-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
301 lines (236 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import glob
import numpy as np
import torch
import torch.nn as nn
import statistics
from torch.utils.data import Dataset, DataLoader, Subset, RandomSampler
import yaml
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm
from code.Datasets import MultiomicsDataset, stratified_dataset
from code.model import *
from code.metrics_utils import *
from code.utils import EarlyStopping
from torch.utils.tensorboard import SummaryWriter
def get_lambda(epoch, max_epoch):
p = epoch / max_epoch
return 2. / (1+np.exp(-10.*p)) - 1.
def SNN_training(train_loader, input_dim, size, n_classes):
model_SNN = SNN_token(input_dim, size, n_classes, cls_flg=True)
model_SNN.to('cuda')
epochs = 10
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model_SNN.parameters()), lr=2e-4, weight_decay=1e-5) # parameter from MCAT
print('Gene guide branch training...')
for epoch in tqdm(range(epochs)):
train_loss = 0.0
model_SNN.train()
for batch_idx,(_, gene, label, _) in enumerate(train_loader):
gene = gene.to(device='cuda')
label = label.to(device='cuda')
inputs = gene.float()
optimizer.zero_grad()
logits,prob,_ = model_SNN(inputs)
loss = criterion(logits, label)
loss.backward()
optimizer.step()
train_loss += loss.item()
model_SNN.eval()
model = model_SNN.fc_omic
return model
def train(dataset, cfg, epochs=100, kfolds=5):
out_model_dir = os.path.join(cfg['result_dir'], f'{kfolds}folds/')
if not os.path.exists(out_model_dir):
os.makedirs(out_model_dir)
size = cfg['model_size_omic']
size_dict = {'small': 256, 'medium': 512, 'big': 1024}
cancer_type = cfg['cancer_type']
lr = cfg['lr']
weight_decay = cfg['weight_decay']
patience = cfg['patience']
stop_epoch = cfg['stop_epoch']
trained_SNN = cfg['trained_SNN']
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=cfg['seed'])
criterion_sim = nn.CosineSimilarity(dim=1)
criterion_label = nn.CrossEntropyLoss()
criterion_D = nn.CrossEntropyLoss()
input_dim = dataset.feature_dim
for i, (train_index, val_index) in enumerate(skf.split(dataset, dataset.tissue_num)):
print(f"Fold {i}")
train_dataset = Subset(dataset, train_index)
val_dataset = Subset(dataset, val_index)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=16, pin_memory=True, prefetch_factor=10)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=16, pin_memory=True, prefetch_factor=10)
if trained_SNN:
model_SNN = SNN_training(train_loader, input_dim, size, n_classes=4)
else:
model_SNN = SNN_token(input_dim, size, n_classes=4)
model_WSI = ABMIL_VPT(cfg['prompt_length'], L=size_dict[size])
model_cls = cls_wsi(size_dict[size], n_classes=4)
model_D = Discriminator(size_dict[size], cancer_type)
optimizer_wsi = torch.optim.Adam(filter(lambda p: p.requires_grad, model_WSI.parameters()), lr=lr, weight_decay=weight_decay)
optimizer_cls = torch.optim.Adam(filter(lambda p: p.requires_grad, model_cls.parameters()), lr=lr, weight_decay=weight_decay)
optimizer_D = torch.optim.Adam(filter(lambda p: p.requires_grad, model_D.parameters()), lr=lr, weight_decay=weight_decay)
writer = SummaryWriter(os.path.join(out_model_dir, f'runs/Kfold_{i}'))
out_model_path_wsi = os.path.join(out_model_dir, f'WSI_Kfold_{i}.pt')
out_model_path_snn = os.path.join(out_model_dir, f'SNN_Kfold_{i}.pt')
out_model_path_cls = os.path.join(out_model_dir, f'CLS_Kfold_{i}.pt')
out_model_path_D = os.path.join(out_model_dir, f'D_Kfold_{i}.pt')
early_stoppers = [EarlyStopping(patience, stop_epoch, verbose=(i==0)) for i in range(4)]
print(f"Fold {i}: WSI learning branch training...")
