-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetection_Hero_Image.py
36 lines (28 loc) · 1004 Bytes
/
Detection_Hero_Image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import tensorflow as tf
import cv2
import os
import numpy as np
from tensorflow import keras
from tensorflow.python.keras.utils import generic_utils
from tensorflow.keras import models
from tensorflow.keras import layers
import cv2
import numpy as np
import matplotlib as plt
from os import system
import warnings
warnings.filterwarnings("ignore")
Classes=["BlackWidow","Captain America","Doctor Strange","Hulk","IronMan","Loki","SpiderMan","Thanos"]
model=keras.models.load_model('hero_predictor.h5')
cls = lambda: system('cls')
cls()
file_name='test_img.jpg'
sample_test_img=cv2.imread(file_name)
final_sample_test_img=cv2.resize(sample_test_img,(48,48))
final_sample_test_img=np.expand_dims(final_sample_test_img,axis=0)
final_sample_test_img=final_sample_test_img/255.0
Predictions=model.predict(final_sample_test_img)
label=np.argmax(Predictions,axis=1)[0]
prob=str((Predictions[0][label])*100)
class_label=Classes[label]
print(file_name,class_label)