-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
61 lines (46 loc) · 1.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
To run the algorithm on a video
"""
import time
import cv2
import Detectors from detector
import KalmanFilter from kalmanfilter
def main():
start_time = time.time()
vid = cv2.VideoCapture('22496-22790.avi')
fps = vid.get(cv2.CAP_PROP_FPS)
frame_width = int(vid.get(3))
frame_height = int(vid.get(4))
detector = Detectors()
skipframes = 1 #No of frames skipped + 1 (Time between successive frames given for detection)
flag = 1 #To find the first detection
track = [] #Keeps Track of most likely state vectors
frames = [] #Stores frames of the video
while(vid.isOpened()):
ret, frame = vid.read();
if ret == True:
frames.append(frame)
bcenter = detector.detectBall(frame)
try:
if(len(bcenter) > 0 and flag == 1):
KF = KalmanFilter(bcenter[0], bcenter[1], fps, skipframes)
track.append(KF.xk)
flag = 0
xp = KF.predict()
xmp = KF.update(bcenter[0], bcenter[1])
track.append(xmp)
except TypeError:
pass
else:
break
vid.release()
print("Time to execute : %s seconds" % (time.time()-start_time))
#Writing to video
out = cv2.VideoWriter('vid2Kalman.avi',cv2.VideoWriter_fourcc('M','P','E','G'), 10, (frame_width,frame_height))
for i in range(len(frames)):
print(i)
cv2.circle(frames[i], (int(track[i][0]), int(track[i][1])), 10, (255,255,255), 4)
out.write(frames[i])
out.release()
if __name__ == "__main__":
main()