for epoch in range(epochs):
train_loss = 0.0
D_loss = 0.0
model_WSI.train()
model_WSI.to('cuda')
model_cls.train()
model_cls.to('cuda')
model_D.train()
model_D.to('cuda')
for batch_idx,(wsi, gene, label, tissue_num) in enumerate(train_loader):
gene = gene.to('cuda')
label = label.to('cuda')
wsi = wsi.to('cuda')
tissue_num = tissue_num.to('cuda')
wsi = wsi.squeeze()
# DANN
token_wsi, _, _, _ = model_WSI(wsi)
p_tissue = model_D(token_wsi.detach())
loss_D = criterion_D(p_tissue, tissue_num)
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
# CLS
token_gene = model_SNN(gene.float())
logits, prob, Y_hat = model_cls(token_wsi)
p_tissue = model_D(token_wsi)
loss_1 = 1-criterion_sim(token_wsi, token_gene)
loss_2 = criterion_label(logits, label)
loss_D = criterion_D(p_tissue, tissue_num)
lamda = 0.1*get_lambda(epoch, epochs)
loss = (1-lamda)*loss_1 + lamda*loss_2 - lamda*loss_D
optimizer_wsi.zero_grad()
optimizer_cls.zero_grad()
optimizer_D.zero_grad()
loss.backward()
optimizer_wsi.step()
optimizer_cls.step()
train_loss += loss.item()
D_loss += loss_D.item()
# evaluate on validation set
model_WSI.eval()
model_SNN.eval()
model_cls.eval()
model_D.eval()
val_loss = 0.0
with torch.no_grad():
predicted_labels = []; labels = []; probs = []; corrects = torch.zeros(1).to('cuda')
for batch_idx, (wsi, gene, label, tissue_num) in enumerate(val_loader):
gene = gene.to('cuda')
label = label.to('cuda')
wsi = wsi.to('cuda')
tissue_num = tissue_num.to('cuda')
wsi = wsi.squeeze()
token_wsi, _, _, _ = model_WSI(wsi)
token_gene = model_SNN(gene.float()) # 1 x 1024
logits, prob, Y_hat = model_cls(token_wsi)
p_tissue = model_D(token_wsi.detach())
loss_1 = 1-criterion_sim(token_wsi, token_gene)
loss_2 = criterion_label(logits, label)
loss_D = criterion_D(p_tissue, tissue_num)
lamda = 0.1*get_lambda(epoch, epochs)
corrects += (tissue_num==torch.argmax(p_tissue).item()).sum()
acc_D = corrects.item() / len(val_loader)
loss = (1-lamda)*loss_1 + lamda*loss_2 - lamda*loss_D
# print(f'---{batch_idx}:loss{loss}; similarity{criterion_sim(token_wsi, token_gene)}')
predicted_labels.extend(Y_hat.detach().cpu())
labels.extend(label.cpu())
probs.extend(prob.cpu())
val_loss += loss.item()
accuracy, precision, recall, f1, roc_auc, pr_auc = cal_metrics(labels, predicted_labels, probs)
print(f'Epoch {epoch + 1}, Val Loss: {val_loss/len(val_loader):.4f}, Val Acc: {accuracy}, ROCAUC:{roc_auc:.4f}, PR_AUC:{pr_auc:.4f}')
print(f'Epoch {epoch + 1}, Discriminator Accuracy: {acc_D}, Discriminator Loss: {D_loss/len(val_loader)}')
print(f'Epoch {epoch + 1}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}')
writer.add_scalar('Train Loss', float(train_loss), epoch)
writer.add_scalar('Val Loss', float(val_loss), epoch)
writer.add_scalar('ROCAUC', float(roc_auc), epoch)
writer.add_scalar('Discriminator Accuracy', float(acc_D), epoch)
writer.add_scalar('Discriminator Loss', float(D_loss/len(val_loader)), epoch)
writer.add_scalar('Accuracy', float(accuracy), epoch)
writer.add_scalar('Precision', float(precision), epoch)
writer.add_scalar('Recall', float(recall), epoch)
writer.add_scalar('F1 score', float(f1), epoch)
early_stoppers[0](epoch, val_loss/len(val_loader), model_WSI, ckpt_name=out_model_path_wsi)
early_stoppers[1](epoch, val_loss/len(val_loader), model_SNN, ckpt_name=out_model_path_snn)
early_stoppers[2](epoch, val_loss/len(val_loader), model_cls, ckpt_name=out_model_path_cls)
