-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathATL08_airborneLiDAR_segmentQuery.py
174 lines (165 loc) · 7.47 KB
/
ATL08_airborneLiDAR_segmentQuery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Author: Milutin Milenkovic
# Copyright:
# Licence:
# ----------------------------------------------------------------------------------------------------------------------
# -- Short Description --
"""
This script calculates airborne LiDAR forest height statistics (90th percentile) per each ICESat-2 ATL08 segment
intersecting the two calibration sites
"""
# -------- Input --------
# (1) airborne LiDAR forest heights as 1m raster in the tiff format per each calibration site
# (2) ICESat-2 ATL08 segments of the intersecting orbits stored in the h5 files
# -------- Output -------
# (1) a single geodataframe (geopandas) including ATL08 segments from both calibration sites.
# The geo-data-frame contains ATL08 variables as well as airborne LiDAR statistics (90th percentile)
# ----------------------------------------------------------------------------------------------------------------------
import sys
import glob
import geopandas as gpd
import pandas as pd
from rasterstats import zonal_stats
from atl08_to_dataFrame import atl08_to_dataFrame
import shapely
# ---------------
sys.path.append('/home/milutin/Downloads/install/PhoREAL_v3.24/PhoREAL/source_code/')
# ---------------
from icesatIO import (calculateangle, calculategrounddirection)
# ------------------
# CHM raster:
# ------------------
chm_file_Para = '/mnt/ssd/milutin/Para_upScaling/Validation_GEDI_ICESat2/ALS_CHMs/Para_all_strips_norZ_q99.tif'
chm_file_MG = '/mnt/ssd/milutin/Para_upScaling/Validation_GEDI_ICESat2/ALS_CHMs/MG_all_strips_norZ_q99.tif'
# -----------------------------
# ATL08 files
# -----------------------------
atl08FilePaths_MG = glob.glob(r'/mnt/ssd/milutin/Para_upScaling/Validation_GEDI_ICESat2/ICESat2_MG/ATL08_*.h5')
atl08FilePaths_Para = glob.glob(r'/mnt/ssd/milutin/Para_upScaling/Validation_GEDI_ICESat2/ICESat2_Para/ATL08_*.h5')
# #######################################
# process all ATL08 files
# #######################################
# ------------------------
# read all atl08 fies and store in single df
# ------------------------
atl08_df_all_Para = pd.DataFrame()
for atl08FilePath in atl08FilePaths_Para:
aux_df = atl08_to_dataFrame(atl08FilePath)
atl08_df_all_Para = atl08_df_all_Para.append(aux_df, ignore_index=True)
#
atl08_df_all_MG = pd.DataFrame()
for atl08FilePath in atl08FilePaths_MG:
aux_df = atl08_to_dataFrame(atl08FilePath)
atl08_df_all_MG = atl08_df_all_MG.append(aux_df, ignore_index=True)
# ------------------------
# convert to geopandas df
# ------------------------
atl08_gdf_Para = gpd.GeoDataFrame(atl08_df_all_Para, geometry=gpd.points_from_xy(atl08_df_all_Para.lon, atl08_df_all_Para.lat))
atl08_gdf_Para.set_crs(epsg=4326, inplace=True)
#
atl08_gdf_MG = gpd.GeoDataFrame(atl08_df_all_MG, geometry=gpd.points_from_xy(atl08_df_all_MG.lon, atl08_df_all_MG.lat))
atl08_gdf_MG.set_crs(epsg=4326, inplace=True)
# ------------------------
# transform to the UTM 21S
# ------------------------
atl08_gdf_Para.to_crs(epsg=31981, inplace=True)
#
atl08_gdf_MG.to_crs(epsg=31981, inplace=True)
# ------------------------
# buffer all the points:
# ------------------------
# make a copy of data
atl08_gdf_Para_buf = atl08_gdf_Para.copy(deep=True)
atl08_gdf_MG_buf = atl08_gdf_MG.copy(deep=True)
# make a rectangular buffer around the points (footprint radius):
atl08_gdf_Para_buf['geometry'] = atl08_gdf_Para_buf['geometry'].buffer(5.5, cap_style=3)
atl08_gdf_MG_buf['geometry'] = atl08_gdf_MG_buf['geometry'].buffer(5.5, cap_style=3)
