-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
84 lines (68 loc) · 2.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import logging
import os
import torch
import torch.utils.data
from ssd.config import cfg
from ssd.engine.inference import do_evaluation
from ssd.modeling.detector import build_detection_model
from ssd.utils import dist_util
from ssd.utils.checkpoint import CheckPointer
from ssd.utils.dist_util import synchronize
from ssd.utils.logger import setup_logger
def evaluation(cfg, ckpt, distributed):
logger = logging.getLogger("SSD.inference")
model = build_detection_model(cfg)
checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR, logger=logger)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
checkpointer.load(ckpt, use_latest=ckpt is None)
do_evaluation(cfg, model, distributed)
def main():
parser = argparse.ArgumentParser(description='SSD Evaluation on VOC and COCO dataset.')
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--ckpt",
help="The path to the checkpoint for test, default is the latest checkpoint.",
default=None,
type=str,
)
parser.add_argument("--output_dir", default="eval_results", type=str, help="The directory to store evaluation results.")
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if torch.cuda.is_available():
# This flag allows you to enable the inbuilt cudnn auto-tuner to
# find the best algorithm to use for your hardware.
torch.backends.cudnn.benchmark = True
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
evaluation(cfg, ckpt=args.ckpt, distributed=distributed)
if __name__ == '__main__':
main()