-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathextract_controlnet.py
27 lines (22 loc) · 1.14 KB
/
extract_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import argparse
import torch
from safetensors.torch import load_file, save_file
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--src", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--dst", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Cast to FP16.")
args = parser.parse_args()
assert args.src is not None, "Must provide a model path!"
assert args.dst is not None, "Must provide a checkpoint path!"
if args.src.endswith(".safetensors"):
state_dict = load_file(args.src)
else:
state_dict = torch.load(args.src)
if any([k.startswith("control_model.") for k, v in state_dict.items()]):
dtype = torch.float16 if args.half else torch.float32
state_dict = {k.replace("control_model.", ""): v.to(dtype) for k, v in state_dict.items() if k.startswith("control_model.")}
if args.dst.endswith(".safetensors"):
save_file(state_dict, args.dst)
else:
torch.save({"state_dict": state_dict}, args.dst)