# scale y-axis to get rectangles (ATL segment is 11x100m)
atl08_gdf_Para_buf['geometry'] = atl08_gdf_Para_buf['geometry'].scale(1, 50/5.5, 1)
atl08_gdf_MG_buf['geometry'] = atl08_gdf_MG_buf['geometry'].scale(1, 50/5.5, 1)
#
# atl08_gdf_MG_buf.plot(color='None', edgecolor='red')
# atl08_gdf_Para_buf.head(2000).plot(color='None', edgecolor='red')
# ------------------------------
# calculate the rotation angles:
# -------------------------------
my_orbits = atl08_gdf_MG_buf.orbit.unique()
#
for my_orbit in my_orbits:
orbit_gdf = atl08_gdf_MG_buf.loc[atl08_gdf_MG_buf.orbit == my_orbit]
my_tracks = orbit_gdf.beamNum.unique()
for my_track in my_tracks:
track_gdf = orbit_gdf.loc[orbit_gdf.beamNum == my_track]
my_xx = track_gdf.geometry.centroid.x.to_list()
my_yy = track_gdf.geometry.centroid.y.to_list()
#
angle_deg = calculategrounddirection(my_xx, my_yy)
#
atl08_gdf_MG_buf.loc[track_gdf.index, 'myAzimuth'] = 90-angle_deg
# ----------------------------
my_orbits = atl08_gdf_Para_buf.orbit.unique()
#
for my_orbit in my_orbits:
orbit_gdf = atl08_gdf_Para_buf.loc[atl08_gdf_Para_buf.orbit == my_orbit]
my_tracks = orbit_gdf.beamNum.unique()
for my_track in my_tracks:
track_gdf = orbit_gdf.loc[orbit_gdf.beamNum == my_track]
my_xx = track_gdf.geometry.centroid.x.to_list()
my_yy = track_gdf.geometry.centroid.y.to_list()
#
angle_deg = calculategrounddirection(my_xx, my_yy)
#
atl08_gdf_Para_buf.loc[track_gdf.index, 'myAzimuth'] = 90-angle_deg
# -------------------------------
# rotate
# -------------------------------
for index, row in atl08_gdf_Para_buf.iterrows():
rotated = shapely.affinity.rotate(row['geometry'], -1*row['myAzimuth'], use_radians=False, origin='centroid')
atl08_gdf_Para_buf.loc[index, 'geometry'] = rotated
#
for index, row in atl08_gdf_MG_buf.iterrows():
rotated = shapely.affinity.rotate(row['geometry'], -1*row['myAzimuth'], use_radians=False, origin='centroid')
atl08_gdf_MG_buf.loc[index, 'geometry'] = rotated
# atl08_gdf_Para_buf.head(2000).plot(color='None', edgecolor='red')
# atl08_gdf_MG_buf.head(2000).plot(color='None', edgecolor='red')
# ------------------------------------
# calculate zonal statistics
# ------------------------------------
atl08_gdf_Para_buf['als_h'] = pd.DataFrame(zonal_stats(vectors=atl08_gdf_Para_buf['geometry'],
raster=chm_file_Para,
stats='percentile_90'))['percentile_90']
#
atl08_gdf_MG_buf['als_h'] = pd.DataFrame(zonal_stats(vectors=atl08_gdf_MG_buf['geometry'],
raster=chm_file_MG,
stats='percentile_90'))['percentile_90']
# #########################################
# pre-processing related to ALS
# #########################################
# ------------------------------------
# remove points with ALS height == None
# ------------------------------------
atl08_gdf_Para_buf.dropna(subset=['als_h'], inplace=True)
#
atl08_gdf_MG_buf.dropna(subset=['als_h'], inplace=True)
# ------------------------------------
# remove points with ALS height == 0
# ------------------------------------
atl08_gdf_Para_buf = atl08_gdf_Para_buf[atl08_gdf_Para_buf['als_h'] != 0]
#
atl08_gdf_MG_buf = atl08_gdf_MG_buf[atl08_gdf_MG_buf['als_h'] != 0]
# #########################################
# merge to gdf-s
# #########################################
# add the site column
atl08_gdf_Para_buf['Site'] = 'Para'
atl08_gdf_MG_buf['Site'] = 'MG'
# reset index
atl08_gdf_Para_buf.reset_index(inplace=True)
atl08_gdf_MG_buf.reset_index(inplace=True)
# merge
atl08_gdf = atl08_gdf_Para_buf.append(atl08_gdf_MG_buf, ignore_index=True)
# #########################################
# save
# #########################################
outFilePath = r'/mnt/ssd/milutin/Para_upScaling/Validation_GEDI_ICESat2/ICESat2_Para/ATL08_validation/ATL08_gdf_Para_MG.json'
with open(outFilePath, 'w') as f:
f.write(atl08_gdf.to_json())