early_stoppers[3](epoch, val_loss/len(val_loader), model_D, ckpt_name=out_model_path_D)
if early_stoppers[0].early_stop:
print("Early stopping")
break
def test(custom_dataset, cfg):
out_model_dir = cfg['result_dir']
size = cfg['model_size_omic']
size_dict = {'small': 256, 'medium': 512, 'big': 1024}
input_dim = custom_dataset.feature_dim
criterion = nn.CrossEntropyLoss()
roc_list = []; acc_list=[]; f1_list = []; pr_auc_list=[]
for i in range(5):
kfold = i
model_wsi_path = os.path.join(out_model_dir,'5folds', f'WSI_Kfold_{i}.pt')
model_cls_path = os.path.join(out_model_dir,'5folds', f'CLS_Kfold_{i}.pt')
model_WSI = ABMIL_VPT(cfg['prompt_length'], L=size_dict[size])
model_cls = cls_wsi(size_dict[size], n_classes=4)
model_WSI.load_state_dict(torch.load(model_wsi_path), strict=True)
model_WSI.to('cuda')
model_cls.load_state_dict(torch.load(model_cls_path), strict=True)
model_cls.to('cuda')
model_WSI.eval()
model_cls.eval()
test_loader = DataLoader(custom_dataset, batch_size=1, shuffle=True, num_workers=0)
test_loss = 0.0
with torch.no_grad():
predicted_labels = []; labels = []; probs = []
for batch_idx, (wsi, gene, label, tissue_num) in enumerate(test_loader):
label = label.to('cuda')
wsi = wsi.to('cuda')
gene = gene.to('cuda').float()
inputs = wsi.squeeze()
token_wsi, _, _, _ = model_WSI(inputs)
logits, prob, Y_hat = model_cls(token_wsi)
predicted_labels.extend(Y_hat.detach().cpu())
labels.extend(label.cpu())
probs.extend(prob.cpu())
test_loss += criterion(logits, label)
test_loss = test_loss/len(test_loader)
accuracy, precision, recall, f1, roc_auc, pr_auc = cal_metrics(labels, predicted_labels, probs,
result_dir=out_model_dir,
kfold=str(kfold), save_csv=True)
roc_list.append(roc_auc); f1_list.append(f1); acc_list.append(accuracy); pr_auc_list.append(pr_auc)
# accuracy_total = correct / total
print(f'{kfold} Test Loss: {test_loss:.4f}, Test Acc: {accuracy:.4f}, ROCAUC:{roc_auc:.4f} ')
print(f'{kfold} Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}, ROCAUC:{roc_auc:.4f} ')
print(f'Mean: Accuracy: {sum(acc_list)/5:.4f}, F1: {sum(f1_list)/5:.4f}, ROCAUC:{sum(roc_list)/5:.4f}, PR_AUC:{sum(pr_auc_list)/5:.4f}')
print(f'STD_ROC:{statistics.stdev(roc_list):.4f}, STD_Acc:{statistics.stdev(acc_list):.4f}, STD_F1:{statistics.stdev(f1_list):.4f}, STD_PR_AUC:{statistics.stdev(pr_auc_list):.4f}')
def load_dataset(cfg):
custom_dataset = MultiomicsDataset(label_df_path='data/label_id.csv',
mode='HIPT', wsi = True, scaler=False, gene=True,
gene_file_path = 'data/sample_knowledge_exp.csv')
train_mask, _, test_mask = stratified_dataset(custom_dataset, custom_dataset.tissue_num, test_size=0.15, val_size=0, seed=3076)
train_set = MultiomicsDataset(label_df_path='data/label_id.csv', indice=train_mask,
mode='HIPT', wsi = True, scaler=False,gene = True,
gene_file_path = 'data/sample_knowledge_exp.csv')
test_set = MultiomicsDataset(label_df_path='data/label_id.csv', indice=test_mask,
mode='HIPT', wsi = True, scaler=False,gene = True,
gene_file_path = 'data/sample_knowledge_exp.csv')
return train_set, test_set
if __name__ == "__main__":
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '2'
with open('config/config.yaml', 'r') as f:
cfg = yaml.safe_load(f)
train_set, test_set = load_dataset(cfg['datasets'])
print(f'Train set: {len(train_set)}, Test set: {len(test_set)} samples')
# train(train_set, cfg['models'])
test(test_set, cfg['models'])
print('PathoTME Done!')