-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathai_web_cam.py
80 lines (68 loc) · 2.81 KB
/
ai_web_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pd
import face_recognition
import os
from datetime import datetime
import cv2
def gen_frames(csv_path, class_no):
path = 'ImagesBasic'
images = []
personName = []
myList = os.listdir(path)
for curImg in myList:
currentImage = cv2.imread(f'{path}/{curImg}')
images.append(currentImage)
personName.append(os.path.splitext(curImg)[0])
print(personName)
def faceEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendance(name):
with open(csv_path, 'r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
print(f'\n{name}, {dtString}')
attendance = pd.read_csv(csv_path)
idx = attendance["name"].tolist().index(name)
attendance[f'{datetime.now().date()}({class_no})'][idx] = 'p'
attendance.to_csv(path_or_buf=csv_path, index=False)
encodeListKnown = faceEncodings(images)
print("Encoding complete")
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurrent = face_recognition.face_locations(imgS)
encodeCurrent = face_recognition.face_encodings(imgS, facesCurrent)
for encodeFace, faceLoc in zip(encodeCurrent, facesCurrent):
matches = face_recognition.compare_faces(
encodeListKnown, encodeFace)
faceDistance = face_recognition.face_distance(
encodeListKnown, encodeFace)
# print(faceDistance)
matchIndex = np.argmin(faceDistance)
if matches[matchIndex]:
name = personName[matchIndex].upper()
# print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2-35), (x2, y2),
(0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1+6, y2-6),
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)
ret, buffer = cv2.imencode('.jpg', img)
img = buffer.tobytes()
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + img + b'\r\n')