
requirements_met=result.get('requirements_met', False),
input=result.get('input', {}),
)
class RuleService:
"""Interface for executing business rules for a specific service"""
def __init__(self, service_name: str, services):
"""
Initialize service for specific business rules
Args:
service_name: Name of the service (e.g. "TOESLAGEN")
services: parent services
"""
self.service_name = service_name
self.services = services
self.resolver = RuleResolver()
self._engines: Dict[str, Dict[str, RulesEngine]] = {}
self.source_dataframes: Dict[str, pd.DataFrame] = {}
def _get_engine(self, law: str, reference_date: str) -> RulesEngine:
"""Get or create RulesEngine instance for given law and date"""
if law not in self._engines:
self._engines[law] = {}
if reference_date not in self._engines[law]:
spec = self.resolver.get_rule_spec(law, reference_date, service=self.service_name)
if not spec:
raise ValueError(
f"No rules found for law '{law}' at date '{reference_date}'"
)
if spec.get('service') != self.service_name:
raise ValueError(
f"Rule spec service '{spec.get('service')}' does not match "
f"service '{self.service_name}'"
)
self._engines[law][reference_date] = RulesEngine(
spec=spec,
service_provider=self.services
)
return self._engines[law][reference_date]
async def evaluate(
self,
law: str,
reference_date: str,
parameters: Dict[str, Any],
overwrite_input: Optional[Dict[str, Any]] = None,
requested_output: str = None
) -> RuleResult:
"""
Evaluate rules for given law and reference date
Args:
law: Name of the law (e.g. "zorgtoeslagwet")
reference_date: Reference date for rule version (YYYY-MM-DD)
parameters: Context data for service provider
overwrite_input: Optional overrides for input values
requested_output: Optional specific output field to calculate
Returns:
RuleResult containing outputs and metadata
"""
engine = self._get_engine(law, reference_date)
result = await engine.evaluate(
parameters=parameters,
overwrite_input=overwrite_input,
sources=self.source_dataframes,
calculation_date=reference_date,
requested_output=requested_output,
)
return RuleResult.from_engine_result(result)
def get_rule_info(self, law: str, reference_date: str) -> Optional[Dict[str, Any]]:
"""
Get metadata about the rule that would be applied for given law and date
Returns dict with uuid, name, valid_from if rule is found
"""
try:
rule = self.resolver.find_rule(law, reference_date)
if rule:
return {
'uuid': rule.uuid,
'name': rule.name,
'valid_from': rule.valid_from.strftime('%Y-%m-%d')
}
except ValueError:
return None
return None
def set_source_dataframe(self, table: str, df: pd.DataFrame):
"""Set a source DataFrame"""
self.source_dataframes[table] = df
class Services(AbstractServiceProvider):
def __init__(self, reference_date: str):
self.resolver = RuleResolver()
self.service_laws = self.resolver.get_service_laws()
self.services = {service: RuleService(service, self) for service in self.service_laws}
self.root_reference_date = reference_date
def set_source_dataframe(self, service: str, table: str, df: pd.DataFrame):
"""Set a source DataFrame for a service"""
self.services[service].set_source_dataframe(table, df)
async def evaluate(
self,
service: str,
law: str,
reference_date: str,
parameters: Dict[str, Any],
overwrite_input: Optional[Dict[str, Any]] = None,
requested_output: str = None
) -> RuleResult:
with logger.indent_block(f"{service}: {law} ({reference_date} {parameters} {requested_output})",
double_line=True):
return await self.services[service].evaluate(
law=law,
reference_date=reference_date,
parameters=parameters,
overwrite_input=overwrite_input,
requested_output=requested_output,
)
async def get_value(
self,
service: str,
law: str,
field: str,
context: Dict[str, Any],
overwrite_input: Dict[str, Any],
reference_date: str) -> Any:
# reference_date = self.root_reference_date
result = await self.evaluate(service, law, reference_date, context, overwrite_input, requested_output=field)
return result.output.get(field)